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Abstract
The self-supervised pre-training fine-tuning paradigm has been widely adopted for the
development of state-of-the-art speech models, due to its ability to effectively leverage
unlabelled data to improve model performance. However, such models usually require
large amounts of resources and extensive time during both training and inference,
especially during the self-supervised pre-training stage. This causes slow iteration time
for researchers, and makes it impossible to deploy such models to edge devices with
constrained resources.

I propose to alleviate this problem by using a dynamic neural architecture at the
self-supervised pre-training stage to facilitate both efficient training and inference.
Specifically, I explore Mixture-of-Depths (Raposo et al., 2024), a method that learns
to dynamically skip select layers conditioned on the input. Applying this technique
effectively during the pre-training stage instead of during fine-tuning avoids the need of
having to train the dynamic neural architecture separately for each downstream task the
model is applied to and improves development efficiency.

A comprehensive evaluation of efficiency for the proposed approach is conducted during
the self-supervised pre-training stage, measuring both theoretical efficiency and practical
runtime reductions across different settings. Then, the performance of the approach is
evaluated on two downstream tasks, investigating the capability of pre-trained model to
effectively extract useful content and speaker information from speech.

Experiments find that applying Mixture-of-Depths during self-supervised pre-training
in speech significantly improves efficiency while only incurring minor impacts on
downstream task performance, achieving an effective efficiency-performance trade-off.
The most efficient Mixture-of-Depths model achieves 43.66% theoretical time reduction
over the baseline and up to 41.65% training time reduction and 41.30% inference time
reduction in practice. Compared to the baseline, the same model achieves an increase
of 1.54% in Phone Error Rate during phone classification and a decrease of 2.60% in
classification accuracy during speaker identification.

i



Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Qinyi Li)

ii



Acknowledgements
First of all, I would like to thank my supervisor, Hao Tang, for all his guidance and
mentorship over the past two years. Working on my two projects with him has truly
been among the best and most rewarding experiences of my undergraduate studies. I
think one’s understanding of the enigmatic nature of research is shaped largely by the
person who first introduces them to it. More than anything, I’m truly glad that it’s this
entrancing perspective I was introduced to at the beginning of my research journey and
saw through for the past two years.

Thank you to my friends, for being my anchors and partners in crime through my
greatest coming-of-age adventures far from home. For even when you didn’t know, you
have been speckles of ember lighting my way, kindling my courage to continue forward.

Thank you to the music school piano practice rooms, which have surely witnessed
all the highs and lows of my undergraduate studies and granted me utopia between
hammer, string, and notes. Thank you to everyone who was a part of my beginner table
tennis journey this past year, for encouraging my passion to another hobby that I will
love through victory and defeat. Thank you to Bach, whose polyphony is the voice of
calmness on my most restless days, and to aespa, whose dissonance resonates with my
headspace during the most stormy ones.

Lastly, to my family, for whom my gratitude may be best expressed not in words but as
a feeling: an inherent comfort that, no matter the distance, home is always right behind
should I ever stumble or stray.

iii



Table of Contents

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preceding Work (MInf Part 1) . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Speech Representations: From Engineered to Self-Supervised . . . . 4

2.1.1 Engineered Acoustic Features . . . . . . . . . . . . . . . . . 4
2.1.2 Self-Supervised Latent Features . . . . . . . . . . . . . . . . 6
2.1.3 Challenges in Efficient Self-Supervised Learning . . . . . . . 7

2.2 Towards Efficient and Dynamic Neural Architectures . . . . . . . . . 8
2.2.1 Introducing Dynamic Neural Architectures . . . . . . . . . . 8
2.2.2 Dynamic Depth for Training Efficiency . . . . . . . . . . . . 10

2.3 Gaps in Existing Literature . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology Overview 12
3.1 Proposed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Masked Predictive Coding . . . . . . . . . . . . . . . . . . . 12
3.1.2 Mixture-of-Depths . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Experiment Models: Baseline and Mixture-of-Depths Modifications . 15
3.3 Evaluations: Pre-Training and Downstream . . . . . . . . . . . . . . 17
3.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Pre-Training: Evaluation of Computation Efficiency 18
4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Pre-Training Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Theoretical Efficiency via FLOPs . . . . . . . . . . . . . . . . . . . . 20

4.3.1 FLOPs Results . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Limitations of FLOPs Measurement . . . . . . . . . . . . . . 21

4.4 Practical Efficiency via Wall-Clock Time . . . . . . . . . . . . . . . 22
4.4.1 Hardware Environments . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Training Wall-Clock Time . . . . . . . . . . . . . . . . . . . 23
4.4.3 Inference Wall-Clock Time . . . . . . . . . . . . . . . . . . . 24
4.4.4 Investigating Discrepancy Across Environments . . . . . . . . 25

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



5 Downstream Tasks: Evaluations of Performance 26
5.1 Phone Classification: Frame-Level Evaluation . . . . . . . . . . . . . 26

5.1.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Phone Classification Results . . . . . . . . . . . . . . . . . . 27

5.2 Speaker Identification: Utterance-Level Evaluation . . . . . . . . . . 28
5.2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Speaker Identification Results . . . . . . . . . . . . . . . . . 29

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Ablation Studies: What Does Mixture-of-Depths Learn? 31
6.1 Cross-Capacity Zero-Resource Inference . . . . . . . . . . . . . . . . 31

6.1.1 Inference c = 1.0: Studying Parameter Distribution . . . . . . 32
6.1.2 Inference c < 1.0: Studying Generalisability . . . . . . . . . 33

6.2 Priority of Phones: Visualising Routed Frames . . . . . . . . . . . . . 34
6.2.1 What is Prioritised the Most? . . . . . . . . . . . . . . . . . . 35
6.2.2 What is Skipped the Most? . . . . . . . . . . . . . . . . . . . 36
6.2.3 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Exploring Configurations: Activations and Offsets . . . . . . . . . . . 37

7 Conclusions 39
7.1 Reviewing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

A Supplementing Results 48
A.1 Layer-Wise Phone Classification Results Across Different Configurations 48
A.2 Layer-Wise Speaker Identification Results Across Different Configura-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



Chapter 1

Introduction

Given the nature of speech as the most natural communication medium, speech sys-
tems such as automatic speech recognition and voice synthesis have become vital to
facilitating seamless interaction between humans and computers. With the rapid rise
of deep learning over the past decade, it has become state-of-the-art to leverage deep
learning techniques for speech recognition (Gulati et al., 2020; Radford et al., 2023;
Communication et al., 2023). The self-supervised pre-training fine-tuning paradigm has
been widely adopted across the training of large speech models (Baevski et al., 2020;
Hsu et al., 2021; Chen et al., 2022), due to their ability to leverage the vast amount
of unlabelled data towards improving model performance, countering the problem
of sparse labelled data in speech. As state-of-the-art self-supervised speech models
requiring large amounts of compute resources to both train and deploy, improving their
efficiency and reducing resource requirements has become a topic of focus in speech
research (Ahlawat et al., 2025).

1.1 Motivations

In the current day and age, mobile devices such as laptops and smartphones are the most
common access point to speech systems. However, most of them lack the compute power
required to run these large state-of-the-art speech models, requiring either compression
in order to develop locally hosted solutions, or the compromise for a cloud hosted
solution, which induces both higher latency unacceptable for critical applications, as
well as privacy concerns. Furthermore, scaling laws (Sun et al., 2017; Hestness et al.,
2017; Kaplan et al., 2020) dictates that the larger the model and/or the training dataset
- the more compute resources expended in training - the better its performance. Thus
arises the contradiction researchers have been striving to navigate: balancing model
efficiency while maintaining performance and accuracy.

Under the widely adopted self-supervised pre-training fine-tuning paradigm, much of
this bottleneck in efficiency lies in the pre-training part of model training, where the
model undergoes representation learning that can transfer across to various downstream
tasks. Hence, improving efficiency on the pre-training side while maintaining matching
downstream performance is an important problem many have been aiming to tackle.
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Chapter 1. Introduction 2

There has been much effort contributed towards the efficient training and inference of
large neural network models in general, and there are many methods to which such
problems can be alleviated: optimisations of the input and output data, of the model
architecture, or at the system level, an example being distributed training (Zhou et al.,
2024). In this thesis, I investigate optimising for efficient training and inference in the
model architecture model with dynamic neural networks.

1.2 Preceding Work (MInf Part 1)

Both Part 1 and Part 2 of my MInf project work towards the purpose of alleviating
the problem described above. Progressing from Part 1 to Part 2, I maintain the same
objective, investigating efficient self-supervised speech pre-training by adapting mod-
ifications to the pre-trained model architecture, aiming to improve both training and
inference efficiency while preserving performance in downstream tasks.

While both Part 1 and Part 2 work towards the same objective, they differ in the exact
approaches explored. In Part 1 of my MInf project (Li, 2024), I leverage the stochastic
drop-path mechanism from the FractalNet (Larsson et al., 2017) to improve pre-training
efficiency. Training efficiency was achieved through the drop-path mechanisms of the
FractalNet, by stochastically choosing a subset of layers from the network to update
for each training batch. At inference time, FractalNet was able to adapt to different
resource availabilities by selecting a suitable subnetwork from its collection of diverse
subnetworks with varying depths. All subnetworks achieved an effective efficiency-
performance trade-off compared to respective baselines.

The FractalNet is efficient during training, and able to achieve varying degrees of
inference efficiency by choosing subnetworks of different depths. However, it applies
different computations to inputs during training stochastically and applies uniform
computation during inference, and I believe a more effective efficiency-performance
trade-off can be achieved if the network learns to dynamically adjust its architecture
depending on the input. Hence, in Part 2, I explore Mixture-of-Depths (Raposo et al.,
2024). Where training and inference efficiency were optimised by probabilistic selection
of layers to update in Part 1, it is now improved by learned routing of individual frames
in an utterance through the model. A similar evaluation procedure is followed in this
thesis: the model is evaluated for efficiency during pre-training, and subsequently for
performance in downstream tasks that evaluates the effective extraction of content and
speaker information from speech.

1.3 Contributions

In this thesis, I explore the application of Mixture-of-Depths (Raposo et al., 2024) in
self-supervised speech pre-training, and its effectiveness in achieving efficiency while
preserving performance. The contributions made are as follows:

1. First application of a layer-skipping dynamic neural architecture to enable efficient
self-supervised pre-training in speech. First adoption of the Mixture-of-Depths
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(Raposo et al., 2024) method to speech.

2. Discovers that the sigmoid router activation can be optimised from Mixture-of-
Depths. Removing the sigmoid router activation provided better performance for
all except the largest capacity factor.

3. Analyses both theoretical and practical efficiency of Mixture-of-Depths operating
with a dynamic computation graph on non-uniform sequence lengths. I specifi-
cally find that the efficiency of Mixture-of-Depths is highly dependent on specific
hardware in the environment

4. Verifies that Mixture-of-Depths preserves both content and speaker information
in its latent features, and investigates the effect of capacity on performance.

5. Show that Mixture-of-Depths learns a specialised parameter distribution and
reveals patterns in frames processed and skipped by each Mixture-of-Depths layer

6. While Mixture-of-Depths can perform zero-resource generalisation to different
capacity factors at inference, removing the router altogether is infeasible.

1.4 Thesis Outline

Proceeding from this chapter, the thesis will be structured as follows:

• Chapter 2: Background. I will provide context on two of the main relating
fields of research: self-supervised learning and efficient neural networks.

• Chapter 3: Methodology Overview. I detail the 2 main approaches I adapt
from literature in this chapter. Then I specify the Baseline and Mixture-of-Depths
model sets I leverage in experiments, and present the 2 main experiments, each
serving to evaluate one side of the efficiency-performance trade-off I investigate.

• Chapter 4: Pre-Training Experiment. I present a comprehensive examination
on the efficiency of Mixture-of-Depths across differing capacity factors. I analyse
the theoretical efficiency, and measure practical efficiency across different setups.
Most notably, I find the runtime reduction Mixture-of-Depths achieves in practice
is highly correlated with the hardware environment.

• Chapter 5: Downstream Tasks Experiment. Extending upon my results on
efficiency in the previous chapter, I move on to investigate the performance end
of the efficiency-performance trade-off. I explore performance of Mixture-of-
Depths on standard benchmark tasks, analysing two important and orthogonal
dimensions of speech: content and speaker (Yang et al., 2021).

• Chapter 6: Ablation studies. I select a few intriguing aspects from Chapter 4 and
Chapter 5 conduct further investigations. I analyse how routing decisions made
by Mixture-of-Depths layers correspond to acoustic and linguistic characteristics,
explore zero-resource generalisability of Mixture-of-Depths at inference time
to other capacity factors, and examine the effectiveness of different Mixture-of-
Depths model configurations.



Chapter 2

Background

To provide a comprehensive context for my investigation into efficient self-supervised
pre-training, this chapter builds a foundation for closely related topics in the current
research landscape. I will start by discussing speech representations, the transition
from engineered acoustic features to self-supervised features extracted from founda-
tion models, and why improving the efficiency of such models has become a focus
for researchers. Next, I move on to consider approaches that facilitate efficiency in
neural network models, reviewing current approaches and presenting the current rising
direction in dynamic neural networks. Finally, I identify gaps in the current literature
and lay the foundation for the research question my work aims to address.

2.1 Speech Representations: From Engineered to Self-
Supervised

This section presents a progression of speech representations used in speech processing
systems, discussing how cutting-edge methods have evolved from leveraging acoustic
to self-supervised latent features, and the latest challenges in improving the efficiency
of feature extraction from speech foundation models.

2.1.1 Engineered Acoustic Features

The physical expression of speech comprises variations in air pressure in a continuous
manner. To digitise such a continuous acoustic signal, changes in air pressure over
time are captured by measuring the force it exerts on the diaphragm of a microphone,
converting it into electrical signals that can subsequently be processed by computers.

The digitisation of speech involves two fundamental settings: sampling rate and bit
depth. As capturing all measurements in a continuous interval over time is infinite
and computationally intractable, the continuous acoustic signal must be discretised
by sampling at a predetermined frequency, namely the sampling rate. Each recorded
discrete electrical signal must be stored in binary format, and the number of bits assigned
to express the value of each signal is the bit depth (Wayland, 2018).

4



Chapter 2. Background 5

Figure 2.1: Waveform and log-mel spectrogram. Sampled waveform and the extracted
log-mel spectrogram of a recording of the word “speech”. The waveform is a representa-
tion of variation in air pressure over time, and the spectrogram shows mel frequencies
obtained from STFT against time. The colorbar to the right of the spectrogram shows
the relation between the log power in dB and the colormap used.

After digitisation, the speech signal is now a discrete waveform representing variations
in air pressure over time (top of Figure 2.1). However, during early research in speech
processing, such waveforms were not favourable representations of speech. When
it comes to speech recognition, the waveform representation is dense and contains
much redundant information irrelevant towards the discrimination required for speech
recognition tasks (Hinton et al., 2012). These waveforms were usually transformed
from the time domain into the frequency domain to formulate a more compact represen-
tation. Irrelevant information such as phase is discarded while useful patterns on the
frequency spectrum are exposed. Two of the most frequently utilised representations
are Mel-frequency cepstral coefficients (MFCCs) and log-mel spectrograms (bottom
of Figure 2.1), both of which result from a transformation of the waveform into the
frequency domain via short-term Fourier transform (STFT).

Traditionally, after the feature extraction process described above, a label is applied to
each acoustic feature, and GMM-HMM-based models, or, as is the convention more
recently, deep neural network models, are employed to learn the underlying knowledge
required to correctly generate these labels by maximising log likelihood. This process
of learning a predictive mapping between input features and their corresponding output
labels is named supervised learning, and it has enabled many applications in speech,
including speech recognition, synthesis, and emotion recognition.
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2.1.2 Self-Supervised Latent Features

The problem that underlies the supervised learning approach in speech is its strict
requirement for labelled data, while the speech domain has always faced the problem of
having sparse labelled data.

Annotating speech utterances - the unlabelled input data - is complex and time-consuming.
Phonetic transcriptions require specific domain knowledge in speech, and even when
such knowledge is not required in annotations such as text transcription, challenges still
arise from the inherent characteristics of speech. Applying a label to speech is often
ambiguous due to the continuous nature of speech frames and their dependence upon
neighbouring frames, and it is difficult to distinguish the exact start and end of a specific
label (Mohamed et al., 2022). This makes annotating unlabelled data cumbersome and
time-consuming, leading to a lack of such data compared to other domains.

The lack of labelled data poses a bottleneck to the performance of speech models.
The size of the training dataset is logarithmically related to the scaling of model
performance (Sun et al., 2017), and this is a significant limitation for low-resource
language applications, where the scarcity of labelled data is amplified.

Figure 2.2: An illustration of the self-supervised pre-training fine-tuning pipeline.
Top: Pre-Training. The same unlabelled data is leveraged to generate input and targets
used train a foundation model, which learns useful internal structures of speech. Bot-
tom: Fine-Tuning/Probing. The pre-trained foundation model is transferred to various
downstream tasks. Latent features extracted from the foundation model is passed to
a downstream model, and the foundation model could be trained jointly with the down-
stream model (fine-tuning), or leveraged as a frozen feature extractor (probing).
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The self-supervised pre-training fine-tuning paradigm is a breakthrough for tackling
this challenge in that it is able to effectively leverage the vast amount of unlabelled data
available in speech to improve model performance, by building a foundation model that
is generalisable across different downstream tasks, and subsequently only a small set of
labelled data is required to further fine-tune performance for each task. It effectively
sidesteps the challenge of sparse labelled data in speech. Semi-supervised learning
is another technique that leverages unlabelled data towards improving performance
of speech models, however, it is usually not task-agnostic and renders improvement
towards one specific task instead of multiple downstream tasks as is possible in self-
supervised learning (Mohamed et al., 2022).

Early self-supervised methods in speech mainly consisted of generative and contrastive
approaches (Mohamed et al., 2022). Generative approaches aim to reconstruct the
data using the foundation model, taking as input perturbed versions of the data. For
example, Autoregressive Predictive Coding (APC) by Chung et al. (2019) aims to
predict future frames based frames in the past, and Masked Predictive Coding (MPC)
by Jiang et al. (2019) applies a zero-mask to random frames, and aims to reconstruct
the original speech utterance from the masked version. Contrastive approaches such
as Contrastive Predictive Coding (CPC) (van den Oord et al., 2018) and wav2vec
2.0 (Baevski et al., 2020) are characterised by their loss function, which maximises
similarity between the prediction of the foundation model with a “positive” sample,
while maximising dissimilarity with “negative” samples. In recent years, predictive
approaches have become popular. Predictive approaches such as HuBERT (Hsu et al.,
2021) and WavLM (Chen et al., 2022) use a learned model to generate pseudo-targets.
wav2vec 2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021) in particular were
especially successful, both countering the problem of speech being continuous and the
prediction may be trivial by discretising the pseudo-targets.

2.1.3 Challenges in Efficient Self-Supervised Learning

The breakthrough of the Transformer network architecture, initiated by Vaswani et al.
(2017), led to models whose performance could be successfully scaled with model
size. The speech research community has also largely taken to the Transformer model,
due to its effectiveness in handling long-range dependencies compared to RNN-like
architectures, which struggle to maintain dependencies over longer distances, due to
sequential processing and information loss. Specifically, it is the most prominent
architecture employed in self-supervised foundation models today.

However, such monolithic models are composed of millions and billions of parame-
ters. For example, WavLM Large has 316.63M parameters (Chen et al., 2022), while
HuBERT X-Large has 1B (Hsu et al., 2021). They consume huge amounts of memory
and compute, establishing the need for efficient models during both training and infer-
ence. On the training side, hardware required for training SOTA models is no longer
manageable for many smaller corporations or research institutions. Additionally, on the
inference side, the deployment of such models to consumer devices is impossible due
to the resources they consume.

With the large impact and domination of the self-supervised pre-training paradigm,
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detailed previously in Section 2.1.2, improving the efficiency of self-supervised pre-
training approaches in speech becomes an imminent problem to tackle, and it is what
researchers have shifted focus to and have been largely working towards in recent years.
Developing efficient techniques for self-supervised pre-training in the speech domain
can be especially challenging. Computation reduction is implemented during the self-
supervised pre-training stage, where the model improves efficiency while minimising
loss to a pretext task instead of a concrete downstream application. However, maintain-
ing pretext task performance may not translate to realistic downstream applications, as
downstream speech tasks usually require many different, sometimes even orthogonal
characteristics (Liu et al., 2023; Mohamed et al., 2024) to be learned and extracted from
latent features of the pre-trained foundation model, and this is challenging to navigate.

Despite challenges, many researchers have succeeded in simplifying and improving the
efficiency of self-supervised pre-training approaches. Most of these works focus on
optimising the HuBERT architecture: Lin et al. (2023) explore simplified input data
representation and loss function through MelHuBERT, Chang et al. (2022) explore
distillation of the HuBERT model, and Lin et al. (2024a) investigate compatibility of an
early-exit technique.

2.2 Towards Efficient and Dynamic Neural Architectures

With the goal of looking for efficient self-supervised learning in mind, I divert my
attention to the landscape of efficient neural network training and inference. One
common approach to improve the efficiency of a model is through modifying the
underlying neural network architecture, and this is the approach I will adopt in my
experiments. There are a few families of techniques towards this purpose, such as
quantization, pruning, knowledge distillation, and compact architecture design (Wang
et al., 2024) - and more recently, the family of dynamic neural architectures.

2.2.1 Introducing Dynamic Neural Architectures

The topic of dynamic neural architectures, which is a subset of techniques within the
design paradigm of dynamic neural networks (Han et al., 2022), has garnered much
research interest over the years. It has been most extensively researched in vision,
followed by language, with fewer applications extending to speech. Despite the recent
surge in interest, this idea has a deep-rooted history within the field of deep learning,
with concepts of Mixture-of-Experts first proposed by Jacobs et al. (1991) in 1991,
while Bengio (2013); Bengio et al. (2015) re-introduced the concept of conditional
computation more recently.

In the context of dynamic neural architectures, most neural network models would
be considered static: they apply the same set of transformations from each layer to
all inputs, whereas not all inputs may require all transformations to make an accurate
prediction. Considering the speech domain, an utterance recorded in a professional
recording booth would require less computation compared to an utterance recorded in a
noisy environment such as a shopping mall - the latter would require specific speech
enhancement processing, and applying this to the former is not only redundant, but may
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Figure 2.3: Demonstration of a static neural architecture vs. possible dynamic
neural architectures. Left: Static. The same set of layers is applied to all inputs. Right:
Dynamic. Depending on the input, the network may decide to skip the next layer, or
choose from a set of layers for the current sample.

also degrade performance. Additionally, different inputs could benefit from different
and more specialised transformations.

The design of dynamic neural architectures is a family of techniques that trains models
designed to adapt their structure, or more specifically their computation graph, to each
input during inference. Usually, only a subset of the model is activated, depending on
the input. For example, a model could decide to skip a certain layer, or choose from a
set of layers, as depicted in Figure 2.3.

This approach provides many benefits, and the ability to effectively navigate the trade-
off between efficiency and accuracy is one of the most notable. With adaptive and
dynamic architectures, models can recognise when certain transformations are not
required and improve efficiency, as well as when they are essential, preserving accuracy.
Additionally, a dynamic model can learn to recognise different classes within the
input space that benefit from different sets of transformations and route these inputs to
specialised processing units to maximise performance. For example, speech with a noisy
background might require a specialised enhancement unit, while speech recorded with
the speaker far away from the microphone may require amplification. As only a subset
of the model is activated for each input, this gives dynamic neural architectures better
representation power and a larger parameter space compared to their static counterparts.

Furthermore, the actual implementation of such techniques is straightforward and
accessible. Dynamic neural architectures are compatible with most existing static
architectures, and can easily generalise to a wide range of applications. Most techniques
proposed are high-level approaches that add lightweight decision components to the
architecture to enable dynamic behaviour, such as a gating network, and they can be
easily applied to similar architectures. Additionally, deciding how the model architecture
adapts to each input can be either learned from training or adjusted with tuning, making
them generalisable to different training objectives and different tasks.
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2.2.2 Dynamic Depth for Training Efficiency

While inference efficiency is achieved for all categories of dynamic neural architectures:
dynamic depth, dynamic width, and dynamic routing (Han et al., 2022), in practice,
often only dynamic depth methods are used to facilitate efficient training.

Dynamic depth techniques generally consist of two designs: early exit or layer-skipping,
illustrated in Figure 2.4.

Figure 2.4: Demonstration dynamic depth methods: early exit and layer-skipping.
Left: Early Exit. At designated exit points, the network decides whether to terminate
computation and output the current prediction, or to continue. Right: Layer-Skipping. At
a decision point, the network makes a decision between whether to continue or skip the
next layer.

In models with early exit designs, multiple exit points are implemented in the model,
similar to the one depicted on the left of Figure 2.4. Through training, the model is en-
couraged to learn at each exit point the best choice between continuing to deeper layers,
or terminating computation and outputting the current intermediate representation. The
principle behind this design is that by enabling the choice to terminate model inference
at hidden layers, computation can be saved on data that does not require the additional
transformations, and declines in performance caused by redundant complexity or noise
introduced in later transformations (Kaya et al., 2019) could be avoided. The exit
points could be placed after each layer in a network (Zhou et al., 2020), or between
each network in a cascade of networks (Bolukbasi et al., 2017). Generally, early exit
techniques can be efficiently trained, as decisions at each exit point are lightweight and
threshold-based: if a computed confidence score for the current intermediate represen-
tation exceeds a pre-defined threshold, the model will decide to output a prediction at
that exit point. There exists 2 different approaches to compute the confidence scores:
(i) using a fixed function, such as entropy (Teerapittayanon et al., 2016), or (ii) using
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a learned linear classifier (Xin et al., 2021). However, the output of linear classifiers
is susceptible to small perturbations (Jiang et al., 2018), hence, some methods use a
combination of confidence scores from multiple linear classifiers to determine the exit
of an intermediate representation (Zhou et al., 2020).

In layer-skipping, usually a gating network is trained at each layer to decide whether the
input will proceed to the next layer, or skip the next layer. The implementation the gating
network usually dictates whether efficient training is facilitated. In many layer-skipping
approaches, the training of the gating network occurs after the training of the underlying
model, incurring more training cost (Wang et al., 2018). Usually efficient training for
layer-skipping methods is achieved either through using a confidence-based criteria like
is usually employed in early exit techniques, or by employing a differentiable gating
unit, where the gating network is trained alongside the underlying model.

In my experiments, I leverage a layer-skipping technique with a differentiable gating
network: Mixture-of-Depths proposed by Raposo et al. (2024).

2.3 Gaps in Existing Literature

Despite demonstrating a potential to improve both training and inference efficiency,
there have only been a few studies exploring the adaptation of dynamic neural archi-
tectures to speech, and even fewer that investigate applying such methods during the
self-supervised pre-training stage. Particularly, to the best of my knowledge, there have
been no similar attempts to adapt a layer-skipping technique such as Mixture-of-Depths
(Raposo et al., 2024) to self-supervised pre-training in speech.

Out of the existing literature, only DAISY (Lin et al., 2024a) applies a dynamic depth
technique to self-supervised pre-training in speech. Lin et al. (2024a) demonstrates
that early exit techniques can be trained during the self-supervised pre-training stage,
and successfully enable subsequent generalisation to a variety of downstream tasks.
Most work investigates applying dynamic approaches during fine-tuning for actual
downstream tasks. The problem that underlies such approaches is that because the
dynamic neural architecture is adapted during downstream fine-tuning, separate training
of the dynamic neural architecture is required for each downstream task, incurring extra
training cost, compared to training the dynamic technique during pre-training, which
is more efficient. HuBERT-EE (Yoon et al., 2022) applies the early exit technique to
improve efficiency during fine-tuning of the pre-trained HuBERT (Hsu et al., 2021)
model. You et al. (2021) applies Mixture-of-Experts to train a speech recognition
model, but the purpose for application of such a dynamic neural architecture is not for
efficiency.

To bridge this gap, in this thesis, I propose to adapt a layer-skipping technique, Mixture-
of-Depths (Raposo et al., 2024), to the self-supervised pre-training stage, and demon-
strate that it is able to improve both efficiency during pre-training, and be effective
when the model is transferred to different downstream tasks that require different char-
acteristics to be extracted by the model, without further training of the dynamic neural
architecture required.



Chapter 3

Methodology Overview

Now that the current research landscape has been established, I outline my overarching
methodology and experimental design in this chapter for all experiments hereafter. First,
I provide a detailed description of methods I adopt from literature. Next, I introduce
the baseline for my experiments and the experiment models for which I will make
comparisons. Then, I motivate the two different evaluations I will be making through
two different experiments in Chapters 4 and 5 respectively, and the purpose they each
serve. Finally, I will set up the hypotheses I aim to test throughout the rest of this thesis.

3.1 Proposed Approaches

In this section, I provide an overview of the methods I draw inspiration from and adopt
in my experiments. I will start by elaborating how exactly each method relates to my
experiments, and then situate them using taxonomies introduced in Chapter 2. Although
I make modifications to the approaches in my experiments, descriptions in this section
will follow the original implementations of the methods exactly as from literature.

3.1.1 Masked Predictive Coding

Masked Predictive Coding (MPC), proposed by Jiang et al. (2019), is the pre-training
task I adopt in my pre-training experiment.

As detailed in Section 2.1.2, MPC belongs to the generative family of pre-training
tasks, where the pre-trained model is provided with some perturbed version of the
unlabelled data and aims to recover the original uncorrupted version. In the case
of MPC, the corruption is applying a zero mask to certain positions of the input
utterance with probability p. This approach draws inspiration from previous Masked
Language Modelling (MLM) objective of models employed in language, such as BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019).

However, as the authors of MPC discovered, as speech is naturally continuous and
locally smooth, masking individual frames within an utterance with probability p
provided unsatisfactory results, with no improvements over the baseline without pre-
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training. To address this, the authors made modifications to the standard masking
strategy used in MLM objectives for the MPC method. Frames are first downsampled
in groups of 8 to prevent trivial local frame masking, and then a mask is applied
probabilistically to each downsampled group of frames, facilitating a wider masking
window and encouraging the model to learn non-trivial structures.

3.1.2 Mixture-of-Depths

The Mixture-of-Depths approach, proposed by Raposo et al. (2024), is the experiment
model architecture I employ to facilitate efficient pre-training. I make comparisons
between Mixture-of-Depths models and a baseline concerning computation efficiency
during pre-training (Chapter 4), and performance during downstream tasks (Chapter 5).
Mixture-of-Depths is considered the layer-skipping variant of dynamic depth techniques,
where the model makes a decision at certain layers to either skip or pass through
that layer, as detailed in Section 2.2.2. In Mixture-of-Depths, the gating network, or
the router, is trained simultaneously with the underlying transformer decoder model,
facilitating efficient training as well as inference.

The component which characterises a Mixture-of-Depths transformer (decoder) model is
the incorporation of Mixture-of-Depths “blocks” within, which I will refer to as Mixture-
of-Depths “layers” instead throughout this thesis. In their work, Raposo et al. (2024)
find that the optimal configuration for the Mixture-of-Depths model is to intersperse
a Mixture-of-Depths layer every 2 layers, and implementing a transformer network
consisting only of Mixture-of-Depth layers was found to be suboptimal. Specifically,
the Mixture-of-Depths layer will be the first layer of every 2.

A Mixture-of-Depths layer, illustrated in Figure 3.1, is a regular transformer decoder
layer with the addition of a router at the beginning. The router determines for each
token in the input sequence whether it will be processed by the Mixture-of-Depths layer,
or passed through a residual connection that skips to the next layer in the model. The
router Raposo et al. (2024) implement is a linear layer with no bias, a learned matrix W ℓ

mapping each input token to a scalar, followed by a sigmoid activation for the output
weights.

Raposo et al. (2024) applies Mixture-of-Depths to a dataset of sequences with uniform
length n. For every Mixture-of-Depths layer in the model, a uniform capacity k < n is
determined before training begins, where the capacity k is the number of tokens from
each sequence that will be routed through every Mixture-of-Depths layer.

At the beginning of every Mixture-of-Depths layer, router weights are computed based
for each input. Suppose there is a Mixture-of-Depths layer at hidden layer ℓ, where
xℓ = (xℓ1 . . .x

ℓ
n) is the input to layer ℓ with n tokens, and each token xℓi is a d-dimension

embedding, such that xℓ ∈ Rn×d . A sigmoid scalar router weight is computed for each
token in the sequence through a learned linear transformation W ℓ

θ
∈ Rd by:

rℓ = sigmoid(xℓW ℓ
θ ) (3.1)

The scalar router weights is subsequently used to determine which tokens will be
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Figure 3.1: Mixture-of-Depths model architecture. Left: Mixture-of-Depths Layer.
Shows the path of input xℓ through a Mixture-of-Depths layer. xℓ first passes through the
Router, generating rℓ. Then, rℓ is used to determine whether each xℓi is processed by
the current layer. At the end, the processed and unprocessed tokens are composed back
together in their original order. Right: Mixture-of-Depths Model. A Mixture-of-Depths
Layer is interspersed every two layers in the Mixture-of-Depths model, and it occurs first
out of every two layers.

processed by the transformer decoder layer at layer ℓ, denoted f . Tokens xℓi with
corresponding scalar router weight rℓi that is within the Top-k largest router weights
is processed by the Mixture-of-Depths layer, denoted by xℓS = {xℓi : rℓi ∈ Top-k(rℓ)}.
Otherwise, xℓi will be routed through a residual connection that passes around the
transformer decoder layer f at Mixture-of-Depths layer ℓ. In the end, the output
xℓ+1 = (xℓ+1

1 . . .xℓ+1
n ) will be:
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xℓ+1
i =

{
rℓi f (xℓS)+ xℓi if rℓi ∈ Top-k(rℓ)
xℓi otherwise

(3.2)

Related Work

There has been previous work applying a similar routing approach on the token level
within a transformer. For example, as Raposo et al. (2024) mention in their paper,
CoLT5 (Ainslie et al., 2023) also leverages conditional computation within a trans-
former. In CoLT5, at the attention and feed-forward components of every layer, a router
decides whether a token requires extra computation: if the token should pass through a
“light” attention/feed-forward component, or both a “light” and “heavy” feed-forward
component. In contrast to CoLT5, Mixture-of-Depths implements a simplified approach
that offers the option to either pass through or skip a transformer layer.

Regarding the application of the Mixture-of-Depths technique, there has been related
work adapting Mixture-of-Depths to vision and multimodal models (Lin et al., 2024b),
but no approaches yet for speech. Applying Mixture-of-Depths to speech require some
adjustments, as speech utterances don’t have a uniform length, requiring dynamic
capacity adjustments. I will detail these adjustments in the following section.

3.2 Experiment Models: Baseline and Mixture-of-Depths
Modifications

As Mixture-of-Depths is the experiment architecture I aim to investigate, in this section,
I describe the exact Mixture-of-Depths models I will evaluate and the baseline I will
make comparisons to through experiments in Chapter 4 and Chapter 5. Additionally, I
explain a few modifications I make to the original Mixture-of-Depths setup described
in Section 3.1.2.

Base Architectural Configurations For both the Baseline and Mixture-of-Depths
model, I employ a 12-layer transformer encoder, with architectural hyperparameters
dmodel = 256, d f eed f orward = 2048, and dhead = 4.

Mixture-of-Depths Modifications In original Mixture-of-Depths, Raposo et al. (2024)
applied the model to a dataset consisting of text sequences of uniform length. I apply
Mixture-of-Depths to speech, however, and utterances in a speech dataset are always
non-uniform due to their continuous nature. Therefore, in my experiments, it is not
possible to have a fixed capacity k. In this case of dynamic sequence lengths, I maintain
instead a fixed capacity factor c and calculate a dynamic top-k. I calculate a dynamic
capacity k for each batch by k = n ·c, based on the fixed capacity factor c and the longest
sequence/utterance length n in the batch, and choose top-k frames from each utterance
in that batch to process. All datasets used in my experiments are sorted by length and
grouped into batches by batch size. The batches are then shuffled and randomly sampled
during training. Batching by sorted sequence length ensures that a reasonable dynamic
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capacity is applied to each sequence in the batch, while robust training is maintained by
shuffling the batches.

Exploring Activations and Offsets Raposo et al. (2024) originally employs a Mixture-
of-Depths model with sigmoid router weight activation, which will be referred to
throughout this thesis as “activation”. A Mixture-of-Depths layer applied every 2
layers is found to be the best configuration, and Raposo et al. (2024) apply the Mixture-
of-Depths layer first out of every 2 layers. I name this configuration setting “offset”. If
a Mixture-of-Depths layer occurs first every 2 layers, it is defined to have a Mixture-of-
Depths offset of 0; if it occurs at the second of every 2 layers, it has offset 1.

Figure 3.2: Different “Activation” and “Offset” settings experimented. Left: Two
different router activations settings employed, with and without the nonlinear sigmoid.
Right: Two different offset settings employed, “Offset 0” puts the Mixture-of-Depths layer
first out of every 2 layers, while “offset 1” puts the Mixture-of-Depths layer second.

I experimented with varying the activation and offset configurations for the Mixture-of-
Depths models, resulting in 4 different sets:

1. Sigmoid router activation, offset 0 (implementation in Raposo et al. (2024))

2. Sigmoid router activation, offset 1

3. No router activation, offset 0

4. No router activation, offset 1 (Best Set)

In each set, I also explore the effect of different capacity factors, to facilitate a more
fine-grained analysis on different capacity factor settings in Mixture-of-Depths. I choose
0.125 (the best capacity factor reported by Raposo et al. (2024)), 0.25, 0.5, and 0.75. For
a consistent comparison, I compare the baseline to one set of Mixture-of-Depths models
throughout the pre-training and downstream experiments. Performance varies provided
different configurations and capacity factors, but provided with the aim to improve
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efficiency in this thesis, I identify a “Best Set” that is the most efficiency-effective: it is
most effective at smaller capacity factors. A comparison of performance between the
“Best Set” and all 4 different sets, especially the configuration proposed by Raposo et al.
(2024), can be found in Section 6.3.

3.3 Evaluations: Pre-Training and Downstream

Through upcoming experiments, there are two main questions I aim to investigate:

(1) How much efficiency does Mixture-of-Depths provide? Towards answering
this question, I evaluate pre-training efficiency in Chapter 4. In the pre-training
experiment, I aim to investigate both theoretical efficiency gains and wall-clock
runtime savings in practice, and use the pre-training loss only as an indicative
measure of whether models are effectively training. Theoretical efficiency will be
evaluated by counting FLOPs on all of the models, and as theoretical efficiency
does not take into account many real-world factors, including parallel execution in
PyTorch, practical efficiency will be measured using wall-clock runtime. Specif-
ically, I measure both training and inference times, across 3 different training
environments, to gain a more comprehensive understanding of the impact of
hardware on the practical runtime of Mixture-of-Depths.

(2) What is the trade-off in performance for these efficiency gains? As pre-
training loss is not an accurate measurement of performance, I investigate the
performance of models by evaluating their accuracy on downstream tasks. Specif-
ically, I evaluate for the preservation of orthogonal characteristics in speech
(Mohamed et al., 2022) with two tasks: phone classification for local phonetic
information in speech, and speaker identification for global speaker information.
In the downstream tasks, I aim to conduct a layer-wise analysis, comparing the
hidden representation extracted at each layer from Mixture-of-Depths models to
each layer from the Baseline model.

3.4 Hypotheses

Towards my experiments, I make the following hypotheses:

• Hypothesis 1 (H1): Efficiency. Lower capacity factors will lead to both higher
theoretical and practical efficiency. Practical efficiency may be tapered due to
additional operations in the router and can vary depending on hardware.

• Hypothesis 2 (H2): Performance. Mixture-of-Depths models have comparable
performance to the Baseline across downstream tasks. Higher capacity factor
will lead to better models.

• Hypothesis 3 (H3): Parameter Distribution. The parameter distribution learned
by Mixture-of-Depths models and the Baseline will be fundamentally different.

• Hypothesis 4 (H4): Inference-Time Generalisability. Mixture-of-Depths will
adapt well to different capacity factors during inference.
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Pre-Training: Evaluation of
Computation Efficiency

This chapter details the pre-training experiment I conduct, aiming to evaluate the
computation efficiency achieved by Mixture-of-Depths models from the best set with
differing capacity factors. I detail the exact setup of my experiment, briefly discuss the
pre-training loss, then evaluate efficiency from two perspectives: theoretical efficiency
using FLOPs, and practical efficiency using wall-clock time.

4.1 Experiment Setup

Dataset I utilise the LibriSpeech corpus (Panayotov et al., 2015) as the unlabelled
dataset to pre-train all models. LibriSpeech is commonly used for self-supervised
pre-training in speech, for example, in SOTA methods such as wav2vec 2.0 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021). All models are trained on the “clean” pool
from the 100-hour subset in LibriSpeech (train-clean-100). As the 100-hour and
360-hour subsets from LibriSpeech are disjoint, I use a sample extracted from the clean
pool of the 360-hour subset (train-clean-360) as the validation set. The training set
consists of 28,539 utterances, and the validation set consists of 2,854 utterances.

Data pre-processing For each utterance sample in the dataset, I extract 40-dimension
log-mel spectrograms with a 25ms window and 10ms shift, and apply global normalisa-
tion, in line with the approach of Yang et al. (2022). I compute the mean and variance
across all utterances for each of the training and validation sets, and each utterance is
normalised by the mean and variance of their respective sets. I adopt the downsampling
optimization from MelHuBERT by Lin et al. (2023), concatenating every 2 contiguous
frames sequentially and resulting in 80-dimension spectrogram-based feature frames
and an effective 20ms shift between each feature frame.

Pre-training task settings The pre-training task I adopt is Masked Predictive Coding
(Jiang et al., 2019), as previously detailed in Section 3.1.1. The model is encouraged to
reconstruct the original utterance from zero-masked corruptions. Masked prediction
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pre-training tasks are frequently adopted in SOTA self-supervised pre-trained models
in speech (Baevski et al., 2020; Hsu et al., 2021). I adopt the masking configurations
from work by Lin et al. (2023). Whereas Jiang et al. (2019) downsampled frames in an
utterance in groups of 8 to prevent learning local trivial solutions, I employ a masking
strategy where a decision is made at each frame to mask the next 5 frames with a
14% probability. This mask strategy is implemented with the compute mask indices
function from Ott et al. (2019).

Models I make comparisons of the baseline to the “best set” of Mixture-of-Depths
models in this experiment, as detailed in Section 3.2. The baseline model is a 12-layer
transformer encoder, while the set of Mixture-of-Depths models (no activation, offset 1)
consists of 4 models, investigating capacity factors 0.125, 0.25, 0.5, and 0.75 applied to
the Mixture-of-Depths layers. I train all models for 200 epochs on learning rate 1e−4,
with a batch size of 8 and apply dropout with probability 0.1. I manually set the same
random seed for each of PyTorch, NumPy and Python’s random library at the beginning
of all experiments.

Evaluation metrics This experiment evaluates both the theoretical and practical
efficiency of the Mixture-of-Depths set of models during pre-training. Theoretical
efficiency of the model set measured in FLOPs, using the FlopsCountAnalysis func-
tion from the fvcore library. Practical efficiency is surveyed by measuring wall-clock
training and inference time across 3 different hardware environments. Pre-training
loss is used as an indication of effective training in the models rather than an accurate
performance measure, and Mean-Squared Error (MSE) loss is used. The pre-training
task encourages the model to learn useful relations within speech and does not possess
grounded realistic applications, and evaluation of model performance will be conducted
in Chapter 5, where I measure performance on downstream tasks.

4.2 Pre-Training Loss

I briefly evaluate the training and validation loss across the Baseline and Mixture-
of-Depths models to confirm that the models are training effectively using the MPC
pre-training task.

The overall trend of all models across 200 epochs is presented in Figure 4.1. From the
figure, all Mixture-of-Depths models match the pre-training loss of the Baseline almost
exactly throughout the 200 epochs in both training and validation. The Mixture-of-
Depths models with lower capacity factors (c = 0.125 and c = 0.25) can be observed to
have higher losses during the first epochs, but all models quickly converge.

The exact final training and validation loss at the end of the 200 epochs is detailed in
Table 4.1. Once again, it can be observed that all of the values align very closely, and
there appears to be a trend of lower loss with higher capacity factors. More notably, the
Mixture-of-Depths model with c = 0.75 improves over both the training and validation
loss observed on the baseline, while the Mixture-of-Depths model with c= 0.5 improves
over the validation loss of the baseline.
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Figure 4.1: Training and validation loss of Baseline and Mixture-of-Depths models
across 200 epochs. Left: Training loss. Right: Validation loss.

Model Training Loss Validation Loss

Baseline 18.30 19.89
Mixture-of-Depths c = 0.125 19.08 20.23
Mixture-of-Depths c = 0.25 18.76 20.05
Mixture-of-Depths c = 0.5 18.43 19.86
Mixture-of-Depths c = 0.75 18.29 19.70

Table 4.1: Training and validation loss at epoch 200 (final epoch) across Baseline
and Mixture-of-Depths models. All values are rounded to 2 decimal places.

4.3 Theoretical Efficiency via FLOPs

FLOPs Computation I measure theoretical efficiency in FLOPs on the training set.
For all models, the total FLOPs expended in one epoch iterated over the training set is
computed, and then divided by the total number of frames across all utterances in the
dataset to obtain a measurement of FLOPs expended per frame.

4.3.1 FLOPs Results

Model FLOPs Per Frame Reduction (%)

Baseline 15,803,333 0%
Mixture-of-Depths c = 0.125 8,903,357 43.66%
Mixture-of-Depths c = 0.25 9,889,318 37.42%
Mixture-of-Depths c = 0.5 11,861,182 24.95%
Mixture-of-Depths c = 0.75 13,829,912 12.49%

Table 4.2: Measured FLOPs per frame for each model, and percentage reductions
achieved by Mixture-of-Depths models compared to the Baseline. All values are
rounded to 2 decimal places.

The exact FLOPs measurement and the percentage reduction are presented in Table 4.2.
All Mixture-of-Depths models exhibit considerable FLOPs compute reduction over the
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baseline, ranging from a 43.66% reduction in FLOPs expended per frame for the model
with the smallest capacity factor c = 0.125, to 12.49% for capacity factor c = 0.75.

Figure 4.2: Visualisation of FLOPs reductions across Mixture-of-Depths and Base-
line models. The validation loss at the end of 200 epochs is shown along the y-axis.

More interesting observations can be made from Figure 4.2. Here, the FLOPs expended
per frame exhibits an inversely linear relation to the final validation loss at the end of
200 epochs. It is made clear again from this figure, that Mixture-of-Depths models with
c = 0.5 and c = 0.75 learns the pre-training task better than the Baseline with lower
FLOPs, while models with c = 0.125 and c = 0.25 may not match the validation loss
of the Baseline, but they’re incredibly efficient in the loss-FLOPs trade-off achieved.
Furthermore, the relation between the capacity factor and FLOPs reduction gained in
this experiment closely resembles 1− 6c+6

12 , shown in Figure 4.3, strongly suggesting a
linear relation between the capacity factor and the theoretical compute reduction.

Figure 4.3: Visualisation of the hypothesised relation between capacity factor and
the % reduction achieved in theory. The hypothesis appears to overlap the relation
observed exactly.

4.3.2 Limitations of FLOPs Measurement

Despite its widespread employment and theoretical soundness, the FLOPs measurement
has its limitations, most arising from the fact that it does not take into account many
real-world factors that could impact the actual runtime in practice. For example, the
FLOPs reduction computed could only be achieved considering a sequential execution
of all FLOPs operations, and doesn’t take into account the asynchronous and parallel
executions of PyTorch. Additionally, it only measure the compute expended on the
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forward pass of the models, and does not measure differences during backpropagation,
which could be different due to the difference in model architectures employed. Fur-
thermore, FLOPs operations are distributed in practice across both the CPU and GPU
of the device, and depending on the exact hardware setup, this may also have impact on
the practical runtime.

Therefore, in the next section, I provide a complementary perspective on the efficiency
of Mixture-of-Depths models by measuring their wall-clock runtime in practice. Con-
sidering all of the factors mentioned above, the runtime across different hardware
environments is measured for a more detailed analysis.

4.4 Practical Efficiency via Wall-Clock Time

4.4.1 Hardware Environments

I report the wall-clock runtime on 3 different hardware environments in this experiment,
namely Cluster, Desktop, and Laptop.

Warm-up Process For each model, a uniform warm-up process is implemented, as
the Baseline model has been observed to be heavily dependent on a sufficient warm-up.
For example, when running in the Laptop environment, the Mixture-of-Depths model
with c = 0.125 shows a 90% reduction in runtime during the first epoch compared to
the Baseline model without warm-up, while it is about 40% after warm-up. This also
aligns with practical training scenarios, where the model is trained over a larger number
of epochs. Before recording runtimes, the model first iterates once over the unshuffled
training dataset, then, it is trained and I measure runtime over multiple epochs.

Environment Setup The exact setting of each measurement is detailed below:

(1) Cluster. I measure the runtime on the university’s MLP compute cluster, a
network of compute nodes each equipped with multiple CPUs and GPUs. The
runtime reported for each model is the average over 200 epochs of training.

(2) Desktop. The second measurement is conducted on a desktop computer. The
runtime on this setup is more stable as there is more control over environmental
factors, hence an average over 10 epochs of training is reported.

(3) Laptop. Finally, I measure runtime on a GPU-equipped laptop. For this setup I
also report the averaged runtime over 10 epochs.

The CPU and GPU specifications for each environment are detailed in Table 4.3, as
they are variables that have an impact on the efficiency in practice.

In summary, ranking the environments by CPU capability, the ordering is

Laptop > Desktop ≫ Cluster

Ranking by GPU capability, the exact reverse ordering is obtained

Cluster ≫ Desktop > Laptop
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CPU Specs GPU Specs

Model Cores/Threads Model Memory TFLOPs

Cluster Xeon E5-2603 v4 6/6 A6000 48GB 38.71
Desktop Core i5-14500 14/20 RTX 4060 8GB 15.11
Laptop Core i9-13900HX 24/32 RTX 4060 Mobile 8GB 11.61

Table 4.3: CPU and GPU specifications across training environments Cluster,
Desktop, and Laptop.

4.4.2 Training Wall-Clock Time

The relation between model runtimes during training and final validation loss across
different training environments is depicted in Figure 4.4. I observe largely the same
trend in the practical measurements as before when theoretical efficiency was analysed
in Section 4.3.1. Across all 3 environments, all Mixture-of-Depths models achieve
higher efficiency compared to the Baseline model. Comparing different environments, it
is evident that the Cluster setup had the fastest runtimes, followed by Desktop, followed
by Laptop. This aligns with the order of GPU capability across the environments and is
expected as neural network training is largely dependent on GPU computations. And
it only makes sense that the absolute runtime reductions are smallest on the Cluster,
followed by Desktop and Laptop.

Figure 4.4: Visualisation of Wall-Clock Training reductions achieved across differ-
ent Mixture-of-Depths capacity factors.

Looking at Table 4.4, however, it is discovered that the relative runtime reductions
achieved by the Mixture-of-Depths model over the Baseline also follows a similar
pattern to the absolute runtime reduction. Models under the Desktop environment
shows reductions matching most closely to the theoretical reductions detailed in Section
4.3.1. The reductions under the Laptop setting follows, while the reduction of Mixture-
of-Depths models from the Baseline on the Cluster environment is less than half of
those achieved on the Laptop across all capacity factors, with a very small reduction by
c = 0.75.
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Model Cluster (%) Desktop (%) Laptop (%)

Baseline 0% 0% 0%
Mixture-of-Depths c = 0.125 17.47% 41.65% 39.57%
Mixture-of-Depths c = 0.25 14.82% 37.72% 36.18%
Mixture-of-Depths c = 0.5 9.49% 27.27% 26.41%
Mixture-of-Depths c = 0.75 2.65% 13.63% 13.21%

Table 4.4: Training reductions (%) achieved by Mixture-of-Depths models over the
Baseline model, across Cluster, Desktop, and Laptop environments.

4.4.3 Inference Wall-Clock Time

Comparing across Table 4.4 and Table 4.5, which details the reductions achieved during
training and inference respectively, it can be observed that overall less efficiency is
gained during inference by employing Mixture-of-Depths models, compared to during
training. From Table 4.5, all models under the Desktop and Laptop setting show
competitive inference efficiency over the Baseline, while the efficiency is more subdued
on the Cluster setup. The Mixture-of-Depths model with c = 0.75 actually has a longer
inference time compared to the Baseline. Looking at Figure 4.5, it is confirmed that it
shows the same trend as observed in Figure 4.4.

Model Cluster (%) Desktop (%) Laptop (%)

Baseline 0% 0% 0%
Mixture-of-Depths c = 0.125 8.13% 41.30% 36.43%
Mixture-of-Depths c = 0.25 7.07% 36.55% 32.69%
Mixture-of-Depths c = 0.5 3.72% 25.14% 22.59%
Mixture-of-Depths c = 0.75 -2.31% 11.92% 9.22%

Table 4.5: Inference reductions (%) achieved by Mixture-of-Depths models over the
Baseline model, across Cluster, Desktop, and Laptop environments.

Figure 4.5: Visualisation of Wall-Clock Inference reductions achieved across differ-
ent Mixture-of-Depths capacity factors.
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4.4.4 Investigating Discrepancy Across Environments

From the measurements of practical efficiency across different hardware environments,
large discrepancies in the percentage reductions achieved between Cluster, Desktop,
and Laptop are observed during both training and inference. This is clearly shown in
Tables 4.4 and 4.5. Furthermore, the inference time of the Mixture-of-Depths model
with capacity factor c = 0.75 in fact has longer runtime compared to the Baseline.

I hypothesise that this discrepancy is due to a weak CPU on the Cluster environment
compared to others, and I profile the execution times on both CPU and GPU within
the Cluster and Laptop environments. The profiled runtimes is used as a broad guide
to reveal trends rather than the ground truth, as (1) profiling introduces (unknown)
additional overhead costs which add to the actual runtime (2) profiled runtimes assumes
sequential execution, whereas in practice PyTorch executes instructions in parallel.

Forward Backpropagation

Model CPU Time GPU Time CPU Time GPU Time

Cluster Baseline 5.447s 3.679s 10.572s 195.463µs
c = 0.125 8.126s 2.215s 11.958s 194.696µs

Laptop Baseline 10.660s 13.687s 29.540s 31.382s
c = 0.125 10.555s 12.449s 28.041s 28.263s

Table 4.6: CPU and GPU runtimes across Cluster and Laptop setups for Baseline
and Mixture-of-Depths model with c = 0.125. Values are rounded to 3 decimal places.

In Table 4.6, it is observed that runtime is uniformly reduced across all operations for
the Laptop environment from the Baseline to the Mixture-of-Depths model. However,
on the Cluster environment, runtime is decreased on the GPU but increased on the CPU.
Both the Forward and Backpropagation operations are bottlenecked by CPU runtime
on the Cluster, significantly so during Backpropagation. Considering the hardware
specifications from 4.4.1, the weak CPU is the main cause for the subdued efficiency
of Mixture-of-Depths models on the Cluster, and it is important to note that the CPU
hardware is important to obtain maximum efficiency on Mixture-of-Depths models.

4.5 Summary

In this chapter, the efficiency gains from applying Mixture-of-Depths models to a dataset
of speech utterances with varying lengths is thoroughly investigated, and the model
efficiency is robustly evaluated through both theoretical and practical perspectives.
There is significant theoretical runtime reductions to be gained from applying a Mixture-
of-Depths model. The same holds in practice across all but one hardware environment
evaluated. I additionally uncover that achieving the theoretical efficiency in practice
depends on the hardware of the training environment, specifically the CPU hardware.

Next chapter I turn my focus to the performance of Mixture-of-Depths models on
downstream tasks, and investigate the other side of the efficiency-performance trade-off.



Chapter 5

Downstream Tasks: Evaluations of
Performance

As mentioned at the end of Chapter 4, since now both the theoretical and practical
efficiency are established under different capacity factor settings in Mixture-of-Depths,
I shift my focus to the performance end of the efficiency-performance trade-off to be
investigated.

Performance is investigated through two tasks: the extraction of phonetic informa-
tion through phone classification, and the preservation of speaker information through
speaker identification. I choose one task each from a select two categories of the com-
monly employed SUPERB benchmark (Yang et al., 2021) to evaluate two fundamental
aspects of speech: content and speaker. As different acoustic and linguistic information
are typically found to be concentrated at different layers in a self-supervised pre-trained
model (Pasad et al., 2021; Chiu et al., 2025), I conduct a layer-wise analysis in all of the
downstream experiments, evaluating the usefulness of hidden representations extracted
at each layers as latent features input to a downstream model.

5.1 Phone Classification: Frame-Level Evaluation

5.1.1 Experiment Setup

Dataset I use the Wall Street Journal (WSJ) dataset (Paul and Baker, 1992) for phone
classification, another common corpus used in speech. The speech content of this
dataset originates from articles published in the Wall Street Journal newspaper. I use
the si284 training set for both training and development, splitting si284 in a 9:1 ratio
for training and development respectively. The dev93 test set is used to report test-time
accuracy. I use the force alignments identical to those developed by Yang et al. (2022)
as the phone labels for each frame to train my models on. For this classification task,
there are 42 possible label classes for each phone, including a silence label.

Data processing Following a similar pre-processing approach as detailed in the pre-
training experiment (Chapter 4), the input to the models are extracted 40-dimensional
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log-mel spectrograms with a 25ms window and 10ms shift, downsampled to 20ms
by concatenation of every 2 contiguous frames. However, this causes a mismatch in
resolution, as the labels extracted by Yang et al. (2022) are aligned with a 10ms shift.
To pacify this mismatch in temporal resolution, each frame of all hidden representations
extracted from the pre-trained models are repeated in an interleaving fashion, i.e.
(x1,x2, . . . ,xT ) becomes (x1,x1,x2,x2, . . . ,xT ,xT ), and if the original utterance extracted
with a 10ms shift had an odd number of frames, the last frame is dropped, and the
extracted latent feature becomes (x1,x1,x2,x2, . . . ,xT ).

Models Again, report results on the “Best Set” of Mixture-of-Depths models and
compare to the Baseline model, as described in Section 3.2. Specifically, in line with the
setup designed for the SUPERB benchmark (Yang et al., 2021), I freeze each pre-trained
model and train a separate linear classifier to extract hidden representations from each
layer of the model as latent feature inputs to the linear classifier.

Hyperparameters All linear classifiers are trained for 10 epochs with a batch size of
8 using the Adam optimizer. A learning rate search was conducted, and linear classifiers
are trained with the optimal learning rate 2.5e−4.

Evaluation Metrics All models are evaluated by phone error rate (PER), which is
defined as the proportion of incorrect predictions made by the trained linear classifiers.

5.1.2 Phone Classification Results

Model Best PER Across Layers (%) Optimal Layer

Baseline 26.49% 8
Mixture-of-Depths c = 0.125 28.03% 8
Mixture-of-Depths c = 0.25 28.88% 7
Mixture-of-Depths c = 0.5 26.67% 8
Mixture-of-Depths c = 0.75 26.73% 8

Table 5.1: Best PER (↓) and optimal layer for Baseline and Mixture-of-Depths
models (No Activation, Offset 1). Lower values represent better performance.

Best Performance Table 5.1 shows the best PER achieved by all models for the phone
classification task, and the layer where they are achieved respectively. All Mixture-
of-Depths models achieve very close PER to the Baseline: the difference between the
Baseline and the best-performing Mixture-of-Depths model (c = 0.5) is only 0.18%,
while the difference between the Baseline and the worst-performing Mixture-of-Depths
model (c = 0.25) is 2.39%. All models reach optimal performance at similar layers: the
Mixture-of-Depths model with c = 0.125 at Layer 7, while all other Mixture-of-Depths
models and the Baseline at Layer 8. Broadly, Mixture-of-Depths models trained with
a larger capacity factor achieve better performance, though it may not hold when the
difference in capacity factor is small (for example, c = 0.5 and c = 0.75).
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Figure 5.1: Layer-wise PER (↓) reported for Baseline and Mixture-of-Depths models
(No Activation, Offset 1). Mixture-of-Depths layers are indicated through vertical
dashed blue lines in the figure, specifically at layers 2, 4, 6, 8, 10, and 12. Lower values
represent better performance.

Layer-wise Trends Figure 5.1 depicts results from probing each layer of all pre-
trained models. Overall, Mixture-of-Depths models all follow a similar trend to the
Baseline model. Performance is strongest at around Layer 8, and deteriorates towards
earlier and later layers. Before the optimal layer (layer 8), it can be observed that
Mixture-of-Depths models have worse performance at Mixture-of-Depths layer, likely
because only a certain proportion of frames were processed at these layers. Performance
quickly picks up again at regular transformer encoder layers following these Mixture-
of-Depths layers until reaching matching or almost matching best performances to
the Baseline. This indicates that the router at these layers learn effective specialised
transformations for selected frames at each layer. However, after the optimal layer
8, it can be observed that Mixture-of-Depths models maintain optimal performance
better than the Baseline model. This is especially evident when looking at the models
with the best performance out of the Mixture-of-Depths set, c = 0.5 and c = 0.75. At
the Mixture-of-Depths layers (layers 10 and 12) after the optimal layer 8, they both
show better performance compared to the baseline, suggesting that the router in these
Mixture-of-Depths layers also learns which frames should be processed.

Efficiency-Performance Trade-offs Considering the efficiency analysed in Chapter 4,
the Mixture-of-Depths model with c = 0.5 would the best option if the aim is to
maximise the preservation of performance while achieving efficiency gains. On the
other hand, if efficiency were prioritised, the Mixture-of-Depths model with c = 0.125
is extremely effective in its efficiency-to-performance trade-off achieved.

5.2 Speaker Identification: Utterance-Level Evaluation

5.2.1 Experiment Setup

Dataset For speaker identification, I adopt the VoxCeleb1 dataset (Nagrani et al.,
2020) which is widely used for speaker identification. It consists of speech utterances
from 1,251 celebrity speakers, extracted from YouTube videos. I use the dev set for
training and development, extracting 138,361 utterances for training and 8,251 for
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development. It is ensured that there are utterances from each of the 1,251 speakers in
each of the training and development splits. I use the test set to report my results.

Data processing The same pre-processing approach as detailed in the phone classifi-
cation experiment is applied (Section 5.1.1). 40-dimensional log-mel spectrograms with
a 25ms window and 10ms shift were extracted and downsampled to 20ms. In this case,
as a single speaker embedding is desired representing multiple frames across the entire
utterance, the extracted latent feature from the model is first averaged, then passed to a
trainable linear classifier to obtain speaker information relevant to the task.

Models Results on the “Best Set” of Mixture-of-Depths models are reported and
compared to the Baseline model, exactly as described in Section 5.1.1. Again, I freeze
each pre-trained model and train a separate linear classifier to obtain the necessary
speaker information from the latent features extracted from each hidden layer of the
pre-trained model.

Hyperparameters All linear classifiers are trained for 10 epochs with a batch size
of 8 using the Adam optimizer. A learning rate search was performed, and results are
reported with optimal learning rate 1e−3.

Evaluation Metrics All models are evaluated by classification accuracy, which is the
proportion of speakers the linear classifier at each layer correctly identifies.

5.2.2 Speaker Identification Results

Model Best Acc Across Layers (%) Optimal Layer

Baseline 40.81% 7
Mixture-of-Depths c = 0.125 38.21% 7
Mixture-of-Depths c = 0.25 38.15% 7
Mixture-of-Depths c = 0.5 38.37% 5
Mixture-of-Depths c = 0.75 39.15% 9

Table 5.2: Best classification accuracy (↑) and corresponding optimal layer for
Baseline and Mixture-of-Depths models (No Activation, Offset 1). Higher values
respresent better performance.

Best Performance Table 5.2 displays the best classification accuracy achieved by
all models for the speaker identification task, and the layer where they are achieved
respectively. Similar to what was observed in the phone classification experiment, all
models achieve very similar best performance as the Baseline: the smallest difference
in best performance was 1.66% (c = 0.75), while the largest difference was 2.66%
(c = 0.25). The Mixture-of-Depths models with capacity factors c = 0.125 and c = 0.25
reach optimal performance at the same layer as the Baseline (Layer 7), while the model
with c = 0.5 reaches optimal performance at an earlier layer (Layer 5) and the model
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with c = 0.75 at a later layer (Layer 9). Again, overall a larger capacity factor achieves
better performance, though the difference between models with c = 0.125 and c = 0.25
is an exception.

Layer-wise Trends Figure 5.2 shows the test accuracy of linear classifiers trained at
each layer. There is no largely uniform trend for the behaviour of Mixture-of-Depths
layers across all models, but models with c = 0.125 and c = 0.25 appear follow a similar
trend and exhibit similar behaviour at Mixture-of-Depths layers as from phone classifi-
cation experiment. Before reaching their respective optimal layer for performance, the
Mixture-of-Depths layers incur a smaller increase from its previous layer in comparison
to regular transformer encoder layers. However, after their respective optimal layers,
Mixture-of-Depths layers become better at preserving performance from the previous
layer compared to regular transformer encoder layers.

Figure 5.2: Layer-wise classification accuracy (↑) reported for Baseline and Mixture-
of-Depths models (No Activation, Offset 1). Mixture-of-Depths layers are indicated
through vertical dashed blue lines in the figure, specifically at layers 2, 4, 6, 8, 10, and
12. Higher values represent better performance.

Efficiency-Performance Trade-offs Considering the efficiency-performance trade-
off for the speaker identification task, the model with capacity factor c = 0.75 is the
best option if preservation of performance was the priority. However, efficiency gains
for this setting can vary depending on the exact hardware environment, as detailed in
Section 4.4 of the pre-training experiment. If efficiency were instead prioritised, the
Mixture-of-Depths model with c = 0.125 would still be a very effective choice, with
only a 2.60% reduction in classification accuracy.

5.3 Summary

In this chapter, the performance of the pre-trained Mixture-of-Depths models were
evaluated on downstream phone classification and speaker identification tasks, investi-
gating the trade-offs of the efficiency Mixture-of-Depths achieves to their effectiveness
in extracting content and speaker information from speech. All models showed very
similar performance to the Baseline across all tasks, and generally larger capacity factors
c = 0.5 and c = 0.75 facilitate slightly better performance compared to smaller capacity
factors of c = 0.125 and c = 0.25.



Chapter 6

Ablation Studies: What Does
Mixture-of-Depths Learn?

In this chapter, I extend upon my explorations and findings from experiments during
Chapter 4 and Chapter 5, and conduct several ablation studies.

In Section 6.1, I investigate the parameter distribution of Mixture-of-Depths models
compared to the Baseline, and whether Mixture-of-Depths can generalise to a different
capacity factor at inference without additional training. In Section 6.2, I examine in
detail the top-k routing decisions made at Mixture-of-Depths layers, revealing acoustic
properties that causes frames to be prioritised or skipped. And finally, in Section 6.3, I
present results obtained from the different Mixture-of-Depths model sets with differ-
ent activation and offset configurations (defined in Section 3.2) on experiments from
Chapter 5, and provide insight into the best settings.

6.1 Cross-Capacity Zero-Resource Inference

In this section, I explore the ability of each Mixture-of-Depths model to operate at and
generalise to capacity factors that are different to what they’re trained with, without any
additional training with the new capacity factor assigned. Specifically, I investigate two
questions: (i) Is it possible to recover a regular transformer encoder network with the
same architecture as the Baseline, by setting the capacity factor to 1 at inference, or does
Mixture-of-Depths learn fundamentally different parameter distributions? (ii) Could a
Mixture-of-Depths model train on a lower capacity factor and be able to scale to a higher
capacity factor at inference without further training, and acquire better performance?
Could it train on a higher capacity factor, but generalise to lower capacity factors
without significant impact to its performance?

I investigate these questions on the phone classification experiments setup proposed in
Section 5.1. To test different inference-time capacity factors on a pre-trained Mixture-
of-Depths model, the capacity factor for each top-k router is modified. Each pre-trained
model is frozen during the experiment, and linear classifiers are trained on the latent
features extracted from each hidden layer of the model.
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6.1.1 Inference c = 1.0: Studying Parameter Distribution

I experiment with two different approaches to study whether the parameter distribution
in Mixture-of-Depths models align with the Baseline model. For Approach 1, I remove
all router components from the forward computation graph of each Mixture-of-Depths
model, replacing each Mixture-of-Depths layer by the transformer encoder layer that
lies within. Results from this approach are shown at the top of Figure 6.1. For Approach
2, only the top-k routing logic is removed. Router weights rℓ are still computed and
multiplied to all inputs, as is the original Mixture-of-Depths approach. This is shown at
the bottom of Figure 6.1.

Figure 6.1: PER (↓) of phone classification experiments after removing Mixture-of-
Depths top-k routing from the computation graph (No Activation, Offset 1). Top:
Approach 1. Replaces each Mixture-of-Depths layer by the transformer encoder layer
within. Bottom: Approach 2. Replaces Mixture-of-Depths layers with transformer encoder
layers as outlined in Approach 1. In addition, the output from each Mixture-of-Depths
layer is multiplied by their respective router weights.

From Figure 6.1, it is clear that all Mixture-of-Depths models have drastically different
parameter distributions within their transformer encoder layers compared to the Baseline,
regardless of Approach 1 or 2. It is not feasible to employ Mixture-of-Depths models
with capacity factor c = 1.0, equivalent to just extracting a stack of the transformer
encoder layers within, under any approach. Using the difference in Phone Error Rate
between the Mixture-of-Depths models and the Baseline model from each of Approach
1 and Approach 2 as a proxy for deviation in parameter distributions, it appears that Ap-
proach 2 deviates further from the parameter distribution of a non-dynamically-trained
model (Baseline). In addition, the lower the capacity factor, the more bottlenecked
the Mixture-of-Depths model is at its Mixture-of-Depths layers and the further the
parameter distributions deviate from the non-dynamically-trained model. However,
despite this deviation from the Baseline parameter distribution, these Mixture-of-Depths
models displayed in Figure 6.1 achieved very similar performance to the Baseline
in the phone classification downstream experiment from Section 5.1. This indicates
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that the Mixture-of-Depths models successfully learned specialised transformations
required only for a subset of frames in each utterance in each Mixture-of-Depths layer,
optimising efficiency without sacrificing performance.

6.1.2 Inference c < 1.0: Studying Generalisability

I now investigate the capability of Mixture-of-Depths models to generalise to different
inference-time capacity factors less than 1, without additional training. Specifically, I
choose to explore inference-time capacity factors [0.125,0.25,0.5,0.75], the same set
of train-time capacity factor values I explored as described in Section 3.2. I leverage
this to conduct a structured grid-like analysis.

For each model tested with a different inference-time capacity factor, the best Phone
Error Rate across all layers probed is reported in Figure 6.2. I also include results
from models with the same capacity factor at both training and inference as reference,
displayed along the bottom-left to top-right diagonal of the heatmap.

Figure 6.2: Visualisation of frames routed through all 12 layers in Mixture-of-Depths
model with c = 0.75 (No Activation, Offset 1). Lighter colour indicates lower Phone
Error Rate, which corresponds to better performance.

A few notable patterns can be identified from Figure 6.2:

• All models are able to generalise across different inference-time capacity factors.
There is no significant impact to performance by changing capacity factor at
inference time.

• The higher the train-time capacity factor, the larger the performance gains
achieved through increasing the inference-time capacity factor - although the
improvements are small in absolute value. For example, increasing inference-
time capacity factor does not provide much improvement in performance for the
model trained on capacity factor c = 0.125, while for the model with c = 0.5,
changing its inference-time capacity factor to c = 0.75 actually provides better
results compared to the model trained on c = 0.75.

• The higher the train-time capacity factor, the more the performance deteriorates
through decreasing the inference-time capacity factor. This is especially demon-
strated through the model trained on capacity factor c = 0.75, providing a PER of
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0.317 when configured with inference-time capacity factor c = 0.125, the highest
PER out of all values in the heatmap.

• The model trained on capacity factor c = 0.125 (bottom row, corresponding to
train-time capacity factor 0.125 on the y-axis of the heatmap) appears to learn a
very specialised distribution. The quality of information extracted, reflected by
the performance, is not affected as the inference-time capacity factor increases.

Additionally, it is worth noting that the best result from Figure 6.2 actually exceeds the
Baseline result. This result is from the model trained on capacity factor c = 0.5, and
configured to c = 0.75 at inference without further training. A comparison of the PER
layer-wise between the model with this best configuration and the Baseline model is
shown below in Figure 6.3.

Figure 6.3: Visualisation of frames routed through all 12 layers in Mixture-of-Depths
model with c = 0.75 (No Activation, Offset 1).

6.2 Priority of Phones: Visualising Routed Frames

Through experiments in Chapter 4 and Chapter 5, it is discovered that Mixture-of-Depths
models are able to significantly improve efficiency while maintaining performance on
downstream tasks evaluating for both content and speaker information in speech. The
findings in Section 6.1.1 suggests that Mixture-of-Depths models learns specialised
transformations required only for a subset of frames in each utterance. In this experi-
ment, I aim to characterise properties of the subset of frames each Mixture-of-Depths
layer chooses to process.

To investigate this, I use Mixture-of-Depths models from the Best Set, pre-trained
on the train-clean-100 subset of LibriSpeech for 200 epochs as detailed in the
pre-training experiment in Chapter 4. Specifically, I examine two Mixture-of-Depths
models, with capacity factors c = 0.125 and c = 0.75. In the analysis of the model with
c = 0.125, I focus on which frames are prioritised by each Mixture-of-Depths layer, and
I turn my attention to the frames which are skipped for the Mixture-of-Depths model
with c = 0.75. I select one utterance from the Wall Street Journal dataset (Paul and
Baker, 1992) and visualise the trajectory of this utterance through each Mixture-of-
Depths model. The routing decisions at each layer are analysed in the context of the
spectrogram and the force-alignment phonetic labels for the utterance. Each analysis
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considers routing decisions made from two perspectives: a phone-wise analysis and a
layer-by-layer analysis.

6.2.1 What is Prioritised the Most?

Figure 6.4: Aligned spectrogram and heatmap, visualising frames routed through
layers in the Mixture-of-Depths model with c = 0.125 (No Activation, Offset 1). Top:
The log-mel spectrogram of the utterance processed. Darker colours represent regions
of lower energy, and brighter colours represent higher energy. Bottom: Visualisation of
selection of routed frames through all 12 layers of the model. The phonetic transcription
of the utterance is denoted at the bottom: ‘sil’ ‘hh’ ‘iy’ ‘hh’ ‘ae’ ‘d’ ‘ah’ ‘p’ ‘oy’ ‘n’ ‘t’ ‘sil’,
corresponding to the text transcription “He had a point” with silence at the start and end.

Phone-wise analysis: each phone is processed where? Figure 6.4 shows the spec-
trogram features and routing decisions made for each frame of the utterance throughout
the Mixture-of-Depths model with c = 0.125. Routing decisions are visualised at the
bottom of the figure, and the regular transformer encoder layers in the model are labelled
(Layers 1, 3, 5, 7, 9, 11). In this model, frames in the utterance corresponding to silence
(‘sil’) are processed the most. They’re processed at later layers, specifically from Layer
6 onwards. Frames corresponding to fricatives (‘hh’) and plosives (‘d’, ‘p’, ‘t’) are also
prioritised during Mixture-of-Depths layers, though their processing happens at earlier
layers in the model. It appears that voiced vowels ‘iy’, ‘ae’, ‘oy’ are processed by some
Mixture-of-Depths layer, but it can be observed that the specific frames processed lies
at the boundaries between phones. For example, the boundary between ‘iy’ and ‘hh’ at
Layer 4. This will be discussed in more detail in the layer-wise analysis next.

Layer-by-layer analysis: each layer processes which phones? Cross-referencing
routing decisions with the corresponding spectrogram features in Figure 6.4, Layers 2
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and 4 can be identified to process mostly fricatives and plosives, or transitions between
these sounds and a voiced vowel. Observing the spectrogram, the processed frames
generally correspond to features with low energies at lower frequencies that are not
silence. Layer 6 identifies frames within the period of silence preceding speech. At
Layer 8, it is evident that periods of transition from voiceless fricatives/plosives to
voiced vowels are identified. Looking at the spectrogram, these periods all contain a
change of energy in the lower frequencies. Layers 10 and 12 again identify silence, at
both the start and the end of the utterance.

6.2.2 What is Skipped the Most?

Figure 6.5: Visualisation of frames routed through all 12 layers in Mixture-of-Depths
model with c = 0.75 (No Activation, Offset 1). Top: The log-mel spectrogram of the
utterance processed by the model, where darker colours represent regions of lower
energy, and brighter colours represent higher energy. Bottom: Visualisation of selection
of routed frames through all 12 layers of the model. The phonetic transcription of
the utterance is denoted at the bottom: ‘sil’ ‘hh’ ‘iy’ ‘hh’ ‘ae’ ‘d’ ‘ah’ ‘p’ ‘oy’ ‘n’ ‘t’ ‘sil’,
corresponding to the text transcription “He had a point”.

Phone-wise analysis: each phone is processed where? For the Mixture-of-Depths
model with c = 0.75, the analytical focus shifts to the frames which are skipped. The
decisions are visualised in Figure 6.5 above. A similar pattern that was previously
observed emerges: periods of silence (‘sil’) are skipped in earlier layers and processed
at later layers (Layer 6 onwards), while non-silence sounds generally show an opposite
trend, prioritised in earlier layers and skipped at later layers. It can be observed that
frames corresponding to the transition from silence to speech, and vice versa, are pro-
cessed across all Mixture-of-Depths layers. In the spectrogram at the top of Figure 6.5,
this corresponds to the region along the horizontal time axis between 1s and 1.5s where
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the features transition from low energy across all frequencies (corresponding to silence
‘sil’) to high energy at high frequencies (voiceless fricative ‘hh’), and the region between
1.5s and 4s where features transition from high energy at high frequencies (voiceless
plosive ‘t’) to low energy across all frequencies (silence ‘sil’).

Layer-by-layer analysis: each layer processes which phones? Consider the rout-
ing decisions layer-by-layer, Layer 2 identifies and skips frames corresponding to
periods silence before, after, and during speech. When looking at the force-alignment
labels, it appears that a few frames corresponding the plosives ‘p’ and ‘t’ are processed,
but looking at the corresponding features in the spectrogram reveals that these frames
are periods with low energy across all frequencies where no sound is produced. Layer 4
recognises similar characteristics to Layer 2, and in addition skips regions within voiced
vowels that are not near phonetic boundaries. At Layer 10, vowel sounds ‘iy’, ‘ae’, ‘ah’
and the nasal sound ‘n’ is neglected. No clear pattern emerges for Layers 6, 8, and 12,
though silence frames are processed more.

6.2.3 Summary of Findings

Findings in this section suggest that voiceless sounds and silence - spectrogram features
with relatively lower energy across the frequency spectrum, as well as transition bound-
aries between phones, are prioritised by Mixture-of-Depths models and identified as
important to speech processing. Specifically, silence is skipped at earlier layers and
prioritised towards later layers, while it is the reverse for fricatives and plosives.

These findings, considered in context with the results from Chapter 5, reveal more
meaning. In the phone classification experiment in Section 5.1, the best Phone Error
Rate achieved for both models analysed here is at Layer 8. Performance gradually
tapers off afterward for the Mixture-of-Depths models, though not as sharply as the
Baseline model. The prior observations can be connected here. Processing fricative and
plosive sounds are key to the optimal performance at Layer 8, and allocating compute to
silence frames and neglecting speech sounds slows the performance decrease. Looking
at the speaker identification experiment from Section 5.2 instead, the Mixture-of-Depths
models here with c = 0.125 and c = 0.75 reach optimal accuracy at Layer 8 and Layer
10 respectively. For both models, it appears the first layer allocating more processing
compute to silence frames provides a critical boost to performance, but subsequent
silence processing layers have a negative impact instead.

6.3 Exploring Configurations: Activations and Offsets

As part of my methodology from Chapter 3, I proposed different sets of Mixture-of-
Depths models by varying router activation (sigmoid activation vs. no activation) and
the Mixture-of-Depths layer offset (offset 0 vs. offset 1) in Section 3.2. I selected a
“Best Set” based on effectiveness at smaller capacity factors, as the focus of this thesis
was to improve efficiency, and analysed results from models in the “Best Set” during
subsequent experiments in Chapter 4 and Chapter 5. Here, I discuss results for all
different configurations on downstream tasks from Chapter 5. The phone classification
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results and speaker identification results are displayed in Figure 6.6 and Figure 6.7
respectively.

Figure 6.6: Phone Classification Results: Best PER (↓) across different capacity
factors, in all Mixture-of-Depths model sets. (↓ indicates that better performance
corresponds to a lower PER)

Figure 6.7: Speaker Identification Results: Best Accuracy (↑) across different
capacity factors, in all Mixture-of-Depths model sets. (↑ indicates that better perfor-
mance corresponds to a higher accuracy)

Compared to the configuration proposed by Raposo et al. (2024) (Sigmoid Activation,
Offset 0), the configuration of “Best Set” (No Activation, Offset 1) is generally superior.
In phone classification experiments, results from the original configuration are domi-
nated by the “Best Set” at either the same or a smaller capacity factor. For example,
even though at c = 0.25, the original configuration achieves lower PER than the “Best
Set”, both results are dominated by the model from the “Best Set” with c = 0.125. In
speaker identification, the configuration in the main experiments dominates the original
configuration in all capacity factors except for c = 0.75, where the least efficiency is
achieved.

In general, considering the best trade-off in performance across both experiments, the
“Best Set” I reported in the main experiments is the most effective when paired with
smaller capacity factors 0.125, 0.25, and 0.5, that aims for better efficiency. However,
while the “Best Set” is superior to other models at capacity factor 0.75 during the phone
classification experiment, it falls short during the speaker identification experiment.
Paired with capacity factor c = 0.75, the configuration with no router activation and
offset 0 would have achieved the best trade-off between content and speaker information
extracted at its optimal layer.



Chapter 7

Conclusions

7.1 Reviewing Results

In this thesis, I explored adapting the Mixture-of-Depths method proposed by Raposo
et al. (2024) to improve both training and inference efficiency during the self-supervised
pre-training of a speech model while maintaining effectiveness in facilitating effective
extraction of content and speaker information within speech. Towards hypotheses I
proposed in Section 3.4, the following results were found:

1. (H1) All Mixture-of-Depths models, across capacity factors 0.125, 0.25, 0.5,
and 0.75, were able to achieve theoretical FLOPs reductions over the Baseline,
with the c = 0.125 achieving a reduction of 43.66%. In practice, all Mixture-
of-Depths models were able to achieve both training and inference wall-clock
time reductions over the Baseline across all hardware environments, except for
the Mixture-of-Depths model with capacity factor c = 0.75, where the model
had a longer inference time compared to the Baseline. It was discovered that the
practical efficiency gains achieved by Mixture-of-Depths depends heavily upon
the CPU capabilities of the hardware environment.

2. (H2) When transferred to downstream phone classification and speaker identi-
fication tasks, all pre-trained Mixture-of-Depths models were able to achieve
performance comparable to the Baseline, and successfully demonstrate their abil-
ity to preserve the extraction of useful content and speaker information from the
raw utterance in their latent features while improving efficiency. In general, higher
capacity factors facilitated improvements in performance on downstream tasks;
however, the difference is still small, and the smallest capacity factor c = 0.125
achieves an effective efficiency-performance trade-off.

3. (H3) The parameter distributions learned by transformer encoder layers within
Mixture-of-Depths models are all fundamentally different compared to the Base-
line. Further investigation was conducted to find that at a smaller capacity factor
of c = 0.125, Mixture-of-Depths layers learn to prioritise frames with relatively
lower total energy across the frequency spectrum, such as silence, fricatives,
plosives, as well as boundaries between fricatives/plosives and voiced vowels.
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Generally, silence is processed more towards later layers, while part of the utter-
ance that contains speech is processed during earlier layers.

4. (H4) Mixture-of-Depths models are found to adapt well if they were assigned a
different capacity factor than the one the model is pre-trained with at inference
time, with no additional training to the pre-trained model itself. Models trained
on higher capacity factors achieve better gains in performance with a higher
inference-time capacity factor. In particular, the model with train-time capacity
factor 0.5 and inference-time capacity factor 0.75 exceeds Baseline performance.

5. Overall, the Mixture-of-Depths configuration that removes the sigmoid router
activation and assigns Mixture-of-Depths layers to the second out of every two
layers in the Mixture-of-Depths models was found to be most effective, especially
in cases where the higher efficiency of a small capacity factor is desired.

7.2 Limitations

1. Despite best efforts, the wall-clock time measured on the Cluster hardware
environment, as described in Chapter 4, still showed a large variance between
epochs and runs. Runtime could be affected by concurrent jobs running on the
same node, or the current thermal conditions of hardware on the compute node,
which I could not control.

2. All models were pre-trained on the train-clean-100 subset, which comprises
100 hours out of 960 hours of speech total in LibriSpeech, and only contains
“clean” speech where the recording had higher quality and speakers had US
English accents (Panayotov et al., 2015). Training on a larger dataset and with
noisy utterances would facilitate more robust results.

3. Out of the 4 aspects of evaluation proposed for self-supervised pre-trained speech
models in the standard benchmark SUPERB (Yang et al., 2021), only the con-
tent and speaker aspects were evaluated. The other two aspects, semantics and
paralinguistics, are important to various other applications in speech.

7.3 Future Directions

While many experiments have been conducted in this thesis, there are still a few future
directions that could be explored.

1. Investigate the compatibility of Mixture-of-Depths with SOTA self-supervised
pre-training tasks that implement generating pseudo-targets from clustering tech-
niques on top of masked prediction, such as wav2vec 2.0 (Baevski et al., 2020) or
HuBERT (Hsu et al., 2021).

2. Develop optimisations that reduce the additional computation load router compo-
nents in Mixture-of-Depths impose, relax its dependency on CPU hardware and
achieve better global practical efficiency.
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Appendix A

Supplementing Results

A.1 Layer-Wise Phone Classification Results Across
Different Configurations

Figure A.1: Loss and Accuracy of Mixture-of-Depths model with configuration: no
router activation, offset 0.

A.2 Layer-Wise Speaker Identification Results Across
Different Configurations
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Figure A.2: Loss and Accuracy of Mixture-of-Depths model with configuration: no
router activation, offset 1.

Figure A.3: Loss and Accuracy of Mixture-of-Depths model with configuration:
sigmoid router activation, offset 0.
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Figure A.4: Loss and Accuracy of Mixture-of-Depths model with configuration:
sigmoid router activation, offset 1.

Figure A.5: Loss and Accuracy of Mixture-of-Depths model with configuration: no
router activation, offset 0.
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Figure A.6: Loss and Accuracy of Mixture-of-Depths model with configuration: no
router activation, offset 1.

Figure A.7: Loss and Accuracy of Mixture-of-Depths model with configuration:
sigmoid router activation, offset 0.
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Figure A.8: Loss and Accuracy of Mixture-of-Depths model with configuration:
sigmoid router activation, offset 1.


