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Abstract

This study explores ways to improve the recognition of accented English in automatic
speech recognition (ASR) systems. Despite significant progress in ASR technology,
accented speech recognition remains challenging due to limited targeted research, a
lack of diverse datasets, and variations in pronunciation and speaking styles of English
speakers. Our research investigates the trade-offs between using mixed accented training
datasets versus focused, single-accent datasets for fine-tuning. We also discuss relevant
topics in accented speech recognition, such as categorising speech samples based on
their features, comparing the effects of language models and fine-tuning on performance,
and analysing the outcomes of fine-tuning in different contexts. We use Wav2Vec2 2.0
model, with VoxPopuli and EdAcc datasets to examine these questions. Our findings
demonstrate that fine-tuning with limited data can lead to considerable improvements
in recognising in-domain speech. However, we also highlight the limitations and
challenges associated with transferring these learnings across different domains. These
methods have the potential to create more robust and effective ASR systems, benefiting
English speakers with diverse accents and promoting inclusivity in ASR technology.
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Chapter 1

Introduction

Automatic speech recognition (ASR) is the process of converting human speech into
machine- or human-readable formats, such as embeddings or text, to enable human-
human or human-computer communication [Juang and Rabiner, 2005]]. Despite signifi-
cant developments, there is still a performance gap between marginalised demographics
and accents persist [Markl and McNulty, 2022, Jahan et al., 2025].

1.1 Motivations

This study aims to investigate ways of bridging the performance gap in accented English
speech recognition on a range of L2 English accents. Much of the work done on the
matter has focused on regional native accents. We aim to include a variety of European
non-native accents, explore how much improvement can be achieved, whether it is
possible to leverage more high-resource accents to improve other accents with transfer
learning, feasibility of clustering speech based on features rather than pre-determined
labels, comparisons of accuracy gains with potential improvements from language
model additions to models, investigating the cross-domain generalisation of the fine
tuning across accents.

1.2 Overview

In this dissertation, we investigate ways of improving the performance of ASR systems
in foreign-accented English speech (English spoken by non-native speakers). I conduct
experiments to examine the current performance of some contemporary models. These
experiments explore how accented English speech recognition can be improved using
little training data, the relationship and potential transferability of learning between
phonetically or linguistically similar accents, the impact of language models on ASR
systems, and the cross-domain applicability of learning. To our knowledge, there are no
studies that look into mixed-accent training, accent-specific training, and cross-accent
improvements between accents simultaneously.

We explore specific research questions about accented English speech recognition, with
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each experiment addressing one or multiple questions.

1.2.1 Experiments

The first two experiments are on fine-tuning and testing a baseline model using various
splits with an accented dataset. In the first experiment, a combination of accented
samples are selected into a single training set, where each accent gets a similar number
of samples. Thus, no one accent is overrepresented in the combined set. The fine-
tuned model is then evaluated using the test split, which contains the same variety of
accents. This experiment explores how vital variety is in the training data for accent
improvements to generalise and cover a wide range of accents.

The second set of experiments focuses on different train-test splits, training on a
single accent while evaluating across all accents. This aims to identify cross-accent
improvements gained through fine-tuning. It complements the first experiment by
assessing whether to focus on specific accents for better performance in accented ASR
with limited data. If combined training struggles with diverse accents, concentrating on
single accents may be a more effective strategy for resource gathering and training.

The third set of experiments builds on the previous ones but addresses the limitations of
the native-language heuristic for categorising accents. Instead of predefined categories,
we grouped speech samples based on feature similarity, creating unnamed clusters. This
approach aims to improve test data by clustering accents and fine-tuning models on
subsets of these clusters, allowing us to train and evaluate using data most similar to the
model’s training samples.

The fourth setup explores how a language model added to an ASR system may im-
pact the performance in accented speech recognition and whether it can match the
improvements gained by fine-tuning. As language models are a common component in
ASR systems, it raises the question of whether the improvements we achieve from the
first three experiments focusing on improving the acoustic model performance can be
achieved with a language model head instead.

Lastly, our final experiment explores the cross-domain transferability of the training.
We use the best-performing model from the first two experiments. The fine-tuned model
is then evaluated by its performance on the test set of the original dataset along with
another dataset containing speech samples with a different context, register, and setting.
The purpose of this experiment is to examine the performance of the fine-tuning on data
from different and unseen domains.

1.2.2 Research Questions

These experiments aim to provide a clear and comprehensive understanding of how
contemporary automatic speech recognition systems can be improved for accented
English speech. The list of topics and research questions I intend to address are listed
below:

1. How much improvement to accented speech recognition can be realised with a
dataset limited in size but containing a wide range of accents?



Chapter 1. Introduction 3

2. If we focus on a single accent in a targeted manner in the training dataset instead of
a wide range of accents, how does this approach improve the model’s performance
on accents similar to the training accent? Is there a potential for transfer learning
between accents?

3. As accent labels based on native language may not necessarily be representative
in all cases, is it possible to create categories for speech samples by looking at
the speech and its features only? creating abstract categories instead of labels to
collate samples by feature similarity?

4. Does a language model on an ASR model improve the accuracy as much as our
fine-tunings from the previous experiments?

5. Do the improvements from fine-tuning on one dataset impact the performance on
another accented dataset containing speech in a different context?

These serve as an overall guide to the structure of the rest of the report, including
background reading, explanations of methodology, and analysis of the results.

1.2.3 Contributions

Our findings demonstrate a strong potential for improving accented English ASR, even
when using limited data with a high variety in accents. With fine-tuning on small,
accent-mixed training sets, we observe improvements—often more than 25%— in word
error rates. When adopting a more targeted approach in fine-tuning, supplying the same
amount of data but focused on a single accent, we achieve even improvements between
23% and 47% across all accents, with most improving by more than 34%.

Accent-agnostic clustering and attempts at abstracting away the accent labels yielded
inconclusive results. MFCC-based clustering seems to include too random of a mix of
accents, but Wav2Vec2-based clusters separated worse-performing summary

Our comparison of improvements from language model addition and fine-tuned model
results clearly shows that fine-tuning improves accuracy far more than language model
addition. Lastly, our results indicate that domain mismatch is a persistent issue across
fine-tuned models, with potentially fine-tuning in a niche domain causing degraded
performance from the baseline model for some accents.

The main contributions of this work are: (1) the scale and breadth of the accents explored
in the fine-tuning and evaluation; (2) a detailed comparison between mixed-accent and
accent-targeted fine-tuning performance; and (3) an investigation into the interaction
between cross-accent and cross-domain interactions, revealing patterns, symmetries the
in lack of transfer between domains, and possible degradation to baseline performance
for niche domain-adaptations.

1.3 Structure of the Report

The report is split into several chapters.
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Chapter 2| - Related Work provides an overview of the field of automatic speech
recognition, accented speech recognition and why is it a problem, and previous work
done on some of the relevant topics.

Chapter [3]- Methodology explains the data processing, experiment setup steps, and
evaluation methods in depth.

Chapter [d] - Results details extensive investigation and interpretation of the results
from the experiments. Overview of what patterns are observed, and for the experiments
with inconclusive results, potential causes for the inconclusive results.

Chapter 5| - Discussions provides a comprehensive overview of the study’s limitations,
further work and expansion possibilities, and final remarks on the contributions of this
project.

1.4 Following on From Last Year

My UGH4 project was on a different field and question. Last year, my dissertation was
titled "Detecting and combatting misinformation online during crises: a case study of
COVID-19." Tt was a natural language processing project in which I created a pipeline
to identify and provide fact-checked sources for selected claims about the COVID-
19 virus and the pandemic. The project aimed to combat the prevalent problem of
misinformation online by suggesting a potential tool to allow users to quickly identify
and get more information about misinformative claims.

Around the same time [ was doing my write-up, I was also working on another significant
coursework for the Machine Learning Practical course. The final project for the course
was a broad quest to take some problem and come up with a machine learning focused
solution to it. After some brainstorming, we came up with the idea of looking into
accented English speech recognition. In the MLP project, we broadly focused on the
transferability of learning between accents only, which is described in this paper as
the second experiment in the section [[.2.1] corresponding to research question three. I
greatly enjoyed working on the project, and by the time I finished, I had more ideas on
how it could be improved and what kinds of additions could be made. As there were
more tangents to explore, I decided to turn the MLP project into my dissertation topic
this year.

Due to teammates’ personal constraints and special circumstances, I did all the practical
work on setting up the experiments, working with HuggingFace API, collating the
data, and the experiment results. The teammates helped in the final write-up, and the
presentation of the data in figures and some preliminary analysis of another dataset
(Speech Accented Archive) that we did not use in the final paper as it diverged from the
story we wanted to tell in the report.

The experiment setup I created last year had certain problems that we only realised
the severity of later. The most prominent issue was the potential risk of selecting an
inconsistent amount of data between experiments, which could significantly impact the
performance after fine-tuning. This paper thus aims to correct this issue and explore the
other research questions I did not have the time for last year.
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Last year’s work has been beneficial in assisting my understanding and competency
with the tools I have used for this project, such as the HuggingFace Trainer API and
dealing with speech data. But a final important note is that all the work presented in
this paper was done by me independently. None of the code, implementation, or work
from last year was used in any capacity. Throughout this report, I use "we" and "our" to
denote my personal work, as this is the format I am more comfortable writing in. This
is merely a stylistic choice I took to express my work more comfortably throughout the
report.



Chapter 2

Related Work

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) has developed significantly from early methods
using rules-based and statistical modelling approaches to contemporary state-of-the-art
deep learning based approaches [[Yu and Deng, 2016]. Over time, the ability of these
models to deal with a variety of inputs in different domains of speech with varying levels
of quality has significantly increased. There is substantial ongoing research and interest
in improving the quality of these models for recognising different languages with higher
accuracy, transcribing them into text or converting them to machine-readable formats
such as vector embeddings for further processing, categorisation, or transcription [ Yu
and Dengl 2016].

Early ASR systems mainly relied on statistical models such as Hidden Markov Models
with Gaussian Mixture Models and rules-based approaches from the phonetics and mor-
phology of the target languages. Although these methods can be effective with limited
vocabulary and speaker-dependent accuracy, they struggle with scalability and success-
fully dealing with a wide variety of speech, such as background noises and accents
[Juang and Rabiner, 2005]]. The rising prominence of machine learning, particularly
sophisticated deep learning methods using neural networks and transformer models, has
impacted the performance, robustness, and accuracy of automatic speech recognition
[Ngueajio and Washington, 2022]. State-of-the-art models based on deep learning and
end-to-end transformers, such as Wav2Vec2, Whisper, and Conformer architectures,
leverage self-supervision with large amounts of data to improve performance across
diverse languages, speakers, domains, and accents [Fuckner et al., 2023]].

Modern ASR systems in use contain several key components in their pipeline: feature
extraction, acoustic models, language models, and decoding. Feature extraction converts
raw speech features into more informative representations, such as spectrograms or
Mel-Frequency Cepstral Coefficients (MFCCs). Acoustic models map these features
to phonetic units. Language models leverage linguistic context and information to
improve accuracy, and decoding combines the acoustic and language models into a final
transcription [Malik et al., 2021]].
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End-to-end ASR models, such as those based on Connectionist Temporal Classification
(CTC) and sequence-to-sequence approaches with attention mechanisms, have further
streamlined ASR pipelines by directly mapping speech input to text output. These
streamlined approaches have shown significant improvements in performance and
robustness compared to more traditional methods and are widely adopted in ASR
research and development [Das et al.| 2018]].

Despite its strengths, some limitations persist in making these ASR systems robust,
adaptable and inclusive. Currently, data for training models are available only for a
handful of languages out of approximately 6500 world languages [Malik et al., 2021]].
Automatic speech recognition is also, much like other machine learning tasks, highly
data-dependent, and the availability of large-scale datasets plays a crucial role in the
developments. Current systems also suffer from various biases on gender, age, and
accent [[Fuckner et al., 2023} |Jahan et al., [2025]].

2.2 Accented Speech Recognition

Contemporary state-of-the-art ASR systems perform well in native English speech,
particularly with high-resource native accents, due to the biases in the pre-training data.
As a result, these systems perform optimally when processing clear speech spoken in
standardised accents, and their accuracy significantly degrades when presented with
non-standard accents, including regional native English dialects that deviate from the
dominant accents or non-native English spoken by L2 speakers with foreign accents
[Malik et al., [2021]]. This performance gap is a key limitation in the accessibility of
contemporary ASR systems to non-dominant accented speakers [Markl and McNulty,
2022]]. This is especially a prominent problem for English, as most English speakers
are not native speakers [Crystal, 2003]].

Everyone has an accent, even speakers of dominant accents of a language who are often
thought to have "no accent" [Markl and Lai, [2023]. For the remainder of this paper,
the term "accented speakers" denotes people who speak a non-standard accent, either a
native but regional dialect that diverges from standard local variations or L2 English
speakers with foreign accents.

2.2.1 Negative consequences of suboptimal accented ASR

This performance gap can have real-life consequences for many people with non-
standard accents, a central pain point in human-computer interaction for those who do
not or cannot imitate the standard accents to be understood by ASR systems. For people
with marginalised accents, this can be significantly detrimental to their experience with
ASR systems. This performance gap’s consequences can be far reaching, preventing
accented speakers from interacting with commercial products with ease, impacting their
ability to conduct simple tasks with their devices that may have ASR systems built-in,
such as cars or electronic devices, and in severe cases even negatively impact the quality
of service they receive in healthcare and damage their employment opportunities [Markl
and McNulty, 2022]]. These negative consequences often worsen the status of these
marginalised communities, who already face negative biases in various forms in their
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day-to-day life, and the lack of consideration about this matter only propagates the
problem [Markl and McNulty, 2022].

Accented speakers may struggle interacting with commercial products and face difficul-
ties performing tasks on devices with built-in ASR systems (such as cars or electronic
devices). The consequences of relatively worse performance for commercial products
may not be critical in the users’ lives, but they can cause a sense of exclusion and
frustration. For example, persons with accents may find it harder to interact with
voice-activated assistants such as Siri or Alexa, and their requests may not be accurately
parsed by these systems [Ngueajio and Washington, [2022].

ASR systems are also used in healthcare settings for tasks such as transcribing clinical
records, controlling medical equipment, and automatic translation systems [Chiu et al.,
2017, Blackley et al., 2019]. These systems’ failure to recognise accented speech
accurately can lead to inaccurate medical records and other harmful errors in treatment,
which can be very detrimental to the health of the patients [Olatunji et al., 2023]].

Another critical utilisation of ASR systems is in human resources and employment.
Many companies use automated tools in their hiring processes, online interviews and
recorded answers to these questions [Hickman et al., 2024]. Ensuring consistent and
high accuracy for the ASR systems used in this context is crucial for the fairness of
the hiring process and preventing any unintended biases in rejecting candidates due to
errors or shortcomings of the ASR systems. Bias against accented speakers here can
have a real economic impact for those who do not conform to the norms expected by
ASR systems for optimal accuracy [Markl and McNulty, 2022].

In education, ASR systems are also used in various settings, such as transcribing lecture
materials for better accessibility and assisting in language learning [Van Doremalen
et al., 2016]. Failing to adequately transcribe accented speech from lectures or other
materials can impact the student experience.

Lastly and most crucially, the impacts of these disparities can be long-lasting. If unad-
dressed, these biases and the lack of attention given to them can perpetuate inequalities,
reinforcing existing biases against marginalised communities and contributing to their
exclusion from opportunities in the social and economic systems through unfair hiring
process setups or problematic medical record-keeping. Thus, these accuracy gaps
exacerbate the marginalisation of these communities now and potentially in the future
by setting up a negative precedence if not addressed appropriately.

2.3 Models & Datasets

2.3.1 Datasets

Numerous large datasets focus on native speech in different languages. Some early
datasets, like the Wall Street Journal [Paul and Baker, |1992] dataset containing over
400 hours of speech, have enabled ASR research for decades. Currently, many com-
prehensive datasets for English speech are being used in ASR research. LibriVox
[Kearns|, 2014] contains over 6,000 full-text audiobooks in 48 different languages, and
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LibriSpeech [Panayotov et al.l 2015]], as part of this incentive, contains 1000 hours
of recordings for audiobooks in English. Gigaspeech [Chen et al., 2021] contains
10k hours of high-quality speech with labels, along with 40k hours of speech without
labels. The CommonVoice [Ardila et al., [2019]] dataset contains over 2.5k hours of
crowdsourced audio in 38 different languages. TED-LIUM [Hernandez et al., 2018]]
is another dataset of cleaned and aligned TED talks containing 452 hours of speech.
The VoxLingualO7 [Valk and Alumaée, 2021] contains over 6.6k speech samples in 107
different languages, accompanied by 1609 verified utterances. CMU-Arctic [[Kominek
and Blackl, [2004]] includes carefully curated 1200 phonetically balanced English utter-
ances mainly designed for speech synthesis research. These datasets provide a solid
foundation for developing ASR systems that can accurately recognise standard English
speech.

Numerous datasets have been introduced to classify or improve accented English speech.
CommonAccent [Zuluaga-Gomez et al.,|[2023] is a subset of the CommonVoice dataset,
containing mainly native accents. AccentDB [Ahamad et al., 2020]] contains samples of
four Indian-English accents and a compilation of four native-English and metropolitan
Indian-English accents. Speech Accent Archive (SAA) [Weinberger and Kunath, 2011]]
dataset features parallel speech samples by people from 177 countries. Speakers read
the same paragraph, which makes it ideal for studying accent variations. Similarly to
SAA, the IDEA (International Dialects of English Archive) [Persley, 2013|] contains
roughly 1700 samples by people from 135 countries and territories reciting the same
text. CSLU Foreign Accented English [Lander] includes speech by native speakers of 22
different native languages. The Interspeech 2020 Accented English Speech Recognition
Challenge (AESRC) [Shi et al., |2021]] dataset provides eight sets of accented data
from different countries, aiming to promote research in accent speech recognition. The
L2Arctic [Zhao et al.l 2018]|] dataset is intended for research in voice conversion, accent
conversion, and mispronunciation detection, featuring 10 non-native accents. VoxPopuli
[Wang et al., 2021]] contains a substantial amount of native, as well as 29 hours of
accented speech by native speakers of 16 European languages. EdAcc [Sanabria et al.,
2023 contains almost 40 hours of dyadic call conversations between friends in a range
of native and non-native accents. The GLOBE [Wang et al., 2024] dataset contains 535
hours of speech, mainly aimed at text-to-speech research. Lastly, the VCTK dataset
mentioned in [Inoue et al.,|[2025]] includes speech from 109 native speakers from the
US and the UK.

Many of these datasets either focus on native-accented English speech (Common Voice,
VCTK), contain little variation in their speech samples (SAA, IDEA) or contain few
non-native accents (AccentDB). CSLU, EdAcc, VoxPopuli and GLOBE provide wide-
ranging accents with a considerable sample size.

2.3.2 Pre-trained Models

Along with the various large datasets containing native, regional, and non-native English
speech, some established large ASR models are available and widely used in research.
Many contemporary state-of-the-art models use a combination of convolutional neural
networks with transformer architecture [[Vaswani et al., 2017] to achieve high accuracy
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and robust speech recognition capabilities. This combination is a powerful tool in
enabling ASR models to perform well.

Wav2Vec2 by Baevski et al.| [2020] is a self-supervised learning framework for speech
recognition by Facebook AIl. Based on a combination of multi-layer convolutional
neural network and transformer architecture, it leverages large amounts of unlabelled
data to learn meaningful representations during pre-training and some labelled data
with a Connectionist Temporal Classification loss [Graves et al.,|2006] to be used for
downstream tasks such as classification or speech recognition. Whisper [Radford et al.,
2023]] is a model developed by OpenAl. It is trained on a large and diverse dataset of
speech data in multiple languages. It uses a transformer-based architecture and can
perform speech recognition and translation tasks. The Conformer [Gulati et al., 2020]
model by Google introduces a convolution-augmented transformer model for speech
recognition. Some other models include QuartzNet [Kriman et al., [2020] by NVidia
(based on their previous model Jasper [Li et al., [2019]), Deep Speech 2 [Amodei et al.,
2016[] by Baidu Research. Since these models are often introduced by corporations,
their pre-training data is often not publicly available.

Many of these models perform well with native speakers with dominant accents, but
there is a substantial increase in the word error rate if they are presented with heavily
accented speech, native or non-native [Sanabria et al.,| 2023, |[Fuckner et al., 2023]]. This
is due to the training models

2.4 Speech Feature Representations

This part is motivated by the fact that labels on speech can lack nuance. Thus, we aim
to look into ways of representing speech by its features. There are various methods
for extracting features of speech. Mel-Frequency Cepstral Coefficients (MFCCs) are
the most commonly used. They filter frequencies to represent what humans hear.
Another feature is spectrograms, which are used to understand the quality of the sound.
Chroma features are used for analysing and processing musical data. The Spectral
centroid calculates the weighted mean of the amplitude of frequency, and spectral
roll-off calculates the frequency below a certain percentage of the total frequency of the
spectrum [Singh et al., [2020]].

Self-supervised speech representations have also been highly studied recently. Speech2Vec
[Chung and Glass,, [2018]] proposes a novel deep neural network architecture for learn-
ing fixed-length vector representations, similar to Word2Vec in NLP [Church, 2017]].
Wav2Vec2 embeddings, the output of the Wav2Vec2 model at the last layer, can also
be used as vector representations of speech samples. Pepino et al.| [2021] uses these
embeddings to create a system to recognise emotions with simple neural networks.

These features can be insightful into the speech samples, including about the phonetic
and accent data of the speech.
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2.5 Transferability of Learning

Transfer learning is a critical area of research in ASR. Broadly speaking, it can be
described as leveraging knowledge from a pre-trained model on a large dataset to
improve performance on a smaller, either low-resource or domain-specific dataset.
This approach has various use cases in accented speech recognition, where models
pre-trained in standard English are fine-tuned on accented speech data. This method
helps adapt the model to the nuances of the accent, thus improving accuracy [Sullivan
et al., [2022]. Conceptually, this is similar to cross-domain adaptation in section
and generalisation. Many papers approach this problem as such, but in the context of
accented ASR, we use it to transfer learning between accents only in this paper.

In our specific case in this work, we also look into the transfer learning of the fine-tuned
model into different accents than the fine-tuning accent. Native speakers of certain
languages—such as Czech and Polish—have similar accents in English due to the close
connection between their native languages linguistically and phonetically [Slamova,
2018]. This presents a valuable opportunity in leveraging not only the pre-training data
but also the fine-tuning data between accents.

Previous work done on this matter mostly focuses on improving accents individually
[Hinsvark et al.,|2021]]. There is some work into investigating the performance changes
between accents for fine-tuned models, but they often focus on native accents or lack
diversity in their accent variation [Ahamad et al., 2020, Sullivan et al., 2022].

Some researchers introduce novel and ingenious techniques to improve accented ASR
accuracy. \Gu et al.|[2024]] proposes a framework to capture similarities between source
and target accents to improve cross-accent speech recognition. Another interesting study
of leveraging the native-language background of English speakers was done by Kumar
et al.| [2023]]. The study introduces unlabelled native language data to the model during
the pre-training phase to learn self-supervised representations. The pre-trained model is
then fine-tuned using limited labelled English data in the accent. Applicable to transfer
learning and domain generalisation, Finn et al.|[2017] introduces meta-learning, a potent
transfer-learning technique particularly effective in dealing with low-resource-related
challenges. In meta-learning, a model is trained across multiple tasks, allowing the
model to acquire 'meta’ parameters, which can be adaptable to various other tasks.

2.6 Language Models in ASR

Automatic speech recognition used to have two different fundamental fields, isolated
word recognition and continuous speech recognition [Scagliola, [1985]]. The inclusion
of language models (LMs) in ASR and the incorporation of context into the task of
transcribing audio input made continuous speech recognition viable [Liu et al., 2024a].
LMs played an essential role in ASR systems by providing contextual information
to improve accuracy, utilising statistical data from vast text corpora to predict the
likelihood of word sequences, and integrating with the acoustic models to leverage
our understanding of text, grammar, and context. They also assisted ASR systems in
enabling disambiguating similar-sounding words and phrases. They reduce the word
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error rate by replacing unlikely words transcribed by the acoustic model with more likely
words in a given context. However, with the rising prominence of neural end-to-end
models, LMs have fallen out of use|Liu et al.|[2024al].

There are different language models: n-grams, neural network-based ones, and trans-
former models. N-gram models predict the probability of a sequence of length n-1
based on some training corpora. They are simple and efficient but suffer from data
sparsity and lack context beyond the previous n-1 tokens [Jelinek, [1998]]. One common
n-gram model used in ASR systems is KenLM [Heafield, 2011], due to its efficient
and fast search algorithm. Neural language models are more sophisticated LMs that
can capture long-range dependencies. They outperform n-gram models by learning
complex patterns [Mikolov et al., 2010, |Bahdanau et al., 2014]. Transformer-based
models [Vaswani et al.,[2017]] such as BERT and its variants have revolutionised the nat-
ural language processing field by introducing self-attention mechanisms to effectively
capture contextual information.

Language models can be integrated into ASR systems in different ways. Shallow fusion
models combine acoustic models and language models during the decoding process,
where the most likely sequence predictions from the acoustic model are selected by the
language model based on linguistic context. It is an intuitively straightforward approach
widely used in speech recognition. Deep fusion models involve training acoustic and
language models jointly to optimise their combined performance [Gtilgehre et al., 2015].
Cold fusion models use a language model to guide the training of the acoustic model,
allowing it to benefit from the linguistic context during the training process [Sriram
et al., 2017].

The language model addition to ASR systems increases accuracy most of the time
[Toshniwal et al., 2018]]. Some previous studies have used n-gram models, [Hirsimaki
et al., 2009, Pohl and Zio6tkol 2013, Habeeb et al., 2021, |Kumar and Niranjan, 2024],
and optimised search algorithms for more efficient n-grams [Heafield, [2011]], uni- and
bi-directional RNNs and LSTMs [Arisoy et al., 2015, Lam et al., 2019} [Irie et al., 2016],
and lastly transformer-based LLMs [Min and Wang, 2023, |Chiu and Chen, 2021, |Futami
et al., [2020] with varying degrees of success. For early LLMs such as BERT, some
papers report increased accuracy [Chiu and Chen, 2021, Futami et al., 2020, but there
are also reports of decreased accuracy [Min and Wang, 2023]].

With transformer-based models, Min and Wang [2023]] reports the inclusion of LLMs
increases the word error rate, while [[Futami et al., [2020] and |(Chiu and Chen|[2021]]
report increased accuracy.

2.7 Domain Generalisation and Adaptation

Machine learning models’ performance can often fail to handle significant changes
between training and test data. Shifts in the data domain for ASR systems, such as
between technical monologues and casual conversations or even accent changes in the
samples, can pose a problem to the adaptability of the models [Sun et al.,|2016]]. This
can be seen as a domain generalisation problem, where the target data may come from
a different domain [Blanchard et al., 2011, Muandet et al., 2013]].
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This issue of domain changes can be tackled in various ways, such as using meta-
learning methods [Li et al., 2018, [Finn et al., 2017]], introducing domain-shift during
training, augmenting data with domain synthesis [Zhou et al., 2022]], or fine-tuning
pre-trained models with domain-specific data [Luo et al., 2021]. Such methods are used
in a variety of fields within machine learning research, such as computer vision, natural
language processing, medical imaging, and speech processing [Zhou et al., 2022].

Paraskevopoulos et al.| [2023]] and Zhou et al.| [2023], along with other cited papers
in this section, suggest that pre-trained models often fail to perform as accurately in
out-of-domain speech samples and cause higher WERs.
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Methodology

Overall, we ran five sets of experiments using the Wav2Vec2 model [Baevski et al.,
2020]. Each experiment addresses one research question mentioned in section [[.2.2]
We used the accented subset of the VoxPopuli [Wang et al., 2021] dataset in most
experiments. This dataset consists of L2-English speech samples by native speakers
of 16 different European languages, obtained from European Parliament speeches. It
provides a wide range of non-native accents, with some from the same language families
(Polish, Czech, Slovak, etc.) to examine how feasible transferability of learning between
phonetically and linguistically similar languages is. For the final experiments where the
cross-domain transferability is explored, we utilised a selected subset from the EdAcc
[Sanabria et al., |2023] dataset. Lastly, HuggingFace Trainer API was used in data
processing, training, and evaluating the models [Jain, 2022].

3.1 Dataset Preparation

The VoxPopuli dataset is present in the HuggingFace platform and usable with their
Datasets package in Python. We performed some exploratory analysis of the data, such
as counting the number of speech samples, words, mean, median, standard deviation
between samples, lengths of longest and shortest samples, roughly how much time in
minutes do they correspond to at a rate of 160 words per minute [Tauroza and Allison,
1990]. Additionally, 500 samples from the native English set of VoxPopuli were also
included in the dataset to compare model performance in native and non-native English
performance.

We have performed some pre-processing in the selection process for the training datasets
to ensure that each accent gets an equal amount of representation with samples of
average length relative to the accent subset. This aims to avoid very short sentences
in the training. The data pre-processing steps are explained in further detail in each
subsection below.

The EdAcc dataset was also used in the last experiment investigating the transfer of
learning across different domains and registers. EdAcc contained many short samples,
significantly increasing the perceived word error rate. Some filtering was done to

14
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Accent ‘Count Length Mean Median S.D. Max. Mins

Slovenian 66 1825 28 24 16 80 11
Croatian 127 3391 27 23 23 238 21
Lithuanian 178 4620 26 23 22 258 28
Estonian 289 8364 29 25 20 172 52
Italian 360 9434 26 23 16 100 58
Slovak 409 10720 26 22 16 125 67
Spanish 419 11434 27 23 16 98 71
Romanian 485 14335 30 23 22 167 89
Finnish 590 15317 26 23 17 193 95
Hungarian 676 19495 29 25 17 111 121
French 737 19701 27 24 19 339 123
Polish 852 23874 28 25 16 130 149
Czech 974 26922 28 25 15 98 168
German 1074 29045 27 23 19 238 181
Dutch 1151 30039 26 23 17 196 187
English 500 11732 23 21 14 80 73

Table 3.1: Overview of the VoxPopuli accented dataset

include only meaningful samples in our training and evaluation.

The overview of datasets VoxPopuli and EdAcc are shown in the tables and
respectively. Due to the way samples are spread in the dataset, with some containing as
little as one word, we took some steps to ensure a meaningful spread of samples for
training. In essence, this ensures that training samples are of similar lengths and do not
include very short or one-word samples. More detailed steps for each set of experiments
are detailed in the subsections.

3.2 Model

The Wav2Vec2 base model by Facebook, which was pre-trained on 960 hours of
Librispeech data, was used for all experiments [Baevski et al., 2020]. Although some
other models perform better in general, such as Whisper by OpenAl, the main issue with
using this model is the lack of transparency in their training data, which may include
the datasets used in this setup [Radford et al., [2023]]. To avoid this, we have decided
to use a model with pre-training data that is publicly available and focus on evaluating
the improvements from the baselines that can be achieved and the relationship between
improvements of different accents.

3.3 Hyperparameters

First, we run some hyperparameter setup experiments on the combined train-test. The
decision to use a combined train-test split (explained in[3.4.)) for the hyperparameters
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Figure 3.1: Training and validation loss for hyperparameter selection experiments.

selection setup was made to avoid favouring any one accent over others. The number of
training epochs and the learning rate were chosen with these experiments.

We run the trainer on the combined train and test split four times with the learning rate
values of le-4, Se-5, le-5, and Se-6 for 25 epochs each to determine where the validation
error stops changing significantly and which learning rate yields the lowest validation
loss overall. Results from these experiments are shown in figure 3.1} Accordingly, we
use le-5 learning rate, and 12 epochs of training for subsequent experiments to keep a
consistent setup across all experiments. This ensures that the only changes we make to
the experiments are the provided data and other constants are static across all runs.

A weight decay of 0.005 is also added to prevent overfitting and improve model
generalisation. All experiments are run on Google Colab using a T4 GPU with a batch
size of 4 (decided due to computational constraints, as higher batch sizes caused the
runs to crash due to memory errors).

Below are the training arguments used for the experiments.

training_args = TrainingArguments (
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
learning_rate=0.00001,
weight_decay=0.005,
num_train_epochs=12,
gradient_checkpointing=True,

3.4 Experiments

3.4.1 Combined Experiments

The main purpose of these experiments is to examine the improvements that can be
gained by fine-tuning the model with a wide range of accents. Each accent contains
a similar number of speech samples and words in the training set, so no one accent
dominates the training. This will give us an idea of whether we can realise significant
improvements with a small amount of training data from numerous different accents.

The first step is to separate the data into train and test samples. For this set of ex-
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periments, there are two core qualities the data must conform to to make the results
meaningful and useful for the aims of this experiment and comparison with future
experiments. These are:

1. Each accent must have equal or similar representation. This ensures that no
one accent overpowers other accents when evaluating the performance of the
fine-tuned model across a wide range of samples from various accents.

2. Enough data is needed for the model to learn through training.

In total, 8000 words are allocated to training datasets. This number is selected as it
allows us to have as many accent-specific experiments as possible for the second set
of experiments (see section [3.4.2)) without severely restricting the amount of data (see
table[3.1). This amount is also set uniformly across experiments to ensure consistency
across experiments for exploring the research questions, focusing only on the variety in
the accents and training data instead of any possible discrepancies in the total amount of
training data. For the combined experiments here, each accent was allocated an equal
portion of the 8000-word limit, so about 533 words maximum per accent.

To avoid very short samples containing single words or phrases, we sort the samples
by accent and how much each sample’s length differs from the average length for its
accent. This prioritises the samples whose length is closer to the average word count of
the accent in the training set. Once the per-accent 533-limit is reached, the rest of the
data is allocated to the test set, and we move on to other accents.

After this step, three experiments are run:

1. No validation split: This feeds all 8000 words into the training with no validation
split.

2. Holdout - 75/25 Train/Val split: 6000 words used for training and 2000 words for
validation.

3. KFolds: 75/25 split run four times with four possible train/validation rotations.
This ensures that we account for possible different initialisations and train/valida-
tion splits, as these types of training can be very data-dependent.

The results from these runs can also provide valuable insights when compared with the
experiments in Section [3.4.2] This comparison helps explore the trade-offs between
concentrating on single accents during data collection and focusing on gathering more
diverse data. The goal is to ensure that the trained models are robust and capable of
handling a variety of accents effectively.

3.4.2 Accent-Specific Experiments

Similarly to combined experiments from section [3.4.1] for the accent-specific experi-
ments and exploring the transferability of learning between accents, we prepare the data
into the correct format for training and evaluating. The VoxPopuli dataset is split into
a dataset dictionary by available accents. Each accent is further processed to extract
8000 words into the accent’s training set and the rest into the test set. As described in
the section above, the data is also sorted to prioritise the samples containing the closest
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number of words to the average no-of-words. This ensures that the training data does
not contain too many very short samples containing only a few words or too long that
they take up space and reduce sample diversity in the dataset.

After creating train-test splits for each accent, we fine-tune the baseline Wav2Vec2
model, which has been pre-trained on 960 hours of Librispeech data, using the training
set specific to each accent. We then evaluate the fine-tuned model across all accents.
For the selected training accent, we use only the test set, while for the other accents,
we utilise all available data. This approach ensures that the evaluation data has never
been seen by the model before. Since the training on each accent relies solely on that
accent’s training set, we can use the train and test sets of other accents without issues,
as these sets are not presented to the model during fine-tuning.

We hypothesise that the most pronounced improvements are expected on the training
accent’s test data. We further hypothesise that speech from speakers with similar native
languages, such as Czech-Polish-Slovak, would likely show more improvement in each
other’s speech than they would with other accents due to the phonetic and linguistic
similarity of these languages and the English accents of their speakers [Slamova, [2018].

The obtained results should preferably be valuable in determining the feasibility of
cross-accent learning of ASR models with fine-tuning on some accented speech. This
can be useful in numerous ways, including but not limited to guiding data practitioners
in collecting and gathering data, leveraging high-resource accents for improving low-
resource accented speech recognition, and potentially further investigating similarities
between accents and speech from people with different accents.

One concern with this approach is that the model adapts to the domain of speech instead
of to the accents, in this case, monologues in the European Parliament. We address this
concern by fine-tuning the model on native English speech, using a similar processing
and train-test split as other experiments. We hypothesise that if the fine-tuning causes
the model to adapt to the speech domain instead of the accent, the model fine-tuned
with native English speech will improve the performance across all accents, similar to
other experiments with different accented training data. If the model learns the accent
distinctions instead, native English fine-tuning will not cause significant improvements.

3.4.3 Accent-Agnostic Experiments

The above two experiments and the performance improvements we obtain rely on an
assumption: the native language label allocated to each sample correctly represents the
accent of the speaker in that sample. This, however, is not always true. Only taking the
native language of a speaker into account when determining their accent ignores many
other factors, such as education level and personal background of the person [Sanabria
et al., 2023]]. The experiments in this section aim to address this issue.

To eliminate label bias, we aim to look at the features of the audio samples alone
and categorise them accordingly. This approach tries to abstract the accent classes
and cluster samples according to their similarity rather than relying on labels like the
speakers’ native languages, which lack granularity in representing the speakers’ access.
In essence, this is similar to accent recognition, but instead of evaluating the success
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Figure 3.2: Elbow plot for selecting the number of clusters for K-Means.

of the clustering by looking at whether it correctly classifies samples, we measure it
through overall improvements to word error rates.

For this, we look into two ways of extracting features or identifying computational
representations of the audio samples: Mel-Frequency Cepstrum Coefficients (MFCC),
and Wav2Vec2 audio embeddings. Singh et al.|[2020] conducts an experiment in order
to find the best performing feature extraction method among the ones mentioned in
[2.4] and MFCCs yield the best performing model trained. Thus we choose MFCCs
to cluster samples into unnamed groups. Wav2Vec2 embeddings can also be used for
various tasks [Pepino et al., [2021]].

Principal component analysis (PCA) is a method to reduce dimensionality of a vector
while retaining as much information as possible. It achieves this by transforming
original variables into new variables called principal components [Wold et al., [ 1987].
As the data we obtain from MFCC extraction and Wav2Vec2 embeddings are highly
dimensional, we perform PCA on the results to collate the results into unnamed groups.
As there were some outlier samples in the dataset that had their own tiny clusters at the
far peripheries of the components, some filtering on the data was done and all samples
containing less than 5 words were removed.

We then reiterate the process of gathering train and test splits in these clusters. We
hypothesise that relatively similar accents will be grouped together as the speech features
are used for clustering. Thus, the fine-tuned models will improve the test set of their
cluster the most.

Figure |3.2| displays the elbow curve for the selection of k in K-Means clustering. There
is no immediately obvious selection, as the inertia seems to go down at a somewhat
steady rate, but we select 4 clusters as it is the most feasible option. We then create four
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different train-test splits for each cluster and run a comprehensive evaluation of model
performance after fine-tuning for all clusters similar to the ones explained in section
3.4.2

3.4.4 Impact of Language Models

In this section, we investigate if the word error rate reduction achieved by fine-tuning is
comparable or better than improvements due to language models on accented speech.
Many contemporary ASR systems have language models as part of their pipeline. As
we have looked into improvements on the acoustic model performance in previous
experiments, this raises the question: Are such improvements redundant if the language
models also improve the model performance? Does the baseline Wav2Vec2 model’s
performance increase significantly enough to make the improvements from our previous
experiments negligible?

One of the common language models used in ASR systems is KenLM n-grams due to
its indexing and searching for terms more efficiently than traditional language models.
This makes it ideal for use in ASR systems [Heafield, 2011].

The patrickvonplaten/wav2vec2-base-960h-4-gram model from the Hugging-
Face website is used for these experiments. This model is identical to the Facebook’s
baseline Wav2Vec2 960h model, but it is augmented with a Librispeech 4-gram model
on top from OpenSLR’s website. Since the acoustic and language models are not con-
nected from the pre-training phase, this is a shallow fusion language model [Gllcehre
et al., [2015]].

The evaluation has been done manually for these, going over samples one by one,
calculating each sample’s WER, then calculating the average of WERs for all accents
as the specific model processor used (Wav2Vec2ProcessorWithLM) cannot be used in
HuggingFace’s Trainer API, thus making it impossible to use the Trainer API’s evaluate
function which was used in all other experiments. This might impact the overall results
slightly, but we assume the difference would be negligible.

3.4.5 Cross-domain evaluation

In the first four experiments, which evaluated the word error rate performance improve-
ments in the VoxPopuli dataset, we looked into how generalisable these improvements
are when the speech data is changed. The VoxPopuli dataset, as mentioned in section
[2.3.1] contains speeches from the European Parliament event recordings, likely con-
ducted by experienced orators to an audience and intended as monologues. This is
not the usual or common speech that many ASR systems are used for, such as speech
recognition in more casual contexts or for human-machine interaction. Therefore, the
difference between the speech data in VoxPopuli and many other use cases for ASR
systems can be significantly different.

After investigating in-domain improvements on VoxPopuli, we investigate how well the
performance improvements compare when the fine-tuned models are presented with
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speech data in a different domain and how well the improvements generalise across
different domains.

For this experiment, we use the EdAcc [Sanabria et al., 2023]] dataset, which is a
collection of snippets from phone call conversations between various individuals who
already know each other. Therefore, the register is more casual, the tone is more
conversational, and the educational and personal backgrounds of individuals are more
diverse. The dataset has more information about the speakers’ backgrounds as well, but
we only take into account the marked raw accent. There are a wide variety of accents,
but we select a subset of them for this evaluation. The accents chosen are present in
the VoxPopuli dataset (Italian, French, German, etc.), or they are possibly similar to
some of the native languages present in the VoxPopuli dataset (Brazilian, Bulgarian,
Catalan) or distinctly different from anything seen in the VoxPopuli dataset (Chinese,
Egyptian). This provides decent coverage of different accents. Furthermore, there are
many short samples in the EdAcc dataset containing less than five words in total. We
discard those from our training and evaluation processes. These very short samples
disproportionately negatively impact the dataset evaluation. The final practical point
is that the EdAcc dataset is sampled at 32 kHz, whereas the model used, Wav2Vec2,
can only take audio input sampled at 16 kHz. To make the input formats match, we
resample the EdAcc samples using the librosa library in Python.

We ran these cross-domain experiments twice, once with a fine-tuning train set con-
taining 8k words and another using 24k words. The second set of experiments with
more data serves multiple purposes. It checks if the fine-tuned model is overfitting to
the training data; it provides more insight into how cross-domain learning could work
with looser resource constraints (more data) and allows us to check how the model’s
performance scales with more data across domains.

3.5 Evaluation

The main evaluation metric for models used is word error rate (WER). Although there
are different ways of evaluating the performance of ASR systems, such as phoneme
error rate or character error rate, word error rate (WER) is the most commonly used one
[Yu and Deng, 2016].

Another main characteristic of our evaluation and interpretation of the results throughout
the results section is that instead of focusing on raw WER values for accents and
experiments, we look into the improvements relative to the baseline WERs. We will
report the raw ASR values at some points, too, but if they are not needed to demonstrate
a point, I’ll put them in the appendix and refer to them there. The main focus of the
research here is the improvements and their transferability across accents or domains.

The averages across the dataset are calculated by summing performances or improve-
ments of all accents and dividing by the number of accents. This gives equal weight
even though the test set sample sizes may be different across samples. We do this in
order to calculate improvements across accents overall instead of the data weighting
influencing the reporting of our results (for example, if the performance of French-
accented English improves significantly after fine-tuning while other accents do not
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Accent ‘ Count Length Mean Median S.D. Max. Mins
Dutch 57 1222 21 17 15 64 7
German 41 1313 32 25 23 99 8
Brazilian 58 1882 32 22 30 134 11
Romanian 94 2127 23 17 18 102 13
Bulgarian 125 3115 25 11 42 239 19
French 83 3379 41 20 51 258 21
European 156 4227 27 18 27 166 26
Chinese 340 6116 18 12 19 171 38
Catalan 242 7804 32 19 36 202 48
Egyptian 282 9252 33 24 30 200 57
East European 525 9518 18 14 15 164 59
Lithuanian 406 9556 24 16 22 207 59
English 571 11722 21 14 19 152 73
Spanish 673 14938 22 15 21 161 93
Italian 458 17318 38 21 48 395 108

Table 3.2: Overview of the EdAcc dataset. Excluding samples containing shorter than 4
words and duplicate values.

show improvement, and if French-accented data is predominant in the test set, this does
not affect the performance reporting across all accents.) For accent agnostic setup, we
report improvements per cluster, treating each cluster like an accent. In these cases each
accent or cluster has varying amounts of data, but mostly enough data to assume that
it can generalise further. By treating each accent or cluster equally, we aim to get an
overview of accents and improvements to them instead of getting bogged down with
differences in the amount of data in each (as most of them have substantial data for
testing as well, maybe excepting the lowest few native languages).
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Results

4.1 Fine-tuning on a mix of different accents

For the first experiment, we overview the accent-specific improvements gained from
the experiments outlined in section [3.4.1] The raw baseline WERs and the fine-tuned
model’s WER values are shown in the table 4.2] We present the relative improvements
from the baseline in figure

The word error rates for different accents using the baseline model range from 0.235 for
native English speech to 0.384 for Finnish-accented English. This means that, at best,
the ASR system gets over one out of every five words incorrectly, closer to one in every
three words for most foreign-accented speech. German- and Dutch-accented English
are the best-performing accents apart from native English speech and the only foreign
accents with a word error rate below 30

We observed the best improvements when we provided all 8000 words to the model in
the training data. The limited amount of data may be a significant constraining factor,
thus making every bit of extra data available crucial for the model’s learning. This
reduces the WER across accents to between 0.198-0.291, with each accent’s average
accuracy improving by almost 26%. Not every accent improves equally, though; some
accents improved by over 30% like Czech, Finnish, or French-accented English, whereas
some only 20% or less, like Italian, Spanish, Dutch-accented, or native English speech.
This is partly due to the already relatively better performance of the baseline model
in some accents (such as Dutch-accented and native English speech) or some accents

Setup WER A
No Validation 25.98
75-25 Train-Val Split ~ 22.81
KFolds 24.89

Table 4.1: Average improvements across accents from the baseline by each method (in
%)

23
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Accent Baseline ‘ No Val. Holdout KFolds

Czech 0.354 0.236 0.248 0.246
German 0.276 0.209 0.220 0.215
Spanish 0.360 0.291 0.298 0.293
Estonian 0.330 0.235 0.248 0.238
Finnish 0.384 0.261 0.268 0.267
French 0.350 0.239 0.248 0.245

Croatian 0.322 0.249 0.265 0.252
Hungarian  0.319 0.221 0.230 0.228

Italian 0.313 0.260 0.268 0.263
Lithuanian  0.359 0.256 0.270 0.260
Dutch 0.256 0.199 0.210 0.204
Polish 0.358 0.256 0.268 0.263
Romanian 0.319 0.222 0.234 0.227
Slovak 0.318 0.230 0.239 0.234
Slovenian 0.373 0.290 0.297 0.268
English 0.235 0.198 0.204 0.201

Table 4.2: Word Error Rates of experiments on the combined accents database.

possibly being more challenging to improve in general, like with Spanish and Italian,
which have high WERs when evaluated with the baseline model. The improvements are
not as significant as they are with other accents. We investigate this further by looking
into cross-accent improvements for all accents, which may shed further light on the
disparities between improvements in different accents.

KFolds experiments were run to check the impact of initialisation sets between four
possible iterations of the 75-25 split. By averaging the performance of four training runs,
we look at a more representative result accounting for potential differences between
different train-validation splits. Average improvement across accents was 24.89%,
similar to the experiment run with no validation split. The first 75-25 train-validation
split run yielded an average of 22.81% improvements across different accents. This
slight difference between the Holdout run and KFolds cross-validation is primarily due
to the way averages were calculated. By assuming each accent has similar or equal
amount of data, some outliers—namely Slovenian, Croatian, and Lithuanian—can
disproportionately affect the overall average. These accents show more pronounced
differences between 75-25 train-validation splits and the KFolds results, as shown in
figure This is most likely due to the fact that these three are the accents with the
smallest sample size of all, and due to our prioritisation of samples containing the closest
number of words to the average. These accents are likely to include more variation in
the training dataset than other accents where the sample size is larger since more data
would mean most samples in the training data would contain samples of similar lengths.
In contrast, if the sample size is limited, we may run out of average-length samples and
resort to using very long or very short samples in the train-validation split.



Chapter 4. Results 25

WER Change (%)

Czech 33.4 30.0 30.7
German 24.3 20.4 22.2
Spanish - 19.4 17.4 18.8
Estonian 28.7

Finnish 32.1
French 31.7

Croatian 17.9 21.9
S Hungarian 30.9 28.0 28.4
g ltalian - 16.9 14.2 16.0
Lithuanian 28.6 24.9 27.5 -20
Dutch - 22.3 18.0 20.3
Polish
Romanian - 15
Slovak
Slovenian - 22.2 20.4
English - 15.6 13.2 14.3
1 I 1 - 10
No Validation 75-25 Split KFolds

Training Method

Figure 4.1: Improvements to the test set by accent for each training method.

4.2 Exploring cross-accent learning

Our second set of experiments focused on fine-tuning the baseline model using speech
data from single accents. This is a more targeted approach than the first experiment,
which contained a mix of different accents. With this, we look into research questions
2 and 3, explained in section @ The matrix of difference between fine-tuned
performance and the test accent’s baseline WER is shown in figure [4.2] and the relative
change from the baseline in % points is shown in[4.3] The data with WER values can
be found in table[A.4]in appendix [A.T] For all the tables and figures, training accents
are placed on the x axis and test accents on the y axis.

Our hypothesis that each accent’s test set is improved the most by the accent-specific
trained model holds. When we look at how accent-specific, fine-tuned models improve
accents across the board, it is also clear that for most models, the most pronounced im-
provements are to the test set of the accent they were fine-tuned on. Notable exceptions
are German and Dutch-accented English, which increase some other accents more than
they improve their respective accents. However, this is due to the already relatively
high accuracy of these accents with the baseline model, 27.7% and 25.6%, respectively.
When examining the WER values directly (see @), the lowest word error rate for
each fine-tuned model consistently aligns with the test data of the corresponding accent.
Since the same decrease in WER value results in a higher relative change from the
baseline for accents with initially higher baseline WERs, this may appear misleading.
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Difference in WER between baseline and accent-fine-tuned models
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Figure 4.2: Raw WER changes from the baseline values for each accent across fine-
tuned models.

To ensure that the fine-tuning improvements are realised because the model learns the
accentual differences rather than the dataset-specific jargon, we also fetch a training
set from the native-English portion of the VoxPopuli dataset. The native-English fine-
tuned model causes minimal improvements across other accents, even causing the
performance to degrade in some cases. As we hypothesised in section [3.4.2] fine-tuning
improves accents and not necessarily just the model’s ability to deal with the domain
only. The native-English fine-tuned model resulted in by far the lowest improvements in
average, improving the relative performance across accents by only 4%, with the second
lowest overall improvements coming from the model fine-tuned with Dutch-accented
data at 15.8%.

Another interesting pattern visible in both figures and 4.3|1is that the improvements
from fine-tunings are not always symmetric. Some accents, when provided as training
data, improve the overall performance reasonably well, but when other fine-tuned
models are evaluated on the accented data, the performance improves noticeably less.
Table {.3] displays an overview of average improvements accented models yield across
all accents and average improvements from evaluations with different accented models.
While many languages improve other accented speeches, and get improved by models
fine-tuned on other accents by similar amounts, there are some outliers. Spanish
and Italian for example, improve recognition in all accents by about 19.8% and 21%,
respectively. However, other models improve Italian-accented English by only 9% and
Spanish-accented English by only 11.3% on average. Some accents show the opposite
trend, such as Czech and Finnish. Model fine-tuned with Czech-accented data on
average improves performance by 27.4%, but Czech-accented speech is only improved
by 22.2% on average, and similarly, the model fine-tuned with Finnish-accented speech
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Figure 4.3: Train-test matrix for accent-targeted fine-tuning experiments.

improves performance by 28.5% on average across accents, but other models improve
Finnish-accented speech by only 22.7%.

The implications of this disparity could be significant, especially if it reflects a general
trend rather than a specific dataset anomaly. This understanding may be valuable during
the data collection stages. It is particularly important if certain systems need targeted

improvements on specific accents rather than general improvements across multiple
accents.

Lastly, we examine the cross-accent improvements within selected subsets of accents.
These subsets are grouped based on the language families of the speakers’ native
accents: Czech, Slovak, and Polish (West Slavic); German and Dutch (Germanic);
French, Spanish, Italian, and Romanian (Romance); and Finnish and Estonian (Finnic).
Although grouping accents by language families has limitations—such as significant
phonetic and linguistic variation even within the same language families—we use this
grouping as a heuristic tool for exploring patterns in cross-accent learning. It must be
noted that this grouping should not be treated as a definitive linguistic assumption but
rather as a means to organise and analyse the data.

Cross-accent learning after fine-tuning overall is a common theme across all runs to
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Accent Training' Testing?
French 24.23 25.56
Polish 23.10 21.60
Finnish 22.69 27.35
Czech 22.17 28.53

Estonian 21.65 23.37
Hungarian | 21.56 2291

Italian 21.02 8.95

Romanian 20.81 24.76
Slovak 20.39 22.49
Spanish 19.81 11.34
German 19.32 17.97
Dutch 15.81 17.83
English 431 4.71

Table 4.3: Mean improvements to accented sets. ! How much does the model fine-tuned
with this accent improve other accents, 2 On average how much does this accent get
improved by models fine-tuned on other accents.

Language Family ‘ Intra-Family Avg Cross-Family Avg

Slavic 26.87 22.06
Germanic 18.50 16.50
Romance 18.74 22.39
Finnic 28.25 19.66

Table 4.4: Intra-family and cross-family average improvements (in %)

varying extents, often times fine-tuning improving many different accents greatly, both
within its language family and other accents from different language families. The
patterns are hard to distinguish if we look at accents individually. So, we have collated
the average improvements of fine-tuned models within the language family and across
other language families. Table 4.4] presents these results concisely. Slavic, Finnic, and
Germanic-accented English improve one another within the language family more than
they improve accents from other language families, although with Germanic accents,
the difference is relatively small. Romance languages seem to perform worse internally,
but this is mainly due to the asymmetric nature of Spanish and Italian accents when
used as training or testing data. Spanish and Italian accents are useful when provided
as fine-tuning data to the model, but they are not affected by other fine-tuned models
as much. If we exclude Italian and Spanish from the Romance languages group, the
intra-family improvement ratio becomes 27.25%, and the cross-family improvement
ratio becomes 19.23%. This shows a pattern of slightly greater intra-language-family
improvements, significantly more so for some accents, like Finnic and Slavic language
families.
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4.3 Accent Agnostic Setup

The MFCC features and Wav2Vec2 embeddings independent of accent labels did not
yield strong results. WER results from the baseline model and cluster, along with
fine-tuned models for MFCC and Wav2Vec2 clusters, are shown in tables 4.5 and [4.6]
respectively. If our hypothesis held, we could expect each fine-tuned model to perform
the best results in its respective test data. Ideally, this would cause the diagonal values
to be the lowest ones or ones with the greatest amount of relative improvement. This is
not the case, however.

When we look into the WER result from the baseline model for clusters, MFCC clusters
all have similar WER values. This may mean that the feature extraction and the
subsequent grouping resulted in relatively homogenous groups, containing accented
speech from across a wide range of accents. This might have caused all the baseline
WERSs to be similar. This is also a common pattern in the fine-tuned experiments too,
where the relative improvement from the baseline model is about 0.07 WER, a relative
decrease of around 25%. We look into accent labelled composition of the data in[4.6] it
is clear that most of the samples were classified into the 2nd and 3" clusters, and there
is not much clear patterns such as some accents concentrating in certain cluster, which
would likely happen if the features were accurately clustered. This distribution means
the MFCC features, PCA, and K-Means did not yield a representative enough set of
accent-agnostic clusters.

The results from Wav2Vec2 clustering, however, are quite different. They are not as
hypothesised as well, but there are more patterns. Looking at the cluster distribution at
some accents concentrate more on certain clusters. Czech, for example, has 42% of
its samples in the 2" cluster. Italian and Hungarian samples concentrate more on 1
and 2" clusters; Slovak, Slovenian, and Romanian samples are concentrated in the ond
cluster; and Finnish, Estonian, and French accented samples are concentrated in the oth
cluster. This is evident in the baseline WERSs of clusters as well. Clusters O and 1 have

Training Cluster Baseline 0 1 2 3
Cluster 0 0.315 | 0.240 0.234 0.239 0.236
Cluster 1 0.307 | 0.234 0.223 0.232 0.232
Cluster 2 0.316 | 0.236 0.230 0.234 0.232
Cluster 3 0.317 | 0.234 0.227 0.233 0.230

Table 4.5: MFCC clusters

Training Cluster Baseline 0 1 2 3
Cluster 0 0.332 | 0.231 0.274 0.206 0.183
Cluster 1 0.382 | 0.239 0.275 0.210 0.196
Cluster 2 0.273 10242 0.283 0.210 0.190
Cluster 3 0.252 |0.244 0.290 0.213 0.190

Table 4.6: Wav2Vec?2 Clusters
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substantially higher WER values, whereas 2 and 3 have lower than average WER. This
may mean the clustering was successful in gathering similar speech samples together.

The improvements from fine-tuning experiments with Wav2Vec2 embedding clusters
follow a similar pattern to the MFCC feature clusters. The changes are similar in terms
of raw WER reductions from the test set’s baseline WER. This may mean that although
the accent separation process was possibly successful, the data may still be similar
enough that fine-tuned models improve performance across all other clusters similarly,
rather than improving their clusters’ test set results.
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4.3.1 Practical Applicability

The practical motivation for this experiment was to find a middle way between ex-
periments from sections .1} and #.2] Accent-targeted fine-tuning overall improves
performance significantly more, but they are computationally intensive and costly if we
have to have a model ready for each different accent. The fine-tuning on the combined
dataset returns sizeable improvements as well, but not as strongly as the accented ones.
The accent-agnostic approach aimed at bridging the gap by abstracting the accent labels.
If we only had 4 arbitrary accents that grouped samples together according to speech
features, for future use cases, the given input could be classified as well and processed
by the fine-tuned model closest to the specific speech’s features.

Some issues on this matter, such as outliers, can be problematic both during data
processing and when using further data later on. Outlier accent samples can be deemed
far away from all other samples; they may be misclassified and transcribed wrongly.
Another problem is the inherently data-dependent nature of the PCA and clustering.
The clusters may not map well with other datasets or contexts.

4.4 Impact of language models in the pipeline

After implementing the steps described at[3.4.4] our results show that adding a language
model increases the accuracy for all accents, for some accents more substantially
than others. However, the improvements from the language model do not match the
improvements from fine-tuning.

Here, we only examined the impact of a shallow fusion 4-gram KenLM head on top of
the Wav2Vec2. Overall, the language model improves the accuracy between 8% and
22.3%. Some accents, like French and Slavic languages, improve more than others. On
average, the LM improves the accuracy by 14%, while fine-tuning yields a closer to
27% increase. Table 4.8 shows improvements from the baseline in percentage points. A
table of raw WER values in the appendix is also presented in table [A.3

In line with previous findings on language model improvements like [Toshniwal et al.
[2018]], [Kumar and Niranjan|[2024], our model shows that although general language
models are beneficial, a targeted labelled fine-tuning data, even if it is a small one (of
8000 words in our experiment, which corresponds to roughly an hour of speech), can
be significantly more impactful.

4.5 Cross-domain generalisation of learning

Our last batch of experiments delve into the question of generalisation of the fine-tunings
between domains. So far, the experiments and evaluation of improvements were all
run with data from the VoxPopuli dataset. And as mentioned previously, although this
dataset has a wide variety of European English accents, the topic diversity is limited,
the context of the speech samples are all monologues in the European Parliament events,
and the register of speech is relatively more formal than many other use cases where
ASR may be needed. To test the performance of accented speech in a different domain,
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Figure 4.8: Comparison of improvements gained from using a language model on the
acoustic model vs fine-tuning.

we use the EdAcc [Sanabria et al.,[2023]] dataset, which contains speech from phone
conversations between people who know each other. This provides a highly contrasting
dataset with a more casual register and a conversational tone. EdAcc overall has a much
higher average WER for most of the accents with the baseline Wav2Vec2 model, with
many accents having a WER of around 50% or more. This is also quite a contrast and
something to be aware of when looking at results here. Since we report performance
changes relative to the baseline values, the same percentage change in VoxPopuli and
EdAcc can amount to different raw WER changes.

Our evaluation of the cross-domain performance of the fine-tuned models indicates
that there are little or negligible improvements to accented speech in different domains.
The results from fine-tuning the baseline model with VoxPopuli data is shown in figure
|.11] including performance increases to the in-domain VoxPopuli dataset as well as
the cross-domain EdAcc dataset. In-domain improvements to the datasets are at 27%
for VoxPopuli, and 20% for EdAcc datasets when fine-tuned using 8k words.

The default training size used in all the previous experiments interestingly caused the
accuracy to degrade in some accents in the EdAcc dataset, like German and Egyptian
accents; the most improved accent was Brazilian-accented English, which saw a 12.6%
increase in its accuracy with the default setup.

After seeing that the amount of training data that caused significant improvements to
the in-domain data failed to show significant improvements in cross-domain samples,
we decided fine-tune the models again, this time using three times more data, 24k words
in total, to see how much this would improve the performance across accents in the in-
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Accent Baseline ‘ 8k Words 24k Words
Italian 0.391 0.377 0.345
French 0.533 0.518 0.505
German 0.303 0.330 0.300
Brazilian 0.496 0.434 0.405
Romanian 0.633 0.629 0.618
Egyptian 0.384 0.396 0.366
Chinese 0.542 0.534 0.525
Lithuanian 0.533 0.501 0.475
Spanish 0.516 0.516 0.496
Bulgarian 0.567 0.538 0.511
European 0.492 0.483 0.467
Catalan 0.607 0.573 0.541
Dutch 0.537 0.502 0.475
East European  0.470 0.459 0.437

Table 4.7: WERs on EdAcc dataset.

and cross-domain test sets. Overall, more data helps in cross-domain generalisation,
but the improvement stays relatively low compared to in-domain gains. In terms of
improvements to each accent, the accents included in the training data show relatively
high improvements in the cross-domain set, too, although there are exceptions like
Romanian, French, and Spanish, which show minimal improvements in the cross-
domain set.

Lastly, we swap the train and test sets, looking into the transferability of learning
from a more casual and conversational domain to a more formal and monologue-based
domain. The results of this experiment are shown in figure Similarly to before,
we see significant accuracy improvements for the in-domain training set. The highest
improvement is seen in Brazilian-accented English again, although this may potentially
be oversaturated as most of the data for Brazilian-accented English is in the training
data. Thus, the test data for Brazilian-accented English is smaller than many other
accents’ test sets. The cross-domain evaluation of the model fine-tuned on EdAcc
data shows only minimal overall improvements. However, it performs slightly better
than the model fine-tuned on VoxPopuli when tested on EdAcc. This suggests that
models trained on more casual and permissive domains may generalise better to stricter
domains. In contrast, fine-tuning on more specific domains can sometimes negatively
impact performance across accents in different domains.

This is in line with the literature, fine-tuning typically does not transfer across domains
and may lead to performance degradation. We see minimal overall gains between
domains, with some accuracy loss in accented speech, especially when fine-tuning data
is more domain-specific [Paraskevopoulos et al., 2023| Zhou et al.,|[2023]].
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Figure 4.11: Improvements achieved by the model fine-tuned on data from combined
VoxPopuli training set. Figures are percentage increases from the baseline WER values.
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Chapter 5

Discussions

5.1 Limitations

Although the results show a significant potential for improvement in accented speech
recognition and cross-accent transferability of learning, there are still numerous lim-
itations to this study. First and foremost, we only focus on predominantly European
foreign-accented English in our datasets. Using speech from people who learn a domi-
nant variant of English as a second language. This study does not examine any native
English speakers with non-standard accents. These accents can be subtle and easy
to understand for many, like Canadian or some British or American accents that are
similar to the "standardised" ones, but there are also certain regional accents that are
traditionally seen as much harder due to strong divergence from mainstream English
pronunciation rules, regional lexicon and phrases, and unusual grammatical formations
such as Glaswegian, Irish, or Jamaican accents [Alfonso Durban, 2018|]. Additionally,
the dataset we used throughout the paper, VoxPopuli, contains speeches from a limited
set of speakers, many possibly coming from highly educated backgrounds due to their
occupation, position, and nature of the recordings. Although this does not mean they do
not have accents or inherently have better accents, it is a reasonable concern that their
educational background may not be as representative of the general population.

Another limitation of the data was that almost no samples were labelled according to the
genders or age groups of the speakers. Although ASR systems do show biases against
certain demographics [Jahan et al., 2025, Fuckner et al., 2023]], these biases were not
addressed or included in the evaluation of our experiments.

Lastly, the context and domain of the dataset used is a niche one. European Parliament
speeches are all delivered in the format of a monologue. Many of the samples will
likely contain words, phrases, and sentences about political or policy debates. This
domain-specific nature and formal monologue register of the speeches can also be a
limiting factor in the applicability of the results to other domains, contexts, or registers
[Zhou et al., 2023]]. We have attempted to address this and explore cross-domain transfer
of the fine-tuning with the EdAcc dataset, and it has shown this limitation as a potential
factor negatively impacting the cross-domain generalisation.

35



Chapter 5. Discussions 36

5.2 Concerns

There are also numerous concerns this study and its results may cause. Should there
be a generalisable trend with the transfer of learning between similar accents, this can
discourage further research into low-resource accents if there is a closer and easier-
to-gather data accent that is more available to the researchers. Potential propagation
of exclusion of minorities from the research focus by leveraging more common high-
resource accents may be detrimental to the speakers of the accent unintentionally,
causing the accent to receive less attention from the research community. This can
also be disturbing due to historical context, For example, it might make sense to use
Russian-accented English to improve Ukrainian-accented English due to the fact that
they are both eastern Slavic languages with similar lexicon and linguistic qualities, but
the socio-political context could make this use case quite repulsive and unacceptable by
the speakers of these languages.

5.3 Future Work

Our experiments demonstrate considerable improvements to in-domain accented English
speech data through fine-tuning using a pre-trained ASR system. Some improvements
and additions could still be introduced into these experiments to explore different ways
of optimising ASR systems’ performance across accents and domains. Several papers
suggest the introduction of accented data or foreign-language data [Shankar et al., 2018,
Kumar et al., 2023]] in the pre-training stage. This might be a beneficial suggestion to
further explore, especially more so as it can highlight accent-recognition challenges
from an earlier design stage for ASR practitioners.

5.3.1 Accent-Agnostic

Accent-agnostic experiments suffered from inconclusive results in this paper. Although
the improvements achieved in average are similar to the combined and accent-specific
improvements, the speech-cluster methods were too simplistic and possibly due to the
severe data loss during principal component analysis. More sophisticated techniques,
such as the AccentFusion framework [Gu et al.,[2024]] can be good starting points for
future work on leveraging accent similarity for cross-accent learning.

Another way could be to create an accent classifier with self-supervision and, again,
abstract clusters. This classifier could be a multilayer neural network, using the MFCC
features, Wav2Vec2 or Speech2Vec embeddings as input, and categorising speech into
a group, which could then be further used to fine-tune and improve these accented
speeches based on similar samples.

For accent agnostic experiments, more could be done to investigate the concept, with
potentially stronger ways of clustering accents together that take in more information
than what was tested. Another potential way of using this system could be to dynami-
cally allocate more data to the clusters that have worse initial WER to improve their
fine-tuning performance more than clusters that have already ok (relatively) performing
WER.
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5.3.2 Language Model

The language model, incorporated into the neural and transformer-based ASR systems
through deep, shallow, or cold fusion, has shown improvements to the model accuracy
in our experiments and in previous work [Giil¢cehre et al., 2015} Sriram et al., 2017,
Kumar and Niranjan, 2024]. Furthermore, we could look into utilising the power of
neural language models or transformer-based architectures alongside fine-tuning these
models with labelled speech data similarly to Sullivan et al. [2022], |L1u et al. [2024b],
Arisoy et al. [2015]], Toshniwal et al. [2018]]. This could improve our models’ accuracy
beyond the current improvements reported here. While some uses of the large language
model have reported increased accuracy, especially earlier models such as BERT [Chiu
and Chen, 2021]], some other research has reported increased WER [Min and Wang,
2023|], this is another ongoing research area, and could benefit from further work.

5.3.3 Cross-Domain Adaptation

Although some preliminary work on examining the generalisation of this training into a
different domain has been done in the section[4.5] its scale and extent are quite limited.
We also do not implement or offer ways of tackling this problem. There are numerous
studies on how domain generalisation in ASR and in accented speech can be utilised
to address such problems [Zhou et al.| 2022, |Paraskevopoulos et al., 2023} Zhou et al.,
2023|

Various previous work influenced by meta-learning [Finn et al., 2017, L1 et al., 2018,
/hou et al., 2023] have shown promising results in robust, domain-generalisable, and
efficient methods. These can be beneficial in addressing both domain-adaptation in
terms of context, but also accent.

5.4 Final remarks

In conclusion, our experiments demonstrate significant improvements in recognising
accented English speech within the same domain of speech. Even with a limited dataset
of approximately one hour of speech, we achieved substantial gains in performance.
We also explored the trade-offs between fine-tuning the model with a mix of accents
and using a more focused, accent-specific dataset. Our findings indicate that the most
significant improvements in accuracy for some accents occur with accent-targeted
training; however, utilising a combined dataset can also be an effective strategy for
enhancing performance across a variety of accents.

Additionally, we show that fine-tuning has a more pronounced impact on the model’s
accuracy compared to incorporating language models in the processing pipeline. Despite
these strengths, our experiments also highlight a critical issue with domain adaptation
through fine-tuning: models struggle to generalise well across different domains.
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Figure A.1: TODO Elaborate more
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Cluster 0 1 2 3

Split Train Test | Train Test | Train Test | Train Test
Czech 18 76 | 50 133 | 38 291 | 46 311
German 48 178 | 23 149 | 37 302 | 26 300
Spanish 4 42 |16 64 |15 141 | 9 122
Estonian 13 52 |8 32 |7 80 | 13 78
Finnish 28 92 |16 65 |22 173 | 20 166
French 31 140 | 11 61 |28 165 | 37 257
Croatian 10 30 |3 5 4 25 |3 47
Hungarian | 10 47 | 26 119 | 21 222 | 26 198
Italian 2 6 36 111 | 20 116 | 8 53
Lithuanian | 10 23 |9 21 |8 39 |10 57
Dutch 60 179 | 20 117 | 25 299 |43 396
Polish 25 94 | 38 165 | 31 267 | 18 208
Romanian | 5 49 |22 105 | 19 169 | 11 98
Slovak 27 64 |5 26 |14 105 | 19 146
Slovenian | 2 5 6 3 3 25 |0 21

Table A.1: Train-test data splits by accent labels for MFCC-based clusters.

Cluster 0 1 2 3

Split Train Test | Train Test | Train Test | Train Test
Czech 37 153 | 72 329 | 30 185 | 13 144
German 34 230 | 21 214 | 41 249 | 38 236
Spanish 12 92 |8 130 | 20 88 |4 59
Estonian 11 8 |12 70 | 10 46 | 8 41
Finnish 20 184 | 19 73 |26 116 | 21 123
French 34 170 | 24 145 | 34 141 | 15 167
Croatian 4 38 |6 41 |8 21 |2 7
Hungarian | 22 102 | 25 218 | 29 196 | 7 70
Italian 12 45 120 102 | 30 102 | 4 37
Lithuanian | 10 40 |8 24 |4 29 |15 47
Dutch 42 268 | 34 244 | 47 265 | 25 214
Polish 36 203 | 26 203 | 31 213 | 19 115
Romanian | 6 82 |12 81 |29 161 | 10 97
Slovak 12 83 |10 44 | 17 121 | 26 93
Slovenian | 1 13 |2 13 |6 19 |2 9

Table A.2: Train-test data splits by accent labels for Wav2Vec2-based clusters
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Accent | Without LM With LM  Fine-tuned

Czech 0.354 0.325 0.236
German 0.276 0.243 0.209
Spanish 0.360 0.301 0.291
Estonian 0.330 0.292 0.235
Finnish 0.384 0.332 0.261
French 0.350 0.272 0.239
Croatian 0.322 0.289 0.249
Hungarian 0.319 0.291 0.221
Italian 0.313 0.288 0.260
Lithuanian 0.359 0.295 0.256
Dutch 0.256 0.223 0.199
Polish 0.358 0.293 0.256
Romanian 0.319 0.266 0.222
Slovak 0.318 0.258 0.230
Slovenian 0.373 0.314 0.290

Table A.3: Impact of having a language model on the ASR model.
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Baseline Czech German Spanish Estonian Finnish French Hungarian Italian Dutch Polish Romanian Slovak English
Czech 0.354  0.203  0.247 0.266 0.259 0.245 0.243 0.240 0.261 0.264 0.245 0.257 0.241  0.317
German 0.276 ~ 0.221  0.203 0.228 0.220 0.214  0.218 0.222 0.228 0.231 0.225 0.229 0.229  0.275
Spanish 0.360  0.321  0.326 0.272 0.339 0.322  0.306 0.318 0.305 0.332 0.311 0.324 0.318  0.355
Estonian 0.330  0.252  0.257 0.256 0.176 0.243  0.239 0.257 0.257 0.267 0.242 0.258 0.261  0.321
Finnish 0.384  0.267  0.280 0.303 0.268 0.203  0.258 0.275 0.286 0.309 0.263 0.282 0.287  0.346
French 0.350  0.251 0.261 0.260 0.256 0.259 0.219 0.256 0.261 0.272 0.248 0.259 0.260  0.324
Croatian 0322  0.262 0.278 0.276 0.266 0.266  0.257 0.258 0.263 0.271 0.267 0.276 0.257  0.322
Hungarian  0.319  0.233  0.249 0.258 0.247 0.235 0.232 0.216 0.253 0.266 0.240 0.235 0.244  0.289
Italian 0.313  0.288  0.290 0.283 0.291 0.282  0.270 0.287 0.198 0.310 0.285 0.293 0.295 0.334
Lithuanian  0.359  0.278  0.277 0.272 0.263 0.271  0.254 0.274 0.288 0.286 0.261 0.272 0.278  0.349
Dutch 0.256  0.205 0.203 0.209 0.205 0.197  0.203 0.205 0.209 0.197 0.209 0.210 0.217  0.267
Polish 0.358  0.278  0.290 0.279 0.280 0.280  0.275 0.270 0.288 0.296 0.238 0.274 0.275  0.327
Romanian 0.319  0.240  0.250 0.235 0.236 0.239  0.228 0.233 0.246 0.264 0.224 0.201 0.241  0.283
Slovak 0.318  0.233  0.252 0.249 0.247 0.240  0.239 0.241 0.252 0.258 0.235 0.247 0.211  0.302
Slovenian 0.373  0.288  0.302 0.292 0.290 0.298  0.273 0.296 0.296 0.322 0.275 0.271 0.292  0.359
English 0.235 0.221 0.231 0.226 0.226 0.218 0.216 0.227 0.220 0.238 0.218 0.224 0.227  0.219

Table A.4: Accented tests WER values
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Accent Baseline | 8k8e 8kl12e 24kl2e
Italian 0434 | 0476 0462 0.437
French 0.601 | 0.591 0.592 0.581
German 0.403 | 0425 0419 0.383
Brazilian 0.536 | 0.484 0.481 0.467
Romanian 0.735 | 0.739 0.738 0.715
Egyptian 0.421 | 0430 0419 0.402
Chinese 0.621 | 0.670 0.658 0.631
Lithuanian 0.559 |0.552 0.539 0.509
Spanish 0.568 | 0.581 0.574 0.556
Catalan 0.641 | 0.626 0.614 0.566
Bulgarian 0.664 | 0.655 0.638 0.606
European 0.562 | 0.563 0.560 0.541
Dutch 0.629 | 0.608 0.590 0.564
Eastern European  0.527 | 0.544 0.530 0.506

Table A.5: WERs on EdAcc dataset with various configurations of training data and
length (8 or 24 thousand words, and 8 or 12 epochs relatively.)
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