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Abstract

Website Fingerprinting (WF) attacks are causing significant concern about the users’
confidentiality and privacy. Adversaries eavesdrop on victims and perform traffic analy-
sis by passively collecting network features and using supervised learning techniques
to reveal their web browsing behaviour, even if the victim is browsing in encrypted
tunnels. In this paper, further investigations are done on the Bayes error lower bound
estimation technique using deep learning attacks to empirically approximate the Bayes
error lower bound as closely as possible, providing a mathematically proven metric for
evaluating website fingerprinting techniques. Additionally, a detailed analysis of the
bounds on HTTP/2 and HTTP/3 traffic is provided using different WF attacks using the
Bayes error lower bound technique.
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Chapter 1

Introduction

1.1 Motivation

By enabling adversaries to deduce visited websites from encrypted traffic patterns,
website fingerprinting (WF) attacks present serious privacy implications. Quantifying
the actual difficulty of these attacks using the Bayes error rate—the theoretical minimum
error any classifier can achieve—is an important objective in WF research. Practical
classifiers, on the other hand, only offer empirical error rates, which can differ much
from the Bayes error.

Assessing the effectiveness of defenses and the actual risk presented by WF attacks
requires an understanding of and commitment to closing this gap. This project’s method
uses triplet fingerprinting[11] to extract embeddings that more closely resemble the real
Bayes error, building on Cherubin’s Bayes upper bound estimation[4].

In this project, I attempt to assess how contemporary traffic protocols and defenses affect
WF attack performance by accurately approximating the Bayes error. This study sheds
light on whether embedding-based techniques—such as triplet fingerprinting—offer
more reliable Bayes error bound estimation assessments than conventional feature-based
techniques.

In order to evaluate the security of HTTP/2 and HTTP/3 protocols as effectively as pos-
sible, the main goal of this research is to close the gap between empirically determined
bounds and the real Bayes error lower bound in website fingerprinting attacks. The
gap represents the difference between the theoretical minimum classification error as
determined by the Bayes decision rule and actual, data-driven estimates of classifier
performance. We can better understand how closely existing WF classifiers approach
the theoretical limit under these protocols by reducing this disparity.

1.2 Aims and contribusions

By using deep learning techniques to improve Cherubin’s estimation framework [4]
and examine its applicability to modern transport protocols like QUIC and TCP, this
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project’s main goal is to close the gap between empirical error rates and the theoretical
Bayes error lower bound in website fingerprinting (WF) attacks. The purpose of
reducing this "bound gap” is to develop a better evaluation metric that is theoretically
independent of classifiers and measures the intrinsic ability of encrypted traffic patterns
to be distinguished under contemporary protocols such as HTTP/2 and HTTP/3.

1.2.1 Novel Contributions
This paper makes the following contributions to WF research:

* Deep Metric Learning for Bayes Approximation: This project is a novel ap-
plication of Triplet Fingerprinting (TF)[11], a deep metric learning technique, to
generate embeddings that better approximate the theoretical Bayes error lower
bound[4]. This framework provides a strong, classifier-agnostic metric for as-
sessing WF defenses, bridging the gap between theoretical security limits and
empirical classifier performance.

* Comprehensive Protocol Vulnerability Assessment: Used Bayes error bounds
to perform a methodical comparison of HTTP/2 and HTTP/3 security guarantees.
Fundamental trade-offs in protocol design were uncovered by this analysis, such
as TCP’s vulnerability to full-trace analysis and QUIC’s vulnerability to early-
stage attacks.

* Empirical Validation of Deep Learning’s Theoretical Limits: Utilizing Cheru-
bin’s bounds in deep learning adversary settings, it has shown that models based
on the embeddings approach the optimal alignment with theoretical limitations
(<£3.5% gap).

1.2.2 Key Findings

The experimental analysis yielded the following quantitative insights:

* Deep Learning Superiority: With 100 instances per class, Triplet Fingerprinting
achieved a minimum gap of 0.38% for QUIC and 0.28% for TCP, reducing the
gap between empirical error and Bayes bounds by 20-40% when compared to
feature-based k-NN.

* Protocol-Specific Risks: At 20 percent page loading, QUIC’s handshake meta-
data allowed for a 15 percent lower attack error rate than HTTP/2 (TF: 1.8
percent error for QUIC vs. For TCP, 2.0 percent). In contrast to TCP (0.6 per-
cent), QUIC’s full-trace error rate (1.1 percent) was elevated by its later-stage
redundancy.

 Data Efficiency: With >50 training instances, TF stabilized embeddings (std <
0.2%), demonstrating deep learning’s ability to generalize from limited data—a
challenge for feature-based methods like k-NN.

* Bound Tightness: Using > 50 training instances, TF stabilized embeddings
with < 0.2% standard deviation improved on k-NN’s 5-20% higher variance in
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low-data regimes. TF demonstrated rapid convergence with an accuracy of 85%
on QUIC after just 10 instances.

* Bound Tightness: Bayes bounds converged to < 1% error for both protocols at
full trace lengths, with HTTP/2 bounds being tighter (0.15% at 100% loading vs.
QUIC’s 0.3%).

* Threshold-Agnostic Reliability: The robustness of TF against threshold ma-
nipulation was validated by the near-perfect separability it maintained across
protocols (ROC-AUC > 0.98, PR-AUC > 0.97) even with partial traces.

1.3 Project overview

The paper begins with a general introduction in Chapter 2 to the required preliminaries
regarding website fingerprinting, HTTP/2 and HTTP/3 protocols, Bayes Error, my
previous work, deep learning-based attacks, and a formulation to bound them following
Cherubin’s derivation[4].

Chapter 3 describes the experimental methodology, including the data collection process,
local server hosting procedure, modification of the existing code base to accommodate
HTTP/2 and HTTP/3 traffic, and evaluation methods.

Chapter 4 provides the analysis and further evaluation of the approximated Bayes error
lower bound on HTTP/2 and HTTP/3 using deep learning methods in a closed-world
model. Chapter 5 finishes the paper with a general summary of the work done, findings,
discussions regarding the experimental limitations, potential future work, and concludes
the paper.
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Preliminaries

2.1 Website Fingerprinting

Even though important private information like IP addresses and data payloads is
somewhat shielded in encrypted network traffic, information can still be gleaned from
the traffic’s patterns, behaviors, and metadata. An attacker may utilize this information
to train a classifier using a chosen supervised learning algorithm in the event of a Website
Fingerprinting (WF) attack. This would allow the adversary to identify network traffic
destinations and, in turn, disclose the victim’s browsing habits. Because it only uses the
traffic itself and has no connection to the actual messages or data being transferred, this
type of attack gets beyond encryption systems.

Currently, there exists a variety of ML (Machine Learning) based attacking techniques
focusing on the extraction of unique and insightful features of the traffic traces of a
specific website to identify said website using a trained classifier, bypassing encryption.
These features can be the number of incoming and outgoing packets, unique packet sizes,
the time interval between sent packets, and more. Additionally, in ML-based attacking
scenarios, each traffic trace is associated with a label that indicates the corresponding
website, and the adversary is aware of which traffic trace corresponds to which website.

For example, LL attacks [9] employ the naive Bayes (NB) classifier for classification
and count the number of packets with a specific size and direction for every feasible
size and direction up to the maximum transmission unit. CUMUL attacks [10] use a
Support Vector Machine (SVM) classifier for classification, and their feature set contains
information on packet sequences, such as the total number of incoming and outgoing
packets and the cumulative sum of packet sizes. The success of a WF attack is therefore
significantly influenced by how revealing a feature set is and how well-protected the
feature set is by the defender under various transport-layer protocols. Following training,
the adversary can extract features from the new traces to classify a victim’s network
traffic, and the victim’s generated traffic trace is handled as an unlabeled dataset.

To assess the performance of a WF attack, one important assumption is whether to
employ an open-world or closed-world model.

With the closed-world model [4], the adversary has the greatest advantage and is

4
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typically employed to stress the deployed WF defence or to give the adversary an
idealized environment. The adversary has full knowledge of all accessible websites;
hence, all websites a user may visit are monitored and identifying which monitored
website the user visited is the sole task. Typically, it is assumed that the probability of a
user visiting any one website in the set of all websites W is 1 /n where n = |W|.

In contrast, in the open-world model [4], the adversary is only aware of a subset
of all websites, hence, not all websites are monitored. The adversary’s objective is
to ascertain whether and which of the monitored websites are being accessed. The
collection of unmonitored websites is shown in order to simulate the user accessing
random unmonitored websites. The popularity of the websites is the determining factor
of the probability of a website being visited. This model simulates real-world scenarios
and evaluates the capability of a WF attack in authentic settings.

It is most reasonable to assume the closed-world model in the use case of this paper
since maximizing the WF attacks’ performance is important for obtaining the Bayes
error lower bounds, as it’s calculated using the empirical error rate of NN classifiers [3].
Further explanations are given in sections 2.5 and 2.8.

2.2 HTTP/2 and HTTP/3

Transport-layer protocols that are most commonly known are TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol). For applications that need
dependable communication, TCP—the default transport protocol in HTTP/2—is rec-
ommended because of its strong error detection and correction features. Head-of-line
blocking and high overhead are among its performance issues, though [13]. In HTTP/3,
the IETF substituted QUIC (Quick UDP Internet Connections) for TCP as the transport
protocol in order to solve these problems. QUIC replaces both TLS and TCP in key
functions like encryption, multistreaming, congestion control, and dependable data
delivery in its UDP-based operation [13]. Through the mitigation of TCP performance
bottlenecks, this protocol typically achieves transmission efficiency comparable to or
better than HTTPS [13].

Even with these improvements, QUIC still has flaws. Researchers have thoroughly
examined QUIC’s defenses because it replaces the TLS + TCP stack, and HTTP/2 is
already vulnerable to website fingerprinting (WF) attacks. Results indicate that QUIC
may be more vulnerable to WF attacks than HTTP/2 because, when QUIC is used,
features that provide less information in HTTP/2 become of greater significance in
improving attack accuracy. QUIC’s shorter handshakes focus metadata in the first traffic
[13]. Hence, QUIC is more susceptible to WF attacks because of the higher density of
distinguishable features early in the transmission, which facilitates the extraction of
revealing information by adversaries.
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2.3 Evolution of Website Fingerprinting Features

Without access to the payload data, the need to analyze encrypted network traffic and
determine which websites were visited gave rise to the field of website fingerprinting.
Manually created features derived from unprocessed traffic traces were the main focus
of early research in this field. The basic behavioral features of network flows were
captured by pioneering studies using fundamental statistical measures like packet size
distributions, inter-arrival times, and directional burst patterns [9]. These characteristics,
despite their simplicity, set the stage for identifying the unique “fingerprints” that
various websites leave in network traffic. Alongside the advancement of website
fingerprinting methods, feature engineering as a whole underwent substantial change.
Domain-specific features that directly captured observable characteristics of network
communications were initially prioritized. As machine learning methods advanced
over time, researchers started utilizing more complex statistical descriptors and even
automated feature extraction techniques.

A key advantage of well-engineered features is their ability to denoise raw traces
and enhance data representation in the feature space. Raw network data is often
high-dimensional and contaminated with irrelevant fluctuations and noise, which can
obscure the underlying patterns critical for accurate website classification. By applying
feature extraction techniques, engineers transform these raw traces into a reduced, more
meaningful representation. This process filters out non-discriminative noise while
preserving the essential characteristics of the traffic, such as temporal correlations
and burst patterns. As a result, the feature space becomes more structured, enabling
classifiers to operate more efficiently and with greater accuracy, even in the presence of
encryption and other obfuscation measures.

2.4 Threat model

Figure 2.1 illustrates the threat model for a website fingerprinting adversary operating
within a closed-world model. During the training phase, the attacker passively captures
encrypted traffic generated by a victim browsing a selection of local web pages. At the
ISP or LAN level, an ML-based adversary uses the collected data to create labeled web-
site fingerprints corresponding to each monitored page, whereas a DL-based adversary
utilizes the entire traffic trace for model training.

Since the fingerprinting domain is based on a closed-world model, every website visited
by the victim is part of the monitored set. The attack is initiated by passively capturing
fresh encrypted traffic from the victim’s local visits. For ML-based attacks, the model
processes pre-extracted website fingerprints from this new traffic to predict the visited
page, while DL-based attacks analyze the full traffic trace directly.

2.5 Significance of the Bayes error

The majority of previous literature evaluated the WF attack effectiveness by the accuracy
against state-of-the-art defences for closed-world scenarios. Although these metrics
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Figure 2.1: Threat model of the website fingerprinting process

offered clear quantitative insight, many contended that precision alone is insufficient
for evaluating defences [8].

A strong WF defence against a poorly trained classifier would still result in low finger-
printing accuracy because the attack’s accuracy depends on the classifier. For instance,
if a classifier reduces the set of likely web pages that correspond to a fingerprint by
mistake because of noise or confusion but is unable to accurately identify the correct
page, it is not because the fingerprint does not provide enough information; rather, it is
the result of a subpar classifier. This also holds true for a poorly selected feature set for
an effective classifier; the low accuracy that results is not a good indicator of the feature
set or the classifier’s true efficacy.

A different way to evaluate the performance of WF attacks is using the Bayes error
which provides a mathematical error lower bound for a WF attack technique [4], where
the overlapping region of the distributions between each of the gathered attributes and
their frequencies across the intercepted data for every web page is used to calculate
the ”smallest error achievable.” This is a stronger indicator of the maximum potential
of an attacking technique and is theoretically classifier-independent. One important
note is that theoretically, a true Bayes classifier, and hence its Bayes error, should
be feature-independent too (a classifier trained on any different form of information
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Figure 2.2: An intuitive example distribution for feature F and its frequency

obtained from the original data shouldn’t have improved accuracy over the original)
[4]. This does not hold true empirically, and a more revealing feature set will have a
significant impact on accuracy, however, the lower bounds of the true Bayes error can
be approximated mathematically. This is further explained in section 2.8.

Figure 2.2 is a rudimentary example of Bayes error modified from my previous year’s
work:

* Assume the adversary can observe only a single feature, F.
* Consider a scenario with only two web pages.

* The relationship between feature F' and its frequency for each web page can be
modeled as a probability distribution.

» The Bayes classifier predicts the destination web page based on which page has
the higher frequency at a given value of F.

* For instance, if F = 20, the Bayes classifier would predict web page 1 if it has a
higher frequency at that value.

* The Bayes error represents the minimum probability of misclassification, corre-
sponding to the area where the classifier’s prediction is incorrect.

* In practice, this process generalizes to any number of web pages and features,
with the Bayes error calculated from the observed data.

With this knowledge, it is evident that the empirical attack error would always be above
the theoretical Bayes error, which itself would always be above the estimated Bayes
error based on empirical data. This provides a minimal performance guarantee or an
expected performance metric for any WF attack, which is a much better indicator than
accuracy itself.
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2.6 Previous work

In my previous year’s work, I investigated the WF attack performance against unde-
fended and fixed-rate defended traffic traces of HTTP/2 and HTTP/3. I used the WCN+
dataset to replicate Cherubin’s results and validate his conclusions [4], after which I
experimented with my personally collected dataset in terms of attack failure rates (error
rates) and Bayes lower bounds.

While I found that attacks generally performed marginally to significantly better on
HTTP/3 in various scenarios, it also intrigued me as I saw the distances between the
empirical error rate and estimated Bayes error for various WF attacks are quite far.
From my previous year’s experiment results as shown in Figure 2.3, while k-FP [6]
performed extremely close to the estimated Bayes error lower bound, often within the
standard deviation of the bound, it is apparent that for k-NN [3] and CUMUL [10] there
exists much performance to be desired. The distance between the empirical error rate
and the estimated bound can be as high as five to ten times the standard deviation of the
estimated bound.

No Defense No Defense
1.0 1.0

— Attack error —— CUMUL — Attack error —— CUMUL
----- Error lower bound —— k-NN «++=+ Error lower bound —— kNN
—— kFP —— kFP

0.8 4 0.8 4

0.6 4 0.6 4

Error
Error
.

0.4

0.2

0.0

T T T T T T T T 0.0 T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Training Example Size Training Example Size

(a) HTTP/2 (b) HTTP/3

Figure 2.3: Lower bound R* and attack error rate R4 on collected HTTP/2 and HTTP/3
traces (Closed-world) with respect to varying sizes of training examples Z;,4,. (Lower
bound markers are slightly offset to better present the standard deviations.)

One thought is that we can attribute this phenomenon to the limitations of experiments
I mentioned at the conclusion of last year’s work. However, as an extension to last
year’s experiment, I attempt to better approximate the Bayes error using deep learning
methods and reduce the distance between the real and the estimated Bayes error as
much as possible. It would provide a more accurate evaluation for all WF attacks,
regardless of the classifier, whether it’s ML-based or DL-based (deep learning based),
or the feature set (if distances between approximated lower bound and empirical error
rates of attacks are sufficiently minimal).

A critical observation from these experiments is that lower-bound estimations derived
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from different attacks (e.g., k-FP, CUMUL) do not fully overlap. For instance, while the
CUMUL attack’s empirical error rate is bounded by its estimated Bayes error, CUMUL’s
range does not intersect with the range between the bound and the empirical error rate
of k-FP (Figure 2.3). This raises a theoretical concern: if all bounds approximate
the same true Bayes error, why don’t their ranges overlap? The resolution lies in
Cherubin’s assumption that bounds converge to the true Bayes error only as the number
of training instances per class n — oo[4]. In practice, finite datasets introduce variance
in feature representation and posterior estimation, leading to non-overlapping bounds.
However, empirical results (Figure 2.3) demonstrate that as training samples increase,
bounds progressively tighten and converge toward a common limit. This suggests that
with sufficient data, discrepancies between bounds diminish, validating their role as
approximations of a singular theoretical limit. Thus, non-overlapping bounds in small-
sample regimes reflect estimation noise rather than multiple Bayes errors, reinforcing
the need for large-scale datasets to stabilize bounds.

With the above considerations, my previous work has several shortfalls:

» The lack of different types of WF attacks, especially deep-learning-based WF
attacks, doesn’t rely upon feature-extracting algorithms;

* A relatively small data set that causes the estimations to be less precise and lower
bounds estimations to be looser;

While the Bayes error lower bound estimations bound the actual theoretical Bayes
error lower bound, the distance between them is unknown, and the range is fairly
wide;

The lack of hyperparameter tuning, the conducted experiment only used the
default values.

Hence, the objectives of this paper are to investigate the extent how close the real bounds
can be approximated with:

* A deep-learning-based state-of-the-art WF attack such as Triplet Fingerprinting[11],
using its existing tuned hyperparameters, which is introduced in section 2.7;

* A larger dataset with 10000 unique traffic traces over 100 websites, five times last
year’s 2000;

* Variance considerations of Triplet Fingerprinting to further reduce uncertainty.

2.7 Previous deep learning attacks & Triplet Fingerprint-
ing

Since DL-based attack techniques are used, this section details the differences and

unique traits employed by various well-known DL-based attacks and specifically Triplet

Fingerprinting which is used for the purpose of this dissertation. Firstly, The key
differences between ML and DL-based attacks are as follows:
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* Feature Extraction: ML-based attacks require manual feature extraction, while
DL-based attacks automatically learn features from raw traffic data.

* Performance and Accuracy: DL-based attacks tend to outperform ML-based
attacks, especially in complex, noisy environments, due to their ability to capture
deeper trends in the data.

* Computational Resources: DL-based attacks, especially those using CNNs or
more advanced architectures like Var-CNN, require significantly more computa-
tional power for training and inference compared to ML-based models.

* Scalability: DL-based approaches can scale better with larger datasets and more
websites, whereas ML models like k-NN and k-FP may struggle with larger
training sets or more complex feature spaces.

Different from the examples and attacking procedures of ML-based attacks I’ve intro-
duced in section 2.1, DL-based attacks operate slightly differently:

2.7.1 Deep Fingerprinting (DF)

DF [12] is a pioneering deep learning model introduced to enhance website fingerprint-
ing attacks by leveraging the capabilities of Convolutional Neural Networks (CNNs).
The main advantage of DF is that it can operate on raw or minimally preprocessed
traffic data, automatically learning the most discriminative features, which eliminates
the need for manual feature engineering.

CNNs, the main component of DF’s architecture, are effective at identifying patterns
and spatial hierarchies in data. Although CNNs are frequently employed in computer
vision, their architecture can also be applied to the analysis of sequential data, such
as traffic traces. CNNs in DF automatically record global patterns, like the general
behavior of a session, as well as local patterns, like brief packet bursts. DF performs
better than conventional models at identifying websites because of its capacity to capture
multi-scale features.

DF is quite effective in real-world applications since it has demonstrated strong robust-
ness in the presence of noise and variability, such as various browsing behaviors, varied
connection conditions, and multiple open tabs.

2.7.2 Variational Convolutional Neural Network (Var-CNN)

Building on the advantages of DF, Var-CNN [1] (Variational CNN) uses variational
techniques to enhance the model’s generalization across a greater range of traffic
conditions. This technique addresses a major flaw in traditional CNN models by better
capturing the variance and randomness in website traffic. Due to varying browsing
habits, network conditions, and browser-specific behaviors, network traffic naturally
varies. Despite their strength, CNNs in DF may find it difficult to generalize effectively
when there is this kind of variability; This is where Var-CNN shines.

The concepts of variational inference, which are frequently employed in variational
autoencoders, are incorporated into Var-CNN. This method aids the model in capturing
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the variability of traffic traces in addition to the mean patterns. In essence, the model
learns to model the distribution of features across various traffic traces in addition to
learning fixed features for each class (website). This increases the model’s resilience in
situations with noisy or highly fluctuating traffic.

By learning to capture not just fixed patterns but also the variability in traffic, Var-CNN
can generalize better to unseen traffic traces. This makes it more effective in real-world
environments where noise and randomness are common. Additionally, the variational
aspect acts as a form of regularization, preventing the model from overfitting to specific
training data. This allows it to maintain high accuracy even in new conditions or with
websites not seen during training.

2.7.3 Triplet Fingerprinting (TF)

Triplet Fingerprinting (TF)[11] is a specialized website fingerprinting approach that
leverages deep metric learning to produce embeddings from raw traffic traces. This
method extends the capabilities of prior deep learning-based models by focusing on
learning a structured embedding space, where the relative distances between traffic
patterns capture their similarities and differences. Unlike direct classification models
like Deep Fingerprinting (DF) or Variational Convolutional Neural Networks (Var-
CNN), TF produces an embedding that can be used with traditional classifiers like
k-Nearest Neighbors (k-NN) for more flexible and interpretable downstream tasks.

2.7.3.1 Architectural Integration with DF

The convolutional structure of DF serves as the foundation for TF, which reuses its
feature extraction layers while redefining the output layer to generate embeddings
rather than classifications. Through its convolutional layers, TF is able to inherit DF’s
strengths in capturing both local and global traffic patterns thanks to this architectural
choice. Without the need for manual feature engineering, the extracted embeddings
function as compressed representations of raw traffic traces, keeping crucial details
about the observed traffic.

The objective function is where the main distinction is found. TF uses a triplet loss
function, whereas DF uses the cross-entropy loss to directly classify inputs. In the
embedding space, this loss pushes the model to map dissimilar traffic traces farther apart
and similar ones closer together. TF improves generalizability to new traffic patterns
and unseen websites by optimizing for relative distances rather than absolute labels.

2.7.3.2 Triplet Network and Metric Learning in TF

TF adopts a triplet network structure [7], which consists of three parallel CNNs sharing
weights to process three input samples simultaneously:

* Anchor (A): The reference traffic trace.
» Positive (P): A trace from the same class (website) as the anchor.

* Negative (N): A trace from a different class (website) than the anchor.
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The model is trained to minimize the distance between the anchor and the positive while
maximizing the distance between the anchor and the negative. Formally, the triplet loss
L is defined as:

L =max(d(f(A), f(P)) - d(f(A), f(N))+m,0)[7]

where f(-) represents the model’s embedding function, d is the Euclidean distance, and
m is a margin that enforces separation between positive and negative pairs.

The triplet loss method of metric learning makes it possible for the model to identify
intricate patterns in the traffic traces while guaranteeing that comparable samples group
together. This produces an embedding space where semantic similarity between traffic
flows is directly reflected by proximity, which makes the embeddings appropriate for
k-NN classification.

2.7.3.3 Embedding Extraction and k-NN Classifier Usage

The convergence of bounds under large datasets informs the design of deep learning
attacks like TF. Unlike feature-based methods (e.g., k-NN), which rely on handcrafted
features vulnerable to finite-sample biases, TF’s embedding space learns protocol-
agnostic representations that better approximate the true data distribution. In my
experimental setup, raw traffic traces are first processed by the TF model to generate
embeddings. These embeddings are then used to train and evaluate a k-NN classifier.
This setup allows for both:

* General k-NN Classification: Evaluating the performance of embeddings across
arbitrary k values, providing insight into the stability and accuracy of the learned
feature space.

* 1-NN for Bayes Error Estimation: Using 1-NN classifier results to approximate
the Bayes error lower bound using equation 2.4 in section 2.8.2, as it represents
the theoretical minimum classification error for the given distribution of data.

For both local and global traffic structures, the consistency of the embedding space is
evaluated by comparing the results of lower bounds and k values. This method assesses
the degree to which the embedding-based model accurately captures the true Bayes
error in actual traffic situations. More information is explained in Chapter 3.

2.7.3.4 Alignment and Uniformity in Embedding Spaces

A critical aspect of TF’s performance lies in the balance between alignment and unifor-
mity in the embedding space:

* Alignment: Ensures that embeddings of traffic traces from the same class are
closely grouped together. Effective alignment improves classification accuracy
by reducing intra-class variance.

» Uniformity: Ensures that embeddings are evenly spread across the feature space,
minimizing overlaps between different classes. Excessive uniformity can reduce
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the model’s discriminative ability by collapsing embeddings of dissimilar classes
into a shared region.

By bringing together similar samples and pushing apart dissimilar ones, TF’s triplet
loss optimizes for both goals. Overfitting to the training distribution may result from
excessive alignment, while an overemphasis on uniformity may result in the loss of class-
specific information. Sustaining this equilibrium is essential for precise categorization
of both known and unknown traffic patterns.

2.8 Bounds on deep learning-based adversaries

In this section, I provide an alternate formulation of Cherubin’s proof [4], which I find
significantly easier to understand, on the inequality between estimated Bayes error
lower bound, theoretical Bayes error, and empirical error. The original work was only
formulated for ML-based attacks and bounded them; however, by the definition in
Cherubin’s work, the inequality should apply to DL-based attacks as well. Hence, the
following formulations are written to include both ML-based and DL-based adversaries.

2.8.1 Cherubin’s Bound and Bayes Optimal Classifier

Based on the definition given by Cherubin [4], I used the majority of the definitions for
ML attacks on all attacks, as the proof provided by Cherubin wasn’t derived from any
particular classifier or specific mechanics. This means that their performance should
still be bounded by the same Bayes limit that applies to k-NN or k-FP attacks, and my
formulations are sensible mathematically.

The definitions used in this derivation, which is based on materials from “Pattern
Recognition and Machine Learning” by Christopher Bishop [2], are shown below.

Cherubin’s derivation revolves around the probability of misclassification [2]:

P,=1— [ maxP(y|x)dx (2.1)
X yey

where:
* P, is the Bayes error rate or the minimum error rate achievable by any classifier.

 P(y|x) is the posterior probability of class y given the feature vector x (i.e., the
feature vector).

* X is the feature space (all possible traffic traces).
* 9 is the set of possible classes (the different websites).

This formula should represent the theoretical lower bound for any attack, including
machine learning-based or deep learning-based.
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2.8.2 Application to Deep Learning Attacks

A simpler understanding of deep learning models like DF or Var-CNN can be viewed
as more powerful classifiers that attempt to approximate the true posterior distribution
P(y|x) more effectively than classical ML models (like k-NN or k-FP). However, they
still rely on the same underlying data (traffic traces), and thus their performance is
limited by the same theoretical lower bound.

Cherubin’s bound can apply to deep learning-based models as such:

Feature Space X. For both classical ML and deep learning models, X represents the
traffic features such as packet sizes, timings, and directions. In deep learning models
like DF or Var-CNN, the feature space is often expanded to include more granular
or abstract representations learned by the network layers. Theoretically, the feature
space doesn’t change between models, but deep learning methods can explore it more
effectively.

Posterior Probability P(y|x). The deep learning models aim to approximate P(y|x)
with higher accuracy by learning complex patterns in the data. While deep learning
models may reduce empirical error rates compared to classical models, they are still
subject to the uncertainty in the posterior distributions, which governs the theoretical
error bound.

Hence, for the theoretical derivation of DL-based attacks, we can think of them as
function approximators of P(y|x) more accurately than ML-based methods. We can
define the posterior distribution learned by a deep network as:

PPL(y|x) & fo(x) (2.2)

where fg(x) is the output of the deep learning model (parameterized by the set of
parameters 0)) that approximates the probability distribution over classes given the
feature vector x. Rather than substituting the DL posterior probability to equation 1, the
empirical error which is our interest can be simply expressed as:

N 1 &
DL
PF = . E l]l{yﬁé);i} 2.3)
=

Where:
* y; is the predicted class for the i-th sample.
* y; is the true class label.
* nis the number of samples.
* 1 is an indicator function that counts the misclassified samples.

And since the theoretical minimum £, still applies:

PPL>p, > P, (2.4)
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where P, is the empirical lower bound calculated as such given by Cherubin [4]:

N L -
- — — NN
Po="7 <1 =P ) (2.5)

Where:

e L is the number of all possible classes || (# of the different websites).

« PNV is the empirical error of the NN classifier computed on the same dataset.

I should stress that the inequality that is Equation 2.4 only applies when 1 — co.

2.9 Related work

A Bayesian framework for assessing the security of website fingerprinting (WF) de-
fenses was introduced by Cherubin [4]. The authors derive theoretical bounds on the
effectiveness of WF defenses by modeling realistic adversarial settings, in contrast
to traditional methods that frequently assume perfect classifiers. They contend that
against powerful adversaries who use Bayesian inference instead of straightforward,
naive classifiers, many defenses might only offer a limited level of protection. The main
contribution is the introduction of a more realistic threat model, which aids in determin-
ing the actual strength of WF defenses under various knowledge-based assumptions
made by the attacker.

Sirinam et al. [12] presented Deep Fingerprinting (DF), a powerful WF attack us-
ing Convolutional Neural Networks (CNNs). This approach surpasses conventional
machine learning models by autonomously learning traits from unprocessed traffic
data, eliminating the need for manual feature engineering. The research reveals DF’s
exceptional efficiency in recognizing websites, even when defensive measures such
as traffic obfuscation or padding are implemented. The authors substantiate that DF
can significantly surpass prior methods in both closed-world and open-world settings,
underscoring the potential of deep learning techniques to overcome numerous existing
WF defences and substantially increase the effectiveness of attacks.

Sirinam et al. [11] introduced Triplet Fingerprinting (TF), a novel website fingerprinting
attack leveraging triplet networks and N-shot learning to enhance practicality and porta-
bility. TF achieves high accuracy with few samples, in contrast to earlier approaches
that needed large amounts of training data that were updated frequently. Interestingly, it
remains effective even when network conditions and time intervals between training and
testing data change, attaining 85% or greater accuracy even when data is gathered on
different networks years apart. Users of anonymity systems like Tor may have serious
privacy concerns about this method because it shows that accurate website identification
1s possible with little data and processing power.

Deng, Li, and Xu [5] introduced Holmes, an advanced website fingerprinting (WF)
attack that leverages spatial-temporal distribution analysis to identify websites during
the early stages of page loading. The robustness and dependability of WF attacks under
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changing network conditions and different defenses are increased by Holmes’ efficient
correlation of early-stage traffic with complete traffic profiles using adaptive data
augmentation and supervised contrastive learning. In comparison to nine deep learning-
based WF attacks currently in use, Holmes improves the F1-score for early-stage traffic
identification by an average of 169.18%, according to evaluations conducted across six
datasets. The effectiveness of early-stage WF attacks has significantly improved since
Holmes was able to identify websites in real-world scenarios involving dark web traffic
when only about 21-71 percent of the page had loaded.
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Experimental Methodology

3.1 Data Collection & Preprocessing

The experimental dataset was constructed to satisfy the following four requirements for
evaluating QUIC vs HTTPS vulnerabilities under WF attacks:

* Scale: 100 traces per website provide sufficient feature density for machine
learning analysis

* Realism: Encrypted traffic patterns mirror actual user browsing behavior
* Containment: All resources originate from intentional navigation paths

* Adversarial Perspective: Collection methodology replicates passive network
eavesdropping

The testbed architecture adapts Zhan et al.’s controlled network approach [13] with
key modifications for protocol isolation. As shown in Figure 3.1, traffic generation
occurs through automated browsing of Alexa’s top 100 English-language websites! that
support both HTTP/2 and HTTP/3. This selection criterion ensures there is a direct
comparison between 10,000 TCP (HTTP/2) and 10,000 QUIC (HTTP/3) traces, and
additionally, the Alexa rankings reflect actual user visitation patterns more accurately
than the academic pages I used in the previous year’s work.

A headless Chrome instance generated traffic through sequential page loads, with
separate profiles for HTTP/2 and HTTP/3 configurations. Each website was loaded 100
times per protocol using Selenium automation, with randomized inter-request intervals
between 2-5 seconds to simulate human browsing patterns.

This methodology improves upon prior university-focused datasets from last year by
increasing scale 5x (100 vs 20 sites) while maintaining temporal consistency - all traces
were collected within a 14-day period using fixed browser/OS versions to minimize
versioning artifacts. The final raw data comprises 20,000 fully labelled traces (100 sites
x 100 traces x 2 protocols) stored as encrypted .pcap files with associated metadata.

Uhttps://www.expireddomains.net/alexa-top-websites/

18
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Figure 3.1: Overall Testbed Architecture

The following automated and manual validation procedures were implemented to ensure
trace quality:

* tshark analysis for protocol headers (QUIC long headers for HTTP/3, TCP/TLS
for HTTP/2)

Encryption confirmation (TLS 1.3 handshakes, QUIC Initial packets)

Session termination verification (FIN/RST flags in TCP, QUIC CONNECTION_CLOSE)

Monotonic timestamp enforcement (V#; < t;11)

Empty packets in traces and failed-to-load traces (session terminated successfully
but page load failed, determined using trace length).

* Retransmission detection (TCP dup ACKs > 3, QUIC RETIRE_CONNECTION_ID)

Lastly, the data are preprocessed to accommodate the code bases which are further
detailed in section 3.2:

* The data are formatted to an NPZ file with the following structure:
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— X: 2D array of shape (N,5000) containing normalized sequences
— y: 1D array of integer class labels

» Each sequence was truncated or zero-padded to a fixed length of 5,000 packets to
standardize input dimensions.

* The data was then shuffled to remove inherent ordering biases while retaining
label consistency.

3.2 Experiment frameworks

3.2.1 Website-Fingerprinting-Library

The experimental implementation leverages the Website-Fingerprinting-Library,
an open-source PyTorch framework originally designed for Tor traffic analysis[S]. The
repository provides modular implementations of state-of-the-art deep learning models
for website fingerprinting, including Triplet Fingerprinting (TF). Additionally, despite
the framework’s Tor-centric design, it accepts temporal-directional data as inputs,
making it directly compatible with QUIC/TCP traffic.

The Website-Fingerprinting-Library can be easily adapted for this project’s pur-
pose because of the following existing implementations:

 Triplet Network Architecture: The framework mirrors exactly the original
Triplet Fingerprinting [11] implementation with:

— Shared-weight CNNs processing 5,000-element directional sequences, which
is also compatible with directional timestamp sequences;

— And Triplet loss with margin m = 0.2

* Parameter Flexibility: The framework implementation also allows accessible
hyperparameter change in their pipeline:

— Adjustable k-values in model _utils.py for the final k-NN classification of
TF

— ROC-AUC/PR-AUC metrics can be easily added to evaluator.py

— The training/testing set size can be easily set in data_split.py

3.2.2 Website-Fingerprinting-Evaluation-Suite (WFES)

For feature-based analysis similar to my previous year’s work, the same modified
version of WFES[4] was employed. Key adaptations from the original Tor-focused
implementation to accommodate QUIC/TCP traffic include:

» Extended feature vectors with +size encoding (vs. Tor’s fixed 512B cells)

e Cumulative size histograms per transmission direction (given non-fixed packet
sizes)
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The WFES is modified to accept NPZ files as inputs with identical train/test splits as
TF through predefined indices on command line. The modified WFES implementation
also maintains backward compatibility with standard k-NN benchmarks with Tor while
being able to process HTTP/2 and HTTP/3 sequences. All experiments use scikit-
learn’s NearestNeighbors implementation with the Euclidean distance metric, k = 1
for Bayes error estimation, and k = 5 for the default classification.

3.3 Evaluation Metrics & Scenarios

3.3.1 Experimental Scenarios

To systematically assess the raw accuracy and robustness of website fingerprinting (WF)
attacks under realistic adversarial constraints, two experimental scenarios were designed
to evaluate classifier performance under partial traffic observation and limited training
data. These scenarios provide insight of the unique characteristics of each protocol and
their behavior against adversaries in real-world settings, where network monitoring may
be intermittent or resource-constrained.

3.3.1.1 Partial Traffic Observation (Page Loading Ratio)

Objective: This scenario evaluates how early in a browsing session sufficient discrimi-
native features emerge to enable accurate website identification for both QUIC and TCP.
It simulates adversaries who intercept traffic during the initial phases of page loading
(e.g., due to connection drops, time-limited surveillance, or computational constraints).

Implementation Details:

* Traffic sequences were truncated at incremental observation points corresponding
to 20%, 30%, 40%, 50%, and 100% of total packet counts.

* Truncated traces were padded with zeros to maintain a fixed input dimension of
5,000 packets, ensuring compatibility with deep learning architectures.

* A stratified 90%/10% train/test split preserved class distributions. To mitigate
temporal biases, traces were shuffled prior to splitting, ensuring no temporal
correlation between training and testing data.

Motivation: Critical metadata is concentrated by modern protocols such as QUIC (e.g.,
in early packets (connection IDs, encryption parameters), which even with only partial
observation may reveal recognizable patterns. Secondly, defenses like dynamic content
loading and traffic padding frequently give priority to later-stage traffic, which makes
early packets less obscured. Finally, adversaries may give partial traces priority in
order to minimize computational overhead in real-time surveillance systems in terms of
operational efficiency.

3.3.1.2 Data Efficiency (N-Shot Learning)

Objective: This scenario evaluates classifier generalizability under limited training
data, reflecting how generalizable the traces of each protocol are and their performance
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against adversaries who cannot collect large labeled datasets (e.g., infrequently visited
websites or ephemeral services).

Implementation Details:

 Each class were given N € {10,20,50,100} instances per website, the test set
remained fixed at 20% of the given traces.

* Subsampling preserved the proportional representation of all 100 websites, and
the traces are randomly selected to mitigate sampling bias.

Motivation: Tests whether handcrafted features (k-NN) or automated embeddings
(TF) better generalize from sparse data. Secondly, it validates whether state-of-the-art
ML-based and DL-based attacks remain viable against low-traffic websites or short-term
monitoring campaigns.

3.3.2 Performance Metrics

Three complementary metrics were selected to holistically evaluate attack efficacy,
theoretical bounds, and threshold-agnostic robustness:

» Attack Error Rate: Calculated as the percentage of misclassified test traces
(Error rate = 1 - Accuracy). It directly quantifies attack failure rates under specific
experimental conditions. Lower values indicate stronger attacks. However, using
accuracy alone may mask class-specific vulnerabilities or threshold-dependent
performance, necessitating supplementary metrics.

* Bayes Error Bound Estimation: Calculated using the 1-Nearest Neighbor (1-
NN) classifier on learned embeddings, following Cherubin’s inequality (See
equation 2.4 in section 2.8.2). The the lower bound estimation made with 1-NN
error rate provides an asymptotically unbiased estimate of the Bayes error as
n — oo. For finite datasets, it serves as a practical lower bound for classifier-
agnostic evaluation.

* ROC-AUC (Receiver Operating Characteristic): Calculated by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR) across all classifi-
cation thresholds and computing the area under this curve, this is done directly
using the scikit-learn package. It measures separability across all classifica-
tion thresholds, with 1.0 indicating perfect discrimination.

* Precision-Recall AUC (PR-AUC): Derived by plotting Precision against Recall
across thresholds and measuring the area under this curve, this is also done
directly using the scikit-learn package. It evaluates precision-recall trade-offs
under class imbalance, where high recall at low false-positive rates is essential.
PR-AUC is more informative than ROC-AUC when negative classes dominate
(e.g., open-world attacks with many unmonitored sites), but in this project, the
purpose of AUC values is to validate that empirical error rates are not artifacts
of threshold cherry-picking (with AUC > 0.95), ensuring reliable comparisons
between protocols and classifiers.
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Evaluation

4.1 Variance

This section evaluates the stability and generalizability of Triplet Fingerprinting (TF)
embeddings under varying experimental conditions. By analyzing variance across
training regimes and partial traffic scenarios, we assess the robustness of deep metric
learning in approximating the Bayes error lower bound.

4.1.1 Dataset Preparation

The evaluation employed a custom dataset comprising 20,000 encrypted traces (100
websites x 100 traces x 2 protocols). To ensure reproducibility and isolate protocol-
specific effects:

* Stratified Splitting: A fixed 70/30 train/test split was applied. The 70/30 split is
to ensure a sufficiently large testing set to decrease measurement noise. In actual
experiments, the previously mentioned splits are used instead.

* Deterministic Trials: Three independent trials per protocol were conducted
with fixed random seeds to control for initialization and ordering biases. GPU
acceleration was disabled to eliminate hardware-induced variance.

To enforce determinism, All random seeds were fixed, and GPU acceleration was
disabled. Dropout remained active during training but was not used during inference as
the inference is done by the k-NN classifier. This design minimizes extraneous noise,
ensuring observed variance stems from protocol characteristics or model dynamics
rather than experimental artifacts.

4.1.2 N-Shot Learning (NS) Experiments

The N-Shot experiments (Figure 4.1) quantified how training instance scarcity impacts
embedding stability. observations include:

Low Data Regimes (10-20 Instances):

23
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* QUIC: At 10 instances, TF achieved 85% accuracy with a standard deviation
(std) of 0.5-1% (Table 4.7). The higher variance reflects sparse intra-class
clusters in QUIC’s embedding space, where early metadata concentration creates
overlapping distributions for under-sampled classes.

» TCP: With 10 instances, TCP exhibited slightly higher std (0.6—-1.2%) due to its
sequential dependency structure. Longer packet sequences require more data to
capture temporal patterns, amplifying variance in small-sample regimes.

High Data Regimes (50-100 Instances): Both protocols achieved sub-0.2% std
at 50+ instances, demonstrating TF’s data efficiency. QUIC’s std decreased faster
(0.5% — 0.1% from 20— 50 instances) than TCP’s (0.7% — 0.2%), as its feature-dense
handshake packets enabled rapid cluster stabilization.

TCP QuiC

1 —I— TF k-NN Accuracy | —F— TF k-NN Accuracy =
| —F TF 1-NN Accuracy | —F= TF 1-NN Accuracy e

Accuracy

T T T T T T T T
10 20 50 100 10 20 50 100
Number of Instances Number of Instances

(a) HTTP/2 (b) HTTP/3

Figure 4.1: Accuracy and corresponding standard deviation across different numbers
of instances per class for TCP and QUIC, the standard deviation of TF (blue) and TF’s
1-NN bounds (green) converge as instance count increases.

These results highlight the data efficiency of TF: while small training sets introduce
instability, the model rapidly converges to low-variance embeddings with >50 instances.

4.1.3 Partial Traffic (PG) Experiments

Truncating traces at incremental loading ratios (20%—-100%) revealed unexpected vari-
ance patterns with Variance patterns diverging sharply—Figure 4.2 shows that all
standard deviations remain within 0.5%. This tight std range across all loading ratios
highlights Triplet Fingerprinting’s robustness, where TF’s metric learning compresses
raw traffic into noise-resistant representations. Even with partial/inconsistent data,
intra-class clusters remain cohesive.

However, even though the standard deviations in Figure 4.2 are generally stable, there are
cases where the variance appears non-monotonic, with TCP having a higher standard
deviation at 40% truncated than 30%. This is likely caused by the relatively high
sampling error since the standard deviations are calculated with only 3 trials, making
the calculated standard deviation highly sensitive to outliers. A single aberrant run
could disproportionately skew the standard deviation and create a diverging variance.
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Figure 4.2: Error rates across different page loading ratios for TCP and QUIC

Even with the above-mentioned shortfall, considering all standard deviations still
fall below 1% in empirical testing with a 0.7 train/test split, signifying that TF’s
empirical error rates are stable across the experimental conditions. Hence, for clarity
and conciseness, subsequent figures omit error bars or variance metrics under these
conditions. However, since in low-data regimes (< 20 instances) or partial observation
(< 30% page loading), there are cases where std exceeds 0.5%. Hence, the impact
of variability is explicitly reported to avoid overstating confidence in the summary.
This decision should balance readability with methodological rigor. One exception is
the k-NN lower bound estimations, where I was able to use the framework’s 10-fold
cross-validation to directly calculate the standard deviation, similar to my previous
year’s method.

4.2 Varying the traffic trace lengths

This section analyzes how traffic trace length impacts classifier performance and the
approximation of Bayes error bounds. By evaluating partial vs. full traces across
HTTP/2 (TCP) and HTTP/3 (QUIC), these experiments show protocol-specific learning
dynamics and quantify how Triplet Fingerprinting (TF) narrows the gap between
empirical error rates and theoretical bounds compared to feature-based k-NN.

4.2.1 Protocol Comparison: Feature Density vs. Sequential Robust-
ness

The divergence in performance between QUIC and TCP at varying trace lengths (Figure
4.3) stems from fundamental protocol differences (Table 4.1-4.4):

HTTP/3 (QUIC)

* 20-50% Loading Ratios: QUIC achieves lower empirical error rates (k-NN:
47.25% at 20% vs. TCP’s 49.17%) and tighter bounds (k-NN bound: 26.51% vs.
TCP’s 31.79% at 20%) due to concentrated metadata in Initial/Handshake pack-
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Figure 4.3: Error rates across different page loading ratios for TCP and QUIC

ets. These encode connection IDs, encryption parameters, and stream priorities,
creating discriminative clusters even with sparse data. TF further amplifies this
advantage (QUIC: 1.8% error vs. TCP: 2.0% at 20%), as embeddings compress
early features into noise-resistant representations.

* Full Traces (100% Loading): Error rates on QUIC(TF: 1.1%, k-NN: 16.6%
error) are both significantly higher than the error rates on TCP(TF: 0.6%, k-NN:
8.61% error). This could be due to QUIC’s later packets often containing redun-
dant stream data (e.g., duplicated acknowledgments, padding), which introduces
noise into embeddings. While TF’s metric learning and k-NN’s extracted features
suppress most noise, overfitting to non-discriminative later features might have
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slightly inflated QUIC’s error rate compared to TCP.
HTTP/2 (TCP)

* 20-50% Loading Ratios: Higher error rates(k-NN: 49.17%, TF: 1.8%) reflect
dependence on later TLS/HTTP/2 frames for sufficient disambiguation for the
classifiers. Further demonstrating the significant disambiguation power of QUIC’s
early handshake packets.

* Full Traces: TCP’s sequential coherence may be an identifying feature (k-NN
bound: 7.21% vs. QUIC’s 10.70%) and enables deeper pattern learning (TF
bound: 0.15% vs. QUIC’s 0.3%). While QUIC’s early feature density makes it
vulnerable to partial-trace attacks, but limits gains from full traces. The attack
error rate decreases progressively with trace length, indicating that TCP may be
more susceptible to full-trace fingerprinting.

Table 4.1: TF Page Loading QUIC

P. L. Ratio(%) Accuracy Precision Recall Fl-score
20 0.982 0.9841 0.982  0.9817

30 0.987 0.9889 0.987  0.9869

40 0.98 0.9825 0.98 0.98

50 0.992 0.9926 0.992 0.992

100 0.989 0.9906 0.989  0.9889

Table 4.2: TF Page Loading TCP

P. L. Ratio(%) Accuracy Precision Recall Fl-score
20 0.98 0.983 0.98  0.9795

30 0.984 0.9868 0.984  0.9834

40 0.979 0.9814 0979  0.9785

50 0.98 0.9825 0.98  0.979%

100 0.994 0.9945 0.994 0.994

Table 4.3: TF Page Loading QUIC 1-NN

P. L. Ratio(%) Accuracy Precision Recall Fl-score Est. L. Bound (%)

20 0.985 0.9869 0.985  0.9849 0.75
30 0.984 0.9858 0.984  0.9839 0.8
40 0.979 0.9818 0.979 0.979 1.06
50 0.989 0.9906  0.989 0.989 0.55
100 0.994 0.9945 0.994 0.994 0.3

4.2.2 Bound Gap Dynamics: Protocol- and Classifier-Specific Anal-
ysis

The bound gap—defined as the difference between empirical error rates and estimated
Bayes lower bounds—serves as a critical metric for evaluating how closely practical
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Table 4.4: TF Page Loading TCP 1-NN

P. L. Ratio(%) Accuracy Precision Recall Fl-score Est. L. Bound (%)

20 0.982 0.9851 0982  0.9815 0.9
30 0.981 0.9836 0.981 0.9805 0.95
40 0.98 0.9835 098  0.9794 1.01
50 0.981 0.9831 0.981 0.9806 0.95
100 0.997 0.9971 0.997 0.997 0.15

classifiers approximate theoretical performance limits. This subsection dissects how
this gap evolves across varying page loading ratios for TCP and QUIC, contrasting the
performance of TF and feature-based k-NN classifiers (Table 4.5).

Table 4.5: Bound Gap Trajectories Across Protocols and Loading Ratios

Protocol Loading Ratio TF Bound Gap (%) k-NN Bound Gap (%)

20% 1.10 17.38
HTTP/2  50% 1.05 12.99
100% 0.45 1.40
20% 1.05 20.74
HTTP/3  50% 0.25 13.62
100% 0.80 5.90

HTTP/3 (QUIC) QUIC’s bound gap dynamics reflect its metadata concentration in
early traffic. At 20% loading, TF achieves a bound gap of 1.05% (empirical error:
1.8%, bound: 0.75%), significantly narrower than k-NN’s 20.74% gap (47.25% error vs.
26.51% bound). This difference stems from TF’s ability to compress QUIC’s handshake
metadata (e.g., connection IDs, encryption parameters) into dense, discriminative
embeddings. Early packets contain sufficient information for TF to approximate the
Bayes bound even with sparse data, while k-NN’s reliance on manual features (e.g.,
cumulative packet sizes) fails to capture QUIC’s structured metadata.

However, QUIC’s bound gap increases slightly at full traces (100% loading: TF gap =
0.80%, k-NN gap = 5.90%). This counterintuitive trend could be attributed to variance,
but the noise introduced into the embeddings from redundant later-stage packets (e.g.,
duplicated acknowledgments, padding) may play a role. This again indicates that
QUIC’s design leads to early-session insecurity but offers diminishing returns as traces
lengthen.

HTTP/2 (TCP) TCP’s bound gap narrows monotonically as trace length increases. At
20% loading, TF exhibits a 1.10% gap (2.0% error vs. 0.9% bound), which tightens
to 0.45% at full traces (0.6% error vs. 0.15% bound). Unlike QUIC, TCP’s sequential
dependencies require longer traces to disambiguate classes. Early truncation (20-50%
loading) may capture incomplete TLS negotiations and fragmented HTTP/2 frames,
leaving k-NN’s handcrafted features (e.g., packet bursts) insufficient to approximate
bounds (k-NN gap: 17.38% at 20% loading). TF mitigates this through temporal pattern
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learning, but its advantage grows with trace length as convolutional layers extract deeper
structural regularities.

At full traces, TCP’s bound gap converges to near-zero (0.45% for TF, 1.40% for k-NN),
reflecting its noise-resistant sequencing. Late-stage packets, such as resource fetch
requests, provide incremental discriminative power, allowing both classifiers to approach
theoretical limits. This contrasts with QUIC’s diminishing returns, underscoring TCP’s
weakness in revealing information in full traces.

Classifier-Specific Differences TF’s bound gaps remain consistently smaller than k-
NN’s across protocols, but the magnitude of this advantage depends on traffic structure.
For QUIC, TF reduces the gap by 19.69% at 20% loading (1.05% vs. k-NN’s 20.74%),
leveraging metric learning to isolate metadata-rich early packets. For TCP, the gap re-
duction is less pronounced (1.10% vs. k-NN’s 17.38%) due to its reliance on sequential
coherence—a pattern TF captures more effectively as traces lengthen.

k-NN’s larger gaps highlight the limitations of manual feature engineering. For QUIC,
even at 100% loading, k-NN’s gap (5.90%) remains 7.4 times wider than TF’s. For
TCP, k-NN’s gap (1.40%) is 3.1 times larger than TF’s. Demonstrating that handcrafted
features fail to model encrypted traffic properly.

Again, the bound gap dynamics expose fundamental trade-offs in two protocols. QUIC’s
metadata concentration enables rapid convergence to tight bounds, but it provides
relatively better security in full traces, as the noise potentially introduced with later
packets hinders the performance of WF attacks. While TCP’s sequential structure
delays classifier convergence, it provides worse security at full traces.

4.2.3 AUC Analysis and Implications

The AUC (Area Under the Curve) metrics provide critical insights into classifier ro-
bustness beyond singular error rates, capturing performance across all classification
thresholds. For both protocols, TF achieves consistently high ROC-AUC (> 0.98) and
PR-AUC (> 0.97) values across all page loading ratios (Tables 4.6—4.7). These results
validate that TF’s embeddings preserve discriminative power regardless of operational
thresholds, mitigating concerns of cherry-picked confidence cutoffs or class-specific
biases.

For QUIC, the ROC-AUC reaches 0.991 at 20% loading, and TCP achieves similar
AUC values (0.990 at 20%), demonstrating strong separability even with sparse data.
The high Precision-Recall AUC (0.994 for QUIC, 0.995 for TCP) confirms reliable
classification under class balance assumptions. The stability of AUC values across
loading ratios underscores TF’s operational robustness. For instance, QUIC’s PR-AUC
fluctuates by only 1.7% (0.983-0.992) despite trace lengths varying fivefold, while
TCP’s ROC-AUC varies by 0.8% (0.990-0.997). This consistency ensures adversaries
need not optimize thresholds for specific observation windows—a practical advantage
in real-world surveillance. Notably, the high PR-AUC for both protocols confirms
reliable precision even under strict recall requirements, critical for minimizing false
positives in targeted attacks.
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Table 4.6: AUC across different page loading ratios for TCP

Page Loading Ratio(%) ROC-AUC PR-AUC Precision Recall
20 0.9899 0.9816 0.983 0.98

30 0.9919 0.9855 0.9868 0.984

40 0.9894 0.9803 0.9814 0.979

50 0.9899 0.9814 0.9825 0.98

100 0.997 0.9943 0.9945  0.994

Table 4.7: AUC across different page loading ratios for QUIC

Page Loading Ratio(%) ROC-AUC PR-AUC Precision Recall
20 0.9909 0.9831 0.9841 0.982

30 0.9934 0.988 0.9889  0.987

40 0.9899 0.9814 0.9825 0.98

50 0.996 0.9924 0.9926  0.992

100 0.9944 0.9898 0.9906  0.989

4.3 Varying on the Number of Training Instances per
Class

This section evaluates how classifier performance and Bayes error bound estimations
evolve under varying training data availability. By subsampling the dataset to simulate
low-resource adversaries, the experiments quantify protocol-specific learning efficiency
and bound tightness across training regimes.

4.3.1 Protocol Comparison: TCP vs. QUIC Learning Dynamics

The difference in classifier performance between HTTP/2 (TCP) and HTTP/3 (QUIC)
under limited training data (Figure 4.4) highlights fundamental differences in protocol
feature distribution and learning efficiency.

QUIC: Rapid Convergence via Metadata Density

With only 10 training instances per class, TF achieves 85% accuracy on QUIC (Table
4.8), outperforming TCP by 5% (TCP: 80.5%). QUIC’s early handshake packets provide
dense, discriminative metadata that stabilizes embeddings even with sparse data. This
follows with its bound trajectory: QUIC’s estimated Bayes lower bound tightens to
3.05% at 10 instances (vs. TCP’s 3.56%), reflecting reduced intra-class variance in the
embedding space (Table 4.10).

However, QUIC’s advantage diminishes with larger training sets. At 100 instances, both
protocols achieve near-perfect accuracy (QUIC: 99.45%, TCP: 99.35%), but TCP’s
bound converges slightly tighter (0.28% vs. QUIC’s 0.38%), as shown in Table 4.9.
This suggests QUIC’s metadata-rich early features saturate learning early, while TCP’s
sequential dependencies benefit incrementally from additional data.

TCP: Sequential Coherence Demands Data Volume
TCP’s sequential structure—reliant on TLS negotiation thythms and HTTP/2 frame
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Figure 4.4: Error rates across training instance counts for TCP and QUIC. TF (blue) and
k-NN (red) are compared with their respective Bayes bounds (dotted lines).

dependencies—requires more training instances to capture temporal patterns. With
10 instances, TF’s accuracy lags behind QUIC (80.5% vs. 85%), with its bound gap
similar to 11.94% (QUIC: 11.95%). This reflects the incapability of models to extract
disambiguating features from long-range packet interactions with limited samples.

As training instances increase, TCP’s sequential coherence enables progressive refine-
ment. At 50 instances, The attack accuracy of TF jumps to 98.9% (vs. QUIC’s 98%),
and the bound gap narrows to 0.6% (Table 4.12). This demonstrates TCP’s capacity to
leverage structured traffic patterns when sufficient data is available, albeit at the cost of
higher initial sample complexity.
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Table 4.8: TF N-Shot QUIC

#Instances Accuracy Precision Recall Fl-score

10 0.85 0.8413 0.85  0.8228
20 0.94 0.9567 0.94  0.9367
50 0.98 0.9816 098  0.9798

100 0.9945 0.9947 0.9945  0.9945

Table 4.9: TF N-Shot TCP

#Instances Accuracy Precision Recall Fl-score
10 0.845 0.8019 0.845  0.8055

20 0.95 0.9602 095  0.9481

50 0.989 0.9903 0.989  0.9889

100 0.9935 0.9939 0.9935  0.9935

Table 4.10: TF N-Shot QUIC 1-NN

#Instances Accuracy Precision Recall Fl-score Est. L. Bound (%)

10 0.94 0.945 0.94 09313 3.05
20 0.965 0.9692  0.965  0.9642 1.77
50 0.988 0.9889 0.988  0.9879 0.6
100 0.9925 0.9938 0.9925  0.9923 0.38

Table 4.11: TF N-Shot TCP 1-NN

#Instances Accuracy Precision Recall Fl-score Est. L. Bound (%)

10 0.93 0.91 093 009113 3.56
20 0.945 09584 0945 09418 2.79
50 0.988 0.9894  0.988  0.9879 0.6
100 0.9945 0.9948 0.9945  0.9945 0.28

4.3.2 Bound Gap Dynamics in data-limited settings

In data-limited settings, the bound gap dynamics between Triplet Fingerprinting (TF)
and k-NN classifiers reveal critical insights into protocol vulnerabilities and feature-
learning efficacy as shown in Table 4.12:

Closer Bound Gaps Between TF and k-NN in Low-Data Regimes

* TF’s Dependency on Data Volume: While TF leverages deep metric learning
to generate embeddings, its ability to approximate the Bayes bound depends on
sufficient training data. With limited instances (e.g., 10 per class), the embeddings
lack stability, leading to higher empirical error rates compared to k-NN (TF’s
11.94% vs. k-NN’s 9.57% at 10 TCP instances). This narrows the gap between TF
and k-NN, which relies on handcrafted features (e.g., cumulative packet sizes) that
may generalize better in sparse regimes. Notably, k-NN consistently outperforms
TF when both use low training instances, indicating the unique advantage of
feature-based classifying methods in such settings.
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* Protocol-Specific Effects: For QUIC, early metadata concentration provides
discriminative features even with truncated traces. However, TF struggles to
compress these features into noise-resistant embeddings when training samples
are scarce, resulting in bound gaps (11.95% for TF vs. 4.22% for k-NN at
10 instances) that reflect TF’s limitations in low-data generalization. For TCP,
sequential dependencies require more data to capture temporal patterns. Both
classifiers exhibit large bound gaps in low-data regimes (TF: 11.94%, k-NN:
9.57% at 10 instances), as neither method models long-range packet interactions
as effectively without sufficient samples.

Bound Gap Reduction for TF and k-NN

While the bound gaps for TF and k-NN are monotonic in HTTP/2 and the same for TF
in HTTP/3, k-NN exhibited fluctuating bound gaps as the number of instances provided
increases. This fluctuation may be related to the following factors:

* Metadata Saturation and Noise: QUIC’s early handshake packets provide
dense discriminative features, but later packets (e.g., redundant acknowledgments)
introduce noise. With limited data, k-NN’s reliance on static features (e.g., packet
size histograms) inconsistently captures these dynamics. For instance, k-NN’s
bound gap fluctuates from 4.22% (10 instances) to 5.15% (20 instances) before
rising to 5.90% (100 instances). This reflects variability in feature utility across
training sizes for k-NN: small samples may overfit to noisy later packets, while
larger samples struggle to suppress noise.

» Sampling Sensitivity: QUIC’s metadata concentration in early traffic makes
k-NN’s performance highly sensitive to random subsampling. For example, a
training set with more traces containing clean handshake packets may yield
tighter bounds, while others with noisy samples inflate gaps. TF’s metric learning
partially mitigates this by emphasizing relative distances, but k-NN lacks such
adaptability.

Table 4.12: Bound Gap Trajectories Across Protocols and Number of Instances

Protocol #Instances TF Bound Gap (%) Kk-NN Bound Gap (%)

10 11.94 9.57
20 221 4.68
HTTP/2 50 0.50 2.61
100 0.37 1.40
10 11.95 4.22
20 4.23 5.15
HTTP/3 50 1.40 4.58

100 0.17 5.90
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4.3.3 AUC Analysis and Implications

For both protocols, TF maintained high ROC-AUC (> 0.92) and PR-AUC (> 0.88) even
with minimal training data (10 instances), demonstrating its ability to preserve class
separability across thresholds (Tables 4.13—4.14). TF’s consistency ensures adversaries
need not cherry-pick confidence thresholds—a critical advantage in real-world attacks
with unpredictable traffic conditions.

In low-data regimes(n = 10), TF in QUIC exhibits marginally higher ROC-AUC (0.9242
vs. TCP’s 0.9217) and PR-AUC (0.8814 vs. 0.8842), reflecting the disambiguity power
of its metadata-rich early packets. These features enable TF to better discriminate
classes despite limited samples. In high-data regimes(n = 100), both protocols achieve
near-perfect AUC values (ROC-AUC > 0.996, PR-AUC > 0.993), confirming that
sufficient training data stabilizes embeddings and suppresses noise.

The stability of AUC metrics across training regimes (< 5% fluctuation in ROC-AUC
for n = 10 — 100) highlights TF’s resilience to threshold tuning. Unlike feature-based
methods, which often require dataset-specific optimization, TF’s embeddings generalize
consistently, reducing deployment overhead for real-world adversaries.

Table 4.13: AUC (ROC and PR curves) across training instance counts for TCP. High
AUC values (>0.97) indicate robust separability and reliability across thresholds.

#Instances ROC-AUC PR-AUC Precision Recall
10 0.9217 0.8842 0.8019 0.845

20 0.9747 0.9554 0.9602 0.95

50 0.9944 0.9897 0.9903 0.989

100 0.9967 0.9937 0.9939 0.9935

Table 4.14: AUC (ROC and PR curves) across training instance counts for QUIC. High
AUC values (>0.97) indicate robust separability and reliability across thresholds.

#Instances ROC-AUC PR-AUC Precision Recall
10 0.9242 0.8814 0.8413 0.85

20 0.9697 0.9486 0.9567 0.94

50 0.9899 0.9809 0.9816 0.98

100 0.9972 0.9946 0.9947 0.9945




Chapter 5

Conclusions and Discussion

5.1 Summary

This research evaluates the security of HTTP/2 and HTTP/3 against machine-learning-
based and deep-learning-based website fingerprinting (WF) attacks by empirically
narrowing the gap between deep learning-driven empirical error rates and the theo-
retical Bayes error lower bound. Through systematic experimentation with Triplet
Fingerprinting (TF) and a large-scale dataset (20,000 traces), the project has three novel
contributions to WF research:

1. Protocol-Specific Security Trade-offs: HTTP/3’s QUIC protocol demonstrates
heightened vulnerability to early-stage attacks due to metadata concentration in
handshake packets. However, it exhibits limiting gains from full traces, likely due
to its later-stage redundancy introducing noise. HTTP/2’s sequential dependencies
delay classifier convergence, but security incrementally worsens with longer
traces, achieving superior full-trace classifier performance and tighter Bayes
bounds. This demonstrates a critical trade-off: website fingerprinting on QUIC
should prioritize early traffic considering the highly disambiguating metadata
in early packets, while full traces may introduce unwanted noise. On the other
hand, TCP’s protocol design of TLS negotiation and HTTP/2 frame dependencies
makes it more robust against fingerprinting on early traffic, while hindering its
security with full traces.

2. Deep Learning as a Bound Approximation Tool: TF reduced the bound gap
by 20-40% compared to feature-based k-NN, achieving near-optimal alignment
(£0.38% gap) with sufficient data. This validates that metric learning compresses
raw traffic into embeddings that better approximate the true data distribution, of-
fering a classifier-agnostic framework for evaluating WF defences. Notably, TF’s
AUC stability (< 1.7% fluctuation across thresholds) mitigates cherry-picking
biases, enabling reliable cross-protocol comparisons.

3. Operational Implications for Adversaries and Defenders: Adversaries mon-
itoring QUIC traffic can achieve high accuracy with minimal computational
overhead by targeting early packets, whereas TCP requires longer surveillance.

35
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Defenders should prioritize obfuscating QUIC’s handshake metadata and TCP’s
sequential patterns (e.g., TLS frame randomization). Hybrid approaches com-
bining protocol-aware padding with dynamic feature suppression could mitigate
both attack vectors.

These findings underscore the necessity of moving beyond accuracy-centric evalua-
tions. By integrating Bayes bounds with AUC metrics, this work provides a holistic
methodology to quantify inherent protocol risks and defence efficacy.

5.2 Limitations

While this study provides critical insights into WF attack performance and protocol
vulnerabilities, several limitations constrain the generalizability and precision of the
findings:

1. Variance Estimation Robustness: Variance metrics (e.g., standard deviations
in accuracy) were derived from only three trials per protocol. While sufficient
to demonstrate preliminary trends, this small sample size increases susceptibil-
ity to outlier skewing—particularly in low-data regimes where stochasticity is
pronounced. For instance, the non-monotonic variance observed in TCP’s partial-
traffic experiments (Figure 4.2) may reflect trial-specific artifacts rather than
true protocol behavior. A larger number of trials (e.g., 10-20) would improve
confidence in stability claims and enable statistical significance testing.

2. Dataset Scope: The Alexa Top-100 websites' lack dynamic content (e.g., real-
time updates, WebSockets), potentially worsening classifier performance com-
pared to real-world traffic. The controlled collection conditions also omitted
network variability (e.g., packet loss, latency) as they were performed on local
terminals, which may alter feature discriminability.

3. Classifier Selection: Comparisons excluded newer models like Holmes[5], which
specialize in early-traffic analysis, potentially underestimating DL’s capacity to
approximate Bayes bounds.

4. Theoretical Assumptions: Cherubin’s bound assumes infinite data, yet finite
samples (100 traces/class) introduce estimation bias. This is particularly acute for
QUIC, where early-packet variability may inflate empirical error rates relative to
the theoretical limit.

5.3 Future Work

This study lays the groundwork for several promising directions to advance WF attack
evaluation and protocol security. Building on the experimental findings and limitations,
future research could focus on:

* Enhanced Variance Analysis: Conduct 20+ trials across protocols and classifiers,
applying bootstrapping to quantify confidence intervals for variance metrics. This

Thttps://www.expireddomains.net/alexa-top-websites/
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would strengthen claims about embedding stability and protocol-specific learning
dynamics.

* Real-World Traffic Integration: Expand datasets to include dynamic content,
cross-origin requests, and adversarial conditions (e.g., network jitter). Tools
like WeFDEJ8] could quantify feature redundancy under noise, guiding defence
optimization.

* Theoretical Improvements: Develop finite-sample corrections for Cherubin’s
bound using mutual information metrics [4]. This would refine Bayes error
approximations and enable tighter security guarantees for finite datasets.

Long-Term Vision: A unified evaluation framework combining Bayes bounds, mutual
information, and real-world traffic modeling could revolutionize WF defence bench-
marking. By addressing QUIC’s unique vulnerabilities and advancing deep metric
learning, this work paves the way for next-generation protocols that balance perfor-
mance with provable privacy guarantees.
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