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Abstract

At the core of machine learning, lies the hurdle of finding parameters that optimize
a loss function. A lot of research has been done on understanding how to find the
best parameters and what kind of properties these parameters have. One of those
properties is the sharpness of the loss landscape, where research has shown that sharp
minima generalize worse than flat minima. Based upon these findings, the Sharpness
Aware Minimization (SAM) optimizer was developed to specifically target flat minima.
In this dissertation we adopt a data poisoning algorithm to poison datasets, with the
aim of leading normal SGD to minima that are flat and thus removing the need of
using more compute intensive optimizers such as SAM to find flat minima. We perform
experiments on F-MNIST, CIFAR-10 and CIFAR-100 with multiple models. Our results
show that SGD does find better minima when training on poisoned datasets and thus
using our method could result in considerable savings and performance improvements
in a variety of machine learning problems. In addition to that, we perform more
qualitative experiments on a toy dataset, to explore properties of our algorithm and
identify future research directions. To aid future research we also present a variety
of different objectives that our method can apply to, not limiting ourselves to neural
network sharpness.
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Chapter 1

Introduction

1.1 Optimization in Machine Learning

Nearly all machine learning methods can be formulated as optimizing a function, the
loss function, through which parameters are learned. When there is a large amount of
parameters and data to optimize for, it is computationally expensive to find a global
minimum for the loss function, and thus local methods such as gradient descent are
widely used, which find local minima at low computational cost [26].

Many optimization methods have been developed on top of gradient descent, trying to
either find parameters faster or find better ones. Unfortunately, a lot of algorithms that
try to find better parameters also take a much longer time [9]]. Training over multiple
runs, be it for new model architectures or hyperparameter searches, exacerbates this
increase in training time even more. In an age where training models costs billions of
dollars, produces tonnes of carbon emissions and uses millions of liters of water [25]], it
is of great importance to train models efficiently.

This dissertation introduces a method that aims to improve the optimization of the loss
function, not by changing the algorithm used for optimization, but by changing the data
used for training. Unlike other data augmentations, where flips or rotations are applied,
we present an algorithm that optimizes data directly based on the loss landscape. Once
this dataset is created, the goal is for it to be used with a variety of architectures and
training techniques while still delivering improved performance, potentially reducing
the amount of resources needed to train a model drastically.

1.2 Why optimize data and not weights?

Treating the input as dynamic instead of static has a number of advantages, many of
which have yet to be fully explored. One of them is that new data can be created without
going the traditional route of collecting data, especially in cases where it might be very
expensive or technically challenging to collect more data. Running an algorithm once
to create improved data would be very beneficial in those cases. Another reason for to
optimize data, is to further our understanding of loss landscapes, their properties, and
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optimization in general. What properties does data have that makes it easy/hard to train
with? How much data do I need to generalize well? What kinds of data can be modified
to make the loss landscape less chaotic and what kinds cannot? All these questions
are not well understood and this dissertation hopefully brings some insight, while also
raising some new questions.

1.3 Previous Work

MInf Project Part 1, focused on the effect of data poisoning on deepfake detection
algorithms. The second part builds upon findings in Part 1 in relation to data poisoning.
Some main takeaways from Part 1 were that data poisoning can, change loss landscapes
by modifying data, and be transferrable between architectures and models. These
changes in the loss landscape were only targeting a single target sample by turning
some training data into poisons, successfully making the network misclassify the target.
This inspired us to look further into how data poisoning techniques can be applied and
combined with other fields, as well as whether we can poison a network by changing
the whole dataset it is being trained on. We give a brief overview of data poisoning in
the background chapter, in order to allow the reader to understand this work without
having read Part 1.

1.4 Contributions

The main contribution of our paper is an algorithm that modifies data in a way that
leads to flatter minima when trained on, that generalize better. It is the first algorithm,
to the best of our knowledge, which uses data poisoning techniques to modify the
loss landscape in such a way. We perform a range of experiments on our algorithm
to evaluate it’s performance. We also analyze the behavior of our algorithm in detail,
leading to findings that can help further research to be done in this area.

We also make our code public with instructions on how to use it and easily extend it to
related loss landscape optimization tasks: https://github.com/awesomealex 1/minf?2.

1.5 Dissertation Structure

Following this introduction, Chapter 2 covers necessary notation, background knowl-
edge about the loss landscape, data poisoning and existing optimization methods for
flat minima. In Chapter 3 we introduce our new method, giving the detailed theoretical
motivation and the algorithm. Chapter 4 contains our first set of experiments, including
methodology, results and discussion. Then in Chapter 5, we explore our proposed
algorithm in detail, working with a toy dataset to make conclusions and motivate further
improvements. In Chapter 6 we go over a range of improvements and extensions that
could be made and frame the problem in a more general and formal way, in order to
motivate further research in this area. Finally, we conclude with Chapter 7, giving a
final summary of the dissertation and future research needing to be done.


https://github.com/awesomealex1/minf2

Chapter 2

Background

In this chapter we present and summarize the necessary literature needed to understand
our proposed method. Firstly, we go over the loss landscape of neural networks with a
focus on sharpness and different measure of sharpness. Then we summarize Sharpness
Aware Minimization (SAM), an optimization method that also tries to find flat minima.
Finally, we go over data poisoning, with a focus on the gradient alignment algorithm
used by a specific data poisoning method.

2.1 Machine Learning and Notation

For the purposes of this dissertation, machine learning is the process of learning a
function from data by minimizing a loss function.

The function we learn is parametrized by a vector 6 € R and denoted by hg : X — Y.
We learn from training data S C X X Y, containing n samples, by minimizing a loss
function Lg : R™ — R. The subscript indicates the data over which the loss is defined:
Lg represents loss over the entire training data, while Lp represents loss over a batch of
data. When it is clear through context what the data is, we omit the subscript. The loss
on a specific sample and label is given by /g : X X Y — R, where the subscript is omitted
when it is clear which parameters are used. A learning algorithm A : X x Y — R"™,
finds parameters A(S) = 6 from the training data to minimize Lg(0). Throughout this
dissertation, we adapt notation from other literature to be consistent with ours.

2.2 The Loss Landscape

As is common in literature [24] [8]], we use the term ’Loss Landscape’ to refer to
loss functions when talking about their properties and geometry. There are many
works analyzing the loss landscape of neural networks, often with a focus on efficient
optimization [9] and improved generalization [24]] [8]].
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Figure 2.1: A sharp minimum on the left and a flat minimum on the right [9].

2.2.1 Sharpness

A widely used property of loss landscapes is sharpness. The sharpness of a local
minimum in the loss landscape is loosely defined as how fast the loss increases when
changing the value of the parameters at that point. A minimum where loss increases fast
is called sharp, while a minimum where loss increases slowly is called flat [8]. There is
no agreed upon way in literature to define sharpness [8], but there are a few proposed
methods, each with their own shortcomings.

Volume Sharpness Hochreiter and Schmidhuber define sharpness as the volume
of the region around a minimum 6 where loss is approximately the same. Formally,
they define the m-dimensional hypercube Mg with center 6. Each edge is parallel to
one weight axis. Half the length of the edge in direction parallel to parameter 6; is
denoted as AB;. A9; is the largest value such that for all m-dimensional vectors Kk where
|k;| < A®; we have:

L£(®)—L(O+x) <€ 2.1)

The volume of My is then defined as:
m
V(48) :=2"T A8 (2.2)
i

Maximum-Loss Sharpness Keskar et al. [19] define sharpness by taking the maxi-
mum value the loss can be within a small € around the minimum. To make sure that
a high loss value is achieved not in just a tiny subspace of the parameters, loss is also
maximized on random manifolds of the parameter space. To do this, they generate a
m X p matrix W with randomly generated columns, where p determines the dimension
of the manifold.

Ce is a box around the minimum where £ is maximized (W™ is the pseudo-inverse of
W, € is size of the box):

C={zcR’: —¢(|(WT0);| +1) <z <e(|[WT0);| +1)Vic1,2,---,p} (2.3)
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The sharpness of L at 0 is defined as:

(maxyeq, L(6+Wy)) — L(6)
1+ £(0)

do r(e,W) = x 100 (2.4)

Spectrum of the Hessian Chaudhari et al. [3] use the spectrum of the Hessian (the
distribution of the Hessian’s eigenvalues) at the minimum to analyze sharpness. As the
Hessian is formed of the second order partial derivatives of a function with a vector as
a parameter, it characterizes the curvature of a function. Thus, it is natural to use it to
describe sharpness. Chaudhari et al. [3] use the spectrum of the Hessian to characterize
sharpness. A sharp minimum has a Hessian with a lot of large eigenvalues, compared to
a flat minimum, which has small eigenvalues.

The spectra of two different Hessians can be compared in multiple ways. One simple
way is to plot the n largest eigenvalues and compare how they are distributed. Another
way is to compare the ratio of the largest to the smaller eigenvalues. Foret et al. [9]
measure sharpness by calculating Amax /As and comparing this ratio where a higher ratio
corresponds to a sharper minimum. Because the Hessian is intractable to compute for
neural networks (it is quadratic with the number of parameters), approximations are
used such as Lanczo’s algorithm [28] to compute the most extreme (smallest/largest)
eigenvalues of the Hessian without needing to compute the Hessian itself.

2.2.2 Shortcomings of Sharpness Measures

Dinh et al. [8] show that the previous methods are flawed to some extent. Due to
inherent symmetries in neural networks, they show that equivalent models can be built
that are arbitrarily sharp, and if allowed to parameterize, they can change the loss
landscape of a network without affecting generalization.

They show that for a large number of common neural networks, scaling weights,
changing the order of how weights are applied, or swapping certain weights with each
other, doesn’t change the output of the network and is an equivalent network for all
possible input values. These transformations do affect all of the sharpness measures we
discussed previously to some extent.

Nonetheless, even though theoretically the methods aren’t always accurate for describing
sharpness, they have successfully been used in literature to compare minima and explain
generalization. In practice, a lot of the transformations pointed out by Dinh et al. [§]
do not affect networks when training with common algorithms, as literature has kept
using them and found correlation between sharpness and generalization to hold [9] [[19]].
Thus, we will too use the methods in this dissertation, keeping their flaws in mind.

2.2.3 Visualizing sharpness

There are multiple ways to visualize the sharpness of neural networks. They rely on
reducing the high dimensional parameter space into a low dimensional 1-, 2- or 3-D
representation. In Figure [2.1) we can see the sharpness visualized by reducing the



Chapter 2. Background 6

100

14 :

80

._.

N

1

|
L
_|
‘m-‘
n =
- 35

=
o

Accuracy

Cross Entropy

0 : ‘
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
alpha

Figure 2.2: A one-dimensional linear interpolation plot showing train/test loss and
accuracy.

parameter space to two axes and a third axis representing loss. On the left a very sharp
minimum is shown while on the right there is a flatter minimum where the valley where
the minimum is located is much wider and less steep.

One-Dimensional Linear Interpolation plots can also be used to compare the sharp-
ness of two different minima. In Figure 2.2]a one-dimensional linear interpolation plot
1s shown that shows the loss and accuracy on test and training set, where at o0 = 0.0
and o = 1.0 the original minima are located. We can see that the minimum at 0.0 is
much flatter than at 1.0. The formula used to calculate the weights along the axis is the
following:

B(a) =B+ (1 — )6y (2.5)

There are obvious shortcomings to this form of visualizing sharpness. Firstly, they just
show the change in loss along the line connecting two minima. This is quite arbitrary
and there is no concrete reasoning behind choosing this line to go along, except for
that it is computationally easy. There also is the problem of what a sharper minimum
represents in a 1-D visualization. The shortcomings of sharpness measures discussed
by Dinh et al. [8] apply to one-dimensional linear interpolation plots as well, as weights
can be scaled in theory to makes a minimum look sharp or flat. Nevertheless, it is
commonly used in literature [19, 24] and thus we use these plots in the rest of the
dissertation, keeping limitations in mind.

Filter Normalization can be used to improve the correlation between sharpness and test
accuracy when visualizing minima. It addresses some of the scaling issues mentioned
by Dinh et al. [8]], where a network with large weights is less sensitive to perturbations
than a network with small weights, raising the issue of scaling weights by a large
number making the minimum less sharp, even though the networks are equivalent.
Filter normalization normalizes weights in each filter of convolutional layers and each



Chapter 2. Background 7

neuron in fully connected layers, such that these scaled networks will have a consistent
sharpness when visualizing them with one-dimensional linear interpolation for example.

2.2.4 Connecting sharpness and regularization

Flat minima are generally associated with better generalization [[19]. It’s also known that
optimizers can often find flat minima by themselves, without needing explicit guidance
to look for them. One theory for this, is that the high dimensional space, that is being
optimized over, makes the volume of flat minima much larger than that of sharp ones.
Thus, an optimizer has a much higher probability of finding a flat minimum with high
volume, than a sharp minimum with low volume [[15]].

Flat minima have a smaller minimum description length (MDL) than sharp minima,
since a lot of bits are needed to precisely describe a sharp minimum, while fewer are
needed to describe a sharp one. Thus, we can view a push towards flat minima as a form
of regularization, which just as L2 regularization for example, aims to reduce the MDL
of the parameters we find. By Occam’s razor, this simplest solution, should perform the
best, as no noise is fitted and we focus only on relevant information [6].

2.3 Gradient Descent and Backpropagation

The most common optimization algorithm used in machine learning to find minima in
the loss landscape is Stochastic Gradient Descent (SGD) or variations of it [33]. The
idea behind gradient descent is to calculate the derivative of the loss with respect to the
parameters, and then change the parameters in the direction where loss is decreasing.
The rate at which to change the parameters is controlled by the learning rate. Because
it is very costly to do calculations on the whole dataset, stochastic gradient descent
approximates the gradient by computing it with a few randomly chosen samples, called
a batch.

0ir1=06; —aVeLp(0) (2.6)

To calculate the gradient of the loss with respect to the loss function we use the back-
propagation algorithm or reverse mode automatic differentiation [3]. This algorithm,
computes the gradients for parameters layer-by-layer, utilizing the chain rule. The cal-
culation of the gradient is often the most expensive part of training neural networks and
using even higher order methods that calculate the Hessian of the loss is not practical
due to the dimensionality of the parameter space and high cost of computing the second
derivative.

There are various popular optimization algorithms based on SGD. Some of the most
popular ones are SGD with momentum [30] or Adaptive Moment Estimation (Adam)
[20]. Momentum adds a velocity” vector to SGD that accumulates past gradients. This
helps accelerate convergence and navigate ravines in the loss landscape more effectively.
Adam maintains a moving average of both the mean if the gradients and the variance of
the gradients, which works particular well with sparse, noisy gradients.
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Batch size is the number of samples used for each gradient calculation. A large batch
size will approximate the whole training set better, while a small batch size will have a
lot of noise in the estimation. Keskar et al. [19] have observed that in many cases, large
batch sizes lead to worse generalization compared to using a small batch size. They
find that small batch sizes lead optimizers to flatter minima.

2.4 Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) was proposed by Foret et al. [9] to explicitly
find minima that are flat, and thus generalize better. The algorithm they describe is a
modified version of SGD, but could easily be applied to other optimizers as well, such
as Adam [20].

SAM work by performing two backpropagations. Firstly, it calculates the normal
gradient of the loss with respect to the parameters. Instead of changing the parameters
in the direction of decreasing loss, SAM calculates the following vector £(0):

. sign(VeLS(G))WeLS(G)]‘1’1
(IVoLs(®)||)7

£(0) =p 2.7)

where 1/g+1/p = 1 (note that | - [7~! denotes element wise absolute value and power).
Empirically they show that they get the best results for p = 2. This means that the
equation simplifies to:

X PIVeLs(0)|
0)=—""-"5 2.8
O Vo)l =

This vector £(0) is then summed with with current weights resulting in temporary
. ! A o . [ . .
weights: 6 = 6+ £(0). The geometric interpretation of this is, that instead of moving
weights into the direction of decreasing loss, we move into the direction of increasing

loss.

At the temporary gradients 0 asecond backpropagation is performed. The resulting
gradient we call VeLgAM (0). After computing this gradient, SAM moves back to the
original parameters 0 and performs a normal SGD update using VGLSSAM (0) as the
gradient.
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Sharpness-Aware Minimization (SAM) Visualized
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Figure 2.3: A visualization of a SAM update. First loss is maximized (blue arrow). Then
the gradient is calculated at the maximized loss. This gradient is then used to perform
gradient descent at the original parameters.

In summary, at each iteration, SAM first maximizes loss, then calculates the gradient of
the loss with respect to the parameters at this maximum loss, before moving back to the
original parameters where the final weight update happens with the second gradient.
We illustrated this in Figure [2.3]

2.5 Data Poisoning

Data poisoning is a technique used by adversaries to attack neural networks, discussed
heavily in the Part 1 of this dissertation. To summarize, when data poisoning a network,
an adversary injects poison data into the training set, which when trained on causes the
network to generate outputs, unintended by the owner of the network [29]. This may
happen in a targeted way, where a specific input causes a specific output targeted by the
adversary or an untargeted attack where the whole accuracy of the network is decreased
for example. Geiping et al. [10] use Equation [2.9]to specify the targeted data poisoning
problem:

T 1 N
minacc Y U(hga)(x4), 54 s..8(A) € argming Y llho(xi+Ai),y) (29
i=1 i=1

Here, x} is the ith target and y}‘dv is the ith target label, which the adversarial wants
the target to be labelled as. A is the perturbation added to the training data, turning
all perturbed data into poison data. Thus, 6(A) are the parameters that minimize the
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loss when training the network on the poisoned data. Essentially, we want to find the
optimal delta, which, after training the network, returns parameters that minimize the
loss on the targets.

2.5.1 Gradient Alignhment

"Witches Brew’, a data poisoning attack by Geiping et al. [10], uses gradient alignment
to generate poison data. During gradient alignment it is the goal of the attacker for
Equation to hold for any 0, since that will cause the minimization of the model’s
loss on the poison data to coincide with the minimization of the loss between the target
and adversarial label. In Equation ¥’ is the target input, y*“¥ is the adversarial
label that should be assigned to the target input, P is the number if poisons, A; is the
perturbation applied to poison x; and y; is the corresponding label of the poison.

1

P
Vo(L(x' ")) ~ = Y Vo (E(xi+Aii)) (2.10)
i=1

-l

Geiping et al. [10] achieve Equation [2.10]to hold, by optimizing an auxiliary problem.
They minimize Equation 2.T1] which is the negative cosine similarity between the
gradient of the target’s loss, and the gradient of the poison’s loss. The parameters 0 are
taken from a clean, already trained model.

(Vol(x!, ), YF | Vol(xi+ Ai,yi))

B(A,0)=1—
Vel (', ye)[| - [ 7y Vol(xi+ A i)l

(2.11)

In this dissertation we will use the gradient alignment poisoning algorithm to generate
data with the aim of changing the loss landscape of neural networks to find minima
that are flatter and generalize better. We choose gradient alignment, because it is to our
knowledge the only poisoning method that uses gradients and thus naturally combines
with the gradients used by SAM.

2.5.2 Other Forms of Data Poisoning

Gradient alignment is not the only way to perform data poisoning. In MInf Part 1,
we used the Poison Frogs algorithm [32], which uses feature collisions to poison
datasets. This data poisoning algorithm is most effective on finetuned models, as it
takes advantage of having the same base feature extractor and directly uses the loss
function of the feature extractor to collide the target representation in feature space with
samples from the adversarial target class. This way, when finetuning only the last layer
of a network, the attacker can guarantee the target input to be close to the desired label
in feature space.

A similar attack is the convex polytope method [2]. It works similarly to the Poison
Frogs attack, but explicitly creates poisons that form a convex polytope around the target
sample in feature space. This increases the probability of the target being assigned
the adversarial label, as the target is guaranteed to be surrounded by samples from the
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adversarial target class, unlike with Poison Frogs, where the target might be on the
edge of the adversarial target class. It takes a lot more iteration to generate poisons than
Poison Frogs, thus the increased effectiveness comes with a computational trade-off.



Chapter 3

Gradient Alignment for
Sharpness-Aware Data Poisoning

In this chapter we present our new method for generating data that assists an optimizer
in finding flatter minima. The main idea, is that we want to combine the Sharpness
Aware Minimization (SAM) by Foret et al. [9] with the gradient alignment used by
Geiping et al. [10]. We want to create poisons that align first order gradients used by
SGD with the second order ones used by SAM, with the final goal of finding minima
that are flat, but not using a computationally expensive optimizer like SAM.

3.1 Theoretical Motivation

Foret et al. [9] approximate the sharpness aware gradient as follows:

Vo LM (8) ~ Vo Ls(0)[g12(0) 3.1)

where the equation for £€(0) is:

VoLs(0
&(8) = P|9—S()’2 (3.2)
IVeLs(8)|[5
We want to enforce:
VoLg(0) ~ Vo LM () (3.3)

for any © where S’ is our modified training set, since this would allow us to train on S’
with normal SGD and follow the same optimization path achieved by SAM. By using
Equation 3.1 we get :

VoL (0) ~ Vo Ls(0)|o1¢(0) (3.4)

12
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Thus we get the following equation for S':

S' = argming||VeLs(6)|e(6) — VoLs (]| (3.5)

One of the main issues of optimizing this equation directly, is that magnitudes of
gradients vary significantly during training. We can use the technique used by Geiping
et al. [10], to solve an easier problem instead. We aim to align the gradients to point in
the same direction, instead of minimizing the difference between them directly. Just as
Geiping et al. [10] we will minimize the negative cosine similarity between them to do
this. The following equation is the one we want to minimize:

(VoLs(0)[o+¢(6), VoLs+a(0))

B(A,0) = 1 —
0 = Ve L5 @)oo [VoLsa®)] 6
_ . (&
[gl] - 1lgl]

where we set S’ =S+ A.

Geiping et al. [[10] choose their parameters 0 to come from an already trained network,
just performing the minimization on those final parameters. This works in the case
of data poisoning, because the objective is to change the label that is assigned to the
target by the final model, with no objective on training behavior during the beginning
or middle stage of training. We on the other hand want to influence training behavior
during all epochs. Thus, we choose the sample from models at different stages of
training for our algorithm.

3.1.1 Potential shortcomings

A difficulty we might have when trying to use the same method to find poisons, is
that if we move to very different parameters, the alignment might decrease and the
poisoning becomes ineffective. Considering that we poison the whole dataset instead of
just a few samples, there is a higher likelihood of the whole loss landscape changing
considerably, and the optimization path we take not being close to the final parameters
that the poisons were created with.

We try mitigating this by performing experiments with poisons not only created only on
the final trained model, but also created during the whole training process, with the aim
of encoding useful properties of SAM from the whole training process into the poison
data.

The poisoning process also doesn’t guarantee that the loss values on the poison data
is the same as on the original data, thus even if the gradients align, the value of the
loss might not and we could end up at non-optimal parameters. During normal data
poisoning only a few samples are poisoned and thus the overall loss values shouldn’t
change much, compared to our case where loss values might vary dramatically.



Chapter 3. Gradient Alignment for Sharpness-Aware Data Poisoning 14

To mitigate this we introduce a hyperparameter € that limits the magnitude of the
poisons, and thus limits the difference in loss between clean data and poisoned data.

3.2 Sharpness-Aware Data Poisoning Algorithm

Using the theoretical foundation we developed in the previous section we now present
the final algorithm for sharpness aware data poisoning. The algorithm is split into two
parts. Firstly the gradient computation that happens in the normal training loop, similarly
to when training with normal SAM. The second part happens after the sharpness aware
gradient has been computed, but weight haven’t been updated yet. This is the part
that created perturbations to add to the batch, such that vanilla SGD matches the SAM
gradient.

The following pseudocode outlines the training loop that generates the SAM gradient
and calls the poisoning. The inputs for the algorithm are the training set S and the
model’s loss L. We then train as with normal SAM, but after computing the sharpness
aware gradient g’ we do not update the weights directly, but call the data poisoning
algorithm first. This algorithm takes as input, the perturbations associated with each
sample in the batch AB, the current weights 8; and the sharpness aware gradient g'.

Input: S, L

Initialize 69 =0, =0

Initialize A to random noise

while not converged do
Sample batch B from S
Compute gradient g = Vg Lp(6;)
Compute £(0;) per Equation
Compute g’ = VQLB<ei)’9i+8(éi)
Compute AB = argmin s B(AP,0;)
Set e[+1 = 9; —T]g/
Sett=1t+1

end while

The following pseudocode is for minimizing cosine similarity between g’ and Vg Lg . A(0)
which we call B(A2,6;) in the pseudocode above and in Equation The algorithm
takes as input the SAM gradient g/, the model’s loss L, the weights 0, the batch B, the
maximum number of iterations n and the batch’s perturbation vector AZ. There also are
the poison learning rate o and perturbation maximum €. It outputs the perturbation for
the batch, modified to reflect poisoning against the SAM gradient g’.

The algorithm performs the same optimization procedure for n steps or until the pertur-
bation vector doesn’t change between iterations. During each step of the optimization,
the gradient of the loss on the poisoned batch B + AP is computed with respect to the
weights. This is the gradient that SGD would use when training on the poisoned dataset.
Then, the cosine similarity between the poison gradient g and the SAM gradient g’ is
computed. After that the gradient of the cosine similarity with respect to the perturbation
AB is computed which then is used by SGD with learning rate ¢ to minimize B(A5, 9)
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with respect to AB. After this, an optional projection step is called to constrain how big
the perturbation is allowed to be, limited by €.

Input: g/, £,0, B, n, AP, a, e

Output: AP

i=0

while not converged and i < n do
Compute gradient g = Vg Ly 5(0)
Compute B(AB,0) between g and g’ according to Equation
Compute Vs B(AB,0) and minimize B(AB,0) with one step of SGD
Project AP onto C
i=i+1

end while

The final algorithm is very compute intensive, as for each batch that is used during
training, the optimization procedure is called, which performs up to n backpropagations.
If we have m batches in S, training for e epochs, the final runtime complexity of the
algorithm is O(e-m-n). It is to be noted that in a lot of settings the optimization
algorithm converges after as few as 2 steps though, making the complexity O(m - n), the
same as normal training of a model with SGD. If we assume that convergence happens
after 2 steps, then it takes a total of 4 backpropagations per batch (2 for SAM + 2 for
optimization) which is equivalent to 4 training runs with SGD.



Chapter 4

Data Poisoning on a range of datasets
and models

In this chapter we run our algorithm on a range of different datasets and models.
We first introduce the datasets, models and metrics that we will be using. The first
experiments we run is a hyperparameter search to tune our poisoning algorithm. Using
the hyperparameters we found, we run experiments on a diverse set of datasets and
models, investigating the performance of the poisoning algorithm without having
experiment specific hyperparameters.

4.1 Methodology

We use a similar combination of datasets and models as used by Foret et al. [9], as their
experiments have shown substantial improvements using SAM and they are commonly
used datasets and models in computer vision and ML theory literature.

4.1.1 Datasets
We use 4 different image classification datasets in our experiments.

MNIST [7] is a dataset of 60,000 training and 10,000 test greyscale images (28x28
pixels) of handwritten digits (0-9), with balanced class distribution.

Fashion-MNIST [36] maintains MNIST’s structure (60,000 training/10,000 test, 28x28
grayscale images, 10 classes) but replaces digits with clothing items, designed to provide
a more challenging benchmark.

CIFAR-10 [21] contains 60,000 RGB images (32x32 pixels, not 28x28) across 10
object classes, with 6,000 images per class, split into 50,000 training and 10,000 test
samples.

CIFAR-100 [21] uses the same format as CIFAR-10 but features 100 classes organized
in a two-level hierarchy, with 600 images per class, maintaining the 50,000/10,000
train/test split.

16
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4.1.2 Models

We use 4 different kinds of convolutional networks in our experiments.

LeNet-5 [23] is a 7-layer CNN developed for handwritten digit recognition and trained
on the MNIST dataset. It is very simple, but achieves high accuracy on MNIST.

ResNet [[12] is a residual convolutional network that introduced skip connections (or
“shortcuts”) to allow information to bypass layers. This helps solve the vanishing
gradient problem in deep networks, enabling training of networks with hundreds of
layers.

WideResNet [37] modified the original ResNet by making it wider rather than deeper,
increasing the number of channels in each layer while decreasing depth. This approach
improves performance with fewer layers, reducing training time while maintaining
accuracy.

DenseNet [14] connects each layer to every other layer in a feed-forward fashion.
Unlike ResNet’s additive skip connections, DenseNet concatenates feature maps from
previous layers, promoting feature reuse and improving gradient flow. This architecture
requires fewer parameters while achieving competitive performance.

4.1.3 Metrics

We use a variety of metrics to evaluate our experiments. Some of the metrics we use
are for evaluating performance and others for sharpness calculations. The sharpness
metrics will only be used in Chapter 5 in order to save computational cost, and as the
focus of Chapter 4 is whether poisoning can improve performance.

Accuracy To measure the final performance of a model in computer vision, accuracy
is used, which is the percentage of classes which are assigned the correct label by the
model. Accuracy can be be computed over any collection of samples. A common way
to divide data in machine learning is to use training, validation and test sets. Where
training sets are used to train a model, validation sets are used to find hyperparameters
or aid development in some way and test sets are only used to evaluate final model
performance. This split is done to prevent overfitting and gain a sense of how the model
would perform on truly unseen, new data.

Loss Similar to accuracy, loss is used to measure performance of a network, but it is
the value calculated by the loss function on the outputs of the network directly. The
loss function commonly is mean square error or cross entropy, which we use in our
experiments, as is common in literature [[12] [37] [14]]. Due to logging errors we do
not have loss values for experiments in Chapter 4, only in Chapter 5. Thus, accuracy is
used in Chapter 4, which gives a very good approximation of the loss.

Spectrum of the Hessian The spectrum of the Hessian is the distribution of it’s
eigenvalues. An approximation of the largest eigenvalues is commonly used to measure
sharpness [9]. We use implementation of Golmant et al. [[11]] for Lanczo’s algorithm [22].
We compute Amax/As to get a numerical representation of the spectrum, a commonly
used approximation for sharpness [8] [16], in addition to plotting the eigenvalues.
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One-dimensional linear interpolation. As presented in Chapter 2, we use one-
dimensional linear interpolation loss plots [19] to visually represent sharpness. It also
has the added benefit of being less computationally expensive compared to calculating
the Hessian’s eigenvalues.

4.2 Hyperparameter Search

The first experiment we do is to find out what parameters to use in the data poisoning
algorithm. We choose relatively ”simple” dataset and model in the interest of saving
compute. We choose a computer vision task, as it is common in machine learning
theory and optimization literature [[19,19,8]. The follow up experiments that will use the
hyperparameters found are also computer vision tasks and thus hyperparameters should
hopefully translate between tasks well. The benefit of finding hyperparameters that
work well across different datasets is a combination of saving us compute for follow up
experiments, as well as giving others a starting point to try out our method.

4.2.1 Setup
Dataset | Model | LR’ | € (%) | Iterations | Start Epoch
F-MNIST | ResNetl18 | 0.001,0.01,0.1 | 0,5 | 2550 | 0,10

Table 4.1: Hyperparameter search space for poisoning experiments on Fashion-MNIST
with ResNet18. LR’ represents the learning rate for poisoning, € indicates perturbation
magnitude, Iterations shows the number of poisoning steps, and Start Epoch denotes
when poisoning begins during training.

In Table 4.1 we outline the different parameters we try. We run experiments on all pos-
sible combinations of the hyperparameters, resulting in 24 different runs. Unfortunately
due to compute constraints we aren’t able to run multiple repeats or try a wider range of
parameters. We perform the search on F-MNIST with a ResNet-18.

To give a fair comparison between a baseline and our method we do the following:

1. We perform an initial hyperparameter search on the model to find learning rate
and momentum.

2. We then use the values found to perform the hyperparameter search on the
augmentation algorithm, with budget B.

3. We perform another hyperparameter search to find better learning rates and
momentum with budget B. These values are not used by the poisoning algorithm,
but to train models that we compare the poisoning performance against.

This procedure aims to give a fair comparison on whether our poisoning method works
better due to the algorithm and not due to allocating more compute to hyperparameter
searches. The hyperparameter search used to find initial parameters is the following.
We search search for learning rate and momentum values, with the minimum learning
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rate being 10~* and the maximum being 0.1. The momentum is chosen to be between
0.01 and 0.99. We train for 100 epochs using SGD with momentum and a batch size of
64. We use the same setup to perform the second hyperparameter search as well, which
we compare the final poison results against.

4.2.2 Results
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Figure 4.1: Hyperparameter run ratios of poison validation compared to SAM validation
for (a) number of iterations, (b) epsilon value, (c) learning rate, and (d) poison start
epoch. Higher ratio means poisoning is more effective.

Figure4.1|is split up into 4 different histograms, each dedicated to one of the hyperpa-
rameters we were optimizing. The histograms show the ratios of the highest validation
accuracy of a training run on poison data to the highest validation accuracy of a training
run with SAM on clean data. The SAM run is the one used to create the poison data that
is being trained on. We use ratios because the performance of the SAM run has a large
impact on how effective the poison run is, thus comparing the ratios is more effective
in choosing which poisoning parameters are better at matching SAM or exceeding it.
The correlation between the performance of the SAM run and our poisoning method
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highlights that it is able to encode information into the poison that comes from training
with SAM.

We can see that there is a lot of variance in how effective parameters are, a large part
of which is due to noise, seeing as we have only very few sample runs. Even so, on
average we have 50 iterations outperforming 25, O epsilon outperforming 5% epsilon,
0.01 outperforming the other learning rates and starting at epoch 10 for poisoning
actually is the most consistent improved hyperparameter outperforming poisoning from
the beginning. The later poison start epoch supports our conjecture that poisoning after
a few epochs gives stabler perturbations that are more focused on finding a minimum.

Dataset \ Model \ LR” \ € \ Iterations \ Start Epoch
F-MNIST | ResNet18 | 001 [0 | 50 | 10

Table 4.2: Optimal poisoning hyperparameters determined through validation testing for
Fashion-MNIST with ResNet18. LR” denotes the learning rate for poisoning, while Start
Epoch indicates the epoch at which poisoning begins.

Finally, with the hyperparameters found, we perform 5 runs of training on clean data
and 5 runs training on poisoned data and report average and standard errors. The results
for SAM come from the poisoning runs. We can see a slight improvement in the model
trained on poison data compared to the baseline, though following experiments will
help us be more confident in the effectiveness of our method.

Dataset | Model Configuration | Test Accuracy (%)

ResNet18 91.64+0.45
F-MNIST | ResNet1& + Poison 91.99+0.15
ResNetl18 + SAM 91.99+0.16

Table 4.3: Performance comparison of standard training, poison-based training, and
Sharpness-Aware Minimization (SAM) on Fashion-MNIST with ResNet18. Bold values
indicate the best performance. Results demonstrate that both poisoning and SAM
techniques improve model accuracy compared to standard training.

4.2.3 Discussion

Because of the limited amount of runs we could perform for our hyperparameter search,
we are constrained in what we can deduce from it. The strongest improvements we
could see were from 50 iterations compared to 25 and from starting poisoning after
10 epochs instead of 0. The increased number of iterations translates to us spending
more compute on solving the optimization and thus increasing the quality of the poisons
and how much SGD gradients align the the SAM gradient. The performance increase
that comes from starting after 10 epochs instead of 0 might be because of very noisy
gradients at the beginning of training, which are not aligned with SAM at all and which
also do not get repeated when training on poison data. Not encoding information about
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the noisy gradients at the start could make the poisons less noisy and more focused on
encoding important information that comes in later stages of training.

4.3 Poisoning without hyperparameter search

In this section we run experiments to see how the data poisoning methods perform
without dataset and model specific hyperparameters. A poisoning algorithm that does
not rely on expensive finetuning beforehand is able to be widely used and save a lot of
computational resources that would’ve been used to finetune.

Since we want to generalize beyond just one dataset and model for this, we choose a
variety of models and datasets to run experiments on. In total we run experiments on
four different combinations of datasets and models. We run experiments on DenseNet3,
WideResNet-16 and WideResNet-18. The datasets we use are CIFAR-10 and CIFAR-
100. Due to logging errors we unfortunately can only report accuracy and not loss,
which is not ideal as we fundamentally want to change the loss landscape, but accuracy
is a very good proxy for loss.

4.3.1 Setup

We keep the same poisoning hyperparameters as found by the hyperparameter search
described previously. Poisoning Rate of 0.01, epsilon of 0, 50 iterations. Depending
on the experiment we sometimes choose a later start epoch than 10, because some
experiments train for a much longer time than the model in our hyperparameter search.

‘We run our method on CIFAR-10 and CIFAR-100 datasets and DenseNet-3, WideResNet-
16 and WideResNet-28 models. We repeat each experiment 5 times and report mean
test accuracy and standard errors.

For DenseNet-3 we train for 100 epochs with a batch size of 64 and a learning rate of
0.1 which gets divided by 10 at 50 epochs and divided by 10 again at 75 epochs. We
use weight decay of 0.0001 and a Nesterov momentum of 0.9. For both WideResNets
we train for 200 epochs with a weight decay of 0.0005, learning rate of 0.1, momentum
of 0.9. We multiply the learning rate by 0.2 at 60, 120 and 160 epochs.

The hyperparameters are taken from the original papers presenting DenseNets and
WideResNets [37,14]] and are running for fewer epochs than in the originals to save
compute.

4.3.2 Results

As we can see from Table[d.4]there is no definite improvement when it comes to training
with poison data across datasets and models. The largest improvement from training on
poison data comes for CIFAR-10 + DenseNet-3, where test accuracy increases from
89.87% to 90.88%. For CIFAR-100 + WideResNet-16 the average test accuracy is
slightly higher, but the standard error is extremely high compared to this improvement.
On CIFAR-10 + WideResNet-16 we can see that training on poisoned data gives worse
accuracy than training on clean data.
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Dataset | Model Configuration | Test Accuracy (%)
DenseNet-3 (k=40) 89.87+0.24
DenseNet-3 (k=40) + Poison 90.88+0.15

CIFAR-10 DenseNet-3 (k=40) + SAM 89.5640.29
WideResNet-16 91.78 +0.41
WideResNet-16 + Poison 91.164+:0.24
WideResNet-16 + SAM 90.01 +£0.25
WideResNet-16 70.08 £0.22
WideResNet-16 + Poison 70.13+0.42

CIFAR-100 WideResNet-16 + SAM 67.27£0.46
WideResNet-28 70.96 +0.78
WideResNet-28 + Poison 72.31+041
WideResNet-28 + SAM 69.02+0.37

Table 4.4: Performance comparison of different model configurations on CIFAR-10 and
CIFAR-100 datasets. Bold values indicate the best performance within each model group.
Poison and SAM denote poisoning and Sharpness-Aware Minimization optimization
strategies, respectively.

4.3.3 Discussion

From our results, we see that in three out of four cases, training with the poison data
improved test accuracy, when comparing to training on clean data, as well as when
training with SAM. For CIFAR-100 with WideResNet-16, this improvement is very
small compared to the standard deviation of the mean test accuracy, thus we can not
rely on this to be an improvement. Thus, we are left with two out of four experiments
improving by a meaningful amount when comparing with SGD on clean data. This
does show that sharpness aware data poisoning can be promising and lead to results that
beat training with normal SGD.

It is also interesting that the SAM optimizer actually performs worse in a lot of cases.
We suspect that this is because SAM takes longer to find a minimum as it doesn’t always
follow the direction of steepest descent. In the original paper by Foret et al. [9], they
train for more epochs than we do to reach a minimum, but because of compute restraints
we could not train for that long. Thus, training for more epochs will likely give us
results where SAM performs better than normal SGD. It may also be possible that
letting SAM train for more epochs, and thus poisoning at a time in training where SAM
outperforms SGD, makes poisoning even stronger. As we saw in the hyperparameter
search, poisoning more towards the beginning of training does not provide as much
benefit as poisoning towards the end. Combining this fact, with the facts that SAM
needs to train for longer, there is space for improvement in how poisoning might be
applied.
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4.4 Limitations

In this section we discuss the limitations of both the hyperparameter search and of the
further experiment involving no hyperparameter tuning. Due to the compute intensive
nature of our experiments, there are a variety of limitations that our results need to be
put in context with.

4.4.1 Hyperparameter Search Limitations

In the hyperparameter search we use a ResNet-18 with the F-MNIST dataset. We
allocated extra compute to the non-poison setup compared to the base parameters we
used for the poison search. Nevertheless, for our base setup we only finetuned learning
rate and momentum. Additional hyperparameters such as batch size or weight decay
could’ve also been tuned to extract even better performance our of the model, but
weren’t considered to be able to focus more on the search for good poison parameters.

We also only performed our search on one model and one dataset. This is an obvious
limitation, as this is not a very representative of machine learning as a whole. Addi-
tionally, we only were able to perform one run for each hyperparameter combination,
which causes results to not have as much statistical evidence. It also made it hard to
properly identify the best combination of hyperparameters, as there was a lot of noise
in the results. Additionally, the differences between poison performance and SAM
performance were very small, which was to be expected, and a poison run’s performance
seemed to be dependent on the SAM performance to some degree.

4.4.2 Fixed Hyperparameters Experiments Limitations

For our experiments that did not involve a hyperparameter search, we used two different
datasets and 3 different models. This is a significant improvement over the previous
experiment using just one of each, but is still limited. Firstly, CIFAR-10 and CIFAR-100
have the same images, just with different labeling applied. In addition to that, we focus
solely on image classification. Performing experiments in other domains, such as text
would strengthen our results and let us make conclusions about how the algorithm would
perform in other settings. We also only focus solely on convolutional neural networks.
Other popular architectures such as transformers [34] are widely used and it would be
interesting to see how our algorithm performs on a different type of architecture.



Chapter 5

An In Depth Analysis on how
Sharpness Aware Data Poisoning
works

In this chapter we further investigate our data poisoning method to gain insight into
how it might be improved and whether it really does help SGD find flatter minima in
some cases. We perform experiments on MNIST [7], training with a LeNet-5 [23]], as
well as CIFAR-10 and DenseNet-40.

5.1 Training Setup

For MNIST, we split the held out set into 4000 validation images and 6000 test images.
The model we use is a LeNet-5, a simple convolutional network shown to be able to
achieve around 99% test accuracy on MNIST. We follow a similar training setup as
LeCun et al. [23]. We use cross entropy loss, SGD with a learning rate of 0.001, weight
decay of 0.0001, momentum of 0.9, batch size of 64 and training for 30 epochs.

5.2 Poisoning Setup

From a few preliminary testing runs, we chose a starting poisoning at epoch 1, iterating
for 5 iterations per sample, with a poison rate of 0.01 and no epsilon. We also train on
the poison data from the first epoch. For some experiments we may vary from these
default parameters and will mention the experiment specific ones.

5.3 Evaluation of LeNet-5 on MNIST

For our experiments we logged metrics of our poisoning algorithm in order to better
understand its behavior. We do this in order to identify potential shortcomings and
motivate further research that can be done in this area.

24
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We begin by plotting validation and training losses of clean vs poisoned data. We
follow this up by investigating how the SAM gradients compare to the poison gradients.
Finally we look at how the poison gradients change, as the data gets poisoned over time
and the drift between optimization objectives at different epochs. We also perform a
sharpness investigation of clean vs poisoned data by plotting eigenvalues and using
one-dimensional linear interpolation plots.

5.3.1 Losses when poisoning on MNIST

Firstly we can see the progression of losses when trained on clean MNIST vs the
poisoned MNIST in Figure We can see that the gap between training loss and
validation loss is much higher for vanilla than poisoned. Validation loss on vanilla
MNIST also drops much faster than on the poisoned data, but then flattens out earlier.
Training on the poisoned data is able to improve validation loss slightly after around 25
epochs, though the difference is negligible.

Poison vs Baseline Losses
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Figure 5.1: Train and Validation Losses for Poison and Baseline for LeNet-5 on MNIST

The slower decrease in loss on poison can be attributed to it being more difficult
to learn from the noise we added. Nevertheless, this added noise had the effect of
letting validation loss continually decrease, compared to clean data, which overfits.
The training loss on both clean and poison data is higher than on the validation data.
This could indicate that the validation set is harder than the train set. Normally we
would expect a lower training loss than validation loss. We only notice this for the
non-poisoned data toward the end of training.

5.3.2 Does random noise help with training?

To inspect how the magnitude of the perturbations changes during training, we visualized
it in Figure[5.2] We initialize the poison perturbations to normally distributed random
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noise at the beginning with a magnitude of 300. We can then see that magnitude steadily
increases at each iteration, as the optimization algorithm tries to increase the cosine
similarity between SAM and SGD gradients. The final magnitude after poisoning is
at a little over 1000. (Note that we use the Frobenius norm [135]], which is the default
matrix norm of PyTorch)
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Figure 5.2: Magnitude of the poison deltas over epochs. Magnitude steadily increases
as training progresses.

From this we can construct noise that we add to the clean data. It is a common practice
to use noisy gradients [27] or add noise to the data directly [4] in order to improve
generalization. Thus, we can make a comparison between training on our poison
perturbations and the randomly distributed noise, in order to see whether the benefits of
poison might just come because it is noise that causes robustness, or there is a structural
benefit to the perturbations we generate.

In Figure |5.3| we make a comparison between the losses when training on random noise
and when training with poisons. We can see that there is a noticeable benefit that comes
from training with poison compared to random noise. Validation loss when training
with poison is consistently below validation loss when training on random noise. In
addition to that, the training loss decreases faster on random noise, showing that it is
much easier to fit the random noise than the structure found in the poison data. We can
also see that after around 24 epochs, validation loss starts to increase again, pointing
to overfitting, even with random loss embedded into the data. The validation loss of
training on poison on the other hand decreases steadily, showing that there are clear
benefits against overfitting.
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Poison vs Random Noise Losses
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Figure 5.3: Train and Validation Losses for training with normally distributed noise and
training with poison. Magnitude of the noise is equal to 1063, which is the same the
poison magnitude after 30 epochs.

5.3.3 Poison vs SAM on MNIST

Previously we have compared training with poison and training without, with normal
SGD. From this we have seen that there are considerable benefits that come from
training with poison. Now we compare how training with SAM differs from training
with poison using normal SGD.

In Figure [5.4] it looks like SAM performs a lot worse than SGD on Poison. This is
mainly due to SAM converging much slower than SGD with poison does. Validation
loss when training on poison data stays consistently under validation loss when training
with SAM. Similarly, training loss on poison data also stays consistently under the
training loss of SAM. The gap between validation loss and training loss is much higher
for SAM than for SGD on poison. This shows that SAM might be better at preventing
overfitting, though training for more epochs would give more insight. Nevertheless, the
faster convergence of SGD on poison data may make training on the poison data even
more viable than pure SAM, depending on the training setting.
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Poison vs SAM Losses
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Figure 5.4: Train and Validation Losses for training poison using SGD and training on
clean data with SAM.

5.3.4 Cosine Similarity of Gradients

To understand SAM and the poisoning process further, we can investigate how cosine
similarity between gradients behaves over time. Since we optimize for cosine similarity,
it is important to understand how this objective behaves and how easily we can optimize
for it.

5.3.4.1 Cosine Similarity during poisoning

In Figure[5.5| we see the cosine similarity between the SGD gradient calculated on the
poison and the SAM gradient. We can see that the cosine similarity loss is very low
throughout the duration of training. At the beginning of training it is the largest, which
might have to do with the network weights not being along a proper training trajectory
yet and a lot of noise in the gradients. As training progresses, cosine similarity loss
reduces and stays at around 0.05. This shows that as training progresses, the SAM and
SGD on poison objective, while not being the same completely, are similar. It is to be
noted that the cosine similarity loss in Figure [5.5]shows the gradients on the poison
data, and thus as the poison evolves, gradients change as well, in addition to parameters.
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Figure 5.5: Cosine Similarity Losses between poison gradient and SAM gradient during
poison time over all epochs for LeNet-5 on MNIST.

The previous figure shows the losses over the whole training run, when we zoom in, we
can see how cosine similarity works on a batch by batch basis, pictured in Figure [5.6]
Here we can see that there are spikes at regular intervals, which decrease until a next
spike appears. Each of the spikes corresponds to a new batch, where the loss decreases
with the number of poison iterations performed on the batch. This is why the spikes are
spaced apart evenly. As we can see, the poisoning is very effective in minimizing the
cosine similarity loss. There also is a lot of variance between different gradients. Just
in the sample Figure [5.6| there are some gradients that start at a loss of over 0.6, while
others start out at a very low values less than 0.05. This shows that the cosine similarity
between gradients depends strongly on the data batch, not only on the parameters, as a
small change in parameters would not cause such an abrupt change in similarity.
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Figure 5.6: Zoomed in view on Cosine Similarity Losses between poison gradient and
SAM gradient during poison time over all epochs for LeNet-5 on MNIST.
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5.3.4.2 How does the cosine similarity objective change during training

The question is, whether this reduction in cosine similarity loss holds over time, or
whether subsequent epochs destroy the similarity between poisons, and thus render
our poisoning ineffective. To investigate this, we keep the parameters for the network
trained at earlier epochs, and graph the average cosine similarity loss for it as the main
networks trains, and poisons keep getting perturbed. As we can see in Figure the
loss for poisons does increase as the poison gets more perturbed. We can see that the
perturbation is so large in facts, the similarity strays further apart than the baseline
similarity which stays quite low. Thus, this naive poisoning process has a negative
effect on cosine similarity as it goes on. A way to mitigate this would be to impart
multiple weights from different training stages into the loss objective. That way, we
could punish perturbation that increase distance between SAM and SGD gradients for
all stages of training.

Average Cosine Similarity Loss Over Epochs

. g—— 88—
—"

o

o/

0.6

04

Average Cosine Similarity Loss

0.0

0 5 10 15 20 25 30
Epoch
—e— Poison Epoch 1 —s— Poison Epoch 10 —s— No Poison

Poison Epoch & —s— Poison Epoch 156

Figure 5.7: Average cosine similarity of SAM gradient and standard gradient on poison
data over epochs. Shown for weights after training on 1 epoch, 5 epochs, 10 epochs, 15
epochs and for all epochs with no poisoning. We can see that as poisoning progresses,
cosine similarity of the poisons decreases. It decreases even more than the baseline
cosine similarity between SAM gradient and SGD gradient when no poisoning occurs.
This shows that later poisoning counteracts any cosine similarity effects from previous
epochs.

5.3.4.3 Cosine similarity on clean data with SAM

Looking at just the cosine similarity between SAM and SGD gradients on non-poisoned
data, we can see that it isn’t in fact constant, but has a sharp spike at the beginning
before falling suddenly and then steadily increasing, as we can see in Figure[5.8] The
loss is very small, with the average loss never exceeding 0.1, showing the when training
with SAM, the SAM gradient does not differ too much from the SGD gradient. The
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slow increase in loss signifies that when the optimizer approaches the minimum, SGD
is much more likely to go in a direction of sharp loss, whereas SAM continues trying to
find a flatter minimum. The spike in cosine similarity loss at the beginning of training
can be attributed to the noisy irregular loss landscape that happens when network
weights are close to their initially randomly initialized weights.

Non-poison Cosine Similarity
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Cosine Simi

0.075
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Figure 5.8: Cosine Similarity Loss between SAM gradients and normal SGD gradients
when training with SAM over 30 epochs.

5.3.5 How does sharpness of poisoned and unpoisoned minima
differ?

From an analysis of the eigenvalues of the Hessians of the minima found with vanilla and
poison MNIST data, we can see that there wasn’t a significant effect on the sharpness of
the networks. Looking at the eigenvalues of the two networks, they are approximately
similarly distributed as we can see in Figure[5.9(As mentioned in previous chapters,
large eigenvalues indicate a large curvature/sharpness). This means that training on
the poison data, even if it increases performance, does not considerably change the
sharpness of the final minimum.
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Figure 5.9: Eigenvalues for baseline and poison models.

We can also look at one-dimensional linear interpolation graphs to analyze the sharpness
of the minima found when training on the poison vs baseline data. We can see in Figure
[5.10]that loss is a little bit more sensitive around the poison minimum compared to the
baseline minimum. Similarly, accuracy decreases around the poison minimum a bit
sharper than around the baseline minimum. Overall, the minima do seem to behave
quite similarly and there does not seem to be a significant change in the sharpness of
the minimum we find on poison data compared to clean.
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Figure 5.10: One-dimensional linear interpolations of loss and accuracy. Poison minimum
is at 0.0 and baseline minimum is at 1.0.
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Further possible expansions of the
data poisoning algorithm

In this chapter we present ways that the algorithm could be extended to 1) ensembles of
models, making it potentially more robust and effective and 2) data augmentations, such
as crops or rotations, all common within computer vision and often used as a defense
against data poisoning.

6.1 Ensembles of models

In data poisoning, it is common to poison with an ensemble of models as a target.
These ensembles could be made up of different parameters applied to the same model
architecture, found through different training runs for example. In this case, the idea is
that poisoning against multiple sets of parameters makes attacks more robust and keeps
poisons from “overfitting” against one set of weights. Ensembles could also be different
architectures, in which case the target is to have more effective poisoning even if the
model architecture is unknown. For our algorithm both of these settings could be useful
and potentially improve performance because poisons will be more robust to a different
loss landscape.

The following pseudocode shows how to extend the current algorithm to work against
an ensemble of models. The different parameters are denoted 6/ and there are different
m parameters.

Input: S, L

Initialize 6 randomly, t =0

Initialize A to random noise

while not converged do

for j from 1 to m do

Sample batch B from S
Compute gradient g/ = Vg Lp(8;)
Compute &(6!) per Equation

33
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Compute g/ = Ve_jLB(e{)|e{+€(é{)
end for
Compute A? = argmin,s B(AB,6},..,0™)
for j from 1 to m do
Set ] | =6/ —ng"
end for
Sett =141
end while

The following is the adjusted minimization of the negative cosine similarity for multiple
models:

Input: g/, £,0',...6", B, n, AP, a, e
Output: A8
i=0
while not converged and i < n do
total_loss = 0
for j from 1 to m do
Compute gradient g = Vg, L, 25(87)
Compute B(AB,6/) between g and g’ according to Equation
total _loss = total _loss +
end for
Compute V s B(AP,0) and minimize B(A®,0) with one step of SGD
Project AB onto C
i=i+1
end while

6.2 Data augmentations

In computer vision tasks, data augmentations are often used to extend datasets and
improve network performance and robustness. Data augmentations are often used in
data poisoning, as a defense, since poisons often can be made harmless by applying a
simple rotation or flip. A common strategy to make data poisoning effective even in a
training regime that utilizes data augmentations, is to pretend like the data augmentation
is another layer of the neural network, backpropagating through the augmentation to
create the poison. A requirement for this is that the augmentation is differentiable, which
many common augmentation are such as flips, rotations or crops, and are provided by
libraries [31]].

We outline an algorithm to apply poisoning on augmented data below, which we already
support in our codebase. (We denote augmented data with a superscript A and thus
BA is the augmented batch and (B + A)? is the augmentation applied to the sum of the
batch and delta):

Input: S, L
Initialize 69 =0, =0
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Initialize A to random noise

while not converged do
Sample batch B from S
Apply augmentation to B to produce BA
Compute gradient g = VgL (6;)
Compute £(0;) per Equation
Compute g’ = VQLBA(ei)‘ei+8(Aei)
Compute A? = argmin s B(AP,0;)
Set 6,1 =6, — g’
Sett =1+ 19765

end while

The following is the adapted optimization algorithm. Note that the augmentation needs
to be differentiable, because we minimize the negative cosine similarity with respect to
the perturbations and thus need to backpropagate through the augmentations to compute
the gradient.

Input: g/, £,0, B, n, AP, a, ¢

Output: AP

i=0

while not converged and i < n do
Compute gradient g = Vo L5 As)4(6)
Compute B(AB,0) between g and g’ according to Equation
Compute V s B(AP,0) and minimize B(A®,0) with one step of SGD
Project AB onto C
i=i+1

end while

For poisoning augmented data we set B(+,0) to the following:

(VoLpa(6)|o1e(0): VoL(pra) (9))

B(A,0) =1—
[IVoLpa (0)lo+2( H IVoLipia (0)]]

6.1)

6.3 A generalization of encoding information in the data

We do not need to limit ourselves to sharpness or gradient alignment when performing
optimization of the data. In this section we introduce a more general problem statement,
aimed at motivating future work on optimizing data and encoding data in it that can
assist with machine learning.

6.3.1 A general statement

The most general statement for optimizing data to learn on is the following. Say we have
a hypothesis class #, a dataset S C X x Y and a learning algorithm A : X x Y — H. We
then have an objective function o for which we want the learning algorithm to minimize
this objective function when training on data. Thus, we need a poisoning algorithm P,
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which takes a dataset S, learning algorithm A and objective function o as parameters,
and return a poisoned dataset ', such that 0o(A(S")) < o(A(S)).

This problem statement can be applied to the data poisoning performed in this disserta-
tion. We have a learning algorithm A to train the model. We have an objective function
o, the sharpness of the trained model. We have a clean dataset S on which we train. And
we finally get a poison dataset S’ that is sharpness aware.

6.3.2 Optimizing for an auxiliary objective

Of course, in this dissertation a big hurdle is that it is often hard to optimize directly for
an objective, and we need to optimize for an auxiliary objective instead. Thus we can
add another auxiliary function o’ to the problem statement. Now we want the poisoning
algorithm P to poison a dataset S by minimizing an auxiliary objective o’ which should
lead to a reduction in our main objective o. In this dissertation we used the negative
cosine similarity between SAM and SGD gradients as our auxiliary objective and the
final minimum’s sharpness as our main objective.

6.3.3 Possible Objectives for Data Poisoning

While our primary focus has been on sharpness, the framework we developed can be
extended to optimize for various objectives beneficial to neural network training and
performance.

Loss Loss minimization represents perhaps the most fundamental objective. By
strategically modifying training data, we can reshape the loss landscape to help with
discovery of higher-quality minima. This approach requires careful implementation
to ensure optimization produces lower loss on the original, clean data, not just on the
poisoned dataset.

Privacy Preserving data privacy while maintaining model utility presents another
compelling application. Differential privacy [17], typically enforced through algorithms
like Differentially Private SGD [l1], offers formal guarantees against data extraction.
Developing poisoning strategies that enhance privacy protections could prove valuable,
though establishing rigorous theoretical guarantees would be essential for practical
adoption.

Regularization Optimizing data to implicitly impose regularization effects represents
another promising direction. For example, data modifications that discourage rapid
weight growth could potentially replace or complement explicit regularization terms
like L2 penalties, potentially offering more nuanced control over model behavior.

Bias Mitigation Our approach enables formal characterization and targeted reduction
of unwanted biases. This can be accomplished either through selective data exclusion or
through strategic modifications that transform biased distributions into more balanced
ones, thereby addressing a critical challenge in machine learning ethics.
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Pseudo-Labeling Existing methods like pseudo-labeling [18] already demonstrate
how data modification improves training outcomes. In this technique, a model trained
on partially labeled data assigns labels to unlabeled examples, effectively expanding
the training set. This process naturally reshapes the loss landscape, smoothing it and
eliminating sharp minima that might otherwise trap models trained on limited data. Our
poisoning framework shares conceptual similarities with this approach but offers more
explicit control over the resulting landscape properties.

Multi-objective Poisoning Many practical applications will require balancing mul-
tiple objectives simultaneously. The ensemble poisoning method discussed earlier
exemplifies this approach by combining cosine similarity objectives across multiple
models. Similar principles could address other multi-objective scenarios, such as si-
multaneously optimizing for sharpness while constraining perturbation magnitude to
prevent divergence between clean and poisoned data objectives. This represents a
particularly rich avenue for future research.

While this dissertation has focused primarily on sharpness as an objective, the method-
ology we’ve developed opens numerous possibilities for future investigation. The
range of potential objectives and their combinations suggests that data poisoning, when
approached constructively, offers a powerful new tool to help train neural networks and
optimize them for various objectives.
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Conclusion

In this dissertation we proposed a new method for optimizing data with data poisoning,
such that this poisoned data uses gradients that match the gradients used by SAM. We
introduced theory to ground this method and explained concepts such as sharpness,
SAM and gradient alignment. Using this theory we proposed a formal algorithm to
perform poisoning with. This algorithm we evaluated empirically in a few ways. We
performed a hyperparameter search in order to find parameters that work well for our
poisoning method. These hyperparameters can be used as a starting point for others who
want to expand on this research in the future. Following this hyperparameter search, we
performed experiments on various datasets and models, to evaluate performance of the
algorithm without dataset and model specific hyperparameters. We found improvements
when training on various datasets and models, even without dataset and model specific
hyperparameters. In some cases, these improvements not only beat training on clean
data with SGD, but also training on clean data with SAM. This can be attributed to the
combination of poison data and SGD benefiting from sharpness aware gradients and the
faster convergence of SGD compared to SAM.

To further explain our results, we performed experiments on MNIST with LeNet-5,
measuring various metrics related to poisoning. We documented how alignment between
gradients changes over time. We found that a major weakness of the current poison
algorithm is the undoing of poisoning by later epochs. Furthermore, in some cases
poison data actually reduces the cosine similarity between the SAM gradient and the
SGD gradient, compared to when just training on non-poisoned data. We do not know
whether this is specific to the small model and dataset we used and further research
will be needed. We did propose a few potential solutions to mitigate this problem,
which can be explored in further research. Additionally, we created a more generalized
problem statement of using data poisoning to optimize for some objective. We hope that
this problem statement can be used to try additional methods to poison a dataset and
additional loss functions, not limited to just sharpness, but other properties of neural
networks as well.

To the best of our knowledge, the algorithm we proposed is the first one to modify the
loss landscape of neural networks directly, by applying data specific perturbations to
the whole training set. Classic data augmentation differs, since those augmentation are

38



Chapter 7. Conclusion 39

not data or loss landscape specific. In contrast to pseudo-labeling [18]] we modify the
loss landscape by modifying the inputs to the network, instead of the data labels.

In conclusion, we investigated and explained properties of the poisoning algorithm we
created. We hope that this dissertation, inspires others to think about data in a non-fixed
way and that optimization techniques should not just be limited to network weights.
There are many avenues to explore in this region, with huge potential for impact and
much left unexplored.
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Appendix A

Experiments

A.1 FMNIST ResNet-18 Training Regime

We perform a hyperparameter search on the ResNet-18, with the following setup: We
use Optuna to perform 100 trials where we train for 100 epochs, selecting a learning rate
between 0.1 and 0.0001 and selecting a momentum value between 0.1 and 0.9. The best
validation accuracy we get is 92.275 with a learning rate of 0.0897 and a momentum of
0.887. We use the Optuna MedianPruner to stop trials early that are unpromising. The
seed we used is 112.

For our method we perform a hyperparameter search on the learning rate used by the
cosine similarity maximization, where we select an a learning rate between 0.00001
and 0.001. We also select an epsilon value between 0.001 and 1. We perform this
hyperparameter search for iteration set to 30 and iterations set to 100. We then run the
hyperparameter searches for 100 trials using the hyperparameters found from the best
model above.
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