
Expanding HaskellQuest: a collaborative
multiplayer game for teaching Haskell

Neel Amonkar

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2025

Abstract
This report is the second part of the HaskellQuest project, concerning the development
of an educational game to teach the functional programming language Haskell. Haskel-
lQuest puts specific emphasis on its storyline and presentation, and covers the concepts
of types, expressions, functions, case expressions and pattern-matching, tuples, lists and
list comprehensions, and recursion.

The primary focus this year is adapting the existing framework of HaskellQuest to
support a collaborative multiplayer campaign, a novel approach to teaching functional
programming. In this campaign, two players progress through the story simultaneously
- this can be accessed alongside the original single-player campaign. Additionally,
improvements were made to the structure, interface and design of the game across both
campaigns based on the feedback received from last year’s evaluation phase.

The report also outlines the evaluation carried out this year - it compares the current
versions of the single-player and multiplayer campaigns with one another, as well as
the current version of the game as a whole to the one released last year. However, the
results were unable to prove any significant change in either comparison; the report
subsequently discusses the fundamental limitations of the design, as well as avenues for
future work to push past these limitations.

i

Research Ethics Approval
This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 388105
Date when approval was obtained: 2025-01-17

The participants’ information sheet and a consent form are included in the appendix.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Neel Amonkar)

ii

Acknowledgements
I’d like to thank my supervisor Don Sannella; your insightful and prompt (to a fault!)
guidance and feedback on my work was absolutely invaluable. (No, seriously, on the
way to InfBall?! I can’t thank you enough.)

I’d also like to thank Cenk Koknar and the team on the Game Design Studio course;
learning more about formal game design principles helped me push the project further
than I could have done before.

Finally, I’d like to thank my parents, without whom I wouldn’t be here (both figuratively
and literally), and my friends, for the encouragement, critique, jokes, willingness to put
up with my panicked barrage of texts about HaskellQuest evaluation, and (in one case)
the free pho.

iii

Contents

1 Introduction 1
1.1 Previous work . 1
1.2 Aims and approach for this year . 2
1.3 Dissertation structure . 2

2 Background 3
2.1 Functional programming and Haskell 3

2.1.1 Introduction to functional programming (FP) 3
2.1.2 Haskell . 3
2.1.3 Why teach FP? . 3

2.2 Serious games . 4
2.2.1 Introducing the term . 4
2.2.2 Video games as educational tools 4
2.2.3 The effectiveness of video games in education 5
2.2.4 Using games to teach programming 5

2.3 Teaching FP through gaming . 6
2.3.1 Learning FP through game development 6
2.3.2 Games teaching FP - prior HaskellQuests 7

2.4 Collaboration in serious games . 7
2.4.1 Defining collaborative learning 7
2.4.2 Collaborative games for education 9
2.4.3 Multiplayer games for teaching programming 10

3 Game design 11
3.1 Summary of established design . 11
3.2 Approach to multiplayer challenge design 12

3.2.1 Discarded initial approach - multiplayer code editing 13
3.2.2 Final approach - ’simultaneous pair programming’ 13
3.2.3 Handling health for two players 14

3.3 List comprehension level - Colonel Trigger-Finger 14
3.3.1 Phase 1 - basic list comprehension 14
3.3.2 Phase 2 - list comprehension with a guard 15
3.3.3 Phase 3 - parallel list comprehension 15

3.4 Tutorial levels - Lambda-Man Hologram 15
3.5 Recursion level - Dr. Fractal . 17

iv

3.5.1 Phase 1 - one base case and one recursive case 17
3.5.2 Phase 2 - multiple base cases 17
3.5.3 Phase 3 - multiple recursive cases 18

3.6 Unused expansion ideas from last year’s report 19
3.6.1 Overworld segments and random encounters 19
3.6.2 Items . 20
3.6.3 Save feature . 20

4 Implementation 21
4.1 Summary of existing implementation 21

4.1.1 In-game code editor . 21
4.1.2 Haskell-game interface . 21
4.1.3 Online Haskell compiler . 22

4.2 Network architecture for multiplayer 22
4.2.1 Central server architecture 22
4.2.2 Host-client architecture . 23
4.2.3 Potential improvement - Distributed Authority 23

4.3 Handling connection and disconnects 24
4.4 Adaptations to game systems for multiplayer 25

4.4.1 Attack controllers . 25
4.4.2 Dialogue / cutscene text advancement 26

4.5 Synchronizing code between players 26
4.5.1 Discarded initial implementation 26
4.5.2 Final implementation . 27

4.6 In-game code editor improvements 27
4.6.1 Code blocks . 27
4.6.2 Haskell help text . 28
4.6.3 Error messages . 30

4.7 Issues with JDoodle . 30
4.7.1 Service unreliability . 31
4.7.2 Restrictions on target platform 31

5 Evaluation 32
5.1 Method of evaluation . 32

5.1.1 Tester demographic . 32
5.1.2 Testing groups and questionnaire design 32

5.2 Analysis of game evaluation metrics 33
5.3 Areas of improvement . 35

5.3.1 Difficulty progression . 35
5.3.2 Utility of help screen and comment hints 36
5.3.3 Haskell challenge design . 36

5.4 Technical issues . 37
5.4.1 UI shortcomings . 37
5.4.2 Game not running in background 38
5.4.3 Platform compatibility issues 38
5.4.4 Desynchronization issues . 38

v

6 Conclusion 39
6.1 Achievements . 39
6.2 Future work . 39

Bibliography 41

A User testing 46
A.1 Single-player evaluation questionnaire 46
A.2 Multiplayer evaluation questionnaire 51
A.3 Bug report form . 57
A.4 Participant information sheet . 59
A.5 Participant consent form . 62

B Custom artwork 63

C Music credits 72

vi

Chapter 1

Introduction

HaskellQuest is an educational game aimed at programmers wishing to get to grips
with the functional programming language Haskell - it takes players through Haskell’s
features and tests their understanding through superhero-themed battle segments. It
can often be hard for people to understand Haskell and other functional programming
(FP) languages, especially if coming from an imperative programming background: this
project’s aim is to see if a game-based edutainment approach can effectively bridge the
gap.

The major addition this year is a brand new multiplayer campaign: two players can
connect to one another over the Internet and play through more complex versions of the
game’s levels, where each player is tasked with completing half of the solution.

1.1 Previous work

This section describes the fundamentals of the game established last year, that largely
go unchanged for this year - the specifics of design and implementation are elaborated
on in later chapters.

HaskellQuest goes for a linear, structured progression. Additionally, the game puts
special emphasis on having an engaging presentation through colourful, varied envi-
ronments and a tongue-in-cheek superhero story, in order to motivate the player to
progress.

Each level comprises multiple phases that test the player’s understanding of a single
Haskell concept while increasing in difficulty. The challenges themselves are based
around bespoke gameplay scenarios that are then expressed in terms of Haskell - the
player is tasked with writing Haskell functions that behave a certain way to escape or
divert the enemy’s attacks.

The game covers the following topics:

• Types, including simple algebraic data types and type aliases

• Expressions and functions

1

Chapter 1. Introduction 2

• Case expressions and pattern-matching

• Tuples, lists and list comprehensions

• Recursion

Last year, testers gave it an average rating of 4.71 out of 6 for how enjoyable they
found it. In particular, the presentation was universally praised, as well as how the story
informed the challenges presented. However, there was room for improvement: testers
took issue with how the game introduced its Haskell concepts, as well as the lack of
detailed feedback for code errors.

1.2 Aims and approach for this year

The primary goal for this year is to adapt HaskellQuest’s existing design into a multi-
player, collaborative learning context - while there is more than enough precedent for
such an approach, few educational games have taken this route, and none of those that
have are about teaching functional programming.

This does not replace the original single-player experience. The existence of both the
single-player and multiplayer campaigns allows for a direct comparison on what method
works best for HaskellQuest - individualistic versus collaborative learning.

Additionally, the feedback from last year was used to improve aspects of the game
across both campaigns, such as the challenges in the recursion-themed level, the method
of displaying error messages to the player, the pacing of the tutorial, and the introduction
of a ’help screen’ to view Haskell information.

1.3 Dissertation structure

• Background: Chapter 2 introduces functional programming and the Haskell
language, and explores prior work in the fields of educational games and collabo-
rative learning, including the work done last year.

• Game design: Chapter 3 recaps the established design framework for Haskel-
lQuest, describes the decisions made in adapting the Haskell challenges for
multiplayer, and discusses scrapped ideas for expanding the game’s scope.

• Implementation: Chapter 4 recaps the fundamentals of HaskellQuest’s existing
implementation, and describes the implementation of the systems for the multi-
player campaign, as well as quality-of-life changes made to the in-game UI based
on tester feedback from last year.

• Evaluation: Chapter 5 explains the method of evaluating HaskellQuest, explores
the results, and discusses the issues testers had with the game.

• Conclusion: Finally, Chapter 6 summarises the achievements of the work done
this year and discusses avenues for future work.

Chapter 2

Background

2.1 Functional programming and Haskell

2.1.1 Introduction to functional programming (FP)

Functional programming is wholly separate from the imperative paradigm which most
programmers would be familiar with. While the latter is based on sequences of state-
ments that update a program state, FP involves applying and composing functions –
expressions that map values to other values, similar to the mathematical definition. Most
commonly-known FP languages are in fact pure functional programming languages,
where functions are reliant on their arguments only and do not consider any global or
local state.

2.1.2 Haskell

Haskell [32] is one of the most popular functional programming languages - on a list
of the most commonly-used languages on GitHub in 2024, ranked by number of pull
requests, it placed 27th [7]. Additionally, Haskell has a variety of uses in industry
applications; it has been used by companies such as Meta, Microsoft, NVIDIA, and
Qualcomm, among others [29]. Given all of this, it is sensible to use Haskell for the
purposes of teaching functional programming.

2.1.3 Why teach FP?

FP languages are already taught in many Computer Science university programs as part
of an introductory course; for instance, at Oxford [26], Imperial [1] and of course here
at Edinburgh [34].

In 2004, Chakravarty and Keller [10] argued that FP languages were ideal for introduc-
tory programming courses in CS degrees. As such, their paper outlines some technical
advantages of FP languages over traditional imperative ones:

• FP languages like ML and Haskell have a “rigorous static type discipline” - the
paper argues that this helps structure problem solving more easily.

3

Chapter 2. Background 4

• The “lightweight and orthogonal syntax” and high level of abstraction allows the
elision of syntactical issues and implementation details like memory allocation.

• FP language features such as algebraic data types and pattern-matching “put
complex structures, such as expression trees and memory tries, within reach of
beginners”.

2.2 Serious games

2.2.1 Introducing the term

HaskellQuest, being a game intended to teach Haskell, falls under the umbrella of
’serious games’. The term’s current meaning is attributed to Clark C Abt in his 1970
book on the subject [3]: games having “an explicit and carefully thought-out educational
purpose” and “not intended to be played primarily for amusement”, though he stressed
that this “does not mean that serious games are not, or should not be, entertaining.”

2.2.2 Video games as educational tools

In his 2003 book [28], Gee argues that learning, like thinking or reading, is “not just a
matter of what goes on inside people’s heads, but is fully embedded in (situated within)
a material, social and cultural world”. In particular, learning in any semiotic domain
(defined as “an area or set of activities where people think, act and value in certain
ways”) requires people to “take on and play with new identities – forming bridges from
one’s old identities to the new one”. For instance, when learning particle physics, one is
tasked with thinking, acting, and assigning value as a particle physicist (the new identity
in question) would.

Additionally, Gee is a proponent of the learning theory of connectionism – essentially,
people don’t think or learn best when presented with abstract principles out of context,
but rather “on the basis of patterns they have picked up through actual experiences.”

The book then argues, on the basis of these tenets, that well-designed video games can
serve as good learning tools, regardless of their educational intent:

• Games offer strong identities for players to take on – either specific characters
with distinct viewpoints, or blank slates that the players can build from the ground
up (both figuratively and literally).

• Understanding a game’s mechanics is akin to the scientific method - players
“hypothesize, probe the world, get a reaction, reflect on the results, reprobe to get
better results”.

• Games generally have a cycle of “consolidation and challenge” – players can
practice challenging problems until they have “routinized their mastery”, at which
point the game introduces a new type or difficulty of problem, causing them to
“rethink their taken-for-granted mastery”.

Chapter 2. Background 5

• Games lower the consequences of failure with savegames and retries, and allow
customization to fit different players’ learning styles i.e. adjustable difficulty
levels, multiple possible solutions, and so on.

• Games are designed to “feel ’doable’ but challenging”, serving to motivate players
into a “flow state” - if a game is too easy or too difficult, the player would feel no
impetus to continue.

• Games present information just as it becomes relevant to some experience within
the game, or upon the player’s request. Thus, players have an immediate opportu-
nity to apply that information, helping them understand it in a deeper manner, in
accordance with the theory of connectionism.

• Games encourage a sense of community – in learning to play a game, players often
“(draw) on resources that reside in other gamers and their associated websites
and social interactions”. The book makes note of the fact that even single-player
games are played in multiplayer settings by taking turns. This social aspect can
serve as a powerful motivator and tool for learning.

2.2.3 The effectiveness of video games in education

Supporting the book’s argument, previous analyses have concluded that serious games
are an effective teaching method - a 2013 literature review, covering use in elemen-
tary school up to higher education, concluded that “serious games can be effective
learning materials in their own right” [6], while a 2019 meta-analysis covering use in
science education found that “serious games were... more beneficial than conventional
instructional methods” [55].

Additionally, a 2022 review [43] concluded that even commercial games intended for
entertainment purposes (such as those cited by Gee) had positive effects on students’
academic performance. A 2020 study cited in the review [11] concluded that students
who played games of various genres (particularly action games) showed improvements
in cognitive functions like attention and working memory, while other cited studies
showed improvements in reading [24] and mathematical [49] ability.

2.2.4 Using games to teach programming

There have been prior attempts to use games to teach programming. One of the most
popular is the CodinGame online platform [14], which has multiple coding challenges
based around common game genres like puzzle games, shooters, and so on. Each
challenge is a full-fledged competitive mini-game, where the objects within the game
(e.g. a turret attacking oncoming enemies, or a car moving between checkpoints) are
controlled by the code that the player submits. Crucially, however, the player is not
simply implementing a game object from scratch: a level of abstraction is provided to
make the experience accessible to newcomers.

Other examples of games teaching programming are:

• Code Hunt by Microsoft Research [8]: A game aimed at AP Computer Science

Chapter 2. Background 6

students, where the player is tasked with writing functions in C# / Java, based on
input-output pairs provided to the player.

• Human Resource Machine by Tomorrow Corporation [33]: A commercially-
released puzzle game, where the player controls their avatar through an in-game
visual scripting tool – the game’s tasks teach the player the principles of assembly
programming through the abstraction of a menial office environment.

• ScalaQuest by Alejandro Lujan and Christian Leger [39]: The original in-
spiration behind the HaskellQuest project – the player is tasked with navigating
through a fantasy-themed world, encountering obstacles that require the player
to complete Scala challenges (e.g. write a specific function, or define a specific
class).

A 2018 review of existing literature about serious games in programming [44] found that
most games surveyed were effective at teaching introductory programming concepts,
but there were some deficiencies in teaching more advanced software development, and
there was a lack of consensus in evaluating their effectiveness. The former issue is not a
concern for HaskellQuest, as it falls outside the scope of the project.

In general, such games focus primarily on imperative programming – even Scala, which
can be used as an FP language, is used in an imperative fashion in ScalaQuest.

2.3 Teaching FP through gaming

2.3.1 Learning FP through game development

Hudak [31] argues that multimedia development is a field where Haskell’s strengths
shine, and the rest of the book demonstrates this by providing exercises that range from
implementing basic shapes to writing domain-specific languages for reactive animations
and MIDI music.

Following his lead, some universities took to using game development as a method to
teach functional programming. For instance, the Radboud University in the Netherlands
ran the Soccer-Fun project [4] in 2011 – the course provided a framework for a football
simulation in the FP language Clean, using its GUI library for rendering, and students
were tasked with implementing the decision-making processes of a virtual football
player. Students could then pit their players against one another – the paper concluded
that this competitive element served as the prime motivating factor for students to learn
Clean.

Another example is ’Haskell in Space’ [40], a 2003 project at the University of Bremen
in Germany. Second-year students were tasked with implementing a version of the
arcade game Asteroids – specifically, their assignment was to write Haskell functions to
model the in-game geometry and the physics-based behaviour of the ship. Here, the
game’s animated graphics proved to be the main appeal – the paper notes that students
embellished their submissions with fancy graphics even though they weren’t required
to.

Chapter 2. Background 7

None of the above have much to do with serious games on their own. However, Hudak’s
’show-by-example, learn-by-doing’ approach, maintained in the two FP courses, is
fundamentally compatible with Gee’s argument about games as learning tools. Addi-
tionally, students were motivated to learn by being able to see their progress play out
in-game – there was a built-in mechanism for immediate feedback in the assignments,
which would also be advantageous for HaskellQuest. It should be noted that this is also
the fundamental principle of the exercises on CodinGame – the player’s code affects
the game’s world.

However, this cannot be applied to HaskellQuest directly. Obviously, if the game were
to be made in Haskell like the two projects, the player wouldn’t be able to modify
the game’s scripts at runtime. Additionally, Haskell is fundamentally stateless, while
games are all about manipulating a global state. Soccer-fun and Haskell in Space
define a custom ’State’ datatype to describe the entirety of the current game state and
functions that take a State as an input and return a State as an output. With this approach,
the complexity of this state type increases drastically alongside the complexity of the
game itself. If HaskellQuest players were shown a type describing the entirety of the
game state, it could lead to them being overwhelmed with potentially unnecessary
information.

2.3.2 Games teaching FP - prior HaskellQuests

For a solution, we can look at previous HaskellQuest projects, particularly the 2018
game by Karolina Drobnik [20] and the 2023 game by Eve Bogomil [9] (as seen in
Figure 2.1). Both were developed using the Unity engine [66], meaning the game state is
kept track of with a standard imperative approach. The games present puzzles/obstacles
which involve writing Haskell functions; crucially, when custom states are defined here,
they are situational. In Drobnik’s HaskellQuest, for instance, players are tasked with
rotating a bridge to progress, and the Haskell challenge involves writing a function that
modifies a value of type Bridge.

Additionally, the interaction between said functions and the game state itself is indirect:
in Bogomil’s HaskellQuest, a Haskell compiler is used to check if the player’s written
function works as expected, and the game code (written in C#) alters the state based
on the result. This approach allows for a level of abstraction similar to the CodinGame
exercises; the player is only presented with the information relevant to the challenge at
hand, in line with Gee’s principles.

The work done in year 1, subsequently, used the same technical approach - this is
explored in further depth in Chapter 4.

2.4 Collaboration in serious games

2.4.1 Defining collaborative learning

In their 1994 book [37], the Johnsons define cooperative learning as a setting in which
students “work cooperatively in small groups, ensuring that all members master the

Chapter 2. Background 8

Figure 2.1: The introductory battle in E. Bogomil’s HaskellQuest [9]: the player is tasked
with writing actions that can modify the player’s character and enemy’s stats i.e. dealing
damage to the enemy, recovering player health, etc.

assigned material”. This is contrasted with competitive learning, where only one student
can succeed, and individualistic learning, where students work independently with no
regard to what the others are doing. (Here, ’cooperative’ and ’collaborative’ learning
are treated as the same thing.)

The book’s primary argument is that while an ideal teaching curriculum incorporates
all three learning paradigms in appropriate amounts, cooperative learning should be
the main focus, as cooperation itself is fundamental to human existence: from human
biology to economic and legal systems to evolution.

It notes that structuring lessons individualistically is ideal for situations where students
need to complete “unitary, nondivisible, simple tasks”, and can benefit from self-pacing
and isolation. The aim of this year’s multiplayer campaign, then, is in part to determine
which approach works better for learning Haskell.

The book’s focus is on collaborative learning in the classroom. As such, it outlines five
essential elements for teachers to structure lessons around:

1. Positive interdependence: The task needs to be designed in such a way that a
student cannot succeed individually. This incentivizes them to care about their
group members’ success.

2. Promotive interaction: Subsequently, the opportunity for students to encourage
one another’s efforts and assist each other should be maximised.

3. Individual accountability: Students should be assessed individually as well, to
hold them accountable to do their share. These results should be given back to
both the individual and the group, so that they can know which member needs
more assistance or support.

Chapter 2. Background 9

4. Interpersonal and small-group skills: Students must be specifically taught
social skills like “leadership, decision-making, trust-building, communication,
and conflict-management”.

5. Group processing: The group needs to be given ample opportunity to reflect on
their work, allowing them to decide how best to proceed.

2.4.2 Collaborative games for education

While the Johnsons focus primarily on collaborative learning within the classroom,
gaming is a natural avenue for enabling collaborative learning, given the prominent
social component mentioned in section 2.2.2. There are plenty of ’entertainment’ games
focused on collaboration and player interaction - however, there are considerably fewer
intended for an educational or academic context.

Existing research into multiplayer games as educational tools has mostly focused on
massively-multiplayer online games (MMOs) - for instance, a 2004 article focusing
on the MMO role-playing game Lineage [61], or a 2010 article using multiple MMOs
as a basis for design principles for future serious games [50]. While games such as
these exemplify Gee’s principles well, engineering a persistent online world is rather
dramatically outside HaskellQuest’s scope, especially when considering the original
game’s design.

Indeed, few (if any) research projects actually attempt to implement an MMO, instead
opting for smaller-scope games with a set end goal. A 2013 project, ’Escape from
Wilson Island’ [69], uses the Johnsons’ principles of collaborative learning as a basis
for its game design:

• The game grants each player one unique tool. Thus, each player has unique capa-
bilities and tasks, but all tasks need to be completed to successfully accomplish
the end goal. Additionally, some tasks require multiple players to coordinate; for
instance, players are tasked with steering a raft across shifting currents, and each
player can affect the movement of the boat a little.

• The game facilitates promotive interaction by including an in-game chat window
- players can choose who to talk to and can communicate with multiple other
players simultaneously.

• At the end of the game, players are ranked on their individual performances;
scores are determined by the number of helpful tasks completed during the game.

• The game offers personal inventories of items that can be traded between players,
such as food items to refill health and wood for fires, rafts, and so on. This
introduces an opportunity for player interaction and discussion, as there is a
tension between personal benefit and group success.

While the ’Wilson Island’ project did not have an educational intent beyond facilitating
and studying player collaboration, the developers found that designing a game specifi-
cally along the Johnsons’ principles led to an entertaining experience for their testers,
concluding that the approach served as fertile ground for future serious games.

Chapter 2. Background 10

2.4.3 Multiplayer games for teaching programming

There is precedent that suggests a collaborative approach may be fruitful for program-
ming education – specifically, the prominence of pair programming as a teaching
method. The most common approach to this is the ’driver-navigator’ approach: one
person is in charge of writing the code directly (the driver), while the other observes
and provides suggestions and corrections (the navigator). A 2010 meta-analysis of
prior studies focusing on the impact of pair programming [58] showed that “almost
all studies’ findings reported that students’ satisfaction was higher when using PP
compared with working individually”, though there were mixed results in terms of
academic improvement - the use of pair programming improved students’ scores for
assignments, but not those for their final exams.

However, this does not seem to have substantially influenced prior serious games
that focus on teaching programming. Most of those that do offer multiplayer take a
competitive approach, such as the minigames available on CodinGame [14] or a 2009
project in the real-time strategy (RTS) genre [46], or an MMO / ’persistent world’
approach, such as a 2016 project aiming to teach C [41] or a 2007 project covering
introductory programming concepts [42].

There are two instances of collaborative programming games, however; a 2022 paper
outlines the addition of a two-player collaborative mode to an online game covering
Python [62], while a 2025 paper focuses on the implementation of a two-player game
covering language-agnostic imperative fundamentals [63]. Still, though, no such project
exists for teaching functional programming; certainly no prior HaskellQuest project has
attempted it.

Chapter 3

Game design

3.1 Summary of established design

As mentioned before in section 1.1, HaskellQuest’s approach to engaging players relies
on its art style, presentation and storyline. The point of the storyline is not to offer
a cohesive narrative – instead, it serves as a basis for entertaining level settings and
scenarios. The core game loop of HaskellQuest was based around this fact – the player’s
motivation to progress would be “what am I going to see next?”

Players play as a new incarnation of Lambda-Man, a superhero who defeats his enemies
by writing functions that divert / defeat their attacks. In this way, the game’s design
attempts to follow Gee’s principle of offering a strong identity for players (mentioned in
section 2.2.2) – Lambda-Man serves as a player stand-in as someone being introduced
to Haskell through the game’s events.

The use of Lambda-Man as the protagonist was an in-joke specifically intended for
Informatics students at the University of Edinburgh (the primary demographic last year).
Professor Philip Wadler, former lecturer on the Introduction to Computation course,
dresses up as the Superman-themed ’Lambda-Man’ at conferences as a joke - he appears
in the game’s tutorials as a hologram mentoring the player character.

The story’s second function was to contextualise the Haskell challenges. Within each
challenge, the code defines custom data types that mimic the gameplay scenario (similar
to the CodinGame challenges mentioned in section 2.2.4). The player is then tasked to
write one particular function that interacts with the data types in a specific way. This
story-challenge integration serves to stop the challenges from feeling overly didactic.

The gameplay scenarios themselves take the form of fast ’bullet hell’-esque segments
inspired by the game Undertale [23] - players are tasked with dodging various projectiles
if their Haskell function fails the test. If the function works as expected, however, the
player can often avoid taking any damage altogether. Since progressing through the
storyline is intended to be the player’s reward, these attacks serve as the main obstacle –
if the player’s health reaches zero, they have to replay the level from the start.

As mentioned before, each level consists of multiple challenges – these are intended

11

Chapter 3. Game design 12

to increase in difficulty to offer a clear progression for the player in understanding a
given Haskell concept. This was a response to playing E. Bogomil’s HaskellQuest [9]
before beginning to design my own – there, players can use Haskell to freely implement
RPG actions such as attacking or healing, but as someone who hadn’t written Haskell
in years I felt deeply lost and unable to progress.

To provide an example, the second level covers list comprehension. The story for that
level is that Lambda-Man is up against a militaristic villain called Colonel Trigger-
Finger. As such, the first segment of the battle involves the Colonel launching missiles
that home into the player - the corresponding Haskell challenge defines a Missile data
type, and the player has to write a function that, given a list of Missiles and a Target,
changes all the Missiles to point to the new Target. If this function works as expected,
the missiles will avoid the player entirely and collide with the Colonel, thus allowing
the player to progress to the next segment. The single-player version of this battle from
this year’s release can be seen in Figure 3.1.

One additional element last year was a scoring system for the levels - the player started
with a ’code score’ and a ’damage score’ of 5000 each, which would decrease by a
set amount every time the player submitted non-functional code or took a hit from a
projectile. However, this system wasn’t meaningfully related to the player’s motivation,
nor did it serve to make the challenges more replayable - the puzzles are only solvable
once anyway, as players would already know the answer on repeat playthroughs. The
scores were never mentioned in the tester feedback from last year - as such, they were
removed entirely from this year’s release.

Figure 3.1: The first phase of the Colonel Trigger-Finger battle in the single-player
campaign.

3.2 Approach to multiplayer challenge design

The fundamental idea for the multiplayer expansion was already in place. To quote last
year’s report [5], “two players could go through the game simultaneously, working on

Chapter 3. Game design 13

Haskell code together and dodging more complex projectile patterns from the enemy”
- the increased difficulty would be a counterweight to the fact that two players would
be working together to solve the puzzles. Additionally, the core design approach as
described in the previous section would remain largely unchanged – this decision was
made to allow closer comparison between the evaluation results for the single-player
and multiplayer campaigns.

However, the actual execution of this was up in the air for quite a while.

3.2.1 Discarded initial approach - multiplayer code editing

The first idea was that both players could simultaneously edit the same text at once, akin
to Google Docs - this is a common feature for online code editors such as Codeshare
[13] and Replit [15]. Thus, both players would be able to see the results of the evaluation
at the same time, as well as view any error messages. Indeed, this got as far as a basic
implementation, as described in section 4.5.1.

The problem here was that designing the game this way would violate the very first
principle for structuring collaborative learning, as mentioned in section 2.4.1; if both
members were tasked with editing the same code, then it would theoretically be possible
for one player to complete the challenge by themselves, even if the Haskell challenge
itself was more difficult to compensate.

Additionally, the idea of “more difficult challenges” was too vague - it was a struggle to
conceptualise new challenges and gameplay scenarios off of that alone.

3.2.2 Final approach - ’simultaneous pair programming’

In rethinking the design approach, prior collaborative serious games such as ’Escape
from Wilson Island’ served as an inspiration - namely, the principle of each player
having unique capabilities, all of which are required to progress (as mentioned in section
2.4.2). Applying this to the current structure of HaskellQuest wasn’t straightforward,
however – the game is built on players writing code, which would have had to apply for
both players in the multiplayer scenario, so they could not have different abilities as
such.

The solution was imposing an artificial boundary. The multiplayer challenges would
consist of two separate yet interconnected problems requiring two functions to be writ-
ten/modified, where progress would only be possible if both functions were correct –
thus, each player would straightforwardly be responsible for one function. Pair program-
ming served as an inspiration for designing the main method of player collaboration
(its effectiveness is elaborated on in section 2.4.3) – each player can freely view the
code that the other player is currently writing in real time, but they cannot edit that
code. Thus, ’simultaneous pair programming’ – each player is the driver for their own
function and the navigator for the other at the same time.

Chapter 3. Game design 14

3.2.3 Handling health for two players

As mentioned before, since progress through the story is intended to be the player’s
main motivation, getting hit by projectiles serves as the main obstacle, as the player’s
progress is reset to the start of the level if their health hits 0. For the multiplayer
campaign, two key decisions were made:

• The players taking damage is meant to be a form of feedback, as writing successful
Haskell functions often circumvents damage entirely. As such, players would have
separate health bars in an attempt to provide individual feedback, in accordance
with the Johnsons’ principles in section 2.4.1. However, there is a flaw here - as
any projectile could hit any player, one player may end up losing health because
of the other player’s function not working.

• It was also decided that if one player’s health hit 0, both players would have to
restart the level. This further ties into the idea that one player cannot progress
without the other, though it does make the multiplayer campaign even more
difficult by comparison.

3.3 List comprehension level - Colonel Trigger-Finger

Since the decision had been made to have two functions for each Haskell challenge
in the multiplayer campaign, I only had to determine what the function for player
2 to write would be, as player 1’s functions could be the same as the single-player
campaign. Additionally, the list comprehension level was the second level in the game –
players would still be getting used to the split challenges and collaborating with another
player. As such, I decided that the functions themselves wouldn’t be dependent on one
another - rather, the connection between them would be through the attack scenario.
The approach was, therefore, to come up with a second obstacle that would make the
existing one more difficult, then express it as a Haskell challenge that would require a
list comprehension.

3.3.1 Phase 1 - basic list comprehension

For instance, the first phase in the single-player version, as mentioned beforehand, was
based on missiles that would home in on the player; in the ’battle’ segments, if the
player hadn’t succeeded in writing the Haskell function, they could attempt to dodge
the projectiles by moving around.

For the multiplayer version, the second obstacle here would be a set of ’freeze missiles’
that would stop the player in-place for a set duration, thereby making them more
vulnerable to hits from the homing missiles. Player 2 would also be tasked with writing
a function to deactivate a list of FreezeMissiles – rather than changing the target of the
missile, however, this function would have to disable them by changing a Boolean value
from True to False.

Chapter 3. Game design 15

3.3.2 Phase 2 - list comprehension with a guard

In the same vein, the original second phase had a barrage of missiles bearing down
on the player - one of these would be inactive, however (as represented by a Boolean).
Thus, the player’s challenge is to write a list comprehension function using a guard to
filter a list to only contain inactive Missiles.

For the multiplayer version, the second obstacle would be a set of randomly-positioned
landmines - the missile barrages moving down towards the player served to restrict their
range of movement, and the landmines would emphasise this challenge while keeping
the militaristic theme in place. Once again, though, one of the landmines would be
inactive - the second player would also have to write a function isolating the inactive
Landmine from a list of Landmines.

3.3.3 Phase 3 - parallel list comprehension

The final segment of this level concerns parallel list comprehension, a Haskell language
extension introduced in more recent versions of the Haskell compiler. The original third
phase was, in the storyline, Colonel Trigger-Finger going all out in an attempt to finish
off Lambda-Man; as such, the player would have to navigate a combination of both
prior attacks i.e. the homing missiles and the missile barrage. The intended solution
was for the player to write a function that would, given a list of Missiles and a list of
HomingMissiles, make the HomingMissiles target the regular ones using parallel list
comprehension - the two threats would take each other out, leaving the player unharmed.

The concept of an ’all-out attack’ would be retained for the multiplayer version – thus,
the freeze missiles and landmines would have to be incorporated in some way. It seemed
natural to have player 2 have a function to redirect the freeze missiles into the landmines
to disable them. However, the FreezeMissile type did not actually have a Target field -
adding one would make it even more similar to the HomingMissile type, meaning the
problem from the previous phase would persist.

In the end, the behaviour of the freeze missiles had to be modified somewhat. The
Landmine type had been defined with a field of type Coords (an alias for an (Int, Int)
tuple) - the FreezeMissile type was then modified to have a field of this type as well.
This was reflected in the attack segments; where previously the freeze missiles would
track the player’s position like the homing missiles, now they would home into a fixed
position - either the player’s position at the time of launch if player 2’s function was
unsuccessful, or the position of a landmine otherwise. This also had the effect of
adjusting the difficulty of the final attack phase to be less frustrating for players.

3.4 Tutorial levels - Lambda-Man Hologram

The idea behind the tutorial challenges was that they would serve as a gentle introduction
to the game’s concept, as well as provide players with an early example of Haskell’s
syntax for functions - players are tasked to modify a function, rather than write one.
Thus, the concept for the Haskell challenges was as simple as possible: players are

Chapter 3. Game design 16

presented with a function that reduces their health, and they have to modify it to avoid
taking damage.

Because of this simplicity, however, it was difficult to come up with something for
player 2 to do. In the end, I came up with a slight variation on the theme. While player
1’s function would reduce the players’ health by a constant amount, player 2’s function
would multiply the players’ health by some Float less than 1 e.g. 0.9. Again, player 2
has to modify the function so that the change in health is either zero or positive. This
does make player 2’s challenge harder than player 1’s; the provided function involves
conversion from an Int to a Float and back, which may be harder to parse for a beginner.

Additionally, the game last year suffered from a pacing issue. All of the tutorial
challenges happened at the beginning of the game - this overwhelmed the player with
information that, in the case of recursion, wouldn’t actually be required until later in
the game. As such, this year’s release splits the tutorial level into two - basic functions
and list comprehensions are covered at the beginning i.e. right before the Colonel
Trigger-Finger fight, and recursion is covered right before the Dr. Fractal fight.

In the single-player campaign, the second phase involves a function that takes a list of
Ints and reduces the player’s health by the sum of the positive integers:

hurtPlayer :: Player -> [Int] -> Player
hurtPlayer (Player health) dList = Player (health - damage)

where damage = sum [d | d <- dList , d >= 0]

...while the third phase implements the same function recursively by pattern-matching
against the head and tail of the list.

hurtPlayer :: Player -> [Int] -> Player
hurtPlayer player [] = player
hurtPlayer (Player h) (d:ds)

| d >= 0 = hurtPlayer (Player (h - d)) ds
| otherwise = hurtPlayer (Player h) ds

For the multiplayer campaign, player 2 is given functions that take a list of Floats and
multiply the players’ health by the elements that are less than 1. The player is similarly
tasked with modifying these so there is no loss in health.

-- the version shown in phase 2
weakenPlayer :: Player -> [Float] -> Player
weakenPlayer (Player health) dList = Player newHealth

where
newHealth = round (fromIntegral health * damageFloat)
damageFloat = product [d | d <- dList , d <= 1]

-- the version shown in phase 3
weakenPlayer :: Player -> [Float] -> Player
weakenPlayer player [] = player
weakenPlayer (Player h) (d:ds)

| d <= 1 =
weakenPlayer (Player (round (fromIntegral h * d))) ds

| otherwise =
weakenPlayer (Player h) ds

Chapter 3. Game design 17

3.5 Recursion level - Dr. Fractal

The recursion level was different in that the single-player version would require sub-
stantial improvement. In last year’s release, this level suffered from being rushed - I
was unable to come up with a conceptual progression for recursion. As such, the level
only had two phases, and the second phase was based around a story element rather
than an elaboration on the concept of a recursive function.

In subsequent feedback, my supervisor suggested a suitable progression:

• A function with one base case and one recursive case

• A function with multiple base cases

• A function with multiple recursive cases

3.5.1 Phase 1 - one base case and one recursive case

For the single-player campaign, the first part was already in place, so the challenge there
remained largely unchanged from last year. There, the challenge presented a Fractal
data type with a Size component (an alias for Int), representing Dr. Fractal herself; the
player would write a function such that, if the Fractal’s size was even, it would halve the
Fractal and call the function on the two resulting Fractals (the recursive case); otherwise,
it would just return a list containing the odd-sized Fractal itself (the base case).

In terms of the attack, splitting the Fractal would make the resulting projectiles cause
less damage, though there’d be more of them; this was balanced so that even if the
player got hit by every single projectile after passing the Haskell challenge, they would
still have taken less damage than if they’d failed the challenge.

For the multiplayer version, I decided to have player 2 write a function to recursively
halve the laser in the same way – it had already been established that the damage of
the projectiles was based on the size of the missile, so the correlation between the two
players’ functions was in place.

3.5.2 Phase 2 - multiple base cases

For this phase, the single-player version would need designing as well. However, I
initially struggled to come up with a gameplay concept that would require a function
with multiple base cases. Eventually, I got the suggestion of a projectile that splits into
two different kinds of projectiles that need to be dealt with differently; this was adapted
into the recursively-defined Bolt type for the Haskell challenge.

data Bolt = IntBolt Int |
FloatBolt Float |
NodeBolt (Bolt , Bolt)

Here, the IntBolt would deal a set amount of damage to the player, while the FloatBolt
would multiply the player’s health value by some Float less than 1 - this is similar to
the two functions in the tutorial challenges.

Chapter 3. Game design 18

The player would then need to write a function to traverse a tree of Bolts, given the
root node - the NodeBolt case would be the single recursive case, while the IntBolt and
FloatBolt cases would be the multiple base cases. The player would have to modify the
IntBolt and FloatBolt values directly to negate damage – just as in the tutorial exercises,
they could modify these however they wanted.

For the multiplayer version, I decided to ’up the stakes’ – where previously the functions
did not need to rely on each other to be correct, this time player 2’s function would need
to call player 1’s. In this instance, Dr. Fractal herself would turn out to be recursively
defined - the Fractal data type for this challenge was thus defined as follows.

data Fractal = DecoyFractal |
BoltFractal Bolt |
NodeFractal (Fractal , Fractal)

Player 2 would need to write a function to traverse a Fractal tree, given the root node:
while the DecoyFractal base case would change nothing, the BoltFractal base case would
need to call player 1’s ’disableBolts’ function. There would be multiple BoltFractals in
a given tree - thus, the number of projectiles on screen would be increased as well.

3.5.3 Phase 3 - multiple recursive cases

The storyline for this level was that Dr. Fractal started as a Haskell scientist who had an
accident while attempting to recreate Lambda-Man’s powers and studying recursion -
as such, the last phase of last year’s version revolved around rescuing Dr. Kowalewski
from the Fractal structure. I decided to retain it for the final phase here, as I felt it was
entertaining. Using a tree structure for the data types in the previous phase proved to
be intuitive, so I continued with the approach for this phase. The Fractal type for this
challenge was defined as follows:

type Depth = Int

data Stability = Inert | Unstable | Healed
data Fractal = NodeFractal Depth Stability (Fractal , Fractal)

| LeafFractal

The player would need to write a function to traverse a Fractal tree: the LeafFractal
base case would be trivial, while the NodeFractal recursive case would need to behave
differently depending on the node’s Stability. If it was Inert, it would need to stay that
way; if it was Unstable, the Stability would need to be changed to Healed.

For the multiplayer version, I similarly used the ’tree nested within another tree’ ap-
proach from the previous phase. This time, player 2’s function would be identical to
that of the single-player version, while player 1 would need to write a function calling
player 2’s. As such, I defined a ’MetaFractal’ type:

data MetaFractal = LeafMeta
| StableMeta (MetaFractal , MetaFractal)
| UnstableMeta Fractal (MetaFractal , MetaFractal)

Player 1’s function would need to traverse a MetaFractal tree and call player 2’s function
on the contained Fractal for any UnstableMetas.

Chapter 3. Game design 19

While the Haskell challenge here is still related to the storyline, it is not related to the
actual attack. This phase reuses the attack from last year’s final phase, which was a
flurry of high-damage projectiles fired in random directions - the intention was to show
Dr. Fractal’s instability as a ’panicked’ reaction. Still, it is a notable change from the
norm for the game, which may throw players off-balance.

3.6 Unused expansion ideas from last year’s report

There were a few more ideas for expanding on HaskellQuest that were brought up in
last year’s report; this section discusses why they weren’t implemented this year.

3.6.1 Overworld segments and random encounters

As mentioned in section 3.1, the primary source of inspiration for HaskellQuest’s battles
was the game Undertale. Originally, this inspiration would have been taken further - like
most role-playing games (RPGs), Undertale includes overworld segments where the
player character can talk to non-player characters (NPCs) and trigger random encounters
with enemies. This was also part of Bogomil’s HaskellQuest [9] - there, the NPCs
served to introduce Haskell concepts to the player.

The levels described so far were originally intended as boss encounters to cap off a
larger segment of the game. The cutscene text before the Colonel Trigger-Finger fight
describes Lambda-Man “handily defeating most of the rank-and-file soldiers” aboard
the airship - in this conception, the player would have actually played through this
segment. Segments like these could have served as a more gradual introduction to
Haskell’s concepts and the gameplay mechanics.

However, time constraints aside, there is a fundamental issue in how such encounters
would be incorporated into the current HaskellQuest framework. In RPGs, putting
aside the player’s expanding capabilities, the basic battle mechanics are essentially
constant, and there are usually broad categories of ’generic’ enemies whose stats are
randomly-generated within defined ranges. This makes the game more scalable - variety
can be created from putting different kinds of enemies together, and enemies of the
same kind are not homogenous due to the randomness.

Meanwhile, in HaskellQuest, while there is an element of randomness in some attack
patterns, the Haskell challenges relating to them are bespoke, and the game has a very
strict progression. Defining ’generic’ enemy types would therefore lead to a lot of
repetition for the player. Each type would have a finite number of associated Haskell
challenges - given time, the player would eventually encounter each possible challenge
multiple times, which would just be tedious as the challenges are not designed to be
replayable, as mentioned before.

Additionally, the overworld would make less sense within a two-player cooperative
framework; are the players forced to accompany each other at all times? If not, what
happens if one player gets into an enemy encounter while the other is elsewhere?

As such, I decided not to incorporate this element into HaskellQuest - the game would

Chapter 3. Game design 20

require a substantial rework to accommodate random enemy encounters, and if those
are absent the overworld serves less of a point.

3.6.2 Items

Another feature that could have been taken from traditional RPGs are the use of items -
during a player’s turn, they would be able to access an inventory and use consumable
items to offer advantages in battle. A remnant of this idea is still in the final game: in
battles, ’HACK’ is the only option offered to the player, yet after a failed attempt at
submitting code the editor still slides back to offer the player the option to ’HACK’
again. Originally, there would have been the option to use ’ITEMS’ as well - these
could allow the player to regenerate health, or move faster during attack segments, or
offer hints for the current phase of the battle.

Additionally, unlike the overworld, this could work in a two-player cooperative context.
As mentioned in section 2.4.2, the collaborative game ’Escape from Wilson Island’ of-
fers personal inventories of items - the implementation there facilitates player discussion
and interaction.

However, the issue that prevented me from implementing items last year persists -
how would the player obtain them? The original idea, after nixing the overworld,
was to include an ’item shop’ screen in between battles, but the currency design was
problematic. If well-performing players gained more in-game money after beating a
battle, they would be able to stock more items, but they’d need them less than poorly-
performing players.

3.6.3 Save feature

The utility of a save feature is obvious - more than being a convenience feature, in the
context of HaskellQuest it could also allow learners to pace their own learning (as noted
in section 2.2.2).

However, such a feature wouldn’t be possible for multiplayer - the method used for
handling player connections obfuscates any information that could serve as a unique
identifier (more in section 4.3), so it would be difficult to save progress for a particular
pair of players. Additionally, for the purposes of evaluation, the single-player campaign
couldn’t have a feature that the multiplayer campaign didn’t, so this was nixed as well.

Chapter 4

Implementation

4.1 Summary of existing implementation

HaskellQuest was developed using the Unity game engine [66] - there are a few ratio-
nales for this choice. First, it was one of two game engines I had prior experience with
at the start of development last year, the other being GameMaker [27]. Secondly, unlike
GameMaker, Unity has a robust library for UI elements, which is an absolute necessity
– the player’s main interaction with the game is writing code.

Additionally, this choice was extremely beneficial for the development of the multiplayer
campaign; Unity offers multiple frameworks and services for this purpose.

4.1.1 In-game code editor

The in-game code editor (last year’s implementation of which can be seen in Figure
4.2a) is the main in-game object that the player interacts with - as such, it had to
be immediately understandable and usable by the target demographic. The visual is
explicitly modeled after actual IDEs and text editors, in accordance with Principle 2 of
Nielsen’s Usability Heuristics for interface design [48]: “Interfaces should not contain
information that is irrelevant or rarely needed.”

Additionally, it offers real-time comment highlighting - I felt this was of greater impor-
tance than other IDE features like syntax highlighting and automatic indentation, as the
Haskell challenges frequently use comments to provide instructions and context to the
player. Unity’s TextMeshPro system allows the use of rich text tags [54] - ’<color>’
tags, which can change the text colour of a substring, are inserted when a ’--’ is detected,
and removed when they aren’t.

4.1.2 Haskell-game interface

Each Haskell challenge comprises two sections - the code that is shown to the player,
and hidden test code that is appended to the code text when making a compilation
request. This section of the code involves checking the player’s written function against
a sample implementation and using an IO monad to print the output - additionally, it can

21

Chapter 4. Implementation 22

print custom error messages to provide extra information to the player on what went
wrong.

Meanwhile, each attack phase in the game corresponds to one behaviour script inheriting
from the abstract class AttackController. The class defines a Trigger() method that takes
a Boolean argument corresponding to the result of the associated Haskell challenge’s
test code. This is then overridden by concrete implementations in the individual attack
scripts.

In last year’s implementation, most challenges’ test code output a simple Boolean value.
After the player presses the ’Submit’ button, the Boolean value is parsed from the
compiler output (after the check for error messages) and the Trigger function is called
on the current phase’s attack script.

The exception to this was the challenges in the tutorial section; since the player there
is interacting a function that is supposed to directly modify their health, I decided to
account for the case where the player increases their own health. To this end, the
Trigger function is overloaded with a version that accepts an ’additionalConditions’
string: the Haskell test code can therefore output any additional information required.

4.1.3 Online Haskell compiler

Similar to Bogomil’s HaskellQuest [9], the game uses the JDoodle online compiler
[36] to handle Haskell compilation. JDoodle provides a compilation API - the service
allows a specific number of requests per day, with the limit being larger for accounts
with a monthly subscription. (All of the HaskellQuest projects this year share a JDoodle
account).

The use of an online compiler sidesteps any issues with needing to have a local version
of GHC installed - the installation process, compiler version inconsistencies, handling
infinite loops, and so on. Additionally, the fact that JDoodle’s compilation API is a paid
service allows an expectation of input sanitation for security purposes. Using JDoodle
does mean that even the single-player version requires an internet connection, but this
feels like a reasonable expectation for the target demographic of the game.

However, the use of JDoodle introduces some issues - these are discussed in section 4.7

4.2 Network architecture for multiplayer

Unity’s proprietary solution for networking is called Netcode for GameObjects (NGO)
[2]. It supports two types of network architecture by default; a central server-based
setup and a host-client setup [12].

4.2.1 Central server architecture

Here, a dedicated central server is used to keep track of the game state (i.e. it is
authoritative) – the players’ individual game instances communicate with the server to
receive the latest state updates.

Chapter 4. Implementation 23

With NGO, whichever instance is authoritative is also the only one actually allowed to
modify the game state – the other instances send requests to the authority to modify the
state in specific ways. To use an example related to HaskellQuest, any time a player
wished to move their player avatar, their game instance would need to send a request to
the central server. The server would then make the change and reflect this to the game
instances - thus, the players would see any positional change take effect with a delay.
Commercially-released multiplayer games use techniques such as client-side prediction
and rollback to lessen the impact of this. However, I had no experience in implementing
these (or in hosting a server), so HaskellQuest opts for the host-client approach.

4.2.2 Host-client architecture

Here, one player acts as a host; its game instance acts as both a client and a server
simultaneously, meaning it is authoritative. In the case of HaskellQuest, player 1 is
the host, while player 2 is the client – the game state therefore ’exists’ on player 1’s
instance. This provides player 1 with a massive latency advantage; in a given attack
phase, the projectiles’ positions and destruction are reported to player 2’s instance with
a time delay, and by default player 2’s directional inputs would also register with a
delay.

To ameliorate this somewhat, the player avatars are set to be client-authoritative. While
this makes no difference for player 1, it changes the behaviour for player 2: instead of
only sending requests to update the avatar’s position, player 2’s client instance updates
the position itself and then informs player 1’s host instance of the change. Thus, player
2’s avatar ’exists’ on player 2’s instance - this allows player 2 to see their directional
inputs take effect immediately.

However, spawning and destroying NetworkObjects cannot be set to be client-authoritative;
thus, every single projectile object still ’exists’ on the host instance. This means that
projectile collisions with player 2’s avatar are detected using a slightly-out-of-date
position. Thus, in a measurable sense, dodging projectiles is harder for player 2 than it
is for player 1.

Thankfully, this only applies to objects that are dynamically spawned during runtime;
objects that are present from the beginning of the scene, like each player’s code editor,
communicate on a more equal basis using Remote Procedure Calls (RPCs).

Another issue with this network setup is that if the host stops their instance, the game
session is over. However, this isn’t a problem in the context of HaskellQuest. Both
players have to progress through the game from beginning to end at the same time, so
the game session should end if either player disconnects - HaskellQuest’s handling of
this is described in section 4.3.

4.2.3 Potential improvement - Distributed Authority

Unity has begun supporting an alternative topology for NGO known as Distributed
Authority [18]. Here, there is no ’server’; each client assumes authority for a subset of
objects in a scene - the state updates for objects not owned by a client are communicated

Chapter 4. Implementation 24

by other instances. Authority is transferrable between clients - however, this leaves
the game state open to race conditions which need to be explicitly handled if multiple
clients attempt to obtain authority of the same object at once. This method is distinct
from a true peer-to-peer implementation, as it requires a central service to establish
client communication.

While its implementation in HaskellQuest may solve the issue of player 1 having a
latency advantage during the attack phases, the question of ’which objects are owned
by which client’ is far from straightforward - a key part of the gameplay segments is
that any projectile can hit any player, which may increase the chance of race conditions
if a projectile and player avatar are owned by separate clients. Additionally, Distributed
Authority is still in its beta phase, which could have made implementation problematic.

The reason I didn’t investigate it further at the beginning of development, however,
was that I was under the impression that Distributed Authority was a fully-paid service
- in fact, it is free up to a monthly limit of 6000 connectivity hours / 100 GB of
bandwidth [64], which would have easily covered HaskellQuest’s needs. By the time I
realised, however, too much of the game’s multiplayer architecture had already been
implemented.

4.3 Handling connection and disconnects

Direct connections between game instances based on IP address are not possible without
port forwarding or NAT punch-through [16] - the former requires access to router
settings (which would be problematic if, say, players were to use a public WiFi like
Eduroam) while the latter is known to be unreliable. Therefore, to handle connections,
the game uses Unity’s Relay service [53].

The service allows hosts to request allocations on a relay server, a public endpoint
that is open to all players and exists independent of the session lifespan - it acts as
a go-between to enable player connections [52]. Once an allocation is in place, the
service returns a room code to the host: a six-character string used as a unique identifier.
Clients can then enter this code to join the session. Since HaskellQuest requires only 2
players, the game requires connecting clients to receive approval from the host - if a
client has already joined, the host automatically denies any others.

As with Distributed Authority, use of the Relay service is free up to a point - in this
case, up to 50 concurrent users monthly, and up to 3 GB of bandwidth per concurrent
user [64]. Again, this is more than enough for the needs of HaskellQuest’s multiplayer
campaign.

NGO defines a NetworkManager singleton that contains networking information and
netcode-related settings [47]; in HaskellQuest, the singleton is created at the start
screen and persists across the remaining scenes. The same scenes are used for both
the single-player and multiplayer campaigns; different dialogue text, cutscene text,
Haskell challenges and attack controller scripts are enabled depending on the status of
the NetworkManager. (Thus, during the single-player campaign, the player’s instance
is still a host - there are just no connected clients and no Relay allocation.)

Chapter 4. Implementation 25

The NetworkManager has functionality that allows for game code to be executed when
a disconnect is detected. While other games allow client instances to ’catch up’ on the
game state if they reconnect after a period of brief disconnection, HaskellQuest opts to
instantly end the session - the player still in the session is informed of the disconnection
and shown a prompt to return to the main menu, with there being no option to continue.
This is because the design of the game does not allow for much desynchronization
between players: they are meant to go through the same segments of the game at the
same time.

However, NGO’s detection of disconnects is nuanced. By default, game instances send
heartbeat packets to one another at constant intervals in periods of inactivity to maintain
the connection. If one instance hasn’t received a packet from another in some time, it
begins sending a set number of connect requests at constant intervals - if all of these go
unanswered, the disconnect event is triggered.

While a player outright terminating the connection (by, for instance, closing the ap-
plication) is detected instantaneously, disconnects in the face of network issues are
detected with a delay due to the above behaviour - additionally, in situations where the
connection quality is variable, this delay may be quite large.

As such, the multiplayer campaign’s behaviour with unstable Internet connections is
untested and may potentially lead to significant technical issues - thankfully, none of
these problems were encountered during evaluation.

4.4 Adaptations to game systems for multiplayer

4.4.1 Attack controllers

In the multiplayer campaign, given that there are two functions per Haskell challenge
which are usually independent of one another, the test code usually needs to output one
result for each. As such, the version of the Trigger() function with the single Boolean is
not sufficient; all of the AttackController scripts for the multiplayer campaign use the
version with the ’additionalConditions’ argument. (The Boolean version is used as a
fallback in case of syntax / compilation errors.)

Additionally, section 4.2.2 mentions that NetworkObjects such as the projectiles can
only be spawned by the authoritative instance, i.e. the host. Thus, while either player
can use the ’Submit’ button to send their code for compilation, only player 1’s instance
can actually call the AttackController script; thus, if player 2 has submitted, an RPC is
used to notify player 1’s instance of the result.

This works fine on its own in cases where all the AttackController is doing is spawning
objects. However, the scripts for the tutorial and Dr. Fractal fights also involve visual
effects like screen flashes - thus, in those cases, the requisite AttackController script on
player 1’s instance uses an RPC to tell the script on player 2’s instance to execute the
effect code.

Chapter 4. Implementation 26

4.4.2 Dialogue / cutscene text advancement

In last year’s implementation, each new phase of the battle starts with a brief dialogue
segment that advances the story. Within the dialogue box, each line appears character by
character, accompanied by a ’speech’ sound effect. The dialogue box is accompanied by
an invisible button taking up the whole screen, which serves the following function: if
the current line has finished, move to the next line of dialogue. Otherwise, the dialogue
box auto-completes the line. The cutscenes in between levels use the same basic system.

For the multiplayer campaign, this would also need to be synchronized; the end of
the dialogue is when players are allowed to use the code editor, while the end of the
cutscene governs when the next scene is loaded. As such, RPCs are used; if one player
clicks the screen, the relevant function is executed locally and also remotely executed
on the other player’s instance.

However, the implementation is flawed; the advance / autocomplete decision is still
made based on local state, rather than through the RPC call itself. Thus, if player 1
clicks the screen when the line is complete for them, but still going for player 2, player 1
advances to the next line while player 2 does not. This causes desynchronization, which
can lead to bugs for one player like the code editor being able to be triggered while the
dialogue box is still on screen, or the next scene being loaded while the cutscene text
hasn’t finished.

4.5 Synchronizing code between players

4.5.1 Discarded initial implementation

Since the initial idea for the Haskell challenge design involved real-time text synchro-
nization a la Google Docs, the obvious first step was to find out how Google Docs
implemented it. This led to considering two approaches:

• Operational Transform (OT) [22]: This relies on a given document being
described as a sequence of edit operations. Each instance of the document, when
receiving edits from other instances, transforms them relative to any local edits
e.g. adjusting the position of an insertion. Google Docs uses a version of the
Jupiter OT algorithm for multi-user collaboration [67].

• Differential Synchronization (DS) [25]: Here, each instance maintains its own
copy of the text upon which edits are performed, as well as an additional copy
known as a ’shadow’ that cannot be edited by the user. These copies are used to
calculate a list of deltas (’diffs’) i.e. the user’s edits to the text, which are then sent
over to the other instance and applied to the text and shadow there (’patches’).
The algorithm is symmetric; each instance receives diffs, applies them, and sends
a list of edits. The DS algorithm was used in Google’s now-defunct MobWrite
service [45], enabling multi-user collaboration for JavaScript applications.

The latter was picked largely because the DiffMatchPatch library [17], providing
operations for calculating diffs and applying patches, was available in C# - it would
therefore be very easy to use with Unity. However, some wrangling was required -

Chapter 4. Implementation 27

the Diff class provided by the library could not be used with Unity NGO’s RPC calls,
so I had to add a functionally-identical class implementing the INetworkSerializable
interface. Additionally, when retrieving the players’ code to calculate Diffs, the color
tags for comment highlighting would have to be removed to avoid errors – these would
then need to be re-added on the other instance when applying the Patches.

Differential Synchronization assumes a client-server network setup: this straightfor-
wardly mapped to the client-host setup used for HaskellQuest. The implementation
uses the Dual Shadow method described in the original paper, as seen in Figure 4.1.
The paper outlines a more advanced implementation known as the Guaranteed Delivery
Method. However, this was unnecessary - Unity NGO guarantees eventual ordered
delivery for RPCs, so there would be no need to consider the scenario of a packet being
outright lost.

Figure 4.1: An illustration of the Dual Shadow variation of Differential Synchronization,
taken from the original paper [25]

4.5.2 Final implementation

Since the two players are no longer working on the same code for the reasons described
in section 3.2.1, a Differential Synchronization implementation is no longer needed.
Instead, at fixed time intervals, the client instance sends an RPC to the host instance
with the string contents of the InputField, i.e. player 2’s code; upon receiving this, the
host instance updates the code block for the other player’s code (as seen in Figure 4.2)
and sends back the contents of its own InputField i.e. player 1’s code. As such, while
the symmetric nature of DS is maintained, as well as the detail of the client initiating
the connection, most of the actual complexity is stripped out.

4.6 In-game code editor improvements

4.6.1 Code blocks

In last year’s release, the code editor only consisted of one InputField, i.e. an editable
text box, and a small display to show the result of compilation as well as any errors
(which had its own issues - more in section 4.6.3). However, the Haskell challenges

Chapter 4. Implementation 28

were specifically designed with the idea that players would only modify a specific
section of code;

This led to unintended exploits. For instance, the tutorial challenges for list comprehen-
sion and recursion defined a list to be used as an argument to the function that the player
was supposed to modify; however, the challenge could be passed by just modifying the
argument list itself.

As such, for this year, the code editor ’window’ is split into two sections; the InputField
contains the code that the player is supposed to modify, while a Scroll Rect [59]
containing an ordinary text box is used to display the code that the player cannot modify,
like type definitions and helper functions. Additionally, for the multiplayer campaign,
players needed to be able to view the other player’s code being edited in real-time - an
additional block was introduced for the two-player campaign, which can be toggled
with the ’1P / 2P Code’ button.

The new editor can be seen in Figure 4.2b.

(a) (b)

Figure 4.2: a) The code editor as it looked last year. b) The expanded code editor,
showing all code blocks, taken from player 1’s instance in the two-player campaign.

4.6.2 Haskell help text

In last year’s release, the dialogue in the tutorial levels was used to introduce Haskell
concepts to the player - the thought was that structuring it as a back-and-forth dialogue
between Lambda-Man and the Hologram would engage the player. However, testers
universally took issue - the problem was that all of the dialogue was skippable, and
there was no way to revisit the information later.

Testers suggested a kind of Haskell ’cheatsheet’ - such a feature already existed in
Bogomil’s HaskellQuest [9] as the ’Grimoire’, which provided brief explanations for
Haskell topics that could be used as a reference. Since this fit Gee’s maxim of allowing

Chapter 4. Implementation 29

the player to view information upon request (see section 2.2.2), it was included in this
year’s release.

The actual text was based on ’Learn You A Haskell For Great Good’ [38], just as the
tutorial dialogue from last year was. The text is split based on topics that players can
choose between using an initial menu.

To avoid overwhelming the player with information, the help topics are unlocked as the
game progresses. The player can only access the first 3 topics to start with, i.e. types,
expressions and functions, and case expressions and pattern matching. The information
on lists, tuples and list comprehension is unlocked upon progressing to the second phase
of the tutorial i.e. right before the Colonel Trigger-Finger battle, while the information
on recursion is unlocked upon reaching the third tutorial phase i.e. right before the
Dr. Fractal battle. This attempts to address the other half of Gee’s principle: that
information should be presented just as it becomes relevant to some actual experience.

I also had to decide how the help screen would be incorporated alongside the existing
UI. As can be seen in Figure 3.1, the code editor already takes up half of the screen
when active. The help screen would need to be usable at the same time as the editor,
but it couldn’t take up too much space on the other half of the screen as it would cover
up the level graphics. Additionally, the size of the help screen would help determine
the length of each topic’s text. While the use of Scroll Rect would ensure that the text
could extend past the visible boundaries, it still couldn’t be too lengthy - otherwise, it
could frustrate the player reading it.

The final implementation of the help text can be seen in Figure 4.3. It can be toggled
with the use of the ’Help’ button.

Figure 4.3: The help screen showing information about types in Haskell, taken from the
tutorial in the single-player campaign.

Chapter 4. Implementation 30

4.6.3 Error messages

Another major criticism from last year’s testing was the fact that the error messages
were inadequate. The implementation there only kept the first line to show the error type,
as I was worried that GHC’s multi-line errors would inadvertently reveal the test code
to the player. However, this impeded the game from providing valuable feedback on the
player’s attempts - this was a frequent enough complaint that I decided to disregard my
concerns about the test code entirely.

As such, this year, the game displays all of the error text to the player - the text refreshes
every time the player submits, so they have access to the error message for the previous
execution. Similarly to the help screen, Unity’s Scroll Rect is used to handle text that
goes past the viewport boundaries.

The error screen is positioned in the same way as the help screen - as such, only
one of them can be active at a time. Additionally, in the multiplayer campaign, any
error messages returned by JDoodle’s compiler API are sent to all players using RPCs,
regardless of which player submitted the code.

The final implementation of the error display can be seen in Figure 4.4. It can be toggled
with the use of the ’Errors’ button.

Figure 4.4: The error display showing a compilation error caused by the ’undefined’
keyword, taken from the Dr. Fractal battle in the multiplayer campaign.

4.7 Issues with JDoodle

As mentioned in section 4.1.3, the game uses JDoodle, an online compiler service,
to handle compilation requests - this sidesteps any issues with having to install GHC.
However, it comes with its own issues, which were encountered more frequently this
year.

Chapter 4. Implementation 31

4.7.1 Service unreliability

The time taken for JDoodle’s compilation endpoint to respond to requests is immensely
variable; occasionally, it will time out entirely (in the absence of a problem with the code
itself, like an infinite loop), with the endpoint either returning an error or a truncated
compilation output. Since these errors are sporadic but persistent, the game code for
parsing the compiler output includes a special case for handling them.

At one point in March, the JDoodle compilation endpoint was inaccessible, returning
repeated 500 (Internal Server) errors. A colleague working on his own HaskellQuest
project, Ol Rushton [57], was able to quickly release a workaround - first, by exposing a
port on the machine to allow the game to connect to a local instance of GHC (this took
some modification to get working on Windows) and second, an alternative compiler
endpoint running on Tardis Project servers.

While the JDoodle service came back up online in time for HaskellQuest’s testing
sessions, this illustrates one of the major downsides of relying on an external compiler
service – the game’s basic playability is entirely at the whims of said service.

4.7.2 Restrictions on target platform

The previous year’s release was available for Windows, MacOS and Linux, to increase
the potential demographic for testing. While Unity’s support for multi-platform exports
made this easy, the latter two versions suffered from a few compatibility issues. The
Linux version opened in the wrong aspect ratio on DICE machines, while the MacOS
version requires a complicated process to start the game for the first time – Apple
requires executables to be notarized [65], and the certificate to do so can only be gener-
ated by members of the Apple Developer Program, so MacOS by default designates
HaskellQuest as potential malware.

While this year’s release ultimately ended up being available on the same platforms with
the same compatibility issues, an alternative was initially considered. My colleague
Dylan Drucker, also working on an educational game [21], released the test build on the
platform Itch.io [19]; the site is intended for smaller independent game developers to
showcase their work (among other things), and therefore allows WebGL builds to be
run in a browser window. Since the game is running on Itch.io’s servers and not natively
on testers’ machines, this would allow Mac and Linux users to play the game without
encountering any issues.

However, when testing an early build of HaskellQuest on Itch.io, I was unable to get
past the title screen – the game checks if it can connect to JDoodle’s servers before
progressing, but these checks were failing. JDoodle’s servers do not allow CORS
(Cross-Origin Resource Sharing) requests - thus, the WebGL build hosted on Itch.io’s
servers wouldn’t be able to make any compilation requests. If HaskellQuest were to
use its own compilation server instead, the server could be configured to allow CORS
requests.

Chapter 5

Evaluation

5.1 Method of evaluation

5.1.1 Tester demographic

The game’s target demographic was intended to be people who had prior experience
with imperative programming, but none with Haskell. Last year, the game was sent
out to undergraduate Informatics students in years 1-4; however, the problem was that
everyone would have been taught Haskell in Introduction to Computation in year 1.
While students in later years would have spent the vast majority of their time with
imperative languages, and might therefore be ’rusty’ with Haskell, this was still a
mismatch.

To remedy this, invitations for testing were sent to all Informatics students this year; this
would include Master’s students who hadn’t done their Bachelor’s degrees at Edinburgh,
who would therefore be more likely to have zero familiarity with Haskell. In addition,
I enlisted the help of some of my friends from the Edinburgh College of Art (ECA)’s
Game Design Studio course; the course involves the development of a game with Unity,
meaning they’d have some prior programming experience as well.

5.1.2 Testing groups and questionnaire design

Part of the aim of this project is to assess whether collaborative learning has an impact
on teaching Haskell. To this end, there would be two groups of testers, one for each cam-
paign - the single-player group serves as a control to compensate for the improvements
applying to both campaigns. Last year, links to the game and the evaluation forms were
simply sent out to the people who registered interest; thus, they were allowed to play
the game in their own time. However, this approach wouldn’t work for the multiplayer
testing - players would be required to pair up, which would shift substantially more
responsibility onto the tester to find a partner and schedule a session.

Thus, it was decided to have the multiplayer sessions in person; since the single-player
group was a control, that session would have to be in person too. However, this led
to scheduling issues, as I predicted in last year’s report; ultimately, I had to organise

32

Chapter 5. Evaluation 33

3 separate sessions of 1.5 hours each, one for single-player and two for multiplayer
testing. Testers were split in a 1:2 ratio, such that there would be the same number of
unique playthroughs per group. In the end, there were 5 responses for the single-player
evaluation and 10 responses for the multiplayer evaluation, as compared to 17 responses
from last year’s evaluation.

Given the increased variability of testers’ prior programming and Haskell experience, I
decided to include fields for testers to self-assess these attributes in a pre-game section
of the questionnaire. While a more formal assessment (e.g. asking questions about
programming concepts and Haskell syntax) would provide a more reliable estimate,
it would also require more of a time commitment from the tester, and the in-person
sessions were already a lot to ask. Additionally, last year’s questionnaire already
included a field similarly asking about the testers’ prior Haskell experience - keeping
this consistent would allow for easier comparisons.

The rest of the form is largely identical to that of last year; testers are asked to rate the
game’s entertainment value and suitability for newcomers, as well as the difficulty of
the game and the usefulness of the help text. One new question asks the tester to rate
the difficulty progression, to account for any sudden jumps in difficulty. The standard
scale is from 1 to 6; the help text rating uses a different scale where 3 is the ideal score,
1 is ’didn’t cover enough at all’, and 5 is ’too excessive even for a beginner’.

Additionally, given the in-person sessions, I was able to directly make observations on
the testers’ experience with the game. Indeed, while there was a bug report form this
year, it served little purpose - testers could just tell me about the issues they encountered.

5.2 Analysis of game evaluation metrics

This section uses the results from the previous report as well, to provide a point of
comparison [5].

The mean, median and mode of all the evaluation metrics, across all three rounds of
testing, can be seen in Table 5.1. From this, we see that the only score that shows a
significant difference is the difficulty rating for the hardest challenge for the single-
player group. As well, this seems to have changed for the worse, as the rating is higher
- the potential reasons for this are explored in section 5.3.1.

However, any differences in these values can simply be explained by smaller sample
sizes for this year’s groups, as well as the change in tester demographic. As such, I used
a one-tailed Welch’s t-test [68] to assess any change in scores; this test assumes that the
population variances are unequal, which hopefully compensates for the change in tester
demographic. In addition, t-tests do not require the sample sizes to be equal.

As with any t-test, the null hypothesis is that the population means are equal. The
alternative hypothesis for these tests is that the population mean for the first sample
is less than for the second sample, i.e. the scores increased between year 1 and year
2, and between the single-player and multiplayer campaigns. The results can be seen
in Table 5.2. However, most of the p-values do not fall below a typical significance
threshold of 0.05 - the sole exceptions are a change in the highest challenge difficulty

Chapter 5. Evaluation 34

Mean Median Mode
Prev. 1P 2P Prev. 1P 2P Prev. 1P 2P

Enjoyment 4.71 4.20 4.60 5 4 5 5 4 / 5 5
Intro effectiveness 4.29 4.20 4.30 4 4 5 4 / 5 4 / 5 5
Peak difficulty 3.88 5.20 4.00 4 5 4 4 5 / 6 4
Diff. progression - 3.00 3.10 - 3 3 - 2 / 4 3
Haskell info text 3.20 2.00 2.90 3 2 3 3 2 2 / 3

Table 5.1: The mean, median and mode for all metrics across all 3 rounds of testing.

between year 1 and year 2’s single-player campaigns, and a change in the usefulness of
the Haskell help text between this year’s single-player and multiplayer campaigns. Both
t-values are negative, meaning the scores improved - while this is meaningless for the
latter score, seeing as the help text was identical, it is encouraging for the former score.

The fact still remains, though; we cannot conclude that the multiplayer campaign, or
indeed any of the changes made this year, had a statistically-significant impact on most
of the scores given by players. (The radically-different testing environment would also
have logically had an impact on scores, but I couldn’t compensate for that.)

Additionally, to further evaluate the game’s suitability for newcomers, I wanted to
understand the correlation between testers’ prior experience with programming and
Haskell and how they evaluated the game. As such, Pearson correlation coefficients
[51] were calculated for each group - the results can be seen in Table 5.3. However,
most of these results are not statistically-significant; the exceptions are the relationships
between prior experience and the game’s difficulty, which is obvious.

From these results, we can infer two things: testers’ issues with the game are deeper
than what was addressed in this year’s development, and their impact was felt regardless
of their prior experience with programming languages or Haskell.

Players were also asked to select the last Haskell challenge they were able to clear
- this was also a part of last year’s evaluation. The idea was that in place of a post-
game Haskell evaluation, it would be a metric for what skills the player was able to
learn, under the assumption that a player could not beat a particular challenge without
understanding its Haskell concept. (This is a flawed assumption - the reasons are
explored in the next section.)

Last year, the most common choice was the final phase of the recursion level i.e. beating
the game as a whole. In this year’s evaluation, the most common choice for the was
the final phase of the list comprehension level for the single-player group, and the
tutorial on recursion for the multiplayer group. While this could be explained by the
time limit imposed on this year’s testing sessions, this does also suggest that the list
comprehension level is something of a bottleneck – this is borne out by observations,
tester comments, and the fact that the second most common category last year was also
the final phase of the list comprehension level.

Also, we can conclude that the improvements to the Dr. Fractal fight, detailed in section
3.5, had little effect on scores, as most players this year didn’t get to that level.

Chapter 5. Evaluation 35

Test groups being compared
Prev ->1P Prev ->2P 1P ->2P

Enjoyment 1.1, 0.86 0.27, 0.61 -0.83, 0.21
Intro effectiveness 0.20, 0.58 -0.014, 0.49 -0.21, 0.42
Peak difficulty -2.9, 0.0096 -0.20, 0.42 1.9, 0.96
Diff. progression - - -0.17, 0.43
Haskell intro text 2.9, 0.99 0.56, 0.71 -2.0, 0.034

Table 5.2: The t-values obtained by comparing group results, alongside the associated
p-values. The results that show a significant correlation (p < 0.05) are in bold.

Prior Haskell Prior programming
Prev. 1P 2P 1P 2P

Enjoyment 0.52, 0.034 0.33, 0.59 0.059, 0.87 -0.25, 0.69 0.32, 0.37
Intro effectiveness 0.35, 0.17 0.87, 0.053 0.48, 0.16 0.83, 0.084 0.34, 0.33
Peak difficulty -0.56, 0.018 -0.76, 0.13 -0.75, 0.012 -0.40, 0.51 -0.25, 0.49
Diff. progression - 0.46, 0.44 -0.19, 0.60 0.89, 0.039 0.15, 0.69
Haskell info text 0.35, 0.17 0.65, 0.24 -0.44, 0.21 0.73, 0.17 -0.38, 0.28

Table 5.3: The Pearson correlation coefficients between the testers’ prior knowledge
and their evaluation scores, alongside the associated p-values. The results that show a
significant correlation (p < 0.05) are in bold.

5.3 Areas of improvement

This section discusses areas of the game that testers took issue with - these were either
expressed by testers or observed by me during the testing sessions. These factors may
be the reason for the lack of significant improvement in the scores - essentially, the
approach of this year’s project was to build on the foundations from last year, but those
foundations were flawed to start with.

5.3.1 Difficulty progression

Testers felt that the tutorials were far too easy to serve as an effective introduction
to the game. Specifically, solving the challenges involve very minor alterations (e.g.
removing a ’- 10’ from an expression, or replacing a ’<=’ with a ’>=’), meaning players
didn’t really need to engage with the Haskell syntax. Consequently, the transition to
the Colonel Trigger-Finger fight, where players have to write a function themselves
requiring more syntax knowledge than before, was felt to be too steep - the ECA
students (the closest to complete beginners) couldn’t progress past that point.

In terms of the attack segments, there were a few balancing issues. For instance,
the attacks in the multiplayer campaign’s Colonel Trigger-Finger level had too many
projectiles, furthering the sense of that fight being an unfair escalation in difficulty. In
the opposite direction, the attack in phase 2 of the Dr. Fractal fight was too easy to
dodge, as the projectiles don’t follow the player’s position.

These issues break both the “consolidation and challenge” progression principle and
the “’doable’ but challenging” difficulty principle mentioned in section 2.2.2.

Chapter 5. Evaluation 36

5.3.2 Utility of help screen and comment hints

HaskellQuest, in its current state, relies on explanatory text, from the Haskell info text
in the help screen to the dialogue establishing story context to the comments in Haskell
challenges letting the player know what to do.

While the help screen was an improvement from last year’s tutorial dialogue (specifically
called out as such by one tester who had taken part last year), the difference in the actual
score was marginal, and there were still some issues.

For instance, there was a notable omission from the information covered in the text -
how pattern-matching can be incorporated in the generators in a list comprehension. I
excluded this on the grounds that I thought it would make the Colonel Trigger-Finger
list comprehension challenges too easy; however, testers were consistently unable to
figure the feature out based on the other information provided. Indeed, the testers in the
single-player group were completely stuck - I had to provide the same hint to everyone
so that they could progress past the Colonel Trigger-Finger level.

As well, though testers were seen using the help panel when attempting the Haskell
challenges, they also showed an inclination to disregard it unless absolutely forced to -
this applied to the explanations given in comments in the tutorial challenges as well,
meaning testers were frequently unaware of the ’Error’ and ’Help’ buttons, or the fact
that they could move during the attack segments, until these were pointed out to them.

The latter point gets at a more fundamental problem. HaskellQuest’s challenges take
inspiration from the tutorials in the Inf1A course; consequently, the instructional text
is not an incorporated part of the experience, but an obstacle to get through in order
to actually get to the gameplay. Additionally, as mentioned in section 4.6.2, the text
was explicitly based on a Haskell textbook - however, an actual textbook is necessarily
going to do a better job of explaining Haskell concepts than a help panel in a video
game ever could. To further the point, testers in the first multiplayer testing session
were seen using supplemental resources like StackOverflow or ChatGPT.

As such, HaskellQuest’s current design framework may be better suited to being a
tool used to reinforce Haskell concepts alongside some other method dedicated to
introducing said concepts, rather than being an all-in-one learning solution – the design
may be better suited for a different demographic than the one it is nominally aimed
at. Indeed, Rushton’s HaskellQuest [57] seems to take this approach - the game places
emphasis on ’comprehension checks’ and allows limited and situational modification of
code, but at no point does it actually introduce Haskell’s core concepts to the player.

5.3.3 Haskell challenge design

The restrictive nature of HaskellQuest’s challenge design was intended to make the
game more beginner-friendly, but there are some key flaws. While each challenge
is meant to focus on one Haskell concept, the game only requires that the function
behaves in a certain way, with no constraints on implementation. For instance, any list
comprehension challenge can instead be solved by pattern-matching against the head
and tail of the list, modifying the head, and calling the function recursively on the tail.

Chapter 5. Evaluation 37

Indeed, the Inf1A tutorial exercises rely on this concept, which was briefly considered
as the design approach last year - it was nixed because parsing the player’s function to
figure out how they’d implemented it would be difficult. The game currently attempts
to mitigate this by only offering Haskell information prior to the level intended to use it,
as mentioned in section 4.6.2. Even so, the challenges have unintentional ambiguities,
making the approach less beginner-friendly.

The restrictiveness also negatively affects the gameplay - players may be punished for
taking actions that make sense within the story, but aren’t the intended answer. For
instance, in phase 2 of the Colonel Trigger-Finger fight, rather than filter an input list to
find one inactive Missile, the player could instead opt to deactivate all the Missiles -
however, the output list would be longer than expected, leading to the test failing.

It is instructive here to look at two other HaskellQuest projects. Segboer’s HaskellQuest
[60] eschews writing syntax in favour of an approach where values and functions are
physical objects in-game that can affect one another; the game thus prioritizes teaching
the logic (rather than syntax) of functional programming to newcomers through puzzles
with only one solution, as players aren’t allowed to introduce new functions.

On the other side of the spectrum, Bogomil’s HaskellQuest [9] seems almost to define
a domain-specific language for the player’s actions in battle. This approach provides
a good basis for emergent gameplay [70], which can serve as a particularly effective
learning tool - this is Gee’s fundamental thesis in section 2.2.2.

HaskellQuest’s current design philosophy falls into an unfortunate middle ground - it
isn’t as accessible and intuitive to beginners as Segboer’s HaskellQuest, but doesn’t
allow as much freedom for experienced Haskell users as Bogomil’s HaskellQuest.
Additionally, the restrictive conceptual progression poses a problem for the design of
the multiplayer challenges. Since each half of the challenge needs to cover the same
Haskell concept and story context, they can end up being quite similar. In the worst
cases, if one player has a solution, the other can simply copy it and change a few words,
like phase 2 of the Colonel Trigger-Finger level:

filterMissiles missiles = [Missile pos active | (Missile pos
active) <- missiles , not active] -- PLAYER 1

filterLandmines mines = [Landmine coords active | (Landmine
coords active) <- mines , not active] -- PLAYER 2

5.4 Technical issues

5.4.1 UI shortcomings

Testers reported issues with the in-game code editor. These were mostly problems that
were observed last year, as well as during development: for instance, lines overlapping
each other if you backspace at the beginning of a line, or being unable to select text.
These occur sporadically, and are to do with Unity’s InputField implementation itself -
they may be fixed in more recent versions of the Unity Editor.

Chapter 5. Evaluation 38

Testers also requested features like syntax / error highlighting and automatic indentation
- this is consistent with last year’s feedback. There are in-game code editor assets
available on Unity’s Asset Store that offer these features [56][35] - however, they are all
paid. Also, using these assets with HaskellQuest would have required more work than
reusing the previous implementation, especially with the UI enhancements described in
section 4.6. Thus, while these assets could potentially solve the other InputField issues
as well, I decided not to, as I believed the missing features were simply inconveniences.

However, in one of the testing sessions this time around, two testers encountered a
strange issue to do with newline characters. Copying and pasting a line of code onto
a new line introduced some problematic characters that resulted in a parse error, even
though the code itself was functionally correct – the testers got penalized in-game, and
were ultimately unable to progress. While I was unable to recreate this myself, I suspect
the root cause is the real-time commenting, along with the InputField’s issues.

Additionally, Unity’s Scroll Rect implementation, used for the non-editable code blocks
and the help and error screens, has a bug - occasionally, the scrollbar will fail to change
length if the viewport contents increase in size. For the code blocks, I specifically had
to force the game to rebuild the objects’ UI layouts to fix the issue - the help screen,
meanwhile, seemed mysteriously unaffected in testing. However, I forgot to fix this for
the error screen, so on occasion players will be unable to read all of the error text.

5.4.2 Game not running in background

By default, Unity does not allow games to run in the background (i.e. not the primary
window) - this is governed by one setting in the Project Preferences [30]. Because
of this, if a player switches windows while HaskellQuest is open, the game pauses
execution. This didn’t pose a problem last year; however, in this year’s release the
NetworkManager registers a disconnect. Thus, if the player switches windows while in
multiplayer, the session immediately halts, forcing testers to start from the beginning.
Again, though, the fix for this is trivial - the bug just went uncaught during testing.

5.4.3 Platform compatibility issues

These were described in section 4.7.2. Additionally, at the start of evaluation, I’d
provided incorrect setup instructions for MacOS. I’d assumed the process would be
the same as last year; however, with more recent versions of MacOS, the setup had
become even more complex. This meant that in all sessions, I had to offer my own
laptop to one tester so they could take part. The problem of the game not running in the
background seems to be worse on MacOS as well; testers reported the game crashing
upon switching windows, even when in single-player.

5.4.4 Desynchronization issues

These were described in section 4.4.2. While they didn’t significantly impact testers,
they were consistently observed - the specific instances mentioned previously were
flagged by testers.

Chapter 6

Conclusion

6.1 Achievements

The main achievement of this year’s work was the successful design and implementation
of the collaborative multiplayer campaign, a completely novel approach to teaching
functional programming. While the evaluation failed to show a significant change in
scores, testers’ responses to the questionnaire showed they really enjoyed the experience
and wanted to see it further fleshed out. Anecdotal evidence from the testing sessions
also proves the basic validity of the collaborative approach; even with the single-player
campaign, the testers’ first instinct was to collaborate with one another on problems too
difficult for them to solve on their own.

Additionally, though the improvements made to both campaigns didn’t address the more
fundamental limitations of the game, they did improve the experience - the help text
was used quite frequently by testers (and specifically called out as an improvement), as
was the multi-line error display. The core emphasis on a fun storyline and colourful,
detailed presentation continues to be a successful approach - as with last year, testers
consistently praised the attention paid to the game’s artwork, sound effects and creative
gameplay concepts.

Once again, working on HaskellQuest has taught me a lot about game development.
On a baseline level, I now know more about designing and implementing networked
games. Additionally, reading through the existing literature on educational game design
and collaborative learning in order to justify the game’s design choices has helped
strengthen my understanding of game design principles in general.

6.2 Future work

The evaluation this year was extremely valuable; outside of the insights on the multi-
player campaign itself, it revealed that a lot of the fundamental systems of HaskellQuest
would have to be reconceptualized in order to push it to its full potential as an educa-
tional tool.

39

Chapter 6. Conclusion 40

As discussed in section 5.3.3, the current design seems to be pulled in two directions.
Lambda-Man’s stated powers of ’altering reality by writing Haskell’, as well as the
game’s basic premise of mirroring the gameplay scenarios in Haskell challenges, lean
towards player inventiveness and interaction, but this would leave newcomers incredibly
lost - as such, the game has to offer the illusion of freedom through challenges that each
allow completely unique, but limited, interactions.

However, this approach requires newcomers to follow the game’s exact ’train of thought’,
so to speak, which is problematic if the jump from one challenge to the next is too big,
or the player feels they don’t have enough information to figure out what the game
wants them to do. Additionally, such an approach also limits the game’s replayability,
as well as its potential for expansion (as discussed in section 3.6).

It would therefore be beneficial to reconsider the challenge design approach and target
demographic in tandem, i.e. to more intentionally alter the design towards newcomers or
experienced programmers. A change that could make the adjustment in either direction
easier would be to commit to a consistent set of game mechanics from beginning to end,
rather than introducing a new kind of interaction per challenge. This would also allow
the tutorial to be more effective – the mechanics introduced would translate directly to
the more difficult battles, rather than running the risk of being too dissimilar.

The downside such an approach has over the current design is that it isn’t intuitively
structured around the introduction and testing of Haskell concepts - however, the game
as it stands has problems around those two areas anyway.

A reconceptualization of the design would also benefit the multiplayer campaign, in
that the collaborative aspect could be considered from the very beginning. A lot of the
difficulty I experienced in translating HaskellQuest to multiplayer, aside from the basic
novelty, was because the original framework was never really intended to support a
collaborative experience.

This wouldn’t quite be starting from scratch; the core ideas could be preserved, as well
as the entertaining aesthetic approach, but without the accrued design and technical
debt of the current version of HaskellQuest.

Essentially, the ideas and lessons across both years of this project can serve as a strong
foundation for future work on HaskellQuest.

Bibliography

[1] 40009 (Computing Practical 1) — Faculty of Engineering. Imperial College
London. URL: https : / / www . imperial . ac . uk / computing / current -
students/courses/40009/.

[2] About Netcode for GameObjects — Unity Multiplayer. Unity Technologies. URL:
https://docs-multiplayer.unity3d.com/netcode/current/about/.

[3] Clark C Abt. Serious Games. New York: Viking Press, 1970.
[4] Peter Achten. “The Soccer-Fun project”. In: Journal of Functional Programming

21.1 (2011), pp. 1–19. DOI: 10.1017/S0956796810000055.
[5] Neel Amonkar. “HaskellQuest: a game for teaching functional programming in

Haskell”. Master’s Thesis, Part 1. School of Informatics, University of Edinburgh,
2024.

[6] Per Backlund and Maurice Hendrix. “Educational games - Are they worth the
effort? A literature survey of the effectiveness of serious games”. In: 2013 5th
International Conference on Games and Virtual Worlds for Serious Applications
(VS-GAMES). 2013, pp. 1–8. DOI: 10.1109/VS-GAMES.2013.6624226.

[7] Fabian Beuke. GitHut 2.0 - GitHub language stats. URL: https://madnight.
github.io/githut/#/pull_requests/2024/1.

[8] Judith Bishop et al. “Code Hunt: Experience with coding contests at scale”. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 2. IEEE. 2015, pp. 398–407.

[9] Eva Bogomil. “HaskellQuest: a game for teaching functional programming in
Haskell”. Bachelor’s Thesis. School of Informatics, University of Edinburgh,
2023.

[10] Manuel M. T. Chakravarty and Gabriele Keller. “The risks and benefits of teach-
ing purely functional programming in first year”. In: Journal of Functional
Programming 14.1 (2004), pp. 113–123. DOI: 10.1017/S0956796803004805.

[11] Eunhye Choi et al. “Commercial video games and cognitive functions: Video
game genres and modulating factors of cognitive enhancement”. In: Behavioral
and Brain Functions 16 (Dec. 2020). DOI: 10.1186/s12993-020-0165-z.

[12] Client-server topologies — Unity Multiplayer. Unity Technologies. URL: https:
//docs-multiplayer.unity3d.com/netcode/current/terms-concepts/
client-server/.

[13] CodeShare. URL: https://codeshare.io/.
[14] CodinGame. CoderPad. URL: https://www.codingame.com.
[15] Collaboration - Replit. URL: https://replit.com/collaboration.

41

https://www.imperial.ac.uk/computing/current-students/courses/40009/
https://www.imperial.ac.uk/computing/current-students/courses/40009/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://doi.org/10.1017/S0956796810000055
https://doi.org/10.1109/VS-GAMES.2013.6624226
https://madnight.github.io/githut/#/pull_requests/2024/1
https://madnight.github.io/githut/#/pull_requests/2024/1
https://doi.org/10.1017/S0956796803004805
https://doi.org/10.1186/s12993-020-0165-z
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/client-server/
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/client-server/
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/client-server/
https://codeshare.io/
https://www.codingame.com
https://replit.com/collaboration

BIBLIOGRAPHY 42

[16] Create a game with a listen server and host architecture — Unity Multiplayer.
Unity Technologies. URL: https :/ /docs - multiplayer. unity3d. com/
netcode/current/learn/listen-server-host-architecture/.

[17] DiffMatchPatch — GitHub. Google. URL: https://github.com/google/
diff-match-patch.

[18] Distributed authority topologies — Unity Multiplayer. Unity Technologies. URL:
https://docs-multiplayer.unity3d.com/netcode/current/terms-
concepts/distributed-authority/.

[19] Download the latest indie games - Itch.io. URL: https://itch.io/.
[20] Karolina Drobnik. “HaskellQuest: a game for teaching functional programming

in Haskell”. Master’s Thesis. School of Informatics, University of Edinburgh,
2018.

[21] Dylan Drucker. “Let’s Get Cracking: Leveraging Gameplay from an Adversarial
Perspective to Teach Password Security Concepts”. Master’s Thesis, Part 2.
School of Informatics, University of Edinburgh, 2025.

[22] C. A. Ellis and S. J. Gibbs. “Concurrency control in groupware systems”. In: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’89. Portland, Oregon, USA: Association for Computing Ma-
chinery, 1989, pp. 399–407. ISBN: 0897913175. DOI: 10.1145/67544.66963.
URL: https://doi.org/10.1145/67544.66963.

[23] Toby Fox and Temmie Chang. Undertale. [PC, Mac, Linux, PS4, PS Vita, Nin-
tendo Switch, Xbox One]. 2015. URL: https://undertale.com/.

[24] Sandro Franceschini et al. “Action video games improve reading abilities and
visual-to-auditory attentional shifting in English-speaking children with dyslexia”.
In: Scientific reports 7.1 (2017), p. 5863.

[25] Neil Fraser. “Differential synchronization”. In: Proceedings of the 9th ACM
symposium on Document engineering. 2009, pp. 13–20.

[26] Functional Programming (2024-25). University of Oxford. URL: https://www.
cs.ox.ac.uk/teaching/courses/2024-2025/fp/.

[27] GameMaker. YoYo Games. URL: https://gamemaker.io/en.
[28] James Paul Gee. What Video Games Have To Teach Us About Learning and

Literacy. Revised and Updated edition. New York: St. Martin’s Griffin, 2007 -
2003. ISBN: 9781403984531.

[29] Haskell in Industry - HaskellWiki. HaskellWiki. URL: https://wiki.haskell.
org/index.php?title=Haskell_in_industry.

[30] How do you keep your game running even when you switch out of it? - Questions
& Answers - Unity Discussions. URL: https://discussions.unity.com/t/
how-do-you-keep-your-game-running-even-when-you-switch-out-
of-it/928.

[31] Paul Hudak. The Haskell School of Expression: Learning Functional Program-
ming Through Multimedia. Cambridge University Press, 2000.

[32] Paul Hudak et al. “Report on the programming language Haskell: a non-strict,
purely functional language version 1.2”. In: SIGPLAN Notices 27 (Jan. 1992).

[33] Human Resource Machine. [Windows, Mac OS X, Linux, iOS, Android, Wii U,
Nintendo Switch]. Tomorrow Corporation. URL: https://tomorrowcorporation.
com/humanresourcemachine.

https://docs-multiplayer.unity3d.com/netcode/current/learn/listen-server-host-architecture/
https://docs-multiplayer.unity3d.com/netcode/current/learn/listen-server-host-architecture/
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/distributed-authority/
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/distributed-authority/
https://itch.io/
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://undertale.com/
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/fp/
https://www.cs.ox.ac.uk/teaching/courses/2024-2025/fp/
https://gamemaker.io/en
https://wiki.haskell.org/index.php?title=Haskell_in_industry
https://wiki.haskell.org/index.php?title=Haskell_in_industry
https://discussions.unity.com/t/how-do-you-keep-your-game-running-even-when-you-switch-out-of-it/928
https://discussions.unity.com/t/how-do-you-keep-your-game-running-even-when-you-switch-out-of-it/928
https://discussions.unity.com/t/how-do-you-keep-your-game-running-even-when-you-switch-out-of-it/928
https://tomorrowcorporation.com/humanresourcemachine
https://tomorrowcorporation.com/humanresourcemachine

BIBLIOGRAPHY 43

[34] Informatics 1 - Introduction to Computation. University of Edinburgh. URL:
http://www.drps.ed.ac.uk/24-25/dpt/cxinfr08025.htm.

[35] Trivial Interactive. InGame Code Editor — GUI Tools — Unity Asset Store. URL:
https://assetstore.unity.com/packages/tools/gui/ingame-code-
editor-144254.

[36] JDoodle - Integrate online compiler plugin and API. URL: https : / / www .
jdoodle.com/integrate-online-ide-compiler-api-plugins.

[37] David W. Johnson and Roger T. Johnson. Learning Together and Alone: Co-
operative, Competitive, and Individualistic Learning. Fourth edition. Needham
Heights, Mass., London: Allyn and Bacon, 1994.

[38] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, 2011.

[39] Alejandro Lujan and Christian Leger. ScalaQuest. URL: https://www.kickstarter.
com/projects/andanthor/scalaquest-a-game-to-learn-scala/.

[40] Christoph Lüth. “Haskell in Space: An interactive game as a functional program-
ming exercise”. In: Journal of Functional Programming 13.6 (2003), pp. 1077–
1085. DOI: 10.1017/S0956796803004891.

[41] Christos Malliarakis, Maya Satratzemi, and Stelios Xinogalos. “CMX: The Ef-
fects of an Educational MMORPG on Learning and Teaching Computer Program-
ming”. In: IEEE Transactions on Learning Technologies 10.2 (2017), pp. 219–
235. DOI: 10.1109/TLT.2016.2556666.

[42] Konstantinos Maragos and Maria Grigoriadou. “Designing an Educational Online
Multiplayer Game for learning Programming”. In: Proceedings of the Informatics
Education Europe II Conference. 2007, pp. 29–30.

[43] Léa Martinez, Manuel Gimenes, and Eric Lambert. “Entertainment Video Games
for Academic Learning: A Systematic Review”. In: Journal of Educational Com-
puting Research 60.5 (2022), pp. 1083–1109. DOI: 10.1177/07356331211053848.
eprint: https://doi.org/10.1177/07356331211053848. URL: https:
//doi.org/10.1177/07356331211053848.

[44] Michael A. Miljanovic and Jeremy S. Bradbury. “A Review of Serious Games
for Programming”. In: Serious Games. Ed. by Stefan Göbel et al. Cham: Springer
International Publishing, 2018, pp. 204–216. ISBN: 978-3-030-02762-9.

[45] MobWrite — Google Code Archive. Google. URL: https://code.google.
com/archive/p/google-mobwrite/.

[46] Mathieu Muratet et al. “Towards a Serious Game to Help Students Learn Com-
puter Programming”. In: International Journal of Computer Games Technology
2009.1 (2009), pp. 1–12.

[47] NetworkManager — Unity Multiplayer. Unity Technologies. URL: https://
docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/.

[48] Jakob Nielsen. “Enhancing the explanatory power of usability heuristics”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’94. Boston, Massachusetts, USA: Association for Computing Machinery,
1994, pp. 152–158. ISBN: 0897916506. DOI: 10.1145/191666.191729. URL:
https://doi.org/10.1145/191666.191729.

[49] Elena Novak and Janet Tassell. “Using video game play to improve education-
majors’ mathematical performance: An experimental study”. In: Computers in

http://www.drps.ed.ac.uk/24-25/dpt/cxinfr08025.htm
https://assetstore.unity.com/packages/tools/gui/ingame-code-editor-144254
https://assetstore.unity.com/packages/tools/gui/ingame-code-editor-144254
https://www.jdoodle.com/integrate-online-ide-compiler-api-plugins
https://www.jdoodle.com/integrate-online-ide-compiler-api-plugins
https://www.kickstarter.com/projects/andanthor/scalaquest-a-game-to-learn-scala/
https://www.kickstarter.com/projects/andanthor/scalaquest-a-game-to-learn-scala/
https://doi.org/10.1017/S0956796803004891
https://doi.org/10.1109/TLT.2016.2556666
https://doi.org/10.1177/07356331211053848
https://doi.org/10.1177/07356331211053848
https://doi.org/10.1177/07356331211053848
https://doi.org/10.1177/07356331211053848
https://code.google.com/archive/p/google-mobwrite/
https://code.google.com/archive/p/google-mobwrite/
https://docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/
https://docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/
https://doi.org/10.1145/191666.191729
https://doi.org/10.1145/191666.191729

BIBLIOGRAPHY 44

Human Behavior 53 (2015), pp. 124–130. ISSN: 0747-5632. DOI: https://doi.
org/10.1016/j.chb.2015.07.001. URL: https://www.sciencedirect.
com/science/article/pii/S0747563215300121.

[50] Fotini Paraskeva, Sofia Mysirlaki, and Aikaterini Papagianni. “Multiplayer online
games as educational tools: Facing new challenges in learning”. In: Computers &
Education 54.2 (2010), pp. 498–505. ISSN: 0360-1315. DOI: https://doi.org/
10.1016/j.compedu.2009.09.001. URL: https://www.sciencedirect.
com/science/article/pii/S0360131509002413.

[51] Karl Pearson. “VII. Note on regression and inheritance in the case of two parents”.
In: Proceedings of the Royal Society of London 58.347-352 (1895), pp. 240–242.

[52] Relay servers. Unity Technologies. URL: https://docs.unity.com/ugs/en-
us/manual/relay/manual/relay-servers.

[53] Relay: Free P2P Networking & Connection Solution — Unity. Unity Technolo-
gies. URL: https://unity.com/products/relay.

[54] Rich Text: TextMeshPro — 4.0.0-pre.2. URL: https://docs.unity3d.com/
Packages/com.unity.textmeshpro@4.0/manual/RichText.html.

[55] Martin Riopel et al. “Impact of serious games on science learning achieve-
ment compared with more conventional instruction: an overview and a meta-
analysis”. In: Studies in Science Education 55.2 (2019), pp. 169–214. DOI:
10.1080/03057267.2019.1722420. eprint: https://doi.org/10.1080/
03057267.2019.1722420. URL: https://doi.org/10.1080/03057267.
2019.1722420.

[56] Sandro Ropelato. In-Game Text Editor — GUI Tools — Unity Asset Store. URL:
https://assetstore.unity.com/packages/tools/gui/in-game-text-
editor-199113.

[57] Ol Rushton. “HaskellQuest: a game for teaching functional programming in
Haskell”. Bachelor’s Thesis. School of Informatics, University of Edinburgh,
2025.

[58] Norsaremah Salleh, Emilia Mendes, and John Grundy. “Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic literature
review”. In: IEEE Transactions on Software Engineering 37.4 (2010), pp. 509–
525.

[59] Scroll Rect — Unity UI — 2.0.0. Unity Technologies. URL: https://docs.
unity3d.com/Packages/com.unity.ugui@2.0/manual/script-ScrollRect.
html.

[60] Daniel Segboer. “HaskellQuest: Can a Fun Game be Educational?” Bachelor’s
Thesis. School of Informatics, University of Edinburgh, 2024.

[61] Constance A Steinkuehler. “Learning in Massively Multiplayer Online Games”.
In: International Conference of the Learning Sciences 2004: Embracing Diversity
in the Learning Sciences (2004), pp. 521–528.

[62] Alexander Steinmaurer et al. “Developing and Evaluating a Multiplayer Game
Mode in a Programming Learning Environment”. In: 2022 8th International
Conference of the Immersive Learning Research Network (iLRN). 2022, pp. 1–8.
DOI: 10.23919/iLRN55037.2022.9815973.

https://doi.org/https://doi.org/10.1016/j.chb.2015.07.001
https://doi.org/https://doi.org/10.1016/j.chb.2015.07.001
https://www.sciencedirect.com/science/article/pii/S0747563215300121
https://www.sciencedirect.com/science/article/pii/S0747563215300121
https://doi.org/https://doi.org/10.1016/j.compedu.2009.09.001
https://doi.org/https://doi.org/10.1016/j.compedu.2009.09.001
https://www.sciencedirect.com/science/article/pii/S0360131509002413
https://www.sciencedirect.com/science/article/pii/S0360131509002413
https://docs.unity.com/ugs/en-us/manual/relay/manual/relay-servers
https://docs.unity.com/ugs/en-us/manual/relay/manual/relay-servers
https://unity.com/products/relay
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/RichText.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/RichText.html
https://doi.org/10.1080/03057267.2019.1722420
https://doi.org/10.1080/03057267.2019.1722420
https://doi.org/10.1080/03057267.2019.1722420
https://doi.org/10.1080/03057267.2019.1722420
https://doi.org/10.1080/03057267.2019.1722420
https://assetstore.unity.com/packages/tools/gui/in-game-text-editor-199113
https://assetstore.unity.com/packages/tools/gui/in-game-text-editor-199113
https://docs.unity3d.com/Packages/com.unity.ugui@2.0/manual/script-ScrollRect.html
https://docs.unity3d.com/Packages/com.unity.ugui@2.0/manual/script-ScrollRect.html
https://docs.unity3d.com/Packages/com.unity.ugui@2.0/manual/script-ScrollRect.html
https://doi.org/10.23919/iLRN55037.2022.9815973

BIBLIOGRAPHY 45

[63] Pavlos Toukiloglou and Stelios Xinogalos. “Effects of collaborative support
on learning in serious games for programming”. In: Journal of Educational
Computing Research 63.1 (2025), pp. 126–146.

[64] UGS Pricing. Unity Technologies. URL: https://unity.com/products/
gaming-services/pricing.

[65] Unity - Manual: Code sign your application. Unity Technologies. URL: https://
docs.unity3d.com/2022.3/Documentation/Manual/macoscodesigning.
html.

[66] Unity Engine. Unity Technologies. URL: https://unity.com/.
[67] Matthew Weidner and Martin Kleppmann. “The art of the fugue: Minimizing

interleaving in collaborative text editing”. In: arXiv preprint arXiv:2305.00583
(2023).

[68] Bernard L Welch. “The generalization of ‘STUDENT’S’problem when several
different population varlances are involved”. In: Biometrika 34.1-2 (1947), pp. 28–
35.

[69] Viktor Wendel et al. “Designing collaborative multiplayer serious games: Escape
from Wilson Island — A multiplayer 3D serious game for collaborative learning
in teams”. In: Education and Information Technologies 18 (2013), pp. 287–308.

[70] Mark Wilson. Emergent Gameplay - Bumbling Through Dungeons. URL: https:
//bumblingthroughdungeons.com/emergent-gameplay/.

https://unity.com/products/gaming-services/pricing
https://unity.com/products/gaming-services/pricing
https://docs.unity3d.com/2022.3/Documentation/Manual/macoscodesigning.html
https://docs.unity3d.com/2022.3/Documentation/Manual/macoscodesigning.html
https://docs.unity3d.com/2022.3/Documentation/Manual/macoscodesigning.html
https://unity.com/
https://bumblingthroughdungeons.com/emergent-gameplay/
https://bumblingthroughdungeons.com/emergent-gameplay/

Appendix A

User testing

The results from these questionnaires have been submitted as part of the Project Materi-
als.

A.1 Single-player evaluation questionnaire

46

Appendix A. User testing 47

Appendix A. User testing 48

Appendix A. User testing 49

Full list of responses to question 10: “What did you like most about the game?”

• The art and creativity is great. I love the aha moment of getting a puzzle right.
The haskell information text is a BIG help and a huge improvement to the game
and tutorial.

• I liked the way it looks- it is very engaging and fun to play. It was very user-
friendly and I appreciated the “help” and “error” options.

• I enjoyed how the game poses challenges for the player to solve as it makes the
learning curve far more memorable. I also liked how the challenges fit into a
wider agenda.

• I liked the interactivity of the combat sequence - my code actually impact the
behaviour of the missiles

it took me a moment to realise what was happenning though when my missiles
were successfuly redirected

• graphics, design, sound, story - it’s lovely!!

Full list of responses to question 11: “What would you change about the game?”

• More help for the player. Perhaps a more tailored hint system. Syntax error
information would be very helpful. The challenge of the airship level was much
higher than the others imo

• I think examples of inputs and outputs would be helpful and help users with
problem solving their answers. Also, the exercises at the start are a bit too simple

Appendix A. User testing 50

compared to the questions later- maybe having a step-by-step walkthrough of
how to answer a question would be helpful. Another thing to add is that there was
a lot of text during the intro to the game- maybe shortening it would be better.

• I would include a bank of some basic examples, not everything in the game may
be easily deduced from the help panel, but the game should still maintain the
puzzle element. I was particularly confused as to how a recursive function could
map from a type to a list of the same type, and the process of extracting attributes
from types using pattern matching. Although I have very little knowledge of
Haskell or type theory, I have had a lot of experience with scientific computing in
Python before, which did help out a bit. As such, I think the game is really aimed
at those who are familiar with other high level languages like Python or Java, but
are unfamiliar with the nuisances of type theory and Haskell.

• I would give the player way more context at the beginning - with examples etc.

For the most part I felt like I was fighting a new unfamiliar syntax without enough
resources to understand it - i coded in 5 different languages in my software
engineering job but had zero idea about Haskell and its syntax is quite distinct

That made the first few lever feel way harder then they actually were.

i would also consider showing the errors before/during the combat to make it
seem more like a coding experience - the errors were an afterthought and i forgot
to look at them which probably wasn’t the intended outcome

• it’s quite hard - less steep learning curve, more explanations (maybe tips after
game over) or more examples that resemble the actual challenges

Full list of responses for question 13: “Any other comments?”

• Great work! Thank you for the cake

• This was a fun game to play. I really enjoyed the characters and artistic elements
of it as well as the quality of the game in terms of how it would help teach
Haskell from a technical standpoint. I wish I had this in my first year when I was
learning Haskell- this would have been a great thing to have available as part of
the learning materials!

• it could be very effective and fun, just a little more help for beginners ;)

Appendix A. User testing 51

A.2 Multiplayer evaluation questionnaire

Appendix A. User testing 52

Appendix A. User testing 53

Full list of responses to question 10: “What did you like most about the game?”

• You can see the other player’s progress in real time

• Great character names, good concept in collaboration. Think it could be a great
tool, I could see it in schools

• I loved your art, aesthetic and music! The idea of a multiplayer educational game
is also fun and could be really useful if implemented in an educational setting.

• - Multiplayer made it more fun. - the visual design was great as well. - the
“”help“” and “”error“” tabs were useful as well.

• Both art and audio followed an retro style that was appealing.

• This is probably the most interactive and somewhat satisfying haskell quest I
have played. The fact that you can see your code working and changing their
attributes are actually quite cool, combined with the retro graphics, its actually
quite an enjoyable experience imo. Other HaskellQuests that I have played before
is rather static and passive, which is sometimes slows down the pacing of the
game, which is too boring for kid like me. And this game doesn’t need you to
go around solving puzzles and stuff is a plus for me coz puzzle rpgs need a lot
of polishing to make it engaging. The puzzle sizes here are basically just right,
which doesn’t steal too much of your time during coding and can actually enjoy
some of the more “”kinetic“” parts of the game.

Appendix A. User testing 54

The graphics are good for me coz I like this style, as an FTL fan. quite retro.
some of the maps could be more polished such as the turorial cave but mostly
good. Could probably add some more spirites for damaged enemies to indicate
health?

• The gamification of learning, getting to play mini game while also reviewing your
code to see your mistakes

• I enjoyed having to dodge the bullets and being able to come back from failure.
I also enjoyed the art style and music. More bullet patterns would always be
appreciated.

• graphics were really cool and I enjoyed the shorter challenges

• Progression, graphics, and making learning Haskell enjoyable

Full list of responses to question 11: “What would you change about the game?”

• Add ctrl+z shortcut Add stage selection for stages I’ve passed Add a hotkey to
skip dialogues Add some instructions on how to access the fileds in the data

• just felt a bit too hard or that some concepts weren’t taught the best, meant I
got a bit frustrated Would be cool to be able to see what the other player has
highlighted so you can talk about the same section of code

• I think consideration of target audience would be helpful, if you haven’t already
defined this. As an absolute beginner I found a lot of this to be over my head, and
would have found it helpful to watch a demo of a similar solution before solving
on my own.

• - make the player names more interesting than “”Lambda-Man-1“” and “”Lambda-
Man-2“” - Mac had crashes if I had the game in fullscreen and then switched
to Google Chrome (network stuff?) - maybe make slight variations in the text
screens as the dialogue progresses.“

• The debugging feature should be activated using a button instead of activating it
before the battle. UI could be improved: - Highlighting the words could show
definition

• I think first of all, certainly fix bugs.

Secondly, I think this may introduce a lot of complexity for both the dev and
the players (especially when the target audience is new to haskell), but I think
you could try adding more attributes to the enemies so that you have multiple
ways you can tweak around and beat the boss; perhaps even different dialogue
options/weaknesses exposed if you poke around in the code, which rewards the
player for actually being exploring the the boundaries of Haskell and instantly
applying knowledge that you just learnt. This could also be setting some optional
things that are coded in some relatively difficult/unfamiliar/untaught Haskell
mechanics, but the pattern might just be obvious enough that your player could
figure it out by intuition, it could be a huge dopamine hit I am thinking. (And
as yoi have noted, these attributes could also add a lot of PVE, PVP elements

Appendix A. User testing 55

especially for multiplayer options, e.g. sabotage teammate, COD zombies but
Haskell LMAO)

Thirdly, although myself is fine with how things are coded, I think somethings
still need better explanation, especially when the same weapon could have incon-
sistencies across puzzles. For example, freeze missiles had angle as an attribute
at first, but in later stages it has the coord attribute.

Probably a final minor point is I think the hit boxes of the missiles are HUGE. It
may be good to allow some dodging mechanics, but it doesnt need to be much
tbh.

(Additional resources, games from steam: TIS-500, EXAPUNK. They are dif-
ferent from your game but certainly there has to be something that you can take
away from; I liked EXAPUNK quite a lot.)”

• Syntax highlighting most of our errors were misspelt variable names or types

• More difficulty options, ability to adjust the size of the text editor space.

• probably have syntax errors underlined and show error for last failed task when
you run out of lives

• Start even easier, syntax highlighting, prompt both players to submt before
submitting, add some kind of optional reading before progressing to next level (a
newbie mode)

Full list of responses to question 13: “Any other comments?”

• In the first two challenges all I needed to do was to change a minus to a plus, or
just get rid of the code completely. It would be better if it cannot be cheesed in
this way, or if you could show the ’correct’/suggested solution, so I know what
I’m supposed to learn from solving it. In the third challenge (missle one) I’m a
bit confused about what I need to do. Maybe be more explicit what the function
that needs writing should be able to do? And maybe also show how the function
would be called. (e.g. the retarget missle function would be called with a new
given target)“

• Great overall execution, I think with more playtesting this could be so interesting
to publish!! Keep going!! :)

• Great game!

• Might be too hard for introducing people to Haskell.

• Uhh ... in this 15 minutes of constant texting I might have emptied my reservoir
of ideas. If I have more, I will certainly talk to you more on this topic.

I know you absolutely have no time to make tweaks to this game, but after your
PHD you could probably dev this game further :3 publish on STEAM perhaps?
GameDevSIG might be getting a STEAM publisher account soon, we could
borrow you that.”

Appendix A. User testing 56

• I think getting set back too far can be frustrating especially as you dont get to see
the final set of errors when you die

• Very fun. More bullet patterns, and more Ide type functions like syntax highlight-
ing would be great.

• collaborative multiplayer makes it fun to play and motivates you to get further in
the game!

• Answer to 12 can be 6 with introducing the changes in 11

Appendix A. User testing 57

A.3 Bug report form

Both recorded responses were from the single-player group.

• Tutorial Part 1 - Intro to Functions

Appendix A. User testing 58

Whenever i try to switch to another window from inside the game, the entire game
freezes and has to be force quit to do anything

I don’t know if my case is special since i use a custom tiling window manager.

MacOS

• Tutorial Part 2 - Intro to Lists and Tuples

Right after finishing a level I can see the robot guy from the next one for like
quarter of a second (I suppose I’m not supposed to see it) - then it goes to the
hologram guy saying I did a good job like it should

Appendix A. User testing 59

A.4 Participant information sheet

Appendix A. User testing 60

Appendix A. User testing 61

Appendix A. User testing 62

A.5 Participant consent form

Appendix B

Custom artwork

Figure B.1: The game’s logo, as seen on the title screen.

Figure B.2: The sprites for Lambda-Man moving in four directions - the sprites for the
player avatars in the multiplayer campaign are just these sprites recolored.

63

Appendix B. Custom artwork 64

Figure B.3: All of the animation frames for the original Lambda-Man’s hologram.

Appendix B. Custom artwork 65

Figure B.4: All of the animation frames for Colonel Trigger-Finger in 3 states - normal,
damaged, and exploding. The explosion sprites were taken from OpenGameArt.org -
the original is credited in-game.

Figure B.5: All of the animation frames for Dr. Fractal, as well as the frames for the end
of the fight when Kowalewski is saved.

Appendix B. Custom artwork 66

Figure B.6: The smaller ’overhead’ sprite for the original Lambda-Man’s hologram.

Figure B.7: The smaller ’overhead’ sprite for Colonel Trigger-Finger.

Figure B.8: All of the animation frames for the smaller ’overhead’ Dr. Fractal.

Figure B.9: The ’Lambda-Cave’ background for the tutorial battle.

Appendix B. Custom artwork 67

Figure B.10: The background for Col. Trigger-Finger’s battle in a futuristic military airship.

Figure B.11: The background for Dr. Fractal’s battle, depicting her ruined laboratory.

Appendix B. Custom artwork 68

Figure B.12: The ’overhead’ background for the tutorial battle.

Figure B.13: The ’overhead’ background for Col. Trigger-Finger’s battle.

Appendix B. Custom artwork 69

Figure B.14: The ’overhead’ background for Dr. Fractal’s battle.

Figure B.15: The plain code editor background, without any UI elements implemented.
The UI for player 1 and player 2 in the multiplayer campaign use recolored versions of
this sprite.

Appendix B. Custom artwork 70

Figure B.16: The plain help screen background, without any UI elements implemented.
The UI for player 1 and player 2 in the multiplayer campaign use recolored versions of
this sprite.

Figure B.17: The plain error screen background, without any UI elements implemented.
The UI for player 1 and player 2 in the multiplayer campaign use recolored versions of
this sprite.

Figure B.18: Character art for Lambda-Man, used on the Project Day poster.

Appendix B. Custom artwork 71

Figure B.19: Character art for Lambda-Man 1, used on the Project Day poster.

Figure B.20: Character art for Lambda-Man 2, with his two canonical right hands, used
on the Project Day poster.

Appendix C

Music credits

This section is identical to the one in last year’s report.

In order of first appearance in-game:

Tim Follin (https://en.wikipedia.org/wiki/Tim_Follin) - OST from Time Trax,
an unreleased Sega Mega Drive port of a game based on a TV show - “Title Theme”,
“Mission Briefing Theme”, “Stage 2, 5, 7 Theme”, “Stage 4, 6 Theme”

Savaged Regime (https://www.youtube.com/channel/UCbQQcXMh_ELHjiXY4dbRD6A)
- OST from Life on Earth: Reimagined by Kai Software - “Stage 4 Theme”

Note: since Life on Earth: Reimagined was commercially released, I erred on the
side of caution and asked for permission to use the song. Savaged Regime approved
(https://twitter.com/SavagedRegime/status/1762159627376955438), but an
email to Kai Software received no response.

72

https://en.wikipedia.org/wiki/Tim_Follin
https://www.youtube.com/channel/UCbQQcXMh_ELHjiXY4dbRD6A
https://twitter.com/SavagedRegime/status/1762159627376955438

	Introduction
	Previous work
	Aims and approach for this year
	Dissertation structure

	Background
	Functional programming and Haskell
	Introduction to functional programming (FP)
	Haskell
	Why teach FP?

	Serious games
	Introducing the term
	Video games as educational tools
	The effectiveness of video games in education
	Using games to teach programming

	Teaching FP through gaming
	Learning FP through game development
	Games teaching FP - prior HaskellQuests

	Collaboration in serious games
	Defining collaborative learning
	Collaborative games for education
	Multiplayer games for teaching programming

	Game design
	Summary of established design
	Approach to multiplayer challenge design
	Discarded initial approach - multiplayer code editing
	Final approach - 'simultaneous pair programming'
	Handling health for two players

	List comprehension level - Colonel Trigger-Finger
	Phase 1 - basic list comprehension
	Phase 2 - list comprehension with a guard
	Phase 3 - parallel list comprehension

	Tutorial levels - Lambda-Man Hologram
	Recursion level - Dr. Fractal
	Phase 1 - one base case and one recursive case
	Phase 2 - multiple base cases
	Phase 3 - multiple recursive cases

	Unused expansion ideas from last year's report
	Overworld segments and random encounters
	Items
	Save feature

	Implementation
	Summary of existing implementation
	In-game code editor
	Haskell-game interface
	Online Haskell compiler

	Network architecture for multiplayer
	Central server architecture
	Host-client architecture
	Potential improvement - Distributed Authority

	Handling connection and disconnects
	Adaptations to game systems for multiplayer
	Attack controllers
	Dialogue / cutscene text advancement

	Synchronizing code between players
	Discarded initial implementation
	Final implementation

	In-game code editor improvements
	Code blocks
	Haskell help text
	Error messages

	Issues with JDoodle
	Service unreliability
	Restrictions on target platform

	Evaluation
	Method of evaluation
	Tester demographic
	Testing groups and questionnaire design

	Analysis of game evaluation metrics
	Areas of improvement
	Difficulty progression
	Utility of help screen and comment hints
	Haskell challenge design

	Technical issues
	UI shortcomings
	Game not running in background
	Platform compatibility issues
	Desynchronization issues

	Conclusion
	Achievements
	Future work

	Bibliography
	User testing
	Single-player evaluation questionnaire
	Multiplayer evaluation questionnaire
	Bug report form
	Participant information sheet
	Participant consent form

	Custom artwork
	Music credits

