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Abstract

This dissertation presents a novel SLAM framework that leverages a continuous signed
distance function (SDF) to jointly optimize sensor poses and map reconstruction within
a unified optimization formulation. Traditional SLAM methods typically decouple
pose estimation and mapping into separate stages, which can lead to cumulative errors
and inconsistencies, particularly in feature-poor or dynamic environments. In contrast,
the proposed approach simultaneously estimates both the robot trajectory and the
continuous map by directly optimizing the SDF values defined over a discrete grid. This
unified framework incorporates geometric constraints, such as the Eikonal condition,
and introduces hallucinated points along sensor beams to mitigate the adverse effects of
sensor noise and sparse data.

The optimization problem is formulated as a nonlinear least squares task and is solved
efficiently using the Levenberg—Marquardt algorithm, exploiting the inherent sparsity
of the Jacobian matrix to ensure computational tractability.

The experimental results show that the unified SDF framework exhibits a degree of
robustness to noise and generates coherent maps while maintaining acceptable compu-
tational tractability. Notably, the choice of the finite difference scheme significantly
affects the performance, with forward differencing yielding better results in terms of
stability and convergence. However, in its current state, the optimization does not
adequately address drift, as no explicit loop closure [11] mechanism is implemented.

While the initial outcomes are encouraging, further refinements are necessary to fully
match the performance levels of state-of-the-art algorithms. Future research will focus
on optimizing the computational aspects and addressing remaining challenges to achieve
more accurate and reliable real-time SLAM performance across diverse environments.
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Chapter 1

Introduction

1.1 Background & Motivation

Simultaneous Localization and Mapping (SLAM) is a key technology in robotics and au-
tonomous systems that allows machines to explore and navigate unknown environments
[54]. It works by building a map of the surroundings and at the same time figuring out
the location of the machine within that map. To do this, SLAM combines data from
sensors such as LiDAR, cameras, and radar. As the machine moves, it continuously
updates both the map and its position. SLAM is often called a ”chicken or egg” problem
because if you already had a perfect map, you could figure out where you are, and if
you always knew your exact location, you could stitch together sensor readings to create
a map. The challenge is that both the map and the position must be estimated at the
same time, making SLAM difficult to solve [17].

SLAM is used in many different fields, with one of the most well-known applications
being self-driving cars [55]. It helps vehicles understand their surroundings, avoid
obstacles, and navigate safely without needing pre-existing maps. But SLAM is also
behind many other technologies we use daily. You may have noticed that Google Maps
sometimes asks you to point your phone’s camera around to improve your location
accuracy - this uses SLAM to recognize landmarks and match them to known map data.
In augmented and virtual reality (AR/VR), it allows devices to track their position in
real-time, making it possible to place digital objects into the real world [26, 4]. Another
important use is in 3D scanning and reconstruction, where SLAM helps create detailed
3D models of environments for architecture, film production, and game development

[39].

Despite its many applications, SLAM still faces several challenges that limit its accuracy
and reliability in real-world scenarios [30, 41, 9]. One major issue is sensor noise, where
inaccuracies in LiDAR, cameras, or IMUs can lead to errors in position estimation and
mapping [41]. These errors accumulate over time, causing drift, where the estimated
position gradually deviates from reality [30]. Additionally, dynamic environments pose
a challenge, as most SLAM algorithms assume a static world [7], making it difficult to
handle moving objects like pedestrians or vehicles. Another limitation is computational
efficiency, many high-accuracy SLAM methods require significant processing power,
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making real-time performance difficult, especially on resource-limited devices like
smartphones or drones [38]. SLAM also struggles in feature-poor environments [34],
such as long corridors or open fields, where there are few distinct objects to use for
localization. In some applications, such as augmented reality, poor SLAM performance
may simply result in a frustrating user experience. However, in self-driving cars,
inaccurate localization can cause serious accidents and even fatalities [57]. Improving
SLAM is therefore not just about saving time or reducing costs, but also about our
safety.

It is important to acknowledge the dual-use nature of SLAM [60]. It can be applied for
the aforementioned beneficial purposes, however, the same technology can also be used
in military applications, surveillance, and autonomous weapon system. For example,
while SLAM enhances robotic navigation in disaster response [61], it can also improve
the capabilities of autonomous drones in warfare [59].

1.2 Problem statement

Conventional SLAM methods usually employ a two-step process [54, 17]: first, they
compute the most probable trajectory from sensor data, and then they build a map using
the estimated poses. Although this approach is widely used, it inherently separates
pose estimation and mapping into distinct optimization tasks. As a result, any errors in
estimating the trajectory propagate into the final map [54]. This can lead to suboptimal
performance.

To address these limitations, this research proposes a joint optimization approach
where the poses and the map are simultaneously estimated within a single least-squares
optimization framework, similarly to the work of Zhao et al.. Instead of treating pose
estimation and mapping as separate problems, this method formulates SLAM as a
unified optimization task that minimizes a single cost function incorporating both
components.

A key benefit of this optimization-based approach is its flexibility in incorporating
additional constraints. Since the SLAM problem is formulated as a single least-squares
cost function, it becomes straightforward to add new constraints to enforce desirable
properties. For example, constraints can be introduced to:

* Ensure smoothness in the map representation to prevent excessive noise in surface
reconstructions.

* Incorporate loop closure corrections, allowing previously visited areas to be
recognized and used to correct accumulated drift.

This flexibility makes the approach highly adaptable to different SLAM scenarios, rang-
ing from dense indoor mapping to large-scale outdoor navigation. By integrating map
and pose estimation into a single optimization process, this work aims to overcome the
limitations of traditional SLAM, leading to more accurate, robust, and computationally
efficient solutions.
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1.3 Objectives & Research Questions

In this study, we present a proof-of-concept SLAM framework that leverages a continu-
ous SDF to jointly optimize both the map representation and the sensor poses within a
single unified optimization process. Rather than aiming for an immediate competitive
performance, our primary goal is to assess whether this integrated formulation shows
promise and merits further investigation. To this end, we focus on the following key
questions:

1. Is a unified optimization formulation promising?

By integrating map reconstruction and sensor pose estimation into a single opti-
mization framework, we hypothesize that the interdependencies between these
components can be better exploited to reduce error accumulation and yield a more
coherent map.

2. Can a continuous SDF yield accurate map reconstructions?

We analyze the behavior of a continuous SDF for environment representation by
evaluating the quality of the reconstructed maps.

3. Is the overall approach computationally feasible?

Finally, we assess the computational tractability of the proposed framework by
analyzing the sparsity of the Jacobian matrix and the convergence behavior of the
Levenberg—Marquardt algorithm.

By addressing these questions, our work aims to provide a comprehensive assessment
of the potential and limitations of the proposed SDF-based SLAM framework, serving
as an initial step toward its further development.

1.4 Contributions

This work provides a proof-of-concept for a novel SLAM framework that jointly
optimizes a continuous signed distance function map and sensor poses within a unified
optimization scheme. Our contributions are as follows:

1. Continuous Map Representation: We propose an environment representation
based on a continuous SDF. Unlike traditional discrete grid-based maps, our
formulation leverages a continuous and quasi differentiable map model, enabling
analysis of the SDF behavior within a unified framework.

2. Efficient Optimization Strategy: We develop an efficient optimization procedure
using the Levenberg—Marquardt algorithm. By exploiting the inherent sparsity of
the Jacobian matrix derived from the continuous SDF formulation, our method
achieves computational tractability, demonstrating feasibility for near real-time
applications.

3. Proof-of-Concept Evaluation: We validate the proposed framework on both
simulated and real datasets. Although our experimental evaluation is preliminary,
it provides insight into the behavior of the continuous SDF and the overall com-
putational feasibility of the approach, thereby motivating further investigation.
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Together, these contributions demonstrate the potential of a unified, continuous opti-
mization approach for SLAM and lay the foundation for future work aimed at refining
and extending this method.

1.5 Chapter summary

This dissertation is structured to build a comprehensive understanding of the proposed
continuous SDF-based SLAM framework. A brief summary of each chapter is provided
below:

* Introduction: This chapter introduces the concept of SLAM and its applications
in robotics and autonomous systems. It outlines the primary research questions
and summarizes the main contributions of this work.

* Literature Review: This chapter reviews the current state of the art in SLAM and
related methodologies. It examines previous approaches and relevant literature to
identify their strengths and limitations, thereby establishing a foundation for the
proposed method.

* Methodology: In this chapter, the proposed SLAM framework is described
in detail. It defines the objective function and details how each residual is
calculated. The chapter also explains the derivation of the Jacobian for the
objective function and discusses strategies for exploiting its sparsity to efficiently
solve the optimisation problem.

* Experiments & Evaluation: This chapter presents a comprehensive experimental
evaluation of the proposed continuous SDF-based SLAM framework. Detailed
quantitative and qualitative analyses are provided to validate the framework’s
effectiveness in various scenarios.

* Discussion & Analysis: In this chapter, the experimental results are critically
examined. It offers an in-depth discussion on the strengths and limitations of
the proposed method, including the impact of key design choices and parameter
settings on performance. The analysis covers issues such as convergence behavior,
sensitivity to initial conditions, and computational trade-offs. The chapter also
contextualizes the findings within the broader SLAM literature, highlighting
how the continuous SDF representation and joint optimization approach address
common challenges in SLAM and where further improvements may be required.

* Conclusion & Future Work: The final chapter summarizes the main contribu-
tions of the dissertation, reiterating the benefits of a unified SLAM formulation
that integrates pose estimation and map reconstruction through a continuous SDF
framework. It reflects on the overall impact of the work, its significance for
real-world applications, and the improvements in accuracy and robustness demon-
strated through the experiments. The chapter concludes by outlining potential
directions for future research, such as extending the approach to three dimensions,
incorporating additional sensor modalities, optimizing for real-time performance,
and exploring alternative continuous map representations.



Chapter 2

Literature Review

2.1 Traditional Feature Based SLAM

Traditional feature-based SLAM [19, 5] methods rely on detecting and describing salient
features [50, 56, 52], such as corners or edges, from raw sensor data using algorithms
like SIFT [31], ORB [45], or SURF [6]. These features are then matched across frames
to estimate the robot’s motion and incrementally build a map of the environment [12].
The accuracy of these methods is highly dependent on robust feature extraction and
matching. When feature matching fails, the quality of pose estimation and the resulting
map deteriorates.

One of the earliest and most widely used approaches to SLAM is EKF-SLAM [18]
(Extended Kalman Filter SLAM). This method models the environment as a collection
of landmarks with Gaussian noise and updates their positions incrementally using the
Extended Kalman Filter. The main advantage of EKF-SLAM is its ability to estimate
both robot pose and map features in a probabilistic framework, making it well-suited for
real-world environments with measurement uncertainty. However, its main drawback
lies in computational complexity, as the algorithm requires maintaining and updating a
covariance matrix that scales quadratically with the number of landmarks [18]. This
limits its applicability to large-scale mapping scenarios. Some of the other problems
include linearization inaccuracies and sensitivity to initial conditions [50, 12].

Particle-based approaches represent the posterior distribution over the robot’s state
and the map using a set of weighted particles. A prime example is FastSLAM [53],
which decomposes the SLAM problem into two subproblems: one that estimates the
robot’s trajectory and another that independently estimates the positions of landmarks
conditioned on that trajectory. Each particle carries its own hypothesis of the robot’s
path along with a set of landmark estimates, typically maintained as Gaussian distribu-
tions. This formulation allows FastSLAM to manage non-linearities and multi-modal
distributions effectively, although it can face challenges like sample impoverishment
[22] and scalability as the number of landmarks grows [40, 12].

Graph-based SLAM methods, in contrast, formulate SLAM as a nonlinear least squares
optimization problem over a factor graph [16]. In this framework, nodes represent
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robot poses and landmarks, while edges encode constraints derived from feature corre-
spondences [15]. A classic example is Graph-SLAM [51], which optimizes the entire
trajectory and map simultaneously by minimizing the error between predicted and ob-
served measurements. Modern optimization frameworks such as g2o [29] and GTSAM
[14] have built upon this concept to handle large-scale environments efficiently by ex-
ploiting the sparsity of the problem. Systems like ORB-SLAM [35] extend these ideas
further by integrating robust feature matching with incremental pose graph optimization.

2.2 Non-Feature Based SLAM

Hector SLAM [47] is a 2D LiDAR SLAM system that directly operates on raw scan
data without relying on extracted features. It employs fast scan matching by using
an adaptive grid search combined with Gauss—Newton alignment [48] to match laser
scans to an occupancy grid map. Operating at high update rates (around 40 Hz), Hector
SLAM computes 2D pose estimates solely from LiDAR measurements in real time
[42].

Google Cartographer [25] is a real-time SLAM library for both 2D and 3D mapping
that also bypasses the need for explicit feature extraction. It builds small local submaps
by inserting consecutive laser scans and computes scan-to-submap matches using
correlative scan matching. Additionally, Cartographer fuses sensor data such as IMU
and odometry when available, and continuously performs loop closure [11] and global
optimization to produce globally consistent occupancy grid maps [58, 42].

Occupancy-SLAM [62] shifts from sequential map estimation to simultaneous optimiza-
tion of both the robot trajectory and the environment representation. Traditional SLAM
approaches often estimate the robot’s trajectory first and then construct the map based
on the optimized poses [25]. However, this recent method, introduced an optimization-
based approach that jointly estimates both the robot’s trajectory and the occupancy
grid map [20]. This approach formulates the SLAM problem as a batch optimization
task, where both the robot poses and occupancy values at discrete grid locations are
optimized together, similar to the work of VoxGraph [43] and Kimera-PGMO [44].

This dissertation builds on the same principle of joint optimization, but instead of
representing the environment as an occupancy grid, we use a SDF [36, 13]. SDFs
store the signed distance to the nearest surface rather than the probability of occupancy,
providing a continuous and quasi differentiable representation of the environment.
Unlike occupancy grids, which rely on discrete cell-based updates, SDFs allow for
interpolation across a grid, improving surface smoothness and enabling more precise
geometric constraints [9, 38]. The optimization framework remains similar, both robot
poses and SDF values at selected grid nodes are estimated simultaneously, but the map
formulation changes fundamentally from occupancy probabilities to distance-based
surface modeling.
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2.3 Signed Distance Function in SLAM

The use of SDFs in SLAM has evolved considerably over the years. One of the earliest
uses of the SDF concept in the context of SLAM is found in [13], where the idea
of volumetric integration of range images using a truncated signed distance function
(TSDF) was introduced. This work laid the foundation for many subsequent dense
mapping techniques by providing a continuous representation of the environment that
naturally encodes surface geometry.

Building on this idea, [36] introduced KinectFusion, which was the first real-time
dense SLAM system based on TSDFs. KinectFusion demonstrated that by fusing depth
measurements into a TSDF volume and performing iterative alignment, it was possible
to achieve both dense mapping and accurate tracking in real time. The success of
KinectFusion spurred a number of extensions and improvements aimed at increasing
robustness and scaling to larger environments.

In parallel to these volumetric approaches, researchers began exploring the use of SDFs
for scan registration in 2D scenarios. The work in [21] presents a SLAM frontend that
uses the signed distance function to register laser scans. Unlike traditional methods that
rely on explicit correspondence association or joint optimization of scan points, this
approach directly leverages the SDF to align scans.

VoxGraph [43] introduces a 3D SLAM system that partitions the environment into
multiple TSDF submaps rather than relying on a single monolithic volume. Each
submap is a localized TSDF with its own origin, storing distance and weight information
for each voxel. As the robot moves, new submaps are created to limit drift, and when
they overlap, constraints are computed by comparing their SDF content, via euclidean
SDF generation and surface point extraction, so that a pose graph optimization can align
them globally, effectively performing loop closure at the submap level.

More recently, a multi-robot SDF-SLLAM system [27] has shown that an SDF-based
map representation can significantly reduce drift. In this system, the continuous nature
of the SDF not only allows for smoother surface reconstructions but also tends to yield
minimal drift over long trajectories. In many cases, the high fidelity of the SDF map
alleviates the need for extensive loop closure detection, as the map inherently maintains
global consistency.

Another notable recent development is the use of neural networks in SLAM [49, 37,
38, 10]. PIN-SLAM [38] uses a point-based implicit neural representation to achieve
globally consistent mapping while maintaining a compact memory footprint. Rather
than storing explicit grid-based SDF values, PIN-SLAM represents the environment as
a sparse set of neural points with associated latent features that are optimized online [3].
Similar to our work, PIN-SLAM enforces geometric consistency through the Eikonal
equation [23, 8], ensuring that the gradient of the SDF has a unit norm. However, while
PIN-SLAM relies on a complex neural network pre-training and feature optimization
scheme, our approach builds on the same fundamental idea—geometric consistency
enforced via the Eikonal constraint, but achieves it within a simpler and more direct
optimization framework.



Chapter 3

Methodology

In addressing the SLAM problem, we propose an approach that jointly estimates
a continuous map representation, via a SDF, and the sensor transformations. The
formulation enforces geometric consistency by incorporating the Eikonal [8] condition.
The approach results in a sparse optimization problem that can be solved efficiently.

3.1 Problem Definition and Parameters

We consider a continuous signed distance function

D:Q >R, 3.1)

defined on a bounded domain Q C R? that represents the area of interest. For any point
x € Q, the SDF is given by

D(x) = +d(x,S) %f X %s in fr'ont of the surface, (3.2)
—d(x,S) if xis behind the surface,
where d(x,S) denotes the Euclidean distance from x to the closest surface S.
In practice, D(x) is approximated on a discrete grid. Let the grid be defined by
myp=wh), w=0,1,....,—1, h=0,1,....0,—1, (3.3)
so that the grid covers the domain Q and contains a total of
Ngrid = lw X lh (3.4)
nodes. The discrete SDF, denoted by D, is defined at each node as
D(my, ) =~ D(Xy), (3.5)

8
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where x,, , are the coordinates corresponding to node m,,, .

To approximate D at any arbitrary point X = (x,y) € Q, we use bilinear interpolation
of the grid values. Assume that x lies in the cell defined by the nodes m,, ,, M1 p,
My, py 1, and m,,, 1 1. If the point lies on a grid line we take the cell to the right and/or
top. Define

X — Xy _ Y=

o= 7 = ) (3.6)
Xw+1 = Xw Yh+1—Yh
Then, the interpolated SDF value is given by
D(x,y) = (1 = a)(1 = B) D(my) + (1 = B) D(myy1,1) (.7)

+ (1 = )BD(myp1) + OB D (i1 jy1)-

Figure 3.1 illustrates the bilinear interpolation process.

In addition to the map representation, our SLAM problem requires estimating the
sensor (or robot) transformations. For a sequence of N LiDAR scans, let the pose
corresponding to scan i be expressed as

Xi = m eR?, (3.8)

where t; € R? is the translation vector and 8; € R is the rotation angle. The first pose
XY is fixed (e.g., X? = [0,0,0]7), and the remaining N — 1 poses are estimated.

Thus, the overall state vector X is defined as

A

A A _ T
Xé [D(mo’o),D(m()’]),...,D(mlw_l’lh_l) Xl sz,...,sz 1,} s (39)

by AIb)

with a total dimension of

dim(X) = Luly+3x (N—1). (3.10)

This state vector comprises both the grid values {D (my,;,) } and the sensor transforma-
tions {X/}",!, forming the basis for our joint optimization framework.

3.2 Optimization Formulation

We formulate the SLAM problem as a nonlinear least-squares (NLLS) optimization to
estimate the state vector X that best explains the observed LiDAR data and odometry
measurements. Recall that the state X comprises both the grid values {ﬁ(mwh)} and
the robot poses {X f\; _11 (with X? fixed). Our overall objective function is defined as a
weighted sum of four residual terms:



Chapter 3. Methodology 10

Figure 3.1: lllustration of bilinear interpolation [1] for the continuous signed distance
function. The query point P = (x,y) lies within the grid cell defined by the four nodes

O11 =Xy, Q21 = Xyt 10> Q12 = Xy pt1, and 022 = Xy, 1 +1- The interpolated value
at P is computed as a weighted sum of the SDF values at these nodes, with weights

determined by the relative distances along the x and y directions.

F(X) = wy F5(X) +wp, Fi(X) +we F. (X) +w, Fp (X)), (3.11)

where wg, wy,, we, and w, denote the weights for the scan, hallucination, Eikonal, and
odometry residuals, respectively.

3.2.1 Scan Residual

Scan measurements correspond to the first contact with an object, so the SDF value at a
transformed scan point should be zero. Let pg be a scan point in the sensor frame from
scan i, and let 7; be its associated rigid-body transformation. The global coordinates are
obtained via
Pe = Tips. (3.12)

Since a scan point py represents a surface contact, the expected SDF value at py is zero.
Hence, the residual for each scan point is defined as

rs(ps) = D(Tips). (3.13)
The scan residual term is then the sum of squared residuals over all scan points:

EX)= Y ¥ (nb)" (.14)

k€lscan Ps 6Sk

3.2.2 Hallucination Residual

To prevent degenerate solutions (e.g., setting IA)(mwvh) = (0 everywhere) that may occur
when relying solely on scan points, we introduce hallucinated points along each sensor
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Figure 3.2: lllustration of hallucinated points along a sensor beam. Blue and red markers
indicate hallucinated points sampled at regular step intervals from the measured surface.
Each point is assigned an expected SDF value 3(x), which is positive when the point
lies outside the object and negative when it lies inside.

beam. These points are generated along each ray at a distance x from the measured scan
point. Unlike scan points, which are expected to lie exactly on the surface (i.e., D = 0),
hallucinated points are assigned an expected SDF value 8(x) that approximates the true
signed distance at that location.

We define the expected value d(x) as

X, if the point is outside the object,
d(x) = (3.15)

—x, if the point is inside the object.

Similarly to the scan residual, the residual for a hallucinated point is computed by
transforming the point from the sensor frame to the global frame and then evaluating
the SDF via bilinear interpolation. Thus, for a hallucinated point pi!, the residual is
defined as

(P = D(Tipth) — §(x). (3.16)
The overall hallucination residual term in the objective function is given by

RX)=Y Y <rh(p§‘a”)>2. (3.17)

k€ anue phalle Hy,

3.2.3 Eikonal Residual

The SDF is required to satisfy the Eikonal condition, ensuring that the gradient mag-
nitude is unity in the direction of the closest surface. At each grid node m,,j, we
approximate the gradients using finite differences:
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(8D> - ﬁ(mw+17h) —D(mw,h), (815) - lA)(mW,hH) —D(mw,h). (3.18)
w,h w,h

ox Ax dy Ay

Letn,,, = (nc(my,p), ny(my,,)) denote the estimated unit vector pointing towards the
nearest surface at grid node m,,j,. To compute n,,,, we first estimate the normal at each
scan point using the PCL library [46], which determines the k closest neighbors and
applies Principal Component Analysis (PCA) [33] to compute the normal. The normal
is defined as the second principal component oriented towards the origin. Finally, the
surface normal n,, j, is assigned as the normal of the scan point that is closest to node
my, . The Eikonal residual at m,, j, is then defined as

Fe(myp) = 1=y, - VD(my, ). (3.19)
The overall Eikonal residual term is

Ly—11l—1

F(X) = 20];0 (re(mwyh))z. (3.20)

3.2.4 Odometry Residual

Relative odometry measurements provide constraints between consecutive frames. Let
the measured odometry between frame i and frame i + 1 be denoted by

meas
Oi,x

O™ = | O™ | e R, 3.21)
meas
O¢
where O]Y* and O;F* represent the measured translation components and O;g™
represents the measured rotation.

Given the estimated poses 7; and 7} |, where each pose is defined by a rotation R(6;)
and a translation t;, we compute the estimated relative translation by transforming the
difference t; | — t; into the coordinate frame of pose i:

Ax@st
A = R(—8)(tiy1 —t;) = [Ayw (3.22)
l
The estimated relative rotation is given by
ABSS = 0,41 — ;. (3.23)

Thus, the estimated relative transformation is expressed as
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Axf;st
l
0, = | Ay . (3.24)

A6S

We then define three independent odometry residuals, one for each parameter:

est meas i est meas i est meas
A = O0ix", oy =0y —0iy", 1,9=A87 —0;g". (3.25)

U
r{),x - 0,y 1

Finally, the overall odometry residual term in the objective function is formulated as the
sum of the squared residuals for each parameter:

N—-1 ) ) )
Fo(X) = X [(rh 2+ (1,2 + ()’ (3.26)
i=1

which penalizes discrepancies between the estimated relative motion and the corre-
sponding measured odometry on a per-parameter basis.

3.3 Optimization Technique

We solve the nonlinear least-squares problem

min F (X) = w, F5(X) 4wy F (X) +we Fe(X) +wo Fy (X) (3.27)

using the Levenberg—Marquardt (LM) algorithm [32].

At each iteration k, the residual functions are linearized about the current estimate X (k)
to yield the normal equations

(JTT+M)AX = —JTF, (3.28)

where

* J is the Jacobian matrix of the weighted residuals (with 7(X) = \/w;ri(X))
evaluated at X(k),

* I is the vector of weighted residuals,

* A is a damping parameter that interpolates between the Gauss—Newton method
(small A) and gradient descent (large A), and

* AXis the computed update for the state.

The state is then updated as
Xk = x®) 1 AX, (3.29)
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The damping parameter A is adjusted adaptively to ensure robust convergence. This
iterative LM optimization simultaneously refines both the grid SDF values and the robot
poses, yielding a solution that satisfies the scan, hallucination, Eikonal, and odometry
constraints.

Note that in the overall optimization the square of the residuals is scaled by the weights,
so the partial derivatives have to be multiplied by the square root of the respective
weight. This is omitted for simplicity in the following chapters.

3.3.1 Jacobian Computation for Scan Points Residuals

Remember that for each scan point p; from scan frame i, the unweighted residual is
defined as

rs(ps) = D(Tips). (3.30)

Let the transformation 7; map p; to p; = (x,y) that lies in the grid cell defined by nodes
My iy Myt 1 fs My g1, and m,,, 1 1. With interpolation weights

X — Xy _ Y=

o= ) - )
Xw+1 — Xy Yh4+1—Yn

(3.31)

the derivatives of D(x,y) with respect to the four grid values are given by the corre-
sponding interpolation weights:

oD oD

oD oD
B N | 333
OD(my,jpy 1) (1-of OD(my 41 jg1) op -39

Similarly, the partial derivatives of the predicted point coordinates with respect to the
transformation parameters are:

X=CoSOp,—sinQp,+1t,, y=sinQp,+cosdpy+1,, (3.34)

with

ox

L dy .
% —sinQ p, —cos ¢ py, i cos O py —sin¢ py, (3.35)

ox 1 ay_O ax_o dy

et el S (3.36)

The spatial derivatives dD/dx and dD/dy are computed as in Section 3.2.3. By the
chain rule, the derivatives with respect to the transformation parameters are given by
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ors oD % oD dy

%—gaq)-i'a—y%, (3.37)

dry 0D  drg 9D

- w3y (3.38)

These contributions appear only for the four grid nodes defining the cell containing
T;(ps) and the three transformation parameters associated with scan frame i.

For all other parameters in the state vector, the partial derivative is zero.

3.3.2 Jacobian Computation for Hallucinated Points Residuals

The computation for hallucinated points is analogous to that for scan points residuals.
The only difference is that the unweighted residual is 7y, (p/*!) = D(T;p"“'") — §(x) (with

N
d(x) being constant with respect to the state). Hence, the non-zero Jacobian entries are

obtained exactly as in the scan points case, i.e., contributions from the four grid nodes
and the three transformation parameters, with the derivative of d(x) being zero.

3.3.3 Jacobian Computation for Eikonal Residuals

Recall that at each grid node m,, j,, the Eikonal residual is defined as

Fe(myp) =1—ny,;- VD(mWJ,), (3.39)

The gradient VIA)(mw,h) is approximated using forward differences as in Section 3.2.3.
Differentiating r,(m,, ;) with respect to the grid values yields

ore (mw7h) My Ry

= 3.40

omy, Ax * Ay '’ (3.40)

are(mw,h) _ Iy (3.41)
oMy 11 Ax .

ore(my,p) _ gy, (3.42)
My oy 1 Ay .

For all other grid nodes, the derivative is zero. Note that this residual depends solely on
the grid parameters and does not involve any transformation parameters.
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3.3.4 Jacobian Computation for Odometry Residuals
We express the estimated relative transformation between frames i and i + 1 as

S A R0 (1 —t)
O; = |:Ae§:st:| - |: ei—i—l — 0 s (3.43)

where the rotation matrix R(—6;) is defined as

—s8inB; cosb; (3.44)

R(—6;) = { cos 6; sineil ‘

We now compute the Jacobian of O; with respect to the pose parameters in X; = {t;,0;}
and Xj+1 = {tit1,0i41}

For the translation component,
AL = R(—6;)(tip1 — i), (3.45)
differentiation with respect to t; and t; ;| yields

OALS

DAL
— _R(—8; i
ot; (=6, oti 1

= R(—6;). (3.46)

To compute the derivative of AtS* with respect to 6;, we differentiate the rotation matrix.
Defining the skew-symmetric matrix

~ |0 —1
J = [l 0 } , (3.47)
we have
oOR(—6;) .
—— = —R(—6;)J. 3.48
26; (—96;) (3.48)
Thus,
OALES N
L — —R(—Gi)J(tiH - tl'). (3.49)
26,
For the rotation component,
ABSS =0, 1 —6;, (3.50)

the derivatives are straightforward:

00; 7 004

JABSS BYY:
R A (3.51)
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Combining these results, the Jacobian of 0,- with respect to the pose X; = {t;,0;} is

given by

 [-R(-8) —R(—0)J(tir1 —t;)
0 —1 ’

and the Jacobian with respect to the pose X1 = {t;11,0;41} is

R(—6;) 02,
Jiv1 = .
012 1

These Jacobian blocks constitute the derivative of the odometry residual

I _ A meas
I”O—O,'—Oi 5

(3.52)

(3.53)

(3.54)

with respect to the involved poses. For all other parameters in the state vector, the partial

derivatives are zero.

3.3.5 Overall Jacobian Sparsity and Sparse Optimization

The full Jacobian J is assembled by stacking the individual Jacobian rows from the

scan, hallucination, Eikonal, and odometry residuals. In summary:

* Each scan point residual contributes a row with nonzero entries for 4 grid

parameters and 3 transformation parameters.

* Each hallucinated point residual contributes a row with nonzero entries for 4

grid parameters and 3 transformation parameters.

* Each Eikonal residual contributes a row with nonzero entries for only 3 grid

parameters.

* Each set of three odometry residual contributes to three rows with a total of 12

Nnonzero entries.

Assuming that the state vector contains n, X ny grid parameters and 3 x (N — 1) trans-

formation parameters, let

Nscan,  Phall, Meik = (”x - 1)<ny - 1)7 Nodom = 3(N_ 1)
(3.55)

denote the number of scan, hallucination, Eikonal, and odometry residuals respectively.

Then, the total number of rows in J is
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Nrows = Mscan 1+ Mhall + (nx - 1)(ny - 1) + 3(N - 1)7 (3.56)
and the number of columns is

Neols = Nyfly +3(N — 1). (3.57)

Each scan point and hallucination residual contributes 7 nonzero entries, each Eikonal
residual contributes 3 nonzero entries, and each set of odometry residuals contributes
12 nonzero entries. Thus, the total number of nonzero entries is at most

Npe =17 (nscan —l—nhau> +3(ne— D) (ny— 1)+ 12(N—1). (3.58)

The total number of entries in the Jacobian is

Niotal = (nscan+nha11+(nx— 1)(ny—1)+3(N— 1)) X <nxny+3(N— 1)). (3.59)

Hence, the sparsity ratio is given by

N,
Sparsity Ratio = ——. (3.60)

total

For example, suppose we have:
* 76 scans with a total of 45040 scan points,

* For each scan point, 6 hallucinated points are added (so that the total number of
scan-related residuals is 7 x 45040),

* A map of size 100 x 100 (resulting in 100 x 100 = 10000 grid parameters),

* The Eikonal residuals are computed at all grid nodes except the last row and
column, i.e. 99 x 99 residuals,

* There are 76 — 1 = 75 odometry residuals.
Thus, the total number of nonzero entries is:

Ny = 7(7 x 45040), 43 (99 x 99) + 12 (75) = 2237263. (3.61)

The number of columns is:

Neols = 10000 4225 = 10225. (3.62)

The number of rows is:

Nrows = 1 X 45040499 x99 +75 = 315280+ 9801 + 75 = 325156. (3.63)
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Thus, the total number of entries in J is:

Niotal = Mrows X Heols = 325156 x 10225 ~ 3.32472 x 10°. (3.64)
Finally, the sparsity ratio is given by:

Np. 2237263

~ ~6.72x 1074 .
Neow  3.32472 x 10° 6.72x10 (3.65)

Sparsity Ratio =

This high sparsity enables efficient solution of the linear system

(JTT+M) A0 = —J"F, (3.66)

using sparse Cholesky decomposition [28], thereby significantly reducing computational
cost and memory usage during each iteration of the LM algorithm.

3.4 Incremental Optimization Algorithm

In our incremental optimization approach, new sensor frames are sequentially incor-
porated into the state estimate using the corresponding odometry measurements. For
each new frame, the pose is computed by composing the last optimized frame with the
odometry measurement, and the new frame is then appended to the state. The entire
state (i.e., all frames added so far) is subsequently refined through several iterations
of the Levenberg—Marquardt algorithm. In each iteration, the residuals (derived from
scan, hallucination, Eikonal, and odometry terms) are computed, the Jacobian matrix is
evaluated, and the normal equations are formed and solved to update the state estimate.
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Algorithm 1 Batch Optimization for SLAM

1: Input:
« State X (comprising grid values {D(m,,;)}, poses {T;})
e Maximum iterations max_iters, tolerance tol
¢ Initial damping A, damping adjustment factor y
2: Output: Optimized state X
3: Compute initial error:
EPrev - ||I‘<X>||2

4: for iter = 1 to max_iters do

5: Compute the residual vector r(X)
6: Compute the Jacobian matrix J at the current state X
7 Form the normal equations:

(JTT+ M) AX = —J"r(X)

8: Solve for the update AX using sparse Cholesky factorization
Update the state:
X+ X+AX
10: Compute new error:
E=|r(X)|
11: if || AX]| < tol then
12: break
13: end if
14 if E < E,/., then
15: Decrease damping:
ANy
16: else
17: Increase damping:
A AXy
18: end if
20: end for

21: Return: Optimized state X
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Algorithm 2 Incremental Optimization for SLAM Using Odometry

1:

_
e

12:
13:
14:

R e A AN

Input:
* Initial state X (containing grid values and an initial frame)
* Odometry measurements {O1,0;,...,0y}, where each O; represents the

relative transformation from the last frame to the new frame
* Increment size k (number of odometry measurements to add per iteration)
¢ Maximum iterations max_iters, tolerance tol
* Initial damping A, damping adjustment factor y
Output: Final optimized state X (including all frames, grid values, etc.)
Set X + X
Seti<+1
while i < M do
for j =itomin(i+k—1,M) do
F; = OjoLastFrame(X),
Append Fj to state X
end for
Call Batch Optimization (Algorithm 1) on the updated state X using its current
state as the initial guess.
Update X with the optimized state from the batch solver.
Seti<i+k
end while
Return: Final optimized state X




Chapter 4

Experiments & Evaluation

This chapter presents a comprehensive assessment of our SDF SLAM framework,
examining its performance across various experimental scenarios to highlight both its
strengths and limitations. We conduct experiments on two datasets: one simulated scan
provided by Dr. Liang Zhao and one real-world dataset from the Intel Research Lab
in Seattle [24]. For the simulated dataset, we assess both map accuracy and trajectory
estimation quantitatively and visually. For the Intel dataset, where ground truth is
unavailable, we perform a visual analysis.

Unless stated otherwise we will use the hyper-parameters defined in Table 4.1.

Objective Function

Wy 1
wh 1
Number of hallucinated points per scan point 6
Hallucinated point step size 0.1
We 1
W 1
Map
Number of grid points [100, 100]
Initial map value 0
Optimisation
Initial Lambda 1
Lambda factor 1
Number of iterations 100

Table 4.1: Hyper-parameters used for the proposed SLAM framework

22
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4.1 Simulated Scan Evaluation

In this section, we focus on evaluating our SLAM system using a simulated scan dataset
with ground truth odometry that can be seen in Figure 4.1, enabling a precise analysis of
pose accuracy and map reconstruction quality. We optimize all frames at once using the
Batch Algorithm 1. We further introduce controlled noise into the odometry in separate
experiments to assess the approach’s robustness.

Ground Truth Map

10.0
7.5

5.0

2.5

0.0
-2.5 i
~5.0
-7.5
-10.0

Figure 4.1: The environment defined over Q = [—25, —25] x [25,25], illustrating the
robot’s trajectory and the environment from the simulated scan dataset.

Signed Distance

4.1.1 Experiment: Ground Truth Odometry

For this experiment, we use perfect odometry, which allows us to initialize the sensor
poses with ground truth values. Consequently, the optimization primarily aims to
recover an accurate continuous map while keeping the sensor poses near their initial
ground truth values.

After optimization, the estimated poses remain nearly identical to the ground truth, with
an average translation error of 0.0220 and an average rotation error of 0.00036 rad.
Figure 4.2a shows an overlay of the ground truth, odometry, and optimized trajectories,
confirming that the pose estimates are well preserved.
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Estimated map
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Figure 4.2: Optimization result

Figure 4.1 shows the ground truth signed distance function, while Figure 4.2b displays
the final reconstructed map. By comparing the signed distances of corresponding grid
cell values between these two maps, we obtain an average error of around 0.7.

Figure 4.3 presents a histogram of the error distribution across the map. Approximately
80% of the grid points exhibit an error below 1 unit, and 90% show an error below 3
units, indicating that most areas of the map are highly accurate.

Map Error Distribution

6000

5000

4000

Frequency

Error

Figure 4.3: Error distribution across the map

Finally, Figure 4.4 highlights regions where inaccuracies in the estimated surface
normals contribute to mapping errors. In Figure 4.4a, we can see problems at points
that are equidistant to multiple objects, while Figure 4.4b shows issues near corners.
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The green ticks represent the estimated normals at each grid point; areas where the
normals change direction abruptly correlate with higher mapping errors. This is further
confirmed by Figure B.1.

(a) Issues between objects. (b) Issues near corners.

Figure 4.4: Visualization of regions where inaccuracies in normal estimation lead to
mapping errors. The black lines indicate objects, green ticks show the direction of the
surface normals, the gray line shows the estimated path and the blue dots the estimated
points at which the scans were taken.

4.1.2 Experiment: No Hallucinated Points

In this experiment, we assess the role of hallucinated points in the optimization process
by running the algorithm with ground truth initialization for the poses but with the
number of hallucinated points set to zero.

Figure 4.5 presents snapshots of the mapping process when hallucinated points are
disabled. Initially, the scans are well aligned (Figure 4.5a). However, as the optimization
proceeds, a divergence is observed: the scans are pushed apart (Figure 4.5b), and
eventually, they realign (Figure 4.6a) except for frame 0, which remains fixed at [0, 0,0].

Estimated map Estimated map

10.0 10.0
- Scan Points - Scan Points
20 —e— Estimated Path 75 20 —e— Estimated Path 75

10 10

o
o
Signed Distance
y
o
o
Signed Distance

=25 =25

-10 -10

=5.0 =5.0

=75 =75

=20 =20

-10.0 -10.0

-20 -10 0 10 20 =20 -10 0 10 20
X X

(a) Initial alignment (b) Scans pushed apart

Figure 4.5: Snapshots from Experiment 2 illustrating the evolution of the map when
hallucinated points are disabled.
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If the optimization is allowed to run for additional iterations, the other frames gradually
shift toward the fixed frame 0, as depicted in Figure 4.6b. Despite this eventual realign-
ment, the overall trajectory remains less accurate when compared to the ground truth.
While the global trajectory appears suboptimal, with an average absolute translation
error of 0.2658 and an average rotation error of 0.01469 rad, the relative transformations
between consecutive frames are precise. In particular, all relative transforms, except the
one between frame 0 and frame 1, exhibit minimal error. As can be seen in Figure 4.7,
the average relative translation error is only 0.0288 and the average relative rotation
error is 0.00058 radians. This indicates that, although the lack of hallucinated points
leads to a global misalignment (primarily due to the fixed first frame), the local consis-
tency of the scan-to-scan registration remains nearly as accurate as when hallucinated
points are used.

Estimated map Estimated map

10.0 10.0
- Scan Points - Scan Points
20 —e— Estimated Path 75 20 —e— Estimated Path 75

10 10

o
o
Signed Distance
y
o
o
Signed Distance

=25 =25

-10 -10

-5.0 -5.0

=75 =75

=20 =20

-10.0 -10.0

0 10
X X

(a) Realigned (b) Global alignment

Figure 4.6: Map after additional optimization iterations, showing near alignment of all
frames except the fixed frame O.

Trajectory Comparison

—e— Ground Truth
—e— Estimated
--e- Odometry
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=15

=15 -10 =5 5 10 15

Figure 4.7: Trajectory comparison between the ground truth and the estimated trajectory
in Experiment No Hallucinated Points.
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4.1.3 Experiment: Noise

In this experiment, we evaluate the robustness of our SLAM system by introducing
varying amounts of Gaussian noise to the ground truth odometry. Specifically, we
add independent normally distributed noise with four different levels, ranging from
[0.1,0.1,0.01] (applied to dx, dy, and d6) up to [0.3,0.3,0.03]. This controlled degra-
dation allows us to investigate how well the optimization process recovers the map and
sensor transformations under adverse conditions.

Even with substantial noise, the algorithm is generally capable of reconstructing the
map and recovering sensor transformations. However, similar to Experiment 4.1.2, the
first frame remains fixed at [0,0,0] and the other frames align with each other, but not
with the first frame. This results in a relatively high transformation error for subsequent
frames. As shown in Table 4.2, the relative errors remain nearly comparable to the
noise-free case for noise levels up to [0.2,0.2,0.02]. In contrast, at the highest noise
level of [0.3,0.3,0.03], the optimization fails to converge to a reliable map or trajectory.

Condition Avg Map Error Avg Translation Error Avg Rotation Error (rad) Avg Rel Translation Error Avg Rel Rotation Error (rad)
No noise 0.7082 0.0220 0.00037 0.0031 0.00014
No noise, no hallucinated points 1.4216 0.2657 0.01469 0.0287 0.00057
Noise [0.1, 0.1, 0.01] 0.7638 0.2104 0.01685 0.0290 0.00015
Noise [0.2, 0.2, 0.02] 0.9712 1.0036 0.00351 0.0254 0.00025
Noise [0.3, 0.3, 0.03] 1.0201 1.1203 0.03747 0.1188 0.00215

Table 4.2: Performance metrics under different noise conditions

Figure 4.8 compares the estimated trajectories under two noise conditions. In Fig-
ure 4.8a, the recovered trajectory aligns closely with the ground truth despite poor
odometry inputs. Conversely, Figure 4.8b (severe noise [0.3,0.3,0.03]) shows that
while most consecutive poses still exhibit reasonable local alignment, the overall path
deviates significantly from the ground truth.

Trajectory Comparison Trajectory Comparison
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(a) Mild noise: [0.1,0.1,0.01] (b) Severe noise: [0.3,0.3,0.03]

Figure 4.8: Estimated trajectories under different noise levels.

To further analyze the convergence behavior, Figure 4.9 presents two error evolution
plots side by side. Figure 4.9a shows that with small amounts of noise, the transforma-
tion error decreases as the optimization proceeds and reaches a low level. In contrast,
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Figure 4.9b focuses on the severe noise condition, where the error initially drops but
then plateaus at a higher level. This plateau indicates that the optimization has become
trapped in a local minimum, underscoring the sensitivity of our approach to noise.
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Figure 4.9: Evolution of the transformation error over time.

4.2 Intel Dataset Evaluation

The Intel Research Lab dataset [2] poses a particularly challenging scenario due to
highly noisy odometry measurements and the lack of ground truth data. Consequently,
our evaluation relies primarily on qualitative visual inspection.

Figure 4.10: Visualization of the Intel Research Lab environment [2]. Light blue lines
show the path of the robot where the scans were taken.
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4.2.1 Experiment: Batch Optimization

In this experiment, we initialize the sensor poses using the noisy odometry measure-
ments and then perform a joint optimization over all 910 scans simultaneously.

The initial pose estimates, derived from the noisy odometry, are too inaccurate to yield
a coherent result. Although we can observe local scan alignment, forming recognizable
corridors, the overall map is highly inconsistent and distorted. This failure is evident
in Figure 4.11, where the misaligned scans result in a cluttered and incoherent map.
These results underscore the limitations of batch optimization when the input odometry
is severely degraded.

Figure 4.11: Result of batch optimization on the Intel dataset. Local scan alignments
are visible. However, the overall map is highly inconsistent due to the poor initial pose
estimates.

4.2.2 Experiment: Incremental Optimization

In this experiment, we employ an incremental optimization strategy on a subset of scans
(scans 700-799) to assess how sequential refinement can correct noisy odometry. The
process starts with only two scans, which are optimized for 10 iterations before adding
the next scan. Each new scan is incorporated according to the relative odometry from
the previously optimized scan. The goal is that the optimization corrects the odometry
noise locally before integrating additional scans.

Otherwise using the hyperparameters from Table 4.1, the initial result (Figure 4.12)
shows disjoint sets of aligned frames and fails to form a coherent map.
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Figure 4.12: Initial result with default hyperparameters: Disjoint alignment due to poor
initialization.

To explore the impact of the Eikonal residual, we first disabled it entirely. As seen
in Figure 4.13, this leads to great scan alignment, but the map itself is not properly
recovered because the SDF loses its regularization.
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Figure 4.13: Result with the Eikonal residual disabled: Scans align well but the map is
not recovered.

Next, we tested several values for the Eikonal weight w,: 0.2, 0.5, and 0.8. Figure 4.14
shows a side-by-side comparison:

(@) w,=0.2 (c) w, =0.8

Figure 4.14: Comparison of incremental optimization results for different Eikonal weights.
w, = 0.2 achieves good alignment with some map recovery, while higher values yield
poor alignment.

The results indicate that setting w, = 0.2 yields satisfactory scan alignment and a modest
improvement in the map. However, regardless of the w, value tested, the final recovered
map remains suboptimal. This issue primarily arises from the inherent ambiguity in
distinguishing the interior from the exterior in scenes where objects are not closed,
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which leads to inconsistencies. For example, while the central region in Figure 4.14b
appears well defined, the periphery exhibits distortions resembling a jet-like structure,
likely due to inaccuracies in the normal estimation process, as discussed in Section 4.1.1.
This problem is further illustrated in Figure 4.15, which highlights the adverse impact
of poor normal estimation on the map quality. We can see that the errors coincide with
direction changes of the surface normals.

Figure 4.15: Visualization of mapping errors caused by poor normal estimation. The
distortions along the map periphery highlight issues in accurately determining surface
normals.

Overall, the incremental optimization experiment highlights a critical trade-off. While
sequential refinement effectively reduces local odometry noise, the Eikonal constraint
must be carefully tuned. An overly strong Eikonal term impedes scan alignment,
whereas its complete removal compromises map recovery. These findings suggest that
further investigation into adaptive weighting or alternative regularization methods is
needed to robustly integrate scan data in challenging environments.

4.2.3 Experiment: Entire Dataset

Using the Eikonal weight w, = 0.2 determined in Experiment 4.2.2, we apply our
optimization framework to the entire Intel dataset. In this experiment, we vary the
number of optimization iterations performed between the addition of each new frame.
Specifically, we test configurations with 3, 5, and 10 iterations per new scan.

3 Iterations:
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When using 3 iterations per new scan, the initial performance is promising. Locally
the frames align well, however, as additional frames are incorporated, noticeable drift
emerges. Figure 4.16 shows three stages of the evolution of the map: (a) the alignment
before we reach the origin again, (b) the apparent drift after reaching our starting point
again, and (c) the accumulated drift resulting in inaccurate alignment and thick walls.
This highlights that without explicit loop closure the algorithm struggles to achieve
global consistency.

(a) Alignment before reaching (b) Drift becomes apparent (¢) Accumulated drift
the origin

Figure 4.16: Map evolution with 3 iterations per new scan.

5 Iterations:

Increasing the iterations to 5 per new scan reduced the drift compared to the 3-iteration
configuration. Figure 4.17 shows three stages: (a) when reaching the starting point again
we see drift, (b) after a couple more iterations all scans realign to reduce the drift, (c)
the scans are almost globally aligned, and (d) zooms in to the top left corner to highlight
the misalignment. The two green circles show that even though it initially seems that
the scans are now globally aligned, that there is a small shift along the corridor leading
to the door being covered by a wall and the the walls not quite aligning with each other.
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a) Initial alignment b) Reduced drift
¢) Improved alignment d) Misalignment

Figure 4.17: Map evolution with 5 iterations per new scan.

10 Iterations:

Increasing the iterations to 10 per new frame significantly improves drift correction,
enabling the algorithm to achieve global consistency even without an explicit loop
closure mechanism. Figure 4.18 illustrates the alignment, effectively eliminating drift.

A closer inspection is provided by Figure 4.19, comparing the initial state with notable
drift (Figure 4.19a) to a zoomed-in view showcasing improved alignment of struc-
tural features such as doors and walls (Figure 4.19b). This is a marked improvement
compared to the misalignment previously observed in Figure 4.17d.
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Figure 4.18: Map alignment with 10 iterations per new frame.

(a) Initial alignment (b) Improved alignment of doors and walls

Figure 4.19: Comparison of map alignment before and after optimization.
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Discussion & Analysis

In this dissertation, we have presented a proof-of-concept SLAM system that jointly
optimizes a continuous signed distance function and sensor poses. Our experimental
evaluation on both simulated data and the challenging Intel Research Lab dataset
demonstrates promising local alignment and relative transformation accuracy. However,
several issues remain before the approach can compete with state-of-the-art SLAM
systems.

One significant challenge is the difficulty of comparing our method to existing work.
Many established frameworks are implemented in ROS and have been refined over
years of development, while our implementation in C++ serves primarily as a proof of
concept. A thorough quantitative comparison on standard benchmarks would require
additional work beyond the scope of this dissertation.

We will now try and answer the questions presented in the introduction:

5.1 Is a unified optimization formulation promising?

Our experiments reveal that the framework demonstrates strong robustness to local
odometry noise, and notably, under certain conditions, it can achieve global consistency
without explicitly employing a loop closure mechanism. Specifically, results from the
Intel dataset indicate that with sufficient optimization iterations per frame, global drift
can be significantly reduced or even eliminated entirely. While integrating loop closure
into the nonlinear least-squares framework remains a potential enhancement to further
mitigate drift in general cases, our findings show evidence that careful optimization
alone can, in some scenarios, effectively replace the need for explicit loop closure
detection.

In certain cases, the joint optimization of the map and sensor poses can have a coun-
terproductive effect, pushing newly added poses further away from their true locations
before they align with the rest of the frames, as observed in Experiment 4.2.2. One
potential remedy is to “lock” the map for several iterations before continuing with
joint optimization, thereby stabilizing the pose estimates and preventing premature,
erroneous adjustments.
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The role of hallucinated points remains ambiguous. While they appear to help com-
pensate for noisy odometry and improve local alignment, they also account for a large
portion of the computational load. Our experiments suggest that their contribution is
sensitive to hyperparameter settings, and further research is needed to clarify when their
inclusion is truly beneficial.

Furthermore, the map representation poses its own challenges. The map size is defined
statically at the beginning of the optimization, resulting in unnecessary computational
overhead since only a fraction of the map may be actively used at the beginning. A
dynamic map that adapts to the region of interest, or a non-uniform resolution strategy,
where high resolution is maintained in critical areas (e.g., along corridors) and lower
resolution elsewhere, could yield both computational savings and improved map fidelity.

5.2 Can a continuous SDF yield accurate map recon-
structions?

In the controlled environment of simulated scans, the Eikonal residuals largely function
as intended and yield an accurate map. However, in the more complex and noisy Intel
dataset, the Eikonal constraint fails to produce the desired results. This shortcoming
appears to stem from inadequate surface normal estimation at grid points, which un-
dermines the consistency of the gradient and degrades the map quality. Although the
current approach successfully determines the correct polarity, that is, distinguishing
which side of the surface is positive or negative, integrating additional cues, such as the
vector toward the closest point, may improve normal estimation and enhance overall
performance.

5.3 Is the overall approach computationally feasible?

Another critical consideration is computational efficiency. Currently, optimizing the
Intel dataset, which consists of 910 frames and approximately 155,648 scan points,
requires approximately 10 seconds per iteration without hallucinated points. Introducing
hallucinated points increases computational time substantially, resulting in approxi-
mately 16 seconds per iteration with two hallucinated points, 23 seconds with four,
and up to 30 seconds with six. Achieving real-time performance would necessitate
roughly a 500-fold reduction in computational time, highlighting the need for substan-
tial improvements both in algorithmic design and implementation efficiency. Potential
strategies to mitigate this computational challenge include employing parallel computa-
tion techniques or adopting hierarchical optimization methods that separately address
local and global adjustments.

5.4 Summary

In summary, while the proposed SDF-based SLAM framework shows encouraging
results as a proof of concept, several aspects need further refinement. The interplay
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between hallucinated points, Eikonal residuals, and pose optimization requires deeper
investigation. Future work should explore adaptive strategies for map resolution and
dynamic partitioning of the optimization problem to enhance both accuracy and com-
putational efficiency. Despite these limitations, the current findings provide a solid
foundation for developing a more robust, real-time SLAM system in subsequent re-
search.



Chapter 6

Conclusion & Future Work

6.1 Summary of Findings

Our experiments have demonstrated that a unified optimization formulation, which
jointly refines sensor poses and a continuous SDF map, shows considerable promise.
In controlled, simulated environments, the continuous SDF can yield highly accurate
map reconstructions, even in the presence of noisy odometry. However, when applied
to more complex real-world scenarios (as exemplified by the Intel dataset), challenges
such as global drift, limitations in the Eikonal residual enforcement, and inaccuracies in
normal estimation become apparent. While the approach is computationally feasible as
a proof of concept, achieving real-time performance remains an open challenge.

6.2 Contributions

This work makes several key contributions:

* We introduce a novel unified optimization framework that concurrently estimates
sensor poses and a continuous SDF map, addressing the research question of
whether a unified formulation is promising.

* Our approach demonstrates that a continuous SDF representation can produce
accurate map reconstructions under controlled conditions, offering a compelling
alternative to traditional discrete mapping methods.

* We provide an in-depth analysis of the computational feasibility of joint optimiza-
tion, highlighting both the strengths and current limitations of our method.

* Our incremental optimization strategy offers valuable insights into the trade-offs
between local scan alignment and global map consistency.
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6.3 Future Work

Future research should focus on several key areas to enhance the robustness and effi-
ciency of the framework:

* Loop Closure: Integrating a loop closure mechanism into the nonlinear least-
squares formulation is essential for mitigating global drift and ensuring consistent
global map alignment.

* Multi-Stage Optimization: Investigating a multi-step optimization strategy—such
as temporarily fixing the map while incorporating new frames and then perform-
ing joint re-optimization—may help prevent Eikonal residuals from pushing new
pose estimates off course.

* Performance Optimization: Significant improvements in computational effi-
ciency are required. Approaches such as processing multiple scans concurrently
(e.g., adding k scans at once) and optimizing the sparse matrix operations are
necessary to move towards real-time performance.

* Normal Estimation: The current method for surface normal estimation is inade-
quate, particularly in complex, real-world scenarios. Future work should focus on
refining normal estimation, potentially by integrating additional geometric cues
(such as the vector towards the closest point) to enhance the accuracy of the SDF
reconstruction.

» Extension to 3D: Although the methodology is presented in a 2D framework, it
naturally extends to three dimensions. In 3D, bilinear interpolation is replaced
by trilinear interpolation and the finite difference approximations are extended to
account for the additional dimension. Rigid-body transformations are similarly
defined in 3D, while the overall optimization framework remains consistent.
Nevertheless, further experiments are necessary to assess any new challenges and
to address the increased computational complexity that comes with extending the
approach to the third dimension.
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Appendix A

Analysis of Methodology

A.1 Eikonal Equation

Gropp et al. [23] established that the signed distance function must satisfy the Eikonal

equation:
|IVD|=1. (A.1)

A.1.1 Projecting the derivative vector

Let us consider a scenario where two infinite walls define the axes of our coordinate
system, restricting our analysis to the first quadrant. The signed distance function (SDF)
in this setting is given by:

d(x,y) = min(x,y).

A.1.1.1 Gradient Computation
The derivative of d(x,y) is determined as follows:

» If x <y, then d(x,y) = x, yielding the partial derivatives:

ad
od_y
ox dy

e If x >y, then d(x,y) =y, resulting in:
ad
o o My
ox dy

At the diagonal x =y, the gradient is not uniquely defined. The possible gradients form
a convex combination of the limiting gradients:

(1,0) (fromx<y), (0,1) (fromx>y).
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Figure A.1: Handling undefined gradients at discontinuities
Thus, the set of possible gradients at x =y is given by:

{(0,1-0) [0 <a<1}.

A.1.1.2 Numerical Estimation and Issues

Using forward differencing for numerical gradient estimation may lead to an incorrect
gradient. Figure A.la illustrates this issue, where the computed gradient at a grid point
along the diagonal results in (1, 1), violating the Eikonal equation. The numbers next
to the red dots represent the computed SDF values, while the brackets highlight the
estimated gradients.

To address this issue, we can constrain the computed gradient by projecting it onto
one of the subgradients. Specifically, we propose selecting a direction that points
towards the closest surface and projecting the estimated gradient onto this direction.
For points where x # y, this projection does not affect the gradient magnitude. However,
at locations along the diagonal, it enforces a well-defined gradient with unit magnitude,
satisfying the Eikonal equation.

Consider the example of (x,y) = (2,2). Here, we can choose between the vectors
(—1,0) and (0,—1). Projecting the computed gradient onto either of these vectors
ensures a magnitude of 1, aligning with the Eikonal constraint.

A.1.1.3 Generalized Approach to Finding the Closest Surface Normal

In a more general setting, the closest surface direction is not always known a priori.
There are two practical ways to approximate it:

1. Nearest Scan Point Approximation: The simplest approach is to use the vector to
the closest scan point. However, this can lead to significant inaccuracies. For instance,
if scan points are uniformly spaced at integer coordinates such as (0,0), (0, 1), etc., then
a point at (0,0.6) would identify (0, 1) as the closest scan point, yielding a direction
of (0,1). This is incorrect if the true surface normal at that location is (1,0), which is
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orthogonal to the computed direction. This issue is visualized in Figure A.1b, where
yellow points represent scan points, the blue point is a grid node, the red vector indicates
the direction to the closest scan point, and the green vector represents the correct surface
normal.

2. Surface Normal Estimation from Scan Points: Instead of relying solely on the
closest scan point, we can estimate the surface normal at each scan point and use the
normal of the nearest scan point for gradient correction. In Figure A.1b, the estimated
surface normal at each scan point is shown as a green arrow. By using this estimated
normal at the closest scan point, we obtain a more accurate approximation of the true
surface normal at the query point.

Since surface normals are inherently ambiguous (they can point in two opposing
directions), we resolve this by consistently orienting normals toward the scan origin.
This choice provides a secondary benefit: in regions in front of the scanned surface,
the normals naturally point outward, while behind the surface, they point inward. This
ensures the signed distance function correctly represents positive and negative distances,
maintaining consistency with the Eikonal equation.

A.1.1.4 Experiment: Projecting vs. Not Projecting

To test our hypothesis regarding the effect of projecting the derivative onto the estimated
surface normal, we conducted an experiment using the simulated dataset described
in Section 4.1. In this experiment, we optimized the map for 25 iterations under two
conditions: one in which the derivative is projected onto the surface normal, and one in
which no projection is applied.

Figure A.2 shows the results. As seen in Figure A.2a, when no projection is applied,
the map fails to recover correctly and exhibits an alternating pattern. This behavior is
not entirely unexpected—using forward differencing, a sequence such as 0, 1, 0, 1 will
produce a derivative magnitude of 1 everywhere (with central differencing the derivative
would be 0, yet similar behavior still occurs). In contrast, Figure A.2b demonstrates
that projecting the derivative onto the estimated surface normal leads to a map that
is recovered with considerably greater fidelity, although additional iterations may be
required to further refine the reconstruction.

A.1.2 Differencing Scheme

However, since we represent the SDF on a discrete grid, we must approximate the
gradient numerically. Various finite differencing schemes offer distinct advantages and
drawbacks. The simplest approach, both in terms of implementation and computational
efficiency, is the forward difference method, which we adopt in this paper. While central
differencing provides higher accuracy, it introduces an intriguing phenomenon.

For our analysis, we restrict ourselves to a one-dimensional setting and consider the
absolute distance to the surface. The only known information is that grid point 4
corresponds to the surface, meaning the distance at this point must be zero. We then
compute the Eikonal residuals and apply least squares optimization.
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Figure A.2: Comparison of map recovery after 25 iterations. The left image, obtained
without projecting the derivative, shows an alternating pattern that hinders accurate
map reconstruction. In contrast, the right image, with derivative projection applied,
demonstrates a more faithful recovery of the environment.

The left side of Figure A.3 illustrates that forward differencing correctly reconstructs
the SDF. However, the right side reveals an alternating pattern arising from the central
difference scheme. This phenomenon occurs because the central difference at index i
depends on values at i+ 1 and i — 1, meaning that adjacent grid points do not interact
directly. Instead, they only influence their second neighbors. Given that we only specify
information at grid point 4 in this example, the computed SDF directly or indirectly
constrains only grid points 0, 2, 6, and 8. The remaining grid points (1, 3, 5, and 7)
are unconstrained, allowing them to assume arbitrarily large or small values while still
fitting a straight-line solution. The specific line they conform to depends on their initial
values, and this effect is highlighted in orange.

A.1.2.1 Experiment: Central vs Forward Differencing

To investigate whether the observed behavior is merely a theoretical edge case or
also manifests in more complex environments, we conducted an experiment using the
simulated dataset described in Section 4.1.

Figure A.6 shows the maps produced after running the optimization for 100 iterations
with all settings held constant except for the type of derivative approximation used. A
qualitative inspection reveals that the forward difference method (Figure A.4a) yields a
noticeably smoother map, while the central difference method (Figure A.4b) exhibits the
alternating behavior described previously. This can be further observed in Figure A.5.
Quantitatively, the average map error is 0.70 for the forward difference approach
compared to 0.83 for the central difference method, indicating a significant performance
improvement when using forward differences.
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Figure A.3: Comparison of finite difference schemes.

A.2 Accuracy of Hallucinated Points

There exist multiple approaches for generating hallucinated points, each with its ad-
vantages and drawbacks. Our current approximation is computationally inexpensive
but lacks accuracy [21], particularly as a function of the angle of incidence. As illus-
trated in Figure A.6a, when the incidence angle deviates from 90°, the discrepancy in
approximation becomes evident:

dirue = X, (A.2)
X
dhallucinate = m; (A.3)
err = |dtrue - dhallucinate|7 (A4)
X
== A5
* cos(a) |’ (A.5)

- ‘ (1 - cos1<oc>) ‘ | (A0

At an incidence angle of 90°, this error is zero, whereas at 45°, the factor increases to
V2. At 30°, the factor reaches 2, and it continues to grow for smaller angles. Whether
this inaccuracy significantly impacts the system depends on the typical distribution of
incidence angles encountered in practice, necessitating an empirical evaluation.

A straightforward improvement involves bounding our estimate by the nearest point in
the scan. Since the actual distance must be at most this nearest-neighbor distance, this
refinement can mitigate overestimations in the hallucination process.
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Figure A.4: Comparison of maps produced after 25 iterations using two different deriva-
tive approximations. The forward difference method produces a smoother map, while
the central difference method shows alternating behavior.

Another potential inaccuracy arises from cases illustrated in Figure A.6b, where the
hallucinated point is closer to an unobserved surface than the one hit by the laser.

A more refined bounding strategy is shown in Figure A.7. The true distance is con-
strained above by the nearest scan point and below by the distance to the convex hull
formed by the scan points and the scan origin. This follows from the assumption that
objects are not small enough to fit between scan lines, like the blue circle in the figure,
as we otherwise cannot account for them. The closest we could be to any unseen object
would be an object just outside the convex hull, as represented by the black ball.

Denoting the distance to the nearest scan point as a and the distance to the convex hull
as b, we can assert the following bounds on the true distance d:

min(a,b) <d < a. (A7)

Moreover, if a < b, we can confidently state that d = a.

While these improvements enhance distance estimation accuracy, they introduce addi-
tional computational complexity, requiring nearest-neighbor searches and convex hull
computations. For the purposes of this work, we opt for the simplest approximation;
however, future research could explore integrating these enhancements to improve
accuracy while maintaining computational feasibility.
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