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Abstract
Precise population maps are crucial for disaster response, resource allocation, and urban
planning. While national censuses provide comprehensive population data, they are
laborious, costly, and infrequent. During the intercensal period, population can change
significantly due to factors such as rapid migration, natural disasters, and conflicts.
The Sustainable Census-Independent Population Estimation (SCIPE) method, which
uses high-resolution satellite imagery and a microcensus as a response variable, has
shown promise but requires improvement in representation learning. This study ex-
tends SCIPE to study how self-supervised pretraining could help SCIPE produce better
population estimates for two districts in Mozambique. We evaluated 25 pretraining
configurations, including using several learning signals, dataset domains, sample sizes,
and backbone architectures. Our findings indicate that finetuned contrastive models,
specifically SimCLR, pretrained on very-high-resolution remote sensing images achieve
superior per-tile population estimations. The TOV model, combining ImageNet and
satellite images for self-supervised pretraining, achieved the lowest aggregate percent-
age error (AggPE = 0.6%). Additionally, ViT-B models pretrained on natural images
outperformed ResNet-50 models, with a supervised ViT-B model outperforming SCIPE
on all evaluation metrics. Our research establishes the superiority of self-supervised
models pretrained on high-resolution remote sensing images over general ImageNet
pretraining, marking a significant advancement in census-independent population esti-
mation. Overall, this study enhances SCIPE’s sustainability by using label-free datasets
and avoiding manual annotation of zero-population tiles, making it a robust tool for
population mapping.
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Chapter 1

Introduction

1.1 Motivation

Precise population maps are essential for informed decision-making in various public
interest areas, such as disaster response, resource allocation, urban planning, and
tracking progress toward the Sustainable Development Goals (Neal et al., 2022). The
national population and housing census is the most comprehensive and reliable data
source for this purpose. A census is typically collected every ten years in most countries.
However, censuses are laborious and expensive to build, which is why the intercensal
period can sometimes extend up to several decades (Robinson et al., 2017). Recently,
there have been several attempts to produce high-resolution population maps, for
example over a 100 m grid (Linard et al. 2012; Tiecke et al. 2017; Bondarenko et al.
2020; Metzger et al. 2022; Neal et al. 2022). Satellite images are the main data used
by the above approaches while depending on their use of census data as a dependent
variable, they can be separated into census-dependent methods and census-independent
methods.

Census-dependent population estimation (also known as population disaggregation or
top-down estimation) uses the latest census data available to train a model to estimate a
population density by projecting coarse-resolution data across a finer-resolution grid.
Census-independent population (or bottom-up estimation) on the other hand, relies
on surveys (or microcensuses) to train a predictive model that can provide population
estimates at non-surveyed grid tiles (Metzger et al., 2022). Census-independent methods
can improve the spatial and temporal resolution of census–dependent approaches,
however, most of the existing census-independent approaches require hand-crafted
features which are very laborious, time-consuming and expensive . Moreover, features
can vary significantly between publications, making them less transferable to other
geographic areas and countries and less sustainable for reusability (Neal et al., 2022).

For this reason, Neal et al. (2022) propose the Sustainable Census-Independent Popu-
lation Estimation (SCIPE) method. SICPE uses representation learning for top-down
population estimation from very-high-resolution (0.5 m) satellite imagery using a mi-
crocensus in two districts of Mozambique. They aggregated household survey data into
a 100m grid to generate population counts, creating labeled grid tiles. Features are then
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Chapter 1. Introduction 2

extracted using a pretrained Barlow Twins model (Zbontar et al., 2021) on ImageNet
(Krizhevsky et al., 2012). This method successfully generated medium-resolution (100
m) population density maps without the need for manual annotation of satellite images
and with minimal computational resources. Although SCIPE did not outperform esti-
mations based on manually-extracted building footprint features on every evaluation
metric, it remains a sustainable and transferable approach. Thus, a gap remains to be
filled in extracting meaningful representations for top-down population estimation using
satellite (or remote sensing) images and deep learning methods.

The performance of deep neural networks relies significantly on the size and quality of
the training data (Wang et al., 2022c). Thus, numerous large-scale annotated datasets
have been created for supervised training over the past decade, to help through transfer
learning to train tasks where task-specific datasets are small and training labels are scarce
(Krizhevsky et al. 2012; Zhou et al. 2017; Krizhevsky et al. 2009; Oquab et al. 2023).
Models trained on ImageNet specifically, have been driving advancements in several
fields, by using them as pretrained models and finetuning them for other tasks. However,
annotating large-scale datasets is an extremely labor-intensive, time-consuming, and
costly process.

Moreover, many recent studies have shown that general ImageNet pretraining may
not be sufficient to learn useful representations for downstream remote sensing image
understanding (RSIU) tasks (Wang et al. 2022a; Tao et al. 2023b; Huang et al. 2024;
Wang et al. 2023). Wang et al. (2022c) argue that while transfer learning is very
useful for datasets with limited labeled samples, the supervised pretraining learns useful
representations for tasks of similar domain but it does not perform as well on tasks that
are of different domain. There are several domain gaps between remote sensing (RS) and
natural images arising from differences in capture perspectives, image resolutions, and
object appearances, ultimately hindering the performance of RS image understanding
(Huang et al., 2024). This find has led to many efforts in building large-scale annotated
remote sensing datasets (Long et al. 2021; Wang et al. 2023).

However, creating a substantial remote sensing dataset is highly challenging due to the
tedious and expertise-driven nature of accurately annotating remote sensing images
(RSIs). Additionally, annotation methods vary significantly depending on the task;
for instance, scene classification requires image-level annotation, whereas semantic
segmentation requires pixel-level annotation (Tao et al., 2023a).

Furthermore, relying solely on manual labels as supervised signals is insufficient for
training a good vision model. Manual labels function only as external guidance for fitting
a model to the training data. In contrast, the intrinsic information embedded within the
massive amounts of remote sensing data is theoretically richer and more fundamental
than the semantic information provided by human-labeled samples. Consequently,
human-labeled samples may fall short in annotating complex, multi-object scenes with
multiple or ambiguous semantic meanings, leading to limited feature representation
learning (Tao et al., 2023b).

In contrast, acquiring large amounts of unlabeled RSIs is relatively easy due to the
increasing number of satellites dedicated to Earth observation. This abundance of unla-
beled images, coupled with the limited availability of labeled data, makes representation
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learning on RS images particularly suitable for self-supervised learning (SSL). SSL
methods utilize vast amounts of unlabeled data by exploiting the inherent structure
within the data to generate supervised signals (Jing and Tian, 2020). The ability to
train deep learning models without the need for human-annotated labels, along with the
remarkable success of SSL methods on natural images (Chen et al. 2020a; Chen et al.
2020b; Grill et al. 2020; Caron et al. 2021) has led to significant interest in applying
SSL to RS images.

In this study, we use the SCIPE pipeline to explore the effect of different self-supervised
pretraining paradigms on the downstream task of population estimation. We investigate
the impact of multiple factors, including different learning signals, such as supervised
versus self-supervised methods and contrastive [2.2.3] versus masked image model-
ing (generative) approaches [2.2.1]. Additionally, we analyze dataset characteristics,
particularly focusing on the domain of images (natural images versus remote sensing
images), sample size, and spatial resolution. Finally, we evaluate backbone network
characteristics, comparing architectures like ResNet-50 [2.3.2.1], Swin [2.3.2.3], and
ViT [2.3.2.2], along with network capacity.

1.2 Objective

The objective of this project is to study how self-supervised pretraining could help
SCIPE produce better population estimates. Thus, we conduct ablation-like experiments
using state-of-the-art self-supervised learning algorithms to assess the effects of different
pretraining paradigms on our downstream task.

To the best of our knowledge, we are the first to implement a self-supervised learning
pipeline for census-independent population estimation. We would like this work to be
the first stepping stone of future research in the area.

1.3 Contributions

The contributions of this project are the following:

• We extend the SCIPE pipeline to incorporate self-supervised pretraining and the
use of vision transformer models.

• We provide a comprehensive study of how different pretraining paradigms affect
SCIPE population estimation, including pretraining with different learning signals,
data domains, image resolutions, size of dataset, backbone architectures, and
model capacity.

• We improve the performance of SCIPE across all evaluation metrics, avoiding
the use of manually-constructed zero-population tiles, or the use of any zero-
population tiles altogether.

• We establish the superiority of self-supervised models pretrained on high-resolution
remote sensing images over the general ImageNet pretraining for learning good
representations.
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• We present the first self-supervised population estimation method with a 0.06%
aggregate percentage error.

1.4 Thesis Structure

The thesis is divided into five chapters:

Chapter 1 explains the motivation behind this project, and shares its objectives and
contributions.

Chapter 2 discusses background research on deep learning for intercensal population
estimation, self-supervised learning, and model pretraining for representation learning
in remote sensing.

Chapter 3 introduces the natural image and remote sensing datasets used for our
pretrained models. It then describes the self-supervised learning models employed for
pretraining. Following that, it presents the SCIPE pipeline, along with the satellite
imagery and microcensus data used for population estimation. Finally, it explains the
evaluation metrics and the cross-validation techniques used to compare our models.

Chapter 4 presents the experiments undertaken and the results. It discusses the effect
of learning signals, dataset characteristics, and backbone network characteristics on
model performance.

Chapter 5 summarises the findings of this project, discusses limitations, and proposes
areas of future work.



Chapter 2

Background

2.1 Deep Learning for Intercensal Population Estimation

Representation learning is a method through which a model can learn useful representa-
tions or features without human curation. Learned representations often result in much
better performance than can be obtained with hand-designed representations (Goodfel-
low et al., 2016). The learned representations can then be used for transfer learning.
Transfer learning is useful when we have limited labeled data for the task that we are
working on. By pretraining your model to a large, well-established labeled dataset, like
ImageNet (Krizhevsky et al., 2012), it allows you to get a better performance on datasets
with limited labels by finetuning on existing labeled data with minimal computational
resources.

The first to experiment with representation and transfer learning on very-high-resolution
satellite images for the downstream task of population estimation has been Neal
et al. (2022) in their approach Sustainable Census-Independent Population Estima-
tion (SCIPE).

2.1.1 The SCIPE Pipeline and Code

SCIPE explores the use of representation learning in census-independent population
estimation from very-high-resolution (50 cm spatial resolution) satellite imagery using
a microcensus (survey data) in two districts of Mozambique. They have aggregated
household survey data to a 100m grid to generate population counts producing labeled
grid tiles. A Barlow Twins model (Zbontar et al., 2021) with a ResNet-50 (He et al.,
2016) convolutional neural network architecture was pretrained on ImageNet to extract
representations. Once these representations are obtained, the final layers of the neural
network are replaced with a simple linear regressor head and the model is finetuned
using satellite images of surveyed grid tiles. After this finetuning stage, the regression
head is removed to obtain a feature representation vector for each tile. These feature
vectors are then fed into a Random Forest regressor to make population predictions for
each tile.

This approach was able to produce medium-resolution (100 m) population density

5



Chapter 2. Background 6

Figure 2.1: The SCIPE pipeline. Taken from Neal et al. (2022).

maps while avoiding manual annotation of satellite images (except for zero-population
tiles) and only requiring minimal computational resources. Although SCIPE did not
outperform building footprint area-based estimations, it is sustainable and transferable.
An overview of their approach is shown in Figure 2.1.

This project is built on top of SCIPE; using the same pipeline and code. We adapt
the code to incorporate self-supervised pretraining models of different backbone archi-
tectures, and different pretraining datasets into the pipeline. Other components of the
pipeline, such as the code for data preprocessing, random forest regression, or model
evaluation, have been available to us. The SCIPE codebase is written in Python, with
the deep learning components utilizing PyTorch and FastAI.

2.2 Self-Supervised Learning

Self-supervised learning (SSL) is a novel approach of deep learning where the network
attempts to learn representations using human-designed, task-agnostic learning signals
to generate targets or pseudolabels for massive unlabeled data (Jing and Tian, 2020).
These self-generated targets can then be used for pretraining in the same way as in
supervised pretraining. Many recent SSL methods have demonstrated remarkable
results on natural images (Chen et al. 2020b; Oquab et al. 2023; Grill et al. 2020; He
et al. 2022).

SSL methods can be divided into three categories according to their choice of learning
signal: Generative, Predictive and Contrastive.

2.2.1 Generative Learning Signals

Generative learning signals involve training a model to reconstruct the original input
from a partially corrupted version. This method operates on the assumption that if the
model can accurately recover the missing information, it has effectively learned the
contextual features. First, the original image, x is corrupted by adding random noise,
masks, or downsampling, resulting in a degraded version x̃. Then, a model f (·) with
an encoder-decoder architecture learns features by minimizing the objective function
∥ f (x̃)− x∥2

2 (Wang et al., 2022c). The masked autoencoder (MAE) (He et al., 2022)
is one such approach, which masks a high portion (∼ 75%) of the input image with
random patches and reconstructs the missing patches in the pixel space. MAE learns
high-capacity models that generalize well in downstream tasks.
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2.2.2 Predictive Learning Signals

Predictive learning signals focus on learning semantic context features rather than deal-
ing with pixel-level details like generative learning signals. Instead, these methods focus
on predicting specific properties of the data using pretext tasks. These tasks involve de-
signing a suitable challenge for the dataset, generating self-labels, and training a model
to predict these labels to learn data representations (Jing and Tian, 2020). Pretext tasks
utilize various context information of the input images and can be categorized based on
context attributes into spatial context and spectral context. Spatial context prediction
includes the pretext tasks of relative position prediction (Doersch et al., 2015), solving
jigsaw puzzles (Noroozi and Favaro, 2016), and image rotation prediction (Gidaris
et al., 2018), whereas spectral context prediction is achieved through colorization tasks
(Zhang et al., 2016).

2.2.3 Contrastive Learning Signals

The effectiveness of predictive SSL is largely dependent on well-designed pretext
tasks, which can be difficult to create and may lead to task-specific representations,
reducing the model’s generalizability. Contrastive methods overcome this limitation
by giving the network flexibility to learn high-level representations without depending
on a single pretext task. Extensive experimental research in psychology indicates
that infants primarily learn perceptual categories through observation, not linguistic
supervision. This process allows them to recognize different versions of the same
object (invariance) and differentiate objects by their appearances (distinguishability).
Contrastive learning signals are designed to imitate this by bringing augmented views
of the same image closer together and separating views of different images to learn
invariant and distinguishable visual features (Tao et al., 2023a). However, enforcing only
similarity between pairs can result in a trivial solution known as model collapse, where
the model maps all inputs to the same representation (Caron et al., 2021). To prevent
this, various strategies have been proposed, creating a subtaxonomy of contrastive
SSL methods that includes negative sampling (Chen et al. 2020a; Chen et al. 2020b),
clustering (Caron et al., 2018), knowledge distillation (Grill et al. 2020; Caron et al.
2021), and redundancy reduction (Zbontar et al., 2021).

2.3 Model Pretraining for Remote Sensing Tasks

Pretraining models is crucial for enhancing the performance of deep neural networks
on remote sensing images (RSIs). Historically, most approaches have relied on the
ImageNet dataset (Krizhevsky et al., 2012) for pretraining, resulting in improved
performance in classification, segmentation, and detection tasks through task-specific
designs (Tong et al. 2020; Zheng et al. 2020; Ding et al. 2019). However, significant
domain gaps exist when transferring these pretrained models from natural images to
remote sensing (RS) tasks due to the substantial differences between these image types
(Huang et al., 2024).

Recently, a new approach has been proposed that involves pretraining deep models on
a large-scale RS dataset called MillionAID (Long et al., 2021) in a fully supervised
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manner (Wang et al., 2022a). This method has shown that pretraining on RS datasets
can enhance the performance of both convolutional neural networks (CNNs) and vision
transformers (ViTs) (Wang et al., 2022b). Nonetheless, the need for extensive labeled
data poses a challenge for pretraining larger models, since annotating RS datasets is
very challenging and costly due to the expertise needed to undertake the task. Moreover,
label noise is another issue in remote sensing since satellite images are complex and
used for several different tasks, so the perfect label does not exist. The impressive
performance of SSL in natural image representation learning, together with the issues
of label noise and label scarcity in remote sensing datasets has encouraged many studies
on the potential of SSL in the remote sensing community (Wang et al. 2022c; Tao et al.
2023a).

2.3.1 Self-Supervised Pretraining for Representation Learning in
Remote Sensing

Initially, contrastive learning (CL) was the most popular SSL method within the RS
community, with much work being done in integrating RS characteristics into CL
design to encourage more specialized representation learning from RS images. For
instance, Jean et al. (2019) proposed Tile2Vec, an unsupervised representation learning
method that assumes geographically proximate tiles exhibit semantic similarity, using
metric learning for unsupervised tile learning. Geography-aware MoCo (Ayush et al.,
2021) bridged the gap between self-supervised and supervised learning on various
RS downstream tasks by using spatially aligned images over time to form temporal
positive pairs and employing a geo-location pretext task during training to enhance
representation learning of RS images. Similarly, SeCo (Manas et al., 2021) used images
from the same location at different times as positive pairs, providing representations
with time-varying and invariant features.

Recently, the masked image modeling (MIM) method has gained popularity in the RS
community due to the success of Vision Transformers (ViT) in various RS downstream
tasks. RingMo (Sun et al., 2022) applied the SimMIM method (Xie et al., 2022),
introducing a new masking strategy for self-supervised representation learning on a
dataset of 3 million unlabeled RS images. Fine-tuning results on various downstream
tasks showed that this new masking strategy was more suitable for RS images, and the
representations learned by RingMo generalized well to various RS downstream tasks.
MAE (He et al., 2022) was also used to pretrain large vision models customized for RS,
with results demonstrating the effectiveness of MIM pretraining (Wang et al., 2022b).

The above SSL methods for remote sensing are restricted to using either contrastive
learning or masked image modeling. Muhtar et al. (2023) proposes contrastive mask
image distillation (CMID) in an effort to improve the generalization performance
of remote sensing pretraining. Muhtar et al. (2023) argue that because CL focuses
on inter-image semantic relationships and overlooks intra-image structure it fails to
perceive semantic information at different spatial locations within images, resulting
in poor performance in dense prediction tasks such as object detection and semantic
segmentation. Conversely, MIM learns intra-image structure and captures the contextual
information of each pixel within an image, resulting in representations with local spatial
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perceptibility at the expense of global semantic separability. Consequently, MIM
pretrained models excel in dense prediction tasks but are less effective in classification
tasks.

More studies approach this inability of RS contrastive learning in capturing low- to
mid-level features by pretraining models using both RS and natural images (Huang
et al. 2024; Tao et al. 2023b; Risojević and Stojnić 2021; Zhang et al. 2022). Tao et al.
(2023b) introduces TOV which freezes the shallow and middle layers of a natural image
SSL pretrained model before training on the RS dataset to avoid catastrophic forgetting
of general knowledge from the natural images while adapting to RS images. Huang
et al. (2024) propose GeRSP, a knowledge distillation method that simultaneously
trains a supervised network with natural images and a self-supervised network with
RS images. These approaches generalize better to object detection and segmentation
tasks, indicating that pretraining on natural images provides useful general knowledge
representations.

Moreover, the spatial resolution of the RS pretraining dataset can too determine the
spatial information that the model extracts. Tao et al. (2023a) argue that a pretraining
dataset with high spatial resolution is critical for good self-supervised feature learning.
So much so, that having high-resolution pretraining data might compensate for having
a large domain gap between pretraining and downstream datasets. Chopra et al. (2023)
proposes a domain adaptation-based self-supervised representation learning approach
for classifying satellite images. The model gets pretrained on one source dataset
and evaluated on a different target dataset. Using three very-high-resolution to high-
resolution (0.1 - 10 m) datasets, the proposed method has surpassed existing results by
1% with less training data.

2.3.2 Backbone Network Architectures

The most commonly used network architecture for computer vision (CV) tasks (in-
cluding remote sensing image understanding) has been convolutional neural networks
(especially ResNets (He et al., 2016)), but given the recent progress of natural language
processing (NLP) with transformers (Vaswani et al., 2017), many studies have arisen
in exploring the adoption of transformers to CV (Dosovitskiy et al. 2020; Caron et al.
2021; Oquab et al. 2023; Liu et al. 2021; Xu et al. 2021; Zhang et al. 2023) and remote
sensing (Wang et al. 2022a; Wang et al. 2022b; Muhtar et al. 2023).

Here, we introduce briefly the different backbone architectures that are used in this
study.

2.3.2.1 ResNet-50

ResNet50 (He et al., 2016) is a deep convolutional neural network (CNN) with 50
layers, organized into ”bottleneck” residual blocks. Residual blocks address the van-
ishing/exploding gradient problem in deep neural networks by incorporating skip
connections. These skip connections allow gradients to bypass certain layers. This
helps prevent the gradients from becoming too small as they propagate back through the
network, facilitating effective training. Moreover, the bottleneck structure of the blocks
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reduces the computational load of training a ResNet model through parameter reduction.
It involves a three-layer sequence: a 1x1 convolution to reduce the dimensionality of
the feature maps, followed by a 3x3 convolution, and another 1x1 convolution to restore
the dimensionality. After the residual blocks, a global average pooling layer reduces the
spatial dimensions.

2.3.2.2 ViT – Visual Transformer

ViT (Dosovitskiy et al., 2020) divides an input image into fixed-size non-overlapping
patches, flattens each into a 1D vector, and projects these vectors into a lower-dimensional
space to create patch embeddings. To retain spatial information, position embeddings
are added to the patch embeddings. The model uses a Transformer encoder (Vaswani
et al., 2017) with multiple layers of multi-head self-attention (MHSA) mechanisms and
feed-forward neural networks to process these embeddings. A special [CLS] token is
prepended to the sequence, and its final representation is used for classification tasks.
The self-attention mechanism enables the model to capture long-range dependencies
and contextual relationships between patches.

2.3.2.3 SwinT – Shifted Window Transformer

The Swin Transformer (Liu et al., 2021) is another neural network architecture tailored
for CV tasks. It first divides images into fixed-size non-overlapping patches, and creates
patch embeddings in the same way as Vision Transformers. These embeddings are fur-
ther divided into non-overlapping windows of fixed size and self-attention is computed
locally within each window. Each window produces a local feature representation, cap-
turing the semantics within the confined space of the window. To capture global context,
the windows are shifted between layers. Finally, neighboring windows are merged to
form larger windows, reducing the number of tokens. This is done by concatenating
the features of adjacent patches and applying a linear transformation. This stage acts
similarly to pooling layers in CNNs, progressively reducing the spatial dimension while
maintaining knowledge about both local and global dependencies.



Chapter 3

Methodology and Data

In this chapter, we first introduce the natural image and remote sensing datasets that have
been used for our pretrained models. Then, we provide details for the self-supervised
learning models that are used independently for pretraining. Next, we present the
SCIPE pipeline together with the satellite imagery and microcensus that are used for
the task of population estimation. Lastly, we show what evaluation metrics and how
cross-validation have been used to compare our models.

3.1 Datasets Used in Pretraining

Here we present the datasets that have independently been used for the pretraining of
our models. Table 3.1 offers a summary of the properties of the different datasets.

3.1.1 SIRI-WHU

The SIRI-WHU dataset1 contains 2400 images categorized into 12 classes. Sourced
from Google Earth, this dataset primarily features metropolitan areas in China and was
compiled by Wuhan University’s RS IDEA Group. The 12 classes include Agriculture,
Commercial, Harbor, Idle Land, Industrial, Meadow, Overpass, Park, Pond, Residential,
River, and Water, with each class consisting of 200 images. These images are 200 x
200 pixels in size and have a spatial resolution of 2 meters.

3.1.2 UC Merced

The UC Merced dataset2 (Yang and Newsam, 2010) consists of images manually
extracted from large-sized images within the United States Geological Survey (USGS)
National Map Urban Area Imagery collection, covering various cities across the United
States. This extensive ground truth dataset includes 21 land-use types, each represented
by 100 images. The 21 classes are agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection,

1http://www.lmars.whu.edu.cn/prof web/zhongyanfei/e-code.html
2http://weegee.vision.ucmerced.edu/datasets/landuse.html

11
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Figure 3.1: The geographical distribution of the SSL4EO-S12 dataset. Taken from Wang
et al. (2023).

medium residential, mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis court. Each image in this collection has a resolution
of 0.3 meters and measures 256 x 256 pixels.

3.1.3 MLRSNet

The MLRSNet dataset3 (Qi et al., 2020) provides various satellite-based perspectives
from around the world, featuring high-resolution optical satellite images. It includes
109,161 remote sensing photographs, categorized into 46 classes, with each category
containing between 1,500 and 3,000 example images. The photos, each sized at 256 x
256 pixels, have spatial resolutions ranging from 10 meters to 0.1 meters. This dataset
is suitable for tasks such as image segmentation, retrieval, and multi-label classification.

3.1.4 SSL4EO-S12

SSL4EO-S12 (Wang et al., 2023) is remote sensing dataset of medium resolution that
provides global geospatial coverage as seen in Figure 3.1. The complete SSL4EO-S12
dataset contains 3,000,000 Sentinel-1 dual-pol SAR, Sentinel-2 top-of-atmosphere
(level-2C) multispectral, and Sentinel-2 surface reflectance (level-2A) multispectral
triplets over four seasonal timestamps.

Since the images in the dataset that we will be using for population estimation consist
of only the 3 bands of RGB, the MoCo-v2 model that was acquired from (Wang et al.,
2023) is only trained on a subset of the SSL4EO-S12 dataset, i.e., the satellite images
that are of RGB bands. These images are part of the Sentinel-2 level-2C only, have a
patch size of 264 x 264 pixels, and an image resolution of 10m. Unfortunately, the size
of this subset is not mentioned by the authors.

3https://data.mendeley.com/datasets/7j9bv9vwsx/2
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Dataset Number of images Image size Spatial Resolution Geographic Range

Remote Sensing Images

SIRI-WHU 2,400 200x200 2 m China
UC Merced 2,100 256x256 0.3 m United States
MLRSNet 109,161 256x256 0.1 - 10 m Worldwide

SSL4EO-S12
(RGB) < 3,000,000 264x264 10 m Worldwide

Million-AID 1,000,848
110x110 -

31,672x31,672 0.5 - 153 m Worldwide

Potsdam 21,888 256x256 0.5 m
Urban

Germany
TOV-RS 500,000 600x600 1 - 20 m Worldwide

Natural Images

ImageNet 1,281,167 224x224 – –
TOV-NI 1,000,000 224x224 – –

LVD-142M 142,000,000 518x518 – –

Table 3.1: Characteristics of the datasets used for pretraining.

3.1.5 Million-AID

The Million-AID dataset (Long et al., 2021) consists of 1,000,848 images with 51
scene categories. It’s primary purpose was to serve as a scene classification dataset.
Million-AID was collected from Google Earth. It features images of a vast range of
resolutions and sizes, ranging from 0.5 to 153 m per pixel and 110 to 31,672 pixels per
image, respectively.

3.1.6 Potsdam

The Potsdam dataset 4 includes 38 tiles, each measuring 6000 × 6000 pixels with a
spatial resolution of 0.5 meters. The dataset is manually labeled into six categories: low
vegetation, tree, building, impervious surface, car, and clutter. The pretrained models on
Potsdam that we have used in this study utilize a slightly modified dataset. The 38 tiles
have been cropped into 256 × 256 pixel patches with a stride of 128 pixels, resulting in
a total of 21,888 images for pretraining.

3.1.7 TOV-NI and TOV-RS

Tao et al. (2023b) make available a natural image dataset, TOV-NI, and a remote sensing
dataset, TOV-RS. TOV-NI includes 1 million web-crawled images representing a wide
range of visual concepts. The images are selected to ensure high diversity, capturing
different categories, perspectives, and lighting conditions. TOV-RS consists of 0.5
million class-balanced samples, collected using automated sampling methods guided

4https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
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by geographic data products. This ensures that the images represent a wide range of
geographic regions and land cover types. TOV-RS has a spatial resolution between 1 to
20 metres per pixel, and each image has a size of 600 x 600.

3.1.8 ImageNet-1K

The ImageNet-1K dataset (Krizhevsky et al., 2012) is a benchmark dataset in computer
vision research, specifically in the image classification domain. The dataset contains
1,281,167 training images, distributed across 1,000 distinct classes. Each class repre-
sents a different object, animal, scene or concept. The images vary in size, resolution
and quality, but they are typically resized to 224x224 pixels for training and evaluation
purposes.

3.1.9 LVD-142M

Oquab et al. (2023) have created the LVD-142M dataset by selecting images from a
vast pool of uncurated and curated data. The curated datasets, include the training split
of ImageNet-1k, ImageNet-22k, Google Landmarks, and various fine-grained datasets.
For the uncurated data, images from a publicly available repository of crawled web
data have been collected, resulting in 1.2 billion unique images after filtering for safety
and removing restricted URLs. To enhance diversity, near-duplicate images from the
uncurated data have been removed, through a self-supervised image retrieval pipeline.
The remaining 142M images make up the LVD-142M dataset.

3.2 Self-Supervised Pretraining

In this section, we describe the different self-supervised algorithms that we have ex-
perimented with for pretraining, and provide implementation details for the pretrained
models that we have used.

3.2.1 SimCLR

SimCLR (Chen et al., 2020a), or Simple Framework for Contrastive Learning of
Visual Representations, is a model that learns through a contrastive learning signal
[2.2.3]. The core idea of SimCLR is to maximize the similarity between differently
augmented views of the same image while minimizing the similarity between views of
different images. This method consists of four main components: data augmentations, a
backbone encoder network (typically a ResNet-50), a projection head, and a contrastive
loss function.

For each given input image, random augmentations are applied generating two views.
The combination of random cropping and resizing, color distortions, and Gaussian
blur have been found to yield the best performance by the authors. Next, the encoder
extracts feature vectors from the augmented images. The output of the encoder then
goes through the projector, a multilayer perceptron (MLP) with one hidden layer, to
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map the representation vectors into a lower-dimensional space where the contrastive
loss is applied.

The loss function used here is called NT-Xent (normalized temperature-scaled cross
entropy loss). A minibatch of N examples is randomly selected. The contrastive pre-
diction task is defined using pairs of augmented examples derived from this minibatch,
resulting in 2N data points. Negative examples are not sampled explicitly; instead, for
each positive pair, the other 2(N−1) augmented examples within the minibatch are
considered as negative examples. Let sim(u,v) = u⊤v

∥u∥∥v∥ denote the cosine similarity of
u and v. Then the NT-Xent loss function for a positive pair of examples (i, j) is defined
as:

Li, j =− log
exp(sim(zi,z j)/τ)

∑
2N
k=1 I[k ̸=i] exp(sim(zi,zk)/τ)

, (3.1)

where I[k ̸=i] ∈ {0,1} is an indicator function that evaluates to 1 if k ̸= i, and τ denotes a
temperature parameter. The final loss is computed across all positive pairs, both (i, j)
and ( j, i), in a minibatch. Finally, to keep it simple, instead of using a memory bank,
SimCLR employs a large batch size to increase the number of negative examples per
positive pair.

All these components contribute to SimCLR’s ability to improve the quality of the
learned representations, and thus, experiments with SimCLR have achieved very good
results. Chen et al. (2020a) show that a linear classifier trained on the self-supervised
representations learned by SimCLR achieves 76.5% top-1 accuracy on ImageNet,
matching the performance of a supervised ResNet-50. Moreover, when finetuned with
only 1% of the labeled data, SimCLR achieves 85.8% top-5 accuracy, significantly
outperforming other self-supervised methods.

We use the SimCLR ResNet-50 model pretrained on ImageNet Chen et al. (2020a)
to study the ability of this pretraining paradigm to generalize to our downstream task of
population estimation using remote sensing images. The model was ran for a total of
100 epochs with a batch size of 4096. The temperature parameter of the loss function
was set to 0.1. A LARS optimizer (You et al., 2017) is employed with a learning rate
of 4.8 (0.3×BatchSize/256) and weight decay of 1×10−6. The linear warm-up takes
place for the first 10 epochs. A cosine decay scheduler is used then on the learning rate
(Loshchilov and Hutter, 2016).

In addition, Chopra et al. (2023) have made three SimCLR models (with a ResNet-50
backbone), each trained on a different remote sensing dataset (MLRSNet [3.1.3], UC
Merced [3.1.2] and SIRI-WHU [3.1.1]), publicly available. These models have been
used for pretraining in this work to evaluate how well SimCLR can learn and transfer
representations from remote sensing data. All three models follow the same training
setting. The augmentations used are Gaussian blur, flipping, greyscale, rotation, and
resizing. The training takes place over 100 epochs with a batch size of 256. A Stochastic
Gradient Descent (SGD) optimizer is employed with a momentum of 0.9. The learning
rate and weight decay are both set to 0.0005.
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3.2.2 MoCo-v2 – Momentum Contrast

The MoCo-v2 model (Chen et al., 2020b) is an improved version of the original
MoCo (Momentum Contrast) framework (He et al., 2020) for self-supervised visual
representation learning. The MoCo architecture is shown in Figure 3.2. It takes two
inputs, a query and a set of keys. A query is an image taken from the dataset, and a key
is an augmented version of the query. MoCo consists of an encoder and a momentum
encoder. Similarly to SimCLR, an encoder can be any convolutional neural network
architecture, but a ResNet50 (He et al., 2016) network is commonly used to extract
feature representations.

Due to the large size of the feature queue, it is impractical to update the key encoder
using backpropagation. Therefore, MoCo uses a momentum update and so the pa-
rameters of the momentum encoder are updated using a moving average of the query
encoder’s parameters. This approach helps to stabilize the learning process and maintain
consistency in the representations over time. The update equation is:

θk← mθk +(1−m)θq (3.2)

where θk are the parameters of the momentum encoder, θq are the parameters of the
query encoder, and m is the momentum coefficient (typically close to 1).

Another key component of MoCo is the feature queue. The feature queue is a large
dictionary that acts as a queue storing encoded key representations. The queue is
dynamic, meaning that it is constantly updated with new negative sample embeddings.
Thus, MoCo can make use of a large number of negative samples without a memory
bank or a large batch size, avoiding any high memory and computational costs.

Finally, the contrastive InfoNCE loss is used to train the encoder networks. Given an
encoded query q and a set of encoded samples {k0,k1,k2, . . .} which are the keys of
a dictionary, there is a single key (denoted as k+) in the dictionary that matches q. A
contrastive loss function is designed to yield a low value when q is similar to its positive
key k+ and dissimilar to all other keys (considered negative keys for q). With similarity
measured by dot product, InfoNCE loss is defined as follows:

Lq =− log
exp(q · k+/τ)

∑
K
i=0 exp(q · ki/τ)

(3.3)

where τ is a temperature hyper-parameter. The summation includes one positive and K
negative samples.

MoCo-v2 incorporates two main architectural improvements from MoCo-v1. Both
updates are inspired from the SimCLR model. Firstly, MoCo-v2 incorporates a MLP
projection head. This projection head consists of two fully connected layers with a
ReLU activation function in between. The hidden layer has 2048 dimensions, and the
output layer projects the features into a 128-dimensional space. Secondly, MoCo-v2
applies stronger data augmentation techniques than in the original MoCo, just like
SimCLR.
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Figure 3.2: The Momentum Contrast (MoCo) architecture. Taken from He et al. (2020).

After 200 epochs of training with a batch size of 256, MoCo-v2 achieves a top-1
accuracy of 67.5% on ImageNet linear classification. This performance is 5.6% higher
than SimCLR under the same conditions.

We use various MoCo-v2 pretrained models in this work. We present them below.

3.2.2.1 MoCo-v2 pretrained on ImageNet

He et al. (2020) released their MoCo-v2 (ResNet-50) model trained on ImageNet-1K.
The training utilized the data augmentations of random resized cropping, color jittering,
horizontal flipping, Gaussian blur, and grayscale conversion. The batch size was set
to 256, and the optimizer was SGD with a momentum of 0.9. The initial learning rate
was 0.03, following a cosine decay schedule without restarts, and the weight decay
was 0.0001. The momentum encoder update coefficient was 0.999, and the model was
trained for 800 epochs. A temperature parameter of 0.2 was used for the contrastive
loss, and the queue size for negative samples was 65,536.

3.2.2.2 MoCo-v2 pretrained on SSL4EO-S12

Wang et al. (2023) introduce a MoCo-v2 model that has been trained on a subset of the
SSL4EO-S12 dataset [3.1.4] . With a ResNet50 backbone, an SGD optimizer, a cosine
learning rate scheduler with a learning rate of 0.03 and a batch size of 256, Moco-v2
has been trained for 100 epochs.

3.2.2.3 MoCo-v2 pretrained on Potsdam

Muhtar et al. (2023) make available a MoCo-v2 model trained on Potsdam [3.1.6]. They
trained with a batch size of 64 for 400 epochs. All other training settings are identical
to 3.2.2.1.
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3.2.3 BYOL - Bootstrap Your Own Latent

Grill et al. (2020) introduced the model ’Bootstrap Your Own Latent’ (BYOL); a
self-supervised contrastive learning model which achieves state-of-the art performance
without the use of negative samples. BYOL follows a knowledge distillation framework:
given an augmented view of an image, an online network is trained to predict the target’s
network embedding of a different augmented view of the same image. A sequence
of representations of increasing quality are built by iterating this procedure and using
subsequent online networks as target networks as training continues.

The architecture between the online and target pipeline is asymmetric. The online
network consists of an encoder, a projector and a predictor, whereas the target network
consists of just an encoder and a projector. Similar to the concept of momentum
updates in MoCo [3.2.2], the parameters, ξ, of the teacher network in BYOL are an
exponential moving average of the online network’s parameters, θ. This serves as means
of stabilizing the bootstrap step to avoid collapsed (trivial) solutions.

Given an image x, BYOL produces two augmented views, v and v′. The same aug-
mentations as SimCLR [3.2.1] are used. The online network processes v to give a
representation yθ = fθ(v) and a projection zθ = gθ(y). The target network processes v′

to give y′
ξ
= fξ(v′) and z′

ξ
= gξ(y′). Both projectors are multi-layer perceptrons (MLPs)

that include a linear layer with an output size of 4096, followed by batch normalization,
rectified linear units (ReLU) (Nair and Hinton, 2010), and a final linear layer with
an output dimension of 256. Unlike SimCLR, the output of this MLP is not batch
normalized. The online network then outputs a prediction z′

ξ
using qθ(zθ). The predictor

qθ uses the same architecture as the projector gθ. Both qθ(zθ) and z′
ξ

are l2-normalized.
Finally, the mean squared error (MSE) loss is used between the normalized predictions
and target projections as follows:

Lθ,ξ = ∥qθ(zθ)− z′
ξ
∥2

2.

To symmetrize the loss, the authors also feed v′ to the online network and v to the target
network to compute L′

θ,ξ. During training, the combined loss, LBYOL, is minimized:

LBYOL = Lθ,ξ +L′
θ,ξ.

The BYOL method with a ResNet50 backbone network achieves better top-1 and top-5
accuracies under linear evaluation on ImageNet than both SimCLR and MoCo-v2.
Moreover, it seems that BYOL learns more generic representations than SimCLR since
BYOL performs better on other classification datasets, however, it still can’t beat the
supervised benchmark. Finally, BYOL has also been evaluated on other downstream
tasks such as semantic segmentation where BYOL performs better than SimCLR, MoCo
and a supervised pretrained model (Grill et al., 2020).

In this study, we evaluate the ability of BYOL to produce representations that could
help in our task of census-independent population estimation. Muhtar et al. (2023)
make available a BYOL model pretrained on Potsdam [3.1.6]. The particular model
was trained from scratch for 400 epochs with a batch size of 64. The LARS optimizer
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with a cosine learning rate scheduler was employed. The base learning rate was set to
0.2 and was scaled linearly with the batch size (LearningRate = 0.2 × BatchSize/256).
Additionally, a weight decay of 1.5×10−6 was applied, excluding batch normalization
parameters and biases from both LARS adaptation and weight decay. For the target
network, the exponential moving average parameter τ starts at τbase = 0.996 and is
gradually increased to 1 during training.

3.2.4 DINO

Caron et al. (2021) proposes a new algorithm called DINO, which largely took
inspiration from BYOL (Section 3.2.3). Similar to BYOL, the parameters of the teacher
network are updated with an exponential moving average of the parameters of the
student network, i.e. a momentum encoder (He et al., 2020). The approach is the same
as in Section 3.2.3 with some exceptions.

First, DINO does not make use of a predictor like BYOL does. Here, the architectures
of the online and teacher networks are identical. Many SSL algorithms differ in the
way they stabilize and avoid collapse. Popular options are through contrastive loss,
a predictor, batch normalizations or clustering constraints. Instead, DINO performs
centering and sharpening of the momentum teacher outputs.

Caron et al. (2021) show through experiments that while centering encourages collapse
to the uniform distribution, it also prevents a single dimension to dominate. Sharpening
has the opposite effect. When both are applied, their effects are balanced and collapse
is prevented when a momentum encoder is present. Sharpening is achieved by using
a low temperature value in the teacher softmax normalization, which we discuss later.
Centering, on the other hand, can be seen as an addition of a bias term c to the teacher
network, gt : gt(x)← gt(x)+ c. The update of the center c is as follows:

c← mc+(1−m)
1
B

B

∑
i=1

gθt (xi),

where m> 0 is a rate parameter and B is the batch size. DINO shows robustness to batch
size variations since EMA updates the center c in a way that incorporates information
over multiple batches.

Second, DINO uses a standard cross-entropy loss instead of a mean squared error to
measure the similarity of the softmax-normalized outputs of the two networks. Given
an input image x, both networks produce probability distributions over K dimensions,
denoted as Ps and Pt . The probability P is derived by normalizing the output of the
network g using a softmax function. Specifically,

Ps(x)(i) =
exp(gθs(x)

(i)/τs)

∑
K
k=1 exp(gθs(x)(k)/τs)

,

where τ > 0 is a temperature parameter that controls the sharpness of the output
distribution. A similar formula applies to Pt with temperature τt .

Finally, in addition to the data augmentations used by BYOL, DINO applies a multi-crop
strategy (Caron et al., 2020). DINO uses multi-crop augmentations for retrieving image
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representations of both local and global importance. From a given image, a set of V
different views is generated. Each set contains two global views, xg

1 and xg
2 and several

local views of lower resolution. All crops are then passed through the student network,
but only the global views are passed through the teacher. This is believed to encourage
”local-to-global” correspondences through minimizing an adapted cross-entropy loss
with stochastic gradient descent in the following way:

min
θs

∑
x∈{xg

1,x
g
2}

∑
x′∈V
x′ ̸=x

H(Pt(x),Ps(x′)),

where H(a,b) =−a logb, and Pt and Ps represent the output probability distributions
of the teacher and student network, respectively. The above loss function can be used
on any number of augmented views, even only two.

The DINO framework works effectively on both CNNs and vision transformers (ViTs)
without the need to modify the architecture. The neural network g consists of a backbone
f and a projection head h such that h : g = h◦ f . f can be either a ViT or a ResNet. The
features used for downstream tasks are the output of the backbone f . The projection
head is a 3-layer multi-layer perceptron (MLP) with a hidden dimension of 2048,
followed by l2 normalization and a weight-normalized fully connected layer with K
dimensions, similar to the design from SwAV (Caron et al., 2020). Notably, unlike
standard convolutional networks, ViT architectures do not use batch normalization (BN)
by default. Caron et al. (2021) make the DINO model with a ViT backbone entirely
BN-free by excluding BN in the projection heads.

Caron et al. (2021) evaluate the performance of DINO-ResNet50 and DINO-ViT using
linear and k-NN classification on ImageNet. They find that DINO-ViT-S performs sig-
nificantly better than DINO-ResNet50. However, DINO-ResNet50 still performs better
than other popular CNN-based SSL methods like SimCLR, MoCo-v2, Barlow-Twins,
and BYOL. DINO-ViT-B/8 and DINO-ViT-S/8 achieve the best overall top-1 accuracy
across architectures on linear classification with 80.1% and on k-NN classification
with 78.3%, respectively. Moreover, they observe that ViT self-supervised pretrain-
ing transfers better than features trained on supervision. Finetuned DINO-ViT-B/16
models surpass the performance of supervised pretraining features in all 7 downstream
classification datasets except one.

We evaluate the ability of the self-supervised DINO-ResNet50 and DINO-ViT-
B/16 models pretrained on ImageNet to transfer useful visual representations for the
task of population estimation. Both models follow the same training hyperparameters.
Training takes place over 100 epochs with a batch size of 1024. An AdamW optimizer
is employed, with the learning rate linearly increasing with the batch size during the
first 10 epochs (LearningRate = 0.0005 × BatchSize/256). After this warm-up period,
the learning rate decays according to a cosine schedule. The weight decay also follows
a cosine schedule, starting from 0.04 and increasing to 0.4. The temperature τs is set to
0.1, and τt is linearly ramped up from 0.04 to 0.07 during the first 30 epochs. Finally,
in addition to multi-crop, the data augmentations used in BYOL are applied: color
jittering, Gaussian blur and solarization.
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Figure 3.3: The pipeline of MoBy; a combination of popular SSL algorithms MoCo-v2
and BYOL. Taken from Xie et al. (2021).

3.2.5 MoBy

Xie et al. (2021) introduce MoBy, an approach to incorporate self-supervised
learning with Swin transformer backbones. MoBy combines components of MoCo-
v2 [3.2.2] and BYOL [3.2.3]. From Moco-v2 it inherits its momentum encoder, its
key queue, and the contrastive loss. From BYOL, it inherits its asymmetric encoders,
asymmetric data augmentations and its momentum scheduler.

The MoBy pipeline is illustrated in Figure 3.3. Both the online and target encoders
consist of a Swin backbone and a 2-layer MLP projection head. The online encoder
consists of an additional 2-layer MLP predictor. As also discussed in BYOL, the target
encoder is updated through an exponential moving average of the online encoder’s
weights at each iteration. The online encoder is updated using a contrastive loss. More
precisely, for an online view q, its contrastive loss is computed as

Lq =− log
exp(q · k+/τ)

∑
K
i=0 exp(q · ki/τ)

,

where k+ represents the target feature from the alternate view of the same image; ki
denotes a target feature within the key queue; τ is the temperature parameter; and K
indicates the size of the key queue, which defaults to 4096.

A linear classifier on ImageNet-1K applied on MoBy with a Swin-T backbone achieves
a 75.0% top-1 accuracy whereas DINO with a ViT-S backbone (trained on the same num-
ber of epochs) achieves a slightly better result of 75.9%. Swin-T and ViT-S have similar
complexity. Neither of these two SSL frameworks surpass the supervised performance
on ViT or Swin-T which accounts to 79.8% and 81.3%, respectively. Furthermore,
the ability of MoBy to be transferred to object detection and semantic segmentation
tasks was also analyzed. The results show that supervised Swin-T transformers perform
slightly better than MoBy on both tasks Xie et al. (2021).

To determine how well a self-supervised Swin-T transformer performs on the
downstream task of population estimation, we use the pretrained MoBy (Swin-T)
model made available by Xie et al. (2021). The particular model has been trained for
300 epochs on ImageNet-1K, with the initial 5 epochs serving as a linear warm-up
stage. A batch size of 512 is adopted. Moreover, the AdamW optimizer is employed
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with a learning rate of 0.001 and a fixed weight decay of 0.05. An asymmetric drop
path regularization has also been proven effective by the authors and thus adopted in
pretraining; it is set to 0.1 for the online network and 0.0 for the target network. The
starting value for the momentum term is 0.99 and it is gradually increased to 1 during
training. Finally, as mentioned above, the size of the key queue is 4096.

3.2.6 MAE - Masked Autoencoder

The Masked Autoencoder (MAE) (He et al., 2022) is a generative SSL approach
that works with a ViT backbone. MAE learns visual representations through masking
random patches from the input image and then reconstructing the missing patches at
pixel-level. First, the image is divided into non-overlapping patches and a subset of
these patches is randomly sampled without replacement to be masked. The architecture
consists of an asymmetric encoder-decoder design. The encoder is a ViT that is only
applied on the visible, unmasked subset of patches. The decoder is another lightweight
transformer which takes as input both the encoded visible patches and the mask tokens.
Each mask token is a learned vector that signifies the presence of a masked patch that
needs to be predicted. Positional embeddings are added to all patches, so that mask
tokens will have information regarding their location in the image.

The reconstruction target is set to be the normalized pixel values of each masked patch.
The output of the decoder is an array of pixel values representing a patch. A mean
squared error (MSE) loss is then computed between the masked patches of the original
(ground truth) and reconstructed images in the pixel-space.

MAE has been shown to perform well when a high percentage of the patches is masked,
i.e. under a high masking ratio (∼75%). Due to the fact that the encoder only processes
the unmasked patches which makes up a small portion of the image, and that the
decoder is lightweight, the pretraining time and memory consumption are largely
reduced. This makes MAE easy to scale to larger models that generalize well. He et al.
(2022) find that a ViT-Huge model pretrained and finetuned with MAE on ImageNet-1K
outperforms all previous results by achieving an accuracy of 87.8%. The representation
learning capabilities of MAE have also been studied through a series of transfer learning
experiments. MAE pretraining with a ViT-B backbone shows to outperform supervised
pretraining on both object detection and semantic segmentation downstream tasks.

We evaluate the performance of a number of different pretrained MAE models on
our downstream task of population estimation. Next, we describe the implementation
details of these models.

3.2.6.1 MAE (ViT-B/16) pretrained on ImageNet

We obtain a MAE model with a ViT-B/16 backbone pretrained on ImageNet by (He
et al., 2022). The pre-training setting uses the AdamW optimizer with a base learning
rate of 0.00015 and a weight decay of 0.05. The optimizer’s momentum parameters are
set to β1 = 0.9 and β2 = 0.95. This model has been trained for 800 epochs with a batch
size of 4096. The first 40 epochs are used as warm-up where the learning rate scaler
is defined LearningRate = 0.00015 × BatchSize/256. Then, the learning rate schedule
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follows a cosine decay pattern. For data augmentation, RandomResizedCrop and a
mask ratio of 0.75 is applied.

3.2.6.2 MAE (ViT-B/16) pretrained on Potsdam

Muhtar et al. (2023) make available a MAE (ViT-B/16) model trained on Potsdam
[3.1.6]. They trained with a batch size of 64 for 400 epochs. All other training settings
are identical to 3.2.6.1.

3.2.6.3 MAE (ViT-B/16) pretrained on MillionAID

The authors of Wang et al. (2022b) released a ViT-B/16 MAE pretrained network on the
RS dataset MillionAID [3.1.5]. Due to the significant distribution differences between
natural images and remote sensing images (RSIs), the authors explore the optimal
mask ratio in MAE for RSIs. The result was the same as above; they observed that
a mask ratio of 0.75 performs best on RSIs too. Finally, the network was trained for
1600 epochs with all other hyperparameters set to the MAE default detailed in Section
3.2.6.1.

3.2.7 DINO-v2

The research from (Oquab et al., 2023) focuses on building a foundation model for
computer vision which would learn general-purpose features. If such a model could
be pretrained on a large curated dataset then it would benefit numerous downstream
tasks. The authors introduce a discriminative ViT self-supervised model, DINO-v2, and
a large-scale curated dataset, LVD-142M (Section 3.1.9). Their goal was to create a
model that learns features both at the image-level and patch-level which could stabilize
well when scaling in both model and data sizes.

DINO-v2 is a combination of DINO (Section 3.2.4) for image-level representations,
and iBOT (Zhou et al., 2021) for patch-level representations and some new components
described below. Details for the DINO framework can be found on the dedicated section
above. Here, we define the DINO loss term as follows:

LDINO =−∑Pt logPs,

where Pt and Ps are the output probability distributions of the teacher and student
networks, respectively. For the patch-level objective, a random mask is applied to input
patches given to the student network, but not the teacher network. The student iBOT
head is then applied to the student mask tokens, and similarly the teacher iBOT head is
applied to the visible teacher patch tokens that correspond to the ones that are masked in
the student network. A softmax normalization and centering are then applied, obtaining
the iBOT loss term:

LiBOT =−∑
i

Pti logPsi,

where i are the patch indices of masked tokens. Similar to DINO, the exponential
moving average of past iterations is used to learn the parameters of the student network
and build the teacher head.
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A separate learnable MLP projection head is applied to each of the DINO and iBOT
output tokens and the loss is calculated atop. The authors call this feature of the model
‘untying heads’. Moreover, the teacher softmax-centering step of DINO and iBOT is
replaced by the Sinkhorn-Knopp (SK) batch normalization (Caron et al., 2020). To
spread features uniformly within a batch, the KoLeo regulaizer (Sablayrolles et al.,
2018) is adopted. Given a set of n vectors,

Lkoleo =−
1
n

n

∑
i=1

log(dn,i),

where dn,i = min j ̸=i ∥xi− x j∥ is the minimum distance between xi and any other point
within the batch.

Another key detail of DINO-v2 is that the resolution of the images is increased to
518x518 from 224x224 for a short period at the end of the pretraining process. Increas-
ing the image resolution is crucial for pixel-level downstream tasks like segmentation
or detection, as small objects can vanish at lower resolutions. However, training with
high-resolution images is both time-consuming and memory-intensive.

Finally, for small architectures, the authors distill larger models instead of training them
from scratch in a similar process to the teacher-student knowledge distillation method
described above. However, some modifications were made: a larger, frozen model is
utilized as the teacher, an exponential moving average (EMA) of the student model
is maintained and used as the final model, masking is removed, and the iBOT loss is
applied on the two global crops. Their ablation studies have shown that this approach
outperforms training from scratch, even when using a ViT-L model.

Oquab et al. (2023) evaluate the performance of DINO-v2 (pretrained on LVD-142M
[3.1.9]) on several image understanding tasks. The results show that the pretrained
DINO-v2 model with a ViT-G/14 outperforms the SSL methods of MAE, DINO and
iBOT on both linear evaluation on ImageNet-1K and downstream tasks, such as image
classification, instance-level recognition, semantic segmentation and depth estimation.
The comparison was made across architectures and pretraining data. More specifi-
cally, DINO-v2 (ViT-G/14) achieved the new state-of-the-art performance on linear
evaluation on ImageNet-1K, surpassing iBOT (ViT-L/16 reained on ImageNet-22K) by
4.2%. A DINO-v2 model with a smaller architecture of ViT-B/14 also achieves better
performance than the old state-of-the-art by 2.2%.

We use the DINO-v2 ViT-B/14 (Oquab et al., 2023) model trained (using knowledge
distillation from a more complex model) on LVD-142M as a pretraining model in our
study. The model is trained for 625,000 iterations using the AdamW optimizer, with
an initial LayerScale value of 1×10−5. The weight decay follows a cosine schedule
ranging from 0.04 to 0.2, and the learning rate is warmed up over the first 100,000
iterations. The teacher momentum also follows a cosine schedule, starting from 0.994
and increasing to 1. For high-resolution adaptation, the model is initialized with
pretrained weights and trained for 10,000 iterations, using the same procedure and
schedules as the original pretraining, but compressed to fit the shorter duration and with
a reduced base learning rate.
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3.2.8 The Original Vision (TOV) model

The Original Vision (TOV) model for remote sensing image understanding (RSIU)
developed by Tao et al. (2023b) is a self-supervised vision model that uses both natural
and remote sensing images (RSIs) for training. The authors of TOV argue that vision
models for RSIU would learn better if they were taught in a ‘human-like’ way, i.e., to
first learn general knowledge from natural images and then acquire the domain-relevant
specialized knowledge through remote sensing images. This method is specialized to
RS tasks but the authors choose not to train on RS images from scratch, as they suspect
that adding the level of general knowledge learning would help the model to generalize
better since natural images have higher resolution and richer texture details than RSIs.

Thus, TOV training consists of two stages: (1) the general knowledge stage and (2) the
specialized domain-specific stage. Contrastive SSL is performed on Stage 1 and the
parameters learned are used to initialize a contrastive model in Stage 2. To avoid the
problem of catastrophic forgetting (Goodfellow et al., 2013), TOV applies a memory
retention strategy which involves fixing the weights of the shallow and middle layers of
the network learned in Stage 1. These layers typically capture low-level visual features
such as edges, textures, and basic shapes, and by fixing these weights, the network
retains the knowledge of these low-level features (Yosinski et al., 2014). The objective
function for this optimization is represented as:

min
{w|w/∈Wb&w∈W ′b}

L

where Wb represents the weights of the fixed layers, W ′b represents the weights being
optimized and L is the SSL contrastive loss function (Tao et al., 2023b).

The data acquisition method for the TOV model was designed to gather a large-scale,
diverse dataset that includes both natural images and remote sensing images. These
datasets have been given the names TOV-NI and TOV-RS, respectively. Details regard-
ing the nature of these datasets have been provided in Section 3.1.7.

Tao et al. (2023b) provide performance results for TOV against supervised ImageNet
pretraining and other popular self-supervised learning methods such as SimCLR (Chen
et al., 2020a), MoCo-v2 (Chen et al., 2020b), SSL4EO (Wang et al., 2023) and SeCo
(Manas et al., 2021). TOV was pretrained first on TOV-NI and then TOV-RS, following
the ‘human-like pretraining’ as mentioned above. The SimCLR and MoCo models
were only pretrained on TOV-RS. Finally, SeCo and SSL4EO were pretrained on their
respective datasets. A ResNet50 backbone and the same training hyperparameters
have been used for all models. The authors evaluate the generalization capabilities of
these models on three remote sensing image understanding tasks: scene classification,
semantic segmentation and object detection on several specialized datasets for each
task. The TOV method consistently outperforms ImageNet supervised pretraining and
the SSL models in the majority of the 12 benchmark RS datasets used for evaluation
across the three downstream tasks.

Tao et al. (2023b) provide a publicly available trained TOV model with a ResNet50
backbone which is used in this work as the pretrained model. The training was conducted
using the Adam optimizer with a batch size of 1024. The learning rate was initially
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Figure 3.4: Pretraining process of Generic Knowledge Boosted Remote Sensing Pre-
training (GeRSP). Taken from Huang et al. (2024).

set at 0.75 and gradually decreased following a cosine schedule over the course of 800
epochs.

3.2.9 GeRSP – Generic Knowledge Boosted Remote Sensing Pre-
training

GeRSP (Huang et al., 2024), or Generic Knowledge Boosted Remote Sensing
Pretraining, is similar to TOV, since it also makes use of both remote sensing images
and natural images. A core difference between the two however is that GeRSP uses
supervised learning when training on natural images and self-supervised learning when
training on remote sensing images, whereas TOV uses solely SSL.

More precisely, GeRSP is made up of two learning processes: natural image auxiliary
learning (NIAL) on labeled natural images and remote sensing contrastive learning
(RSCL) on unlabeled remote sensing (RS) images. Inspired from the success of SimCLR
[3.2.1], the GeRSP framework adopts a strong augmentation strategy for both RSCL
and NIAL to achieve feature invariance.

As shown in Figure 3.4, GeRSP makes use of a teacher-student network. RSCL trains
both the teacher and student network at the same time, while NIAL only trains the
student network. During training, the teacher network is updated with an exponential
moving average of the student network parameters, whereas the student network learns
from the contrastive loss calculated between the augmented views of the same image
(positive pairs) and different images (negative pairs). The student network, after being
trained on both remote sensing and natural images, serves as the pretrained model for
downstream tasks. In each iteration of GeRSP, an equal number of natural and remote
sensing images are used from their respective datasets.

The backbone network used by GeRSP is ResNet50. The extracted features are ag-
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gregated using global average pooling (GAP). The RSCL pipeline then employs a
non-linear projector, whereas the NIAL pipeline employs a predictor. The projector
consists of two fully-connected layers with ReLU activation, with a hidden dimension
of 2048 and an output dimension of 128. On the other hand, the predictor is a single
fully-connected layer that maps features to logits for classification. This distinction
between the projector and predictor helps in addressing the potential conflicts between
self-supervised and supervised learning tasks within the same framework. By using
a dedicated predictor for supervised learning, GeRSP can maintain the task-specific
characteristics needed for accurate classification while still utilizing the generalized
features learned through contrastive learning.

The cross-entropy loss is used to optimize NIAL, whereas, RSCL utilizes the InfoNCE
loss as the contrastive loss function. Inspired from MoCo (He et al., 2020) (see Section
3.2.2), GeRSP’s teacher network uses momentum update on the network parameters to
ensure a stable learning process. Let Wt and Ws represent the parameters of the teacher
and student networks respectively. The update rule for Wt is:

Wt ← mWt +(1−m)Ws

where the momentum coefficient m is set to 0.996. The dynamic queue is implemented
as a First-In-First-Out (FIFO) queue and stores features generated by the teacher
network. After each optimization iteration, both the parameters of the dynamic queue
and the teacher network are updated.

The authors of GeRSP have evaluated its performance against ImageNet supervised
pretraining, and other self-supervised pretrained models, such as TOV [3.2.8], MoCo-v2
[3.2.2] and MoCo pretrained on ImageNet, MillionAID or ImageNet + MillionAID (sim-
ilar to GeRSP’s training procedure). GeRSP performs better than all the forementioned
models on the downstream tasks of scene classification and semantic segmentation.
Finally, it seems that GeRSP generalizes better than pure contrastive methods and TOV
as it shows transferability across various datasets and tasks.

Huang et al. (2024) have made publicly available a GeRSP model trained on the
unlabeled RS image dataset Million-AID (Long et al., 2021) [3.1.5] and the labeled
natural image dataset ImageNet [3.1.8]. This model was trained with the stochastic
gradient descent (SGD) optimizer for 200 epochs. The initial values of the learning rate
was 0.05, 0.90 for weight decay, and 0.00005 for momentum. A cosine annealing sched-
uler was used to optimize the learning rate. This model has been used for pretraining in
this work.

3.2.10 CMID - Contrastive Mask Image Distillation

Muhtar et al. (2023) have created a knowledge distillation model which combines
contrastive learning with masked image modelling (MIM, a generative approach similar
to MAE [3.2.6]) called CMID. This framework is similar to that of DINO-v2 [3.2.7],
but CMID was designed specifically for remote sensing image understanding. They
argue that neither solely contrastive nor solely MIM approaches are capable to transfer
well to remote sensing understanding tasks since contrastive SSL methods are limited to
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learning inter-image, or global, representations, whereas MIM approaches are limited
to learning intra-image, or local, representations.

CMID consists of three branches: the MIM branch, the global branch, and the local
branch. The MIM branch employs the MIM method to learn local spatial context.
The global branch uses contrastive learning, specifically the MoCo framework [3.2.2],
to learn global semantic information. The local branch, on the other hand, focuses
on recovering object-level information lost in the MIM branch through knowledge
distillation. As seen in Figure 3.5, through this teacher-student architecture, the entire
network interacts and stabilizes between the different learning signals of each branch.

Given an image x, CMID first creates two versions of x: a masked image and an
augmented image, using either a mask augmentation or random data augmentations.
These are then input into the student and teacher networks, respectively. Both networks
share the same architecture (either CNN or ViT). The student’s parameters are updated
to be an exponential moving average of the teacher’s parameters. The student maps the
masked image to a latent embedding, while the teacher encodes the augmented image
to preserve the semantics of image x and guide the student with contrastive learning.

3.2.10.1 Masked Image Modeling Branch

The MIM branch follows an adaptation of the SimMIM (Xie et al., 2022) framework.
The main differences between SimMIM and MAE are: (i) SimMIM includes the masked
patches in the encoder too, and (ii) SimMIM uses a ‘one-layer prediction head’ as a
decoder, unlike MAE which uses a transformer. Even though SimMIM is much simpler
than MAE, it still shows competitive performance on many downstream tasks.

Remote sensing (RS) images are known for having multiple objects that are usually
densely distributed. Losing these objects through the masking operation might lead
to incomplete semantic meaning, substantially increasing the semantic discrepancy
between masked and augmented images and making this a very challenging image
reconstruction task. Therefore the authors have decided that instead of zero-initialized
mask tokens, they are to use the mean spectral value to fill the learnable mask tokens
with. The resulting image, xmask is expressed as follows:

xmask = xP
m +MASK⊙M

where xP
m represents the set of image patches once the masked patches are initialized with

the mean spectral value. This serves as input to the SimMIM encoder which generates
a latent representation of the masked image. Then, the one-layer MLP decoder uses this
embedding to produce a predicted reconstruction image x′.

The model parameters are then updated through an l1 loss Lspat applied to the masked
pixels

Lspat =
1

Ω(xm)
∥xm− x′m∥1,

where xm and x′m represent the sets of the original and reconstructed pixel values of the
masked patches, respectively, and Ω(·) denotes the number of elements in a set. Finally,
to enforce consistency among the original and the reconstructed image, the authors



Chapter 3. Methodology and Data 29

Figure 3.5: The pipeline of CMID. Taken from Muhtar et al. (2023).

decide to incorporate the focal frequency loss (FFL) (Jiang et al., 2021) Lfreq in the
frequency domain. FFL has shown to be effective in learning high-level semantics. The
focal frequency loss is defined as follows:

Lfreq =
1
N

N

∑
c=1

FFL(xc,x′c),

where N denotes the number of input channels for image x, and c refers to the specific
channel of the image.

3.2.10.2 Global Branch

While the MIM branch focuses on capturing fine-grained visual representations of the
images, the global branch aims to recover the global semantic content of the masked
image by aligning the student and teacher representations using a visual dictionary queue.
The global branch adopts the MoCo contrastive learning method, where the outputs of
the student and the teacher networks serve as the query and the key respectively. The
query and the key both go through a round of global average pooling (GAP) and a global
projection which embeds them into a global representation space. Then the infoNCE
loss [3.3] is applied to create better representations by discriminating them against other
images. The queue is made up of the teacher’s projected global representations and is
updated at each iteration.

3.2.10.3 Local Branch

The local branch’s aim is to further combat semantic incompleteness by aligning
together the local semantics of the student and teacher. N position-matched pairs are
selected from the feature vectors of the student’s and teacher’s output feature maps
using their absolute positions in the original input image x, represented as {(xi, x̂i)}N

i=1.
The matched pairs are then projected onto a different feature space and mapped to a
set of learnable prototypes to determine pi and qi; the similarity distributions between
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xi and x̂i with respect to the prototypes. Cross-entropy loss is applied to minimize the
difference between pi and qi:

Llocal =
1
N

N

∑
i=1
−pi logqi

Therefore, the total loss of CMID is defined as

L = λ1(Lspat +Lfreq)+λ2LNCE +λ3Llocal

where λ1, λ2, and λ3 serve as weights to balance the three branches.

The authors have evaluated how well CMID pretraining on Potsdam [3.1.6] performs
in several downstream tasks. CMID, with either a CNN or transformer backbone,
performs better than other self-supervised pretrained models, such as BYOL [3.2.3],
Barlow Twins (Zbontar et al., 2021), MoCo-v2 [3.2.2], MAE [3.2.6] and SimMIM
(Xie et al., 2022), in both semantic segmentation (evaluated on Potsdam) and object
detection tasks (evaluated on DOTA (Xia et al., 2018)). Moreover, CMID outperforms
supervised ImageNet pretraining and state-of-the-art self-supervised models in scene
classification tasks. This highlights the ability of CMID to scale and generalize better
in the remote sensing domain.

We obtain four self-supervised pretrained CMID models from Muhtar et al. (2023)
pretrained on Potsdam [3.1.6] and MillionAID [3.1.5] separately. A ResNet-50 or
Swin-B architectures are used as the encoder for the student and teacher networks.

3.2.10.4 CMID models pretrained on Potsdam

Both the CMID-ResNet50 and CMID-Swin-B models are trained on the Potsdam
dataset from scratch for 400 epochs. A batch size of 64 and an Adan optimizer with a
learning rate and a weight decay set to 0.003125 and 0.02, respectively, was employed.

3.2.10.5 CMID models pretrained on MillionAID

A CMID-ResNet50 and a CMID-Swin-B model were trained on MillionAID for 200
epochs, with a batch size of 512 for ResNet50 and 256 for Swin-B. An Adan optimizer
was used, with a learning rate of 0.0088 and 0.002 for ResNet50 and Swin-B, respec-
tively. The weight decay was set to 0.02. Moreover, a cosine learning rate scheduler
was employed, and the first 15 epochs are used as a warm-up phase.

3.3 Population Estimation with SCIPE

In this section, we introduce the datasets used for the downstream task of population
estimation, discuss the process we follow in estimating population, and propose the
methods used to evaluate the performance of the models.
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3.3.1 Microcensus Survey Data and Satellite Imagery

Microcensus We utilize a UNICEF-funded microcensus from 2019 among two districts
in Mozambique: Magude (MGD) and Boane (BOA). The survey was conducted at a
household-level, meaning that the population of each individual building was surveyed.
The geo-location of each household is also made available. The household survey data
was aggregated into a 100-meter grid, creating 474 labeled grid tiles for population
counts.

Satellite Imagery In addition to the microcensus data, we make use of very-high-
resolution (0.5 m) satellite imagery covering 7773 km2 across the two districts (BOA
and MGD). This data is part of the Vivid 2.0 data product and was acquired from Maxar.
The satellite images in Vivid 2.0 only consist of the three RGB bands (red, green, and
blue). This product’s images are updated annually but images that have high cloud
coverage are getting replaced by an older corresponding image that has a lower cloud
coverage. Therefore, images can be from a set of different time periods. Our data is a
mosaic of images mostly from 2018 and 2019.

Due to the temporal misalignment between the imagery and microcensus many tiles con-
tained either unsurveyed buildings or buildings absent in the imagery. Such mismatched
tiles are considered ’outliers’. Thus, Neal et al. (2022) have manually examined each
grid tile, comparing the GPS locations of surveyed buildings with those visible in the
imagery. Once outlier tiles have been excluded, the tiles to which we have ground truth
labels sum up to 199.

Another issue with our labeled data is that we don’t explicitly have tiles with zero
population. This is because, naturally, the microcensus was only conducted in populated
areas. If we are not to include uninhabited tiles into our dataset, we would expect that
our model will systematically overestimate as it would fail to predict zero population.
To address this, Neal et al. (2022) have manually identified 75 random tiles (25 from
MGD, 50 from BOA) with zero population based on the HSRL population map. The
SCIPE model makes use of these zero-population tiles during training. However, we
have observed that self-supervised models perform better without the use of these tiles.
We report the performance of our models with and without training on zero-population
tiles in Section A and Section 4, respectively.

3.3.2 Self-supervised SCIPE

We used pretrained CNN and transformer architectures, described in Section 3.2, trained
on either remote sensing datasets, natural image datasets, or both.

We first log-transform our targets and resize our tiles accordingly. Then we feed the
representations extracted from each pretrained model to a separate Random Forest
regressor to train our prediction model. The model’s hyperparameters were selected
through a grid search, exploring the following ranges: the number of estimators {100,
200, ..., 500}, the minimum number of samples required to split an internal node {2, 5},
and the minimum number of samples required to be at a leaf node {1, 2}.
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3.3.2.1 Finetuning

We finetune the pretrained models using our microcensus grid tiles by attaching a
linear regression head and minimizing the L2 loss between the observed and predicted
population. We should note here that only the pretrained models are trained in a self-
supervised fashion; finetuning is supervised. The 199 labeled grid tiles were randomly
split into training and validation sets (80-20%). Due to the limited number of tiles in
the dataset, we applied random dihedral transformations (i.e., reflections and rotations)
to augment the training set, avoiding any transformations that could compromise the
validity of the population count, such as cropping that might remove buildings. We
used the Adam optimizer (with default settings) to minimize the loss function with a
batch size of 32.

During training, we first froze the network and trained only the regression head for 25
epochs with a learning rate of 2×10−3. Next, we trained the entire network using a
discriminative learning rate approach, where the learning rate was higher at the top of
the network and reduced in the earlier layers. This method avoided large changes to the
earlier layers, which typically extract more general features, and focused training on
the domain-specific later layers. The base learning rate at the top of the network was
1×10−3, decreasing to a minimum of 1×10−5 in the earlier stages. Early stopping
was used to halt training when the validation loss had no improvement for 2 or more
epochs to avoid overfitting.

3.3.3 Evaluation and Cross-validation

We evaluate the different methods using several metrics. In the following metrics, let yi
represent the actual value of the i-th observation, ŷi represent the predicted value of the
i-th observation, and ȳ represent the mean of the actual values.

R2 Score

The R2 score measures the proportion of variance in the training set that is captured by
the model’s predictions. It serves as a ”goodness of fit” indicator, with higher values
indicating better performance.

R2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳi)2

Median Absolute Percentage Error (MeAPE)

MeAPE calculates the percentage difference between each predicted and actual value,
then returns the median of these values. This metric is robust against outliers, and lower
values indicate better performance.

MeAPE = median
(

100× |yi− ŷi|
yi

)
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Adjusted Median Absolute Percentage Error (AdjMAPE)

AdjMAPE is a modified version of MeAPE that adjusts the calculation (using k; a small
constant) to handle cases where the actual values are zero or near zero, preventing
infinite or undefined percentage errors. This adjustment ensures meaningful and finite
errors.

AdjMAPE = median
(
|yi− ŷi|
yi + k

)
Median Absolute Error (MeAE)

MeAE represents the median absolute difference between all predicted and actual values.
Like MeAPE, it is robust against outliers, with lower values indicating better accuracy.

MeAE = median(|yi− ŷi|)

Aggregate Percentage Error (AggPE)

Similar to MeAPE, AggPE calculates the percentage error of the model at the aggregate
level, rather than on a per-instance basis. Lower values are preferred.

AggPE =
|∑i yi−∑i ŷi|

∑i yi

With the exception of AdjMAPE, all the above metrics have been used by Neal et al.
(2022) to evaluate the performance of SCIPE. Therefore, we choose to use the same
ones so that we can directly compare our, self-supervised SCIPE, performance to the
original SCIPE. We chose to include the AdjMAPE metric too since it provides a
measure that is particularly useful when the dataset includes zero or near-zero actual
values.

Cross-validation

In addition, we use cross-validation to evaluate our different population estimation
methods. For each region, we divided the data into four spatial subsets and created
validation folds by combining these subsets across the two regions. We reported the
evaluation metrics based on pooled predictions from the four validation folds, covering
the entire microcensus. To avoid data leakage, we trained a separate network for each
fold, resulting in four distinct networks.
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Experiments and Results

In this chapter, we compare the performance of several self-supervised learning methods
using cross-validation. Extensive experimentation was conducted to investigate the in-
fluence of different pretraining paradigms on census-independent population estimation.
We explore the effect of various factors, including different learning signals, such as su-
pervised versus self-supervised methods and contrastive versus masked image modeling
(generative) approaches. Additionally, we examine dataset characteristics, focusing on
the domain of images (natural images versus remote sensing images), sample size, and
spatial resolution. Lastly, we consider backbone network characteristics, comparing
architectures like ResNet-50, Swin, and ViT, as well as network capacity.

We take the SCIPE (Neal et al., 2022) model to be our baseline. SCIPE is a finetuned
Barlow-Twins model pretrained in a supervised manner on ImageNet, with a ResNet-50
backbone. We use publicly available pretrained models for all our experiments, to
which implementation details and citations are found in Section 3.2. Pretraining our
own models would need resources and time that were out of budget for this project.
Thus, there are some inconsistencies in our experiment design: (1) we do not assess a
supervised ViT model pretrained on remote sensing images (RSI), (2) we only evaluate
supervised RSI pretraining on one dataset - Million-AID - and, (3) we evaluate a
‘base’ Swin transformer (Swin-B) for SSL RSI performance instead of a ‘tiny’ Swin
transformer (Swin-T) like in other categories.

Tables 4.1, 4.2, and 4.3 show the cross-validation results for population estimation
using Random Forest regression on representations extracted by the pretrained models
with non-outlier and non-zero-population tiles only [3.3.1]. Tables A.1, A.2, and A.3
show the cross-validation results on representations extracted by the pretrained models
with non-outlier and zero-population tiles. The results that include zero-population
tiles show an overall poorer performance, especially on the aggregate percentage error
(AggPE), thus any further discussion on performance refers to the results on non-outlier
and non-zero population tiles.

The first observation we make is that while finetuning pretrained models with micro-
census improves the performance for most models, all finetuned models with a Swin
backbone show decreased performance. Moreover, all the finetuned ResNet-50 mod-

34
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Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Supervised (NI)
SCIPE
(BarlowTwins FT) ImageNet ResNet-50 24M 0.39 44.9% – 3.91 01.1%

Swin-T ImageNet – 28M 0.14 54.3% 0.25 4.38 14.5%
Swin-T FT ImageNet – 28M 0.26 45.6% 0.22 3.69 15.4%
ViT-B/16 ImageNet – 86M 0.15 53.4% 0.25 4.49 16.7%
ViT-B/16 FT ImageNet – 86M 0.44 42.2% 0.19 3.34 00.7%
Supervised (RSI)
ResNet-50 Million-AID – 24M 0.04 56.3% 0.25 4.25 15.2%
ResNet-50 FT Million-AID – 24M -0.13 55.1% 0.24 4.43 03.4%
Swin-T Million-AID – 28M 0.01 58.5% 0.29 4.75 16.2%
Swin-T FT Million-AID – 28M -0.04 60.7% 0.29 4.90 16.3%

Table 4.1: Performance of the supervised pretrained models on natural images (NI) or
remote sensing images (RSI). FT stands for finetuned model. The best results of each
category are shown in bold. The best results overall are shown underlined. Results that
outperform the baseline, SCIPE, are shown in italics.

els pretrained with SSL on natural images (Table 4.2) and the MoCo-v2 (FT) model
pretrained on Potsdam, performed poorer in all evaluation metrics except AggPE.

Furthermore, we observe that a supervised ViT-B/16 model pretrained on ImageNet
outperforms SCIPE in all evaluation metrics, while performing the best MeAPE overall
(Table 4.1). Self-supervised (SS) pretraining on remote sensing images also improves
SCIPE’s performance and achieves the best results overall in all evaluation metrics
except MeAPE. The three SS SimCLR models pretrained on RSIs provide the best
per-tile population estimation, outperforming SCIPE in all evaluation metrics except
aggregate percentage error (AggPE). SimCLR UC Merced and SimCLR SIRI-WHU
have the largest R2 metric overall (R2 = 0.53), whereas SimCLR MLRSNet performs
the best on the AdjMAPE and MeAE evaluation metrics (AdjMAPE = 0.17, MeAE =
3.16). Conversely, with consecutive self-supervised pretraining on NI and RSI, TOV
shows the best AggPE overall, 0.5% lower than SCIPE.

4.1 Effect of Learning Signal

Our experiment results agree with Tao et al. (2023a), showing that contrstive learning
methods learn better representations than masked image modeling approaches. We
notice from tables 4.2 and 4.3 that the MIM approach, MAE, performs much poorer
than contrastive approaches, except in the case where the contrastive models have a
Swin transformer as their backbone network.

Methods that combine contrastive and MIM learning signals, such as DINO-v2 and
CMID (with a ResNet-50 backbone), perform well, too, irrespective of the domain of
the pretraining dataset. DINO-v2, which is pretrained on a very-large-scale NI dataset,
is the best-performing SS NI model, outperforming SCIPE in the MeAE and MeAPE
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Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Self-Supervised (NI)
SimCLR ImageNet ResNet-50 24M 0.12 52.6% 0.26 4.26 14.6%
SimCLR FT ImageNet ResNet-50 24M -0.15 60.4% 0.29 4.95 06.0%
MoCo-v2 ImageNet ResNet-50 24M 0.15 54.3% 0.24 4.52 14.2%
MoCo-v2 FT ImageNet ResNet-50 24M -0.07 58.6% 0.28 4.70 05.8%
MAE ImageNet ViT-B/16 86M -0.01 59.0% 0.26 4.67 17.3%
MAE FT ImageNet ViT-B/16 86M 0.04 54.7% 0.26 4.37 09.7%
DINO ImageNet ResNet-50 24M 0.04 56.6% 0.28 4.60 15.4%
DINO FT ImageNet ResNet-50 24M -0.04 58.9% 0.28 4.80 07.1%
DINO ImageNet ViT-B/16 85M 0.04 57.9% 0.27 4.51 15.1%
DINO FT ImageNet ViT-B/16 85M 0.16 51.8% 0.25 4.60 07.7%
DINO-v2 LVD-142M ViT-B/14 86M 0.13 53.3% 0.25 4.23 17.0%
DINO-v2 FT LVD-142M ViT-B/14 86M 0.38 44.0% 0.20 3.54 04.3%
MoBy ImageNet Swin-T 28M 0.01 60.7% 0.29 4.78 16.8%
MoBy FT ImageNet Swin-T 28M 0.02 57.7% 0.27 4.54 17.5%

Table 4.2: Performance of the self-supervised pretrained models on natural images (NI).
FT stands for finetuned model. The best results of each category are shown in bold. The
best results overall are shown underlined. Results that outperform the baseline, SCIPE,
are shown in italics.

evaluation metrics (MeAPE = 44.0%; MeAE = 3.54). Whilst, CMID pretrained on
Million-AID has the second best R2 overall (R2 = 0.52), and CMID pretrained on
Potsdam surpass SCIPE evaluations in both R2 and MeAE (R2 = 0.46; MeAE = 3.90).
All CL+MIM models (besides CMID with a Swin backbone) surpass MAE - a solely
MIM approach - irrespective of data domain.

Moreover, we observe that when pretrained on RSIs, self-supervised models learn more
transferable representations than supervised models since many of the finetuned SS RSI
models outperform SCIPE in MeAE and R2 metrics, whereas supervised RSI models
are far behind. On the other hand, supervised NI pretraining performs better than SS NI
pretraining. The ViT-B/16 model pretrained on ImageNet outperforms SCIPE and all
SS NI pretraining paradigms in all evaluation metrics.

An unexpected observation is that supervised pretraining on RSIs performs the poorest
across all categories. Both supervised RSI models are pretrained on Million-AID, so
we could also blame the dataset for the poor performance. However, SS RSI models
pretrained on Million-AID perform well. This leads us to think that, as Tao et al. (2023b)
discussed, the inherent information contained in the vast amounts of remote sensing
data is theoretically more abundant and essential than the semantic information derived
from human-labeled samples.

4.2 Effect of Data Domain, Size and Resolution

Please note: Table 3.1 summarises the characteristics of each dataset.
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As already mentioned above, remote sensing (RS) datasets, pretrained in a self-supervised
(SS) manner, show improved performance from models of any pretraining form on nat-
ural images (NIs). However, one exception exists; ViT-B/16 pretrained in a supervised
manner on ImageNet performs better on the aggregate percentage error (AggPE) metric
than any model pretrained on solely RS images. TOV, which is SS pretrained on NIs
first and on RSIs next - in a consecutive manner (explained in 3.2.8) - outperforms
supervised ImageNet pretraining with ViT-B/16 by 0.1%, scoring the best AggPE across
all models (AggPE = 0.6%). This shows the necessity of shallow ImageNet pretraining
in acquiring low- and mid-level representations, before pretraining on remote sensing
images as argued by Tao et al. (2023b). GeRSP, however, which is also pretrained on
both NIs and RSIs - but in the more sophisticated manner of knowledge distillation -
does not show the improved AggPE performance that TOV does. This could be due
to the difference in dataset choice. The spatial resolution of TOV-RS ranges from
1 to 20 m, whereas the spatial resolution of Million-AID ranges from 0.5 to 153 m.
The lowest resolutions of the datasets have a much bigger disparity than the highest
resolutions do, which leads us to assume that TOV-RS is a dataset of higher resolution.
This characteristic of the TOV pretrained model could have contributed to its better
performance against GeRSP, as we will discuss later.

Research in the field of natural image classification has proven many times that training
with larger and more diverse datasets learns better representations (Wang et al., 2022a).
This is also illustrated in Table 4.2, where DINO-v2 which is pretrained on a dataset
111× larger than ImageNet, performs the best within the category. Would that be
the case for remote sensing pretraining too? We observe that self-supervised models
pretrained on RSIs achieve the best results when the pretraining dataset has a very high
resolution, even in cases where the number of samples in the dataset are less than 2,500.
As we can see in Table 4.3, SimCLR models pretrained on UC Merced, MLRSNet,
and SIRI-WHU outperform all other models in non-aggregate evaluation metrics. As
seen in Table 3.1, UC Merced has 2,100 samples with a 0.3 m resolution; SIRI-WHU
has 2,400 samples with a 2 m resolution; and MLRSNet has 109,161 samples with
0.1 - 10 m resolution. On the other hand, Million-AID has 1,000,848 samples with
its resolution ranging from very high (0.5 m) to very low (153 m). Samples of lower
resolution have likely hindered the ability of models pretrained on Million-AID to learn
good representations despite the large scale of the dataset.

A strange case arose with SS MoCo-v2 pretrained on SSL4EO-S12 and Potsdam.
SSL4EO-S12 has a resolution of 10 m per pixel, however, we are unsure the size of the
dataset (as discussed in 3.1.4). Potsdam, on the other hand, has a resolution of of 0.5 m
and a size of 21,188 samples. We would expect MoCo-v2 when pretrained on Potsdam
to perform better than when pretrained on SSL4EO-S12, but it does not. This could be
attributed to the difference in domains between the two datasets. As seen in Table 3.1,
Potsdam’s domain is Urban Germany, whereas SSL4EO-S12 has worldwide images,
including Mozambique, as seen in Figure 3.1.
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4.3 Effect of Network Architecture and Capacity

Tables 4.1 and 4.2 show that models pretrained on natural images perform better with a
ViT-B backbone (of 86M parameters) than a ResNet-50 backbone (of 24M parameters).
This can especially be seen in Table 4.2 where DINO pretrained with a ResNet-50 on
ImageNet performs much poorer than DINO pretrained with a ViT-B/16 on the same
dataset. The case for SS pretraining on RSI is not the same. CNN models perform
much better than transformer models in the SS RSI pretraining paradigm. This can
be attributed to the data-hungry nature of ViTs and recent research findings on the
relationship between model size and pretraining dataset size (Li et al., 2022). These
findings suggest that smaller models trained on smaller datasets can achieve higher
learning performance, whereas larger models may not perform as well as the smaller
ones in such scenarios. This phenomenon is obvious in our experiments too. Table
4.3 shows the results of two ViT-B/16 MAE models pretrained on Million-AID or
Potsdam. Million-AID is almost 46 times larger than Potsdam, and performs better on
the non-aggregate evaluation metrics when finetuned.

Morever, as mentioned earlier, the Swin transformer models are the worst performers
overall. Further research needs to be done to find the reason behind this.
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Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Self-Supervised (RSI)
MoCo-v2 SSL4EO-S12 ResNet-50 24M 0.03 56.2% 0.26 4.28 14.0%
MoCo-v2 FT SSL4EO-S12 ResNet-50 24M 0.40 46.6% 0.21 3.83 04.0%
MoCo-v2 Potsdam ResNet-50 24M 0.09 55.6% 0.27 4.59 15.8%
MoCo-v2 FT Potsdam ResNet-50 24M -0.08 56.3% 0.27 4.61 07.7%
BYOL Potsdam ResNet-50 24M 0.22 53.6% 0.23 4.18 13.4%
BYOL FT Potsdam ResNet-50 24M 0.43 47.1% 0.22 3.87 06.9%
SimCLR UC Merced ResNet-50 24M 0.13 54.3% 0.26 4.33 14.7%
SimCLR FT UC Mefced ResNet-50 24M 0.53 43.3% 0.19 3.54 03.1%
SimCLR MLRSNet ResNet-50 24M 0.11 54.6% 0.27 4.63 13.0%
SimCLR FT MLRSNet ResNet-50 24M 0.46 42.6% 0.17 3.16 03.6%
SimCLR SIRI-WHU ResNet-50 24M 0.04 57.0% 0.28 4.67 13.7%
SimCLR FT SIRI-WHU ResNet-50 24M 0.53 42.6% 0.19 3.44 05.5%
MAE Million-AID ViT-B/16 86M -0.01 59.9% 0.28 4.68 14.8%
MAE FT Million-AID ViT-B/16 86M 0.17 54.2% 0.24 3.97 10.7%
MAE Potsdam ViT-B/16 86M 0.04 60.3% 0.28 4.78 16.1%
MAE FT Potsdam ViT-B/16 86M 0.03 55.1% 0.24 4.45 04.7%

TOV
TOV-NI &

TOV-RS ResNet-50 24M 0.07 55.2% 0.26 4.27 15.6%

TOV FT
TOV-NI &

TOV-RS ResNet-50 24M 0.48 46.6% 0.21 3.66 00.6%

GeRSP
ImageNet &
MillionAID ResNet-50 24M 0.22 52.7% 0.24 4.17 15.9%

GeRSP FT
ImageNet &
MillionAID ResNet-50 24M 0.47 45.9% 0.20 3.60 07.6%

CMID Potsdam ResNet-50 24M 0.27 48.4% 0.23 3.76 16.9%
CMID FT Potsdam ResNet-50 24M 0.46 45.7% 0.22 3.90 01.7%
CMID Million-AID ResNet-50 24M 0.26 52.6% 0.23 4.35 13.9%
CMID FT Million-AID ResNet-50 24M 0.52 47.2% 0.22 4.04 04.6%
CMID Potsdam Swin-B 88M 0.06 57.5% 0.27 4.38 15.8%
CMID FT Potsdam Swin-B 88M 0.04 58.4% 0.27 4.45 17.1%
CMID Million-AID Swin-B 88M 0.03 57.1% 0.27 4.62 16.9%
CMID FT Million-AID Swin-B 88M 0.03 57.2% 0.27 4.42 17.3%

Table 4.3: Performance of the self-supervised pretrained models on remote sensing
images (RSI). FT stands for finetuned model. The best results of each category are
shown in bold. The best results overall are shown underlined. Results that outperform
the baseline, SCIPE, are shown in italics.
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Conclusions

The primary goal of this project was to extend the SCIPE pipeline and investigate
the effect of different self-supervised pretraining paradigms on census-independent
population estimation with high-resolution satellite imagery. The secondary objective
of this study dissertation was to improve SCIPE’s performance.

To achieve this research aims, we conducted extensive experimentation and evaluated the
performance of SCIPE on 25 different pretraining configurations including pretraining
with different learning signals, datasets of various domains, sample sizes, and spatial
resolutions, and different backbone architectures of various capacities.

We observed that the three SimCLR contrastive models pretrained on very-high-
resolution (0.1 - 2 m) remote sensing images achieved the best per-tile population
estimations, despite the really small scale of their pretraining datasets (including two of
which had less than 2,500 samples each). The TOV model whose shallow layers are
pretrained on ImageNet and later on satellite images with self-supervised pretraining
achieves the lowest percentage error when estimating per region (AggPE = 0.6%).

Moreover, we observed that when pretrained on natural images, ViT-B models perform
better than ResNet-50 models. A supervised ViT-B model pretrained on ImageNet
outperforms SCIPE on all evaluation metrics and achieves the second-best aggregate
percentage error of 0.7%. On the other hand, SwinT and Masked Autoencoder models
are the worst performers.

Future work on building large-scale unlabeled high-resolution RS datasets and using
those for self-supervised pretraining with contrastive models could improve population
estimates. In addition, the characteristics of the learned representations need to be
further understood. Qualitative assessments of the features, such as t-SNE visualization
and activation maps, can help.

Overall, this research has contributed to the first evaluation of representation learning
with self-supervised pretraining on census-independent population estimation using
high-resolution satellite images. The findings of this project make SCIPE even more
sustainable by using label-free datasets for pretraining and completely avoiding the
manual extraction of zero-population tiles.
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Vladimir Risojević and Vladan Stojnić. Do we still need imagenet pre-training in
remote sensing scene classification? arXiv preprint arXiv:2111.03690, 2021.

Caleb Robinson, Fred Hohman, and Bistra Dilkina. A deep learning approach for popu-
lation estimation from satellite imagery. In Proceedings of the 1st ACM SIGSPATIAL
Workshop on Geospatial Humanities, pages 47–54, 2017.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading
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Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Supervised (NI)
Swin-T ImageNet – 28M 0.12 49.0% 0.23 3.76 24.3%
Swin-T FT ImageNet – 28M 0.47 41.9% 0.19 3.26 13.8%
ViT-B/16 ImageNet – 86M 0.12 51.2% 0.24 4.13 23.8%
ViT-B/16 FT ImageNet – 86M 0.51 48.6% 0.20 3.65 08.9%
Supervised (RSI)
ResNet-50 Million-AID – 24M -0.02 55.3% 0.24 4.17 30.2%
ResNet-50 FT Million-AID – 24M -0.08 59.8% 0.27 4.79 13.6%
Swin-T Million-AID – 28M -0.04 54.5% 0.23 3.89 31.2%
Swin-T FT Million-AID – 28M -0.03 54.7% 0.25 4.19 31.8%

Table A.1: Performance of the supervised pretrained models on natural images (NI) or
remote sensing images (RSI) when the downstream dataset uses zero-population tiles.
FT stands for finetuned model. The best results of each category are shown in bold. the
best results overall are shown underlined. Results that outperform the baseline, SCIPE,
are shown in italics.

Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Self-Supervised (NI)
SimCLR ImageNet ResNet-50 24M 0.06 53.9% 0.24 3.99 28.2%
SimCLR FT ImageNet ResNet-50 24M -0.14 64.2% 0.26 4.41 29.4%
MoCo-v2 ImageNet ResNet-50 24M -0.09 59.8% 0.23 3.68 37.5%
MoCo-v2 FT ImageNet ResNet-50 24M -0.05 62.6% 0.26 4.69 18.5%
MAE ImageNet ViT-B/16 86M -0.04 53.7% 0.24 4.01 31.6%
MAE FT ImageNet ViT-B/16 86M -0.08 60.2% 0.25 4.50 27.7%
DINO ImageNet ResNet-50 24M 0.00 55.5% 0.23 3.90 33.2%
DINO FT ImageNet ResNet-50 24M -0.13 62.7% 0.27 4.60 20.9%
DINO ImageNet ViT-B/16 85M -0.05 55.1% 0.26 3.98 30.9%
DINO FT ImageNet ViT-B/16 85M -0.19 58.7% 0.25 4.16 26.7%
DINO-v2 LVD-142M ViT-B/14 86M 0.13 53.5% 0.24 4.15 23.0%
DINO-v2 FT LVD-142M ViT-B/14 86M 0.24 49.7% 0.21 3.64 12.0%
MoBy ImageNet Swin-T 28M -0.06 55.6% 0.24 4.18 31.8%
MoBy FT ImageNet Swin-T 28M -0.03 54.4% 0.24 3.99 32.5%

Table A.2: Performance of the self-supervised pretrained models on natural images (NI)
when the downstream dataset uses zero-population tiles. FT stands for finetuned model.
The best results of each category are shown in bold. the best results overall are shown
underlined. Results that outperform the baseline, SCIPE, are shown in italics.
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Model Dataset Backbone # Params R2 MeAPE AdjMAPE MeAE AggPE

Self-Supervised (RSI)
MoCo-v2 SSL4EO-S12 ResNet-50 24M 0.00 53.7% 0.23 3.80 25.7%
MoCo-v2 FT SSL4EO-S12 ResNet-50 24M 0.43 47.5% 0.22 3.61 07.1%
MoCo-v2 Potsdam ResNet-50 24M 0.04 52.2% 0.22 3.71 33.7%
MoCo-v2 FT Potsdam ResNet-50 24M 0.03 57.2% 0.26 4.72 24.5%
BYOL Potsdam ResNet-50 24M 0.20 53.3% 0.20 4.21 22.6%
BYOL FT Potsdam ResNet-50 24M 0.27 48.4% 0.23 4.16 14.9%
SimCLR UC Merced ResNet-50 24M 0.00 53.5% 0.23 4.02 31.4%
SimCLR FT UC Merced ResNet-50 24M 0.48 49.2% 0.20 3.59 12.9%
SimCLR MLRSNet ResNet-50 24M 0.08 53.4% 0.24 4.00 27.0%
SimCLR FT MLRSNet ResNet-50 24M 0.29 52.3% 0.22 3.86 18.3%
SimCLR SIRI-WHU ResNet-50 24M -0.03 56.4% 0.25 4.15 28.2%
SimCLR FT SIRI-WHU ResNet-50 24M 0.31 49.0% 0.21 3.59 14.1%
MAE Million-AID ViT-B/16 100M -0.07 58.4% 0.26 4.29 30.8%
MAE FT Million-AID ViT-B/16 100M -0.02 58.5% 0.24 4.39 27.0%
MAE Potsdam ViT-B/16 86M -0.01 55.5% 0.25 4.14 31.9%
MAE FT Potsdam ViT-B/16 86M 0.13 60.8% 0.24 4.17 20.3%

TOV
TOV-NI &

TOV-RS ResNet-50 24M 0.00 51.4% 0.24 3.93 26.1%

TOV FT
TOV-NI &

TOV-RS ResNet-50 24M 0.42 52.1% 0.21 3.91 12.6%

GeRSP
ImageNet &
MillionAID ResNet-50 24M 0.21 52.2% 0.22 3.85 22.6%

GeRSP FT
ImageNet &
MillionAID ResNet-50 24M 0.52 46.0% 0.19 3.52 15.2%

CMID Potsdam ResNet-50 24M 0.21 48.9% 0.21 3.54 25.9%
CMID FT Potsdam ResNet-50 24M 0.48 48.7% 0.19 3.44 11.0%
CMID Million-AID ResNet-50 24M 0.23 50.8% 0.23 4.03 21.9%
CMID FT Million-AID ResNet-50 24M 0.50 50.8% 0.22 3.97 09.3%
CMID Potsdam Swin-B 88M -0.01 57.5% 0.26 4.14 30.9%
CMID FT Potsdam Swin-B 88M -0.01 57.9% 0.25 3.87 30.0%
CMID Million-AID Swin-B 88M -0.03 54.4% 0.23 4.27 29.9%
CMID FT Million-AID Swin-B 88M -0.02 53.5% 0.24 4.18 30.0%

Table A.3: Performance of the self-supervised pretrained models on remote sensing
images (RSI) when the downstream dataset uses zero-population tiles. FT stands for
finetuned model. The best results of each category are shown in bold. the best results
overall are shown underlined. Results that outperform the baseline, SCIPE, are shown
in italics.


