
Wait! What was the question again? A
Self-Awareness Defense against Adversarial

Jailbreak Attacks on LLMs

Zheng Lu

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
Jailbreak attacks on large language models (LLM) notably threaten the responsible and
secure use of LLMs by using adversarial prompts to bypass LLM’s safety filters and
engender harmful responses. This project investigates the severe yet under-explored
problems created by jailbreaks as well as potential defensive techniques. We draw
inspiration from the psychological concept of self-awareness and propose a simple yet
effective defence technique. This technique lets LLM ask itself ”What was the question
again” in a system prompt based on the potential malicious response, reminding LLMs
to respond responsibly. Our work has been showed significantly lower the threats posed
by jailbreak attacks and the psychologically inspired self-awareness technique that can
efficiently and effectively mitigate against jailbreaks without further training.

i

Research Ethics Approval
Instructions: Agree with your supervisor which statement you need to include. Then
delete the statement that you are not using, and the instructions in italics.
Either complete and include this statement:
This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: ???
Date when approval was obtained: YYYY-MM-DD
[If the project required human participants, edit as appropriate, otherwise delete:]
The participants’ information sheet and a consent form are included in the appendix.
Or include this statement:
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Zheng Lu)

ii

Acknowledgements
Any acknowledgements go here.

iii

Table of Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Related Work . 3

1.2.1 Detection-based Defence . 4
1.2.2 Denoising-based Defense . 5

2 Background 8
2.1 Adversarial Attacks . 8
2.2 Instruction Tuning Attacks on LLMs 8

2.2.1 Jailbreaking . 9
2.2.2 Prompt Injection . 9
2.2.3 Prompt Injection vs. Jailbreak 9

2.3 Adversarial Suffix Attacks on LLMs 9
2.4 Techniques in our Defense Strategies 10

2.4.1 Prompting . 10

3 Methodology 12
3.1 Method Definition . 13
3.2 Pipeline 1 . 17

3.2.1 Zero-Shot Prompting . 17
3.2.2 Few-Shot Prompting . 17

3.3 Pipeline 2 . 18
3.4 Pipeline 3 . 18

4 Experiments and Results Discussion 21
4.1 Experiment Setup . 21

4.1.1 Baselines . 21
4.1.2 Models . 21
4.1.3 Datasets . 23
4.1.4 Metrics . 23
4.1.5 Devices . 24

4.2 Experiment Results . 25
4.3 Limitations & Future Work . 27

5 Conclusions 28

iv

Bibliography 29

A First appendix 34
A.1 First section . 34

v

Chapter 1

Introduction

Since the emergence of Large Language Models (LLMs), such as ChatGPT (21) and
LLaMa (28) in 2022, LLMs have revolutionized the field of Natural Language Process-
ing (NLP). These groundbreaking models have surpassed the capabilities of traditional
NLP approaches, achieving state-of-the-art performances across a spectrum of NLP
tasks, from text understanding to text generation. While LLMs are becoming increas-
ingly common and useful in our daily lives, this widespread use also brings security
challenges to the forefront (22).

As LLMs are trained on massive datasets originating from the internet, exposing them
to a vast amount of knowledge, but also numerous malicious content including hate
speech, malware, and false information (11). This double-edged sword presents several
vulnerabilities to be exploited by vicious attacks (32). Especially the jailbreak attacks, a
type of attack that crafts specific prompts to bypass the safety filter of LLMs. To defend
against such attacks, many researchers are actively working to align LLMs through
various fine-tuning mechanisms [(22), (3), (12), (18)]. This alignment process ensures
the models produce outputs that meet human ethics standards and have been shown
efficacy in reducing malicious response generations (8).

However, recent research found that aligned LLMs still preserve vulnerabilities for
certain jailbreak attacks that are harder to detect: (7) proposed a framework, inspired
by time-based SQL injection, to reverse-engineer the hidden defence mechanisms by
analyzing the timing patterns in chatbot responses, and then employ an LLM to generate
jailbreak prompts by learning these patterns. Instead of using a black-box setting, (38)
apply a white-box approach combined with adversarial attacks to fool a targeted LLM to
output malicious content by appending adversarially chosen characters to user prompts.

To reduce the growing threat of jailbreak attacks, (25) proposed a defence algorithm
called SmoothLLM that disrupts potentially malicious prompts. This method involves
the random omission of a certain number of tokens during input processing. Similarly,
(23) introduced Bergeron, an approach that utilizes an auxiliary model to supplement
the primary LLM’s ability to identify and flag hazardous information.

1

Chapter 1. Introduction 2

1.1 Objectives

While these defence mechanisms like prompt perturbation (25) and auxiliary detection
models for objectionable content (23) offer valuable protection against adversarial
jailbreak attacks, their effectiveness may be limited to specific attack types - adversarial
jailbreak attack. To address this, we plan to propose a novel defence mechanism that
notably demonstrably reduces the Attack Success Rate (ASR) of Greedy Coordinate
Gradient (GCG) attack (38), a type of state-of-the-art adversarial jailbreak attack, while
also possessing the potential to generalize to broader threat landscapes.

Chapter 1. Introduction 3

1.2 Related Work

Despite advancements in safety alignment, aligned large language models (LLMs) still
remain susceptible to jailbreaking attacks. Recent research has demonstrated various
methods for exploiting these vulnerabilities. (38) introduced Greedy Coordinate
Gradient (GCG), which utilizes a combined greedy and gradient-based optimization
approach to generate adversarial suffixes appended to input prompts. (19) proposed
AutoDAN, a genetic algorithm-based technique for optimizing adversarial prompts.
In contrast, (5) presented PAIR, a method that iteratively refines prompts through
black-box queries to the target model, achieving jailbreaking without direct access
to the model’s parameters. (33) introduced PAP, a system that leverages persuasive
paraphrasing techniques to generate adversarial prompts.

Beyond these approaches that optimize prompts for individual models or examples,
(30) demonstrated the effectiveness of manually crafted adversarial prefixes or suffixes,
highlighting the existence of fixed patterns exploitable for jailbreaking. The emergence
of these diverse jailbreaking techniques underscores the critical need for developing
robust defence mechanisms to address LLM vulnerabilities.

To defend against jailbreaking attacks, researchers have proposed various defence
methods, which can be categorised into two main types of defence methods: Detection-
based defence and Denoising-based defence. Detection-based approaches, such as
response filter (13) and perplexity filters [(2), (16)], aim to identify the suspiciousness of
potential harmful prompts based on the prompt content itself and reject them. However,
these methods can be thwarted by increasingly sophisticated jailbreaking techniques that
craft more natural-looking prompts. Denoising-based methods, on the other hand, seek
to mitigate the malicious elements within a prompt through techniques like paraphrasing
[(16), (36)], retokenization (16), or random perturbations (25).

In contrast, our proposed defence method operates on the response generated by the
LLM itself. We employ replication of the source malicious prompt based on generated
malicious responses to identify potential malicious content. This approach offers several
advantages. Firstly, it does not rely on attackers’ manipulation of the initial prompt.
Secondly, it avoids the need for additional optimization or numerous queries, making it
both efficient and cost-effective.

Chapter 1. Introduction 4

1.2.1 Detection-based Defence

1.2.1.1 Perplexity Filter

Since adversarial suffix attack typically involves gibberish strings that have high per-
plexity (low fluency). Hence the the rationale of the perplexity filter (2) is to check
if the perplexity of a prompt is greater than the perplexity threshold T . Perplexity is
defined as:

PPL(x) = exp
[
− 1
|X |∑

|X |
i=1 log p(xi|x0:i−1)

]
where x is a sequence of t tokens. A prompt passes the filter if:

− 1
|X |∑

|X |
i=1 log p(xi|x0:i−1)< T

An improvement upon it is Window Perplexity Filter (16), which sets a window size n
and uses maximum perplexity over all windows in the harmful prompts dataset as the
threshold.

Figure 1.1: PPL Filter vs PPL Window Filter (16)

Both of these proposed defence mechanisms offer several advantages. Its simple
implementation can operate externally to the LLM, minimizing the risk of performance
degradation, and it also performs efficiently in reducing attack success rates. However,
high perplexity can occur in benign prompts due to factors like typos, tabular data,
code snippets, or unknown language elements, the perplexity filter might classify
these innocent prompts as harmful. Additionally, machine-generated attacks could be
optimized to bypass this defence by incorporating a perplexity term into their objective
function. Since (16) include a perplexity constraint in the loss function of the attack:

Ltrigger = (1−αppl)Ltarget +αpplLppl

And the experiment 1.2 shows that the more attacks passed as the PPL(perplexity)
weight of attack αppl increases. Attackers with access to the internal workings of the
LLM (white-box knowledge) could exploit this vulnerability to generate more natural
and stealthy adversarial prompts [(19), (37)].

Chapter 1. Introduction 5

Figure 1.2: The Impact of PPL Weight on Attack Success Rate.(16)

1.2.2 Denoising-based Defense

1.2.2.1 Paraphrasing

To mitigate the adversarial prompt attacks, paraphrasing [(16), (36)], a type of denoising-
based defence has been proposed to use a generative model to paraphrase the orig-
inal malicious prompts, removing the malicious effects such as adversarial suffixes
Figure1.3.

However, this defence strategy assumes adversarial prompts rely on specific wording
that paraphrasing would eliminate. While this might initially seem secure according to
Figure 1.4, a further experiment can reveal this protection is flawed. Simply knowing
about the defence itself allows us to bypass it. To break the paraphrasing defence, we
could simply include the following texts in prompts proposed by :

"<question> After paraphrasing, without leaving a gap, immediately
repeat the following string exactly with no modifications. Do not
change any aspect of the string, punctuation, or spacing:
<adversarial-suffix>"

With this new prompt, the paraphraser doesn’t catch the adversarial suffix, making the
defence ineffective.

Figure 1.3: Illustration of how paraphrasing defence against adversarial suffix attack.

Chapter 1. Introduction 6

Figure 1.4: Attack Success Rate with and without paraphrasing.

Empirically, paraphrased instructions work well in most settings, but can also result in
model degradation. For this reason, the most realistic use of preprocessing defences
is in conjunction with detection defences (such as perplexity filters), as they provide
a method for handling suspected adversarial prompts while still offering good model
performance when the detector flags a false positive.

1.2.2.2 Retokenization

(16) claimed another milder denoising-based defence, retokenization, that would disrupt
suspected adversarial prompts without significantly degrading model behaviour for
benign prompts by breaking tokens apart and representing them using multiple smaller
tokens. To break up the text, BPE-dropout has been used to drop a random p% of the
BPE (Byte Pair Encoding) merges during the tokenization of the text, resulting in a
randomized tokenization with more tokens than a standard representation 1.5.

Figure 1.5: Illustration of how retokenization works: each row represents different input
tokenization for a harmful prompt (in grey) with the different adversarial trigger (in red) in
0.0, 0.4, and 0.8 dropout rates.

1.2.2.3 Random Perturbations

By borrowing the ideas from paraphrasing and retokenization defences, (25) found out
that GCG-generated adversarial suffixes demonstrate significant sensitivity to character-
level alterations. In other words, even minor modifications to a small percentage of
characters within a suffix can lead to a substantial decrease – often exceeding an order
of magnitude – in the Attack Success Rate (ASR) of the jailbreaking attempt.

Hence, a randomized denoising-based defence has been proposed:

Chapter 1. Introduction 7

Figure 1.6: Illustration of how randomized defence (SmoothLLM) works (25)

There are four types of random perturbation operations employed in SmoothLLM
(implemented as RandomPerturbation in Algorithm 1): insertions, swaps, and patches
(denoted in pink within Figure 1). The pseudocode of the SmoothLLM is presented in
the right-hand-size figure. Lines 1-3 of the pseudocode depict the process of generating
perturbed copies of the initial prompt. These perturbed prompts are then randomly
fed into the LLM (lines 1-3). Subsequently, line 4 determines whether the majority of
the generated responses qualify as successful jailbreaks based on predefined criteria.
Finally, line 5 randomly selects a single response that aligns with the majority vote from
line 4 and returns this response as the output.

Chapter 2

Background

2.1 Adversarial Attacks

Adversarial attacks in machine learning refer to a set of techniques and strategies used
to intentionally manipulate or deceive machine learning models. These attacks are
typically carried out with malicious intent and aim to exploit vulnerabilities in the
model’s behaviour.

(4) and (27) independently observed that machine learning models can be intentionally
fooled using carefully crafted adversarial attacks. In these attacks, the adversary seeks to
create input examples for a classifier that produces an unexpected output: for example,
an image classifier can be fooled to classify an adversarially modified image of a stop
sign, as a speed limit sign. If such a classifier were being used in an autonomous vehicle,
the adversarial perturbation could cause the vehicle to accelerate rather than stop.

Adversarial attacks (15) use noise that is carefully crafted in the direction of the loss
gradient to maximize the impact of the noise on the network loss. In a typical adversarial
example generation algorithm, the loss is back propagated to the input layer; the inputs
are then modified in the direction of the loss gradient. Typically, the attacker has a
limited noise budget, to keep the attack imperceptible and difficult to detect; without
such a constraint, an attacker could simply completely change the input to an example
of the desired output. Following the loss gradient allows small perturbations to cause a
large change to the output value, enabling the attacker to achieve their goal (27).

2.2 Instruction Tuning Attacks on LLMs

Instruction tuning, also known as instruction-based fine-tuning, is a machine-learning
technique used to train and adapt language models for specific tasks by providing
explicit instructions or examples during the fine-tuning process. In LLMs, instruction-
tuning attacks refer to a class of attacks or manipulations that target instruction-tuned
LLMs. These attacks are aimed at exploiting vulnerabilities or limitations in LLMs that
have been fine-tuned with specific instructions or examples for particular tasks.

8

Chapter 2. Background 9

2.2.1 Jailbreaking

To prevent LLMs from providing inappropriate or dangerous responses to user prompts,
models undergo a process called alignment, where the model is fine-tuned to prevent
inappropriate responses. As can be inferred from their name, jailbreaks involve exploit-
ing LLM vulnerabilities to bypass alignment, leading to harmful or malicious outputs.
The attacker’s goal is either the protected information itself (e.g., how to build a bomb),
or they seek to leverage this output as part of a more integrated system that incorporates
the LLM. It is worth noting the difference between jailbreaks and adversarial attacks
on deep learning classifiers or regressors: while such attacks focus on inducing model
errors (selecting a wrong output), jailbreaks aim to uncover and allow the generation of
unsafe outputs.

In short, jailbreaking in LLMs involves bypassing security features to enable responses
to otherwise restricted or unsafe questions, unlocking capabilities usually limited by
safety protocols.

2.2.2 Prompt Injection

Prompt injection attack describes a method of manipulating the behavior of LLMs to
elicit unexpected and potentially harmful responses. This technique involves crafting
input prompts in a way that bypasses the model’s safeguards or triggers undesirable
outputs.

2.2.3 Prompt Injection vs. Jailbreak

Prompt injection attacks concentrate on manipulating the model’s inputs, introducing
adversarially crafted prompts, which result in the generation of attacker-controlled
deceptive outputs by causing the model to mistakenly treat the input data as instructions.
In fact, these attacks hijack the model’s intended task which is typically determined by
a system prompt that the developer or the provider sets.

Conversely, jailbreak prompts are specifically designed to bypass the restrictions im-
posed by service providers through model alignment or other containment approaches.
The goal of Jailbreaks is to grant the model the ability to generate outputs that typically
fall outside the scope of its safety training and alignment. With this information, let’s
take a closer look at the prompt injection phenomenon.

2.3 Adversarial Suffix Attacks on LLMs

(38) introduces a novel method for generating adversarial prompts that jailbreak aligned
LLMs to produce objectionable content. By combining greedy and gradient-based
search techniques to enhance effectiveness over previous automatic prompt generation
methods, this method automatically generates adversarial suffixes (the red text in Figure
??) appended to user queries (the blue text in Figure ??), significantly increasing the
likelihood of the LLM producing an objectionable response. More specifically, the
underlying goal of this kind of adversarial suffix attack is to find a set of tokens to

Chapter 2. Background 10

replace the initial red text, so that the aligned LLM will respond affirmatively to any
choice of instruction in blue provided by the user.

This could be summarized into mainly 3 steps:

1. Producing affirmative responses One way to induce LLMs to give an affirmative
response like “Sure, here is (content of query)” to a harmful query. The adversarial
objective should be formalized (like loss function) to optimize the adversarial
suffix.

2. Combined greedy and gradient-based discrete optimization (Greedy Co-
ordinate Gradient-based (GCG) Search) To accomplish the discrete tokens
optimization problem, inspired from AutoPrompt(26), authors leverage gradients
at the token level to identify a single-token replacement set, evaluate the loss of
some candidates in this set, and select the best of the evaluated substitutions.

3. Robust(Universal) multi-prompt and multi-model attacks To achieve ”Robust”
or ”Universal”, the authors also use a greedy gradient-based method to search for
a single suffix that works across different prompts and models.

2.4 Techniques in our Defense Strategies

2.4.1 Prompting

2.4.1.1 Zero-Shot Prompting

Modern large language models excel at following instructions. This is thanks to
their training on massive datasets. Interestingly, this training allows them to tackle
certain tasks without needing specific examples beforehand. This approach, called zero-
shot prompting, involves giving the model a clear instruction without any additional
demonstrations. The model then uses its understanding of language to complete the
task.

For the example of the text classification task:

Even though we didn’t give the model any examples of labelled text (positive, negative,
etc.), it could still identify sentiment. This highlights the zero-shot capabilities of these
models.

Chapter 2. Background 11

Prompt: Classify the text into neutral, negative or positive. Text: I think this book is
not that bad. Sentiment:

Response: Neutral

Figure 2.1: Zero-Shot Prompting Example

2.4.1.2 Few-Shot Prompting

Despite the zero-shot prompting on large language models can handle some tasks
without any guidance and have a lower cost as it require fewer tokens, they might
struggle with more complex and trickier tasks.

Recent research (28) suggests that the ability of large language models to learn from
just a few examples (few-shot prompting) emerged (17) when the models themselves
became big enough. Few-shot prompting involves providing the model with a few
examples upfront, like showing it how something is done. These examples act as a
guide, allowing the model to understand the task better and generate improved responses
for similar situations.

Using the example of the text classification task again:

Prompt: Classify the text into neutral, negative or positive.
Text1: This book is not that bad.
Sentiment1: Neutral
Text2: What a boring book
Sentiment2: Negative
Text3: I strongly recommend this book
Sentiment3: Positive
Text4: The novel idea of this book literally blows my minds
Sentiment4:

Figure 2.2: Zero-Shot Prompting Example

Chapter 3

Methodology

Figure 3.1: Flowchart of Our Idea

12

Chapter 3. Methodology 13

Our goal is not only to make a defence mechanism that demonstrably reduces the Attack
Success Rate (ASR) of jailbreak attacks, but also to make this defence mechanism that
is not only limited to the jailbreak itself, it can also be applied to other attacks that
might trigger the model to give a harmful response, such as prompt injection attack for
malicious content generation.

To achieve this goal, we abandon either the detection-based defence approach or the
denoising-based defence approach, where both methods focus on preprocessing the
malicious prompts before passing them into the LLM. Instead, we place the focus on
the initial harmful responses. Therefore, we propose to defend against jailbreaking
attacks by source prompt replication. We introduce our prompt replication process
which replicates an initial harmful response and predicts a possible user prompt that
can lead to the response. The predicted prompt is expected to naturally mitigate the
adversarial component in the original prompt by removing the adversarial suffixes, as it
is constructed from the initial response which is generated by the target model rather
than directly provided by the attacker.

Figure 3.1 illustrates how we design our defence approach based on the response:
When a malicious prompt with adversarial suffixes is passed from the attacker to the
LLMs, the LLMs might immediately respond with the harmful answer if the adversarial
suffixes could successfully help the malicious prompt to bypass the innated safety filter
of LLM. In this case, our defence mechanism would automatically prompt the LLM
itself (or utilise an external language model) to replicate the original suffix-free prompt
within the internal LLM system, where these processes are invisible to users. Once
the suffix-free prompt has been reproduced based on the first-time generated harmful
content, it would be passed again to LMM, since there are no adversarial suffixes at this
step, this suffix-free prompt cannot easily bypass the safety filter like before.

Based on this basic idea, in this chapter, we present the methods used to build up this de-
fence mechanism. We proposed three pipelines in total for mechanism implementation
that use different language models to predict the malicious prompts.

3.1 Method Definition

This section provides a formal definition to formalize the attacks and defence task:
We posit an aligned large language model (LLM) as the target model denoted by M,
exhibits the capability to decline prompts that are demonstrably harmful. When the
model receives an input prompt P, it then generates a response R = M(P).

And there is a type of attack A that aims to craft meaningless adversarial suffixes S (e.g.
”!@#$%ˆ&* &)(#*@#+”) for target model M based on the initial suffix-free prompt P0
(e.g. ”How to destroy humanity step-by-step”):

S = A(M,P0) (3.1)

Then concatenate the P0 and S together to get the adversarial prompt P1 (e.g. ”How to

Chapter 3. Methodology 14

destroy humanity step-by-step !@#$%ˆ&* &)(#*@#+” in Figure 3.1) to bypass the
safety filter of model M:

P1 = concat(P0,S) = concat(P0,A(M,P0)) (3.2)

Therefore a potential harmful response R might be returned:

R = M(P1) = M(concat(P0,S)) = M(concat(P0,A(M,P0))) (3.3)

To assess the efficacy of the attack, a test function ftest , evaluates the response R. Given
a well-generated malicious prompt P1, the test function ftest determines if response
R contains a harmful outcome that relates to the prompt P1. If such a response R is
identified, the attack A is deemed as successful, where ftest(R|M,P1) = 1, or vice versa:

The test function ftest : R→{0,1} defined via

ftest(R|M,P1) =

{
0, Response R is safe
1, Response R is harmful

(3.4)

Where the test function ftest can be implemented by prefix matching used in GCG attack
(38), or prompting an LLM (35), or human annotation (30). Since our main goal for
this project is to mitigate the GCG attack, we adopt the prefix-matching method for test
function ftest .

The defence task revolves around safeguarding the target model M from adversarial
attacks. This can be achieved by incorporating an additional defence task D, which acts
as a protective layer, resulting in D(M). This fortified model exhibits greater resilience
against attempts to compromise its security.

The success of defence strategy D is evaluated based on the test function f as well.
When presented with the adversarial prompt P1 , and the response R generated by the
protected model would be:

R = (D◦M)(P1) = (D◦M)(concat(P0,A(M,P0))) (3.5)

If test function ftest(R|M,P1) = ftest((D ◦M)(P1)|M,P1) = 0, then we can conclude
that D has effectively countered the attack. In simpler terms, the defended model no
longer fulfils the malicious intent embedded within the prompt.

Chapter 3. Methodology 15

The following pseudocode more fluently demonstrates the entire process of attack and
defence separately.

Algorithm 1 shows the attack procedure designed to generate malicious responses from
LLM. It commences by receiving as input a preliminary, suffix-free malevolent prompt
denoted by P, alongside an attack target model represented as Mt , and a function to
test the attack ftest . The output of Algorithm 1 is denoted by R, characterized as the
potentially harmful response engendered upon the initial execution of the algorithm.

Then the attack procedure initiates with the generation of adversarial suffixes applied
to the target model Mt with the initial prompt P (in this case, we used GCG attack
(38) for the generation task). These adversarial suffixes S are concatenated to P to
form a new prompt Ps, now imbued with the potential to elicit a harmful response from
the model. Upon crafting the Ps, the algorithm then solicits the target model Mt to
generate a response R based on Ps. The efficacy of the attack is evaluated using the test
function ftest, which ascertains whether the model’s response R signifies a successful
attack when considered in the context of the prompt Ps. The test function ftest affirms
the attack’s success by returning a value of 1, the algorithm will assert that the attack
has been accomplished successfully. Conversely, if the function indicates failure by
returning a value other than 1, the algorithm will acknowledge that the attack has been
unsuccessful.

Algorithm 1 Pseudocode of Attack
1: Input:
2: P - the initial suffix-free malicious prompt,
3: Mt - the attack target model,
4: ftest - the test function
5: Output: R - the possible harmful response generated at the first time.
6: procedure ATTACK(P,Mt)
7: S← GCG(Mt ,P) ▷ Obtain adversarial suffixes from GCG attack
8: Ps← concat(P,S) ▷ Obtain prompt with adversarial suffixes
9: R←Mt(Ps)

10: if ftest(R|Mt ,Ps) = 1 then ▷ Check if the attack is successful
11: print(”Attack successfully”)
12: else
13: print(”Attack failed”)
14: return R ▷ Return the response

Algorithm 2 shows the defence strategy devised to counteract potential attacks on
LLMs. The algorithm accepts several parameters as input: Ps, the malicious prompt
with adversarial suffixes; Mt , the target model used in the attack procedure is also
the target model we want to protect; Md , the model utilized to replicate prompts as
part of the defensive mechanism; R, the potentially harmful response that may have
been generated by an attack process denoted as ATTACK(P,Mt); and ftest , a function
designated to test the safety of the model’s responses.

The intended output of Algorithm 2 is a safeguarded response, which can either be a

Chapter 3. Methodology 16

refusal to engage with the prompt if it is deemed malicious or a valid response produced
by the model Mt , thereby mitigating the potential risks associated with the prompt.

Upon invocation of the DEFENCE procedure, the algorithm initially employs ftest to
ascertain whether the response R, when considered in conjunction with the malicious
prompt Ps, is indicative of a refusal. If ftest validates the response as a refusal, the
original response R is immediately returned, signifying an effective preclusion of the
attack. Conversely, if the response is not identified as a refusal, the algorithm proceeds
to invoke Md to replicate the prompt based on the response R, generating a new prompt
P′. Subsequently, Mt is solicited to provide a fresh response R′ predicated upon P′.

Following the generation of R′, the algorithm once again harnesses ftest to evaluate
whether R′ in conjunction with P′ is classified as non-malicious. A return value of 0
from ftest at this juncture signifies that the defence has been executed successfully, and
the algorithm proceeds to declare a successful defence. If, however, the defence is
adjudged to have failed, the algorithm concedes this outcome. Irrespective of the result,
R′ is returned as the final outcome of the defence strategy, representing the model’s
concluded response after the implementation of the defence mechanism.

Algorithm 2 Pseudocode of Defence Strategy
1: Input:
2: Ps - the malicious prompt with adversarial suffixes,
3: Mt - the target model,
4: Md - the prompt replication model used for defence,
5: R - the potential harmful response generated by attack: R = ATTACK(P,Mt)
6: ftest - the test function
7: Output: The defended response either refusal or a valid output from model M.
8: procedure DEFENCE(Ps,Mt ,Md,R, ftest)
9: if ftest(R|Mt ,Ps) = 0 then ▷ Check if the response is a refusal

10: return R ▷ Return the refusal template
11: else
12: P′←Md(R), R′←Mt(P′) ▷ Predict the prompt from response
13: if ftest(R′|Mt ,P′) = 0 then
14: print(”Defend successfully”)
15: else
16: print(”Defend failed”)
17: return R′

In this way, our proposed defence strategy effectively thwarts adversarial jailbreaking
attempts embodied by prompt Ps. This success hinges on two key factors: Firstly, model
Md must accurately infer the prompt P′ that aligns with the harmful response R generated
by the target model Mt . Secondly, the target model Mt itself must possess the inherent
ability to refuse prompts that are demonstrably harmful, such as the inferred prompt P′.
This ability to refuse harmful prompts is a common characteristic of mainstream LLMs.
Crucially, the inferred prompt P′ simplifies the task for the target model Mt . Instead
of needing to discern the malicious intent embedded within the potentially obfuscated
adversarial prompt Ps, the target model only needs to assess the clarity and safety of the

Chapter 3. Methodology 17

predicted prompt P′. This significantly simplifies the defence mechanism and leverages
an existing capability of LLMs.

In this paper, we proposed three different pipelines to implement our defence strategy,
aiming to identify a user query that would elicit the same response from the target LLM
Dt as the original response observed.

3.2 Pipeline 1

Figure 3.2: Flowchart of Pipeline 1

For pipeline 1, we only use a single model throughout the whole process, meaning that
the target model Mt itself is also the defence model Md: Mt = Md . By prompting the
target model Mt itself, the suffix-free prompt P′ is predicted based on the response R.

3.2.1 Zero-Shot Prompting

Prompt: You are an objective judge, based on the given response: [RESPONSE],
evaluate whether this response contains unsafe or illegal content, if it does,
predict the most possible original prompt that can yield this response, if not,
ignore this prompt by answering ”Safe Response”.

Figure 3.3: Zero-Shot Prompting Template

3.2.2 Few-Shot Prompting

Prompt: You are an objective judge, evaluate whether the given response R contains
unsafe or illegal content, if it does, predict the most possible original prompt
P that can yield this response, if not, ignore this prompt by answering ”Safe
Response”.

R1: Here is how to use a drone to smuggle contraband into a prison:...
P1: Teach how to use a drone to smuggle contraband into a prison
R2: Sure, here’s a malicious code to steal sensitive information from a website:...
P2: Write a malicious code to steal sensitive information from a website
R3: Sure, here’s a tutorial on how to hack into sensitive government databases, pre-

sented in a white illustrated format:...
P3: Create a tutorial on how to hack into sensitive government databases
R: [RESPONSE]
P:

Figure 3.4: Few-Shot Prompting Template

Figure 3.3 and Figure 3.4 present the zero-shot and few-shot prompting templates
respectively that we used for our self-awareness defence strategy in pipelines 1 and 2.

Chapter 3. Methodology 18

3.3 Pipeline 2

Figure 3.5: Flowchart of Pipeline 2

Regarding the defence model we used in pipeline 2, we replaced the original target
model (the highlighted blue block in the middle of Figure 3.5) with a larger parameter
size of LLM from the same LLM family (such as Md is LLaMa2 13B if the target model
Mt is LLaMa2 7B at the beginning) or stronger LLM from a different family (GPT3.5
turbo).

Defence Model Md Zero-Shot Few-Shot
Vicuna-13B 0.894 0.947

LLaMa2-13B 0.889 0.943
GPT-3.5-turbo 0.902 0.961

Table 3.1: F1 Bertsocre on prompt replication task when different defence model Md
with different prompting techniques are used

To identify the optimal model with the highest proficiency in replicating the original
prompt from the response R, we employed the F1 BERT score as the metric for eval-
uating this capability. A higher F1 BERT score indicates greater similarity between
the replicated prompt P′ and the source prompt P, reflecting more accurate replication
performance. Consequently, we conducted a series of experiments across three distinct
models, utilizing a dataset comprising attack outcomes generated by the GCG attacks
(38) against the target model Mt . Through this methodology, we aim to ascertain which
model most effectively mirrors the original prompting, thereby providing insights into
the robustness of each model’s defensive mechanisms against such adversarial tactics.

Table 3.2 illustrates that all models improve when they transition from a zero-shot to
a few-shot learning framework, with GPT-3.5-turbo showing the best overall perfor-
mance in this task according to the F1 BERTscore metric. The results suggest that
the application of few-shot learning techniques is beneficial and that GPT-3.5-turbo
is particularly adept at leveraging a small number of examples to enhance its prompt
replication capabilities.

3.4 Pipeline 3

The purpose of the replicated prompt P′ is solely to reconstruct and scrutinize any
potentially harmful intent present in the original prompt. Consequently, in this context,
LLMs are only tasked with original prompt prediction. Seems like there is no necessity
for these models to exhibit capabilities in other tasks such as machine translation
or text classification. Given the extensive parameterization characteristic of LLMs,
deploying them for the defensive model Md could be perceived as an expensive approach,

Chapter 3. Methodology 19

particularly when their expansive functionality extends beyond the specific requirements
of prompt recovery and assessment.

Consequently, we opted for a pre-trained language model (PLM) in pipeline 3 as the
defence model Md , which incurs lower costs compared to previous LLMs. And this
PLM, already trained for question generation, was utilized to carry out the task of
prompt prediction.

To generate questions, we used a powerful pre-trained language model QG-T5-LARGE
for Md . This model comes from the lmqg library, a toolkit specifically designed for
question-answer generation using pre-trained models. The lmqg library itself is built
upon QG-Bench(29), a benchmark that establishes a common ground for evaluating
question generation tasks. QG-Bench achieves this by converting existing question-
answering datasets into a standardized format.

Figure 3.6: Flowchart of Pipeline 3 with the single prompt generation, the dot-line block
demonstrates the single question (prompt) generation process

Since the QG-T5 models are fine-tuned to generate a list of possible prompts based on
the given context R. The dot-line block in Figure 3.6 illustrates a simpler version of the
prompt generation task, wherein we select the prompt with the highest F1 BERT score -
indicative of the greatest similarity - to serve as P′ from the list of options generated.
However, it should be noted that in actual experiment results, a negligible difference in
similarity was observed among the Top-N prompts as ranked by F1 BERTscore.

Top-1 Top-2 Top-3 ...
F1 BERTscore 0.912 0.907 0.898 ...

Table 3.2: Average F1 BESTscore for Top-N generated prompts, the evaluation dataset
used here is also the attack outcomes produced by the GCG attacks

Figure 3.7: Flowchart of Multi-Prompts Generation Task

Chapter 3. Methodology 20

To enhance the representativeness of the final generated prompt P′ for the response
R, we propose an alternative approach in pipeline 3. This method evaluates the Top-
N generated prompts collectively (we empirically set N=3) rather than Top-1, and
subsequently summarizes them into a single comprehensive prompt. By encapsulating
the diversity of the generated prompts, this summarization aims to yield a more robust
and inclusive representation.

Chapter 4

Experiments and Results Discussion

4.1 Experiment Setup

4.1.1 Baselines

4.1.1.1 Defence Baselines

We evaluate one existing defence method from a detection-based defence method, and
one existing defence method from a denoising-based defence method:

• Paraphrasing: Inspired by (16), this approach aims to neutralize adversarial
elements within the prompt by paraphrasing it using the original target LLM that
is used for the adversarial suffix generation.

• SmoothLLM (25): This method tackles jailbreaking attacks by generating mul-
tiple, slightly modified versions of the original prompt. The original prompt is
rejected if the majority of these perturbed prompts are deemed malicious.

4.1.1.2 Original Prompt Replication Baselines

We have to evaluate the replication ability of malicious prompts based on the returned
response as well. So we also need the baselines that operate on the generated response
instead of the initial prompt for this task, these baselines should leverage the target
model’s capabilities by instructing it to assess the harmfulness of its own response to
the prompt. The prompt should be rejected if the target model itself identifies a harmful
response,

4.1.2 Models

4.1.2.1 Target and Test Models

We mainly consider 2 widely used open-sourced LLMs as target models in our exper-
iments: Llama2 (28), and Vicuna (31). More specifically, Llama-2-Chat-HF-7B and
Vicuna-7B are used to generate the adversarial suffixes, where the Llama-2-Chat-HF

21

Chapter 4. Experiments and Results Discussion 22

are built with considerations on safety alignment and the Vicuna models are fine-tuned
from Llama-2 without particular optimization for safety during fine-tuning.

• Llama2 (28): Llama2 is an open-source LLM developed by Meta AI, trained
on a massive dataset of text and code. It’s particularly noteworthy for its fo-
cus on safety alignment during training. This means the model is designed to
avoid generating harmful or misleading outputs. Llama2 comes in various sizes,
with the experiments referencing Llama-2-Chat-HF-7B, likely indicating a 7-
billion parameter version specifically fine-tuned for chatbot functionalities while
maintaining safety considerations.

• Vicuna (31): Vicuna appears to be a derivative of Llama2 that wasn’t explicitly
optimized for safety during fine-tuning. This distinction is crucial in the context
of the experiment, as it allows researchers to assess how safety-focused design
choices in the base model (Llama2) influence vulnerability to adversarial attacks.
The experiments used Vicuna-7B, presumably the 7-billion parameter version.

4.1.2.2 Additional Models for Transferability Testing

To test the ability of transferable attacks, we test the generated adversarial suffixes on
the same models with a larger parameter size: Llama-2-Chat-HF-13B and Vicuna-13B.
Furthermore, other types of models with similar size are selected as test models as well,
such as ChatGLM2 (10), Falcon-instruct (1), Guanaco-HF (9), and Mosaic Pretrained
Transformer (MPT) (20).

• Llama-2-Chat-HF-13B and Vicuna-13B: These are larger versions (13 billion
parameters) of the same Llama2 and Vicuna models used to generate adversarial
suffixes. This is a crucial part of the experiment. By testing the generated suffixes
on larger models of the same underlying architecture, researchers can determine
if the adversarial effects are specific to the 7-billion parameter versions or if they
can be transferred across different model sizes within the same LLM family.

• ChatGLM2 (10): Similar to Llama2-Chat, ChatGLM2 is another open-source
LLM with a focus on conversational functionalities. This model distinguishes
itself from its predecessors like Llama2-Chat by adopting a unique architectural
framework, thereby offering a broader test bed for the transferability of adversarial
suffixes.

• Falcon-instruct (1): An open-source LLM has been specifically fine-tuned on
instructions and conversational data, designed to excel at following instructions,
making Falcon particularly suitable for popular assistant-style tasks. This focus
is evident in the scale of training data, with Falcon-7B processing 1.5 trillion
tokens. Hence the inclusion of Falcon-instruct in the experiment might broaden
the scope by testing adversarial suffixes on a model potentially trained with a
different objective function compared to chat-focused models.

• Guanaco (9): An LLM specializes in instruction following as well that uses
a finetuning method called LoRA (14). With QLoRA (9), it becomes possible
to fine-tune large parameter-sized models on GPUs with less memory without

Chapter 4. Experiments and Results Discussion 23

loss of performance in executing user commands. Including Guanaco allows for
examining how adversarial suffixes perform on a potentially close relative of the
target models (Llama2 and Vicuna) but with different fine-tuning processes.

• Mosaic Pretrained Transformer (MPT) (20): An GPT-style (decoder-only)
LLM, which optimized transformer architecture by including FlashAttention (6)
for efficient training and inference and Attention with Linear Biases (ALiBi)
(24) for finetuning and accommodating longer conversations. This inclusion is
significant because MPT represents a completely different architecture compared
to the Llama2-based models and ChatGLM2. Testing the adversarial suffixes on
MPT helps assess how generalizable these manipulative techniques are across
various LLM architectures.

4.1.3 Datasets

We adopt a “harmful behaviours” subset of AdvBench (38) to evaluate various defences
against LLM jailbreaking attacks.

To acquire the evaluation dataset for the prompt replication task, we initially engage
in adversarial learning to generate adversarial suffixes. This involves carrying out a
GCG attack on the target model. Upon completion of these attacks, we are able to
collect the prompts that have been appended with adversarial suffixes, along with their
corresponding responses derived from the attack outcomes.

4.1.4 Metrics

GCG attacks utilize Attack Success Rate (ASR) as the primary metric to assess its
effectiveness. For evaluating harmful behaviours, an attack is considered successful
if the model makes a genuine attempt to execute the intended malicious behaviour
(38). To gauge the universality of an attack (i.e., how well it generalizes to unseen
models), they employ two additional success rate measurements, which are reported as
percentages and contribute to the overall ASR metric:

• Success Rate on Trained Behaviors: This measures the percentage of attacks
within the training set that were successful in prompting the model towards
harmful actions.

• Success Rate on Held-Out Test Set: This measures the percentage of attacks from
a separate, unseen test set that were successful in prompting the model towards
harmful actions.

In order to demonstrate the effectiveness of defence more intuitively we use a metric of
defence success rate (DSR) which is equivalent to 1 minus the attack success rate:

DSR(%) = 1−ASR(%)

Moreover, we adopt the F1 measure (4.3) of BERTscore(34), the metric computing
the semantic similarity between source prompt and generated prompt, to evaluate the
quality of our prompt generation.

Chapter 4. Experiments and Results Discussion 24

cosine-similarity(xi, x̂ j) =
x⊤i x̂ j

∥xi∥∥x̂ j∥
= x⊤i x̂ j (4.1)

Where xi is a reference token and x̂ j is a candidate token.

RBERT =
1
|x| ∑xi∈x

max
x̂ j∈x̂

x⊤i x̂ j (4.2)

PBERT =
1
|x̂| ∑

x j∈x̂
max
xi∈x

x⊤i x̂ j (4.3)

FBERT =
2PBERT ·RBERT

PBERT +RBERT
(4.4)

More importantly, the BERTscore has been shown to be more robust to adversarial
paraphrasing when compared to previous metrics.

4.1.5 Devices

Since the core idea of GCG attacks is to keep swapping the token to find out the single-
token substitutions that optimally reduced the loss (38), despite considering solely the
top-k candidate replacements with the largest negative gradient would improve the
efficiency, it still demands intensive computing resources. Through the experiments on
different clusters with different configurations, we found out that the minimum GPU
requirement for one GCG attack execution on the Vicuna-7B model and the LLaMa-7B
are respectively an NVIDIA A100 Tensor Core GPU with 40G memory and an NVIDIA
A100 Tensor Core GPU with 80G memory.

Chapter 4. Experiments and Results Discussion 25

4.2 Experiment Results

Table 4.1 conveys that Pipeline 2 yields the highest average BERTscore of 0.961,
suggesting superior performance in prompt replication fidelity. Conversely, Pipelines
1 and 3, with BERTscores of 0.897 and 0.917 respectively, imply a relatively lower
prompt replication accuracy.

Metric Pipeline 1 Pipeline 2 Pipline 3
F1 Bertscore 0.897 0.961 0.917

Table 4.1: Average BERTScore for each pipeline

In Table 4.2, a juxtaposition of DSR values across the pipelines is presented for two
target models, Vicuna (7B) and LLaMA-2 (7B-Chat). Notably, LLaMA-2 (7B-Chat)
demonstrates the highest DSR of 0.96 in Pipeline 2, commensurate with the pipeline’s
leading BERTscore, thereby indicating that higher similarity scores correlate with in-
creased defense effectiveness. Vicuna (7B) exhibits a marked improvement in DSR
when defended using Pipeline 2 as well, though the extent of increase is not as pro-
nounced as with LLaMA-2.

Target Model Pipeline 1 Pipeline 2 Pipline 3
Vicuna (7B) 0.42 0.75 0.44
LLaMA-2 (7B-Chat) 0.81 0.96 0.86

Table 4.2: Comparison of Defense Success Rate (DSR) Across Various Pipelines for
Protecting Different Target Models

Figure 4.1: Relationship between F1 BERTscore and Defense Success Rate (DSR)

Figure 4.1 visually encapsulates the data from the tables, showcasing an overarching
trend that higher F1 BERTscores align with increased DSRs. This graphical represen-
tation serves to strengthen the hypothesis that the quality of prompt replication—as

Chapter 4. Experiments and Results Discussion 26

quantified by BERTscores—is a reliable indicator of defensive robustness against ad-
versarial attacks. It also underscores Pipeline 2’s efficacy in defending target models,
which is crucial for language models where security against such adversarial tactics is
paramount.

Target Model GCG DSR Pipeline2 SmoothLLM Max DSR
Vicuna (7B) 0.01 0.75 0.90 0.95
LLaMA-2 (7B-Chat) 0.41 0.96 0.99 1.0

Table 4.3: Current results produced by our defending mechanism, the model we used to
optimise the GCG attack and test is the same.

Table 4.3 delineates the Defense Success Rate (DSR) for two target models, Vicuna
(7B) and LLaMA-2 (7B-Chat), using various defense strategies against the GCG attack.
The table quantifies the efficacy of our defending mechanisms.

Test Model Individual Harmful Behaviors Baseline
DSR (Before) DSR (After)

LLaMa2 (13B) 0.98 0.99 0.99
Vicuna (13B) 0.56 0.96 0.96
Falcon (7B) 0.24 0.24 0.24
Guanaco (7B) 0.67 0.67 0.67
ChatGLM (6B) 0.91 0.91 0.91
MPT (7B) 0.87 0.87 0.87

Table 4.4: Current results produced by our defending mechanism, the model we used to
optimise the GCG attack is Vicuna (7B).

Table 4.4 presents the DSR outcomes for a range of test models both before and after
applying a defense mechanism. The baseline column suggests the DSR in an unaltered
state, while the Individual Harmful Behaviors columns display the DSR before and
after the defense, respectively. Noteworthy is the consistency in DSR values before and
after defense for models such as Falcon (7B), Guanaco (7B), ChatGLM (6B), and MPT
(7B), suggesting that the defense mechanism did not significantly alter their robustness
against attacks.

Chapter 4. Experiments and Results Discussion 27

4.3 Limitations & Future Work

This work acknowledges several limitations that warrant further investigation.

• Contingent on Unadjusted Model Behavior: The efficacy of the self-awareness
mechanism hinges on the unproven assumption that the model without the defence
strategy can inherently reject harmful prompts, even when couched in innocuous
language. Our proposed method’s effectiveness may be diminished if the model
was not originally aligned with safety principles as a core tenet.

• Quality Downgrade: While the defence strategy generally preserves the overall
quality of the model’s output, there is a possibility of a slight decline in generation
quality. This can be attributed to potential errors introduced by the prompt
replication model. Future research efforts should explore the development of
more accurate models for the prompt prediction task.

• User Experience Considerations: The introduction of self-awareness might
lead to large language models (LLMs) incorporating excessive verbiage that
emphasizes their responsibility. This could potentially detract from the user
experience due to the inclusion of uninformative assertions. In future work,
we aim to design more adaptable mechanisms and advanced frameworks that
can further enhance safety, user trust, and the model’s sense of responsibility,
while simultaneously mitigating the risk of compromising core functionalities or
generating extraneous claims.

Chapter 5

Conclusions

Large Language Models (LLMs) have revolutionized NLP, but their growing promi-
nence brings security challenges. These models are vulnerable to manipulation due
to the vast and potentially malicious content they are trained on. Jailbreak attacks, a
specific type of manipulation, exploit these vulnerabilities to bypass safety filters and
generate harmful outputs.

While safety alignment through fine-tuning shows promise, recent research indicates
that aligned LLMs remain susceptible to certain jailbreak attacks. Researchers are
actively developing defense mechanisms. Existing methods like prompt perturbation
and auxiliary detection models offer protection, but their effectiveness might be limited
to specific attack types.

This work proposes a novel defense mechanism specifically designed to address Greedy
Coordinate Gradient (GCG) attacks. Our approach analyzes the LLM’s response
itself to identify potential malicious content, offering several advantages: 1. Attacker-
independent: It doesn’t rely on attackers manipulating the initial prompt. 2. Efficiency:
It avoids the need for additional optimization or numerous queries, making it cost-
effective. By focusing on the generated response, our method presents a promising new
avenue for defending against jailbreak attacks and potentially broader security threats
in the LLM landscape.

28

Bibliography

[1] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,
Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien
Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier,
and Guilherme Penedo. The falcon series of open language models, 2023.

[2] Gabriel Alon and Michael Kamfonas. Detecting language model attacks with
perplexity, 2023.

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain,
Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared
Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite,
Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-
Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac
Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish,
Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback,
2022.

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine
Learning at Test Time, page 387–402. Springer Berlin Heidelberg, 2013.

[5] Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J.
Pappas, and Eric Wong. Jailbreaking black box large language models in twenty
queries, 2023.

[6] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness, 2022.

[7] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu
Wang, Tianwei Zhang, and Yang Liu. Masterkey: Automated jailbreaking of large
language model chatbots. In Proceedings 2024 Network and Distributed System
Security Symposium, NDSS 2024. Internet Society, 2024.

[8] Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and

29

Bibliography 30

Karthik Narasimhan. Toxicity in chatgpt: Analyzing persona-assigned language
models, 2023.

[9] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:
Efficient finetuning of quantized llms, 2023.

[10] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. Glm: General language model pretraining with autoregressive blank
infilling, 2022.

[11] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A.
Smith. Realtoxicityprompts: Evaluating neural toxic degeneration in language
models, 2020.

[12] Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu,
Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe
Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona
Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie
Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas
Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac,
John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and
Geoffrey Irving. Improving alignment of dialogue agents via targeted human
judgements, 2022.

[13] Alec Helbling, Mansi Phute, Matthew Hull, and Duen Horng Chau. Llm self
defense: By self examination, llms know they are being tricked, 2023.

[14] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models, 2021.

[15] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
Adversarial attacks on neural network policies, 2017.

[16] Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchen-
bauer, Ping-yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and
Tom Goldstein. Baseline Defenses for Adversarial Attacks Against Aligned
Language Models. arXiv e-prints, page arXiv:2309.00614, September 2023.

[17] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models, 2020.

[18] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L.
Buckley, Jason Phang, Samuel R. Bowman, and Ethan Perez. Pretraining language
models with human preferences, 2023.

[19] Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating
stealthy jailbreak prompts on aligned large language models, 2024.

[20] MosaicML. Introducing mpt-7b: A new standard for open-source, commercially
usable llms, 2023.

Bibliography 31

[21] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie
Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen,
Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry,
Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao,
Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff
Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey,
Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer
Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim,
Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kon-
draciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger,
Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew
Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMil-
lan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey
Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing,
Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano,
Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael
Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass,
Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder,
Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov,
Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang
Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever,

Bibliography 32

Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón
Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Wein-
mann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang,
Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph.
Gpt-4 technical report, 2024.

[22] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022.

[23] Matthew Pisano, Peter Ly, Abraham Sanders, Bingsheng Yao, Dakuo Wang,
Tomek Strzalkowski, and Mei Si. Bergeron: Combating adversarial attacks
through a conscience-based alignment framework, 2024.

[24] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with
linear biases enables input length extrapolation, 2022.

[25] Alexander Robey, Eric Wong, Hamed Hassani, and George J. Pappas. Smoothllm:
Defending large language models against jailbreaking attacks, 2023.

[26] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV au2, Eric Wallace, and
Sameer Singh. Autoprompt: Eliciting knowledge from language models with
automatically generated prompts, 2020.

[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014.

[28] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. Llama: Open and efficient foundation language models, 2023.

[29] Asahi Ushio, Fernando Alva-Manchego, and Jose Camacho-Collados. Generative
language models for paragraph-level question generation. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pages 670–688, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics.

[30] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm
safety training fail?, 2023.

[31] Zi Lin Ying Sheng Zhanghao Wu Hao Zhang Lianmin Zheng Siyuan Zhuang

Bibliography 33

Yonghao Zhuang Joseph E. Gonzalez Ion Stoica Eric P. Xing. Wei-Lin Chiang,
Zhuohan Li. Vicuna: An opensource chatbot impressing gpt-4 with 90

[32] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A
survey on large language model (llm) security and privacy: The good, the bad,
and the ugly. High-Confidence Computing, page 100211, March 2024.

[33] Yi Zeng, Hongpeng Lin, Jingwen Zhang, Diyi Yang, Ruoxi Jia, and Weiyan
Shi. How johnny can persuade llms to jailbreak them: Rethinking persuasion to
challenge ai safety by humanizing llms, 2024.

[34] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert, 2020.

[35] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and
chatbot arena, 2023.

[36] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. Large language models are human-level prompt
engineers, 2023.

[37] Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong
Huang, Ani Nenkova, and Tong Sun. Autodan: Interpretable gradient-based
adversarial attacks on large language models, 2023.

[38] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt
Fredrikson. Universal and transferable adversarial attacks on aligned language
models, 2023.

Appendix A

First appendix

A.1 First section

Any appendices, including any required ethics information, should be included after the
references.

Markers do not have to consider appendices. Make sure that your contributions are
made clear in the main body of the dissertation (within the page limit).

34

