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Abstract
Account access graphs enable the comprehensive modelling and analysis of an individ-
ual’s account ecosystem to identify security vulnerabilities exploitable by malicious
actors [8]. These models incorporate the connections between accounts, credentials
and devices to facilitate their analysis. However, there is often a lack of consideration
regarding the extent to which an individual’s account setup can be uncovered through
data available in the public domain, potentially leaving it vulnerable to exploitation.
In an attempt to address this, we conducted a participant study. This study aimed to
determine how much of an individual’s data can be uncovered in the public domain
using Open-Source Intelligence (OSINT) tools. We then model this data using account
access graphs to analyse and identify security vulnerabilities. Subsequently, we evalu-
ate the accuracy of these tools by comparing the account access graphs generated to
participant-provided data. Using the participant-provided data, we further analyse their
security setups and highlight common security behaviour across participants. We also
developed and implemented a tool for generating account access graphs.

By leveraging OSINT tools, we uncovered over half of each participant’s data. We
successfully discovered at least one email account for each participant and, in some
cases, uncovered all their email accounts. Additionally, half of the participants had their
phone numbers revealed, along with a substantial number of accounts. In some cases,
more accounts were discovered for a participant than they had provided. The abundance
of data uncovered using OSINT tools and the resulting account access graph that can be
generated using this data stresses the extent to which an individual’s security setup can
be revealed online. This emphasises the need for robust authentication methods and the
reduction of interconnections between accounts.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing digitisation of society has required digital users to maintain a more
significant number of accounts across a variety of different services. Consequently,
individuals are consistently urged to adopt unique passwords and enable two-factor
authentication across all their accounts [1]. This advice stems from the belief that
an individual’s overall online security is solely correlated with the protection of their
individual accounts through robust authentication methods. However, a notion that is
often overlooked is that an individual’s accounts are not isolated and are instead inter-
connected, either directly or indirectly. Therefore, while robust authentication methods
may enhance their security, they may not fully protect against security vulnerabilities
stemming from account connections. The interconnection of accounts within a user’s
online setup can pose substantial risks to an individual’s overall security, especially
if a critical account is compromised. Breaching an individual’s online setup could
lead to the compromise of vital accounts, potentially enabling access to bank accounts
and facilitating theft. For instance, using an email address as a recovery mechanism
for a social media account links a personal email address to a specific username on a
social network. This same email address may also be linked to their Revolut account,
illustrating how a compromise in one account could lead to a compromised chain of
accounts.

Previous research proposed modelling a user’s online account setup using account
access graphs that illustrate the connections between accounts, credentials, and devices
[8]. These models identify weaknesses in an individual’s account ecosystems to prevent
malicious actors from compromising them. By enabling tailored advice rather than
generic recommendations designed to fit all individuals in society, these models offer a
more personalised approach to enhancing online security.

While modelling an individual’s online account ecosystem using provided data is highly
beneficial for analysing and identifying vulnerabilities in one’s setup, it fails to consider
the data a malicious adversary can obtain online. This is concerning because individuals
might not realise the extent to which their online account setup can be extrapolated and
modelled to pinpoint weaknesses. Furthermore, this process enables a malicious actor
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Chapter 1. Introduction 2

to uncover accounts and credentials that an individual has overlooked or not considered,
allowing them to identify the most efficient entry points into an individual’s security
setup. Therefore, it is essential to consider the data that could be obtained about an
individual through the public domain and emphasis should be especially placed on
ensuring adequate protection of these accounts that may be uncovered online. The
ability of a malicious adversary to uncover an individual’s credentials and accounts
from the internet to model their online security setup and compromise it serves as a
strong motivation for this project.

1.2 Project’s Goals and Contributions

The goals of this project were as follows:

• Evaluate the proficiency of OSINT tools in uncovering a participant’s account
connection setup using data found on the internet

• Carry out analysis on participants’ actual account connection setup using provided
data to identify vulnerabilities.

• Design and implement a robust and intuitive Java tool that generates account
access graphs using provided data.

• Identify common trends in security behaviour among participants.

The project’s contributions were as follows:

• Assessment of the effectiveness and accuracy of various OSINT tools in gathering
data regarding participants’ account connection setups. Identification of strengths
and limitations of OSINT tools in this context.

• Identification of vulnerabilities, weaknesses and patterns in participants’ account
ecosystems. Insights into common security weaknesses and areas for improve-
ment among participants.

• Implementation of a user-friendly tool for generating account access graphs.

1.3 Outline

This report is structured as follows: Chapter 2 delves into account access graphs and
introduces Open-Source Intelligence. Chapter 3 outlines the design of the participant
study, the methodology for gathering data using OSINT tools, and the design of the
Java tool. Chapter 4 discusses the implementation and testing of the Java tool. Chapter
5 presents the experimental results and their evaluation. Finally, Chapter 6 summarises
the report and discusses potential future work.



Chapter 2

Background Research

2.1 Account Access Graphs

Comprehensive modelling of an individual’s unique security setup enables the analysis
of the security of individual accounts and the connections that form among the user’s
accounts, devices, credentials, keys, and documents. This is achievable through the use
of a formalism called an Account access graph [8], which facilitates the discovery of
vulnerabilities within a user’s setup that could be exploited by an attacker. The formal
definition of an account access graph can be stated as:

Definition 1. An account access graph is a directed graph G = (VG,EG,CG), where VG
are vertices, CG are colors, and EG ⊆ VG× VG ×CG are directed colored edges.

An example of an account access graph is illustrated in Figure2.1. The online shop
account accshop can be accessed using the password pwdshop or recovered using the
email account accmail. The email account requires two-factor authentication with
password pwdshop and a code that is generated using an authenticator app on the device.
This device can be unlocked with either the PIN or fingerprint.

Figure 2.1: Example Account Access Graph

The edge colours of a graph signify the access permissions associated with a vertex. If
multiple edges of the same colour point to vertex v, then all source vertices are used
in conjunction to authenticate the user. Equally, different coloured edges pointing to
vertex v represent the various authentication methods a user can use to authenticate
themselves. The edges of an account access graph serve a multitude of purposes, such

3
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as connecting a credential to an account to indicate its use for user authentication or
linking one account to another for single-sign-on purposes.

The access set of an account can be defined as the minimal sets of credentials that are
sufficient to provide access to the account. Using this definition, we can formally define
the access base of a vertex as:

Definition 2. The access base AccessBase(v,Vinit ) of a vertex v with respect to a set
of initial vertices Vinit consists of the minimal access sets V that only contain vertices
from Vinit. . AccessBase(v,Vinit ) := {V ∈MinAccessTo(v) | V ⊆ Vinit }.

The access base of an account models the elements needed to compromise it, as indicated
by the credential or account leaf nodes pointing to it in the graph. Each access set within
the access base is distinguishable by the shared colour of the originating edges.

Assessing the effectiveness of a user’s security setup involves considering additional,
sometimes hard-to-measure, factors beyond what is visible in their account access
graph. For instance, not all accounts a user possesses carry the same importance. An
email account used as a recovery mechanism for all of the user’s social media and
online banking accounts will hold greater significance than an account with a high-street
retailer. Furthermore, individuals may also face varying levels of risk of having their
possessions stolen. To account for these hidden factors, a security scoring scheme
introduced in [8] evaluates the security of an account using its access base, where a
higher score signifies a more secure account. The formal definition of the security
scoring scheme for an account access graph can be defined as:

Definition 3. A security scoring scheme for an account access graph G is a 6-tuple (
D,≤,Vinit , Init, Eval, Combine), where:

• D is the domain over which scores are defined.

• ≤ is a partial order relating elements in D.

• Vinit ⊆ VG is called the set of initial vertices.

• Init : Vinit → D maps initial vertices to initial scores.

• Eval: PM(D)→ D maps a multiset of initial scores (of vertices in an access set)
to an intermediate score (for that access set).

• Combine: P(D)→ D maps a set of intermediate scores (of access sets in a
vertex’s access base) to a score (for that vertex).

Given Eval, we define an auxiliary function EvalSet: P (Vinit )→ D that directly maps
an access set to its intermediate score by first computing the initial scores of its vertices
and then applying Eval.

EvalSet(S ) := Eval
({

Init
(
v′
)
| v′ ∈ S

})
.

We then define the following score function Score: VG → D, which directly maps a
vertex to its (final) score:

Score(v) := Combine({EvalSet(S ) | S ∈ AccessBase(v,Vinit )}) .
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Intermediate scores can be computed using either a maximum or sum function to capture
the conjunction of credentials required to access an account. The vertex’s overall score
is determined using a minimum function, representing the disjunction of required access
sets. A variety of scoring schemes can be defined depending on the purpose and the
complexity of the graph. For example, a simple scoring scheme assigns natural numbers
to vertices to calculate both intermediate and overall scores that determine how secure an
account is. Meanwhile, a complex scoring scheme factors in attacker-related variables
such as location and skill set, assigning higher capabilities to local attackers than remote
ones. It also categorises skill levels as none, some, or expert. Vertices in the graph
are scored using attribute tuples denoting attacker location and skill set. This scoring
scheme evaluates each account based on the weakest attacker capable of compromising
it, preventing any misrepresentation of the attacker’s capabilities. For instance, if an
account has a score of (remote, some), then a remote attacker with some special hacking
skills could compromise that account. An extension of the account access graph in
Figure 2.1 made to include attacker attribute tuples is illustrated in Figure2.2.

Figure 2.2: Account Access Graph Extended to Include Attacker Attribute Tuples

Moreover, scoring schemes can help identify critical vertices in a user’s graph that
pose a significant risk if compromised due to their access to numerous other vertices.
In a centrality scoring scheme, vertices are assigned scores based on how frequently
they appear in the access set of other vertices. Each vertex has a minimum centrality
score of one, as it is an element of its own access set. Therefore, vertices that appear in
the access sets of a large number of other vertices will receive high centrality scores,
indicating their importance in the user’s security setup. For example, a participant study
detailed in [7] found that the most central vertex in their participants’ account access
graphs was often an internet-connected device. It was found that participants frequently
used their devices to access accounts through open sessions or passwords saved on the
device.

Identifying the most central vertices in an account access graph aids in revealing
the presence of cycles within the graph. Cycles occur when multiple vertices are
interconnected through both incoming and outgoing edges. A cycle that includes a
critical vertex can result in high centrality scores for the other vertices within the cycle
because of the abundance of connections the critical vertex has with other vertices.
Therefore, it is necessary to ensure the adequate protection of these central vertices.

The scoring scheme previously introduced can be adapted to assess the likelihood
of a user getting locked out of their account by considering the account’s recovery
mechanisms. Recovery mechanisms allow users to regain access if they forget or lose
their authentication credentials. While convenient, these mechanisms may also pose
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security risks, providing an additional access point that adversaries could exploit. A
high recoverability score suggests a user is less likely to experience account lockout.
However, to consider the recoverability of an account, the scoring scheme defined in
Definition 3 needs to be adapted to evaluate the lockout base of an account instead of
its access base. Before defining the lockout base of an account, we need to define the
lockout set for a vertex v as the set of vertices V that if the user does not have access to
any credential or account in V, the user cannot access v. We can then proceed to define
the lockout base of a vertex v as:

Definition 4. The lockout base LockoutBase (v,Vinit ) of a vertex v with respect to a set
of initial vertices Vinit consists of the minimal lockout sets that only contain vertices
from Vinit. . LockoutBase(v,Vinit ) := {V ∈MinLockout(v) | V ⊆ Vinit }.

The application of scoring schemes for recoverability enables the analysis of whether
an account possesses backdoor access that is more easily exploitable through recovery
mechanisms than primary authentication methods. This analysis involves comparing
the scores derived from the original account access graph with those obtained from
a modified version where the recovery edges have been removed. If the score of the
original graph is lower than the modified one, it indicates a potential backdoor into the
account. Furthermore, scoring can also be applied for risk analysis to determine which
accounts’ security should be prioritised. A higher score suggests it is a more critical
account that warrants more robust security measures.

2.2 Account Access Graphs With State

Account access graphs effectively visualise a user’s security setup and facilitate the
analysis of its static security properties. However, a limitation of these models is their
inability to consider modifications to a user’s account access graph, which results from
an attacker disconnecting an account or device from the user’s account ecosystem. To
address this limitation, [2] proposes considering account access graphs as states in a
state transition system, where tactics are used to transition from one account access
graph to another. These extended graphs include state information that indicates which
vertices are accessed by different parties, such as the user or an adversary. States are
assigned to a vertex using a mapping technique that assigns a set of parties to each
vertex. To formally define an account access graph with state, we will first introduce
several key elements. LetV be a countably infinite set of vertices (representing, e.g.,
accounts, devices, credentials), ranged over by (possibly indexed) variables u and v. Let
L be a countably infinite set of labels (for access methods) ranged over by l andA be
a set of participants, typically a user and an attacker, ranged over by a. We can now
formally define an account access graph with state:

Definition 5. (Account Access Graphs with State). An account access graph with state
is a triple G = (V,E,A) where V ⊂V is a finite set of vertices, E : (V ×V)→ 2L is a map
labelling pairs of vertices with finite sets of access methods, pairs of vertices labelled
with a non-empty set of access methods are edges, and A : V → 2A is a map labelling
vertices with a finite set of participants.

In Definition 5, the original concept of multiple coloured edges pointing to a vertex is



Chapter 2. Background Research 7

replaced by a single edge assigned a set of labels denoting access methods. Edges with
the same label pointing to a vertex v are used together for authentication, while different
labels indicate alternative methods. A user can access a vertex v if they have access to
all vertices with an edge pointing to v that share the same label. The differences in the
original account access graph’s definition and its extended definition are illustrated in
Figure 2.3.

(a) Account Access Graph (b) Account Access Graph with State

Figure 2.3: Illustration of Differences in Account Access Graphs

The creation of a state transition system enables the graph to capture the evolution
of account or credential access over time. This system accounts for changes due to
access route utilisation and the addition or removal of accounts and credentials by
both users and adversaries. Moreover, it introduces the ability to represent account
takeover attacks, which couldn’t be represented in the original account access graphs.
Modelling these attacks is essential to understand how changes in device or account
access, as a result of a user’s or adversary’s actions, can impact the overall security
of the user’s ecosystem. Furthermore, properties can serve as predicates to capture
graph structure and the impact of user or adversary actions on the vertices in the graph.
These properties can denote the effect transition relations have on an account access
graph without altering its structure. Transition relations offer a methodology for altering
access to vertices, either individually or collectively, through account access graph
operations such as changing the graph state, discovering new accounts, or losing access
to an account. These operations involve adding or removing vertices and edges, which
can only be executed by a user or an attacker.

Account access graph operations can be executed using tactics that are expressed
using clearly defined semantics. Tactics provide a mechanism to model and record
attacker techniques or resilience strategies by creating small programs in a domain-
specific language. The effectiveness of a tactic is assessed based on the predefined
criteria established for the graph. From a user’s perspective, tactics represent the user
trying to satisfy a security requirement and ensure the security of an account/credential.
Meanwhile, from the perspective of an attacker, they represent an adversary trying
to break the security requirements a user has in place. Tactics allow us to gain an
understanding of attacks that target a particular set of accounts. This was demonstrated
in the case study outlined in [2], where tactics were employed to examine potential
methods by which an attacker could compromise a user’s account ecosystem. The
scenario was based on a news article published by The Wall Street Journal ([18]).
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The article detailed an incident where thieves targeted an individual in a bar, ultimately
obtaining the victim’s phone PIN and stealing their iPhone. With knowledge of the PIN
and possession of the device, they locked the victim out of their accounts and gained
unauthorised access to their sensitive data and bank accounts by removing the victim’s
access to their data from all their Apple devices. By modelling this scenario using
tactics, the authors of [2] could disprove two claims made by the Wall Street Journal.
The first claim made was Apple’s screen time feature could have acted as a defence
measure against the attack. Secondly, the article suggested that a similar attack could be
carried out on an Android phone. Through the use of tactics, it was determined that the
Google account logged into an Android phone could not be compromised in the same
manner as the AppleID account presented in the article. As a result, the adversaries
would not have experienced the same outcome presented in the article had they stolen
an Android Phone. However, it was found that specific Android devices that required
their own manufacturer accounts could be compromised in a manner similar to Apple
devices.

2.3 Limitation of Account Access Graphs

While account access graphs provide a practical and precise method for analysing
security attributes within a user’s security ecosystem, they do not differentiate between
an account’s primary and backup authentication methods. This distinction is crucial as
the process and effectiveness of these mechanisms may vary in practice. Consequently,
assessing the risks associated with authentication within an ecosystem using account
access graphs may not be as precise as initially believed.

To address this limitation, the authors of [16] proposed the Authentication Analysis
Framework (AAF) to evaluate authentication risks logically. The AAF approach sug-
gests separating the analysis of authentication methods from that of the account access
graph. It considers the quality and reliability of both primary and fallback authentication
methods and the account type. This assessment involves ranking authentication methods
and account types based on associated security and accessibility risks using maturity
tables as reference. Using these tables, account access graphs can now be analysed to
derive a more accurate security score for each user account.

The global security score for an account is calculated based on the connections between
accounts and the individual account score. A protection score is then generated using
a scale that reflects the type of account being analysed. The protection score is then
compared against the actual security score to determine how protected an account is. If
the actual score exceeds the protection score, the account is secure. If they match, the
account is adequately protected. If the actual score is lower, security improvements are
needed.

Additionally, account accessibility is assessed to determine the risk of user access
loss. Accordingly, an accessibility score is generated to indicate the diversity of the
independent recovery authentication options available. A high accessibility score
signifies a low risk of a user losing access, while a score below 1 indicates a high risk.
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2.4 Account Access Graphs in Other Contexts

The underlying concept of account access graphs can extend beyond user security setups.
For instance, they can be adapted to represent file access control within a SecureSim
for a certificate-based authentication scheme ([23]). Within this SIM, access control
acts as an organisational framework categorising all SIM files into six distinct classes,
enabling permission customisation for various files. Access graphs model the relations
in the SIM’s access control using three node types: file node, profile node, and schema
node. A file node represents an individual file, a profile node denotes a collection of
files, and a schema node outlines the policy for an entity. Profile nodes collate files into
predefined categories, each linked to a profile node. With the access graph generated,
as illustrated in Figure 2.4, the management of access control for the nodes can be
modeled. This allows the determination of the file access permissions granted by the
SecureSim to an entity based on the privilege of its leaf node.

Figure 2.4: SIM File Access Modelled Using an Access Graph

2.5 Open-Source Intelligence

Open-Source Intelligence (OSINT) involves collecting and analysing data from open
sources such as public records, social media, websites, and the dark web [4]. It is utilised
by various groups or individuals, including governments, investigators, and hackers.
OSINT comes in two forms: passive and active. Passive collection involves gathering
data without interacting with the target, while active OSINT consists in engaging with
the target directly, such as adding them on social media or messaging them. Passive
OSINT carries a low risk of attribution, whereas active OSINT can lead to a higher risk
of attribution [6]. Open-Source Intelligence typically works in a four-stage process:

1. Collection: Gathering publicly available information on a target using various
sources.

2. Processing: Processing the data obtained to remove duplicate, irrelevant, or
inaccurate data and filtering and categorising based on relevance and importance.

3. Analysis: Identifying trends, patterns, and relationships in the data obtained using
data visualisation tools, data mining, and natural language processing.

4. Dissemination: Presenting the intelligence to the necessary subject

While national security teams and law enforcement commonly employ Open-Source
Intelligence to protect organisations and society from threats, its use has sparked contro-
versy over the utilisation of the data obtained using these tools. Concerns arise regarding
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legality, where although accessing and analysing the data obtained through these tools
is legal, it can be used to support malicious actors in illegal activities. Additionally,
ethical concerns arise regarding the appropriate use of the obtained information, empha-
sising the need for its use in legitimate and legal contexts and not to perform harm to
others. Lastly, the data obtained raises privacy concerns due to the extensive personal
information available in the public domain. Individuals often share such data without
considering its full implications, allowing for the creation of detailed profiles that can
compromise privacy [4].

2.6 Case Study - Exploiting Publicly Available Data

The following case study illustrates how attackers exploit publicly available information
to compromise an individual’s account ecosystem, posing significant risks to individuals,
as demonstrated by the targeted attack on journalist Mat Honan[10]. Below, the steps of
the attack are outlined:

1. Hackers identified the victim’s Gmail address by generating random email prefixes
using the journalist’s name. They then located the victim’s recovery email
address through the recovery method of the Gmail account, successfully deducing
the complete address through character analysis and brute force despite partial
obscuration.

2. The domain of the newfound email address indicated to the hackers that the
victim had an Apple ID account. Further reconnaissance in the public domain
revealed the victim’s Amazon account associated with the newly uncovered email
address. The hackers then deceived Amazon customer support by impersonating
the victim and adding a new credit card to the account using only the victim’s
name, email address, and billing address — all found through the public domain.
Later, they contacted Amazon, claiming to have lost access to the account and
requested to add a new email address, requiring only the name, billing address,
and one of the credit card numbers associated with the account. This allowed
them to reset the Amazon password using the newly added email.

3. The hackers then contacted Apple Support to access the victim’s Apple ID through
recovery mechanisms. They only needed to provide the associated email address,
billing address, and the last four digits of the credit card linked to the account,
which was obtained from the victim’s Amazon account. After gaining access to
the victim’s Apple ID account, the hackers changed the password and logged the
account out from all devices. This action prevented the victim from accessing
their devices and changing their Apple ID password. Access to the victim’s Apple
ID account allowed entry to the victim’s Apple Mail account.

4. Subsequently, this access enabled the recovery of the victim’s Gmail password,
granting the hackers access to both email accounts. This allowed them to com-
promise the victim’s Twitter account to post racist and homophobic content,
tarnishing the victim’s reputation.



Chapter 3

Methodology and Design

3.1 Acquiring Data for Account Access Graphs through
a Participant Study

3.1.1 Setting up the Participant Study

A study was conducted to gather authentic data for the generation of account access
graphs that could be analysed. This study involved 10 participants spanning an age range
from 19 to 66. The benefits of this extensive age range allowed the account access graphs
generated to be representative of society as much as possible and aided in capturing the
diverse security behaviours exhibited across different age groups [20][21][15]. Ensuring
the participant pool was sufficiently large and diverse was beneficial for testing the
search space of the Open-Source Intelligence (OSINT) tools. It allowed for assessing
their ability to identify the accounts held by individuals with varying internet presence
across diverse age groups. This extends to the analysis of the participant’s account
access graphs, where the adaptability of these graphs could be tested with respect to
the varying data being modelled and how they can still be beneficial in identifying
weaknesses within the account security setup.

The study comprised three stages. Firstly, approval was obtained from the Informatics
Ethics Board to conduct the study, where each participant received an information sheet
and consent form for their participation. The participant information sheet can be found
in Appendix C, and the participant consent form can be found in Appendix D. The
second stage involved using Open-Source Intelligence tools to gather each participant’s
publicly available data, including credentials like email addresses, phone numbers, and
owned accounts. Subsequently, this data was utilised to generate an account access
graph. Finally, the third stage entailed collecting data directly from the participants to
create an account access graph of their provided data.

3.1.2 Open-Source Intelligence Tools

OSINT tools were utilised to replicate the process by which a malicious actor collects
intelligence from public domains such as social media, public records, reports, news

11
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articles, and search engines to compromise a victim’s security setup. These tools
leverage natural language processing and machine learning techniques to facilitate data
extraction. A suite of OSINT tools was utilised to ensure comprehensive coverage of
each participant’s data. The study outlined specific requirements that had to be met for
employing an OSINT tool, including the following:

• The search domain should encompass a diverse array of sources.

• Each tool’s search domain should include unique sources not covered by other
tools.

• The search method employed by each tool should be distinct.

• The data retrieved by the tools should be relevant for generating account access
graphs.

• The tool should feature an intuitive user interface or be accompanied by compre-
hensive documentation for ease of use.

• The data obtained from the tools should be presented in an easily readable and
interpretable format.

• The tool should be available for use without requiring a subscription or payment.

The OSINT tools that were employed to extract data for each participant are detailed in
the subsequent subsections.

3.1.2.1 Spiderfoot

Spiderfoot is a Python-based reconnaissance tool that integrates over 100 public data
sources to gather and analyse information such as email addresses, phone numbers,
names, usernames, IP addresses, CIDR ranges, domains, subdomains, and BTC ad-
dresses [3]. The tool covers many data sources, including social media platforms, public
records databases, email and phone number records, repositories, search engines, data
breach databases, and file metadata extraction tools. To maximise Spiderfoot’s capabili-
ties, optional API keys were obtained for specific modules to broaden the search scope
and ensure thorough scans. The tool conducts searches using various combinations
and permutations of the target’s name to obtain data on each individual, such as their
email addresses, phone numbers, usernames and online accounts. For instance, it either
inserts a full stop between the target’s first and last names or appends an underscore
at the end of their first and last names. For example foo.bar@gmail.com or @foo-
bar . Additionally, the tool’s codebase was expanded to enhance the tool’s efficiency
and broaden the search scope by incorporating various symbols in different positions
within potential usernames and email addresses. Numbers were also introduced into
the search space, along with the initials of the participants’ first and last names. For
example, these credentials could take the form of @foo.bar , foo.bar3@gmail.com, or
f.bar1@yahoo.com. Spiderfoot utilises a command-line interface and a web-based GUI
for conducting searches [17]. The web-based GUI was primarily utilised in this study
due to its ease of interpretability and to mitigate the risk of accidentally overlooking
retrieved data, which is more likely to occur when using the command-line interface.
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The search target is specified using the GUI, which then displays the acquired data, as
show in Figure 3.1.

(a) Overview of Data Obtained on Partici-
pant

(b) Example of Results Obtained from
Search

Figure 3.1: The Presentation of Data Obtained using Spiderfoot in the GUI

3.1.2.2 Maltego

Maltego is a Java program that functions as a data mining tool to extract information
from various public sources such as DNS records, Whois Records, search engines,
and social networks. This tool allows graphs to be created consisting of names, email
addresses, phone numbers, and other identifiable information, such as the usernames of
accounts. Once the graph for a participant is created, transforms are invoked to carry
out a search using the provided data to further derive information on a target [12]. An
example of the graph created for each participant is provided in Figure3.2.

For individual users, this program has two available versions: Maltego CE and Maltego
Pro. Each version uses a different number of sources. In this project, the Maltego CE
version was utilised due to the prohibitive price point of 4999 euros for the Pro version.
Maltego CE provides limited access to data sources and APIs (which require additional
API keys obtained through website registration). However, the APIs that are available
for use are restricted based on the program version [22]. This subsequently affected the
amount of data that could be collected on each participant using this tool. The Maltego
CE version can only extract 12 results per API use for a search on an individual, whereas
the Maltego Pro version can return up to 64,000 results. Additionally, the Maltego Pro
version has access to commercial data, which the Maltego CE version lacks.

3.1.2.3 theHarvester

theHarvester is a Python data scraping tool that utilises over 30 different data sources to
obtain emails, subdomains, social media profiles, IPs, and URLs related to a target. This
tool utilises search engines such as Google, Bing, Yahoo, and social media platforms
like Twitter and Trello, as well as miscellaneous data sources such as DNSdumpster
and the Exalead metadata engine[11]. Furthermore, Netcraft Data Mining and the
AlienVault Open Threat Exchange are also used to further the tool’s goal. To ensure the
tool’s full utilisation, several API keys were obtained to access specific data sources
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Figure 3.2: Graph Created Using Participant Data to Discover their Phone Number

and maximise the tool’s search space. theHarvester utilises a command-line interface
to conduct searches where results are also displayed. In Figure 3.3, a search was carried
out to discover a participant’s email address using their name and the queried email
domain.

Figure 3.3: Email Addresses Obtained for Participant Following Search

3.1.2.4 SEON Reverse Email/Phone Number Lookup

SEON Reverse Email/Phone Number Lookup is a data enrichment tool that searches
public records and databases to find associations and all instances associated with the
queried email address or phone number. It retrieves information about the owner of
the queried credential, including personal data such as their name, address, and online
accounts. In some cases, links to the accounts discovered are provided. This tool
operates by being given an email address or phone number from its user, where it scans
publicly available records to find matches between the input query and data found in
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public records. Finally, it presents the matched records. Figure 3.4 illustrates the results
of a reverse email lookup conducted using one of the participant’s email addresses. For
this project, the SEON Reverse Email address/Phone Number lookup tool was used,
which only required registering an account with them and starting a 30-day free trial
[9]. However, finding an appropriate reverse lookup tool required extensive trial and
error. This was the case because most reverse email/phone number lookups are based in
the US, and so, accordingly, they utilised US databases, which was not helpful for the
study’s participants. Therefore, no results could be obtained using these lookup tools.
Additionally, many reverse lookup tools found through search engines returned results
related to the individual’s name, address, previous addresses, and public records rather
than their credentials and accounts. At the same time, other reverse lookup services
obscured their results behind a paywall, with no guarantee that they were genuine.
Consequently, these types of reverse lookup tools could not be utilised.

Figure 3.4: Results Obtained From Reverse Email Lookup Tool

3.1.3 Methodology for Obtaining Participant Data Using OSINT
Tools

The process of obtaining data for each participant in the study was approached from the
perspective of an attacker. Initially, the only identifiable information used to begin the
search for a participant’s accounts and credentials was their first and last names. A TOR
browser was used to ensure the integrity of the data and prevent any bias from previous
search results or online interactions. This browser provided anonymity, ensured private
browsing sessions, and concealed the source IP address and browsing habits, mimicking
the actions of an attacker [19].

The steps of how data was obtained for each participant were as follows and are
illustrated in Figure 3.5:

1. The first tool used was Spiderfoot, where a search was conducted based on the
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participant’s name. The accounts and the associated usernames found were then
verified to determine whether they belonged to the participant. Additionally, the
credentials (email address, phone number) returned from the search were recorded
for later verification using the SEON Reverse Email/Phone Number Lookup tool.

2. Secondly, theHarvester was employed to harvest as much data on the participant
as possible. Searches were conducted using the participant’s name and possible
email domains to find potential email addresses and social media profiles. Fur-
thermore, as a verification mechanism, searches were conducted using the email
addresses found using Spiderfoot to scrape the names and social media profiles
linked to the email addresses.

3. The Maltego program was then utilised to compile all the data gathered from the
previous tools into a graph. These graphs facilitated the formation of connections
between the data, enabling Maltego to derive patterns and trends and obtain
additional data such as accounts, email addresses, and phone numbers.

4. Finally, reverse email and phone number lookups were conducted to verify the
validity of the email addresses and phone numbers found. Additionally, these
searches aimed to discover the accounts registered to these credentials and to cross-
reference them with the accounts previously found to confirm their association
with the participant in question. Verifying that the accounts and credentials
belonged to the participants was crucial for ensuring the accuracy of the generated
graphs and that they were truly representative of the credentials and accounts
that belonged to each participant. Any errors in identifying whether an account
or credential belonged to a participant could impact their entire account access
graph, potentially undermining the accuracy of the security setup model and
its integrity. Consequently, unverifiable credentials or accounts were discarded
during this process and were not included in their respective graph.

Figure 3.5: Flow chart depicting the sequence of OSINT tools used to obtain data
with their respective inputs and outputs



Chapter 3. Methodology and Design 17

3.1.4 Discarded OSINT Tools Trialed

The process of selecting which OSINT tool to use for the study involved conducting
experiments to assess their applicability and determine whether they would extract
the data needed to generate the account access graphs. Alternative OSINT tools such
as Recon-ng and Mitaka, which specialise in harvesting data related to IP addresses,
domain names and URLs were considered and tested. However, these tools yielded
very little to no results for most participants. The little data found on a minority of
participants consisted mainly of technical domain information, which was irrelevant to
the graphs and, therefore, motivated the omission of these tools from the study. Further
tools were tested but, upon review, were found to generate data that is inapplicable to
account access graphs and not relevant to the study’s requirements. These included
Shodan, which is a search engine for IoT devices, as well as searchcode and Grep.app,
which are search engines for code. Lastly, tools that scraped dark web archives were
considered but not tested. Given the potential ethical implications of obtaining data that
was collected illegally and with the consideration of my participants’ privacy in mind,
the use of these tools was decided against.

3.1.5 Participant Data Collection and Subsequent Account Ac-
cess Graph Generation

The third stage of the study involved providing each participant with a form to complete
at their convenience. This form requested information regarding the accounts and
credentials possessed by each participant. Within this form, participants were asked to
specify their primary login credentials for each account, including a password identifier
to track password sharing across all their accounts. The credentials used as recovery
mechanisms for each account were also requested, along with information about the
physical devices they owned and utilised for logging into their accounts. Obtaining
information about the physical devices used by the participants served the purpose of
modelling physical access to a user’s security setup. Participants were also asked if they
used a password manager. If so, they were asked to indicate which of their passwords
had appeared in a data leak to support the analysis of each participant’s account access
graph. Lastly, to gather participant perceptions regarding the effectiveness of OSINT
tools in finding their data, an estimate of the percentage of data they provided that would
be discovered using the OSINT tools was obtained.

Once each participant completed their form, they utilised the Java tool I developed
specifically for this project’s objectives to generate an account access graph using the
recorded data. I was present alongside the participant while they were creating their
account access graph, offering assistance as needed. After completing the account
access graph generation, the participant and I reviewed the graphs generated using data
obtained from the OSINT tools and the data provided by the participant to identify any
vulnerabilities in their security setup. Based on these graphs, suggestions were made to
the participant to strengthen their security measures and enhance their security setup
while improving their understanding of online security practices.
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3.2 Designing a Java Tool for Generating Account
Access Graphs

Following the commencement of the data collection process, a need arose to represent
the gathered data effectively. This was achieved using a tool to map the connections
between credentials, accounts, and devices based on the inputted data. This tool
would then visually represent these connections as an account access graph, aiding in
visualising the participant’s security setup and enhancing analysis due to its graphical
nature. A Java program was developed with a design that aimed to be user-friendly,
visually appealing, and inviting, ensuring a satisfying user experience.

3.2.1 Designing the Vertices and Edges

Three distinct types of vertices were incorporated into the tool’s design to enhance the
clarity and interpretability of the graphs. These vertices could represent an individual’s
account, credential, or physical device. To make each vertex visually distinct, vertices
representing accounts appear as blue rectangles, credentials as red ovals, and physical
devices as green trapeziums, as illustrated in Figure 3.6.

Figure 3.6: Representations of the Different Vertex Types

Following the updated representation of AND and OR connections within the graph
definition introduced in [2], edge labels were assigned to each edge to make clear the
connections between credentials, accounts and devices and the access methods for
a particular vertex. The semantics of the labels local to each target vertex are only
relevant for the edges pointing to the same target vertex. A design decision inspired by
the original paper was additionally incorporated into the graph’s edge design: multi-
coloured edges. However, it’s important to emphasise that the semantics of using edge
colours to signify AND and OR connections within a graph are not applied here. The
use of different coloured edges was purely to aid with visualisation and to make the
interpretation of which edge labels belong to which edge easier. This design decision
was made to account for the size of graphs that could be generated and the number of
edges they would subsequently include. It was considered that if all edges were the
same colour, it might be challenging to denote which edge label belongs to which edge.

3.2.2 Different Output Format of Graphs

Two different output formats were desired to address varying user needs and increase the
tool’s functionality. The first output format is a static graph rendered as an image. At the
same time, the second is an interactive graph generated using JavaFX, enabling users to
interact with elements of the graph. With the interactive graph, users can dynamically
reposition elements, highlight specific components, and enhance their viewpoint.
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The static graph format serves the purpose of quickly creating an image of the graph
that can be easily shared and is particularly useful for smaller graphs. On the other
hand, the interactive graph format was designed primarily for analysing larger graphs,
such as the ones generated in this project. This meant that additional functionality
was required to enhance the readability of the graphs that would aid in their analysis.
This additional functionality enabled users to customise element positions, highlight
elements for analysis, and adjust the viewpoint by zooming in and out and moving the
entire graph. The inclusion of zoom-in and zoom-out buttons was aimed at providing
users with the flexibility to adjust their preferred viewing size of the graph. Similarly,
the select all button enables users to relocate the entire graph to a position that suits
their comfort.

3.2.3 Additional Design Decisions Made For Account Access
Graphs

This subsection highlights design decisions made regarding the access graphs generated:

• The addition of states introduced in [2] was not included in the graphs generated in
this project. This decision was made because the graphs generated in this project
do not model the changes in access resulting from a participant’s or malicious
actor’s actions. Therefore, it was deemed unnecessary.

• Vertices representing password managers were omitted from the account access
graphs generated using participant data. This decision was made because all
participants reported using a local password manager, such as Apple Keychain,
which cannot be accessed online. They can only be unlocked with the exact
authentication mechanisms used for their devices. Furthermore, the omission
of the password manager was driven by visualisation concerns. The addition
of a password manager vertex with its associated edges risked overwhelming
the already densely populated participant graphs, reducing the focus on the
connections between accounts and credentials.

• Since the graphs generated from OSINT data lacked information regarding the
participant’s devices, a placeholder vertex representing all of the participant’s
unlocked devices was used. This allowed the access methods of an account or
credential vertex to be included while signifying that this specific data point could
not be obtained.

• To reduce the verbosity and the size of the edge labels in the graph, an account’s
recovery mechanism is indicated by the use of the word recovery preceding at
least one of the propositions in the logical statement denoting the combination of
credentials required to access an account.

3.2.4 Graphical User Interface of the Interactive Graph

When designing the tool’s graphical user interface (GUI), emphasis was placed on
ensuring an intuitive and consistent interface that aligns with the tool’s primary purpose:
analysing the account access graph of an individual’s security setup. Nielsen’s 10
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Usability Heuristics for User Interface Design [14] was heavily utilised to optimise the
GUI. A minimalist design approach was adopted, aligning with Nielsen’s Heuristic of
Aesthetic and Minimalist Design, to ensure it supports the tool’s primary objective. This
was further achieved by clearly separating the generated account access graph from the
buttons to prevent clutter and make the graph more visually appealing. Furthermore,
the design adhered to Nielsen’s Heuristic of Visibility of System Status by providing
users with appropriate feedback. For instance, when the button responsible for saving
an image of the graph is clicked, it changes to blue for a short period to indicate the
action taken before returning to the original colour. To further confirm this action, a
pop-up message is displayed to confirm the user was successful in saving the image,
further reassuring the user of the action taken. The employment of these heuristics is
shown in Figure 3.7a 3.7b.

(a) Save Image of Graph Button Changing Colour Once
Clicked

(b) Pop-Up Message Further Confirming Image was
Saved Successfully

Figure 3.7: Process of Saving Image of Graph in GUI

3.2.5 Overall System Design

Overall, it was crucial to ensure that the components of the Java tool incorporated strong
coding practices to create a robust system capable of fulfilling the required functionality,
delivering the intended output and supporting maintainability and future enhancements.
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The coding practices integral to the tool’s design included modularity, which involved
breaking down components into smaller sub-components with singular purposes, easing
maintenance and minimising the requirement for debugging. Encapsulation further
mitigated risks by preventing unintended modifications to object states, such as when
adding vertices or edges, while promoting code reusability. The tool could be modified
without affecting its overall behaviour through maximised decoupling, further enhanc-
ing maintainability. Additionally, by adhering to consistent and descriptive naming
conventions, the readability and maintainability of the tool was enhanced. The structure
and organisation of the tool can be found in Figure 3.8.

Figure 3.8: UML Diagram of Java Tool
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Implementation and Testing

4.1 Implementation of the Java Tool

4.1.1 Initialisation of Graph Structure

Specific classes were created to represent the vertices and edges of an account access
graph. Each vertex in the graph is initialised with a label and a type, which can be one of
three options: Account, Credential or Device. Moreover, the edges of the account access
graph were also represented as a separate class, where each edge is initialised using the
source vertex, the target vertex, and the edge label. These class representations provide
the benefits of encapsulation and abstraction. For instance, they allow the graphical
representation of each vertex to vary based on its type while maintaining a behaviour
common to all vertices of the graph. Furthermore, class representations enhance code
reusability by allowing behaviors related to creating, editing and interacting with vertices
and edges within the graphs to be applied uniformly for different types of vertices and
edges. This eliminates the need for alterations and enables efficient code reuse.

4.1.2 Output Format 1: Static Image

The JGraphT library was used to construct the directed graph structure for the static
graph representation. The utilisation of this library provided benefits in terms of effi-
ciency and reliability. The StaticGraphOperations class was developed as a utility class
to provide a set of static methods tailored for manipulating the graph data structure.
These methods were abstracted from the graph generation logic to enhance code organi-
sation, re-usability, and maintainability. This class encompassed essential functionalities
for graph manipulation, including vertex and edge addition and removal and vertex
design formatting to provide distinct representations based on the different types of
vertices within the graph. Additionally, it overrides the default edge formatting set by
the JGraphT library, which was Source : Target to adhere to the format introduced in
[2].

The JGraphX library was utilised to visually represent the graph and apply a hierarchical
layout. This layout ensured that the orientation of the generated graphs matched the
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bottom-up topology of those presented initially in [8] and [2]. Additionally, this library
allowed the customisation of the graph’s general visual design using stylesheets. Finally,
the mxGraph library was employed to render the graph and generate an image using the
BufferedImage library.

4.1.3 Output Format 2: Interactive Graph Created using JavaFX

Creating the interactive account access graph required a specialised helper class for
graph manipulation. This led to the creation of the InteractiveGraphRepresentation
class, which stores the graph’s vertices and edges and provides the methods responsible
for adding and removing vertices and edges and editing vertex labels. The Interactive-
GraphOperation class implemented methods for formatting vertex design and labels,
as well as enabling the highlighting of different elements in the graph. This approach
ensured the separation of concerns, with each class responsible for a specific aspect of
the application, thereby enhancing code understandability and maintainability.

Unlike generating an image of the graph, creating the interactive graph required a
JavaFX application class to create and store the graph data. The start method of this
class serves as the main entry point for the JavaFX application. It only accepts the
application’s primary window as a parameter, which acts as the container for the visual
elements of the user interface. To address this limitation, the InteractiveGraphVisu-
alisation class, containing the methods responsible for generating the account access
graph in the JavaFX window, is initialised by passing a list of vertices and edges to
its constructor. Subsequently, the vertices and edges can be accessed from the created
instance to generate the account access graph in a JavaFX window for interactivity.

Displaying the interactive account access graph involved utilising the SwingNode library
to display content within the JavaFX window. The graph structure was constructed
using the MxGraph library, which enabled the addition and removal of vertices and
edges and the editing of vertex labels for anonymisation purposes. After incorporating
the desired vertices and edges into the graph and applying consistent formatting, the
MxGraph object was converted to a MxGraphComponent object. This conversion
facilitates user interaction with the graph, enabling them to select and drag or highlight
vertices and edges within the graph and display the graph bottom-up. Finally, this class
implements the functionality necessary for saving the graph state, designing the layout
of the JavaFX window and adding the desired buttons. These buttons enable saving an
image of the current graph state, zooming in/out, and selecting all graph elements.

4.1.4 Main Controller

The MainController class is the central component responsible for managing user
input, directing user information to the appropriate methods for graph generation, and
encapsulating the main code logic that governs the program behaviour. Additionally, it
orchestrates the overall flow of the application, including the program loop. User input
is obtained through the Scanner class. This input includes the user’s preferences for
generating either a static account access graph as an image or an interactive graph in
JavaFX, specifying the desired number of vertices and edges and providing the data
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necessary for creating vertices and edges. Once the initial graphs are generated based
on user input and displayed, the program enters a loop that allows dynamicity in both
the static and interactive graph generation alternatives. This loop can only be exited
by the user. Within this loop, the user is prompted to determine whether they wish to
add new vertices or edges to their current graph, remove existing vertices or edges, edit
vertex labels for anonymisation, or exit the program.

Input validation is employed for all user inputs to ensure the proper functioning of the
program and to prevent unintended crashes or exits due to user error. Input validation
mechanisms are invoked in the following situations:

• Inputting numerical values, such as when specifying the type of graph, the number
of vertices and edges to add or remove, and choosing the following action after
generating the initial graph.

• Addition of a vertex and only allowing the following vertex types to be added:(Account,
Credential, or Device)

• Addition of an edge and only allowing an edge to be created between two previ-
ously initialised vertices.

• Removal of vertices and edges that must already exist in the graph

• Editing the label of an existing vertex which must already be initialised

Overall, the implementation of the Java tool consisted of 10 classes and 1692 lines of
code.

4.2 Testing the Java Tool

Testing was conducted to ensure code quality and error-free generation of account access
graphs and to enhance the usability, interaction experience, and maintainability of the
Java tool implemented. Testing was carried out by conducting 20 unit tests, each with
varying test cases. The tests primarily focused on verifying the functionality responsible
for modifying the state of the graph. This included testing the code responsible for
adding and removing vertices and edges as well as editing the labels associated with the
graph’s elements. Due to the distinct graph data structures used for the two potential
output formats of the graphs, unique methods were required to execute the same
functionalities for both format equivalents. Therefore, unit tests were composed for all
methods responsible for altering the graph state. This ensured equal focus was placed
on verifying the graph generation’s behaviour in both output formats.

Tests were designed with the primary function of each method in mind while also
considering edge cases. For example, a method responsible for removing a vertex from
a graph would be tested for its primary functionality. Still, it would also consider the
edge case where the method is invoked to remove a vertex from the graph that does not
exist. Furthermore, it was essential to consider how modifications to the graph state
would impact its internal data structure. Therefore, verifying that changes made to the
graph’s state were accurately reflected in its data structure was imperative. For example,
when adding an edge, it was necessary to ensure that the source and target vertices were
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not unintentionally swapped, as doing so would alter the semantics of the connection
between the two vertices. Another consideration was that the consistency of the graph
should remain constant throughout the program’s execution despite changes made to
the graph state. It was imperative to ensure no inconsistencies that would impact the
user experience arose. An example scenario would be that removing a vertex should
also ensure the removal of all incoming and outgoing edges of the removed vertex.

Usability testing was also conducted with participants as they interacted with the tool to
generate their account access graphs. Participants were asked to provide feedback on
the tool and suggest improvements in their interaction experience. Based on participant
feedback, two areas of improvement were identified in the tool’s GUI, which were
subsequently addressed.

During the analysis of the account access graph generated using a participant’s data,
the participant found it challenging to interpret and read the text within the graph.
This difficulty arose due to the lack of a zoom-in and zoom-out feature, which heavily
influenced the graph’s viewpoint. Smaller graphs were found to be easier to read.
In contrast, larger ones posed more significant challenges due to their size and the
challenges associated with fitting the larger graph within the user’s window. To account
for the feedback received and use it as an opportunity to improve the tool, a zoom-in and
zoom-out feature was implemented using buttons positioned at the top of the application
window. This feature allows users to change their scale of view to enhance graph
readability and maintain graph visibility irrespective of graph size.

Secondly, while rearranging the vertices of a graph, a participant wanted to shift the
entire graph closer to the bottom of the window. This was desired to increase the space
between the hierarchies in the graph to enhance their viewing pleasure. However, the
participant could only achieve this by individually selecting each element in the graph,
which became a tedious process. To address the inconvenience experienced by the
participant, the functionality allowing a user to select all elements of the graph was
implemented. This enables users to preserve consistent vertex spacing and maintain
the relative positions of vertices and edges while allowing the graph to be dragged to a
more desirable position.
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Experimental Results and Evaluation

5.1 OSINT Tool Proficiency in Obtaining Data

The OSINT tools utilised in the study allowed a substantial amount of data for each
participant to be collected, enabling the creation of their account access graph with
multiple vertices and edges. The breadth of data obtained was made possible by
the collective coverage of the various search domains of these tools. Assuming that
the study’s participants provided all their email addresses and phone numbers, the
OSINT tools demonstrated considerable proficiency in uncovering their credentials,
as illustrated in Table5.1. The credentials found served as critical identifiers for their
respective accounts and facilitated the connections between the other accounts owned by
the participant. Moreover, the tools demonstrated remarkable performance in locating
the participants’ accounts, as evidenced by the data presented in Table5.1. No previous
work was found that measured the effectiveness of OSINT tools in obtaining data on a
particular subject.

5.1.1 Effectiveness in Discovering Participant Email Addresses

For each participant, at least one email address was uncovered. Notably, participants 4,
5, 7, 8, and 10 had all of their email addresses successfully identified using the suite of
OSINT tools employed. This outcome was expected, given the search strategy of the
Spiderfoot tool and the common practice of email addresses incorporating variations
of an individual’s name through different name arrangements and the use of initials.
Notably, participants 5 and 8 had their university email addresses discovered. These
email addresses are formatted as sXXXXXXX@ed.ac.uk and do not contain their
names. Instead, each X represents a number between 0 and 9. This highlights the tools’
ability to uncover email addresses that do not rely solely on participant names.

5.1.2 Effectiveness in Discovering Participant Phone Numbers

Finding each participant’s phone number proved more challenging, as only half of
the participants had their phone numbers discovered. This lower success rate can
be attributed to the fact that phone numbers lack identifiable information that can be
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directly linked to a participant and are often considered more permanent and personal
compared to an email address. As a result, individuals are less likely to share their
phone numbers publicly, preferring to keep this credential more confidential. The risk
of an individual’s phone number being leaked or exposed to malicious adversaries
is perceived to be more significant than an email address. Therefore, individuals are
more inclined to link their email addresses to online accounts than phone numbers.
This pattern was consistent across all study participants, where email addresses were
more frequently used as primary credentials than phone numbers. This conclusion is
further supported by the account access graphs generated for each participant, where
the vertex representing the primary email account of each participant possessed a higher
number of outgoing edges than the phone number vertex. Furthermore, participant
5’s phone number was uncovered using OSINT tools; however, it was found not to
be used as a primary login credential for any account. This was later confirmed by
the information sheet provided by the participant. The tools also revealed that some
participants employed their phone numbers as primary credentials, in addition to their
email addresses, despite not disclosing these associations themselves, as illustrated in
Figure 5.1. This underscores a lack of awareness among certain participants regarding
all authentication methods enabled in their accounts, potentially posing a security risk.

(a) Data Provided by Participant (b) Data Obtained from OSINT Tools

Figure 5.1: Snippet of Different Account Access Graphs highlighting the different
possible authentication methods of the Instagram and Snapchat Accounts of Partici-
pant 1

5.1.3 Abundance of Data Discovered Compared to Provided

Overall, for most participants, more than half of their data was found using the OSINT
tools employed in the study as illustrated in Table 5.1. Furthermore, for 6 out of the 10
participants, more accounts were discovered than those listed in their information sheets,
emphasising the effectiveness of the OSINT tools used. Even in cases where participants
provided more accounts than those identified by the tools, the disparity was minimal,
with a maximum difference of 6 accounts. Conversely, the most significant increase
in the number of accounts found compared to those provided was 13 for Participant 7.
Generally, the surplus of additional accounts discovered allowed for the consideration
and acknowledgement of previously overlooked accounts in the participants’ security
setups.

However, it is vital to consider that it is likely that the study participants provided
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their most important and frequently used accounts rather than all the accounts they
possessed. This is evident from the abundance of additional accounts uncovered by
the OSINT tools. In some cases, the number of additional accounts found exceeded
those provided by participants, indicating that each participant has a larger online
footprint than initially realised. Therefore, it’s unwise to assume all the credentials and
accounts of a participant have been captured from the combination of user-provided
data, and the data discovered using OSINT tools. The discovery and inclusion of the
additional accounts found within the participant’s account access graph highlights the
potential to reveal previously unknown connections and vulnerabilities. The additional
accounts discovered may possess weaker security measures than the participant’s
primary accounts, potentially exposing sensitive information to malicious actors. For
instance, if a participant inadvertently uses the same password for one of the additional
accounts discovered and their primary accounts, a malicious adversary’s discovery of
this password could allow unauthorised access to both the primary and additionally
discovered accounts.

Participant
Data Provided by Participants Data Obtained Using OSINT Tools

Number Number Number of Number Number Number
of of of of of of

Email Phone Accounts Email Phone Accounts
Addresses Numbers Addresses Numbers

1 2 1 13 1 1 24
2 2 1 16 1 1 21
3 3 1 24 2 1 18
4 1 1 14 1 1 24
5 2 1 16 2 1 27
6 3 1 28 1 0 22
7 1 1 6 1 0 19
8 2 1 26 2 0 24
9 2 1 15 1 0 21
10 1 1 13 1 0 11

Table 5.1: Comparison of Abundance of Data Provided and Obtained using OSINT
Tools

5.1.4 Deriving how Connected Credentials are in User Setups

The credentials uncovered using OSINT tools can be examined to determine their
interconnectedness within a participant’s account ecosystem. This connectedness
is determined by the number of outgoing edges from the vertex representing each
credential in the participant’s account access graph, as demonstrated in Table5.2. The
most connected credential found for each participant was their email account, with
the highest number of outgoing edges found to be 22 for Participant 6’s iCloud Mail
account. The significant number of connections a participant’s email accounts possess
emphasises their criticality within their ecosystem and their overarching influence on
the accounts within it. Hence, participants should especially prioritise implementing
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robust authentication and recovery mechanisms for these accounts. This is crucial due
to the potential for these accounts to be uncovered online and the subsequent links that
can be made to the participant’s other online accounts, potentially putting them at risk.

Conversely, from an adversary’s perspective, the same OSINT tools can provide insights
into the criticality of the credentials they can uncover within an individual’s account
ecosystem. Using this knowledge, adversaries can strategically target accounts with
high connectivity to more efficiently compromise the user’s account ecosystem.

Participant Credential Uncovered Number of Outgoing Edges
1 Gmail-1 21

Phone Number 4
2 Gmail-1 19

Phone Number 3
3 Gmail-1 7

Gmail-2 7
Phone Number 3

4 Hotmail 19
Phone Number 3

5 Gmail 21
Outlook 3

Phone Number 0
6 iCloud Mail 22
7 Gmail 18
8 Yahoo 20

Outlook 2
9 Gmail 20

10 Yahoo 10

Table 5.2: Connectedness of Participant Credentials

5.1.5 Underestimation of the Data Coverage of the OSINT Tools

The data coverage provided by these OSINT tools exceeded the estimates of all partici-
pants except one, as illustrated in Table5.3. This highlights the participants’ underesti-
mation of the scope of online data collection using these tools and their effectiveness
in uncovering their data. The participants’ lack of awareness emphasises the risks
associated with malicious actors utilising such tools to determine an individual’s ac-
count security setup. For instance, participant 7’s estimate differed by 50% from the
actual data percentage found, illustrating the disparity. The participant who provided
a higher estimate than the amount of data found justified their estimate based on their
unique name. Their reasoning was well-founded, as no false positives existed among
the credentials and accounts found using the OSINT tools.
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Participant Participant’s Estimate Actual Percentage of Number of Additional
Number of Data Found (%) Provided Data Found (%) Accounts Found

1 35 56 17
2 45 63 11
3 50 54 6
4 80 69 15
5 70 79 15
6 20 37.5 11
7 25 75 14
8 30 52 11
9 50 56 12
10 25 27 8

Table 5.3: Participant Perception of Data Coverage of Tools Compared to Reality

5.2 High-Level Analysis of Account Access Graphs

5.2.1 Account Access Graph Generated Using OSINT Data

Comparing the account access graphs generated from OSINT-obtained data with those
from the participant-provided data allows one to assess the significance of the email
accounts discovered by OSINT tools. Based on the number of outgoing edges to other
vertices and by comparing the two graphs, it was determined that the OSINT tools
found the primary email accounts of all participants.

In addition, a large number of accounts were consistently uncovered for all partici-
pants. These accounts encompassed various categories such as social media, online
shopping, streaming services and miscellaneous platforms. Many of these accounts
hold significance, as evidenced by the fact that the participants initially provided a
substantial portion of the discovered accounts and subsequently incorporated them into
their graphs.

Additionally, essential accounts such as Apple ID, Microsoft, and various digital pay-
ment apps like PayPal, Revolut, and Venmo were discovered. An Apple ID account is
integral for using Apple devices; without it, the functionality of these devices would be
severely limited. Furthermore, digital payment apps often store sensitive financial infor-
mation, including bank account and credit card details, and facilitate money transfers
between accounts. All participants who possessed an Apple ID or Microsoft account
had these accounts uncovered. Furthermore, participants 4, 6, and 8 had their digital
payment accounts discovered and incorporated into their account access graphs.

The ability of OSINT tools to reveal a diverse range of accounts, which can be integrated
into an account access graph, offers the advantage of creating a comprehensive model
of an individual’s security configuration. However, from a malicious perspective,
the broad spectrum of uncovered accounts provides numerous potential targets for
attackers to exploit across various domains. For instance, if a malicious adversary gains
access to a participant’s social media account, they could engage in impersonation or
spread hateful propaganda. In the case of digital payment accounts, money could be
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stolen from participants. In contrast, online shopping accounts might contain stored
credit card details, which could be exploited for identity theft or used in a recovery
mechanism to gain access to an account, as previously illustrated in Mat Honan’s
account security compromise [10]. Additionally, compromising an Apple ID account
could grant unauthorised access to a participant’s data, such as photos, contacts, and
messages. Overall, the discovery of these accounts poses significant security risks for
participants.

The account access graphs generated using data obtained from OSINT tools for all
participants are in Appendix A.

5.2.2 Account Access Graphs Generated Using Data From Par-
ticipants

The utilisation of data provided by participants allowed for the construction of accurate
account access graphs depicting their security setup. These graphs are valuable for
conducting security analysis and identifying potential weaknesses in the participants’
security configurations. While the graphs generated using data obtained from OSINT
tools are useful for visualising internet-accessible credentials and accounts, they do
not accurately represent overall account security. This limitation arises because the
account access graphs created from the data obtained using OSINT tools have been
enriched with examples of authentication and recovery mechanisms that are supported
by the respective service providers of the accounts, rather than reflecting the actual
authentication and recovery mechanisms used by the participants. These additions
enhance the practicality of these graphs but only serve as a potential example of
what the participant’s account access graph could look like. In this project, example
authentication credentials could only be included because participant passwords were
not searched for online during the OSINT data collection process due to ethical concerns.
However, in reality, malicious adversaries are likely to search for leaked passwords
online, employing methods such as RockYou lists [5] and password cracking techniques
to determine passwords.

The account access graphs generated for all participants using the data they provided
can be found in Appendix B

5.2.2.1 Lack of 2FA/MFA Adoption and Password Sharing

Overall, the account access graphs of each participant showcased unique intricacies, yet
overlapping trends were observed. Across all ten participants, a prevalent pattern was
the consistent use of a single email address/phone number and password combination
for account logins, spanning various account types, including social media, shopping,
and miscellaneous accounts like video streaming or web blogs. Additionally, two-factor
authentication (2FA) was sparingly utilised and was primarily used for critical accounts
like AppleID, online banking, and digital payment services. However, there were even
some cases where participants accessed these critical accounts using only passwords
(e.g. AppleID for participants 1, 3, 4, 5, 6, 7). Furthermore, despite the availability of
2FA, many participants relied solely on password authentication for at least one of their
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email accounts.

Common 2FA methods employed by participants included using One Time Codes
(OTCs) via email, text, or Authenticator app, as well as using secret keys. Notably,
OTCs were more frequently utilised for account recovery than primary authentication.
For instance, Participant 3’s Trading212 account can be primarily accessed using a login
email address and password. Password recovery for the account is achievable through
two methods: confirming the recovery attempt via an authenticator app and receiving a
recovery OTC on the participant’s phone or using a secret key and receiving a recovery
OTC on the participant’s phone. The primary and secondary authentication mechanisms
of Participant 3’s Trading 212 account are illustrated in Figure 5.2.Otherwise, access to
participants’ accounts was recovered solely through email recovery, a weak security
measure susceptible to exploitation by malicious actors if the participant’s email account
had been compromised.

Figure 5.2: Snippet of Trading212 Account Vertex in Participant 3’s Account Access
Graph

Participants were additionally prone to engage in password sharing between accounts.
Some participants were found to use unique passwords for their more critical accounts,
such as their AppleID, financial and digital payment accounts and email accounts, while
sharing passwords across the rest of their accounts. Others tended to use the same
password for their more critical accounts while using different passwords for their less
important ones. This case is illustrated in the account access graph of Participant 10 in
Figure B.10. Interestingly, a common trend observed among participants was the use
of the same password for their university email account and all linked accounts. This
trend was observed with participants 3, 5, and 6. Most notably, participant 5 employed
a single password shared only between their university-associated accounts.

5.2.2.2 Attitude of Participants

The minimal adoption of 2FA/MFA and the use of password sharing highlights par-
ticipant attitudes toward account security, suggesting a preference for convenience
over security and a streamlined login process over the additional security measures of
2FA/MFA. Furthermore, they might perceive a low risk of unauthorised access to their
accounts by malicious actors and consider themselves unlikely targets for cyberattacks.
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The reduced adoption of 2FA/MFA and password sharing may ultimately stem from a
lack of awareness and understanding of the implications of their security choices.

5.2.2.3 Centrality Score of Participant Account Access Graphs

Deriving the central vertices of the participant’s account access graph through centrality
scoring offers valuable insight into the vertices with the highest potential security risk if
compromised. A higher centrality score indicates a greater criticality of the vertex’s
compromise to an individual’s security setup. This is because a vertex connected to
numerous other accounts provides potential access points to a larger network of accounts,
thus increasing the coverage of compromised accounts. This project determines the
centrality score by the number of outgoing edges from a vertex in the graph. While
centrality scores can also be calculated using distance-based scoring schemes, they are
not applicable in these graphs due to their size and the arrangement of vertices, which
prioritise viewability and interpretability.

The results provided in Table 5.4 highlight that the most central vertex of an account
access graph is typically a participant’s unlocked phone, email account, or unlocked
laptop. This underscores the significance of scenarios where an adversary gains access
to a participant’s phone or laptop and unlocks it or if they gain access to an email account
associated with most other accounts. If the most central vertex is an unlocked device,
a local attacker (one who can physically access the device) possesses the potential to
compromise a large portion of a participant’s security setup. On the other hand, if an
email account is the most central vertex, it becomes a more attractive target for remote
attackers. The fact that an email account is one of the three most central vertices for
each participant emphasises how much damage a malicious remote adversary can do to
a participant’s security setup.

Participant Most Central Second Most Third Most
Number Vertex Central Vertex Central Vertex

1
Unlocked Phone,
Unlocked Laptop Gmail-1

2 Gmail-1 Unlocked Phone Unlocked Laptop
3 Unlocked Phone Unlocked Laptop Gmail-1
4 Unlocked Phone Unlocked Laptop Hotmail

5
Unlocked Phone,
Gmail Unlocked Laptop

6 Unlocked Phone iCloud Mail Unlocked Laptop
7 Unlocked Phone Gmail Unlocked Laptop
8 Unlocked Phone Yahoo Mail Unlocked Laptop

9 Unlocked Phone

Gmail,
Unlocked Laptop,
Unlocked Com-
puter

10 Unlocked Phone Unlocked Laptop Yahoo

Table 5.4: Most Central Vertices in Participant Account Access Graphs
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5.3 Focus Point – Presence of a Cycle Between Email
Accounts

Analysing intricate patterns in an account access graph can reveal vulnerabilities beyond
weak password practices or the lack of 2FA/MFA. Cycles are structural features that
indicate potential weaknesses involving multiple accounts that can recover each other
directly or indirectly. Vertices found within cycles often have high centrality scores.
Cycles were found in several participants’ graphs, notably impacting Participant 9’s
security setup. In their graph, a cycle between their Gmail and AOL email accounts was
discovered. Both these accounts are crucial in the individual’s security setup, particularly
because the participant doesn’t use their phone number as a primary credential. Instead,
all accounts are linked to the participant’s email accounts. Moreover, the G-Mail
account vertex ranked as the joint second most central vertex in this participant’s graph.
A cycle is created between these two email accounts, given that both the Gmail and
AOL accounts can be used to recover each other. For a malicious actor to gain access
to the participant’s Gmail account through recovery mechanisms, they would require
knowledge of the login Gmail address and access to the AOL email account, and vice
versa, as illustrated in Figure 5.3. The AOL email account only requires the account
password for access due to the lack of more secure authentication methods.

If a malicious actor were to obtain the password for the AOL account and subsequently
gain entry to this account, they could uncover the participant’s Gmail account using
OSINT tools, as demonstrated during the participant study. Alternatively, the adversary
might uncover the participant’s Gmail account by exploring the settings of the AOL
email account, as the Gmail account is used to recover access to the AOL account.
Following gaining access to the AOL email account and learning of the participant’s
Gmail account, the malicious actor can proceed to trigger the Gmail account’s recovery
mechanism. An OTC would be sent to the compromised AOL email account, allowing
the adversary to reset the participant’s Gmail password. Subsequently, the adversary can
log out of the Gmail account on all devices and change the associated phone number,
effectively blocking the participant’s access to the account’s other recovery option. To
further exacerbate the situation, the weak recovery mechanisms employed by many
of the participant’s other accounts allow password resets via a recovery link or OTC
sent to the participant’s Gmail account. Consequently, a malicious actor could access
the following accounts: Facebook, Instagram, Snapchat, Spotify, Pinterest, Letterboxd,
Reddit, Duolingo, Dropout, AskMyGp, Deliveroo, and Amazon.

5.4 Focus Point – Backdoor Access To A Critical
Account

Modelling the recovery mechanisms of each account within a participant’s account
access graph is critical for identifying potential backdoor access points. Backdoor access
implies that an account can be more easily accessed through its recovery mechanism
than primary authentication methods, rendering it vulnerable to exploitation by attackers.
Participant 2’s account access graph analysis revealed a backdoor access point to their
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Figure 5.3: Partial Account Access Graph Denoting Connections between Partici-
pant 9’s Email Accounts

primary Gmail account. This vulnerability assumes that the attacker attempting to gain
backdoor access is a password attacker capable of compromising passwords that will
facilitate gaining unauthorised entry into the account through a backdoor.

Participant 2 has two Gmail addresses with differing levels of primary authentication
strength. The main Gmail account Gmail-1 in B.2 utilises 2FA, requiring the partici-
pant’s login email address, password, and an OTC. In contrast, their secondary Gmail
account Gmail-2 in B.2 only requires the login email address and password. The pri-
mary Gmail account can be recovered using an OTC or the secondary Gmail account as
a recovery email. In contrast, the secondary Gmail account can only be recovered using
the primary Gmail account. Thus, a password attacker can exploit the weak primary
authentication methods of the secondary Gmail account to gain backdoor access to the
account.

Through the password attacker’s ability to compromise passwords, the attacker can
learn Pwd3 (from the account access graph of the participant in B.2). This password is
shared between four accounts, three of which can be accessed using only the login email
and password, therefore granting the attacker unauthorised access to the Microsoft,
SoundCloud, and the secondary Gmail account of the participant. The participant’s
failure to adopt 2FA or MFA results in the attacker easily gaining access to the secondary
Gmail account. This entry point does not constitute backdoor access, as the attacker logs
into the account using the primary authentication method. Furthermore, the attacker can
discover the participant’s primary Gmail account by investigating the secondary Gmail
account’s settings or by using OSINT tools, as was the case during the participant study.
Subsequently, by triggering the recovery mechanism of the primary Gmail account, a
recovery OTC is sent to the now compromised secondary Gmail account, allowing the
attacker to create a new password and gain access to the primary Gmail account. In this
way, the attacker gains backdoor access to the account through a recovery mechanism
which employs weaker authentication methods than the primary authentication method.

After gaining entry to the account, the attacker can change the phone number associated
with the account using the newly created account password. This ensures OTCs are no
longer sent to the participant and allows the attacker access to the account through the
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primary authentication mechanism. The attacker’s compromise of the participant’s two
email accounts enables them to exploit the weak recovery mechanisms of the following
accounts in their account setup: Depop, Letterboxd, Snapchat, Soundcloud, Instagram,
Facebook, Amazon, LinkedIn, eBay, GitHub, and Spotify.

5.5 Focus Point – The Consequences of Leaked Pass-
word Sharing

Password sharing is strongly discouraged due to its well-known risks. While creat-
ing strong passwords with a combination of characters, numbers, symbols, and non-
dictionary words can enhance security [13], it cannot fully mitigate the risks associated
with password sharing. These risks are heightened by the absence of both additional
primary authentication methods used alongside passwords for account access and robust
recovery authentication mechanisms.

Participant 3’s account access graph highlights the vulnerabilities and severe conse-
quences of password sharing within their account security setup. The information-forms
issued to participants during the study prompted them to record any passwords that
had appeared in data leaks, as indicated by their password manager. This process was
aimed to emphasise the widespread leakage of passwords and to support the analysis
provided by their account access graph. In Participant 3’s case, a single compromised
password had cascading effects across multiple accounts, further illustrating the sig-
nificance of this issue. Participant 3 uses Pwd7 to access three accounts: two Gmail
accounts and their EE account, as illustrated in Figure 5.4. This password was flagged
as compromised in the participant’s information form due to its appearance in a data
leak.

In the case where a malicious actor seeks to compromise Participant 3’s security setup,
they may use OSINT tools to uncover the participant’s credentials and accounts. The
credentials found by the malicious actor would likely match those discovered for
Participant 3 during the study. Subsequently, they could search through databases
containing leaked data and use the information they previously obtained through OSINT
to find the login email address and password PWD7 required to access the participant’s
EE account. Since both Gmail addresses were uncovered using OSINT tools in the
study, as shown in Participant 3’s account access graph, there is a high likelihood that an
attacker would find the same accounts and attempt to exploit password reuse behaviour
by trying to access the participant’s Gmail accounts using Pwd7. With both Gmail
accounts requiring only the email address and password for primary authentication, the
malicious actor’s attempts would grant them access to both accounts.

The consequences of a compromised shared password are magnified by the participant’s
lack of 2FA/MFA for their email accounts. This is particularly concerning considering
the critical role email accounts play in an individual’s security setup, as demonstrated
by the high centrality score of the Gmail-1 account vertex in their account access graph.
As previously observed, gaining access to the participant’s email accounts enables
access to other linked accounts via their recovery mechanisms. The compromise of
these two Gmail accounts due to their shared password with the EE account could
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further compromise eight additional accounts. Furthermore, if the attacker discovers
the participant’s Outlook account, they can recover it using the Gmail-1 account. By
changing the password through this recovery mechanism and altering the authenticated
device for Microsoft Authenticator, the attacker can access all four accounts linked to
the Outlook account.

The participant cannot have prevented their password from leaking, as data leaks often
result from security vulnerabilities and poor security practices on the server provider’s
side. However, the compromise of most user accounts could have been avoided by
refraining from password sharing and enhancing the strength of the primary and recovery
authentication methods of their accounts.

Figure 5.4: Partial Account Access Graph Highlighting the Shared Passwords
between Accounts

5.6 Challenges Encountered in the Project

5.6.1 Challenges Encountered with the Participant Study

Conducting a participant study provided an opportunity to assess the real-world effec-
tiveness of OSINT tools in gathering data on specific targets, capturing authentic human
behaviour and identifying patterns in account security. However, an issue arose with
one participant who initially consented to participate in the study and allowed the data
collection process using OSINT tools to begin. Unfortunately, the participant ceased
communication before providing the necessary data required to generate their account
access graph with their actual data. Consequently, their incomplete data rendered it
unusable for the project’s objectives.

The incident was resolved by replacing the participant with an individual from a list
of backup participants initially compiled during the recruitment for the study. This
approach ensured that a replacement could be quickly identified if a participant dropped
out at the last minute. Moreover, the addition of the replacement participant provided
the added benefit of a more diverse participant pool.
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Moreover, the return of the information sheets necessary for generating their comparison
account access graphs was frequently delayed by participants, often due to forgetfulness
or busy schedules. To accommodate their availability and reduce stress, adjustments
were made to the study timeline to ensure participants remained willing to participate.

5.6.2 Challenges Encountered During the Implementation of the
Java Tool

The initial design of the Java tool was limited to generating account access graph
outputs solely as static images. However, testing revealed issues with larger graphs,
where overlapping edges and labels made interpretation difficult. Additionally, users
were constrained in customising element placement within the graph. To address this,
an interactive visualisation was developed using JavaFX. Integrating JavaFX into the
existing tool resolved interpretability and visibility issues with the generated graphs
while enabling greater customisation. This enhanced user experience and overall tool
functionality, resulting in a superior final product. During the implementation phase of
the interactive account graph, several challenges were encountered.

Initially, the JUNG library was chosen for generating the graph model. However, during
implementation, issues arose when the jung.graph.impl and jung.api packages from
the same library conflicted, resulting in runtime errors and rendering the application
unusable. Research revealed this was a common, unpatched issue, as the JUNG library
is no longer updated. This issue was remedied using the mxGraph library. This library
was chosen for its suitability to the tool’s requirements and seamless integration. It
additionally ensured consistency between the graph outputs, whether generated as
images or displayed in a JavaFX application window.

Another challenge arose when applying a hierarchical layout to the interactive graph
displayed. To ensure the graph was displayed bottom-up to the user, the constant
SwiftConstant.South was passed to the hierarchical layout function in the mxGraph
library. However, this resulted in negative y-coordinates for the graph vertices, rendering
them invisible in the JavaFX window. Given that no patch was issued for this bug by
the library authors, a helper function was implemented to incrementally adjust the
y-coordinates of the vertices following the program’s initialisation. This made the graph
visible and allowed users to move the graph elements to different positions if desired.

The last challenge encountered was that JavaFX applications are limited to a single
launch within the same JVM. This obstructed the desired functionality of enabling users
to dynamically add or remove vertices and edges to the generated graphs, enhancing
usability and user experience. To address this limitation, a helper function employing
threading was developed to enable the desired dynamic functionality for the interactive
graph.
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Conclusions

6.1 Summary

This project aimed to assess the effectiveness of Open-Source Intelligence Tools in
uncovering individuals’ credentials and accounts, while also analysing participants’
security setups for exploitable weaknesses using account access graphs in a participant
study.

The credentials and accounts of each participant were obtained using OSINT tools and
provided directly by the participants themselves to create two account access graphs.
One account access graph modelled the data obtained using OSINT tools, while the
second depicted the participants’ actual security setups. Both were generated using
a Java tool designed and implemented for this project. Following their generation,
analysis was conducted on both graphs. The account access graphs generated using
OSINT data highlighted the credentials, accounts, and connections obtained across the
internet. This facilitated the analysis of the tools’ proficiency and revealed the extent to
which an individual’s security setup can be uncovered online.

The account access graphs generated using participant-provided data served two main
purposes. Firstly, they enabled the evaluation of the accuracy of the data obtained
via OSINT tools. Secondly, they facilitated the analysis of each participant’s security
setup, enabling the identification of vulnerabilities arising from weak security measures
of individual accounts and the connections between accounts. The analysis of each
participant’s security setup was conducted collaboratively to identify vulnerabilities and
to educate them on potential improvements that could be made to minimise the security
risk of their accounts and overall setup.

Based on the results of the evaluation, the OSINT tools utilised in the participant study
exhibited a strong proficiency in uncovering the participants’ email accounts, phone
numbers, and online accounts. This was highlighted by the discovery of at least one
email account for all participants, and in some cases, all email accounts possessed by
a participant were found. Furthermore, the phone numbers of half of the participants
were uncovered, while a substantial number of accounts were additionally found for
each participant. In some cases, more accounts were found online for a participant
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than those provided by the participants themselves. The proficiency of OSINT tools in
uncovering a significant portion of each participant’s account security setup underscores
the significance of maintaining a robust security setup, including strong authentication
methods and reducing the connections between accounts.

The analysis of the account access graphs generated using participant-provided data
highlighted common behaviours among the study’s participants. Participants were
found to rarely employ secure authentication methods such as 2FA/MFA, except for
important accounts, instead opting for single-password authentication for most of their
accounts. Password sharing and the daisy-chaining of critical accounts within their
security setup were also extensively observed.

6.2 Critical Evaluation of Own Work

One limitation of this work that arises is the generalisability of the results obtained due
to the skewed sample of participants, primarily consisting of individuals at the extremes
of the age range. Time constraints prevented a more diverse participant pool from
being acquired, which would have provided a broader representation of all age groups.
Additionally, a significant portion of the participants were students whose behaviour
regarding account security and awareness may not accurately reflect that of the wider
population.

Another limitation was the exclusion of participant passwords in the data collected
using OSINT tools. In reality, a malicious actor attempting to determine an individual’s
security setup would likely search for leaked passwords, use password rules and RockYou
lists, in addition to their credentials and accounts. This additional data would enable
them to construct a more comprehensive model of an individual’s entire security setup
using data only found online.

One limitation identified in previous work is that the scoring schemes introduced to
indicate the security level of an account, do not account for the ease with which a user’s
credentials or account can be uncovered online. Despite aiming to consider additional
factors beyond authentication methods, these scoring schemes overlook this crucial
factor. This is an important factor to consider because credentials or accounts that are
uncovered online are at a higher risk of compromise once discovered.

6.3 Future Work

A potential area for future work could involve conducting a participant study where
participants are taught how to use OSINT tools to obtain data on themselves. This
would enable them to search for their own passwords online and determine which
of their passwords can be found using these tools. Allowing participants to find and
anonymise their data would address the ethical concerns of searching for participant
passwords. Subsequently, the email accounts, phone numbers, online accounts, and
passwords discovered could be modelled using an account access graph to assess how
much a participant’s security setup can be discovered across the internet.



Bibliography

[1] Yasemin Acar et al. “Developers need support, too: A survey of security advice
for software developers”. In: 2017 IEEE Cybersecurity Development (SecDev).
IEEE. 2017, pp. 22–26.

[2] Luca Arnaboldi et al. “Tactics for Account Access Graphs”. In: European Sym-
posium on Research in Computer Security. Springer. 2023, pp. 452–470.

[3] Attack Surface Documentation. https://intel471.com/attack-surface-
documentation. url: https://intel471.com/attack-surface-documentation.

[4] Just Baker. What is OSINT Open Source Intelligence? - crowdstrike. Feb. 2023.
url: https://www.crowdstrike.com/cybersecurity-101/osint-open-
source-intelligence/.

[5] William J. Burns. Common Password List (rockyou.txt). Jan. 2019. url: https:
/ / www . kaggle . com / datasets / wjburns / common - password - list -

rockyoutxt.
[6] Ritu Gill. What is Open-Source Intelligence? Feb. 2023. url: https://www.

sans.org/blog/what-is-open-source-intelligence/.
[7] Sven Hammann et al. “I’m surprised so much is connected”. In: Proceedings

of the 2022 CHI Conference on Human Factors in Computing Systems. 2022,
pp. 1–13.

[8] Sven Hammann et al. “User account access graphs”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 2019,
pp. 1405–1422.

[9] Sam Holland. Reverse email lookup: How it works & how to perform it. SEON.
Aug. 2023. url: https://seon.io/resources/reverse-email-lookup/.

[10] Mat Honan. How Apple and Amazon Security Flaws Led to My Epic Hacking.
Aug. 2012. url: https://www.wired.com/2012/08/apple-amazon-mat-
honan-hacking/.

[11] Laramies. TheHarvester: E-mails, subdomains and names Harvester - OSINT.
GitHub. 2016. url: https://github.com/laramies/theHarvester.

[12] Maltego. Homepage. 2018. url: https://www.maltego.com/.
[13] Microsoft. Create and Use Strong Passwords. url: https://support.microsoft.

com/en-gb/windows/create-and-use-strong-passwords-c5cebb49-

8c53-4f5e-2bc4-fe357ca048eb.
[14] Jakob Nielsen. 10 usability heuristics for user interface design. Nielsen Nor-

man Group. Feb. 2024. url: https://www.nngroup.com/articles/ten-
usability-heuristics/.

41

https://intel471.com/attack-surface-documentation
https://intel471.com/attack-surface-documentation
https://intel471.com/attack-surface-documentation
https://www.crowdstrike.com/cybersecurity-101/osint-open-source-intelligence/
https://www.crowdstrike.com/cybersecurity-101/osint-open-source-intelligence/
https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://www.sans.org/blog/what-is-open-source-intelligence/
https://www.sans.org/blog/what-is-open-source-intelligence/
https://seon.io/resources/reverse-email-lookup/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
https://github.com/laramies/theHarvester
https://www.maltego.com/
https://support.microsoft.com/en-gb/windows/create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb
https://support.microsoft.com/en-gb/windows/create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb
https://support.microsoft.com/en-gb/windows/create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/


BIBLIOGRAPHY 42

[15] Ani Petrosyan. Global password habits by age group 2017. Statista. 2023. url:
https://www.statista.com/statistics/803831/password-habits-

worldwide-age/.
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Appendix A

Account Access Graphs Generated
Using OSINT Data

Due to the number of vertices and edges within the graphs, they are large in size and
may require zooming in to increase visibility.
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Figure A.1: Account Access Graph of Participant 1
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Figure A.2: Account Access Graph of Participant 2
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Figure A.3: Account Access Graph of Participant 3
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Figure A.4: Account Access Graph of Participant 4



A
ppendix

A
.

A
ccountA

ccess
G

raphs
G

enerated
U

sing
O

S
IN

T
D

ata
48

Figure A.5: Account Access Graph of Participant 5
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Figure A.6: Account Access Graph of Participant 6



A
ppendix

A
.

A
ccountA

ccess
G

raphs
G

enerated
U

sing
O

S
IN

T
D

ata
50

Figure A.7: Account Access Graph of Participant 7
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Figure A.8: Account Access Graph of Participant 8
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Figure A.9: Account Access Graph of Participant 9
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Figure A.10: Account Access Graph of Participant 10



Appendix B

Account Access Graphs Generated
Using Participant Data

Due to the number of vertices and edges within the graphs, they are large in size and
may require zooming in to increase visibility.
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Figure B.1: Account Access Graph of Participant 1
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Figure B.2: Account Access Graph of Participant 2
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Figure B.3: Account Access Graph of Participant 3
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Figure B.4: Account Access Graph of Participant 4
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Figure B.5: Account Access Graph of Participant 5
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Figure B.6: Account Access Graph of Participant 6
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Figure B.7: Account Access Graph of Participant 7
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Figure B.8: Account Access Graph of Participant 8
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Figure B.9: Account Access Graph of Participant 9
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Figure B.10: Account Access Graph of Participant 10



Appendix C

Participants’ information sheet

The information sheet issued to participants can be found on the subsequent pages.

65



Page 1 of 4 
 

 

Participant Information Sheet 

Project title: Using Open Source Intelligence Tools for the 

Automation of Account Access Graphs 

Principal investigator: David Aspinall 

Researcher collecting data: Nickon Tajali 

Funder (if applicable):  
 

This study was certified according to the Informatics Research Ethics Process, 

reference number 724975. Please take time to read the following information 

carefully. You should keep this page for your records.  

Who are the researchers? 

The researcher for this project is Nickon Tajali, a 4th Year Artificial Intelligence 

student. This study will be used in an Informatics Honours project that is being 

supervised by David Aspinall.  

What is the purpose of the study? 

The project’s purpose is to create an Account Access Graph using your data that is 

found in the public domain through methodologies such as OpenSource Intelligence 

tools. The purpose of creating an Account Access Graph is to model your account 

security setup to analyse how difficult it is for an adversary to gain access to your 

data, credentials and accounts. In an Account Access Graph, each account or 

credential will be represented as a node in the graph and edges that form between 

nodes will be represented as a connection. Each graph will possess multiple nodes 

and edges that will highlight the connections in your overall security setup. 

Why have I been asked to take part? 

You have been included in this study because we are seeking a diverse group of 

participants that may not have necessarily the same type of data publicly available. 

This diversity is critical for obtaining a variety of Account Access Graphs and for 

making our findings more relevant and inclusive  

 

Do I have to take part? 
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No – participation in this study is entirely up to you. You can withdraw from the study 

at any time, up until December 2024 without giving a reason. After this point, 

personal data will be deleted, and the remaining anonymised data will be aggregated 

to ensure the impossibility of extracting individual information from both the graph 

and its analysis. Your rights will not be affected. If you wish to withdraw, contact the 

PI. We will keep copies of your original consent, and of your withdrawal request. 

 

What will happen if I decide to take part?  

The project is scheduled to run from September 2023 to April 2024. To ensure 

ethical and legal practices, I will firstly seek your consent to obtain publicly available 

data using open-source methods. The data I will be looking for includes personally 

identifiable information such as email addresses, usernames etc, but I want to stress 

that I will not engage in any illegal or unethical data acquisition methods, including 

hacking. Each participant will also receive a form in which they will document 

information pertaining to the various credentials they employ and specify the 

accounts to which these credentials are applied. Each participant will be able to take 

this form away with them to complete in their own time. The completion of the form 

should not exceed 30 to 60 minutes, and participants would be required to return the 

form within two weeks. This information will be used to create a comparison Account 

Access Graph. Finally, I will conduct an interview to present the Account Access 

Graph generated from publicly available information about you and compare it with 

the graph created from the information you provided (15 minutes). This presentation 

serves the purpose of sharing what publicly available information is known about 

you. I will anonymise your data before analysing it and incorporating the graphs into 

my report. I value your privacy and will ensure that your data is treated with the 

utmost care and confidentiality throughout the project. I am committed to upholding 

the highest ethical standards in data collection and use. 

The interview will take place in person and will be an individual interview with the 

researcher. The interview will take place in a location without the presence of any 

third party or observer for privacy purposes and to create an environment where the 

participant will feel most comfortable. 

Are there any risks associated with taking part? 
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There are no significant risks associated with participation. Potential disadvantages 

of participating in this project include the possibility of discovering that more of your 

personal information is publicly accessible than initially realised. While all necessary 

precautions will be taken to protect your data, it's important to note that no system is 

completely immune to security breaches or the potential theft or loss of devices 

where your data is stored. Rest assured that I am committed to minimising these 

risks to the best of my abilities.  

Are there any benefits associated with taking part? 

It is hoped that this work will help you gain a better understanding of how much of 

your personal information is publicly available, potentially resulting in improved 

online security practices. Your participation may contribute to research on data 

privacy and online security practices and allow more secure practices to be 

implemented. 

 

What will happen to the results of this study?  
The results of this study may be summarised in published articles, reports and 

presentations. Quotes or key findings will be anonymized: We will remove any 

information that could, in our assessment, allow anyone to identify you. Your 

anonymised data may be archived for a maximum of 4 years. All potentially 

identifiable data will be deleted within this timeframe if it has not already been 

deleted as part of anonymisation.  

 

Data protection and confidentiality. 
Your data will be processed in accordance with Data Protection Law.  All information 

collected about you will be kept strictly confidential. Your data will be referred to by a 

unique participant number rather than by name or username. Your data will only be 

viewed by the researcher Nickon Tajali and David Aspinall. 

All electronic data will be stored on a password-protected encrypted computer, on 

the School of Informatics’ secure file servers, or on the University’s secure encrypted 

cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records 

will be stored in a locked filing cabinet in the PI’s office. Your consent information will 

be kept separately from your responses in order to minimise risk.  
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What are my data protection rights? 
The University of Edinburgh is a Data Controller for the information you provide. You 

have the right to access information held about you. Your right of access can be 

exercised in accordance Data Protection Law. You also have other rights including 

rights of correction, erasure and objection. For more details, including the right to 

lodge a complaint with the Information Commissioner’s Office, please visit 

www.ico.org.uk. Questions, comments and requests about your personal data can 

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.  

 
Who can I contact? 
If you have any further questions about the study, please contact the lead 

researcher, Nickon Tajali (s2063346@ed.ac.uk).   

If you wish to make a complaint about the study, please contact  

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and 

detail the nature of your complaint. 

Alternative formats. 
To request this document in an alternative format, such as large print or on coloured 

paper, please contact Nickon Tajali (s2063346@ed.ac.uk).   

General information. 
For general information about how we use your data, go to: edin.ac/privacy-research 
 



Appendix D

Participants’ consent form

The consent form signed by the participants of the study can be found on the next page.
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Participant number:_______________________ 

 

Participant Consent Form 
 

Project title: Using Open Source Intelligence Tools for the Automation of 
Account Access Graphs 

Principal investigator (PI): David Aspinall 

Researcher: Nickon Tajali 

PI contact details: David.Aspinall@ed.ac.uk  

 
By participating in the study you agree that: 

• I have read and understood the Participant Information Sheet for the above study, 
that I have had the opportunity to ask questions, and that any questions I had were 
answered to my satisfaction. 
 

• My participation is voluntary, and that I can withdraw at any time without giving a 
reason. Withdrawing will not affect any of my rights. 
 

• I consent to my anonymised data being used in academic publications and 
presentations. 
 

• I understand that my anonymised data will be stored for the duration outlined in the 
Participant Information Sheet.  

 
Please tick yes or no for each of these statements.  
   

1.  I allow my data to be used in future ethically approved research.   

  Yes No 

2. I agree to take part in this study. 
 
 

  

  Yes No 
 
Name of person giving consent  Date  Signature 
 
 

 dd/mm/yy   

     
Name of person taking consent  Date  Signature 
 
 

 dd/mm/yy   
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