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Abstract
We investigate the reproducibility of Bluetooth Impersonation AttackS (BIAS) and
Bluetooth Forward and Future Secrecy (BLUFFS) attacks in our dissertation. Using
a Raspberry Pi 3 Model B and a CYW920819M2EVB-01 evaluation board, we are
able to reproduce BIAS and successfully attack target devices with it. We analyse the
packets captured with various BIAS attacks, and compare them to a regular Bluetooth
connection. We show the difficulties in implementing BLUFFS, but confirm that it is
likely reproducible.
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Chapter 1

Introduction

Phones, computers, and smartwatches are a few examples of devices with Bluetooth
capabilities that we use everyday. They often record sensitive data such as who we call,
where we go to for work, or what our heart rate currently is, all to improve their services
and our quality of life. With 5 billion Bluetooth devices shipped in 2023, of which
1.22 billion are categorised as data transfer devices and 563 million as location services
devices, it is vital to question the security and privacy of modern Bluetooth devices. [1]

Despite the widespread popularity of Bluetooth in our daily lives, there is a worrying
lack of research into the safety of Bluetooth and the potential implications of it. The
official Bluetooth SIG allows people to report security vulnerabilities they find with the
Bluetooth protocol to them, yet only 1 official security notice was made in 2023, and
2 in 2022. [2] While one may consider this to be the result of the Bluetooth protocol
being secure, the more probable reason is that not enough security and privacy research
is being done into it. 28,961 CVEs were published in 2023, making the 2023 Bluetooth
security notice the only CVE to be officially recognised by the Bluetooth SIG in that
year. [3]

1.1 Goals

While the discovery of new vulnerabilities is important, it is almost useless to report
if it cannot be reproduced by others, since it would be impossible to test if patches
against the attack work or not. [4] Over the course of this dissertation, we selected two
Bluetooth vulnerabilities, BIAS and BLUFFS, that were recognised by the Bluetooth
SIG to replicate. [5] [6]

We chose these two because the creator of these exploits, Daniele Antonioli, has
released the code to assist others in replicating the attacks. [7] [8] However, the
CYW920819EVB-02 evaluation board that was used for the original BIAS proof of
concept has been discontinued and is no longer available to purchase. [9] Because of
this, there is demand for the original code to be ported to a newer version of the EVB-02
board, which was a primary motivator for us to aim to implement BIAS and BLUFFS.

There is also a lack of guidance on how to implement BIAS in its entirety. The BIAS
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Chapter 1. Introduction 2

paper and code provide simple instructions on how to perform the attack with the files
provided in the repository, but it fails to explain how one can patch the attack device to
impersonate a device that the repository does not include. The BLUFFS code repository
does not contain step-by-step instructions, but it does say what files to run depending
on what the user wishes to do.

While the papers give a methodology on how they setup and ran their experiments, we
cannot assume that people will read through and fully understand them. It is important
that people that wish to recreate these attacks can understand why they are following
these steps, and so they can potentially extend on the attack.

The goals of this dissertation are listed as follows:

• Understand and break down the BIAS and BLUFFS attacks

• Adapt the BIAS and BLUFFS code to implement it on an evaluation board that is
available to the general public

• Reproduce BIAS and BLUFFS with an accessible setup, and analyse how the
attacks worked

• Provide an in-depth guide on how we ran BIAS and BLUFFS

1.2 Contributions

As a result of this dissertation, we have:

• Reimplemented the BIAS attack for the CYW920819M2EVB-01 evaluation
board

• Created a guide on how to implement the BIAS attack on a Raspberry Pi 3 Model
B and a CYW920819M2EVB-01 evaluation board.

• Created new impersonation files for BIAS and fixed the original code to work
with Python 3

• Explained why BLUFFS is not a feasible attack for our setup

Our efforts in reproducing BIAS for the CYW920819M2EVB-01 resulted in the original
author of the attack being interested in our guide. [7] Our work is also planned
to be incorporated into an open-source framework that tests devices for Bluetooth
vulnerabilities, developed by members at ETH Zürich.

1.3 Overview

We split the remaining parts of our dissertation into 5 distinct chapters.

• Chapter 2 introduces the Bluetooth protocol, Secure Simple Pairing, and the Link
Manager Protocol. We also introduce the toolkits we use, and explain why we
chose to not implement other known Bluetooth attacks.
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• Chapter 3 provides a simplified explanation of how the BIAS and BLUFFS
vulnerabilities work.

• Chapter 4 explains how we implemented the BIAS attack on the EVB-01 board
and successfully used it against an IdeaPad 5. We compare Wireshark logs be-
tween a regular Bluetooth connection, failed BIAS attacks, and a successful BIAS
attack. We explain the differences we made from the original implementation of
BIAS and discuss the potential impacts and limitations of the attack.

• Chapter 5 goes into detail about the types of difficulties we encountered when
getting BIAS to work. It also explains why implementing BLUFFS was infeasible
to achieve with the resources we had.

• Chapter 6 discusses the impact our project has had on the reproducibility of BIAS
and BLUFFS, and we discuss the potential implications our project may have.

• Chapter 7 briefly summarises our project and discusses potential future work that
can be done.



Chapter 2

Background

In this chapter, we introduce concepts behind the Bluetooth protocol that are necessary
to understand BIAS and BLUFFS, particularly piconets, Secure Simple Pairing, and the
Link Manager Protocol. We then introduce BlueZ, InternalBlue, and Wireshark as the
tools we use in our methodology. Finally, we explain why we chose to reproduce BIAS
and BLUFFS instead of other Bluetooth security exploits.

2.1 Bluetooth

2.1.1 Piconets

Bluetooth networks take the form of piconets, which are defined as at least two devices
that are connected by the same physical channel. One device in the piconet is classed as
a central, and up to seven other devices are called peripherals. [11] Figure 2.1 shows
three examples of piconets, though we note that example c is classed as a scatternet due
to two of the centrals being connected.

Devices are allowed to switch roles in a piconet, for example when a peripheral needs
to connect to a different peripheral. Centrals and peripherals complete different tasks
when performing some protocols, but for our dissertation we only concern ourselves
with their roles in establishing sessions. [10]

2.1.2 Secure Simple Pairing

Secure Simple Pairing is the stage that two Bluetooth devices that are unauthenticated
to one another must complete so that they can encrypt all future sessions between
themselves. Figure 2.2 shows a simplified diagram with the 5 phases: Public key
exchange, authentication stage 1, authentication stage 2, Link Key calculation, and
encryption.

We explain the separate phases in more detail below:

Phase 1: Initiating device A sends its public key PKA to device B. Once B receives
PKA, it then responds back to A with its public key PKB.

4



Chapter 2. Background 5

Figure 2.1: Possible configurations of a piconet. [10]

Figure 2.2: The steps of secure simple pairing [12]
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Figure 2.3: Table of the resulting authentication protocol depending on the IOCaps. [13]

Phase 2: The process diverges depending on what type of authentication protocol the
devices must complete. The authentication protocols are decided on by the input and
output capabilities (IOCaps) of the devices. Figure 2.3 shows what authentication
protocol will be selected based on what IOCaps the devices have. We do not need to
understand the specifics of the separate authentication methods for BIAS and BLUFFS,
so we have left them out of this explanation.

Phase 3: All processes converge back to following the same steps again, and each
device computes a new value E. Device A sends B its computed EA, which B then
checks to see if it can compute the same value as EA. If successful, then B sends A its
computed EB, which A then checks in a similar fashion.

Phase 4: At this point the devices compute the Link Key. The part we stress here is
that there is no possibility for a user that is eavesdropping can know the Link Key from
passively sniffing the connection between A and B.

Phase 5: The final phase has the two devices compute the encryption key with which to
encrypt all future communications between themselves.

2.1.3 Link Manager Protocol

The Link Manager dictates how Bluetooth devices connect to and disconnect from one
another. It contains the Link Manager Protocol (LMP), which sends Packet Data
Units (PDU). [15]

All LMP PDUs have an opcode at the start of its message to inform the receiving
device what the body of the packet contains. Each LMP PDU is one of either structure
depending on what type of opcode it has:
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Figure 2.4: LMP connection establishment steps. Either the central or peripheral can
start a connection. [14]

• 1 bit transaction ID, a 7 bit opcode, followed by up to 17 bytes of payload.

• 1 bit transaction ID, a 15 bit extended opcode, followed by up to 16 bytes of
payload.

When a device wishes to connect to a device, it follows the LMP procedures to establish
a connection between themselves. Figure 2.4 shows what LMP packets are sent between
the devices when establishing a connection. [14]

2.2 Toolkits

We give a brief overview of the three tools we use in our methodology. We do not go
into depth how these tools work as we only need to understand what they do, and how
we can use them to our advantage.

2.2.1 BlueZ

BlueZ is an open source implementation of the Bluetooth protocol for Linux devices. It
also installs commands that we use when gathering information about the target device
to impersonate. bluetoothctl provides command-line access to BlueZ, allowing us
to perform actions such as making our Bluetooth device pairable, or to scan the nearby
environment for any discoverable devices. [16]

Other commands we use from BlueZ include: hcitool, btmon, and btattach.
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2.2.2 InternalBlue

InternalBlue was created as part of Dennis Mantz’s Masters thesis, designed to be a
low-level Bluetooth experimentation framework for security research purposes. [17] It
features powerful commands such as sending hand-crafted LMP packets over a specified
connection, or overwriting parts of the memory of our Bluetooth chip.

The code developed for BIAS and BLUFFS use InternalBlue for its low-level capa-
bilities, though the attacks were created when InternalBlue was written in Python 2.
InternalBlue has since been rewritten in Python 3, and we encounter issues that we
discuss in Chapter 5.

2.2.3 Wireshark

Wireshark is a popular open-source network packet analyser that provides a user-friendly
interface to easily search through captured packets and look at their contents. [18] We
use Wireshark to record Bluetooth packets we receive during our tests, and then to
investigate whether an attack attempt was successful or not. We also install a plugin to
allow Wireshark to read capture LMP packets, made by Classen et. al. [19]

2.3 Bluetooth Attacks

We chose the BIAS and BLUFFS vulnerabilities instead of other vulnerabilities because
they were made by the same author, have code also made by the same author, and have
been officially recognised by the Bluetooth SIG. [5] [6]

We chose not to implement other vulnerabilities that fit this criteria due to time con-
straints, and the high likelihood that they would require a different setup to what was
needed for BIAS and BLUFFS. Some vulnerabilities also built off of what BIAS and
BLUFFS did, meaning we had to understand those two attacks before we could approach
new vulnerabilities.

Finally, we also wanted to implement vulnerabilities that were discovered in the past
5 years, as vulnerabilities that were found after that time frame were less likely to be
exploitable as devices and the Bluetooth protocol were patched to defend against them.

Some attacks we do not explain in the following chapter but we considered implementing
are: Method Confusion attack, [13] Blacktooth, [20] BRAKTOOTH, [21] and BLESA.
[22]

2.4 Previous Work

To our knowledge, there has only been 1 other successful attempt at implementing
BIAS on an evaluation board other than the CYW920819EVB-02. [23] It uses the
CYW920735Q60EVB-01 evaluation board, which is still available for purchase. How-
ever, it does not explain the steps they took to get the attack to work, but they do say
how to get the information necessary to create an impersonation file. We improve on
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this work by explaining how we got the CYW920819M2EVB-01 evaluation board to
work with all of the tooling needed. We also explore the differences between a regular
Bluetooth connection and a BIAS connection.

Blacktooth implements BIAS using the EVB-02 as part of its chain of attack to achieve
remote command execution on the victim device, showing that BIAS was reproducible
when the EVB-02 was available to purchase. [20] We did not find any papers that used
a device other than the EVB-02 to implement BIAS during our research.



Chapter 3

BIAS and BLUFFS

We introduce the Bluetooth vulnerabilities, BIAS and BLUFFS, that we focus our
project on. We provide a high-level overview of them along with the phases involved.
All details on the attacks in this chapter come from Antonioli et. al. [24][25]

3.1 Bluetooth Impersonation AttackS (BIAS)

Bluetooth Impersonation AttackS, more commonly known as BIAS, is a security
vulnerability in the Bluetooth Protocol that allows an attacker to ’impersonate’ a device
and then connect to a victim without knowing the Link Key between the victim and the
impersonated device. Figure 3.1 depicts how BIAS can allow Charlie, the attacker, to
communicate with Alice or Bob, the victims, of which have paired together before the
attack. If communicating with Bob, then Charlie impersonates Alice, and vice versa.

Before Charlie can perform BIAS, they must patch their Bluetooth chip with the same
Bluetooth address, name, LMP feature profiles, LMP version and subversion, company
ID, and device class as the victim they want to impersonate. We explain this process
more in Chapter 4 as the information gathering is a valid part of the Bluetooth protocol,
and not a vulnerability caused by BIAS.

3.1.1 Legacy Secure Connections BIAS

BIAS exploits the lack of mutual authentication during the Simple Pairing process with
Legacy Secure Connections. Charlie can be either a central or a peripheral device at the
start of the pairing process, as BIAS follows the same simplified steps:

1. Begin a connection with the victim

2. Peripheral only: Switch roles to become the central device

3. Send the victim a challenge to solve as part of the authentication process

4. Finish pairing

10
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Charlie never solves a challenge from the victim, because the victim does not ever
check if Charlie solves it. If Charlie starts off as a peripheral device, they must perform
a role switch to become the central device because then they do not need to solve the
challenge they send to the victim.

3.1.2 Secure Connections BIAS

There are two types of BIAS attacks for Secure Connections, those being the downgrade
and the reflection attacks. The downgrade attacks exploit the ability to change from
Secure Connections to Legacy Secure Connections if one user does not support Secure
Connections. The simplified steps for BIAS downgrade attacks are as follows:

1. Begin a connection with the victim

2. Declare that Secure Connections are not supported

3. Downgrade to Legacy Secure Connections

4. Follow the steps for Legacy Secure Connections BIAS

The BIAS reflection attacks exploits the ability to switch roles once the challenges for
the authentication procedure have been sent. The simplified steps for these attacks are
as follows:

1. Begin a connection with the victim

2. Peripheral only: Switch roles to become the central device

3. Exchange challenges with the victim to begin the authentication process

4. While waiting for the victim to solve the first challenge, switch roles to become
the peripheral device

5. Receive the response from the victim, and then send it back

At the point when Charlie and the victim exchange challenges, this begins phase 3 of
the Secure Simple Pairing procedure as explained in Subsection 2.1.2. The victim sends
Charlie EV as the response to the challenge. At this point the victim would expect to
receive EC from Charlie, but because Charlie changed roles the victim must change as
well. This makes the victim want EV in response instead, and so Charlie sends it back
and the pairing procedure successfully completes.

As we will be checking our implementation of BIAS with the Secure Connections
downgrade peripheral attack in Chapter 4, we present a more in-depth explanation for
the attack in Figure 3.2.

3.2 BLUetooth Forward and Future Secrecy (BLUFFS)
Attacks

BLUFFS was discovered in November 2023, and builds off of BIAS and a previous
attack by Antonioli et. al called KNOB.
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Figure 3.1: A simple diagram showing the end results of BIAS. [24]

Figure 3.2: Process of the BIAS peripheral attack which we implement. This exploits
downgrading from Secure Connections to Legacy Secure Connections. [24]
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Figure 3.3: Session Key derivation during Simple Pairing. [25]

The KNOB attack can be succinctly explained as forcing the encryption key K used by
the victims to have an entropy of 1 byte, meaning that Charlie can quickly brute force K
by checking it against 512 pre-computed values. [26] This exploit trivialises Bluetooth
encryption, but companies swiftly patched devices against the exploit. [27] This attack
is not essential to implement BLUFFS, which is why we chose to not implement KNOB.

BLUFFS manages to break both the forward and future secrecy guarantees made by the
Bluetooth protocol, enabling Charlie to decrypt any messages sent between the victims
Alice and Bob no matter whether they are from the past or being actively sniffed. It
does this by manipulating the values used in the variables when deriving a Session Key
for the new connection between Alice and Bob.

Figure 3.3 shows which variables are used to establish the Session Key SK. PK is
the long-term Pairing Key BA is the Bluetooth Address, CA is a challenge, CR is the
response to the challenge, SE is the entropy of SK, and SD is the the SK diversifier. The
purpose of SK is to protect both past and future connections if SK is discovered, as a
new Session Key is for every connection.

Charlie would perform the following actions if they were targeting Bob:

1. Start a connection with Bob, where Charlie impersonates Alice using the same
techniques as in BIAS.

2. During the Session Key establishment phase, Charlie sends a constant ACC to
Bob and ignores CRB.

3. SE is set as the lowest possible entropy, which is 1 if Bob is vulnerable to KNOB,
or 7 if not.

4. SD is also constant, which makes Bob negotiate an SK that can be brute-forced.
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Figure 3.4: Session Key derivation, but Charlie manipulates the values used for deriving
SK. [25]

5. Charlie brute forces SK, which can be done offline.

6. Once brute forced, Charlie can now decrypt all future and past messages between
Bob and Alice.

Unfortunately, the time it would take for Charlie to brute-force SK using commercial
equipment would take several weeks. [25] We discuss this issue more in Chapter 5.



Chapter 4

Implementing BIAS

This chapter explains the implementation of the BIAS attack by using a CYW920819M2-
EVB-01 evaluation board and a Raspberry Pi 3 Model B, and discusses the differences
between the original implementation and this one.

4.1 Setup

To install InternalBlue with all of its functionalities, we need pwntools, a Python 3
library for exploitation development and Capture The Flag competitions. [28] However,
since pwntools is not available for the Raspbian OS, we installed Ubuntu Server
22.04.4 LTS on our Raspberry Pi 3 to easily install pwntools and hence InternalBlue.

To run the attack, we need to recon essential information from the device we impersonate.
As explained in Section 3.1, we must gather the device’s Bluetooth address, name, LMP
version and subversion, company ID, LMP features, and device class. These can all be
obtained by querying the device and reading the responses given, but we are unable
to read all of the response packets with the basic Linux kernel on a Raspberry Pi,
because the packets begin with the 0x07 prefix, which the kernel marks as a Broadcom
diagnostic packet. The packet then is sent down to a management pipe instead of the
HCI pipe that the other packets go down which InternalBlue, Wireshark, and btmon
watch, meaning we miss essential packets. [29]

To capture the diagnostic Bluetooth packets, we patch the 4.14 Linux kernel. Using
the kernel patching files by Antonioli, we remove all of the code that allows diagnostic
parsing and add a new file called h4_recv.h. [30] This new file comes from the
Android kernel’s Bluetooth files that acts as a generic Bluetooth driver helper. [31] This
lets the kernel accept Bluetooth packets with a 0x07 prefix. When we attach the CYW
board later in the process, we can then execute the following command:

echo 1 | sudo tee /sys/kernel/debug/bluetooth/hci1/vendor_diag

This makes the Broadcom chip send out diagnostic messages, which includes LMP
packets that we can now read with the patched kernel. [29]

15
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4.2 Differences from the Original Implementation

We use the Linux kernel 4.14.111 to minimise divergence from the original imple-
mentation. However, there were issues when compiling the kernel that are unrelated
to the patches made, meaning it was necessary to change other files in the kernel for
it to compile successfully. The files changed are: scripts/dtc/dtc-lexer-lex.c,
scripts/dtc/dtc-lexer-lex.c shipped [32], include/linux/bitfield.h [33],
and .config [34]. This should not affect the implementation of BIAS, as none of the
changes affect the Bluetooth modules.

One of the major challenges we encountered with the original paper was that an essential
piece of equipment, the CYW920819EVB-02 from Infineon, was discontinued. [9] We
found that the CYW920819M2EVB-01 is a suitable replacement because it can still
be purchased and it has the same memory addresses as the original board. We go into
more detail about this challenge in Chapter 5.

InternalBlue does not have a firmware file dedicated to the EVB-01, but does for
the EVB-02. This is because the EVB-02 has the chip identifier 0x220c, whereas
the EVB-01 has the chip identifier 0x2305. InternalBlue uses the chip identifier to
either load the specialised firmware files with addresses for the memory, or to load the
generic one. Some functions require addresses to be defined to let them be called by
InternalBlue, which means the generic firmware file cannot use those functions. To
enable InternalBlue to change the firmware and send HCI commands to the EVB-01,
we copied the fw_0x220c.py file to a new fw_0x2305.py file. Now, when we start up
InternalBlue, it will match the chip identifier 0x2305 to the new file and we can use the
specialised functions.

The original BIAS files were written in Python 2 since InternalBlue was written in
Python 2 when the first proof of concept was made, but InternalBlue has since changed
over to using Python 3 and strongly recommends people to use the new version. Every
change to the original BIAS files made can be found in the materials provided. These
are also discussed more in Chapter 5.

4.3 Implementation

In this section, we show an example of the BIAS attack where we impersonate a WH-
CH510 headset to have an IdeaPad 5 connect to the attack device instead of the actual
WH-CH510 device.

4.3.1 Setting Up the CYW Board

We can mount the CYW evaluation board with diagnostics mode enabled by running:

btattach -B /dev/(file where CYW is attached) -S 115200 -P bcm

This command changes the attack device’s Bluetooth controller to the CYW board, sets
the baud rate to 115200 Bd, and sets the protocol that talks to the board to a Broadcom
protocol. [35] While btattach usually detects what protocol to use to talk to the
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Figure 4.1: hcitool inq results with necessary data highlighted

Figure 4.2: hcitool info results with necessary data highlighted

Bluetooth chip, the CYW board appears like a Cypress chip to it, so it will not use the
Broadcom protocol we require for the diagnostic messages. The chip is fully compatible
with the Broadcom protocol, so we can explicitly define it when mounting the board.

We now can run the command in section Section 4.1 to enable the diagnostic messages
to be sent.

4.3.2 Device Impersonation

We never need to connect to the WH-CH510 to gather the necessary information about
it. However, we do need it to be discoverable for our attack device to find it and query
it the necessary packets.

First, we need to have btmon running on the side to show the packets being captured.
Next, we can run hcitool inq to have our device search for nearby devices. Once
completed, we get the Bluetooth address and class of the devices it finds. In btmon we
can see similar information as well as the name of the device, as visible in Figure 4.1



Chapter 4. Implementing BIAS 18

Figure 4.3: InternalBlue patching the CYW board to match the WH-CH510

To get the rest of the data values we need, we can run hcitool info (address). This
will show the LMP feature pages, LMP version and subversion, and the manufacturer,
as seen in Figure 4.4.

We can now create an impersonation file for the BIAS code to use when changing the
CYW firmware. It is important to write the device class value in little endian order in the
file instead of the big endian order that is visible from btmon and hcitool, otherwise
the CYW board will not appear like the impersonated device’s class. We have made 2
impersonation files available, one for the WH-CH510 and another for the Pixel 3a.

We keep the lmin and lmax values as 07 as we did not implement the KNOB attack, so
we cannot know whether the impersonated device can create a 1 byte session key or not.
However, it may be possible to test the KNOB attack during BIAS by setting the lmin
value to 01 and seeing if it will pair to the victim, since if the victim is patched against
KNOB then it should reject the connection request.

Before we move onto the next steps, we decided to reattach the CYW board as mentioned
in section 4.3.1 but without the -P bcm flag as we found that some victim devices have
difficulty connecting to the attack device with this flag set. We also need to start up
bluetoothctl and set the Bluetooth controller to be discoverable before we patch it,
as if we set it after we patch our device then bluetoothctl will change the class back
to its actual value, destroying the integrity of the impersonation of the attack device.

From this point we follow the steps as outlined by the original BIAS Github repository.
We start up InternalBlue and initiate Wireshark from it, then we run make generate
to create the BIAS python file and shell make bias inside InternalBlue to patch the
device.

As seen by btmon in Figure 4.3, InternalBlue is accessing parts of the memory of the
CYW board and rewriting the original Bluetooth values with the ones we specified in the
impersonation file. When it is done, the board is virtually identical to the impersonated
device to the point where if we exit InternalBlue and try to start it up again, it will trip
an error warning as the impersonated device does not use a Broadcom or Cypress chip,
making the tool exit early and forcing us to start from the beginning of the BIAS attack.
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Figure 4.4: InternalBlue cannot be started again after the CYW board is patched

4.3.3 Running the Attack

The attack device is now ready to connect to the IdeaPad 5. Before we do so, we pair
the WH-CH510 to the IdeaPad 5 to ensure that they trust each other, and then we turn
off the WH-CH510 to prevent any interference from it during the connection process.

The IdeaPad 5 attempts to connect to the WH-CH510. At this point, it will find our attack
device and see that it has the same information values as the ones stored in the IdeaPad
5’s trusted devices list. This tricks the victim into believing that the attack device is
actually the original WH-CH510, and connects to it without the attack device ever
authenticating itself to it. This is the BIAS peripheral impersonation attack working.

4.4 Comparing Wireshark Logs

To show that this is the BIAS attack working, we compare the Wireshark PCAP files
between a normal Bluetooth connection, a failed BIAS attempt, and a successful BIAS
attempt. The full Wireshark logs can be found in the materials. The normal Bluetooth
connection is between a Pixel 3a and the EVB-01 board, where the EVB-01 is unaltered.
The BIAS attempts are between a victim IdeaPad 5 and the EVB-01 board, of which is
impersonating the same Pixel 3a from the normal Bluetooth connection logs.

To keep the figures shorter and simpler to read, we filter out all captured LMP packets
and only show the packets in the time frame that is relevant to the discussion. All of the
Wireshark logs can be found in their entirety in the materials provided. We were not
able to record Wireshark logs of a regular Bluetooth connection between the EVB-01
and the IdeaPad 5, which we explain in Section 5.1.

Figure 4.5, Figure 4.7, and Figure 4.9 are provided to draw attention to the packets we
compare in the following sections. Red represents the final Simple Pairing protocol
packet, blue represents the Link Key packets, green shows if the target device accepted
the pairing, and yellow shows the IOCaps packets.
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Figure 4.5: Annotated shortened Wireshark logs of a regular Bluetooth pairing protocol
between a Pixel 3a and the EVB-01 board. Refer to Section 4.4 for a guide on the
colours.

Figure 4.6: Contents of the highlighted Link Key packet in Figure 4.5.

4.4.1 Regular Bluetooth Connection between the EVB-01 and a
Pixel 3a

In Figure 4.5, we present the Wireshark logs of a Pixel 3a connecting to the EVB-01
using the Bluetooth protocol. The Pixel 3a is paired to the EVB-01 board beforehand to
keep the Wireshark logs relevant to the lifetime a Bluetooth connection only.

This connection follows the LMP procedure for establishing a connection, explained in
Subsection 2.1.3. One key difference in Figure 4.5 from Figure 4.7 and Figure 4.9 is
that the Link Key packet is only received after the Simple Pairing protocol is completed.
Figure 4.6 shows the contents of the packet. We stress that this packet contains the Link
Key to encrypt all future messages.

4.4.2 Successful BIAS attack between an Impersonated Pixel 3a
and an IdeaPad 5

Figure 4.7 shows a successful BIAS peripheral attack from our experiments. The
EVB-01 impersonates a Pixel 3a that is trusted by the victim IdeaPad 5. We note that
the Link Key is negotiated immediately after the connection was accepted, and there is
no packet containing the Link Key after the Simple Pairing protocol is completed. The
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Figure 4.7: Annotated shortened Wireshark logs of a successful BIAS peripheral attack.
The CYW board impersonates a Pixel 3a that the IdeaPad 5 victim trusts. Refer to
Section 4.4 for a guide on the colours.

Figure 4.8: Contents of the first User Confirmation Request packet in Figure 4.7. 0x33
means the sender has authenticated the other user.

connection is sustained until we terminate the connection from the EVB-01.

We follow the LMP procedure like before. As the EVB-01 is patched to have the same
information as the Pixel 3a that the IdeaPad 5 requests, the IOCaps match the details
the IdeaPad 5 has stored for its profile on the Pixel 3a. This leads into the authentication
phase of the procedure, which the EVB-01 responds that it correctly verified the PIN it
obtained in Figure 4.8, though it never actually checks the PIN.

The IdeaPad 5 believes that the EVB-01 is actually the Pixel 3a as it claimed to have
calculated the same number as the PIN. The Simple Pairing procedure is then completed
as both parties are satisfied with the calculated number, and the BIAS peripheral attack
is successfully performed. At no point during this connection do we receive a Link Key
value like that of Figure 4.6. Because of this, the connection between the IdeaPad 5 and
the EVB-01 never gets encrypted, despite how the final packet in Figure 4.7 says that
the encryption is turned off once the EVB-01 is disconnected.

4.4.3 Failed BIAS attacks between an Impersonated Pixel 3a and an
IdeaPad 5

We present two examples of a failed BIAS attempt in this section, and we explain why
they failed.

In this example, we patched the EVB-01 in the same way as before, but we did not set
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Figure 4.9: Annotated shortened Wireshark logs of a failed BIAS peripheral attack. The
CYW board impersonates a Pixel 3a that the IdeaPad 5 victim trusts, but the attack does
not work. Refer to Section 4.4 for a guide on the colours.

Figure 4.10: Contents of the sent IOCaps packet in Figure 4.9.

the EVB-01 to be pairable. Figure 4.9 shows the Wireshark logs of the failed connection.
Because of this mistake, when the IdeaPad 5 requests for the EVB-01’s IOCaps, the
EVB-01 refuses to provide them and returns the packet shown in Figure 4.10. As a
result, the LMP protocol dictates that the connection establishment attempt should be
stopped, and the Simple Pairing packet contains the code 0x05, meaning that the PIN
or Link Key was incorrect.

In our other example of a failed BIAS attempt, we correctly set the EVB-01 to be
pairable. Figure 4.11 shows the logs of the attempt. This time, the EVB-01 sends the
correct IOCaps, but fails to send the correct User Confirmation reply. Taking a closer
look at the LMP packets sent during this time in Figure 4.12, we see in packet 371 that
the Numeric Comparison failed.

Investigating the body of the User Confirmation negative response in Figure 4.13, we
find that the error code is 0x2d. This error code means the Quality of Service parameters
were rejected by the EVB-01, of which we cannot control ourselves.

We followed the steps we listed out in Chapter 4 that resulted in successful BIAS
attacks. The Quality of Service parameters that resulted in this error are decided on
in the Baseband protocol, which is out of scope for this project. We assume that
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Figure 4.11: Annotated shortened Wireshark logs of a failed BIAS peripheral attack, but
with the EVB-01 correctly patched and pairable.

Figure 4.12: A closer look at the time frame in Figure 4.11 with LMP packets included.

Figure 4.13: Contents of the User Confirmation Request Negative Reply packet in
Figure 4.12.
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Figure 4.14: Annotated shortened Wireshark logs of the BIAS portion of the BLUFFS
attack from Daniele. [8]

this may be to do with the baud rate we set the EVB-01 to when we first attach it in
Subsection 4.3.1, but we did not look into this any further.

4.4.4 Validity of the Implementation

We discovered that the Wireshark logs of Danieli’s BLUFFS attack contained the
initial step where the attack device executed BIAS on the victim to connect to them.
To determine if our implementation of BIAS was valid or not, we can compare our
Wireshark logs to the BLUFFS logs to see if we obtain similar results. Figure 4.14
shows the relevant portions of the BLUFFS BIAS attack.

The key difference here is that the attack device receives the Link Key after Simple
Pairing is finished in Danieli’s logs, whereas in our logs in Figure 4.7 there is no packet
containing the Link Key. In our comparisons of the two Wireshark logs, we could
not find a difference in the captured packets between them that may have caused this
discrepancy. The logs provided by Kozlowski also show a Link Key notification packet
after the Simple Pairing procedure, but there is no explanation of why this might be.
[23]

As we got the IdeaPad 5 to mistakenly pair to the EVB-01 when it was attempting to
connect to its trusted Pixel 3a without the EVB-01 knowing the Link Key between
them, we believe we managed to implement BIAS successfully. It may prove prudent
to investigate why our implementation did not get the Link Key in future work.

4.5 Test Results

Following the steps listed out in Section 4.3, we tested BIAS against the IdeaPad 5 and
Pixel 3a. We obtained impersonation files for these devices as well as the WH-CH10
headset. Table 4.1 shows which victims incorrectly connected to the EVB-01 that
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Impersonated IdeaPad 5 Pixel 3a WH-CH510
IdeaPad 5 - (not tested) -
Pixel 3a ✓ - -

WH-CH510 ✓ ✓ -

Table 4.1: A table showing the results of testing the BIAS peripheral attack against
various devices. The left-hand column shows the devices the EVB-01 impersonated.
The Pixel 3a was not tested against an impersonated IdeaPad 5 due to the EVB-01
breaking, explained in Section 5.1.

impersonated a trusted device of the victim.

We could not test BIAS against many victim devices since we only had access to
our personal Bluetooth devices. Given more time and resources, we would have
experimented if our implementation could perform the BIAS central attack, and we
would test more everyday Bluetooth devices if they were vulnerable against BIAS.

4.6 Limitations

CVE-2020-10135 lists BIAS as having a base score of 5.4. No privileges or user
interactions are required to perform BIAS, but it has a low impact on the confidentiality
and integrity of the victim. [36] NVD also lists BIAS as having low attack complexity,
which we argue against. Chapter 5 explains the difficulties we encountered while
implementing BIAS, which drastically increases the attack complexity.

BIAS is not a realistic attack yet. After the attacker has the tooling set up, assuming
they are using unmodified commercially available attack devices, they must be within a
35m range to the victim in a typical home or office environment. [37] If they do modify
the device, for example by increasing the transmitting power or by attaching antennae
to it to increase the range, then the device becomes more conspicuous.

The next challenge is capturing the Bluetooth packets of the device to impersonate. The
minimum information the attacker must get is the device’s Bluetooth address and name,
as that is unique to each device. The rest of the information can be obtained beforehand
if the attacker knows what device to impersonate. Without assuming that the device is
discoverable, the attacker must sniff out Bluetooth packets over-the-air. The Ubertooth
One hardware is specially designed for over-the-air packet sniffing [38], but it has been
discontinued. [39]

Finally, BIAS is not reliable. Out of all of our attempts with our experiments, only
3 were successful. This means that the success rate for BIAS is very low. This was
in a controlled setting where the attack device and the victim were next to each other,
and the impersonated device was turned off. A realistic setting will have the victim
and attacker be further apart, resulting in greater path loss because of the distance and
obstacles between the devices. Plus, the real device the victim wishes to connect to is
likely closer to the victim and is actively turned on, causing interference between the
impersonated device and the attacker. We ran into this issue where the interference of
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the impersonated device and the attacker confused the victim and made the victim stop
responding, hence failing the BIAS attack attempt.



Chapter 5

Challenges

We list the challenges we encountered over the course of our project when implementing
BIAS and BLUFFS, and we explore how these challenges may have impacted others’
ability to reproduce the attacks. We also go into why BLUFFS was unachievable for
this project with the resources we had.

5.1 Inaccessible Hardware

Daniele et. al listed out the equipment they used in their papers on BIAS and BLUFFS,
which was a CYW920819EVB-02 evaluation board and a Linux laptop. As explained
in Section 4.2, the original board was discontinued and impossible to purchase from
third-party sellers, meaning we needed to find a new evaluation board to replace the
EVB-02.

We learnt that the CYW920819M2-EVB-01 board had the same memory addresses
as the EVB-02 from an answer to an open issue in the BIAS code repository. [7]
Considering that the original BIAS paper located the specific EVB-02 memory addresses
via dumping the ROM and RAM contents of the board, and then reverse engineering it
in a disassembling and decompiler program called Ghidra. [24]

We did not want to go through this process ourselves if we used a different evaluation
board, so we purchased the CYW920819M2-EVB-01. Any future work that looks to
implement BIAS on a different evaluation board may need to go through the original
process.

Unfortunately, through the process of implementing BIAS, our EVB-01’s Bluetooth
capabilities stopped functioning as expected. Over the course of our experimentation,
we discovered that the EVB-01 could no longer sustain a Bluetooth connection once
established as a peripheral. If the EVB-01 established the connection as a central,
then the connection would be sustained. We could not successfully complete BIAS
peripheral attacks anymore, and were unable to figure out why the EVB-01 Bluetooth’s
functionality stopped working. It is also due to the EVB-01 breaking that we could not
implement BLUFFS, as BLUFFS requires patching the Bluetooth controller’s memory
using InternalBlue as well.

27
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5.2 Incompatible Code

As mentioned in Subsection 2.2.2, the code for BIAS was made when InternalBlue was
first created in Python 2, but InternalBlue is now written in Python 3. Since the BIAS
code was released, there have been no updates to the code from June 2020 onwards,
making it incompatible with the latest version of InternalBlue. [40] The BLUFFS main
bluffs.py is also written in Python 2, resulting in it having the same issue.

To fix this compatibility issue, we ran bias-template.py and generate.py through
Python’s 2to3 command, which automatically converts Python 2 files into Python 3.
We edited the output files as 2to3 did not catch the bytestrings and strings, which were
incompatible with InternalBlue. All of these changes did not affect how the BIAS code
worked, and so did not impact the reliability of the attack.

If we implemented BLUFFS as well, we would also change bluffs.py as it is written
in Python 2. We would follow the same steps we did for BIAS, however 2to3 will be
removed in Python version 3.13, so this method of porting the files may no longer be
available in the future. [41]

5.3 Incompatible Libraries

We aimed to use the Raspberry Pi 3 as the computer for BIAS since it represents what
most people that wish to reproduce BIAS have access to, and it can be purchased from
online retailers for £33 at the time of writing. [42] If a user did not have a Raspberry Pi
3, but did have a newer version or a Linux computer of similar or better capabilities, they
likely can implement BIAS following our explanation in Chapter 4 from Section 4.3
onwards.

As mentioned in Section 4.1, we installed Ubuntu OS on the Raspberry Pi 3 so we could
install the pwntools library for InternalBlue. pwntools uses binutils, which in turn
is not available for Raspbian OS.

5.4 Computing Power

Computing power was not an issue for BIAS as the attack does not require resource-
intensive procedures. On the other hand, BLUFFS requires brute forcing an encryption
key as a mandatory step in its attack.

The original BLUFFS paper relies on keeping the entropy SE of the Session Key (SK)
as low as possible. In practice, SE = 1 if the victim device is also vulnerable to KNOB,
or SE = 7 if the victim device is patched against KNOB. (Un)fortunately, Android
pushed a patch against KNOB at the same time that the KNOB paper was published,
resulting in our test victim devices being patched against the KNOB attack. [27]

This security patch forces our attack device to negotiate SK to have an entropy of
SE = 7. With our setup of a single Raspberry Pi 3 Model B, brute forcing SK would
take several weeks based on the estimations from Antonioli,[25] though it is more likely
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to take at least a month considering that the Raspberry Pi 3 has far less computing
power than the average modern computer today.

Considering the time frame we had for our dissertation, and how we had to implement
BIAS first before we could move on to BLUFFS, it was not reasonable for us to spend
the time it would take to crack SK. We also did not want to offload the calculations to
distributed computing or a more powerful computer, as the aim of our dissertation is to
recreate these Bluetooth vulnerabilities on a setup that could reasonably be obtained.
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Discussion

We discuss the implications of this dissertation and the importance of reproducible
attacks. We consider the factors that made it harder or easier to reproduce BIAS and
BLUFFS, and we take a step back to argue the reasons for and against increasing the
reproducibility of security vulnerabilities such as BIAS and BLUFFS.

6.1 Reproducibility of BIAS

As shown by our implementation in Chapter 4, we were able to reproduce BIAS multiple
times. Once we finished porting the original code to Python 3, made the impersonation
files, and prepared the Raspberry Pi 3 and EVB-01, it took under 5 minutes to run each
attempt of BIAS. We are confident that if we followed the steps in our implementation
again, we would successfully run BIAS.

Before our work, we argue that BIAS was extremely difficult to reproduce, especially
so after the original EVB-02 board was discontinued. There are multiple Github issues
in the BIAS code repository with questions about obtaining the necessary information
to make impersonation files, difficulties with errors, and not knowing which evaluation
boards could be used for BIAS. This is due to the original authors not explaining details
that were assumed to be known by those wishing to run BIAS.

With this dissertation, we provide a relatively accessible setup and a thorough ex-
planation on every step we took to get BIAS to work for us, and provide plausible
explanations why we achieved the results we got during our tests. The reproducibility
of BIAS has increased because of our work.

6.2 Reproducibility of BLUFFS

Unfortunately, we cannot say we achieved the same with BLUFFS. While we have
completed the first key step to the BLUFFS attack, there is no reasonable way to brute
force a 7-byte encryption key with an accessible setup.

Our work does show that BLUFFS is likely reproducible on the EVB-01 if we ignore
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the computing constraint, as we can follow the same steps the original paper took. We
would adapt the BLUFFS code repository to Python 3 to make it compatible with the
latest version of InternalBlue, but the original paper used the same setup as from the
BIAS attack.

6.3 Factors of Reproducible Attacks

Our main focus during the course of creating our BIAS implementation was repro-
ducibility and accessibility. Over the course of our work and creating our guide, we
found the points we factored in most were:

• Cost: The cost of purchasing the necessary equipment and the time spent follow-
ing our steps must be reasonable.

• Knowledge: People should understand the reasoning behind each step we took,
and should feel confident in searching for answers if they get stuck.

• Execution: The end result of our guide is to run BIAS, whether that be success-
fully or not.

While initially each of these factors were difficult to obtain as we struggled to get BIAS
to work, as we refactored our steps we strove to lower the cost and knowledge needed
to follow along our explanation.

6.4 Implications

With the severe impact that BIAS and BLUFFS can have on the security and privacy
of Bluetooth, it was important that we considered the potential risks and benefits our
project could have on others.

Making BIAS more reproducible brings up the clear risk that malicious people could
use our work to harm others. While the likelihood of this happening does partially
increase because of our project, we believe that the same can be said for developers that
wish to patch Bluetooth devices against BIAS. As malicious people attempt to exploit
BIAS against victims, the developers can test their devices to check if they can defend
against the attack.

Our project also helps to educate people that may want to understand what parts of the
Bluetooth protocol may be more vulnerable to exploits, or to understand the process
behind reproducing security attacks. This could be to help them figure out how to stay
safe from attacks by not letting their devices be discoverable unless necessary, or to
ensure that future proof of concepts of security vulnerabilities are as easy to reproduce
as possible.
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Conclusions

7.1 Summary

We implemented BIAS for the CYW920819M2EVB-01 evaluation board and Raspberry
Pi 3 Model B. This dissertation is the first documented implementation of BIAS for an
evaluation board other than the CYW920819EVB-02 and the CYW920735Q60EVB-01.
We provide the first analysis of the packets captured for a BIAS attack, explaining why
the attack works.

Our work has been recognised by the original author, and it is planned to be added to an
open-source Bluetooth testing framework developed by members at ETH Zürich.

7.2 Future Work

• Implement BIAS for more Bluetooth chips. The main challenge is finding the
correct patches of memory in the RAM to overwrite in InternalBlue, as this will
require low-level reverse engineering of proprietary firmware. It is plausible that
there are other Cypress chips that have the same memory addresses as our attack
device. Collecting a list of evaluation boards that can run BIAS will be helpful in
the future when the CYW920819M2EVB-01 is discontinued, and the same issue
that motivated us to do this dissertation happens again.

• Test more devices against BIAS. We only had access to 3 Bluetooth devices, of
which 2 could initiate Bluetooth connections. Testing devices that were released
in the past couple years would prove to be a good investigation as to whether
commercial devices are truly safe against BIAS or not. While the Bluetooth SIG
provides patches against these Bluetooth attacks, they may not be mandatory
because all versions of Bluetooth must be backwards compatible.

• Develop BIAS code that is more consistent, or understand why the BIAS attack
fails. While we uncovered the reason some of our BIAS attempts failed, we do
not know how to resolve them. This could be done alongside testing more devices
against BIAS, since giving BIAS a higher success rate would make it easier to
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test.

• Implement BLUFFS. This likely is not possible on the budget-friendly setup we
aimed for, but there are still no other implementations of BLUFFS other than the
original paper. We stress the importance of reproducing exploits, especially for
one as severe as BLUFFS, but we do not have the resources to test BLUFFS.
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