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Abstract
Existing mirror detection datasets have high similarity between videos in the training
and test set. This leads to existing video mirror detection models performing reasonably
well on the test set. However, this performance isn’t observed on other datasets that
consist of dissimilar data. In other words, the model doesn’t adapt well because of the
dataset similarity.

To address this issue, we introduced a large unannotated dataset consisting of 219,053
video frames and a smaller labeled dataset to measure the model’s adaptability. We
measured the cosine similarity between the existing dataset, and the newly created
datasets to quantify the issues of data similarity. We also extend the existing SOTA
model to introduce three different semi-supervised techniques - namely self-training,
expectation maximisation, and co-training - during model training to enable the model
to learn from the more diverse data.

Using these semi-supervised techniques on the more diverse dataset, we find that our
new approaches significantly outperform the existing SOTA model on the newly created
annotated dataset. This signifies that the model has better adaptability. On top of
this, we also find that our semi-supervised training approach slightly outperforms the
existing SOTA on the existing test set. Once again this signifies that not only do our
approaches adapt better to unseen data - they also get a better understanding of video
mirror detection as a whole.
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Chapter 1

Introduction

1.1 Motivation

Mirrors and reflective surfaces pervade our modern environment, posing a unique
and often overlooked challenge within the field of computer vision. Their variable
appearances, heavily influenced by the surrounding environment, make them particularly
elusive both to state-of-the-art computer vision models and even to the human eye.
Notoriously, they can frequently deceive humans such as in cinematography, magic,
and mirror mazes as can be seen from figure 1.1.

Sucker Punch Mirror Scene Maze of Mirrors Magician Box

Figure 1.1: Challenging scenarios where humans can’t easily identify mirrors: a magician
box (right), a mirror maze (middle), and a scene from Zack Snyder’s 2011 movie ”Sucker
Punch” (left) where two actresses are often mistaken for a mirror reflection.

Despite their significance, mirrors remain absent from major object detection and
semantic segmentation datasets such as ImageNet Deng et al. (2009), CIFAR Cif, and
COCO Coc. This gap underscores the necessity for enhanced models that can reliably
navigate the challenges posed by mirrors and reflective surfaces in everyday scenarios.

The nuanced complexity of mirrors significantly impacts various computer vision tasks.
Zendel et al. (2017) highlighted the presence of mirrors in datasets as a notable hazard.
Corroborating on this are the findings of Braun et al. (2019), who identified reflections
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Chapter 1. Introduction 2

as one of the six primary error sources in person detection. Further emphasising their
disruptive presence, Anderson et al. (2018) identified mirrors as potential impediments
to vision-and-language navigation (VLN) tasks. General detection methodologies,
including depth estimation Tan et al. (2021), vision-and-language navigation Anderson
et al. (2018), and semantic segmentation Zhou et al. (2017), often falter in accurately
identifying mirrors. Ignoring these mistakes in computer vision tasks may cause severe
safety issues in situations such as drone and robotic navigation. Thus, it is necessary to
build a robust computer vision model that can distinguish between mirrors and their
surroundings correctly.

The majority of mirror detection focuses on identifying mirrors in single images. These
models leverage cues, such as contextual contrast Yang et al. (2019), explicit correspon-
dences Lin et al. (2020), semantic association Guan et al. (2022), and chirality Tan et al.
(2023). Despite these recent efforts into the mirror detection problem, there’s only one
model that focuses on mirror detection in videos - VMD-Net Lin et al. (2023).

The video mirror detection problem is important because many real-world computer
vision applications are video-based, including robotic navigation, autonomous driving,
and surveillance. Addressing the video mirror detection problem can significantly
benefit these applications. The dynamic nature of videos presents unique challenges and
additional information that are not available in static images. For example, optical flow
information and long-term dependencies. In summary, the video mirror detection prob-
lem is of crucial importance and is relatively unresearched. This leads to opportunities
to drastically increase the performance over existing SOTA models.

1.2 Contributions

The current SOTA mirror detection model VMD-Net Lin et al. (2023) faces many
issues due to the Video Mirror Detection Dataset (VMDD) used to train the model.
Specifically, this dataset has a high degree of similarity between videos in the training
and test set. This lead the model to high performance on the test set, however, when
tested on another annotated dataset, the performance is considerably worse - the model
doesn’t generalise well to videos that are different from that found in training.
To resolve this issue and improve the model, we aim to utilise various semi-supervised
approaches to improve the generalisation accuracy of the model. Specifically, our
project is composed of three main steps:

1. Firstly, Collecting two new video mirror datasets - a large unannotated dataset
used for semi-supervised training, and a small annotated dataset used to measure
the adaptability of the model.

2. Secondly, extending the existing SOTA video mirror detection model VMD-
Net to use semi-supervised learning by incorporating self-training, expectation-
maximisation (EM), and co-training.

3. Finally, testing each of these semi-supervised approaches on both the VMDD-train
and newly created annotated dataset to measure performance and adaptability.
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4. All code used in this project - including code to generate the new unlabeled dataset
- can be found on my GitHub: https://github.com/IainHigh/HonoursProject/tree/main

5. With minimal annotation effort we were able to significantly improve the SOTA
model by using semi-supervised learning to address the data similarity issues.

1.3 Dissertation Structure

This dissertation comprises of five main chapters presenting important information
about the implementation of this project.

Chapter 2: This chapter explores the relevant literature that our project builds off of. It
explores both the history of mirror detection techniques as well as the current SOTA
methodology.

Chapter 3: This chapter discusses the dataset in more detail. Exploring how we
quantised the dataset similarity, and explaining how we created the two new datasets
used in this project.

Chapter 4: This chapter discusses the implementation of each of the three semi-
supervised approaches. It also covers the evaluation metrics used to analyse the perfor-
mance of the models on the two test sets as well as the hyperparamers used in model
training.

Chapter 5: This chapter discusses the results obtained through our semi-supervised
approaches and compares them to the baseline of the SOTA model.

Chapter 6 This chapter concludes and evaluates our work. It identifies the limitations
of our approach and presents future projects that would expand this work. There’s
also a brief mention of the live demo used at the University of Edinburgh School of
Informatic’s project day.



Chapter 2

Background

2.1 Difficulties in Mirror Detection

Mirror detection presents unique challenges for computer vision systems, including a va-
riety of widely used models such as R-CNN Girshick et al. (2014), YOLO Bochkovskiy
et al. (2020), and Mask R-CNN He et al. (2017). The intrinsic properties of mirrors,
coupled with environmental variability, make them difficult to detect for standard de-
tection algorithms. This section explores the multifaceted difficulties encountered in
mirror detection.

1. Mirrors, by nature, do not possess a fixed appearance but instead reflect their
surroundings, making their visual content highly variable and dependent on the
environment. This characteristic alone significantly complicates the detection
process, as object detection models will tend to detect the objects in the mirror
instead of the mirror itself.

2. The lack of inherent, distinctive features in mirrors further exacerbates the prob-
lem. Unlike objects with specific textures, patterns, colours, or shapes (e.g.
vehicles, animals, furniture), mirrors exhibit the properties of the objects and
scenes they reflect. This absence of unique features makes it challenging for
computer vision models to learn and identify mirrors based solely on appearance.

3. Boundary ambiguity is another critical issue. In cases where mirrors have minimal
or no frames, distinguishing the mirror’s edge from its surroundings becomes
difficult. This ambiguity complicates the task of defining the exact limits of the
mirrors, essential for pixel-level segmentation. For example, the middle image in
figure 2.4 shows a borderless mirror on a white wall reflecting another white wall.

4. Mirrors also introduce complexities related to perspective and depth. The reflec-
tion in a mirror might portray objects as being located behind the plane of the
mirror, reversing their actual depth. This reversal can lead to errors in algorithms
that rely on depth information for object detection and scene understanding.

5. The varying illumination conditions reflected in mirrors pose additional challenges
for detection algorithms, which must be capable of generalising across a wide
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Chapter 2. Background 5

range of lighting scenarios. This requirement for versatility in handling different
illumination conditions adds another layer of complexity to mirror detection.

6. A significant hurdle in developing robust mirror detection models is the scarcity
of specialised training data. Capturing and annotating a dataset that adequately
represents the diversity of mirrors and their reflective behaviours in numerous
contexts is a time-consuming task. Some datasets have been collected such
as the Mirror Detection Dataset (MSD) Yang et al. (2019), Progressive Mirror
Dataset (PMD) Lin et al. (2020) and Video Mirror Detection Dataset (VMDD)
Lin et al. (2023). However, compared to modern deep-learning datasets, these are
all relatively small.

7. Occlusions and partial views further complicate mirror detection. Mirrors might
be obscured by other objects or only partially visible from the observer’s view-
point.

8. The diversity in the optics of the mirrors can present additional challenges. Mir-
rors can be flat, concave, or convex. Each introduces unique reflections and
distortions that must be accounted for by detection algorithms. Our project
specifically focuses on flat mirrors.

9. Surfaces that mimic the reflective properties of mirrors, such as polished metals
or water bodies, can lead to false detection. Distinguishing genuine mirrors from
other reflective surfaces requires careful analysis and often additional contextual
information. A general reflection detection project has been proposed in the
future work section in chapter 6, but our project is only interested in detecting
mirrors.

10. Finally, Distinguishing between mirrors and windows is also notably challenging
due to their optical similarities. Without in-depth scene understanding, identifying
one from the other is difficult. Mirrors reflect the environment in front of them,
while windows offer transparency behind them. Because of this, the reliance on
apparent depth information leads to mirror detection usually detecting windows
as well. Advanced algorithms that analyse contextual cues, spatial relationships,
and reflection characteristics are essential for accurately distinguishing between
these two types of surfaces.

Given these complexities, it is clear why mirror detection has evolved as a specialised
domain within computer vision. The challenges outlined above necessitate innovative
approaches, often requiring the development or significant adaptation of existing models
to effectively address the unique characteristics of mirrors.

2.2 Semantic Segmentation

Object detection serves as a foundational task in computer vision, aiming to identify and
locate objects within images or videos. This process involves two primary steps: first
recognising the presence of objects across various classes, and second, pinpointing their
spatial locations typically via bounding boxes. Each detected object is assigned a class
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label along with a bounding box that outlines its position within the image, facilitating
the distinction between different objects and their precise locations.

Semantic segmentation advances beyond object detection by assigning a class label
to each pixel in the image, thereby providing a more granular understanding of the
scene. Unlike object detection, semantic segmentation does not differentiate between
individual instances of the same class. This means that if an image contains multiple
objects of the same type, such as two dogs, semantic segmentation treats them uniformly,
assigning the same class label to every pixel belonging to any dog. This approach is
pivotal for applications requiring detailed analysis of the image composition, including
the identification of object boundaries.

Instance segmentation represents a more sophisticated approach that combines the
principles of object detection and semantic segmentation. This method not only labels
each pixel according to its class but also distinguishes between different instances of
the same class. Consequently, in an image featuring two dogs, instance segmentation
identifies and labels each dog separately, enabling the recognition of individual objects
and their specific contours. This hybrid approach offers a comprehensive analysis
allowing the detailed segmentation of objects while preserving their distinct identities.

In the context of this research, the focus is on semantic segmentation - identifying
mirror surfaces and assigning each pixel one of two classes (mirror and non-mirror).
Given the singular class interest, the task does not necessitate distinguishing between
multiple mirrors. Therefore regardless of the number of mirrors present in the scene, all
will be uniformly labeled under the same class. This approach aligns with the semantic
segmentation methodology, where the primary objective is to accurately classify each
pixel as either part of a mirror or not, without distinguishing between individual mirror
instances. This simplification is crucial for the targeted analysis of mirror surfaces,
facilitating the development of models capable of recognising and delineating mirror
areas effectively within diverse visual contexts.

2.3 Previous Work in Mirror Detection

2.3.1 General Segmentation Models

One of the biggest changes in the field of computer vision is access to extremely large
datasets that allow the training of generalised object detection models. These models
have been found to perform very well over a wide range of classes. Examples of these
are OpenAI’s CLIP Radford et al. (2021); Amazon AWS Rekognition AWS; and Meta
AI’s Segment Anything Model (SAM) Kirillov et al. (2023). We will be discussing
Meta AI’s SAM as it focuses on segmentation as opposed to object detection using
bounding boxes so we can make comparisons to the specialised image-based models
for detecting mirrors.

Segment Anything Model Kirillov et al. (2023) is a segmentation system with zero-shot
generalisation to unfamiliar objects and images, without the need for additional training.
It was trained with more than one billion masks collected on eleven million licensed
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Source

SAM Segmentation

GT

Figure 2.1: Occasions where SAM fails on the MSD dataset by segmenting the objects
inside of the mirror as opposed to the mirror itself.

images, requiring 5 days on 256 A100 GPUs. Because of the large dataset, it has been
found to outperform many previous purpose-built models.

SAM is unable to provide labels for the object categories for segmentation, instead
it outputs all possible objects in the image. Therefore to test SAM’s capability for
mirror detection, the Intersection over Union (IoU) between the predicted region and
the ground truth is calculated for each region outputted by SAM, and the result with the
highest IoU is selected to be the prediction for the mirror region.

The results for mirror detection using SAM are lower than on purpose-built models.
The reason for this is due to previous points mentioned where instead of detecting the
entire mirror, SAM (similar to other object detection models) predicts and segments the
objects inside of the mirror. This can be seen in diagram 2.1.

The accuracy of SAM on mirror and glass regions has already been analysed. Han
et al. (2023) tested SAM on the Mirror Segmentation Dataset (MSD) Yang et al.
(2019) and Progressive Mirror Dataset (PMD) Lin et al. (2020). The results from Han
et al. (2023) are given in tables 2.2 and 2.3. As shown in table 2.3 SAM performs
comparable to MirrorNet on the PMD dataset. It should be noted that MirrorNet was
the first specialised single-image model for mirrors, it is still used as the most common
benchmark, but it is far from the SOTA now as discussed later. However, as shown in
table 2.2, SAM’s performance on the MSD benchmark is very unsatisfactory, as it is
considerably worse than MirrorNet. The reason for the vast difference between SAM’s
performance on PMD and MSD datasets is likely because the PMD dataset has more
images of mirrors captured from a distance and offers a clearer view of the boundaries
of mirror regions compared to the MSD benchmark, which has more images captured
from a close range. Since the MSD dataset is a close range, this leads SAM to be more
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Method IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
MirrorNet 78.95 0.935 0.857 0.065 6.39

SAM 51.57 0.876 0.817 0.124 23.17

Figure 2.2: Experimental comparison between MirrorNet Yang et al. (2019) and SAM
Kirillov et al. (2023) on the MSD dataset Yang et al. (2019). Results are from Han et al.
(2023).

Method IoU↑ Acc↑ Fβ↑ MAE↓
MirrorNet 62.50 96.27 0.778 0.041

SAM 64.75 94.75 0.861 0.0525

Figure 2.3: Experimental comparison between MirrorNet Yang et al. (2019) and SAM
Kirillov et al. (2023) on the PMD dataset Lin et al. (2020). Results are from Han et al.
(2023).

likely to segment objects inside the mirror than recognise the mirror itself.

2.3.2 Mirror Detection without Deep Learning

Before the popularisation of deep learning technologies, researchers explored various
methods for mirror detection leveraging classical computer vision techniques. These
approaches primarily focus on exploiting specific properties of mirrors, such as reflec-
tivity, geometry, and the unique interactions between light and surfaces. Three core
papers contributed to the development of mirror detection methods without relying on
deep learning algorithms.

The first study, ”On Solving Mirror Reflection in LIDAR Sensing” Yang and Wang
(2011), explores the challenges of detecting mirror surfaces using LIDAR technology.
The research introduces a Bayesian framework to identify and track mirrors, leveraging
the geometric property of mirror symmetry. By focusing on the spatiotemporal aspects
of reflections, this work provides a robust solution for integrating mirror detection into
occupancy grid maps and localisation frameworks for mobile robots, demonstrating the
method’s efficacy with real-world data.

In the realm of RGBD (RGB + Depth) data, ”MatterPort3D: Learning from RGB-D Data
in Indoor Environments” Chang et al. (2017) indirectly contributed to mirror detection.
While the primary focus is on semantic scene understanding, the comprehensive dataset
and developed methodologies offer insights into handling reflective surfaces, including
mirrors, within indoor settings. This research underscores the importance of semantic
segmentation and classification in enhancing visual perception systems, indirectly
facilitating mirror detection by understanding their interaction with the surrounding
environment.

The third study, ”Reconstructing Scenes with Mirror and Glass Surfaces” Whelan et al.
(2018), directly addresses the complexity of accurately detecting and reconstructing
scenes containing mirrors and glass surfaces. By utilising an AprilTag Olson (2011)
attached, the researchers developed an automatic pipeline capable of distinguishing
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Source Image

MirrorNet Prediction

GT

Figure 2.4: Occasions where the contextual contrasted feature extraction (CCFE) method
fails.

between reflective surfaces and their surroundings. This method not only improves
scene reconstruction accuracy but also enables realistic rendering of environments with
reflective elements. The paper highlights the significance of integrating physical tags
and exploiting reflective properties for mirror detection in 3D scanning applications.

These studies highlight mirror detection techniques’ evolution in the pre-deep learning
era. From leveraging LIDAR’s geometric insights and RGB-D data for semantic scene
understanding to employing physical tags for direct mirror and glass detection and
reconstruction. There is no work on detecting mirrors with just RGB data without
deep learning techniques. These foundational works paved the way for subsequent
advancements in computer vision, offering valuable lessons on the nature of reflections.

2.3.3 Specialised Single Image Models

”Where is My Mirror” by Yang et al. (2019) was the first to address and solve the
problem of mirror detection in still images using deep learning techniques. Their
model - MirrorNet - took inspiration from how humans detect mirrors and reflections
by focusing on the edges and looking for contrasting features between the contexts
inside and outside mirror regions. The system takes a single image as input and extracts
multi-level features using the feature extraction network (FEN). The deepest features
that contain low-level semantics are then fed to the Contextual Contrasted Feature
Extraction (CCFE) module to learn the contextual contrasted features for locating the
mirrors. The issue with this method and similar methods is that contrasting features
inside and outside of a frame appear in a lot more places than just mirrors such as
photographs, windows, and computer monitors - this is illustrated in Figure 2.4.

This was improved upon in the paper ”Progressive Mirror Detection” from Lin et al.
(2020). The paper presents a novel approach for mirror detection, emphasising the
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importance of understanding global scene semantics for the mirror detection problem.
The authors observe that the content inside a mirror reflects its surrounding context
and propose a new model - PMD-Net - that progressively learns the content similarity
between the inside and outside of the mirror while explicitly detecting the mirror edges.
The model works using two new modules - a Relational Contextual Contrasted Local
(RCCL) module that extracts and compares mirror features with their corresponding
context features, and an Edge Detection and Fusion (EDF) module that learns the
features of mirror edges in complex scenes via explicit supervision. The proposed
model demonstrated superior performance compared to MirrorNet, however, was not
without issues. Firstly, because of the reliance on the EDF module, it often fails on
reflective surfaces without a hard boundary or frame. Secondly, although the RCCL
module is much better than the CCFE from MirrorNet, it is still far from perfect and
fails often, especially in more complex scenes.

Following PMD-Net, the landscape of mirror detection witnessed several advancements.
One notable development was SANet Huang et al. (2023), leveraging semantic asso-
ciations as a heuristic grounded in the observation that mirrors frequently accompany
commonplace objects like sinks or dressing tables. Despite surpassing PMD-Net’s per-
formance, SANet encounters limitations where mirrors are positioned in unconventional
locations, such as ceilings or outdoor settings. In a different approach, Mirror-YOLO
Li et al. (2022) adapts the methodology of the YOLOv4 architecture Bochkovskiy et al.
(2020) to tackle mirror detection. While this adaption does not match the performance
of models explicitly designed for mirror detection, it brings a significant advantage in
efficiency, courtesy of its foundation in the YOLOv4 framework. Meanwhile, VCNet
Tan et al. (2023) employs chirality (the concept that reflections in mirrors are inversions
of their surroundings) as its core mechanism for identifying mirrors. This model, how-
ever, struggles when mirrors are partially hidden behind other objects. Furthermore,
certain models exploit RGBD data Tan et al. (2021); Mei et al. (2021) integrating depth
information with standard RGB imagery. This necessitates specialised hardware and
lags behind state-of-the-art models.

The current SOTA model for the mirror detection in images problem is SATNet Huang
et al. (2023). A dual-path symmetry-aware transformer-based mirror detection network
that leverages the loose symmetry relationship between a real object and its reflection
in a mirror. The authors observe that real-world objects and their reflections in mirrors
maintain semantic or luminance consistency, even though they may not be strictly
symmetric in position or orientation. SATNet includes two novel modules: Symmetry-
Aware Attention Module (SAAM) and Contrast and Fusion Decoder Module (CFDM).
SAAM captures symmetry relations by utilising a transformer backbone to model
aggregate global information in images, extracting multi-scale features in two paths.
CFDM fuses the dual-path features and refines prediction maps progressively to obtain
the final mirror mask. Experimental results demonstrate that SATNet outperforms both
RGB and RGBD mirror detection methods on all available mirror detection datasets.

Although not SOTA another model worth mentioning is HetNet He et al. (2023). HetNet
is designed to initially detect potential mirror regions through low-level understandings
and then finalise predictions by combining high-level understandings. The network
employs a multi-orientation intensity-based contrasted module (MIC) and a reflec-
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tion semantic logical module (RSL) to predict potential mirror regions by low-level
understanding and analyse semantic logic in scenarios by high-level understandings,
respectively. HetNet surpasses all other performance methods, with the sole excep-
tion of SATNet, while also maintaining a substantial edge in computational efficiency
compared to SATNet.

2.3.4 Specialised Video Based Models: VMD-Net

The paper ”Learning to Detect Mirrors from Videos via Dual Correspondences” Lin
et al. (2023) is the first and only to address the challenge of video mirror detection
(VMD) using deep learning methodologies. The authors propose a novel approach
called VMD-Net. This approach capitalises on both intra-frame (spatial) and inter-
frame (temporal) correspondences to detect mirrors with high accuracy. The dual
correspondences approach uses two adjacent frames and another randomly sampled
frame from the video as input to the model. This lets the model note correspondences
that are not consistently present across all frames.

A significant contribution of this work is the introduction of the first large-scale dataset
for video mirror detection, named the video mirror detection dataset (VMDD), com-
prising of 14,987 frames from 269 videos, each accompanied by manually annotated
masks. This dataset is designed to facilitate research and development in the field by
providing a diverse and comprehensive collection of scenes for training and evaluation.
This dataset is discussed more in chapter 3.

VMD-Net is distinguished by its dual correspondence (DC) module, which consists of
two stages. The first stage of the DC module is to learn the intra-frame correspondences
by looking at the short-term correspondences between the two adjacent frames of the
input. The second stage of the dual correspondence module focuses on long-term
inter-frame correspondences by using the randomly sampled third input frame. This
enables VMD-Net to learn both inter-frame and intra-frame correspondences at differing
temporal and spatial scales.

The DC module can be seen in figure 2.6. To start, the three input images It , It+1, and
In (for the two consecutive frames, and a third randomly selected frame respectively)
are split into their low-level features and high-level features - Flow and Fhigh. Unlike
image-based mirror detection models which use features at all stages (from 1st to the
5t h scales), VMD-Net only uses the low-level features at the 2nd level (Flow) and the
high-level features at the 5t h scale (Fhigh).

Stage 1 of the DC module takes both the low-level features and the high-level features
as input. First, a GR block from Lin et al. (2020) Progressive Mirror Detection is used
for each high-level feature to extract the intra-frame correspondences. The GR block
can efficiently and effectively extract the correspondences between contents inside
and outside of mirrors by modeling spatial corresponding relations in a single image.
For the randomly sampled third frame, the high-level correspondence-aware features
are directly concatenated with the corresponding low-level features in the decoder.
This outputs an intermediate map Pn. The high-level correspondence-aware features
extracted from the two adjacent frames are forwarded to a cross-attention module
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Method IoU↑ Acc↑ Fβ↑ MAE↓
MirrorNet 0.505 0.855 0.681 0.145
PMDNet 0.532 0.872 0.749 0.128
VCNet 0.539 0.877 0.749 0.123

VMD-Net 0.567 0.895 0.787 0.105

Figure 2.5: Experimental comparison between MirrorNet Yang et al. (2019), PMDNet Lin
et al. (2020), VCNet Tan et al. (2023), and VMD-Net Lin et al. (2023). All models were
trained on the VMDD-Test dataset and tested on the VMDD-Test set. Results are from
Lin et al. (2023).

from Huang et al. (2019) to learn the short-term temporal correspondences. These
temporal correspondences (Chigh and Clow) are forwarded to another decoder to obtain
intermediate predictions P.

Stage 2 of the DC module takes all the high-level features (F t
high, F t+1

high, and Fn
high) and

intermediate maps (Pt , Pt+1, and Pn) as inputs. These are forwarded to a reverse cross-
attention module. This module aims at explicitly exploiting the correspondence between
the contents inside and outside of the mirrors in different frames for long-range temporal
correspondences. It explicitly models correspondence between It and In. This is done
by multiplying the high-level features with their corresponding intermediate prediction
map and normalising using a sigmoid function. P is then reversed to obtain the reversed
prediction map, that indicates the potential non-mirror regions. Since mirrors flip real-
world objects horizontally, a horizontal flip to the input non-mirror features is conducted
to model the potential relation of mirror reflections. The inter-frame correspondences
are then extracted using the cross-attention module.

Experimental evaluations showcase VMD-Net’s superior performance over state-of-
the-art image-based approaches. The results from the Learning to Detect Mirrors from
Videos via Dual Correspondences Lin et al. (2023) paper are given in table 2.5.
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Figure 2.6: The framework of the VMD-Net model. It , It+1, and In are the input frames.
Specifically, It and It+1 are two adjacent frames while In is a randomly selected frame
from the same video. Ot , Ot+1, and On are the final output maps for the corresponding
input frames.
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Dataset

For our project, three separate datasets were used. Firstly the VMD Dataset (VMDD),
first created for VMD-Net Lin et al. (2023), is an annotated dataset containing a total
of 14,987 image frames across 269 videos. This dataset is split into a training set
(VMDD-Train) of 7,835 frames and a test set (VMDD-Test) of 7,152 frames. Secondly,
a relatively large unlabeled dataset containing 219,053 unique image frames across 525
videos was created for semi-supervised approaches. Finally, a very small annotated
dataset containing just 984 video frames across 8 videos was created to measure the
adaptability of the model to dissimilar data (since there is a high degree of similarity
between VMDD-Test and VMDD-Train).

3.1 Existing Dataset

The paper ”Mirror Detection in Videos via Dual Correspondence” from Lin et al.
(2023) created an annotated dataset for mirror detection in videos named Video Mirror
Detection Dataset (VMDD). VMDD consists of 269 videos and a total of 14,987
individual frames. The frame rate is 30 frames per second and each frame has a
resolution of 1280x720 pixels.

However, on inspection of this dataset, it can be seen that all videos share a lot of
similarities. They all take place in one of two environments - either a household or
inside of a furniture store; they all have the mirror in focus and in the foreground; and
they all have the mirror in frame for the entire duration of the video. This can be seen
in figure 3.1. Each of these images in the figure is from the first frame of different
videos in the training and test set in VMDD. As can be seen, there is a high degree of
similarity between images inside the training and test set. This high degree of similarity
is quantified below in section 3.4. Noting this similarity was the pivotal moment in
our project as it allowed us to hypothesise that such a similar dataset would lead to
adaptability issues - which could then be remedied by using semi-supervised learning
techniques.

The VMD dataset has 14,987 individual frames with a ground truth mask for each one.
VMD is larger compared to the previous MSD and PMD datasets which have 4,018

14
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VMDD-Train

VMDD-Test

Pexels Dataset

Figure 3.1: Visual representation of the similarity between the different datasets. Appar-
ent high similarity in the VMDD-Train and VMDD-Test datasets, and less similarity in the
Pexels dataset.

Yang et al. (2019) and 6,461 Lin et al. (2020) supervised frames respectively. However,
when compared to larger computer vision datasets such as ImageNet Deng et al. (2009)
which has about 1.2 million images for training and 50,000 for testing. Similarly, COCO
Coc - a large-scale object detection and segmentation dataset, has 328,000 annotated
images. As mentioned before, even more recently, Meta AI’s Segment Anything Model
Kirillov et al. (2023), was trained on 11 million images with a total of 1.1 billion
segmentation masks. So, 14,987 images in VMDD means it is a comparatively small
dataset to current standards. This is another reason why we hypothesised that the
model’s performance would drastically improve with access to a much larger unlabeled
dataset through semi-supervised techniques.

3.2 Unannotated Dataset Created

Because the existing VMDD dataset is comparatively small and has a lot of similarities,
we created a large unannotated dataset for semi-supervised approaches to overcome the
issues of limited data size and high similarity between the data.

The dataset we gathered is publicly accessible with a royalty-free license under Creative
Commons Zero license CCZ; Pex (b). The dataset was obtained from Pexels.com
through their API Pex (a). Pexels.com is a free stock photo and video website where
photographs and videos can be used for all personal, educational, research, and business
purposes.

To create the dataset, we searched the Pexels API with the search term ”Mirror”. The
quality for all videos downloaded was also filtered to be 1280x720 and were all in
landscape mode at 30fps - this is so they are identical to the quality and frame rate used
in the VMD dataset. This resulted in over 1000 unique videos, however, to make the
dataset more manageable, only the first 600 were used. These 600 videos were then
manually verified by two separate observers to ensure that they contained a visible
mirror and didn’t contain any video editing (e.g. black and white). An example of
the types of videos removed can be seen in figure 3.2 Out of the 600 videos, after
verification, we were left with 533 unlabelled videos. We randomly choose a subset of 8
of these and choose to manually annotate these as described below. The 8 we annotated
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Figure 3.2: Examples of videos that were manually removed from the dataset. Some
contain reflections from non-mirrors (e.g. astronaut helmet, water surface), some contain
mirrors but are too stylistic (black and white image), and some don’t contain any mirrors
(such as the city skyline, and the signs).

were removed from the dataset used for semi-supervised learning to avoid any issues
related to training on the test set.

3.3 Annotated Dataset Created

Because of the high degree of similarity in the training and test set mentioned before,
we doubted how well the model would adapt to videos that contain mirrors but are
less similar to the data used to train and test the model. Hence a small new annotated
dataset was created consisting of videos that are dissimilar to each other and the VMD
dataset. Consisting of videos from different environments. Due to the time constraints
of the project, the scope of creating an annotated dataset was limited so this dataset only
consists of 984 annotated video frames.

This dataset was created by randomly choosing 8 videos from the unlabeled dataset
created and then manually annotating them. To annotate the data we used V7Labs V7L.
This allowed us to create a pixel-level mask for each frame of the video.

3.4 Dataset Analysis

To quantify the similarity of the videos in each respective dataset, we used cosine
similarity. Little work has been done on the similarity between whole videos so we
measured the similarity between the first frame of each video - although this is not a
perfect metric, it is a lot less computationally expensive than measuring the similarity
between each frame and gives us a good approximation of the similarities of the whole
video.

The first frame of each video was compared to the first frame of every other video. To
calculate the cosine similarity of images, the first step is to use representation learning
to learn a representation from the original image. This enables us to obtain a low-
dimensional feature vector that is a good estimation of the relevant features of a given
image frame.

After we have the vector embedding of the video frame, we can measure the similarity
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Figure 3.3: Vector diagram example showing vectors of different similarities. Similar
vectors will have a score close to 1, opposite vectors will have a score close to -1.

between two video frames by using the cosine similarity. Given two vectors A and B,
when projected into a feature space, vectors A and B will lie close to each other if they
are similar and the distance between them is small, otherwise, they will lie far apart.
A diagram showing vector similarities is given in figure 3.3. The formula for cosine
similarity is given in formula 3.1. The cosine similarity will range from -1 to 1. We
then scale this similarity so it is in the range 0 to 1 (0 is dissimilar, 1 is similar) so it is
more interpretable.

Cosine(A,B) =
A ·B
|A||B|

(3.1)

We perform the cosine similarity for two different use cases. Firstly intra-dataset
similarity is the similarity of videos within one dataset by measuring the mean similarity
between each video in the dataset and every other video in the same dataset. Secondly,
inter-dataset similarity, which is the similarity between the two datasets by measuring
the mean similarity between each video in one dataset and all the videos in the other
dataset.

The results for the intra-dataset similarity are given in figure 3.6 and the results for
inter-dataset similarity are given in figure 3.7. These results line up with our manual
observation from figure 3.1. There is a high level of similarity of videos in the existing
VMDD-Test and VMDD-Train datasets, while there is less similarity between the new
Pexels dataset. The distribution of cosine similarities between different videos is given
in 3.8. This quantification, confirms there is indeed an issue of data similarity in the
existing VMD dataset, and since the newly created Pexels unlabelled dataset is more
diverse, models trained using semi-supervised approaches on this new dataset should
be more adaptable to less similar data.

We also analysed the distribution of video lengths in the dataset, the results can be seen
in figure 3.4. As can be seen, the VMDD faces another major issue with the majority of
videos in the dataset being exactly 60 frames long. This is because, during the dataset



Chapter 3. Dataset 18

Figure 3.4: Distribution of dataset lengths as measured in the number of frames. As can
be seen, VMDD is highly concentrated at 60 frames, whereas the new Pexels dataset is
a lot more distributed around longer videos.

Pexels Dataset VMDD Dataset
Number of Videos 525 269

Average Duration (Frames) 417.24 55.93
Standard Deviation in Duration (Frames) 218.24 11.93

Total Duration (Frames) 219,053 14,987

Figure 3.5: Statistical analysis of the created dataset and the existing VMDD dataset. All
videos are in 30fps to convert frames to seconds.

creation, longer videos were cropped into multiple shorter videos of 60 frames each
to create multiple videos. This causes an issue as the VMD-Net DC module chooses
a random third frame from the chosen video, this works well for short videos where
the random third frame will be fairly close to the other two frames, however, in longer
videos this may create difficulties - leading to further decreased adaptability.

Unfortunately, we couldn’t analyse the distribution of mirror areas in our dataset as our
dataset has no mask and so we couldn’t calculate this.

Further relevant statistics of our dataset compared to the existing VMD dataset can be
seen in table 3.5.

Dataset Mean Cosine Similarity
VMD-Test 0.400
VMD-Train 0.431

Pexels Unlabeled 0.198
Pexels Annotated 0.276

Figure 3.6: Intra-dataset cosine similarity. The mean similarity between the first frame of
each video in the dataset and every other video within the same dataset.
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Dataset Mean Cosine Similarity
VMD-Test & VMD-Train 0.388
VMD-Test & Unlabeled 0.163
VMD-Train & Unlabeled 0.160

Figure 3.7: Inter-dataset cosine similarity. The mean similarity between the first frame of
each video in the dataset and all videos in the other dataset.

Figure 3.8: Histograms showing the distribution of the cosine similarities between the
videos in different datasets. As can be seen, there is a much higher similarity between
videos in the VMDD-Test and VMDD-Train datasets when compared to the Pexels
datasets.
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3.5 Limitations of the Dataset

There are two main issues with the datasets we created. Firstly, the annotated dataset is
extremely small, consisting of just 8 videos and 984 video frames. Such a small dataset
being used for analysis may provide inaccurate results that don’t match real-world
performance. However, since this is only meant to be used alongside the existing
VMDD-Test set, to show the adaptability of the model to more diverse data (data that
isn’t similar to data in the training and test set), this should be satisfactory. However,
if we had more time, creating a much larger annotated dataset would be beneficial to
provide more accurate results.

The other issue is that the dataset was collected from stock videos, and so the quality
of the videos is professional-grade. As discussed earlier, the real-world applications
of mirror detection usually revolve around robotic navigation or surveillance where
the video quality will be substantially less. This isn’t an issue exclusive to our dataset
though and is present in all mirror datasets (MSD, PMD, and VMDD). This is because
the models created are more to show theoretical approaches that could be modified
for real-world applications with the correct dataset, as opposed to creating models for
a specific real-world situation - which might be more difficult to modify to another
domain.

Finally, as discussed briefly, there is also an issue with the way we calculated the
similarity between the various datasets. Right now, to measure the similarity, we
vectorise only the first frame and use the cosine similarity between the first frames of
the video. This is because, to our knowledge, there are no models for vectorising videos
concerning calculating the cosine similarity between them. This has been proposed as a
future project in the future work section. Another approach would be to calculate the
similarity between each frame in the video and each frame in the other video. However,
this would grow combinatorially with the length of videos and so would quickly become
too computationally expensive to be feasible.
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Method

4.1 Evaluation Metrics

For evaluating our model, we use fairly standard metrics designed for binary segmenta-
tion tasks. Specifically, we will be using Intersection over Union (IoU), Mean Absolute
Error (MAE), Pixel Accuracy, and Balanced Error Rate (BER). These metrics provide
a comprehensive assessment of our model’s performance from various perspectives.
Below, we refine the descriptions of these metrics to clarify what each specifically
measures in our use case.

Pixel Accuracy quantifies the proportion of pixels in the segmentation mask that are
correctly classified, considering both mirror and non-mirror regions. It is calculated
as the sum of true positives and true negatives divided by the total number of pixels.
This metric offers a straightforward measure of overall correctness but may not fully
capture the model’s performance in imbalanced datasets where one class significantly
outnumbers the other. The formula for pixel accuracy is detailed in 4.5.

F1 Score is the harmonic mean of precision (the proportion of true positive predictions
in all positive predictions) and recall (the proportion of true positive predictions in all
actual positives), providing a balanced measure of the model’s accuracy concerning
both mirror and non-mirror regions. It addresses the limitations of pixel accuracy in
imbalanced datasets by weighting false positives and false negatives equally, making it
a more reliable indicator of model performance when the number of non-mirror regions
exceeds that of mirror regions. The equation for the F1 score is given in 4.3.

Intersecion over Union assesses the model’s ability to accurately delineate mirror re-
gions by calculating the ratio of the area of overlap between the predicted segmentation
mask and the ground truth mask to the area of their union. A high IoU score indi-
cates precise segmentation of mirrors, effectively distinguishing them from non-mirror
regions. The formula for IoU is provided in 4.2.

Balanced Error Rate computes the average error across both classes (mirror and
non-mirror) independently, thereby mitigating the bias introduced by class imbalance. It
evaluates the model’s ability to correctly identify mirror regions while also avoiding false
identifications in non-mirror areas. This metric is particularly useful for highlighting

21
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MAE =
1
n

n

∑
i=1

|xi − yi| (4.1)

Figure 4.1: Mean absolute error evaluation metric formula. xi is the predicted value, yi is
the ground truth value. n is the sample size.

IoU = T P
T P+FP+FN (4.2) F1 = 2·T P

2·T P+FP+FN (4.3)

BER = 1
2 (̇

FN
T P+FN + FP

T N+FP)(4.4) Accuracy = T P+T N
T P+T N+FP+FN (4.5)

Figure 4.2: Equations for evaluation metrics used. TP is the count of true positive pixels.
FP is the count of false positive pixels. TN is the count of true negatives. FN is the count
of false negative pixels.

deficiencies in detecting the less prevalent class. The equation for BER is outlined in
4.4.

Mean Absolute Error measures the average magnitude of errors in the pixel values
of the segmentation mask. It calculates the absolute difference between each pixel in
the predicted mask and the ground truth, averaged over all pixels. MAE provides an
insight into the average error per pixel, offering a direct measure of how closely the
predicted mirror regions align with the actual mirror regions. This metric is critical
for understanding the model’s precision at the pixel level, especially in applications
requiring high fidelity in mirror detection. The equation for MAE is discussed in 4.1.

4.2 Experimental Setup

For our self-training and expectation maximisation approaches, our model was trained
on a single high-performance NVIDIA A100 GPU with 80GB of memory - courtesy
of Edinburgh Compute and Data Facility (ECDF). The maximum epoch was set to 10
and the semi-supervised start epoch set to 5. These hyperparameters could be tuned
further, however, since we wanted to test different confidence thresholds, we decided
to keep these constant between experiments so valid comparisons could be made. The
semi-supervised confidence thresholds are tuned to find the optimal value for each
semi-supervised approach - their value changes between experiments and will be given
for each result. The batch size - which determines the number of samples processed
before the model is updated - was configured to 5. The data loader workers - which
indicates the number of sub-processes to use for data loading - was set to zero. An
Adam optimiser with a learning rate of 1e-3 and a weight decay of 5e-4 was used.
Another important hyperparameter is the scale - this changes the resolution of the image
frames during training. A higher scale will be closer to the resolution of the original
image whilst a lower scale will be more pixelated. Therefore, a higher scale will lead
to greater accuracy, however, requires drastically more computing power. We decided
to use a scale of 416 (so images are resized to a scale of 416x416) as this gave a good
balance between performance and accuracy. All hyperparameters and values are given
in table 4.3
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Hyperparameter Ours co-training co-training - HetNet VMD-Net
Batch Size 5 6 6 8

Data Loader Workers 0 0 3 unstated
Learning Rate 1e-3 1e-3 5e-3 1e-4
Weight Decay 5e-4 5e-4 5e-4 5e-4

Momentum 0.9 0.9 0.9 0.9
Scale 416 416 416 384

Maximum Epoch 10 10 150 15
Semi-Sup Start Epoch 5 5 75 N/A

Figure 4.3: Hyperparameters for our models. ”Ours” refers to the hyperparameters used
for self-training and expectation maximisation. ”co-training” refers to the hyperparameters
used for VMD-Net for the co-training technique. ”co-training - HetNet” refers to the
hyperparameters used for the HetNet model in the co-training technique. VMD-Net is
the hyperparameters stated in Lin et al. (2023) ”Learning to Detect Mirrors from Videos
via Dual Correspondences” Paper.

For co-training, we aimed to keep the experimental setup as close as possible to the
setup for our models discussed before - we will be using the same loss function and the
same method for calculating the confidence of a prediction. Since co-training requires
two models, it was trained on three NVIDIA A100 GPUs with a total of 240GB of
memory. The hyperparameters for co-training are also given in table 4.3. It is worth
noting, for co-training, we also had to modify the batch size for the video model from 5
to 6. This is because co-training method required three A100 and the batch size has to
be divisible by the number of GPUs. This difference in experimental setup is unlikely
to cause any difference in results.

4.2.1 Loss Function

In binary segmentation tasks, Binary Cross-Entropy (BCE) is often employed as the
standard loss function. It calculates the log loss for every pixel by comparing the ground
truth label (either 1 or 0) with the predicted probability p. The BCE formula is given
below:

BCE =−(y log(p)+(1− y) log(1− p)) (4.6)

Figure 4.4: Binary Cross-Entropy Loss. y is the ground truth - either 1 or 0, p is the
predicted probability.

However, a novel approach to optimising segmentation models is the Lovasz-Softmax
loss function first introduced by Berman et al. (2018). The Lovasz function focuses on
directly improving the IoU metric, surpassing the capabilities of the standard BCE in
terms of segmentation performance.

The Lovasz-Softmax loss function is especially advantageous for models like VMD-Net,
which aim to enhance segmentation accuracy. This function is derived from the concept
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L = ∑
i∈{t,t+1,n}

(Lh(Pi,Gi)+Lh(Oi,Gi)) (4.7)

Figure 4.5: Lovasz loss function. t, t+1, and n refer to the three sample frames (two
consecutive and third randomly chosen). Pi is the intermediate output, Oi is the final
output, Gi is the ground-truth. These are explained more in diagram 2.6.

of the Lovasz extension of submodular functions, applied in the context of binary
segmentation to directly target the optimisation of the IoU metric. The loss is calculated
by considering the hinge loss (Lh) between the predicted segmentation mask and the
ground truth. In our setup, both the intermediate and final outputs of the VMD-Net (Pi
and Oi, respectively) are compared against the ground truth (Gi), as shown in figure 4.5.

Lh(Ŷ ,Y ) = max(0,1− (Y · Ŷ )) (4.8)

Figure 4.6: Hinge loss function. Ŷ is the predicted value, Y is the ground truth value.

4.2.2 Confidence Calculation

In the context of semi-supervised fine-tuning for pixel-level segmentation, calculating
the confidence of model predictions on unlabeled video frames is a critical step. This
process not only aids in assessing the reliability of the model’s predictions but also
plays a pivotal role in the self-training step, where only highly confident predictions are
utilised to further train the model.

The confidence score for each video is calculated as follows:

1. Segmentation Prediction: For each frame in the video, the model generates a
predicted segmentation mask. This mask indicates the likelihood of each pixel
being part of a mirror region. This mask is unbounded (theoretically can go from
-∞ to ∞), and is centered around 0 (<=0 is no mirror, >0 is mirror region). The
confidence of a prediction is higher the further the prediction is away from 0.
A prediction of -5 means the model is very confident the pixel isn’t a mirror, a
prediction of 0 the model is completely unsure, and a prediction of 1, the model
is somewhat sure the pixel is a mirror.

2. Confidence Score Calculation: We then calculate the confidence in the predic-
tion for each pixel. The confidence score for each pixel is calculated by applying
a modified sigmoid function to normalise the output so the confidence falls in the
range from 0 to 1. The function we use to calculate the confidence of a specific
pixel segmentation prediction x is given below:

Con f idence(x) =
(

1
1+ e−|x| −1

)
(4.9)

3. Average Confidence: The average confidence of a frame can then be calculated
by dividing the sum of the pixel level confidence by the total number of pixels.
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Figure 4.7: Plot showing the segmentation prediction value and corresponding confi-
dence for both the sigmoid and tanh functions.

Likewise, The average confidence score for the entire video is obtained by divid-
ing the total confidence by the number of frames processed. This average score
represents the overall confidence in the model’s predictions for the video.

4. Confidence Threshold: Videos with an average confidence score exceeding a
predefined threshold are considered reliable. These high-confidence videos are
then labeled accordingly and utilised in subsequent training cycles to refine the
model’s performance further.

As can be seen from figure 4.7, we could have also chosen to use the hyperbolic tangent
function (tanh) to convert the segmentation prediction value into confidence. This would
likely have some impact on the expectation maximisation method where the confidence
of the prediction is used to weigh the loss function. However, we did not have enough
time to redo all our tests with this modified confidence function.

4.3 Semi-Supervised Approaches

Semi-supervised learning sits in between supervised learning where all data is labeled
and unsupervised learning where no data is labeled. It is particularly useful when
acquiring a large set of labeled data is expensive or impractical, but unlabeled data is
abundant. Semi-supervised learning leverages a small amount of labeled data along
with a large amount of unlabeled data to improve learning accuracy. This project
uses three key approaches within semi-supervised learning: self-training, expectation
maximisation (EM), and co-training.
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4.3.1 Self-training

self-training, also known as self-learning, is a simple yet effective semi-supervised
technique. It begins with a small set of labeled data to train an initial model. The
model is then used to predict labels for the unlabeled data. Predictions made with high
confidence are added to the labeled set, and the model is retrained with this expanded
dataset. This process iterates until a stopping criterion is met - this can be the desired
validation loss or maximum epoch.

Previous research on self-training has demonstrated its efficacy in various domains. For
example, when applied to word sense disambiguation, it showed significant improve-
ment with each iteration of adding confidently predicted labels Yarowsky (1995). This
approach has also been explored in the context of image recognition, where models
incrementally improve as they ”teach themselves” from the unlabeled data pool Oliver
et al. (2018).

The implementation details for self-training are given in diagram 4.8 and the pseudocode
1. First, the model is trained on the labeled data (VMDD-Train), then after 5 epochs, it
labels the unlabelled Pexels dataset. The most confident predictions are then combined
with the labeled data to give a combined dataset. The next epoch is then trained off of
this combined dataset. Stages two and three are then repeated.

Figure 4.8: Diagram showing the key steps for the self-training and expectation maximi-
sation approach. Stage 1: The model starts by training off of the labeled dataset. Stage
2: The model annotates the unlabelled dataset and assigns pseudo-labels. Stage 3:
The most confident pseudo-labels are combined with the labeled data and the model is
then trained off of this combined dataset. Stages 2 and 3 are then repeated until end of
training.
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Algorithm 1 pseudo-labeling self-training Algorithm
1: Initialise model M with labeled dataset Dlabeled
2: Let Dunlabeled be the dataset without labels
3: Define confidence threshold θ

4: repeat
5: Predict labels for Dunlabeled using model M to get Ŷ
6: Select subset Dpseudo from Dunlabeled where prediction confidence ≥ θ

7: Augment Dlabeled with Dpseudo to get new training set Dnew
8: Retrain model M on Dnew
9: until max epoch is met

10: return model M

4.3.2 Expectation Maximisation

Expectation maximisation (EM) is a more sophisticated approach that iteratively es-
timates the maximum likelihood estimates of parameters in statistical models, which
depend on unobserved latent variables. In the context of semi-supervised learning, EM
alternates between assigning (expectation step) the most likely labels to the unlabeled
data based on current model parameters and then updating the model (maximisation
step) to maximise the likelihood of the data given these labels.

Nigam et al. (2000) applied EM to text classification by using a small set of labeled
documents and a large pool of unlabeled documents to improve classification accuracy.
Their work highlights the EM algorithm’s ability to effectively utilise unlabeled data by
iteratively refining the model’s understanding of the data distribution.

The implementation details for expectation maximisation are given in diagram 4.8 and
pseudocode 2. The steps are fairly close to those used for self-training but with one
key difference. In self-training the confident predictions on the unlabelled dataset are
treated as ground truth values for the next training step. This is not the case, if the model
is say 80% confident of classification, it should be treated as less reliable than a 90%
confident prediction and the ground truth. This is why for the expectation maximisation
we take the confidence of a classification into account during the maximisation step by
considering the confidence scores as weights into the loss function for the model.
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Algorithm 2 Expectation Maximisation Algorithm for Semi-Supervised Learning
1: Initialise model M with labeled dataset Dlabeled
2: Let Dunlabeled be the dataset without labels
3: Define confidence threshold θ

4: repeat
5: E-step: Estimate the most likely labels Ŷ for Dunlabeled using current model M
6: Calculate confidence scores for predictions on Dunlabeled
7: Selection: Select subset Dpseudo from Dunlabeled with confidence scores ≥ θ

8: M-step: Retrain model M using both Dlabeled and Dpseudo considering the
confidence scores as weights in the loss function

9: until convergence criteria are met or max epoch is reached
10: return model M

4.3.3 Co-training

Co-training is a multi-view learning approach that assumes the data can be described by
two independent feature sets, which are sufficient for learning the task at hand. The core
idea is to train two classifiers separately on each view, and then each classifier labels
unlabeled examples for the other to learn from. This approach relies on the assumption
that the two views are conditionally independent given the class label and that each
view is sufficient for classification.

Blum and Mitchell (2000) introduced co-training in the context of web page classi-
fication, where the text on the web page and the text in the hyperlinks pointing to
the page served as two independent views. Their work demonstrated that co-training
could significantly reduce the need for labeled examples by exploiting the redundancy
between the views.

Subsequent research has extended co-training to various domains and explored mod-
ifications to the original assumptions. For instance, the co-training framework has
been adapted to scenarios where multiple views are not explicitly available, by creating
artificial views through feature splitting or the use of different learning algorithms. The
use of different learning algorithms is the co-training approach that was used in this
project.

As seen in figure 4.9 and the pseudocode in 3 the co-training technique requires two
separate models so that each model can be trained off of the other model’s annotations.
For the second model, we decided to go for an image-based mirror detection model as
many existing image-based models use features unexplored in the video-based model
(such as SANet Guan et al. (2022) using semantic associations, or VCNet Tan et al.
(2023) using the visual chirality). As discussed in chapter 2 the SOTA image-based
model is Symmetry Aware Transformer based mirror detection (SATNet) Huang et al.
(2023), closely followed by Multi-level heterogeneous learning Hetnet He et al. (2023).
We decided to test co-training with the SOTA image-based approach - it would be
interesting to test if weaker models performed better in co-training, however, due
to time constraints testing every model for co-training wasn’t feasible. Hence, we
decided to just try the SOTA under the assumption that this would produce the best
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results. However, when trying to implement the co-training technique with SATNet, we
encountered serious issues with dependency issues (the core issue is the ECDF compute
cluster uses CUDA 11.0, but SatNet requires CUDA 10.1). Hence, we decided to go for
the 2nd best image-based SOTA - HetNet.

Figure 4.9 and pseudocode 3 show the dual-model approach to co-training. Similar
to self-training, the core idea behind this approach is based on using pseudo-labels
from the unannotated dataset to train the next iteration of the model. The difference
in co-training is that instead of just the single model annotating and training, there are
two separate models. The pseudo-labels from one model are passed into the training
set for the second model and vice versa. In practice, we start by training the HetNet
and VMD-Net for 75 and 5 epochs respectively on just the original VMDD-Train set.
Then HetNet and VMD-Net both annotate the unlabeled dataset. The most confident
predictions from HetNet are then passed into the dataset for training VMD-Net on the
next iterations. Likewise, the most confident predictions from VMD-Net are passed into
the dataset for training HetNet. VMD-Net is then trained for another single iteration on
this new training set, whilst HetNet is trained for 15 iterations on its new dataset. This
step of annotating, then retraining on the combined dataset is then repeated until we
reach the maximum epoch for each model.

Figure 4.9: Diagram showing the key steps for the co-training technique. Stage 1: Both
models start by training off of the labeled dataset. Stage 2: Each model annotates the
unlabelled dataset and assigns pseudo-labels. Stage 3: The most confident pseudo-
labels are combined with the labeled data. Model 1 is trained off of the pseudo-labels
from model 2 and vice versa. Stages 2 and 3 are then repeated until end of training. In
our case, Model 1 is the modified video model and model 2 is HetNet.
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Algorithm 3 Co-training Algorithm
1: Initialise two models M1 and M2 with labeled dataset Dlabeled
2: Partition Dlabeled into two views V1 and V2 respectively for M1 and M2
3: Let Dunlabeled be the dataset without labels
4: repeat
5: Train M1 on V1 and M2 on V2
6: Use M1 to predict labels on Dunlabeled to create Dpseudo1
7: Use M2 to predict labels on Dunlabeled to create Dpseudo2
8: Select a confident subset from Dpseudo1 and add it to V2
9: Select a confident subset from Dpseudo2 and add it to V1

10: Optionally, update Dunlabeled by removing the selected subsets
11: until stopping criteria is met
12: return models M1 and M2
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Results

5.1 Control Results

The results from the experiments can be seen in the following figures. The control
results - testing VMD-Net with our experimental setup without any semi-supervised
learning taking place can be seen in 5.1. A notable point of these results is that they
are substantially lower than the results given in the original paper Lin et al. (2023) -
the same results recorded in figure 2.5. This is due to our differing experimental setup.
The different setups are shown in table 4.3. As can be seen, we have a significantly
higher learning rate (1e-3 compared to 1e-4). The reason for this higher learning rate
is that we were running multiple experiments and so we had to lower the maximum
epoch from 15 to 10. Without lowering the maximum epoch, our experiments would
have taken substantially longer to run. Because of decreasing the maximum epoch,
we had to increase the learning rate to compensate. Because of this combination of
higher learning rate and lower maximum epoch, our control results are lower than the
original results stated. We did train the original VMD-Net with a higher maximum
epoch and lower learning rate and were able to get results close to that achieved in the
paper, however, due to the number of tests being run, having a large maximum epoch
was infeasible for all experiments.

Test Set IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
VMDD-Test 0.349 0.865 0.696 0.135 31.58

Pexels Labelled 0.382 0.803 0.686 0.197 31.07

Figure 5.1: Control Results: Model with parameters as specified in Experimental Setup
section. Trained on VMDD-Train, tested on VMDD-Test and Pexels labeled.

5.2 Self-training

The self-training approach, a foundational semi-supervised technique, demonstrates
notable improvements in mirror detection performance over control experiments, as
evidenced by the data presented in figures 5.2, 5.3, 5.11, and 5.10. This method,

31
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which relies on incrementally training the model with predictions that exceed a certain
confidence threshold, illustrates a clear trend: as the minimum confidence threshold
increases, so does the model’s performance on the VMDD-Test set across most metrics.
This trend holds true up to a critical point between 77.5% to 80% confidence levels for
both intersection over union (IoU) and the balanced error rate (BER), where a slight
deviation occurs. Notably, the performance on the VMDD-Test set surpasses that of the
control results across all metrics, indicating the efficacy of self-training in enhancing
model accuracy.

The results on the Pexels dataset provide additional insights into the adaptability of the
self-training approach. Performance metrics improve consistently up to a confidence
threshold of 75%-77.5%, where they peak, surpassing control results and showing
comparable performance to the VMDD-Test set. This peak performance indicates
the model’s enhanced adaptability to diverse datasets, which may differ significantly
from the data it was originally trained on. However, at the 80% confidence threshold,
performance declines, likely due to the scarcity of videos exceeding this confidence
level, which restricts the addition of new annotations in subsequent iterations and brings
the model’s performance closer to control levels.

This pattern of results underscores the potential of self-training as a strategy for improv-
ing mirror detection models, particularly when adjusting the confidence threshold for
incorporating predictions into training. The initial increase in performance metrics with
higher confidence thresholds suggests that carefully selecting predictions for retraining
can lead to more accurate models. However, the observed decline at the very high
thresholds highlights the balance needed between excluding less certain predictions and
ensuring sufficient data for model refinement. These findings emphasise the importance
of optimising confidence thresholds to maximise the benefits of self-training in diverse
testing scenarios.

Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.331 0.861 0.684 0.139 32.61
70 0.332 0.861 0.685 0.138 32.62
75 0.344 0.864 0.697 0.136 31.65

77.5 0.391 0.874 0.723 0.126 29.23
80 0.382 0.880 0.727 0.120 29.80

Figure 5.2: Experimental Results from self-training approach, tested on VMDD-Test
dataset. Best results in Bold, Second best in Italics.
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Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.339 0.809 0.687 0.191 32.27
70 0.375 0.814 0.681 0.186 30.862
75 0.408 0.830 0.735 0.170 28.98

77.5 0.440 0.822 0.668 0.178 28.82
80 0.341 0.809 0.693 0.191 32.14

Figure 5.3: Experimental Results from self-training approach, tested on labeled Pexels
dataset to measure adaptability. Best results in Bold, Second best in Italics.

5.3 Expectation Maximisation

The Expectation Maximisation (EM) approach to semi-supervised learning in mirror
detection displays a performance trend similar to self-training, yet with notable differ-
ences. This technique, as illustrated in the experimental outcomes, shows an increase
in performance metrics with rising confidence thresholds on the VMDD-Test dataset.
Unlike the more consistent improvements observed in self-training, EM exhibits a
pattern interspersed with fluctuations, suggesting a noisier progression in performance
enhancements. This variability indicates that while the overall trend points towards
better results with higher confidence levels, the journey there is less predictable.

Figures 5.4, 5.5, 5.10, and 5.11 reveal that the peak performance on the VMDD-Test set
is achieved at an 80% confidence threshold, marking the highest recorded improvements
across all metrics including IoU, Accuracy, Fβ, MAE, and BER. This peak contrasts
with the performance on the Pexels dataset, where adaptability peaks at a slightly lower
confidence threshold before declining. Such a peak underscores the EM approach’s
nuanced response to varying datasets and the critical role of choosing an optimal
confidence threshold for maximising model performance.

The EM method’s performance on the Pexels dataset offers insights into the model’s
adaptability to disparate data. The best results are achieved at an 80% confidence
threshold, similar to the VMDD-Test dataset, yet the path to this peak is characterised
by notable variability. This adaptability, peaking before a drop at higher thresholds,
suggests that an optimal balance in confidence levels is key to leveraging the EM
approach effectively across different types of data.

Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.354 0.859 0.695 0.140 31.24
70 0.319 0.862 0.674 0.138 33.31
75 0.362 0.873 0.708 0.126 31.03

77.5 0.340 0.862 0.691 0.138 32.05
80 0.402 0.875 0.729 0.125 28.74

Figure 5.4: Experimental Results from Expectation Maximisation approach, tested on
VMDD-Test dataset. Best results in Bold, Second best in Italics.
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Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.339 0.809 0.690 0.191 32.54
70 0.354 0.813 0.710 0.187 31.59
75 0.385 0.808 0.701 0.192 31.17

77.5 0.421 0.836 0.750 0.164 28.25
80 0.423 0.847 0.728 0.153 28.17

Figure 5.5: Experimental Results from Expectation Maximisation approach, tested on
labeled Pexels dataset to measure adaptability. Best results in Bold, Second best in
Italics.

5.4 Co-training

The co-training approach, distinguished by its strategy of utilising two or more inde-
pendent views of the data to mutually enhance learning, demonstrates notable success
in the realm of mirror detection. Experimental results, as highlighted in figures 5.6,
5.7, 5.10, and 5.11, reveal a consistent pattern of improvement across various metrics
as the minimum confidence threshold for incorporating predictions into the training
set is increased. This pattern is observable in both the VMDD-Testset and the labeled
Pexels dataset, with the optimal performance occurring at 80% confidence threshold for
VMDD-Test and 77.5% for Pexels.

The incremental improvements seen with increasing confidence thresholds suggest that
the co-training model becomes progressively better at discerning more challenging or
ambiguous cases of mirror reflections as it becomes more selective in the data it learns
from. This selectiveness, driven by high-confidence thresholds, ensures that only the
most reliable predictions contribute to further learning, thereby enhancing the overall
quality and reliability of the detection process.

Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.343 0.858 0.688 0.118 30.12
70 0.347 0.859 0.692 0.115 31.83
75 0.376 0.882 0.721 0.131 31.68

77.5 0.372 8.860 0.707 0.104 29.36
80 0.384 0.866 0.719 0.102 29.35

Figure 5.6: Experimental Results from Co-training approach, tested on VMDD-Test
dataset. Best results in Bold, Second best in Italics.
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Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
65 0.398 0.818 0.698 0.198 30.75
70 0.404 0.824 0.704 0.194 30.17
75 0.406 0.821 0.706 0.183 30.46

77.5 0.421 0.831 0.716 0.181 28.83
80 0.417 0.822 0.712 0.162 29.85

Figure 5.7: Experimental Results from Co-training approach, tested on labeled Pexels
dataset to measure adaptability. Best results in Bold, Second best in Italics.

5.5 Summary

Across all semi-supervised learning models tested - self-training, Expectation Max-
imisation (EM), and Co-training - a consistent pattern emerges in their performance
on the VMDD-Test and labeled Pexels dataset. Notably, all models exhibit superior
accuracy, Fβ, and MAE on the VMDD-Test set, suggesting a strong alignment with
the characteristics of the dataset they were trained on. Conversely, for BER and IoU
metrics, the models tend to demonstrate better performance on the Pexels dataset. This
observation contradicts our initial hypothesis, which anticipated reduced performance
across all metrics. A contributing factor to this discrepancy could be the limited sample
size of the annotated Pexels dataset, previously identified as a potential limitation in
chapter 3.

When comparing the peak results from each approach - in figures 5.8 and 5.9 - the
Expectation Maximisation (EM) method stands out for achieving the highest overall
performance on both the VMDD-Test set and the Pexels dataset. The EM method’s
success over the control model across multiple metrics not only validates the benefits of
semi-supervised learning but also supports the hypothesis that utilising unlabeled data
can indeed mitigate data similarity challenges, thereby boosting model performance.

The trend of performance peaking at certain confidence thresholds before a subsequent
decline, particularly observed in the Pexels dataset, highlights a critical balance in
selecting predictions for model retraining. This phenomenon likely results from the
diminishing returns of adding high-confidence predictions beyond a certain point, where
the model becomes overly constrained by the scarcity of qualifying data, reverting to
performance levels akin to the control model.

In summary, the experimental results from the three semi-supervised approaches support
the original hypothesis that using these semi-supervised approaches with vast unlabeled
data can help to overcome issues of data similarity. All semi-supervised models
outperform the control results - slightly on the VMDD-Test set and substantially on the
Pexels dataset. Meaning the use of semi-supervised approaches allows the model to
adapt better to dissimilar data while also performing better on the original test set.
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Figure 5.10: Line charts showing the Mean Absolute Error and Balanced Error Rate
for each of the three semi-supervised approaches. The left column is self-training; the
middle column is expectation maximisation; the right column is co-training.

Model Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
Control N/A 0.349 0.865 0.696 0.135 31.58

self-training 77.5 0.391 0.874 0.723 0.126 29.23
EM 80 0.402 0.875 0.729 0.125 28.74

Co-training 80 0.384 0.866 0.719 0.102 29.35

Figure 5.8: Best model from each approach on VMDD-Test dataset. Best results in Bold,
Second best in Italics.

Model Min Confidence (%) IoU↑ Acc↑ Fβ↑ MAE↓ BER↓
Control N/A 0.382 0.803 0.686 0.197 31.07

self-training 75 0.408 0.830 0.735 0.170 28.98
EM 80 0.423 0.847 0.728 0.153 28.17

Co-training 77.5 0.421 0.831 0.716 0.181 28.83

Figure 5.9: Best model from each approach on labeled Pexels dataset. Best results in
Bold, Second best in Italics.
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Figure 5.11: Line charts showing the IoU, Accuracy, and Fβ for each of the three semi-
supervised approaches. The left column is self-training; the middle column is expectation
maximisation; the right column is co-training.



Chapter 6

Conclusions

6.1 Discussion

In this paper, we investigated how using semi-supervised learning techniques - namely
self-training, expectation maximisation, and co-training, can help to overcome the issues
of high data similarity in the video mirror detection problem. We have constructed
two new mirror datasets, implemented three distinct semi-supervised techniques to
extend the current SOTA model to allow better adaptability, and tested these new im-
plementations. Experimental results show that each of our semi-supervised techniques
outperforms the existing state-of-the-art methods for video mirror detection - having
a slight performance gain on the pre-existing VMDD-test dataset, and a significant
improvement in the adaptability as measured by the newly created annotated dataset.

6.2 Real-time Inferring and Poster Display

As part of this honours project, we also took part in the University of Edinburgh
Informatics Project Day. This involved creating an academic poster which can be found
in appendix A as well as creating a real-time demo. To our knowledge, this is the
first time that real-time mirror detection has been used with live video - as opposed to
using prerecorded and preprocessed videos. This involved a slight modification to the
model as in real-time it can no longer take in the third randomly sampled frame, and as
opposed to using JPEG images it has to work off of live videos.

Our project won the first place prize for best poster - decided based on the quality of the
poster and presentation. This decision was made by many representatives of research
institutes from the University of Edinburgh School of Informatics.

6.3 Limitations

There are a lot of additional experiments which we wanted to run but didn’t have enough
time. These include testing the co-training technique with different image-based models,
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Figure 6.1: Occasions where a face is visible in the reflection in a mirror. This is not an
exhaustive list of all occurrences.

Source

Prediction

GT

Figure 6.2: Occasions where video mirror detection models predict a face as a mirror re-
gion. These predictions are from the original VMD-Net, however, all our semi-supervised
models are also prone to this.

testing all models with a different semi-supervised start epoch, and different final epoch
values.

The main limitation of our model - which is also present in the existing SOTA model -
is that the model learns a correlation between faces and mirrors and so the final model
tends to report faces as a mirror region. This is because as one could imagine when
collecting a dataset of mirrors, one’s reflection would appear in the mirrors in the dataset
they’re collecting. This can be seen in 6.1 where the face of the researcher collecting
the dataset can be seen in the reflection of the mirror. The model then subconsciously
learns the correlation between the human face and the mirror region, which in turn ends
with the final model reporting non-reflected faces as a mirror region. This can be seen in
figure 6.2. The solution to this would simply be to collect a negative dataset (a dataset
containing just faces without mirrors and all annotated as non-mirror regions) and add
this to the training set. Hence, it wouldn’t be too difficult to fix.

6.4 Future Work

An interesting area for future research within mirror detection technology is the explo-
ration of models’ performance on concave and convex mirrors. Current methodologies
have predominantly focused on flat mirrors, leaving a considerable gap in our under-
standing of model adaptability to mirrors with various geometries. Investigating how
existing image-based and video-based models fare with concave and convex mirrors
could provide useful insights. Should these models underperform, it presents an intrigu-
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ing opportunity for the design and development of new models specifically tailored for
mirrors of diverse shapes, thereby broadening the scope of mirror detection capabilities.

Expanding the detection capabilities to include general reflections represents another
significant direction for future work. Presently, mirrors are primarily trained to identify
mirrors, neglecting other reflective materials and surfaces such as polished metal, and
glass under various lighting conditions, and water. Developing a model that recognises
a wider array of reflections would greatly enhance its real-world applicability. By
encompassing a broader spectrum of reflective surfaces, such a model would drastically
improve the errors caused by reflections in existing CV tasks.

A slightly different direction for future work in the mirror detection domain could be
incorporating explainable AI (XAI) techniques into mirror detection models. This would
offer a promising pathway to enhance the transparency of these systems. Explaining the
reasoning behind a model’s classification of specific regions as mirrors would provide
valuable insights into the decision-making process. This would help refine and improve
algorithms by providing reasons why they fail in particular cases. On top of this, it
would also be crucial for real-world applications by allowing users to have more trust
in the system by making the operations more accessible to the users. The integration
of explainable AI could, therefore significantly improve the accuracy and reliability of
mirror detection technologies.

Lastly, the development of efficient video representational learning emerges as a com-
pelling project somewhat related to this one. This research would aim to create method-
ologies that convert video data into succinct, low-dimensional vectors. Such representa-
tions could facilitate the comparison of entire video sequences, making it possible to
compute the cosine similarity between any two videos. Given the current challenges
associated with the absence of dedicated video representational models, this avenue
of research could address a critical need paving the way for a more sophisticated and
nuanced analysis of video data.

Each of these future research directions not only aims to expand the existing capabilities
within the domain of mirror detection but also seeks to address the broader challenges
encountered in computer vision. By prioritising these areas, the field can move towards
more comprehensive, accurate, and versatile detection models that are better equipped
to understand and interpret the world around us. I suspect each of the future works
proposed above could be an appropriate level for future undergraduate or master’s level
honours projects.
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