
Divisualise! An Extensible, Interactive,
Divide-and-Conquer Algorithm Visualiser

Armand Coretchi
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2024

Abstract
This report delineates the design and implementation of Divisualise, an extensible,
interactive divide-and-conquer algorithm visualiser. This project aimed to improve
upon existing divide-and-conquer (DAC) algorithm visualisations by creating a new
tool, which provides users with a high-level view of the execution of various DAC
algorithms alongside detailed information about the decisions made at each step.

Divisualise models DAC algorithms as trees of recursive calls with independently
executable ’divide’ and ’combine’ phases. The platform provides a remarkably simple,
yet powerful, API that allows implementors to create new visualisations effortlessly.
Divisualise takes the naive recursive implementation of any DAC algorithm and handles
the intricacies of input handling, presentation, and optimisations such as memoisation,
to create a beautiful, interactive demonstration of its execution. Its implementation
integrates modern web technologies, established design principles, and innovative
visualisation techniques to create a responsive, accessible user interface.

A user survey conducted to evaluate Divisualise demonstrates that the platform has
largely succeeded in its mission, with the majority of respondents finding the application
easy to use, intuitive, and informative. The survey results also highlight areas for
improvement, which will be addressed in future iterations of the platform.

We hope to continue the development of Divisualise and foster an open-source commu-
nity around the project. By encouraging contributions from educators, students, and
developers, Divisualise has the potential to grow into a comprehensive platform for
learning about divide-and-conquer algorithms.

i

Research Ethics Approval
This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 778012
Date when approval was obtained: 2023-10-24
Participants who answered the Divisualise user survey were informed of this project’s
ethics application number and approval in the introduction to the online survey. No
formal consent was collected, as the survey did not gather personally identifying
information about the respondents.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Armand Coretchi)

ii

Acknowledgements
I would like to thank my wonderful supervisor, Professor Murray Cole, for his invaluable
guidance throughout this project.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Divide-and-Conquer Algorithms . 3
2.2 Dynamic Programming and Memoisation 4
2.3 Algorithm Visualisation as a Pedagogical Tool 4
2.4 User Interface Design . 6
2.5 Software Tools for Visualisations . 7

2.5.1 SvelteKit . 7
2.5.2 Tailwind CSS . 8

2.6 Prior Work . 8
2.6.1 Algorithm Visualizer . 8
2.6.2 VisuAlgo . 8

3 Designing Divisualise! 10
3.1 User Segmentation . 10
3.2 Representing DAC Algorithms . 11

3.2.1 Representing Recursive Calls 12
3.2.2 Inspecting Subproblems . 13
3.2.3 Playback and Camera Controls 15
3.2.4 Dynamic Programming . 16

3.3 Custom Input Data . 18
3.4 The Visualised Algorithms . 19
3.5 Aesthetic Considerations . 20
3.6 Accessibility . 21

3.6.1 Responsive Design . 21
3.6.2 A Primer on Divide-and-Conquer Algorithms 22

3.7 Distribution . 22

4 API Design 23
4.1 Type Safety . 23
4.2 Modelling Input and Output Values 24

4.2.1 Sets of Named Values . 26
4.3 Modelling Recursive Calls . 26

4.3.1 Modelling the State of a Recursive Call 26
4.3.2 Recursive Calls and Recursive Cases 27

iv

4.3.3 Memoisation for Free . 29
4.3.4 Interacting with the Call Tree 30
4.3.5 Providing Details . 32

4.4 Configuring New Algorithms . 33

5 Frontend Implementation 34
5.1 Input and Output Values . 34
5.2 The RecursiveCall Component . 34
5.3 The Divisualise Component . 35

6 User Evaluation 36
6.1 Survey Design . 36
6.2 Quantitative Insights . 37
6.3 Qualitative Feedback . 37

7 Conclusions 38

Bibliography 40

v

Chapter 1

Introduction

Divide-and-conquer (DAC) is an algorithmic design paradigm, employed by numerous
widely-used algorithms, which solves problems by recursively breaking them down
into smaller subproblems, solving these subproblems independently, then combining
their solutions to solve the original problem. Despite being a fundamental concept in
computer science (CS) curriculums, the abstract and recursive nature of DAC algorithms
can make them challenging for students to comprehend, and for educators to teach
effectively.

Visualisation has long been recognised as a powerful tool for demonstrating complex
concepts, and algorithm visualisation (AV) tools—software designed to graphically
represent the workings of algorithms—have been developed for educational purposes
since the ’80s [Brown and Sedgewick, 1984]. However, existing AV tools often struggle
to demonstrate the elegance and simplicity of the DAC approach by emphasising low-
level details, failing to convey the high-level recursive structure of DAC algorithms,
and not providing sufficient interactivity for users to explore the algorithms’ behaviour.
In this report, we present Divisualise, an extensible, interactive divide-and-conquer
algorithm visualiser designed to address these limitations by providing users with a high-
level view of the execution of various DAC algorithms alongside detailed information
about the decisions made at each step. Divisualise aims to be intuitive, engaging, and
accessible to users with varying levels of expertise in computer science, from novice
students to experienced educators.

We begin, in chapter 2, by introducing the notions of divide-and-conquer algorithms and
dynamic programming. We then discuss the history of AV in CS education, noting the
associated challenges and identifying best practices for the creation of AVs. Next, we
note important considerations for designing user interfaces and introduce the reader to
tools used to create software visualisations. Finally, we conclude the chapter by critically
evaluating how two existing AV tools demonstrate the action of DAC algorithms.

Next, chapter 3 guides the reader through the design and feature set of Divisualise. We
identify three target user segments to serve as the bedrock for our design decisions, then
detail how we chose to visually represent the high-level structure of DAC algorithms
while providing a mechanism for users to understand the intricacies of each step in

1

Chapter 1. Introduction 2

their executions. We discuss all of the interactive features we developed to create a
comprehensive learning experience, and also describe the aesthetic and accessibility
considerations made. Finally, we describe how we distributed Divisualise.

The two following chapters, 4 and 5, detail the implementation of the Divisualise API
and frontend respectively. Chapter 4 focuses on the design of the API, which aims
to provide a simple, extensible, and elegant interface for creating divide-and-conquer
algorithm visualisations. We discuss the key components of the API, including the
modelling of input and output values, recursive calls, and the configuration of new
algorithms. Chapter 5 explores the frontend implementation, highlighting the design
decisions and techniques employed to create an intuitive, responsive, and accessible
user interface, such as the dynamic rendering of input and output values, the recursive
rendering of the call tree, and the responsive layout that adapts to different screen sizes.

Chapter 6 presents the results of a user evaluation survey conducted to assess the
effectiveness of Divisualise in meeting our design goals and to identify potential areas
for improvement. We discuss the survey design, insights gained from the responses,
and the criticisms and suggestions provided by the users.

Finally, in chapter 7, we summarise the key achievements of the Divisualise project,
discuss the potential for future development, and highlight the importance of fostering
an open-source community around the platform. We conclude by reflecting on the
significance of Divisualise in the realm of algorithm visualisation and its potential to
revolutionise the way divide-and-conquer algorithms are understood and appreciated by
students and educators alike, ultimately contributing to the advancement of computer
science education.

Chapter 2

Background

2.1 Divide-and-Conquer Algorithms

Divide-and-conquer (DAC) is an algorithmic design paradigm which solves problems by
recursively breaking them down into smaller subproblems, solving these subproblems
independently, then combining their solutions to solve the original problem; it is a
foundational concept in algorithmic design which students often encounter early in CS
education.

[Cormen et al., 2009] identifies three key stages of execution which are common to all
DAC algorithms:

Divide the problem into smaller instances of the same problem

Conquer by recursively solving these sub-problems, or by directly solving a sub-
problem if it is small enough.

Combine the results of these sub-problems to find a solution to the original problem.

Divide-and-conquer algorithms often provide elegant, efficient solutions to complex
problems. Some examples of commonly used DAC algorithms are Merge Sort, Quick
Sort, Binary Search, and Strassen’s Algorithm. The applications of DAC algorithms
span a plethora of domains including numerical linear algebra, computational geometry
and data sorting; this ubiquity makes DAC algorithms a crucial part of every computer
science curriculum - a deep, intuitive understanding of the paradigm is crucial for
solving a large range of computational problems.

Due to their abstract, recursive, and often complex nature, students often have difficulties
conceptualising the workings of DAC algorithms and the underlying principles of the
DAC approach, underscoring a need for effective pedagogical tools which can make
this challenging concept more digestible.

3

Chapter 2. Background 4

2.2 Dynamic Programming and Memoisation

Dynamic programming (DP) is an optimisation technique that can be applied to certain
divide-and-conquer algorithms to improve their efficiency. The essence of dynamic
programming lies in ensuring each subproblem is solved only once and storing its
solution for future reference, thereby avoiding redundant computations [Cormen et al.,
2009].

Dynamic programming algorithms are commonly implemented with a bottom-up ap-
proach, in which the solutions to subproblems are computed and stored systematically,
building towards a solution for the root problem. An alternative approach to dynamic
programming is memoisation, which can be applied to naive recursive implementations
of divide-and-conquer algorithms. Memoisation involves augmenting naive recursive
algorithms with a lookup table. When the algorithm encounters a subproblem, it first
checks the lookup table to see if the subproblem has already been solved. If it has, the
result is simply returned from the table. If the subproblem has not been previously
solved, the algorithm computes the solution, stores it in the table, and returns the result.

Dynamic programming techniques are common topics in undergraduate computer
science curriculums and software engineering interviews. An interactive means of
visualising the effect of these techniques on DAC algorithms could prove highly valuable
to educators, students, and jobseekers in software engineering.

2.3 Algorithm Visualisation as a Pedagogical Tool

Algorithm visualisation (AV) for Computer Science (CS) education has its origins dating
back to the early ’80s with tools such as the BALSA system [Brown and Sedgewick,
1984]. These visual systems have since evolved, particularly with the advent of modern
web technologies, to find a significant place in Computer Science education. This
section delves into the prevalence of visualisations in contemporary Computer Science
curriculums, the effectiveness of these visualisations in aiding comprehension, and
methods to measure this effectiveness, alongside exploring the attributes that constitute
a compelling visualisation.

As early as 2003, educators had seemingly reached a consensus regarding the significant
value of AVs in CS education, however, surveys have indicated that only half of all
educators incorporate them in their teaching practices [Fouh et al., 2012]. [Fouh
et al., 2012] identifies two primary challenges for teachers: finding suitable AVs and
integrating them seamlessly into the curriculum. Since the publication of these findings,
advancements in web technologies have considerably alleviated the difficulty of building
and distributing algorithm visualisations, offering a more straightforward way to address
the aforementioned issues. Additionally, the shift towards online or hybrid education
in the post-COVID era has normalised students’ engagement with online resources,
potentially fostering a more conducive environment for adopting AVs in CS education.

Despite the prevailing consensus, a meta-analysis by [Hundhausen et al., 2002] reveals
that the effectiveness of AVs for enhancing comprehension is not quite as clear-cut.
The analysis covered 24 experimental studies, with only 11 showing a statistically

Chapter 2. Background 5

significant difference in outcomes between the groups using an AV tool and those using
either a different tool, a different configuration of the same tool, or no AV tool at all.
Notably, [Hundhausen et al., 2002] found that the differences in student outcomes were
more significantly attributed to how students used the tools, rather than what the tools
presented to students. In light of this, the task of measuring the effectiveness of AVs
becomes crucial yet challenging. [Naps et al., 2003] employs Bloom’s taxonomy, a
framework delineating the different levels of learners’ understanding ranging from
fact-recall to evaluation, as a key measure for evaluating the effects of AV on students’
understanding of algorithms. [Naps et al., 2003] also details the factors one might
consider in evaluating understanding, being: progress, drop-out rate, learning time, and
learner satisfaction. The challenges associated with measuring students’ understanding
stem from the dual nature of algorithms, they are profoundly conceptual yet fundamen-
tally rooted in implementation. This duality makes it intricate to assign a particular
’level’ of understanding, as students might grasp different facets of an algorithm to
varying extents. The understanding of algorithms is multi-dimensional, encompassing
not only theoretical comprehension but also practical application.

It is important to consider the particular qualities that make a good AV. [Naps et al., 2003]
presents 11 best practices as commonly accepted suggestions drawn from experience
which can be summarised as follows:

Interpretation Aids: Provide resources to help learners interpret the graphical repre-
sentation.

Adaptability: Tailor the complexity of the visualisation to the knowledge level of the
user.

Multiple Views: Offer various views of an algorithm, like control flow or data structure
state.

Complexity Information: Include efficiency analysis data to elucidate the perfor-
mance characteristics of the algorithm.

Execution History: Offer a history feature to help learners track previous steps.

Flexible Execution Control: Allow flexible control of the AV execution.

Learner-built Visualisations: Encourage learners to build their own visualisations to
deepen understanding.

Custom Input Data: Allow learners to specify their own input data.

Dynamic Questions: Incorporate interactive questions at intervals to encourage reflec-
tion.

Dynamic Feedback: Provide real-time feedback on learners’ interactions within the
visualisation.

Complementary Explanations: Accompany visualisations with clear explanations.

Chapter 2. Background 6

2.4 User Interface Design

The design of user interfaces and the overall user experience (UX) play a crucial role
in the effectiveness of any application. Research has shown that the aesthetic appeal
of an interface can significantly influence users’ perception of its usability and their
overall satisfaction with the tool. [Tractinsky et al., 2000] found that users perceive
aesthetically pleasing interfaces as more usable, even when the actual usability remains
unchanged. This phenomenon, known as the aesthetic-usability effect, highlights the
importance of considering visual appeal in interface design to enhance user engagement
and potentially improve learning outcomes.

In addition to aesthetics, several key principles guide the design of effective user
interfaces. [Blair-Early and Zender, 2008] identifies ten interface design principles and
four general design principles that contribute to creating intuitive, user-friendly, and
engaging interfaces. The interface design principles include:

Obvious Start: Providing a clear starting point for user interaction.

Clear Reverse: Offering an evident way to undo actions or exit the interface.

Consistent Logic: Maintaining internal consistency in content, actions, and effects.

Observe Conventions: Respecting familiar interface conventions and user expecta-
tions.

Feedback: Providing tangible responses to user actions.

Landmarks: Offering reference points for context and navigation.

Proximity: Grouping related elements and minimizing the distance between content
and interface.

Adaptation: Allowing user customization and adapting to user needs.

Help: Providing readily accessible assistance when needed.

Interface Is Content: Integrating interface elements with content to minimize distrac-
tion.

The four general design principles encompass:

Subject Matter: Making the subject matter obvious from the start.

Interface Visualization: Using visual form apt to the content to embody the interface.

Content + Form: Designing visually engaging interfaces that reflect the nature of the
content.

Metaphor: Employing metaphors to introduce new or obscure concepts, particularly
in narrative-based content.

While the impact of UI/UX design on learning outcomes in the context of algorithm
visualisation tools requires further research, it stands to reason that more usable inter-
faces may lead to improved understanding and retention of the presented concepts. By
reducing cognitive load and minimizing distractions, well-designed interfaces allow

Chapter 2. Background 7

users to focus on the educational content. Moreover, the aesthetic-usability effect
suggests that visually appealing interfaces may encourage users to engage with the tool
for longer periods, potentially leading to deeper exploration and comprehension of the
algorithms being visualised.

2.5 Software Tools for Visualisations

Software visualisations (and GUI applications) now fall into one of two categories:
native applications and web applications. Native applications are executables which
run directly on a user’s computer, whereas web applications are built with technologies
such as JavaScript, HTML and CSS and execute within a web browser. Historically,
native applications have been preferred for complex visualisations due to their robust
performance and hardware access, however recent advancements in web technologies
have significantly bridged this gap. Features of the present web, such as the HTML
Canvas API and CSS animations, now enable intricate graphical rendering and in-
teractive visualisations within web browsers. The inherent accessibility of the web -
requiring no installations and providing a simple means of global access - presents
a compelling advantage over native applications, making it an attractive choice for
developing sophisticated and accessible algorithmic visualisations.

2.5.1 SvelteKit

SvelteKit [Svelte contributors, 2024] is a web framework that leverages Svelte, a
modern programming language designed for creating web-based GUI applications.
Svelte provides an elegant API and acts functionally as a super-set of JavaScript,
offering enhanced functionality and intuitive APIs for interactivity while retaining
JavaScript syntax familiar to all web developers. Through its reactive programming
model, developers can construct intuitive, reactive user interfaces. Svelte code is
compiled into highly optimized, imperative JavaScript that directly manipulates the
DOM, eliminating the need for older, more resource-hungry techniques such as a virtual
DOM.

SvelteKit emerges as an increasingly popular option in a crowded ecosystem of web
design tooling. Some alternatives and competitors are:

React: The most widely used web reactivity framework, known for its pioneering use
of the ’virtual DOM’.

Angular: A comprehensive framework backed by Google, Angular is a precursor to
React with dwindling adoption.

Vue.js: A lesser-used, but powerful alternative to React providing a similar API.

D3.js: Especially suited for dynamic, interactive data visualisations in web browsers,
leveraging modern CSS features and HTML Canvas.

Chapter 2. Background 8

2.5.2 Tailwind CSS

Tailwind CSS [Tailwind CSS contributors, 2024] is a utility-first CSS framework that
enables the rapid development of intricate, responsive web user interfaces. Unlike
other CSS frameworks which provide specialised classes for styling certain elements,
Tailwind CSS exposes a plethora of low-level utility classes which enable fine-grained
control of an interface’s appearance directly in the markup. This approach promotes
design consistency, reduces the need for custom CSS, and results in smaller CSS files
and faster load times. Tailwind CSS also offers utility classes for responsive design,
allowing developers to specify different styles for various screen-size breakpoints and
create an that interface remains consistent and accessible across a wide range of devices.

2.6 Prior Work

Over time, a multitude of algorithm visualisation tools for educational purposes have
been developed; Older AVs such as BALSA [Brown and Sedgewick, 1984] were built
as native apps whereas the majority of modern tools are web-based. Two popular, con-
temporary, web-based examples are detailed below. Existing visualisations, particularly
focusing on DAC algorithms, are low-level and sequential. The algorithms are stepped
through and show the operations on the underlying data structures at each step, lacking
the ability to explore the different ’branches’ of a recursive problem independently and
perhaps failing to wholly communicate the nuance and elegance of the design choices
made for the algorithms in question.

2.6.1 Algorithm Visualizer

Algorithm Visualizer is a web-app built with React that provides a means of stepping
through the code and execution of various algorithms whilst simultaneously providing a
visual representation of the underlying data structure that the algorithm is operating on
with a choice of views. As this tool is based on stepping through real code, there is no
fine-grained control over the branches of execution explored when visualising a DAC
algorithm, as demonstrated in 2.1a.

2.6.2 VisuAlgo

VisuAlgo is a web app and interactive educational platform created in 2011 to foster a
deeper understanding of data structures and algorithms. It provides unique, interactive
visualisations for a multitude of complex algorithms. The platform currently features
24 visualisation modules, with ongoing efforts to develop more visualisations; each
visualisation module in VisuAlgo also now includes its own online quiz component, by
which learners can self-assess their understanding. Unlike Algorithm Visualizer, which
centres on stepping through real code, VisuAlgo offers a varied range of visualisations
alongside a built-in quiz system, promoting a self-paced and thorough learning and
assessment experience.

Chapter 2. Background 9

(a) Algorithm Visualizer

(b) VisuAlgo

Figure 2.1: Two existing visualisation tools demonstrating the operation of MergeSort

Chapter 3

Designing Divisualise!

In this chapter, we present the design and feature set of Divisualise, an extensible,
interactive divide-and-conquer algorithm visualiser. Divisualise is implemented as a
web application, utilising SvelteKit, TypeScript, and Tailwind CSS; more details on its
implementation can be found in chapters 4 and 5.

We begin by identifying and analysing three target user segments, each with distinct
needs and levels of expertise, which serve as the foundation for our design decisions.
Following this, we detail our approach to visually representing DAC algorithms, the
interactive features we built to facilitate a comprehensive learning experience, and the
aesthetic and accessibility considerations made in the design process.

3.1 User Segmentation

In designing Divisualise, we identified three primary target user segments, each with
distinct needs.

The first group consists of teachers using Divisualise as a teaching aid in their lessons.
They may instruct students to use the tool independently or employ it to present the
operation of DAC algorithms to a class. Teachers may wish to create visualisations for
DAC algorithms not yet implemented in Divisualise.

The second group comprises advanced students, already familiar with the general
concepts of DAC algorithms. These students will seek to deepen their understanding of
specific algorithms and their implementations. They require a tool that provides detailed
insights into the workings of the algorithms and allows for interactive exploration.
Advanced students may also wish to implement their own visualisations to aid their
learning, and enabling this action is considered a best practice by [Naps et al., 2003].

The third group includes students unfamiliar with, or with limited understanding of, the
DAC paradigm. These students need a tool that presents the concepts in an accessible
and intuitive manner, guiding them through the fundamental principles and problem-
solving strategies employed in DAC algorithms from the ground up.

Considering the diverse needs of these user segments, we aimed to create an interface

10

Chapter 3. Designing Divisualise! 11

that caters to both novice and advanced learners, providing flexibility for those who
wish to tweak, or create, visualisations.

3.2 Representing DAC Algorithms

We sought to create an intuitive, interactive visual representation of DAC algorithms
that aligns with their natural, recursive structure. Existing visual aids (Figure 3.1) most
commonly present DAC algorithms as trees of problem input and outputs, with the tree
growing (downwards by convention) as the root problem is recursively divided into
subproblems. We thought it apt to present DAC algorithms similarly in Divisualise,
allowing teachers to augment their existing materials without introducing additional
cognitive overhead for students with a new visual representation.

(a) A representation presenting subproblems being ’combined’ downwards.

(b) A representation showing subproblems as being ’merged’ upwards.

Figure 3.1: Two images from the first page of a Google image search for ’divide and
conquer algorithms’.

Figure 3.1 shows two different representations of DAC algorithms. The first represen-

Chapter 3. Designing Divisualise! 12

tation depicts subproblem solutions as being ’combined’ downwards, below the base
cases. The second representation illustrates subproblem solutions being combined back
into their ’parent’ problems, moving upwards.

We believed the second representation more accurately reflected the structure of a
recursive call tree, with each node corresponding to a single recursive call, and that the
prevalence of the first representation likely stems from the limitations of static media in
effectively conveying the upward combination process.

Considering these factors, we designed an application that allows users to explore
the execution of a DAC algorithm by interacting with its recursive call tree. In our
visualisation, subproblem results bubble upwards towards the root as subproblems are
solved, mimicking the actual flow of a recursive algorithm.

Figure 3.2: Divisualise displaying a partially solved Merge Sort call tree

3.2.1 Representing Recursive Calls

Each node in the Divisualise tree corresponds to precisely one recursive call, which
can be in one of the following states, mirroring the stages of execution identified by
[Cormen et al., 2009]:

Undivided The problem has not yet been split into subproblems; the call is necessarily
a leaf node in our tree.

Divided The problem has been divided into subproblems, which are displayed as
children of this call in the tree. The call may still be a leaf node if it corresponds
to a base case.

Solved All subproblems (if any) are solved, and their results have been combined to
find the solution to the current call.

Chapter 3. Designing Divisualise! 13

As shown in Figure 3.2, nodes of all states display their input values, similar to the
representations in Figure 3.1. Additionally, solved nodes present their result above the
input, demonstrating how subproblem solutions bubble up the call tree. We use colours
to indicate the state of each node: grey for undivided, red for divided, and green for
solved. Furthermore, we visually differentiate ’combinable’ calls (i.e., divided calls
with all subcalls solved) by colouring them yellow. Our use of colour to convey call
state adheres to the ’Feedback’ interface design best practice identified by [Blair-Early
and Zender, 2008]; moreover, our deliberate choice of traffic light colours follows the
’Metaphor’ best practice, aiming to leverage users’ existing associations with these
colours: red for unsolved (stop), green for solved (go), and yellow for ’combinable’
(prepare to go), representing an intermediate state.

To facilitate navigation and inspection of the call tree, we provided users with a ’camera’
that can pan, zoom in, and zoom out of any section of the tree, allowing for a clear view
of both the overall structure and individual nodes. Figure 3.3 shows a close-up view of
a recursive call in various states.

(a) Undivided (b) Divided (c) Combinable (d) Solved

Figure 3.3: Close-up views of the same recursive call in different states.

Users can interact with individual calls using buttons to divide, combine, conquer,
and reset them to an undivided state, when applicable. The buttons are coloured
according to the state they lead to and are greyed out when unavailable, adhering to
the ’feedback’ best practice [Blair-Early and Zender, 2008]. This interactivity allows
users to traverse the tree in order and revert any branch to an unsolved state, meeting the
’Flexible Execution Control’ and ’Execution History’ AV best practices identified by
[Cormen et al., 2009]. By providing this level of control, Divisualise facilitates a deeper
understanding of the recursive nature and problem-solving process of DAC algorithms.

3.2.2 Inspecting Subproblems

To improve upon existing algorithm visualisations, we sought to provide users with
the ability to inspect the details of each subproblem as they navigate the recursive call
tree. While the Divisualise call tree offers a valuable representation of the high-level
structure and execution of recursive DAC algorithms, we wanted to give users access

Chapter 3. Designing Divisualise! 14

to additional information about the decisions made at each stage of an algorithm’s
execution.

To achieve this, we introduced a ’details panel’ that displays a slideshow explaining the
action of a user-selected call based on its current state. Users can ’highlight’ a call by
clicking on it, which updates the details panel accordingly.

The slideshow consists of slides containing written explanations and intricate anima-
tions of the input values, illustrating the behaviour of the selected call. For example,
highlighting a ’divided’ Merge Sort call shows the input array being split into two
subarrays, while selecting a ’solved’ call demonstrates the merging of sorted subarrays.

Figure 3.4: Subproblem details panel showing the merging of sorted subarrays in Quick
Sort

The details panel (Figure 3.4) includes controls for users to play the slideshow as an
animation, step forward or backwards through the slides, and control the animation
progress within each slide. To accommodate different user preferences and learning
needs, the details panel is collapsible, allowing users to focus solely on the call tree
view if desired. This feature aligns with the ’Adaptability’ best practice identified by
[Blair-Early and Zender, 2008] by enabling users to tailor the interface to their needs.

Our slideshow model offers significant flexibility and supports several [Naps et al.,
2003] best practices:

Complementary Explanations: The slideshows provide detailed explanations to ac-
company the visualisation.

Multiple Views: By presenting state information, the slideshows offer additional per-
spectives on the algorithm.

Complexity Information: Details about the algorithm’s complexity can be included
in the written explanations.

Chapter 3. Designing Divisualise! 15

Interpretation Aids: The slideshows guide users through the algorithm’s execution,
benefiting novice learners.

This approach improves upon the prior work we have discussed, as it enables the
presentation of both a high-level structural overview, and the fine-grained details,
of an algorithm. Furthermore, these slideshows are well-suited for teachers using
Divisualise to present algorithms to a class. By providing users with the ability to
inspect subproblem details, alongside the high-level call tree, Divisualise offers a more
comprehensive and informative learning experience compared to existing algorithm
visualisations.

We considered integrating ’Dynamic Questions’ and ’Dynamic Feedback’ into our
slideshows but ultimately deemed these features to be outside the scope of this project
which primarily focuses on the presentation aspect of algorithm visualisation. We
foresee possible future extensions that leverage the details panel to question the user
and provide interactive feedback, further enhancing the learning experience.

3.2.3 Playback and Camera Controls

While our call tree and details panel provide users with flexible control over the execu-
tion of the recursive call tree, allowing them to expand branches in arbitrary order, this
flexibility may not always be desired. As recursive algorithms imply a specific order
of execution, we enable users to traverse the call tree in order by providing playback
controls.

Figure 3.5: Playback controls for stepping through the recursive call tree. The ’camera
lock’ button is hovered.

Figure 3.5 shows a close-up of our playback controls, which sit in the bottom-left corner
of the camera view. The controls include buttons to step forward and backwards through
an algorithm’s execution, alongside play/pause buttons to initiate and halt playback.
During playback, the currently active call is highlighted, and if the details panel is
expanded, the corresponding slideshow is synchronized with the execution progress.
Users can also adjust the playback speed to their preference. Additionally, a reset button
allows users to reset the entire call tree to its initial state, providing a convenient way to
start the visualization anew.

To further enhance the user’s ability to follow the algorithm’s execution during playback,
we introduced a camera lock feature that automatically pans the camera to centre on the
currently highlighted call; this allows users to follow the execution without manually
adjusting the camera. We foresee this feature being of particular value to teachers using
Divisualise in a presentation setting, as it ensures the audience’s focus remains on the
most relevant aspects of the algorithm’s execution.

Chapter 3. Designing Divisualise! 16

The playback controls are designed to be tactile and responsive, highlighting and
expanding on hover to provide visual feedback, which aligns with the ’feedback’ user
interface design best practice identified by [Blair-Early and Zender, 2008].

3.2.4 Dynamic Programming

Dynamic programming (DP) is an optimisation technique crucial for the efficient
implementation of many DAC algorithms. However, students often struggle to gain
an intuitive understanding of how DP techniques work, and how they reduce the time
complexity of DAC algorithms. In light of this, we desired a feature that would provide
an interactive, visual way to observe the impact of DP techniques. To drive this
point home, we decided to implement the DP feature as a simple toggle button on
visualisations for algorithms that support DP; this way, users can seamlessly switch
between the naive and optimised versions of the algorithm, making the impact of DP
immediately apparent.

We chose to focus on memoisation, a top-down approach to dynamic programming,
where the results of previously computed subproblems are stored and reused when
needed. Memoisation can be automatically applied to any naive recursive implementa-
tion without further consideration, making it an ideal candidate for our visualisation
tool. To visualise memoisation in action, we extended our recursive call model with a
new ’memoised’ state, represented by blue nodes in the call tree. When a user enables
memoisation, the call tree is dynamically updated to reflect the optimised execution of
the algorithm. Subproblems that would be redundantly computed in the naive recursive
implementation are instead resolved through memoisation, resulting in a visibly smaller
call tree (Figure 3.7). This visual transformation provides a tangible representation of
the efficiency gains achieved through dynamic programming.

The memoisation feature in Divisualise is designed to maintain a consistent state across
the call tree. When a user interacts with the tree or enables memoisation, the tree
automatically resolves dependent calls to ensure the correctness of the memoised results.
Users can also transition back to the naive recursive version of the algorithm, with
memoised calls expanding to reveal their underlying computations. This behaviour,
demonstrated in Figure 3.8, adheres to the ’Consistent Logic’ user interface design
best practice identified by [Blair-Early and Zender, 2008]. Furthermore, when a user
inspects a memoised or would-be memoised call in the details panel, Divisualise
highlights the subproblem on which the call depends (Figure 3.9), providing users with
a clear understanding of the dependencies between subproblems and how memoisation
leverages these dependencies to avoid redundant computations.

The dynamic programming functionality in Divisualise aligns with several algorithm
visualisation best practices identified by [Naps et al., 2003]. It provides ’Multiple
Views’ by presenting both the naive and memoised execution of an algorithm; it offers
’Complementary Explanations’ through the details panel, which highlights the depen-
dencies between subproblems; moreover, by allowing users to toggle memoisation on
and off and observe the impact on the call tree, Divisualise provides ’Flexible Execution
Control’. By visualising the reduction in the number of subproblems computed and the
dependencies between subproblems, students can develop a deeper understanding of

Chapter 3. Designing Divisualise! 17

how dynamic programming techniques optimise recursive algorithms.

Figure 3.6: A solved call tree for the naive recursive Longest Common Subsequence
algorithm

Figure 3.7: Toggling memoisation, the call tree shrinks as later overlapping subproblems
transform into blue ’memoised’ calls

Chapter 3. Designing Divisualise! 18

Figure 3.8: As we reset a base case our tree resolves dependent calls to maintain
consistent state, unsolving out-of-order memoised calls

Figure 3.9: Inspecting a memoised, or would-be memoised, call highlights the subprob-
lem on which it depends

3.3 Custom Input Data

The performance characteristics of certain DAC algorithms can vary significantly with
the input provided; we thought it apt to follow the [Naps et al., 2003] best practice of
’Custom Input Data’, allowing users to observe best, worst and average case behaviours
in an intuitive, visual manner via the Divisualise call tree paradigm.

Chapter 3. Designing Divisualise! 19

We designed custom input components (Figure 3.10) that aesthetically match the values
presented in our visualisations, improving the overall cohesion and user experience
of Divisualise. These components were crafted with ease of use in mind, eliminating
the need for users to manually type comma-separated numbers or other complex input
formats. Additionally, we limit the size of numbers in lists and matrices to ensure they
are presented appropriately within the visualisation.

(a) Array and Number inputs (b) Matrix input (c) Planar points input

Figure 3.10: Custom Divisualise input interfaces

3.4 The Visualised Algorithms

We sought to provide visualisations for a wide range of DAC algorithms, with the goal
of enabling learners to understand the DAC approach independent of the implementation
details of any particular algorithm. For teachers and advanced students who may wish
to add, or modify, algorithms, we aimed to make the process as simple as possible; the
”API Design” chapter delves into the details of how we achieved this goal, and the steps
required to implement new algorithms.

To showcase the versatility of our visualisation framework, we implemented visualisa-
tions for the 10 following DAC algorithms:

• Merge Sort

• Quick Sort

• Closest Pair of Points

• Maximal Subarray

• Longest Common Subsequence (DP enabled)

• Fibonacci (DP enabled)

• Karatsuba’s Algorithm

• Binary Search

Chapter 3. Designing Divisualise! 20

• Strassen’s Algorithm

• Cofactor Expansion

We chose these algorithms as they span a range of problem domains and work upon
varied data types, allowing users to observe the DAC paradigm at work in many settings.

3.5 Aesthetic Considerations

In the design of Divisualise, significant effort was placed into creating an aesthetically
pleasing user interface, with hopes that the aesthetic-usability effect [Tractinsky et al.,
2000] may serve to improve the learning outcomes of our users. We leveraged colour
palettes provided by Tailwind CSS, offering a harmonious set of colours that work well
together. The interface employs a minimalist, high-contrast visual style characterised by
stylish, thick black borders and hard edges. This design choice not only contributes to
the overall aesthetic appeal but also enhances the clarity and readability of the interface
elements.

Figure 3.11: The Divisualise main menu.

The colour scheme of the interface is predominantly neutral, using colour strategically
to draw attention to interactive elements and assist in the presentation of the execution
of DAC algorithms. The neutral background allows the coloured elements, such as
the call tree nodes and highlighted control buttons, to stand out and guides the user’s
attention to the most relevant parts of the interface.

The interface layout is clean and uncluttered, with ample whitespace to ensure the focus
remains on the algorithm visualisation. We used an elegant, playful, sans-serif font
called Nunito, licensed under the Open Font License, which contributes to the overall
aesthetic and ensures readability across different screen sizes.

Chapter 3. Designing Divisualise! 21

3.6 Accessibility

Accessibility was a key consideration throughout the design process of Divisualise
- creating an inclusive educational tool benefits all users. We aimed to ensure that
Divisualise could be effectively used by a wide range of students, including those with
disabilities.

One of our primary goals was to create an interface that is fully navigable, and usable
with, a keyboard, enabling users who cannot use a mouse to access all functionality. We
ensured every interactive element could be reached and activated using the keyboard
alone. Furthermore, we sought to make Divisualise compatible with screen readers,
allowing visually impaired users to understand and interact with the visualisations; this
involved structuring the content logically and using clear and descriptive labels for all
interactive elements.

3.6.1 Responsive Design

As of 2016, the majority of web traffic in the USA comes from mobile devices [Google,
2024], underscoring the importance of creating responsive web applications that adapt
to different screen sizes. We made use of Tailwind CSS responsive design features to en-
sure that Divisualise is accessible on a wide range of devices; Figure 3.12 demonstrates
how the interface adapts to smaller screens.

(a) Google Pixel 4 (b) Apple iPad Air

Figure 3.12: The Divisualise interface adapts to mobile devices.

[Department for Education, 2023] tells us that 54% of secondary schools in the UK
provide tablet devices for student use in lessons. We anticipate that responsive Divisu-
alise interface could be particularly valuable for teachers using mobile devices in the
classroom. Students could use their own devices, or school-provided tablets, to follow
along with a presentation or explore the DAC paradigm independently during lessons.

Chapter 3. Designing Divisualise! 22

3.6.2 A Primer on Divide-and-Conquer Algorithms

To support students unfamiliar with, or with limited understanding of, the DAC
paradigm, we included a primer on DAC algorithms, dynamic programming, and
algorithmic complexity.

Accessible directly from the Divisualise main menu (Figure 3.11), the primer is written
to be understood by users familiar with simple secondary school Mathematics and no
Computer Science background. It begins by introducing the DAC paradigm, using
the eponymous Fibonacci sequence as a toy example, visualising its naive recursive
implementation. Following this, readers are introduced to dynamic programming with
a simple modification to the naive Fibonacci algorithm. Finally, the primer presents
a high-level introduction to concept of algorithmic complexity and big-O notation,
avoiding mathematical intricacies.

Throughout the primer we display visualisations of recursive call trees identical to
the call trees seen in our visualisations, providing a gentle introduction to Divisualise
interface.

3.7 Distribution

We aimed to make Divisualise widely accessible to a global audience and promote its
adoption as a learning tool; to accomplish this, we used SvelteKit to build Divisualise as
a static site that can be deployed on global content delivery networks (CDNs), allowing
us to deliver the application to end users with minimal latency regardless of their
location.

For the initial release of Divisualise, we chose to deploy the application on Vercel’s
Edge Network [Vercel, 2024], a global CDN that offers exceptional performance and
reliability. Vercel’s platform allows us to greatly simplify deployment by providing
seamless CI/CD integrations with GitHub, and further allows us to host our application
for free due to its small footprint!

In addition, we also made the decision to release the source code of Divisualise un-
der an open-source license. By hosting the project on GitHub and making the code
available under the GNU General Public License v3.0 (GPL-3.0), we aim to encourage
collaboration and contribution from the wider computer science education community
and hope to continue developing Divisualise into a comprehensive platform for learning
about divide-and-conquer algorithms.

Chapter 4

API Design

In this chapter, we present the design of the Divisualise API, which aims to provide
a simple, extensible, and elegant interface for creating divide-and-conquer algorithm
visualisations. Our primary goal was to create an API that requires minimal effort
from implementors while offering the flexibility to accommodate a wide range of
algorithms. We wanted to ensure that teachers and advanced students could easily extend
Divisualise to include new algorithms without needing to delve into the intricacies of
the visualisation framework.

To achieve this, we designed the API around the core concept of modelling divide-and-
conquer algorithms as recursive call trees, with each node representing a subproblem.
By providing a set of abstract base classes and interfaces that encapsulate the common
structure and behaviour of these call trees, we aimed to create a framework that allows
implementors to focus on the specific details of their chosen algorithms while leveraging
the power of the Divisualise platform. Crucially, we aimed to allow implementors
to write only the naive recursive implementation of any algorithm, with Divisualise
handling everything else, including input handling, presentation, and memoisation.

The following sections will detail the key components of the API, including the mod-
elling of input and output values, recursive calls, and the configuration of new algorithms.
Throughout this chapter, we present TypeScript code blocks to demonstrate key inter-
faces and methods. These figures are taken directly, with minimal modifications, from
the source code, to showcase the elegance of the implementation that our abstractions
allow (some redundant clauses needed to satisfy the type checker are removed for
brevity and clarity).

4.1 Type Safety

One of our key objectives in designing the Divisualise API was to ensure type safety, as
it provides several significant benefits for extensibility and ease of use by developers.
By leveraging TypeScript’s type system and support for algebraic data types (ADTs)
[Liskov and Zilles, 1974], we were able to design an elegant API that catches potential
errors at compile-time, reducing the likelihood of runtime bugs and making it easier for

23

Chapter 4. API Design 24

teachers and advanced students to extend the platform.

Figure 4.1 demonstrates how the TypeScript compiler catches an input configuration
error in the implementation of a binary search visualisation built using our API.

Figure 4.1: TypeScript tells us that we cannot use the basic number[] type in the input
of a RecursiveCall (see 4.2.1).

By embracing type safety, we aimed to create an API that is not only robust, but also
more approachable for our target users. The compile-time type checking provides
immediate feedback and guidance, making it easier for implementors to understand
how to use the API correctly and reducing the friction associated with extending the
platform to support new algorithms.

4.2 Modelling Input and Output Values

We began by considering how to handle input and output values. For our application,
the basic types provided by JavaScript were insufficient as we wished to apply spe-
cialised styling to our values on the frontend; concretely, our frontend logic cannot
differentiate matrices and planar points if we use the number[][] type to represent
them both. Furthermore, we desired an API that supported arbitrary data types for
ultimate extensibility.

To solve these issues, we defined wrapper classes over the basic data types which
are augmented with additional presentational information and implement the Value
interface (Figure 4.2). With this, Divisualise can work upon the abstract Value type and
employ polymorphic dispatch at runtime to style values conditionally. Our Value inter-
face ensures that items are copyable, and comparable for equality; these are necessary
properties for memoisation, which we discuss further in subsection 4.3.3.

abstract class Value {
abstract copy(): ThisType <this >;
abstract copyDefault (): ThisType <this >;
abstract equals(other: ThisType <this >): boolean;

}

Figure 4.2: The Value interface, implemented as an abstract class.

Chapter 4. API Design 25

class NumberValue extends Value {
value: number;
colour: string = "black";
struck: boolean = false;

// constructor , copyDefault are trivial ...

copy(): NumberValue {
const copy = new NumberValue(this.value)
copy.colour = this.colour;
copy.struck = this.struck;
return copy;

}

equals(other: NumberValue): boolean {
return this.value === other.value;

}

coloured(colour: string): NumberValue {
const copy = this.copy();
copy.colour = colour;
return copy;

}

struckThrough(struck: boolean): NumberValue {
const copy = this.copy();
copy.struck = struck;
return copy;

}
}

Figure 4.3: The (abridged) NumberValue class

Figure 4.3 presents the (partial) implementation of our NumberValue class, which tracks
colour and strike-through styling information, alongside a simple numerical value. We
used the copy method to provide an immutable API for styling numerical values; this
immutable approach simplifies the implementation of details on recursive calls - this is
discussed further in subsection 4.3.5.

We implemented NumberList, Matrix, and Points classes similarly, allowing us to
flexibly present a range of common data types within our visualisations. Our Num-
berList and Matrix classes leverage our NumberValue class to provide styling capa-
bilities. Our Points class is built independently and enables further functionality for
colouring points, and drawing arbitrary straight-line segments on the plane to serve as
visual aids; to accomplish this, we created two further subclasses of Value (Point and
Line) and, as a result, had to define a new type which narrows to the Value types we
wished Divisualise to consider (Figure 4.4).

type IOValue = NumberValue | NumberList | Matrix | Points

Figure 4.4: The IOValue type

Chapter 4. API Design 26

With this, extending Divisualise to work with arbitrary new types becomes trivial! One
must simply: define a subclass of Value; extend IOValue to accept this new type; and
build two Svelte components which handle input, and presentation, of the type (see
section 5.1). This approach greatly simplifies the process of adding support for new data
types, making it easy for implementors to extend Divisualise to visualise algorithms
that operate on custom data structures.

4.2.1 Sets of Named Values

We desired a mechanism to label input and output values for display in Divisualise.
Furthermore, we needed a way to handle multiple input/output variables to enable
the visualisation of certain algorithms; for instance: Binary Search necessitates an
input array, as well as a target value to find. To handle arbitrary, multivariate recursive
functions in a type-safe manner, we defined one more type:

type IOValueObject <T> = {
[K in keyof T]: T[K] extends IOValue ? T[K] : never;

};

Figure 4.5: The IOValueObject type

With this, we represent a set of named values as plain JavaScript objects, with entries
restricted to the IOValue type. An object which satisfies IOValueObject can be viewed
as an ordered (FIFO when iterating over entries - a useful property for ordering content
for the frontend) key-value store, with string keys and IOValue reference values. This
design choice enables implementors to easily define the input and output types for
their algorithms, while ensuring type safety and providing a consistent structure for the
Divisualise frontend to work with.

4.3 Modelling Recursive Calls

We model divide-and-conquer algorithms as trees of subproblems, where each node in
the tree represents a recursive call. To capture this structure, we define a data model
representing a recursive call as having distinct ’divide’ and ’combine’ phases, executed
independently.

The following subsections will detail how we model the state of a recursive call (sub-
section 4.3.1), define the recursive call and recursive case classes (subsection ??),
and enable powerful features such as memoisation (subsection 4.3.3) and interactive
exploration of the call tree (subsection 4.3.4).

4.3.1 Modelling the State of a Recursive Call

We modelled the state of a recursive call as a sum type, implemented in TypeScript as a
discriminated union of interfaces, with four possible variants:

Chapter 4. API Design 27

UndividedState represents a call that has not yet been divided into subproblems. It
has no result or case, but may contain a memoisedPath property in a memoised
call tree.

DividedState indicates that the call has been divided into subproblems, which are
stored in a case property.

SolvedState signifies that all subproblems in its case have been solved, and their
results have been combined to produce the final result for the call, which is stored
in the result property.

MemoisedState is only applicable in a memoised call tree; this is a special case that
represents a call whose input has been encountered, and necessarily evaluated,
earlier in the call tree. When a call is memoised, it stores the ’path’ (see subsec-
tion 4.3.3) to the first occurrence of the subproblem from the root node in the
memoisedPath property, allowing the memoised call and its result to be retrieved
without recomputation. The memoised state is transitioned to directly from the
UndividedState, and, crucially, introduces an order-dependence in the execution
of the call tree.

Additional characteristics of a recursive call, such as whether it is ’combinable’, or
is a base case, can be derived with the state of its subcalls. For instance: we say a
call is combinable if it is of DividedState, and all its subcalls are of SolvedState
- notice this holds vacuously for base cases with zero subcalls, allowing for elegant
implementation of further functionality, as detailed in subsection 4.3.4.

4.3.2 Recursive Calls and Recursive Cases

We defined two generic abstract classes—RecursiveCall<In, Out> and Recursive-
Case<In, Out>—where In and Out are type variables which necessarily satisfy IO-
ValueObject.

abstract class RecursiveCall <
In extends IOValueObject <In>,
Out extends IOValue | IOValueObject <Out >

> {
input: In
state: RecursiveCallState <In, Out >
root: RecursiveCall <In, Out >
memoisedResults: MemoisedResult <In, Out >[] = []
memoise: boolean = false

abstract case(input: In, root: RecursiveCall <In, Out >):
RecursiveCase <In, Out >

}

Figure 4.6: The (abridged) RecursiveCall abstract class

Figure 4.6 presents the definition of the RecursiveCall class; the input property is of
type In, the state property is a discriminated union type (as discussed in subsection

Chapter 4. API Design 28

4.3.1), and the root property references the root node of the call tree—a design decision
which enables the memoisation functionality detailed in subsection 4.3.3.

The RecursiveCase class is further specialised into two subclasses: DivideCase and
BaseCase, as shown in Figure 4.7.

abstract class DivideCase <
In extends IOValueObject <In>,
Out extends IOValue | IOValueObject <Out >

> extends RecursiveCase <In, Out > {

abstract divide(input: In, root: RecursiveCall <In, Out >):
RecursiveCalls <In, Out >

abstract combine (): Out

}

abstract class BaseCase <...> ... {
abstract solve(input: In): Out

}

Figure 4.7: The (abridged) DivideCase and BaseCase abstract classes

The DivideCase class represents a recursive case where the problem is divided into
subproblems; it defines two abstract methods: divide, which splits the input into
subproblems, and combine, which merges the results of the subproblems. The Base-
Case class represents a base case where the problem is solved directly, without further
recursion; it defines a single abstract method, solve, which computes the solution for
the base case input.

The divide method of DivideCase returns a value of type RecursiveCalls<In,
Out>, which is a helper type defined as Record<string, RecursiveCall<In, Out>.
This design choice mirrors the IOValueObject type, providing a consistent way to
represent a set of named recursive calls, similar to how IOValueObject represents an
ordered set of named input/output values. By using a record type with string keys, we
enable the creation of visualisations for divide-and-conquer algorithms with arbitrary
branching factors, enhancing the flexibility and extensibility of our API.

Crucially, by defining the recursive call and recursive case classes in this manner, we
allow implementors to focus solely on writing the naive recursive logic for their chosen
algorithms. The implementor need only override the divide and combine methods for
divide cases, and the solve method for base cases, with Divisualise handling all other
aspects of the visualisation, including input handling, presentation, and interaction. This
design greatly simplifies the process of extending Divisualise to support new algorithms,
as the implementor is not required to understand the intricacies of the visualisation
framework.

Chapter 4. API Design 29

4.3.3 Memoisation for Free

Memoisation is a powerful optimisation technique that can significantly improve the
performance of certain recursive algorithms by avoiding redundant computations. The
RecursiveCall API provides built-in support for effortless memoisation, allowing
users to seamlessly switch between naive recursive and memoised versions of an
algorithm. Implementors can enable memoisation for their algorithms by simply
overriding the isMemoisable method to return true; Divisualise will then handle the
memoisation process automatically, building upon the naive recursive implementation
provided by the implementor.

To enable memoisation, the RecursiveCall constructor accepts a reference to the root
node of the call tree. This allows us to identify each call by its ’path’ from the root,
which serves as a unique identifier for the subproblem. We represent the path of a call
as a list of subcall label strings encountered when traversing from the call’s root to itself.
For example, the root node of any tree has path [] - the empty list; the first non-root
evaluated node in a merge sort tree has path ["left"].

When constructing the root node of a call tree, if the algorithm is memoisable, the
constructor sequentially evaluates an identical call tree in order, avoiding redundant
computations, to determine the paths at which the first occurrences of each subproblem
are solved. This information is stored in the memoisedResults property of the root node.
Figure 4.8 shows the section of the RecursiveCall constructor which implements this
logic.

if (this.isRoot () && this.isMemoisable ()) {
const shadowCall = new this.constructor(copy(input), ...)
shadowCall.root = shadowCall
shadowCall.memoise = true
while (! shadowCall.isSolved ()) {

const traversed = shadowCall.step()
if (traversed.isStrictlySolved ()) {

shadowCall.memoisedResults.push({
input: copy(traversed.input()),
result: copy(traversed.result ()),
firstSolvedPath: shadowCall.pathOf(traversed)

})
}

}
this.memoisedResults = shadowCall.memoisedResults

}

Figure 4.8: Finding first subproblem occurrences in the RecursiveCall constructor.

By tracking the first solved paths for each subproblem, we can maintain a consistent
state in the presence of memoisation, even when the user explores the call tree in an
arbitrary order. More information on how we accomplished this is presented in the next
subsection, 4.3.4.

Chapter 4. API Design 30

4.3.4 Interacting with the Call Tree

With our abstractions cemented, we proceeded to write functionality atop our abstract
methods to enable intricate interaction with, and exploration of, our recursive call
trees. This subsection presents implementations of the main methods of interest in the
RecursiveCall API - each method corresponds directly to an interaction seen on the
Divisualise interface.

Firstly, we present the divide() method in Figure 4.9. When a call is divided, it checks
whether its input is encountered at an earlier path in the tree, and if a call exists at that
(possibly null) path. If an earlier call exists, the call in consideration transitions directly
to the memoised state, bypassing the need to recompute the subproblem; otherwise,
the next case is obtained by calling the abstract case method, and the state of the call
becomes DividedState accordingly.

The combine method is comparatively uncomplicated - we simply check that the call is
’combinable’ (as defined in 4.3.1), and update the state to SolvedState accordingly.

divide () {
if (!this.isDivisible ()) {

return
}
const memoised = this.getMemoisedResults ()

.find(mem => equal(mem.input , this.input))
if (

this.isRootMemoised ()
&& memoised !== undefined
&& !pathsAreEqual(this.pathFromRoot (), memoised.

firstSolvedPath)
) {

this.state = {
type: "memoised",
memoisedPath: memoised.firstSolvedPath ,
result: memoised.result

}
}
else {

const nextCase = this.case(copy(this.input , this.root)
this.state = {

type: "divided",
case: nextCase

}
}

}

Figure 4.9: The RecursiveCall divide method.

Next, we present the step and conquer methods in Figure 4.10. The step method
performs a single step towards solving the call; it recursively traverses the call tree, in
order, to find the next (sub)call to divide or combine, then return. If called on a solved
call, step returns null to indicate that no call was acted upon. The conquer method is
trivial, repeatedly invoking step until the call is solved.

Chapter 4. API Design 31

step(): RecursiveCall <In, Out > | null {
if (this.isDivisible ()) {

this.divide ()
return this

}
else if (this.isDivided ()) {

for (const call of this.subcalls ()) {
if (!call.isSolved ()) {

return call.step()
}

}
this.combine ()
return this

}
else {

return null
}

}

conquer () {
while (!this.isSolved ()) {

this.step()
}

}

Figure 4.10: The step and conquer methods.

Finally, we discuss the more complex reset and toggleMemoise methods. Due to the
size and intricacy of these methods, we provide only high-level overviews of their logic
and direct interested readers to the source code.

The reset implementation resets a call to UndividedState - at a glance, this appears
to be a trivial operation, however it requires careful attention. Transitioning a call
from SolvedState to UndividedState can change whether or not its parent call is
’combinable’, leading to inconsistent state if the parent is already solved! To ensure
our tree always maintains consistent state, we designed an algorithm that operates as
follows:

1. Unsolve (return to DividedState) all solved calls on the path to the reset call
from its root, keeping track of all unsolved call paths in a set of ’affected paths’.

2. Add the paths of all subcalls of the reset call to the set of affected paths.

3. If we’re operating in a memoised call tree, traverse the tree from the root, in
reverse order, and recursively call reset on any memoised calls with a memoi-
sedPath equal to any of our affected paths.

4. Change the state of the reset call to UndividedState.

The toggleMemoise method maintains consistent state as memoisation is enabled and
disabled on a recursive call tree; it can only be called on the root node of a memoisable
recursive call tree and functions as follows:

Chapter 4. API Design 32

1. Set the memoise flag to true if it is false, and vice versa.

2. If we have just turned memoisation off, we traverse the tree find all memoised
calls, unsolve them, and conquer them, expanding their full subproblem tree.

3. Otherwise, we have turned memoisation on and the process is more challenging.
We traverse all calls in our tree in reverse; if we encounter a call for which we
have a memoised result (subsection 4.3.3), we carefully adjust its state to ensure
consistency (again, we point the reader to the source code, as the logic in this step
is particularly intricate).

4.3.5 Providing Details

To enable the creation of detailed, animated explanations of the state of each recursive
call, we began by modelling our animated slideshows with the CallDetails type shown
in Figure 4.11.

interface CallDetailsStep <> {
text: string
valueKeyframes ?: Record <string , IOValue >[]
highlightedCalls ?: string []

}

type CallDetails = CallDetailsStep <any >[]

Figure 4.11: The CallDetails type.

Here, an object which fits the CallDetailsStep interface can be seen as one slide in
our slideshow. Each slide contains descriptive text, an optional list of key-frames which
animate stylised values within the slide, and an optional list of subcall labels to be
highlighted.

Following this, we defined further abstract methods—undividedDetails on Recur-
siveCall, dividedDetails and undividedDetails on RecursiveCase—of return
type CallDetails. With these new methods, we could define the concrete details
method on RecursiveCall, which conditionally dispatches to our abstract methods to
return CallDetails depending on the call’s state.

Our approach enables the procedural generation of call detail slideshows as they are
needed at run-time, avoiding unnecessary computation and improving the performance
of the app. Figure 4.12 shows how the interface we defined is used to create a slideshow
for a base case in the Fibonacci algorithm.

Chapter 4. API Design 33

solvedDetails(input: FibonacciInput): CallDetails {
return [{

text: "We return 1.",
valueKeyframes: [{

"Result": new NumberValue (1)
}]

}]
}

Figure 4.12: The FibonacciBaseCase solvedDetails method.

4.4 Configuring New Algorithms

To facilitate the seamless integration of new algorithms into Divisualise, we designed
the AlgorithmConfig interface, which encapsulates all the necessary information for
configuring an algorithm for use on the frontend. Figure 4.13 presents the definition of
this interface.

type InputType = "Number" | "NumberList" | ...

type IconType = "Matrix" | "Sort" | ...

interface AlgorithmConfig <
In extends IOValueObject <In>,
Out extends IOValue | IOValueObject <Out >

> {
name: string
icon: IconType
callConstructor: typeof RecursiveCall <In, Out >
inputs: Record <string , InputType >

}

Figure 4.13: The AlgorithmConfig interface.

The name field specifies the display name of the algorithm, while the icon field de-
termines the icon used to represent the algorithm in the user interface. The callCon-
structor field takes the constructor of the concrete RecursiveCall subclass for the
algorithm; this allows Divisualise to dynamically instantiate the appropriate call tree for
the selected algorithm. We defined the inputs field as a record that maps input variable
names to their corresponding InputType, allowing Divisualise to automatically handle
input for each algorithm (see 5.1).

By encapsulating the configuration of an algorithm in the AlgorithmConfig interface,
we provide a clear and type-safe way to integrate new algorithms into Divisualise.
Implementors need only define the necessary types and provide the required information
in the config object; Divisualise takes care of the rest, dynamically generating the user
interface and input components based on the provided configuration. This approach
promotes extensibility and maintainability, making it easy for teachers and advanced
students to add new algorithms to the visualiser.

Chapter 5

Frontend Implementation

In this chapter, we very briefly discuss the key design decisions and techniques em-
ployed in the frontend implementation of Divisualise, focusing on creating an intuitive,
responsive, and accessible user interface. The Divisualise frontend builds upon the
RecursiveCall API (chapter 4), using SvelteKit and Tailwind CSS to create beautiful,
engaging, and interactive algorithm visualisations.

5.1 Input and Output Values

The dynamic rendering of input and output values is essential for visualising a wide
range of algorithms and data structures in Divisualise. Our Input Svelte component
accepts an object satisfying AlgorithmConfig (see 4.4) as a ’prop’ (essentially, a
component parameter) and dynamically dispatches to type-specific input components,
such as NumberInput and PointsInput, based on the input types specified in the
configuration object. This approach allows us to support arbitrary input types while
maintaining a modular structure that is easy to extend.

We took an identical approach to displaying arbitrary output values, with one main
Value component dispatching to specialised components such as NumberValue and
Matrix. Our output components utilise the styling information provided by the Value
subclasses to dynamically stylise presented values.

To ensure responsiveness across different screen sizes, we used Tailwind CSS responsive
breakpoints to dynamically resize and adapt our input and output components with the
amount of screen real-estate available.

5.2 The RecursiveCall Component

The RecursiveCall Svelte component serves as the visual representation of a node
in an algorithm’s call tree. In developing the RecursiveCall component, we used a
variety of nifty Svelte and CSS tricks to display beautiful, interactive call trees.

The RecursiveCall component integrates tightly with the RecursiveCall API. Each

34

Chapter 5. Frontend Implementation 35

rendering of the RecursiveCall component tracks an instance of an object which
implements the RecursiveCall interface (4.3), and uses the RecursiveCall API to
provide interactivity. Further, our component utilises the predicate methods exposed
by the RecursiveCall API to conditionally display state information and interactive
elements, ensuring that the component accurately reflects the current state of the call
tree.

The most interesting aspect of the the RecursiveCall component design is the way it
recursively renders itself to display a complete, interactive call tree. By using the lesser-
known recursive features of Svelte components, we render a call tree using dynamic
HTML and CSS, rather than relying on canvas, SVG, or other rendering APIs. This
choice ensures that the call tree can be fully navigated and understood using a keyboard
or assistive technologies, as the structure and meaning of the call tree are preserved in
the DOM, greatly improving the accessibility of our visualisations.

We made extensive use of the CSS Flexbox API to allow our call tree nodes to resize
themselves based on the size of their input and output values, and to allow our entire
call tree to dynamically resize itself as its branches are explored and reset. To draw
branches between our tree nodes we also used Flexbox, alongside Svelte conditional
rendering, to draw dynamically-sized invisible containers with partial black borders
that connect a recursive call to its children.

5.3 The Divisualise Component

The Divisualise component serves as the top-level container for an entire algorithm
visualisation, bringing together the call tree, details panel, and playback controls into a
cohesive user interface.

We placed our visualisation playback logic within the Divisualise component; this
logic works in a hierarchical fashion, stepping over the recursive call tree, detail slides,
and slide key-frames. Crucially, our playback logic takes into account the current state
of the visualisation, the currently highlighted call, and the status of the details panel, to
provide a smooth and adaptive playback experience. Given the number of moving parts,
our playback logic is particularly intricate; we used the asynchronous programming
features present in JavaScript to provide structure in its implementation.

Another noteworthy behavior of the Divisualise component is the way it automat-
ically centres the camera on the currently highlighted call. It accomplishes this by
dynamically calculating the screen-space bounding box of calls as they are highlighted,
transforming their coordinates into camera-space, and smoothly panning the camera to
these coordinates.

Again, to enhance usability and accessibility, we used the responsive design capabilities
of the Tailwind CSS framework. By employing a mobile-first approach and utilising
responsive utility classes, we have created a layout that adapts seamlessly to different
screen sizes and orientations. The responsive design extends to the playback controls
and other interactive elements, ensuring that they remain easily accessible and usable
across a wide range of devices.

Chapter 6

User Evaluation

To assess whether or not Divisualise had met its design goals, and to identify potential
areas for improvement, we conducted an anonymised user survey, which we placed
on the landing page of Divisualise after making the first version of the application
publicly available. We opted for an anonymised survey due to the fact that the first
version of Divisualise was publicised through the author’s personal social network and
the University of Edinburgh’s School of Informatics undergraduate mailing list. As
many of the potential respondents were likely to know the author personally, we wanted
to ensure they felt comfortable providing honest feedback without the concern that their
responses could be traced back to them.

We considered designing a study to test the effectiveness of Divisualise in improving
learning outcomes, but ultimately decided against it. Designing such an experiment
would require considerable effort and necessitate a large sample size to demonstrate a
significant result, which we deemed to be beyond the scope of this project. Instead, we
focused on gathering user feedback through the survey to gain insights into the usability,
accessibility, and perceived value of Divisualise.

6.1 Survey Design

The survey collected both quantitative and qualitative data from users, allowing us
to assess the extent to which we have met our design goals and to identify potential
areas for improvement. We began by collecting background information about the
respondents, such as their level of computer science education, experience as software
engineers, and experience teaching computer science. This information was intended to
help us contextualize the responses and identify any trends based on the respondents’
prior knowledge and experience.

The body of the survey presented a series of questions designed covering topics such as
ease of use, intuitive interface design, aesthetic appeal, and effectiveness in improving
understanding of divide-and-conquer algorithms. We used a mixture of Likert scales and
binary agree/disagree statements to allow us to quantify the extent to which users agreed
with the presented statements. In addition, we also included open-ended questions

36

Chapter 6. User Evaluation 37

to collect qualitative feedback from users; these questions provided respondents with
the opportunity to share their thoughts on how Divisualise could be improved, and to
provide any additional feedback they felt was relevant. By including these open-ended
questions, we aimed to gather valuable insights that could inform future development
and extensions of the application.

6.2 Quantitative Insights

In total, we collected responses from 28 users with varied computer science backgrounds,
ranging from no experience whatsoever to professional computer educators. The
responses to our survey provide strong evidence that Divisualise has met its design
objectives.

The majority of respondents found the application easy to use, with 89% rating the ease
of use as a 4 or 5 on a 5-point scale. Similarly, 93% of respondents agreed that the user
interface is intuitive and Divisualise feels nice to use. In terms of aesthetic appeal, 93%
of respondents rated the Divisualise interface as a 4 or 5 on a 5-point scale, suggesting
that we have succeeded in creating a visually pleasing and engaging user experience.
Furthermore, 86% of respondents rated the overall design of the interface as a 4 or 5.

Regarding the educational value of Divisualise, all respondents indicated that using the
application had improved their understanding of DAC algorithms (or of one particular
DAC algorithm) to some extent, with 57% reporting a significant improvement (4 or 5
on a 5-point scale). Additionally, 96% of respondents believed that Divisualise could
be significantly valuable to computer science educators teaching divide-and-conquer
algorithms, and 86% agreed that they would want to use Divisualise if they were
learning about DAC algorithms for the first time.

96% of respondents agreed that Divisualise accurately demonstrates the workings of
DAC algorithms, and 86% of respondents agreed that Divisualise covers a good range
of divide-and-conquer algorithms.

6.3 Qualitative Feedback

While responses were largely positive, respondents also provided valuable feedback
on areas where the application could be improved. One common criticism was the
lack of an obvious way to return to the home page or select a different algorithm after
visualising one, with several respondents mentioning that they had to refresh the page
to try a different algorithm or enter new data. This design oversight has since been
addressed with the addition of a clear ’home’ button. Respondents also suggested that
providing more detailed explanations or descriptions of the algorithms and their steps
would be helpful, particularly for users with a limited understanding of divide-and-
conquer algorithms. Other suggestions for improvement included allowing users to
easily generate random mock data for testing algorithms, providing a colour scheme
chooser to enhance customisation, and displaying equations or formulas used in certain
algorithms to clarify the underlying mathematics.

Chapter 7

Conclusions

In this project, we set out to create Divisualise, an extensible, interactive divide-and-
conquer algorithm visualiser.

Our primary objectives were to develop a tool that is intuitive, informative, and accessi-
ble to users with varying levels of expertise in computer science, and to create a tool
which can be used effectively by teachers in a classroom setting to demonstrate the
DAC paradigm. To achieve these goals, we designed Divisualise around the idea of
modelling DAC algorithms as interactive recursive call trees. We created a simple, yet
powerful, API that allows implementors to write naive recursive implementations of
DAC algorithms, while allowing the platform to handle the intricacies of input handling,
presentation, and optimisations such as memoisation.

To evaluate the effectiveness of Divisualise in meeting our objectives, we conducted
a user survey that provided valuable insights into the strengths and weaknesses of
the platform. The survey results demonstrate that Divisualise has largely succeeded
in its mission, with the vast majority of respondents finding the application easy to
use, intuitive, and aesthetically pleasing. Furthermore, a significant proportion of
users reported an improved understanding of divide-and-conquer algorithms after using
Divisualise, and believed that the platform could be a tool of significant value for
computer science educators.

While the survey results are positive, they highlight several areas where Divisualise can
be improved. We intend to address these criticisms and suggestions in future iterations
of the platform, with the goal of creating an even more comprehensive and user-friendly
tool for learning and teaching divide-and-conquer algorithms. One of our primary aims
for the future of Divisualise is to foster an open-source community around the project,
transforming it into a one-stop-shop platform for learning about divide-and-conquer
algorithms.

Some potential avenues for future development include:

1. Adding support for LaTeX in presentational text, enabling better mathematical
notation in presentations and explanations.

2. Generalising the Divisualise approach to create interactive visualisations of itera-

38

Chapter 7. Conclusions 39

tive algorithms, potentially establishing a new state-of-the-art general algorithm
visualiser.

3. Incorporating detailed write-ups about specific divide-and-conquer algorithms to
cater to the needs of both novice and advanced students.

4. Extending the CallDetails interface to support additional content types, such
as code snippets, to provide a more comprehensive understanding of each step in
an algorithm’s execution.

5. Implementing a wider range of data types and algorithms, further showcasing the
flexibility and extensibility of the Divisualise platform.

In conclusion, Divisualise represents a step forward in the realm of algorithm visualisa-
tion, improving on its predecessors by demonstrating high-level algorithmic structure
and low-level details in tandem, and offering a powerful and intuitive tool for learning
and teaching DAC algorithms. By combining an elegant and extensible API with a
user-friendly and accessible frontend, Divisualise has the potential to grow into a com-
prehensive platform for learning about divide-and-conquer algorithms. As we continue
to refine and expand the platform, we are confident that Divisualise will become an
indispensable resource for anyone seeking to master the DAC paradigm.

Bibliography

Adream Blair-Early and Mike Zender. User interface design principles for interaction
design. Design Issues, 24(3):85–107, 2008. ISSN 07479360, 15314790. URL
http://www.jstor.org/stable/25224185.

Marc H. Brown and Robert Sedgewick. A system for algorithm animation. SIG-
GRAPH Comput. Graph., 18(3):177–186, jan 1984. ISSN 0097-8930. doi:
10.1145/964965.808596. URL https://doi.org/10.1145/964965.808596.

Thomas H. Cormen et al. Introduction to Algorithms. Third edition, 2009.

Department for Education. Technology in schools survey report: 2022 to 2023,
2023. URL, https://www.gov.uk/government/publications/technology-in-
schools-survey-report-2022-to-2023 [Accessed: March 2024].

Eric Fouh et al. The role of visualisation in computer science education. Computers in
the Schools, 2012.

Google. Mobile web traffic statistics, 2024. URL,
https://www.thinkwithgoogle.com/marketing-strategies/app-and-
mobile/mobile-web-traffic-statistics/ [Accessed: March 2024].

Christopher Hundhausen, Sarah Douglas, and John Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages Computing, 13:259–290,
06 2002. doi: 10.1006/jvlc.2002.0237.

Barbara Liskov and Stephen Zilles. Programming with abstract data types. SIGPLAN
Not., 9(4):50–59, mar 1974. ISSN 0362-1340. doi: 10.1145/942572.807045. URL
https://doi.org/10.1145/942572.807045.

Thomas Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Christo-
pher Hundhausen, Ari Korhonen, Lauri Malmi, Myles Mcnally, Susan Rodger, and
J. Ángel Velázquez-Iturbide. Exploring the role of visualization and engagement in
computer science education. SIGCSE Bulletin, 35:131–152, 05 2003.

Svelte contributors. SvelteKit, 2024. URL https://kit.svelte.dev/ [Accessed:
March 2024].

Tailwind CSS contributors. Tailwind CSS, 2024. URL, https://tailwindcss.com/
[Accessed: March 2024].

N Tractinsky, A.S Katz, and D Ikar. What is beautiful is usable.

40

Bibliography 41

Interacting with Computers, 13(2):127–145, 2000. ISSN 0953-
5438. doi: https://doi.org/10.1016/S0953-5438(00)00031-X. URL
https://www.sciencedirect.com/science/article/pii/S095354380000031X.

Vercel. Edge Network, 2024. URL https://vercel.com/docs/edge-
network/overview [Accessed: March 2024].

