David vs. Goliath: Comparing Performance of
fork() in Raspberry Pis and Servers

Mohammad Ayaan Hashim

4th Year Project Report
Computer Science
School of Informatics
University of Edinburgh

2024

Abstract

This dissertation investigates the comparative performance of the fork() system call
across two distinct computing platforms: the Raspberry Pi (ARM64 architecture) and
traditional server-grade hardware (x86 architecture). Focused on uncovering architec-
tural efficiencies and bottlenecks, this study thoroughly examines various performance
metrics, including CPU clock times, cache behaviour, and instruction throughput, under
both single and concurrent execution scenarios. Through a series of methodically
designed experiments, this research highlights the Raspberry Pi’s surprising efficiency
in managing single-threaded tasks, despite its lower computational power relative to the
server. Concurrent execution analysis reveals significant insights into each platform’s
handling of multitasking, with the Raspberry Pi facing challenges that underscore its
limitations in a multitasking context. By delving into the fork() syscall’s behaviour, this
work identifies critical hotspots and architectural differences that influence performance.
The findings not only contribute to a deeper understanding of ARM64 versus x86
architectural performance nuances but also propose a foundation for future optimisa-
tion strategies aimed at enhancing system design and application deployment across
diverse hardware platforms. This research advances the Democratization of computing
infrastructures, advocating for innovative, efficient, and adaptable solutions in the face
of evolving serverless and edge computing paradigms.

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Mohammad Ayaan Hashim)

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Yuvraj Patel, whose
expertise, insightful feedback, and constant encouragement were invaluable to the
completion of this dissertation. His unwavering support and push for excellence greatly
enriched my research journey and motivated me to strive for quality in every aspect of
my work.

I would like to thank my family for their unwavering love and support throughout this
research. My Mummy, Papa and Bhai, whose belief in me has been a constant source
of motivation and strength.

Table of Contents

1 Introduction

2 Background and Literature Review

2.1

22

Backgroundo
2.1.1 RaspberryPi
2.1.2 Servers
2.1.3 Serverless Computing
2.1.4 EdgeComputing
Literature Review o
2.2.1 Evolution of Edge Computing with Raspberry P1
2.2.2 Serverless Computing at the Edge: Opportunities and Challenges
2.2.3 Raspberry Pi and Edge-Cloud Collaboration
2.2.4 Towards Optimised Edge Computing with Raspberry Pi

2.2.5 Fork implementation Caused Bottlenecks

3 Motivation And Objectives

3.1
3.2

MotIvation e e
Objective e

4 Methodology

4.1
4.2

4.3

4.4

4.5

Introduction to Methodological Approach
Experimental Setup
4.2.1 Hardware Employed
4.2.2 Workload and Environment Configurations
423 Experiment Types
Performance Measurement Methodology
4.3.1 Overview of Performance Investigation
4.3.2 Event Selection for Measurement
4.3.3 Performance Measurement Implementation
Identifying Performance Hotspots
441 OVerview o e e
4.4.2 Implementing Trace Markers
4.4.3 Shell Script Automation for Tracing Setup
Limitations of the Raspberry Pi
4.5.1 Limited Support for Perf Counters and Events
4.5.2 Performance Measuring Tool incompatibility

iv

AN LN R W W W W o

<

4.5.3 Conclusion to Limitations

S Experiments

5.1 Performance Specific Analyses
5.1.1 ExperimentSetup
5.1.2 Visuwalisationo Lo Lo
5.2 Hotspot Investigation Analyses
5.2.1 Data Extraction and Analysis.
5.22 Visualisations Lo

6 Results and Discussions
6.1 PerformanceResults
6.1.1 NoMigrationType
6.1.2 With Migration Type

6.2 Tracing Results
6.2.1 Overall

Function Execution

6.3 Hotspot Investigation - Single Process Execution

6.4 Hotspot Analys

is - Concurrent vs Single

7 Conclusions and Future Works
7.1 Performance Conclusion
7.2 HotspotConclusion L

7.3 Future Works
Bibliography

A FlameGraphs

18
18
18
18
19
19
19

20
20
20
25
28
28
30
33

35
35
36
36

38

40

Chapter 1

Introduction

In this digital renaissance age, the relentless pursuit and advancement in data generation
and processing demands has spotlighted the limitations of conventional computing
infrastructures. The emergence of serverless computing paradigms has introduced
a revolutionary shift towards optimising resource allocation, operational costs, and
scalability. However, this innovation isn’t without its challenges, particularly in latency-
sensitive applications. This scenario underscores the need for an avant-garde computing
solution that not only align with the principles of serverless architecture but also mitigate
its inherent drawbacks.

This dissertation delves into a comprehensive exploration of leveraging Raspberry Pi
clusters as an innovative substitute for traditional server setups, thereby contributing
to the evolving narrative of computing infrastructures. This study also aims to dissect
the viability, performance, and efficiency of Raspberry Pi clusters within the field
of serverless and edge computing. Stemming from a critical need to ‘““democratize”
computing resources, ensuring they provide accessibility, efficiency, and sustainability
for everyone.

The research is anchored on a methodical evaluation of the Raspberry Pi 4B model’s
performance, focusing on its capability to execute the fork system call—a key operation
in serverless computing frameworks. Through a carefully designed experimental setup,
this dissertation contrasts the Raspberry Pi’s performance against traditional server-
grade hardware, delving into performance metrics, hotspots identification, and the
execution efficiency of the fork system call. Through this structured approach, the
dissertation endeavours to contribute meaningful insights to the discourse on computing
infrastructures, advocating for innovative solutions that challenge the status quo and
pave the way for future advancements.

The following shows a roadmap of this dissertation:

* Chapter 2: Background and Literature Review dives into the foundational
concepts underlying the study. Here, we explore the evolution of computing in-
frastructures, with a particular focus on serverless and edge computing paradigms.
The chapter reviews the current state of research, highlighting the significance of
the fork() system call in serverless architectures and presents the Raspberry Pi as

Chapter 1. Introduction 2

a promising contender in edge computing. Through a critical analysis of existing
literature, this chapter establishes the context for our research and justifies the
need for a comparative performance evaluation.

* Chapter 3: Motivation and Objectives delves deeper into the rationale behind
focusing on the Raspberry Pi for edge computing solutions and the specific role
of the fork() system call in evaluating its viability against traditional servers. This
chapter elucidates the research goals and outlines the objectives designed to guide
the experimental investigations, providing clarity on the scope and ambition of
the study.

* Chapter 4: Methodology provides a comprehensive overview of the research ap-
proach and the analytical framework adopted in this study. It explains the rationale
behind the selection of the Raspberry Pi and traditional server-grade hardware
for performance comparison, outlines the criteria for evaluating the fork() system
call, and details the methodological principles guiding the experimental design.
This chapter establishes the theoretical and practical foundation upon which the
experimental investigation is built, including the selection of specific performance
metrics and the justification for the chosen research methods.

* Chapter 5: Experiments presents the experiment types and setups integral to
the study. This chapter discusses the parameters and configurations used during
the experiments, both in single and parallel execution contexts. It details the
allocation of memory for the tests and the rationale behind using certain subtypes
of experiments for the Performance Measurement Analyses and the Hotspot
Investigation.It also lays the groundwork for the rigorous analysis of performance
in relation to the fork() system call, setting the scene for the nuanced examination
of results

* Chapter 6: Results and Discussions synthesises the experimental outcomes,
as well as provides a critical interpretation of the findings within the broader
context of computing infrastructure optimisation. This chapter not only compares
the performance of Raspberry Pi and traditional servers but also discusses the
implications of these results for serverless and edge computing practices.

* Chapter 7: Conclusions and Future Works draws together the key conclusions
derived from the research, highlighting the contributions of this study to the field
of computing infrastructures. It reflects on the implications of the findings for
future technology development and outlines potential directions for further re-
search, aiming to inspire continued exploration into efficient, adaptable computing
solutions.

Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Raspberry Pi
2.1.1.1 Overview

The Raspberry Pi is a series of low-cost, credit card-sized single-board computers
developed by the Raspberry Pi Foundation [Severance, 2013]. Primarily introduced
with the goal of promoting teaching basic computer science in schools and in devel-
oping countries, has seen adoption spread far beyond the initial educational purposes.
Equipped with a range of processors, from single-core ARMv6 to quad-core ARMVS,
and various RAM configurations, Raspberry Pis are capable of undertaking many tasks
traditionally reserved for desktop computers.

2.1.1.2 Role

Raspberry Pi’s role in computing has evolved significantly. Its compact size, affordabil-
ity, and reasonable computational power makes it an ideal tool for hobbyists, educators,
and professionals for tasks ranging from learning programming to hosting websites and
servers. In the context of edge computing, Raspberry Pi serves as a powerful and cost-
effective edge device that can process data locally, reducing latency, and minimising
the need for constant cloud connectivity.

2.1.2 Servers
2.1.2.1 Overview

Servers are not defined by specific hardware but by the role a computer serves within a
network, providing resources, data, services, or programs to other computers, known as
clients. This essential function facilitates multiple users or systems to access shared
resources efficiently, underpinning the client-server architecture. Servers in their tra-
ditional form are powerful rack-mounted units designed for data centers adapting to

Chapter 2. Background and Literature Review 4

diverse operational needs and application demands. Though keeping this in mind we
refer to a “Server” as one in its traditional setup.

2.1.2.2 Role and Evolution

Conventionally, servers have been the backbone of corporate networks and the internet,
hosting websites, applications, and databases. With the advent of cloud computing,
the role of servers has extended, enabling scalable, on-demand computing resources
over the internet. This evolution has paved the way for serverless computing, where the
cloud provider dynamically manages server allocation, allowing developers to focus on
building and running applications without managing the underlying hardware.

2.1.3 Serverless Computing
2.1.3.1 Definition and Evolution

Serverless computing, often associated with the Function-as-a-Service (FaaS) paradigm,
refers to a cloud-computing execution model where the cloud provider dynamically
manages the allocation of machine resources. Contrary to its name, serverless computing
does involve servers, but the responsibility of managing these servers and resources is
shifted from the consumer to the provider. This model allows developers to focus solely
on the individual functions of their application code.

2.1.3.2 Role in Modern Applications

Serverless computing has transformed the way applications are developed, deployed,
and scaled. Enabling developers to build applications that automatically scale with
demand, without the need to manage underlying infrastructure. In edge computing
environments, serverless computing can optimise resource utilisation by executing
functions closer to the data source (also referred to as Edge), thereby improving response
times for latency-sensitive applications.

2.1.4 Edge Computing
2.1.4.1 Concept and Importance

Edge computing is a distributed computing paradigm that brings computation and data
storage closer to the location where it is needed (or utilised), to improve response
times and save bandwidth. The essence of edge computing lies in minimising the
distance between the data source and the processing power, thereby reducing latency
and enhancing the efficiency of data processing.

2.1.4.2 Role

In an increasingly connected world, where devices generate vast amounts of data, edge
computing plays a critical role in enabling real-time analytics and decision-making.
By processing data locally, at the edge of the network, rather than relying solely on
centralized servers, edge computing supports a wide array of applications, from Internet

Chapter 2. Background and Literature Review 5

of Things (IoT) devices to autonomous vehicles and smart cities. This paradigm shift
not only speeds up data processing but also addresses privacy and security concerns by
localizing data.

2.2 Literature Review

2.2.1 Evolution of Edge Computing with Raspberry Pi

The advent of Raspberry Pi has marked a significant milestone in the evolution of edge
computing. With its low cost, energy efficiency, and considerable computational power,
Raspberry Pi presents a compelling case for widespread deployment in edge computing
networks. The use of Raspberry Pi in applications such as offline media servers [Jadhav
and Malode, 2019] demonstrates its ability to handle data-intensive tasks with limited
resources, underscoring the potential for Raspberry Pi-based systems to support a
wide range of edge computing applications. However, performance assessments reveal
variability based on workload types, network conditions, and hardware configurations,
pointing to the necessity for careful system design and optimisation to harness the full
potential of Raspberry Pi in edge environments.

2.2.2 Serverless Computing at the Edge: Opportunities and Chal-
lenges

Serverless computing models, particularly Function-as-a-Service (FaaS), promise to
simplify application deployment and scaling in edge computing by abstracting away
infrastructure management complexities. However, the integration of serverless models
with edge computing introduces new challenges, primarily due to the heterogeneous and
resource-constrained nature of edge devices. Benchmarking efforts, such as BenchFaaS
[Carpio et al., 2023], have highlighted the impact of these challenges on serverless
function performance, including increased overheads and variable execution times.
These findings emphasise the need for specialised frameworks and deployment strategies
to adapt serverless computing models to the edge environment effectively.

2.2.3 Raspberry Pi and Edge-Cloud Collaboration

The Raspberry Pi Edge-Cloud Collaboration Framework (RPECCF) [Zhang et al., 2020]
represents a novel approach to achieving seamless integration between edge devices
and cloud resources. By leveraging Raspberry Pis as edge nodes, the RPECCF aims to
balance computational loads between the edge and the cloud, optimising resource allo-
cation and reducing latency for time-sensitive applications. Experimental evaluations of
this framework demonstrate the Raspberry Pi’s capabilities in handling edge computing
tasks while interacting efficiently with cloud services. This collaboration between
edge and cloud resources highlights the potential for Raspberry Pis to serve as vital
components in distributed computing architectures, facilitating improved application
performance and resource utilisation.

Chapter 2. Background and Literature Review 6

2.2.4 Towards Optimised Edge Computing with Raspberry Pi

The collective insights from research on Raspberry Pi’s performance in edge computing
and the optimisation of serverless models reveal a path toward more efficient edge com-
puting infrastructures. By addressing the challenges identified through benchmarking
and performance analysis, such as fork operation optimisation and serverless function
deployment, it is possible to enhance the throughput and scalability of edge computing
networks. Continued innovation and experimentation with Raspberry Pi and serverless
models will be crucial in unlocking new capabilities and achieving the full promise of
edge computing.

2.2.5 Fork implementation Caused Bottlenecks

Through the thorough discussions in the paper ‘A fork() in the Road’ [Baumann et al.,
2019], the inefficiency of the current implementation of the fork syscall is heavily
discussed, touting it as an ‘“anachronism”. The paper also highlights issues related
to the use of fork, noting its lack of thread safety, lack of composition, inefficiency,
un-scalability, and the introduction of security concerns. Additionally, it points out
how fork limits the innovation capacity of OS researchers and developers, as any new
abstraction must be meticulously special-cased for. Since systems that provide provide
for the fork call, if not a system based on monolithic kernel, are forced to lazily duplicate
per-process state.

These problems are especially relevant and important given the findings from [Atlidakis
et al., 2016], that reports the fact that 1304 of Ubuntu packages, about 7.2% of the total
number, use the fork() call. This is along with the fact that almost all of the UNIX-shells,
database servers (Oracle, PostgreSQL, Apache, etc.), Redis (a key-value store), Node.js
and even Google Chrome, utilise fork in some capacity.

The gravity of these findings have lead recent developments in a better approach not
only for the fork syscall, but also to improve the current Copy-on-Write mechanisms.
Developments like On-Demand Fork [Zhao et al., 2021], introduces a novel approach to
copying page tables between the parent and child at fork time. This is done specifically
in small chunks, “on-demand” when handling page faults. Such a novel approach
showed a marked improvement in the fork execution, especially in applications with a
larger memory footprint.

Chapter 3

Motivation And Objectives

3.1 Motivation

The exponential growth of data and computational needs in various sectors, from
academic research to industry applications, has significantly underscored the necessity
for efficient, cost-effective, and sustainable computing infrastructures. Traditional
server setups, while robust and powerful, often present challenges in terms of scalability,
energy consumption, and capital investment, particularly for small to medium-sized
enterprises (SMEs) and educational institutions. To combat this, many developments
have been made, especially in reagrds to serverless architecture. This emergence of
serverless architecture represents a paradigm shift towards minimising the operational
complexities and costs associated with physical servers. Serverless computing abstracts
server management and dynamically manages the allocation of machine resources, it
promises scalability, efficiency, and a pay-as-you-go pricing model.

However, the introduction of the Serverless Architecture does not solve all the chal-
lenges. Despite its benefits, serverless computing, by its very design, can introduce
latency issues for data-intensive applications due to its reliance on centralised cloud
data centers/servers. This latency becomes a bottleneck for real-time applications,
underscoring the emerging necessity for computing paradigms that can process data
closer to where it is generated or needed. The shift towards edge computing represents
a strategic move to address these challenges, promising reduced latency, enhanced data
processing speeds, and improved overall application performance by decentralising
computation and bringing it closer to the edge of the network, where users interact with
the systems. Due to the progression towards the convergence of two major industry
trends as outlined in Peterson et al. [2019]. The first being the expansion of cloud
services out of datacenters and towards the network edge and the second being network
operators transitioning their access networks from proprietary hardware to virtualised
software running on commodity servers, switches and access devices. Thereby the
paper explores the need for “Democratizing the Network Edge”, the essence of which
means to ensure the aversion of monopoly of large cloud providers over edge computing
infrastructure. By making edge computing resources more accessible to a wider array
of developers and organisations, innovation at the edge is spurred, creating a more

Chapter 3. Motivation And Objectives 8

vibrant and competitive ecosystem. Such an open edge ecosystem would not only
foster innovation but also ensure that the benefits of edge computing—Ilower latency,
improved bandwidth usage, and enhanced privacy and security—are realised across
various sectors.

This brings us to the Raspberry Pi, a puny Single-Board Computer (SBC), which
surprisingly comes up as a promising aspect in realising the democratised network
edge, offering a compact, energy-efficient, open, and affordable edge. However, the
feasibility of deploying Raspberry Pi clusters as server replacements relies on their
ability to perform well in serverless applications. The reliance of serverless applications
on exploiting the Copy-on-Write (CoW) principle that the system call fork provides
plays a pivotal role in performance. For example, applications like Redis [red], a
popular in-memory key value storage, designed in a way to provide high throughout
and minimise latency. This in-memory persistence is handled through using fork. Redis
handles incoming requests by allowing the in-memory index and data structures only
and periodically invokes fork, this basically allows the entire in-memory content to be
duplicated to the child process. The original inbound request during this time would
continue processing. While the child process uses its memory as a snapshot, serialising
the in-memory datastructures as files, this ensures the persistence of the in-memory
snapshot. So that upon a system crash, Redis can be restored through a previous
snapshot.

The motivation for this thesis stems from the need to explore alternative computing
infrastructures that not only align with the evolving landscape of serverless and edge
computing but also challenge the current dominance of conventional server setups and
centralised cloud data centers. This exploration is critical in addressing the inherent
limitations these traditional systems impose, particularly regarding latency, scalability,
and openness. The Raspberry Pi, with its compact, energy-efficient, and cost-effective
design, presents itself as an extremely interesting candidate, especially when deployed
in clusters for potential use as edge servers or microservers in a serverless architecture.

Another factor influencing the choice of Raspberry Pi is the ability to leverage a large
number of CPU cores at a relatively low cost. While traditional servers offer higher
CPU clock speeds, they are limited in the number of CPU cores, typically maxing
out at 64 cores for single-socket boards, 128 cores for dual-socket, and 256 cores for
quad-socket configurations. In contrast, a cluster of Raspberry Pis, with each having
a quad core, can provide access to over 400 CPU cores at a comparable price point,
making it an attractive alternative for highly parallelisable workloads that can effectively
utilise a large number of lower-frequency cores.

3.2 Objective

The overarching goal of this thesis is to conduct a comprehensive evaluation of the
Raspberry Pi, particularly the 4B model. Specifically, this thesis aims to:

* Investigate the Raspberry Pi’s Performance with a Focus on the Fork System
Call: This objective involves a detailed examination of the Raspberry Pi 4B’s
ability to execute the fork system call efficiently. Given the fork call’s critical

Chapter 3. Motivation And Objectives 9

role in serverless computing architectures—especially in processes requiring
rapid duplication for concurrent task handling—this analysis is pivotal. The
investigation will encompass various performance metrics, including but not
limited to, execution time, memory usage, and process handling capacity, to
provide a holistic view of the Raspberry Pi’s capabilities in this regard.

* Compare the Fork Performance on Raspberry Pi Against Traditional Server-
Grade Hardware: To contextualise the Raspberry Pi’s performance, a compar-
ative analysis with traditional server-grade hardware will be conducted. This
comparison aims to highlight the Raspberry Pi’s efficacy and viability as a mi-
croserver alternative within edge computing environments.

* Identify and Analyse Hotspots in the Execution of the Fork System Call on
Raspberry Pi: This objective delves into identifying performance bottlenecks or
“hotspots” during the fork system call execution on the Raspberry Pi. Through
profiling and tracing analysis, this research seeks to uncover any computational or
resource allocation challenges that may impact the Raspberry Pi’s performance.
Understanding these hotspots is crucial for optimising the Raspberry Pi’s system
architecture and for proposing enhancements that could mitigate such bottlenecks.

Chapter 4

Methodology

4.1 Introduction to Methodological Approach

To explore the capabilities of Raspberry Pi clusters as a feasible alternative to con-
ventional server infrastructures, a rigorous and structured methodological approach
is essential. This chapter explains the comprehensive strategies and procedures im-
plemented to evaluate the performance of the Raspberry Pi, with a special focus on
the efficiency and effectiveness of the fork syscall. The methodologies employed are
designed to not only quantify the performance metrics of the Raspberry Pi in server-like
operations but also to offer a comparative insight against traditional server setups. This
comparative analysis is crucial, as it situates the Raspberry Pi within the broader context
of current computing solutions, providing a clear perspective on its potential as a server
replacement.

This pursuit of evaluating the Raspberry Pi’s capabilities necessitates not just a broad
methodological framework but also a deep dive into the specifics of each technique
and tool employed. Each methodological choice, from the selection of hardware
configurations to the detailed performance metrics, is driven by a commitment to rigour,
relevance, and the pursuit for actionable insights.

Aiming to go beyond the conventional performance benchmarks to delve into how the
Raspberry Pi, with its ARM-based architecture, stands up against the computational
prowess of traditional x86 servers. A thorough probe into the heart of the Copy-on-write
principle, brought about due to the focus on the fork syscall. This principle plays a
critical role in both server operations and serverless applications.

The novelty of this methodological approach lies in its comprehensive framework, com-
bining customised workloads, precise performance metrics and an in-depth investigation
into the performance hotspots.

10

Chapter 4. Methodology 11

4.2 Experimental Setup

To validate the findings and establish a robust basis for comparison, the experimental
setup was meticulously designed to focus on the performance evaluation of a singular
Raspberry Pi 4B against a traditional server-grade hardware setup, provisioned through
CloudLab [Duplyakin et al., 2019]. It was also ensured that the underlying workload
simulating the fork syscall was kept consistent between the two. This targeted approach
allows for an in-depth analysis of the fork syscall’s efficiency and effectiveness within
the Raspberry Pi versus the traditional server.

4.2.1 Hardware Employed
4.2.1.1 Raspberry Pi 4B

1. CPU: 64-bit Quad-Core Cortex-A72 processor @ 1.5 GHz
2. CPU architecture: ARM 64-bit
3. RAM: 8GB LPDDR4 @ 3200 Mhz
4. Cache:
* L1d: 128 KiB
e Lli: 192 KiB
e L2: 1 MiB
5. Kernel: 6.5.0-1012-raspi

4.2.1.2 Server

1. CPU: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
2. CPU architecture: x86_64
3. RAM: 251 GiB DDR3 @ 1600 MHz (1333 MT/s)
4. Cache:
e L1d: 640 KiB
e L1i: 640 KiB
e L2: 5MiB
e L3: 50 MiB
5. Kernel: 5.15.0-86-generic

4.2.2 Workload and Environment Configurations

To accurately assess the fork syscall performance, a custom workload in C was de-
veloped, paying attention to the environment setting. These workload configurations
are meticulously designed to evaluate how the systems manage process creation and
memory utilisation under conditions that simulate everyday server-like operations. The
key components of the workload include:

1. CPU Affinity Settings: At the beginning, the environment is configured through
explicitly setting the CPU affinity using cPu_zERO (smask); CPU_SET (cpu_to_setl, &
mask) ; to bind the executing process to a specific CPU core (core cpu_to_setl).
This initial setting aims to simulate a controlled environment for the initial
operations of the workload.

Chapter 4. Methodology 12

2. Memory Allocation: This configuration allocates a specified amount of memory
(in MB) passed in as an argument:
int mem_size = atoi(argv[l]);
size_t size = (1024 * 1024 * mem_size);

void *buffer = mmap (NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, -0);

Utilising ‘mmap’ to allocate this memory, ensuring it is accessible and writable,
thereby simulating the memory footprint of active server processes.

3. Memory Initialisation: Following allocation, memset is used to initialise the
allocated memory space (memset (buffer, 0, size);), representing the preparatory
stage of process workload.

4. Clearing Cache: Before executing the workload, the the page cache, dentries,
and inodes of the environment is cleared with system("sudo,_echo_3,_>_/proc/sys

/vm/drop_caches"); to minimise the impact of cached data on the workload’s
performance measurement.

5. Optional CPU Affinity Adjustment: Just before executing the workload, the
CPU affinity is adjusted to a different core using CPU_ZERO (smask); CPU_SET (
cpu_to_set2, smask);. This step is critical for examining the effects of CPU
migration, aiming to bypass the influence of CPU cache on the simulation.

6. [Workload] Fork Execution: The workload consists of the fork syscall which
is executed with fork_pid = fork(); on the previously configured environment,
creating a child process to assess the fork operation’s performance.

7. Process Exit and Cleanup: Child processes created by the fork exit immediately
to prevent interference (if (fork_pid == 0)_exit (0);), while the parent process
waits for the child’s termination (waitpid(-1, NULL, 0);). Following this, the
allocated memory is released (munmap (buffer, size);), ensuring a clean state for
subsequent iterations.

4.2.3 Experiment Types

The described workload and environment configurations enabled two types of experi-
ments, one that kept the CPU affinity the same throughout the execution (No Migration
type), and another that would switch the CPU affinity in the ‘Optional CPU Affinity
Adjustment step’ (Migration type). This allows investigation into the potential impact
of CPU migration on the workload’s (fork) performance. Permitting a focused analysis
of performance, excluding the effects of CPU cache, thereby providing insight into the
raw computational capabilities of the Raspberry Pi when compared to traditional server
hardware.

These experiments are differentiated by their execution context — parallel/concurrent
versus singular execution. This approach enables a nuanced analysis of each system’s
ability to handle multitasking and process management under varied operational loads.

Chapter 4. Methodology 13

4.2.3.1 Parallel Execution

4.2.3.1.1 With CPU Migration This subtype involves running the workload on cores
0 and 2 initially, and after memory allocation, switching the CPU affinity to 1 and 3
respectively. Doing so simulates a scenario where a process might be migrated across
cores in a multicore execution.

Purpose: To assess the impact of CPU migration on the performance of concurrent
operations, particularly looking at potential variations in execution times or resource
utilisation due to the CPU cache effects or scheduling overhead.

4.2.3.1.2 Without CPU Migration In this, the workload is executed on the four
cores for the Pi, and the first four cores for the server, without changing the CPU
affinity, ensuring that each process remains on its initially assigned core throughout the
experiment.

Purpose: To evaluate the baseline performance of parallel executions when each
process is consistently executed on the same CPU core, providing a control scenario for
comparison with the migration subtype.

4.2.3.2 Singular Execution

4.2.3.2.1 With CPU Migration In this, the workload is initially assigned to a single
CPU core, with the affinity changed to another core after memory allocation, mimicking
a single-task migration scenario.

Purpose: To explore how migrating a single process between cores affects the execution
efficiency of the fork syscall, highlighting the effects of such migrations in a controlled,
single-core context.

4.2.3.2.2 Without CPU Migration In this, the workload runs on a single core with a
fixed CPU affinity, ensuring no migration occurs, to isolate the performance of the fork
syscall in a static core assignment.

Purpose: To establish a performance benchmark for the fork syscall on a single core
without the influence of CPU migration, serving as a point of comparison to understand
the implications of migration in similar scenarios.

4.3 Performance Measurement Methodology

4.3.1 Overview of Performance Investigation

For a thorough investigation into the performance characteristics of both the Raspberry
Pi and the server, particularly focusing on the fork execution of the workload, the
‘perf_event_open’ API [Linux Man-pages Project, 2024] was utilised to ensure inline
measurements. This choice was driven by the API’s versatility in offering detailed
insights into a wide range of hardware and software events, facilitating a nuanced
performance analysis in both types of the experiment.

Chapter 4. Methodology 14

4.3.2 Event Selection for Measurement

To ensure a comprehensive analysis, we selected a broad set of both hardware-specific
and architecture-agnostic software events. This dual approach is not merely about
accumulating data but is strategically aimed at testing specific hypotheses that would
help understand the performance characteristics of the Raspberry Pi and the server in
executing the fork syscall.

A holistic analysis of fork’s performance is enabled through integrating both hard-
ware and software sets of metrics. By juxtaposing hardware-specific insights with
software-level observations, a comprehensive performance narrative that accounts for
the interaction between system architecture, memory management, and process schedul-
ing can be constructed.

Events measured encompassed all the common pre-included ones in the perf_event_open.
This selection made available hardware events such as “CPU_CYCLES”, “INSTRUC-
TIONS”, “CACHE_REFERENCES”, along with software events like “CPU_CLOCK?”,
“PAGE_FAULTS?”, etc. Additionally, the Cache events such as “CACHE_L1D_ACCESS”,
“CACHE_L1D_MISS”, etc. were also included.

4.3.3 Performance Measurement Implementation

The implementation of these measurements involved scripting the perf_event_open API
calls to capture the specified events during the fork syscall execution. Special attention
was paid to the experimental conditions to ensure consistency across runs, particularly
in scenarios exploring the effects of CPU migration. The CPU affinity settings, both
before and after memory allocation, were carefully managed to assess the impact of
process migration across CPU cores.

4.4 Identifying Performance Hotspots

4.41 Overview

To gain in-depth insights into the execution flow and performance bottlenecks of the
fork() syscall, ‘ftrace’ [Bird, 2009] was utilised for its robust tracing capabilities. Inline
tracing was strategically implemented by inserting trace markers to denote the start
and end points of the fork execution step of the workload. This approach allowed for
the isolation and precise timing of syscall execution, providing a clear demarcation for
further investigation.

4.4.2 Implementing Trace Markers

Trace markers were integrated directly into the C code to flag the critical sections
surrounding the fork syscall. By employing ‘sprintf’ to format strings indicating
“Before fork™ and “After fork™ events along with memory size and CPU settings, and
then writing these markers to a trace file, a detailed execution timeline was established.

Chapter 4. Methodology 15

4.4.3 Shell Script Automation for Tracing Setup

To streamline the tracing process and ensure comprehensive data capture, shell scripts
were developed to configure the ftrace settings and initiate the tracing sessions. This
automation facilitated the efficient collection of trace data across different CPU cores
and experimental conditions.

1. Tracing Configuration: The scripts set ftrace to use the ‘function_graph’ tracer,
enabling detailed function call graphs. Furthermore, the tracing granularity was
further refined by enabling several trace options: ‘funcgraph-tail’, which appends
the function name when the exit/return event occurs, and funcgraph-abstime, set
to capture the absolute timestamp of each trace event, thereby offering a precise
temporal context to the tracing data.

2. Configuring Buffer Size: To accommodate the extensive volume of data gen-
erated during the tracing, the buffer size was configured to 51200KB (per CPU
tracer). This adjustment was crucial for ensuring that no significant trace events
were omitted due to buffer overflows, thereby preserving the integrity of the data
collected for analysis.

3. Targeted Function Graphing for Fork Syscall Analysis: By focusing the
tracing on the entry point for the fork syscall, *_armé64 _sys clone’ in the
Raspberry Pi and ‘__x64_sys_clone’ in the server, the scripts provided a
concentrated view of only the syscall’s performance.

4.5 Limitations of the Raspberry Pi

While the Raspberry Pi is a robust platform for a variety of applications and demonstrates
it capability in the hobbyist community. It presents specific challenges in the context of
performance measurement for server-like operations, particularly when utilising tools
such as perf and other performance monitoring utilities. These limitations are critical to
understanding the scope and for comparative analysis conducted within this study.

4.5.1 Limited Support for Perf Counters and Events
4.5.1.1 Kernel and Architecture Specificity:

The ‘perf’ tool’s dependence on the kernel and architecture leads to significant limi-
tations for the Raspberry Pi. Many of default events and counters typically available
within ‘perf list ' on x86 architectures lack support on the Raspberry Pi’'s ARM
architecture. This absence greatly restricts the ability to monitor a comprehensive set of
performance metrics directly comparable to those of traditional servers.

Fundamental counters for ‘perf stat’ suchas’LLC-loads’,’LLC-load-misses’
"dTLB-loads’, ' iTLB-loads’, ' L1-dcache-prefetches’, and
’Ll-dcache-prefetch-misses’ are not supported on the Raspberry Pi. The lack of
these metrics posed a challenge in extensively analysing cache efficiency and memory
access patterns, which would be crucial in evaluating the impact of cache performance
on fork.

Chapter 4. Methodology 16

4.5.1.2 Limited Command Support:

Many of the basic popular and useful perf commands like ‘perf mem’, ‘perf
trace’, ‘perf probe’, and ‘perf timechart’, even though theoretically
possible, do not in practice support the Raspberry Pi. This greatly hinders the ability to
perform in-depth memory, tracing, and timing analysis, along with further removing
the ability to make new tracepoints. All of which would have greatly saved time in
performing detailed performance analysis. As a result, necessitated the use of more
granular, lower-level implementation of ‘perf’ through the ‘perf _events open’
APL

4.5.1.3 Issues with Compatibility in Default perf_event_open APl Events:

Speaking of the primary reason for diverting to the use of the ‘perf_event_open’ API,
quite a lot of the default events that are provided by the granular implementation were
also missing. These included the following hardware counting events (‘COUNTS_HW’)
that were not supported

1. “PERF_COUNT_HW_BRANCH_INSTRUCTIONS”
2. “PERF_COUNT_HW_REF_CPU_CYCLES”

3. “PERF_.COUNT_HW_CACHE_LL”

4. “PERF_COUNT_HW_CACHE_BPU”

5. “PERF_COUNT_HW_CACHE_NODE”

Furthermore, the predefined cache counting events (‘COUNT_HW_CACHE’) did not
support counting the prefetch access operations (“CACHE_OP_PREFETCH”). While
the “CACHE_DTLB” and the “CACHE_ITLB” did not support the counting the cache
result accesses either (“CACHE_RESULT_ACCESS”).

While these did not completely prohibit the ability to include these counters, additional
research and implementation was required by utilising the Raw PMU event codes from
the CPU Technical Reference Manual [ARM, 2016].

4.5.2 Performance Measuring Tool incompatibility
4.5.2.1 SystemTap Incompatibility

Despite efforts to compile the kernel with the required configurations, SystemTap was
non-functional on the Raspberry Pi. This incompatibility greatly hampered the approach
to kernel-level tracing and monitoring. Thereby necessitating a pivot to use ‘Ftrace’
instead along with further custom scripting in order to achieve a SystemTap equivalent.

4.5.2.2 Required Kernel Recompilation

Enabling most performance monitoring tools on the Raspberry Pi requires extensive de-
bugging configurations and kernel recompilation—a process notably more cumbersome
on the ARM architectures than on x86. This complexity adds a significant barrier to
utilising a wide range of performance analysis tools.

Chapter 4. Methodology 17

4.5.2.3 General Community Support

The general community support for Performance Monitoring Units (PMUs) and per-
formance measurement tools on the ARM architecture is not as extensive as that for
x86. This discrepancy affects the availability and support for ARM-compatible perfor-
mance measuring and analysis tools. This therefore limited the breadth of up-to-date
community-developed tools that could be employed in the study.

4.5.3 Conclusion to Limitations

This need to constantly adapt and pivot from established methodologies to a more
bespoke, lower-level implementation highlighted the dynamic nature of decision-making
throughout this study. The exploration of various tools and methodologies, some of
which might have not have been considered in an x86-centric study, became a pivotal
aspect in the research process. It underscored the importance of flexibility and creativity
in navigating the limitations posed by the Raspberry Pi’s architecture.

These methodological pivots, while challenging, enriched the study by broadening the
technical repertoire and deepening understanding of ARM-based system performance.
They underscore the broader need for support for performance analysis tools to the
unique requirements of ARM architecture.

Chapter 5

Experiments

Following the description of the experiment types from 4.2.3, the major types of the
experiment, the parallel and single executions stays constant between the two analyses.

While the entire suite of the subtypes of the experiments are used in the Performance
Measurement Analyses, the Hotspot Investigation only employes the migration subtype
in a single execution manner.

The memory allocations done for both of the Analyses were: 1, 8, 16, 32, 64, 128, 256,

512 and 1024 MB, each of these were the memory configuration of the environment
4.2.2.

5.1 Performance Specific Analyses

5.1.1 Experiment Setup

Each memory allocation for every experiment was executed 1000 times. Conducting
1000 runs for each memory allocation scenario not only ensures the statistical signif-
icance of the performance analysis but also highlights the variance in performance
across these runs. This comprehensive approach illuminates how performance metrics
fluctuate under identical conditions, offering insights into the stability and reliability of
different memory allocation strategies.

5.1.2 Visualisation

To effectively visualise the results from each experiment, ‘Matplotlib’ library was
utilised. The results were categorised as either ‘Migration’ or ‘No Migration’. The
data visualisation included the average of 1000 runs along with the maximum and
minimum observations for each event. The plots provided a comparative analysis,
showcasing both the baseline—representing single execution—and the concurrent
execution outcomes for the Raspberry Pi and the server.

18

Chapter 5. Experiments 19

5.2 Hotspot Investigation Analyses

5.2.1 Data Extraction and Analysis

Following the collection of trace data for each of the aforementioned memory alloca-
tions, a custom analysis python script was implemented to decode the results and extract
key performance metrics into a CSV format. This structured data included the function
name, duration, parent function, depth from the sys_clone call, and the timestamp of
execution completion.

1. Decoding Trace Results: After tracing, the raw output captured by ftrace un-
derwent a meticulous decoding process. This step involved parsing the trace
files to isolate and analyse each function call that occurs within the sys_clone
function call. Key metrics such as the duration of each function and its hier-
archical depth relative to the sys_clone were carefully extracted. This detailed
parsing was instrumental in pinpointing areas within the sys_clone execution that
could potentially act as performance bottlenecks, thereby revealing the critical
performance hotspots.

2. CSV Data Extraction: The next phase involved transforming the decoded
trace information into a structured CSV format, focusing on specific data points:
Function Name, Duration of the Function, Parent Function, Depth of the Function
from the initial sys_clone call, and the Timestamp of the function’s execution.

5.2.2 Visualisations
5.2.2.1 FlameGraph

Due to the nature of the overwhelming volume of data returned by FTrace, even after the
extraction performed. The visualisations made needing to successfully depict the overall
performance for each of the functions called, a FlameGraph, inspired by BrendanGregg
[Gregg], needed to be made. Due to the lack of support of making these for Ftrace
through the official tools. This was done using ‘plotly’ to make it interactive.

5.2.2.2 Stack Graph

To complement the Flamegraph’s high-level insights into execution hotspots, an ad-
ditional, more detailed helper graphs were created. These were done by plotting the
duration tied to memory use within each function at a given depth. Special attention
was directed towards omitting functions with minimal deviation across various memory
allocations, ensuring a focus on those functions that exhibited variation over memory
allocations. Thereby only plotting functions execution that were dependant on the
memory allocations. Additionally, the duration for the function was kept in logy.

Chapter 6

Results and Discussions

6.1 Performance Results

Here, for all the concurrent plots, we only depict one of the processes’ performance to
show the affect that all of the

6.1.1 No Migration Type

In this section we assess the results of the Performance Measurement Experiments,
specifically in the sub-type in which the CPU affinity remained the same throughout.

6.1.1.1 CPU Clock

Starting our investigation for the no migration case, we first look at the CPU clock
trends in order to observe basic trends when it comes to the execution times. This can
be found in Fig.6.1.

* The Pi’s Baseline exhibits the lowest software CPU clock times, suggesting
that when operating without concurrent processes, the Pi’s architecture is highly
efficient.

* When comparing concurrent execution times, the Pi’s concurrent performance
shows it’s marginally slower than the others. This small difference could indicate
that while the Pi is not optimised for concurrency, it doesn’t significantly lag
behind when dealing with parallel processes. This is especially apparent in the
higher memory allocations.

* The Server’s Baseline and concurrent performances are close, indicating its
architecture is not heavily influenced by concurrency. This could be due to better
core-to-core communication or a more advanced scheduling system that manages
parallel processes more effectively.

* Interestingly, the Server does not exhibit a performance dip or significant advan-
tage in either mode, suggesting that it is engineered to handle a mix of tasks (both
sequential and parallel) with consistent efficiency.

20

Chapter 6. Results and Discussions 21

- Average SW_CPU _CLOCK in log1l0 over Memory Allocations (no migration)

—F— Pi With Concurrence

—— Server With Concurrence

—— Pi Baseline (no concurrence)
—— Server Baseline (no concurrence)

>
[0
=

gl0 (nanosec)
.\l ~
o N
S w

o
N
o

o
w
o

o
N
v

SW_CPU_CLOCK in lo
o
o
S

.U‘
~
v

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.1: Figure showing the Average CPU Clock per Memory allocation along with
the min and max variation

* The similar performance trends of the Server in both Baseline and concurrent
variants could also imply that it’s built to scale with the demands of multitasking
environments.

* The convergence of performance lines around the 64MB memory allocation
could suggest that each system’s cache management strategy begins to have a
less differentiated impact on performance. This convergence hints at a potential
cache-related bottleneck or a point of maximum cache efficiency, after which the
cache can no longer significantly influence performance gains.

* Overall, these trends underscore the Pi’s potential as an efficient single-task
system and the Server’s robustness in a multitasking environment.

* A notable point to be made is the fact that the Pi even with its Puny architecture,
performs the best among all the other variants, making it the best option among
the others for single-threaded tasks.

6.1.1.2 LL (Last Level) Cache Misses

Digging deeper into the reason for the convergence, we look at the Last-Level Cache
Misses, in Fig.6.2 to get an idea of whether our intuition of the cache’s involvement in
the time taken is correct.

* In the smaller memory allocations, the Raspberry Pi demonstrates more last-level
cache misses than the Server in both concurrent and baseline scenarios, this could
be attributed the smaller L2 cache size (1 MiB) which might get saturated more
quickly than in the server.

* The Server, with a substantially larger 50 MiB L3 cache, initially shows fewer
cache misses, which indicates a superior ability to cache more data and instruc-
tions, thereby reducing the need to fetch from slower main memory. this highlights
the impact of cache on the performance particularly at the lower memories.

* The steady increase in cache misses for the Pi, even as memory allocation grows,

Chapter 6. Results and Discussions 22

Average HW_CACHE_MISSES in logl0 over Memory Allocations (no migration)

—F— Pi With Concurrence

—— Server With Concurrence

—— Pi Baseline (no concurrence)
—F— Server Baseline (no concurrence)

ok
=}

glo

-
v

»
=)

HW_CACHE_MISSES in lo
w w
o n

o
wn

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.2: Figure showing the Average LLC Misses per Memory allocation along with
the min and max variation

could be due to the fact that the Pi’s L2 cache does not have enough space to
benefit from larger memory allocations. Thus, the cache miss rate increases
linearly with memory demand.

* The Server’s drastic increase in cache misses at higher memory allocations,
particularly for the concurrent operation, could be a result of cache contention
among multiple processes. However, the large 50 MiB L3 cache appears to
mitigate this effect until a certain point, beyond which the effect that the cache
has does not result in a superior performance as opposed to the Pi.

* The convergence of cache miss trends at around 64MB across both systems may
reflect a balancing point where the efficiency of cache utilisation is optimised
relative to the available cache size and the memory demanded. Despite the
large difference in cache size, this could also indicate that both systems’ caches
are optimised for similar operational scales. Additionally, at higher memory
allocations, the narrow difference in last-level cache misses suggests that the
Raspberry Pi’s L2 cache and the Server’s L3 cache both scale in performance.

» The Pi’s L2 cache, despite being significantly smaller than the Server’s L3 cache,
exhibits a performance profile surprisingly comparable to the Server, especially
at higher memory allocations. This parity suggests that the Pi’s workload is
well-accommodated within its cache capacity and that its cache efficiency is
maintained even as memory demands increase.

6.1.1.3 Branch Misses
Changing focus to the branch misses, from the Fig.6.3 see the following:

* Initially, the server demonstrates superior efficiency with fewer branch misses at
the IMB memory allocation mark. This suggests that for very small workloads,
the Server’s prediction algorithms or branch handling mechanisms might be more
effective than the Pi’s.

Chapter 6. Results and Discussions 23

Average HW_BRANCH_MISSES in logl0 over Memory Allocations (no migration)

52 —F— Pi With Concurrence
—— Server With Concurrence

% 5.0{ —— Pi Baseline (no concurrence)
o —— Server Baseline (no concurrence)
£438
n
" 4.6
g 4
=,
o 4.4
S
é 4.2
o
z'4.0
T

3.8

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.3: Average number of branch misses per Memory allocation along with the min
and max variation

* As memory allocation increases beyond 1MB, the Pi consistently outperforms
the Server with fewer branch misses. This could indicate that the Pi’s architecture
1s more effective as the memory complexity increases, leading to a far smaller
number of branch misses.

* The Server’s branch misses rise drastically as memory allocations increase. This
trend might reflect limitations in the Server’s branch prediction capabilities at
higher memory allocations, which may involve more complex branch decisions,
resulting in more misses.

* Conversely, the Pi exhibits a much steadier and moderate increase in branch
misses, reflecting a stable branch handling performance despite increased memory
allocations.

6.1.1.4 Instructions and Cycles
Looking at the Instructions in the Fig.6.4a:

* Both the Raspberry Pi and Server show minimal differences between their baseline
and concurrent executions across all memory allocations, suggesting that the
presence of concurrent processes does not significantly impact the instruction
throughput of either system.

* The Raspberry Pi consistently records lower instruction count than the Server
by approximately 1.8 (0.25 in log10 terms) across memory allocations. This
indicates that the Pi is processing fewer instructions overall, which could be
interpreted as a more efficient execution for the given workload or less complex
operations being performed.

* The gap in instruction counts is present even from the lowest memory alloca-
tion, highlighting the Pi’s efficiency being less instruction-intensive on the Pi as
compared to the Server.

Chapter 6. Results and Discussions 24

Average HW_INSTRUCTIONS in logl0 over Memory Allocations (no migration)

—— Pi With Concurrence

—— Server With Concurrence

—— Pi Baseline (no concurrence)
—— Server Baseline (no concurrence)

b
~
I3

gl0
=
wu
=}

oy
N
(¢

o
o
=]

o
u
o

HW_INSTRUCTIONS in lo
o
~
ai

o
N
8

o
o
S)

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

(a) Instructions

Average HW_CPU _CYCLES in log10 over Memory Allocations (no migration)

—— Pi With Concurrence

—— Server With Concurrence

—— Pi Baseline (no concurrence)
—— Server Baseline (no concurrence)

| gl0
o > b
s} <) s}

o
o

HW_CPU_CYCLES in lo

L
w0

5.0 —
1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

(b) Cycles

Figure 6.4: Average Instructions and CPU cycles per Memory Allocation along with the
min and max variation

Looking at the Cycles in Fig.6.4b:

* The number of CPU cycles remains relatively stable for both systems across dif-
ferent memory allocations and execution types, showing that the number of cycles
required for processing does not fluctuate significantly with the introduction of
concurrent processes or with changes in memory allocation.

* However, the Server with concurrent execution exhibits marginally better perfor-
mance compared to the other scenarios in the higher memory scenarios (specially
the 512MB), which could suggest slightly more efficient execution of processes
in parallel.

» The Pi with concurrent execution appears marginally less efficient than the other
scenarios. Although the difference is small, this might point to the Pi’s limitations
when handling multiple processes simultaneously.

Given that we see a variability in mostly the Instructions and the CPU Cycles, remain

Chapter 6. Results and Discussions 25

Average SW _CPU_CLOCK in logl0 over various Memory Allocations

—F— Pi Migration

g 7.501 1~ server Migration
3 - —— Pi No Migration
E : —— Server No Migration
o 7.00
-
(o2}
o
< 6.75
5

6.50
ot
@)
5'6.25
o
UI
='6.00
)

5.75

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.5: Average number of CPU clock time (in nanoseconds) per Memory allocation
along with the min and max variation

relatively consistent between the Pi and the server, we can infer that the IPC (Instructions
per Cycle) throughput for the Pi would be about 1.8 lower than the Server. The Server’s
higher IPC suggests it handles multi-threading and process management more effectively
than the Pi.

6.1.2 With Migration Type

Comparing the impact of CPU migration with that of No Migration, helps us get insight
into Resilience to Overhead. If a system maintains stable performance metrics with
migration, it indicates resilience to the overhead that comes with moving processes
between CPUs or cores. It is important to note that these graphs do not depict concurrent
executions.

6.1.2.1 CPU Clock
Again, starting our analysis in the CPU Clock in Fig.6.5

» The Raspberry Pi and the Server show increased CPU clock times when compared
to their respective performances without migration. This increment highlights
the overhead associated with CPU migration, yet it is interesting to note that
both systems maintain a parallel performance trend, implying that the impact of
migration is proportionally similar across the hardware architectures.

» Both systems exhibit a consistent increase in software CPU clock times as memory
allocation grows, which is typical behavior reflecting the additional computational
load associated with handling the larger memory.

 Although the Server started off performing better than the Pi, post (approximately)
32MB, the Pi consistently demonstrates superior performance.

 Contrary to the observations in 6.1.1.1, the convergence of performance, here,
lies around the 32MB memory allocation for these plots. This suggests that the

Chapter 6. Results and Discussions 26

Average HW_CACHE_MISSES in log10 over various Memory Allocations
5.0, — PiMigration
—— Server Migration
—— Pi No Migration
—— Server No Migration

glo
'
[}

HW_CACHE_MISSES in lo

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.6: Figure showing the Average LLC Misses per Memory allocation along with
the min and max variation

migration process might be more affected by the cache than the non-migration
counterpart.

* The trends indicate that migration imposes a consistent overhead on both systems,
but this does not disproportionately disadvantage either system. Even when
subjected to the additional demands of migration, Pi’s superior performance in
single-threaded tasks is solidified.

* On the other hand, the Server, with its larger cache, doesn’t show a drastic
performance change between migration and no migration scenarios, reinforcing
its capability to efficiently manage multitasking workloads across various memory
allocations.

6.1.2.2 Last Level Cache Misses

Similarly to the section 6.1.1.2, we dig deeper into the reason for the convergence, by
looking at the Last-Level Cache Misses, in Fig.6.6 to validate our cache effectiveness
assumption.

* Similarly to section 6.1.1.2, in the smaller memory allocations, the Raspberry
Pi demonstrates more last-level cache misses than the Server in both migration
scenarios, which too could be attributed the smaller L2 cache size.

 Similarly, the convergence of cache miss trends at around 64MB across both
systems is also observed. Which too, may reflect a balancing point where the
efficiency of cache utilisation is optimised relative to the available cache size and
the memory demanded.

* In the Server, more cache misses are observed when migration is factored in.
This is evident across all memory allocations up to 256 MB underscoring the
impact of migration on cache performance. Beyond this allocation, cache misses
plateau, suggesting a threshold where cache invalidation from migration becomes
a consistent, manageable factor in performance.

Chapter 6. Results and Discussions 27

Average HW_BRANCH_MISSES in log10 over various Memory Allocations

5.9 —— PiMigration
—— Server Migration

% 5.0 —— Pi No Migration
o —— Server No Migration
£438
n
i
v 4.6
)
z|
44
g
é 4.2
)
z'4.0
T

3.8

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

Figure 6.7: Average number of branch misses per Memory allocation along with the min
and max variation

The negligible difference in cache misses between the migration and no migration
scenarios for the Pi indicates that CPU migration does not severely disrupt its
cache’s performance. This could point to an architecture that is less sensitive to
the cache invalidation typically caused by migration processes.

Overall, these observations reinforce the Pi’s ability to maintain superior perfor-
mance, highlighting its suitability for tasks that fit within its cache’s constraints,
without being heavily influenced by increased memory demands or the overhead
of CPU migration.

6.1.2.3 Branch Misses

Further focusing on the branch misses from Fig.6.7, we observe:

Much like the plot in 6.1.1.3, the overall trend of the server performing marginally
better in IMB memory allocation as compared to the Pi holds here as well.
Likewise, the trend of the Pi surpassing the server’s performance in other memory
allocations is also maintained. The pattern showcasing a significant increase in
the server is also upheld.

The steady performance for the Pi implies an architectural resilience to CPU
migration, maintaining branch prediction accuracy despite potential cache invali-
dation caused by migration.

However, curiously, while in the server’s case, the migration case performs
slightly worse till the 128 MB, after which it converges with its non-migration
counterpart, the Pi showcases a marginally better performance throughout in the
migration case.

The Pi’s performance, exhibiting marginal improvement in the face of migration,
suggests its processing is less disrupted by the additional overhead, possibly due
to a more straightforward migration process that aligns well with its operational
capabilities.

Chapter 6. Results and Discussions 28

6.1.2.4 Instructions and Cycles

Average HW_INSTRUCTIONS in logl0 over various Memory Allocations
—f— Pi Migration

—— Server Migration
—— Pi No Migration
—}— Server No Migration

glo
\‘
ul
2

HW_INSTRUCTIONS in lo
o
~
w

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

(a) Instructions

Average HW_CPU_CYCLES in log10 over various Memory Allocations
—— Pi Migration

—— Server Migration
—— Pi No Migration
—— Server No Migration

~
w

glo
B
Lo f

o
¢
1

o
o

HW_CPU_CYCLES in lo

U
0

1 8 16 32 64 128 256 512 1024
Memory Allocation (in MB)

(b) Cycles

Figure 6.8: Average Instructions and CPU cycles per Memory Allocation along with the
min and max variation

Even though, there is not much of a difference between the figures 6.4a and 6.8a, we
notice that the number of cycles at 1024MB for all the plots converge in fig.6.8b.

Therefore, the IPC calculated, would remain relatively the same for the Pi but increase
for the Server due to a lower number of

6.2 Tracing Results

6.2.1 Overall Function Execution

To get a general idea of the function execution, a flamegraph such as the one in fig.6.9
was generated for both, the Pi and the Server. This lead to While, this helped get an
intuitive idea of the parent function depth for the hotspot in the fork() syscall. This can

29

Chapter 6. Results and Discussions

be seen as the functions at depth 6 from the fig.6.9, this was also confirmed to be the

case in the flamegraphs for all the memory allocations.

sullsWIiL

zz Ydeq
Tz Yadaqa
0z ydaq
6T Yadeqg
8T yideq
/T ydeq
91 yadeq
ST yadeg
vT yideg
€T yadeq
ZT Yadeq
1T yadeq
0T Yadaq
6 YadeQ
8 yadaqQ
/ Ydaqa
9 yadeq
S yadeq
¥ yadeq
€ yadeq
T Ydeq
T yadeq@
0 Yadeqa

ydaq >oe3s ||ed

T1%0+3UoD” sAs pouwie

RITSUORRWRY
| lgseggsseoidTAd>
1 o o
i _::|I==_:_- I

aul[aWil uoiNIax3 uoidung

O™~ OIS OHOAN A O

N NV S
NN NN H A A A A A A H
yidaq oeis

Figure 6.9: FlameGraph depicting the function execution for 1MB (in Pi)

The only difference among the flamegraphs for the different memory allocations ended

Chapter 6. Results and Discussions 30

up being the number of ‘peaks’, like the one seen after ‘copy_pte_range+6%1286’,
that can be seen starting mostly at the same function ‘copy_pte_range’. A few
examples for these can be found in the Appendix A.

6.3 Hotspot Investigation - Single Process Execution

To understand the “Hotspot” we start by building upon the insight gained that the bulk
of the function execution occurs starting at the stack depth 6, we plot using the method
described in section 5.2.2.2. Comparing the Stack in the depth 6 for the server and
the Pi, from the figure 6.10, we see that not only do the overall behaviour, increase in
duration, between the pi and the server remain the same, but the number of times the
functions gets called remain the same.

75 Top Most Functions at Stack Depth 6

Memory
. 1 MB
w8 MB
== 16 MB
. 32 MB
. 64 MB
= 128 MB
w256 _MB
= 512 MB
e 1024 _MB

7.0

Duration Log10 (in us)
N w & o o
o o o o °

Iy
o

o
o

&
("FQ
27

Q(.
<,°Q‘\ :

Function Name

(a) Stack 6 Cleaned for Pi

Top Most Functions at Stack Depth 6

o
w

Memory
mm 1_MB
= 8 MB
mm 16 MB
. 32 VB
= 64_MB
mm 128 MB

o
=]

w
=]

b
=)

e 256_MB
== 512 MB
e 1024_MB

Duration Log10 (in us)
w
o

N
=]

Iy
=3

o
o

N

<
<,°q‘\ :

Function Name

(b) Stack 6 Cleaned for Server

Figure 6.10: The filtered out function durations with the frequency of calls (annotated on
bar) for Stack Depth 6

Chapter 6. Results and Discussions 31

This indicates that up to stack level 6, the implementation of the fork() system call
does not depend on the system architecture. Upon delving deeper into stack level
7 and excluding irrelevant interrupt function traces (since we are only concerned
about the actual syscall implementation), we encounter the illustration in Figure 6.11.
The filtered functions presented here showcase similar trends and almost identical
function call counts. However, when examining the flame graphs, it becomes apparent
that the ‘vm_normal_page’ function doesn’t invoke any other child functions. Since
vm_normal_page is both, frequently called and has a non-trivial execution time is in
comparison to other functions in the syscall, it can be considered a architecturally-
neutral hotspot.

65 Top Most Functions at Stack Depth 7

Memory
== 1 MB
= 8 MB
== 16_MB
= 32 MB
= 64_MB
= 123 MB
m 256_MB
== 512_MB

1024_MB

6.0

v
o

»
o

Duration Log10 (in us)

Function Name

(a) Stack 7 Cleaned for Pi

. Top Most Functions at Stack Depth 7

Memory
== 1 MB
= 8 MB
== 16_MB
- 32_MB
= 64_MB
. 128 MB
e 256_MB
= 512_MB

1024_MB

5.0

Duration Log10 (in us)
w -
o °

g
o

g
o

0.04

Function Name

(b) Stack 7 Cleaned for Server

Figure 6.11: The filtered out function durations with the frequency of calls (annotated on
bar) for Stack Depth 7

Since the ‘vm_normal_page’ does not call any functions, we direct our attention down
the call stack for ‘pte_alloc’. Leading us to the figure 6.12. This shows us the first result
for the pure architectural difference. While the server as shown in Fig.6.12b, depicts
two functions, both of which are called a near identical number of times. The Pi shows
three functions (Fig.6.12a, all of which, again, are called a near identical number of
times. This shows that the ‘pte_alloc’ function has quite a different implementation
in the Pi (ARMO64 architecture) and the Server (x86 architecture). Furthermore, the

Chapter 6. Results and Discussions 32

fact that the number of calls for each of the filtered functions, for both the Pi and the
Server, remain nearly identical. Therefore, giving the inference that the functions that are
architecturally different in the highest level in the implementation of the fork() syscall for
the ARMG64 architecture are: ‘__alloc_pages’, ‘_mod_lruvec page state’
and ‘pmd_install’.

55 Top-Most Common Functions at Stack Depth 8 called from __pte_alloc

Memory
= 1 _MB
w8 MB
== 16_MB
= 32 MB
= 64 MB
= 128 MB
mm 256_MB
= 512 MB
1024 _MB

5.0

N w »
o o o

Duration Log10 (in us)

[y
=]

0.0-

Function Name

(a) Stack 8 of functions called by ‘__pte_alloc’ in Pi

225 Top-Most Common Functions at Stack Depth 8 called from __pte_alloc

4.00 Memory
. 1 MB
= 8 MB
16 MB
= 32 MB
= 64_MB
. 123 MB
— 256_MB
= 512_MB
1024 MB

Duration Log10 (in us)

Function Name

(b) Stack 8 of functions called by ‘__pte_alloc’ in the Server

Figure 6.12: The filtered out function durations with the frequency of calls (annotated on
bar) for Stack Depth 8 called by ‘__pte_alloc’

While the pte_alloc_one is typically used for allocating a single page table entry. The
function, in the Pi are described as doing:

1. __alloc_pages: This function performs the allocation of physical memory
pages by checking the system’s available memory and assigning the needed
pages, ensuring efficient use of memory resources.

2. _mod lruvec page state: This function adjusts the count of pages in a
Least Recently Used (LRU) list within a specific memory group. Updating
statistics by increasing or decreasing the count based on page allocations / de-

Chapter 6. Results and Discussions 33

allocations, helping the system manage memory more effectively by keeping
track of page usage patterns.

3. pmd_install: This function acquires a lock on the page middle directory to
ensure that the PMD entry is vacant. In which case, it populates the entry with the

provided page table, increments the system’s page table entry count, and releases
the lock.

Therefore, we can pin the differences in the Single Function execution between the Pi
and the Server on these three functions.
6.4 Hotspot Analysis - Concurrent vs Single

Curiously, we observed that the concurrent execution of the fork() syscall in the Pi
performed far worse than the baseline (single execution), to do so we first look at the to
observe whether there is a different pattern that emerges.

Function Execution Timeline

23 Call Stack Depth
22 = benhi
21 " oo
20 Depth 4
19 = oune
is 0 =
17 Depth 9
16 i " et
is ui st
14 1) Depth 14
r= 1
£ m =y
Depth 17
D 12 -I D:z:h 18
5 11 [|] Depth 19
&' =0 o
0] 9 3 ® Depth 22
W Depth 23
8
7 | |] 1
6 I UM 1 VR NN N O 0 e 1 00O 0 OO0 OO A0 O OC L ORND OO [
5 M NN 1 o O 0 O O | O I O (] |
4 (I dupmmap+4%489 | 11 |
3
2 e copy process+2%3 [
1 e kemel done+1%2
0

Timeline

Figure 6.13: Flame Graph in concurrent execution of the workload for 1MB in the Pi

Since at a higher glance, this does not show much of a difference than the flamegraph
for the single execution, we instead change our strategy to check the function at each
depth to see how the execution differs. To do so, we devise a method to calculate
the difference for each level subtracting the duration for the single execution from the
concurrent execution.

While the stack depths at O to 6 did not show much of a difference, other than the
fact that the total interrupts in the concurrent process was much more prominent as
compared to the single execution, though their duration was not much. The stack
depth 7 (table found in 6.1) showed a possible root cause for the added latency, the
‘vin_normal _page’ function.

Chapter 6. Results and Discussions 34

Digging deeper into the use of the function [Torvalds], we learn that the vin_normal _page
function used within the virtual memory management subsystem to determine if a page
table entry (PTE) points to a "normal” memory page. Which means, it checks if the PTE
corresponds to a standard, non-special memory page that can be directly manipulated

or accessed.

Table 6.1: Difference between the Concurrent execution and Single Execution table

I1.MB 8_MB 16_MB 32.MB 64.MB 128.MB 256_.MB 512.MB 1024_MB

vm_normal_page 11.671 264.527 126969 173.575 2339.596 5768.137 6118.552 6252.529 8357.569
_rcu_read_lock 2.81 0.244 3793.668 2.962 743.653 2.431 1.241 2.1 3.116
mem_cgroup_kmem _disabled 0.241 0.186 0.13 0.127 0.558 0.333 0.371 0.258 0.646
_set_cpus_allowed_ptr_locked 0.501 0.334 0.11 0.482 0.426 0.462 0.019 0.055 0.037
__calc_delta 0.02 0.111 0.298 1.445 1.058 1.223 1.538 1.37 0.833
put_prev_entity - 72481 - 71.76 - - - 33.221 70.0
generic_handle_domain_irq - 9.852 - 178.741 - - - 187.037 565.649
psi_group_change - 6.369 - 5.925 - - - 5.741 6.315
set_next_entity - 4.408 - 4.834 - - - 4.352 4.611
fpsimd_save - 2.093 - 1.926 - - - 1.982 1.963

Therefore, at concurrent execution, the function ‘vm_normal_page’ might be causing
an increase in CPU clock time and cycle counts due to the fact that it might indicate a
heavier demand on the memory management of the operating system.

Chapter 7

Conclusions and Future Works

7.1 Performance Conclusion

Following the results we got in the Performance Experiments in section 6.1, we can
safely conclude

1. Despite the Raspberry Pi’s lower overall performance when handling the work-
load in comparison to the Server, its more favourable branch miss rates and
gradual increase in cache misses (as compared to the server’s) underscore its
performance efficiency. This is particularly noteworthy given the Pi’s smaller L2
cache (1MiB in the Pi and 5 MiB) and a complete lack of L.3 cache. The Pi’s
lower software CPU clock times in baseline conditions reflect an architecture that,
while computationally less powerful, is highly efficient for single execution tasks.
The Server’s higher instruction count, contrastingly, affirms its computational
prowess.

2. The marginal advantage observed with no migration suggests that for work-
loads frequently employing fork() operations, CPU thread pinning can be highly
beneficial for the Raspberry Pi, which tends to fare better without migration,
highlighting the potential for optimisations around thread management in the
ARMG64 architecture. In contrast, the Server’s performance remains consistent
regardless of migration, demonstrating its robustness and capability to manage
thread migration without significant performance trade-offs.

3. The influence of the Last Level Cache (LLC) on the workload and, by extension,
the fork() syscall appears to be minimal. This indicates that for the evaluated
workloads, the LL.C does not play a critical role in influencing performance
outcomes. This could point to efficient cache management that mitigates the
potential negative impact of LLC on system performance.

4. The Raspberry Pi’s CPU operates at a much lower clock speed compared to
the Server’s CPUs (1.50 GHz to 2.20GHz). Despite this, the Pi demonstrates a
commendable level of efficiency as evidenced by its lower software CPU clock
times in baseline scenarios. This efficiency becomes particularly pronounced
when considering the fact that the Pi, operating at a lower frequency, still man-

35

Chapter 7. Conclusions and Future Works 36

ages to achieve comparable performance in certain non-computational metrics
such as cache misses and a much better performance in branch miss predictions.
This reinforces the idea that clock speed is not the sole determinant of perfor-
mance; architectural optimisations and workload characteristics are equally vital
in achieving efficient system performance.

5. Meanwhile, the Server’s significantly better CPU clock speed corresponds with
its superior computational power, evident from its higher rate of processed instruc-
tions. It is also evident that the Server is engineered to deliver steady performance
through a wide spectrum of tasks, suggesting a harmonised relationship between
its raw speed, multi-threading efficiency, and adept process management.

6. These findings suggest that the traditional Server’s edge over the Raspberry Pi is
predominantly rooted in its superior computational capabilities rather than cache
or branch related performance.

7.2 Hotspot Conclusion

Due to the slightly peculiar behaviour experienced in the Raspberry Pi, highlighting
the architectural differences in the highest-level implementation of the fork() syscall
between the ARM and the x86 architectures, our investigation goes beyond just perfor-
mance comparison between the Pi and the Server. We aim to elucidate these distinctions
not only in terms of syscall execution but also to serve as a beacon for understanding
how the architectural nuances influences the fork behaviour across the platforms. This
analysis intends to bridge the gap between theoretical architecture and practical applica-
tion, offering insights that can guide optimisation strategies and enhance system design
for tailored performance across diverse hardware ecosystems.

These findings highlight the Raspberry Pi’s ability of managing single-threaded tasks
compared to the Server and the Pi’s multitasking bottlenecks, attributable in part to
differences in memory management strategies, cache utilisation, and the handling of
virtual memory pages. The analysis not only deciphers the underpinnings of architecture-
specific performance traits but also sets the stage for further exploration into optimising
syscall implementations across diverse hardware platforms.

7.3 Future Works

The exploration undertaken in this study has shed light on the intricate relation of
the fork() system call performance across the ARM and x86 architecture, particularly
highlighting areas where the Raspberry Pi and Server architectures diverge in efficiency.
While our findings provide valuable insights into the complexities of concurrent and
single-process executions, they also open the door to a plethora of questions regarding
optimisation, scalability, and architectural adaptability. Recognising the constraints
of our current scope and the ever-evolving landscape of computing architectures, the
subsequent pathways for research present an exciting ground for enhancing performance
across systems. In this vein, the Future Works section outlines several directions for
forthcoming investigations, aimed at not only addressing the limitations encountered

Chapter 7. Conclusions and Future Works 37

but also expanding the horizon of what is currently understood about system call
optimisation and architectural efficiency.

1. Investigate optimisation techniques that can mitigate the observed performance
bottlenecks in concurrent executions, especially focusing on memory manage-
ment strategies that can be adapted across different architectures like ARM and
x86. This could include comparing various novel and theoretical Copy-on-write
techniques, such as the On-demand Fork[Zhao et al., 2021], Async-Fork [Pang
et al., 2023], and Other Copy-on-Write techniques such as “CCoW: Optimizing
Copy-on-Write Considering the Spatial Locality in Workloads” [Ha and Kim]

2. Since this project was undertaken before the Raspberry Pi 5 was generally avail-
able, performing further analyses to compare the effectiveness of the newly
included L3 cache to the Pi could be a significant insight into whether the Pis
could be placed closer to the edge to successfully“Democratize” it without leaving
any performance out of the table.

3. Given the significant role that the cache behaviour played in influencing per-
formance, a detailed study focusing on cache management strategies, including
cache prefetching, cache locking, and cache partitioning, could yield insights into
improving performance across different memory allocation scenarios.

4. Although this thesis dealt utilised a simulation of workloads that would be fork()
intensive, an extension to this study could include real-world applications that
are typical for edge computing tasks, such as Redis, Fuzzers, etc., as a point of
comparison between the Raspberry Pi and the Server.

Bibliography

Redis latency monitoring. URL https://redis.io/docs/management/optimization/latency-n

ARM® Cortex®-A72 MPCore Processor Technical Ref-
erence Manual, Revision: r0p3, 2016. URL
https://developer.arm.com/documentation/100095/0003/?1lang=en.
Copyright © 2014-2016, ARM Limited or its affiliates. All rights reserved.

Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and
Jason Nieh. Posix abstractions in modern operating systems: the old, the new,
and the missing. In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys *16, New York, NY, USA, 2016. Association for Comput-
ing Machinery. ISBN 9781450342407. doi: 10.1145/2901318.2901350. URL
https://doi.org/10.1145/2901318.2901350.

Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe. A fork()
in the road. In Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS 19, page 14-22, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450367271. doi: 10.1145/3317550.3321435. URL
https://doi.org/10.1145/3317550.3321435.

Tim Bird. Measuring function duration with ftrace. In Proceedings of the Linux
Symposium, volume 1. Citeseer, 2009.

Francisco Carpio, Marc Michalke, and Admela Jukan. Benchfaas: Benchmarking
serverless functions in an edge computing network testbed. IEEE Network, 37(5):
81-88, 2023. doi: 10.1109/MNET.125.2200294.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Em-
manuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC), pages
1-14, July 2019. URL https://www.flux.utah.edu/paper/duplyakin-atcl9.

Brendan Gregg. CpPU flame Graphs. URL
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html.

Minjong Ha and Sang-Hoon Kim. CCoW: Optimizing copy-on-write considering
the spatial locality in workloads. 11(3). ISSN 2079-9292. doi: 10.3390/electron-
ics11030461. URL https://www.mdpi.com/2079-9292/11/3/461.

38

Bibliography 39

Anurag P. Jadhav and V.B. Malode. Raspberry pi based offline media server. In 2019
3rd International Conference on Computing Methodologies and Communication
(ICCMC), pages 531-533, 2019. doi: 10.1109/ICCMC.2019.8819718.

Linux Man-pages Project. perf_event_open(2) - Linux man page.
https://man7.org/linux/man-pages/man2/perf_event_open.2.html, 2024.
Accessed: 2024-03-31.

Pu Pang, Gang Deng, Kaihao Bai, Quan Chen, Shixuan Sun, Bo Liu, Yu Xu, Hongbo
Yao, Zhengheng Wang, Xiyu Wang, Zheng Liu, Zhuo Song, Yong Yang, Tao Ma, and
Minyi Guo. Async-fork: Mitigating query latency spikes incurred by the fork-based
snapshot mechanism from the os level, 2023.

Larry Peterson, Tom Anderson, Sachin Katti, Nick McKeown, Guru Parulkar, Jen-
nifer Rexford, Mahadev Satyanarayanan, Oguz Sunay, and Amin Vahdat. De-
mocratizing the network edge. SIGCOMM Comput. Commun. Rev., 49(2):
31-36, may 2019. ISSN 0146-4833. doi: 10.1145/3336937.3336942. URL
https://doi.org/10.1145/3336937.3336942.

Charles Severance. Eben upton: Raspberry pi. Computer, 46(10):14-16, 2013. doi:
10.1109/MC.2013.349.

Linus Torvalds. GitHub - torvalds/linux: Linux kernel source tree. URL
https://github.com/torvalds/linux?tab=readme-ov-file.

Xunzheng Zhang, Haixia Zhang, and Dongfeng Yuan. A platform base on rpeccf:
Raspberry pi edge-cloud collaboration framework. In 2020 IEEE 31st Annual
International Symposium on Personal, Indoor and Mobile Radio Communications,

pages 1-5, 2020. doi: 10.1109/PIMRC48278.2020.9217253.

Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-demand-fork: a microsec-
ond fork for memory-intensive and latency-sensitive applications. In Proceed-
ings of the Sixteenth European Conference on Computer Systems, EuroSys
21, page 540-555, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383349. doi: 10.1145/3447786.3456258. URL
https://doi.org/10.1145/3447786.3456258.

Appendix A

FlameGraphs

40

41

Appendix A. FlameGraphs

sulsWIL

€z YadeQg
ZZ Ydaq
TZ YadeQg
0z Yadeq
67 YadaQ
87 Yadeq
LT yadaqQ
97 YadaqQ
ST yadeqQ
+1 yadaQ
€1 YadaQg
ZT Ydeq
1T Yadeg
0T Yadeq
6 UidaQg
8 Yadaq
£ ydaQg
9 yadaQg
S yadeQ
v Uideqg
€ Yadaq
Z WYdeq
T Yadeq
0 Yadaq

yadaq »oe3s e

T9%0+3uU0|d> SAs” powie

SUI[SWIL UoI3NI3X3 uoldUN4

DO~ OUN T MmN O

R S
NN NN AN NN A A A A A A A A A A
yidaq oeis

Figure A.1: FlameGraph depicting the function execution for 8MB (in Pi)

42

Appendix A. FlameGraphs

sulPWIL

7z ydaq
1z ydag
0z ydaq
6T Yideqg
8T ydaq
/T Yadag
9T ydaq
ST Yadeg
#T yadaq
€T Yadeg
ZT ydag
1T yadag
0T ydaq
6 tpdaq
8 yadag
£ Ydag
9 yadag
S tpdaq
+ yadaq
£ tpdaq
Z ydaq
T tpdaq
0 ydaq
yidag »2eis ||

o]

T1%0+2Uo|>” SAS” $9X

i

SUI[SWIL UoI3NI3X3 uoldUN4

Ao M™~NWO N MmN - O

N O ®mMOb MmN O
N NN H A A A H A
yidaq oeis

Figure A.2: FlameGraph depicting the function execution for 16MB (in Server)

