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Abstract
Mixnets are privacy-enhancing networks that protect against strong adversaries. Their
inherent high-latency design currently limits their possible use cases to those that can
tolerate medium to high latencies. Data transmission nowadays consists of a large
proportion of images, which often leads to increased latency due to network bottlenecks.
Such problem is amplified in the context of mixnets due to the added delays to the
packets as they traverse through the mixnet.

We present a novel approach to shorten the perceived latency of image transmission by
leveraging an inpainting-based image reconstruction framework. The recipient could
effectively receive a reconstructed image close to the original image with as low as only
38% of the total number of transmitted packets.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, web browsing is an integral part of our daily lives with the ubiquitous
usages of the Internet. In the last decade, there has been a growing awareness of online
anonymity. Even with the incorporation of state-of-the-art encryption schemes, it is
well-acknowledged that the anonymity of the users can remain compromised when web
browsing directly over the Internet; thus, there is an increasing interest in anonymous
systems. The nature of The Onion Router (Tor) [15], a popular low-latency anonymising
network, does not obfuscate the packet and network metadata such as the packet arrival
times and packet sizes [14]. Current research demonstrates that low-latency anonymous
networks such as Tor are vulnerable to timing attacks [22, 42]. Thus, the anonymity
protection offered by these encryption schemes and synchronous networks falls short
of protecting users against global passive adversaries (GPA) under relatively simple
attacks such as packet counting in [40], where the strong adversary can observe all
packet flows across the network to perform timing and traffic analysis [14]. This results
in a growing interest in privacy-enhancing anonymous network infrastructures such as
mix networks (mixnets) [14, 35].

Mixnet is a high-latency decentralised overlay network that provides anonymity pro-
tection against a strong global adversary deploying mixing and packet cryptographic
transformation at each mix. The objective of mixing is to interfere with the timing
metadata of participating components when observing a mix in the network, and also the
network as a whole [9, 11, 14]. The mixing strategy is often based on some distribution,
such as the exponential distribution, which determines the delays of the packets as
they traverse through the mixnet. The utilisation of mixing incurs higher end-to-end
latency for the packets and packets arriving out-of-order. Therefore, the performance
of mixnet in terms of latency is intrinsically worse than that of other better-adapted
networks in exchange for strong anonymity protection, with greater computational costs
and resource usage.

In this work, we focus on continuous-time mixnets since this design provides optimal
anonymity and bounded end-to-end latency [11]. Though the mixnet latency has
reduced, its still-existent latency inevitably contributes to its slow adaptation to a
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Chapter 1. Introduction 2

broader user base compared to other synchronous networks such as Tor. Hence, the
usage for mixnet is conceptualised to use cases with medium to high latency tolerance
such as instant messaging, cryptocurrency transactions and mail systems [9, 24, 35].
Image transmission is a fundamental element in web browsing. With more than five
billion Internet users worldwide1, web browsing is among the most common online
activity. Web browsing requires low latency up to a certain threshold for acceptable
user experience [1]. Tor is highly adapted for web browsing with its synchronous
nature and dedicated free and open-source Tor browser to connect end users easily
to the Tor overlay network2. While current literature considers mixnet for use cases
where greater latency is tolerable, image transmission for web browsing is less forgiving
towards latency. We work with images as images account for a large portion of data
transmission [59]. Many websites engage their visitors through their vast usages of
visual content. Image data tends to be larger in volume than other media, such as text;
they often suffer from network bottlenecks during transmission as they require higher
bandwidths. The issue of high latency worsens in the case of mixnets. In this work,
we attempt to give an apparent reduced latency on image transmission, which we refer
to as ”perception-hacking” - changing the users’ perception to create an illusion of
better performance. We believe that shortening the mixnet latency that is acceptable for
web-browsing without compromising the anonymity guarantees of the mixnet could
appeal to a greater audience and encourage a smoother transition to mixnet.

1.2 Previous Work in MInf Part 1

Of the many mixing strategies, MInf Part 1 project [45] is based on continuous-time
mixnets where mixes delay packets individually. We investigated the overhead of
cryptographic operations in packet processing at the mixes and the significance of
the overhead on the anonymity guarantees of the continuous-time mixnet. It was
demonstrated that the cryptographic packet unwrap operation takes a non-negligible
period of time, and the duration of the operation is hardware-dependent.

The packet processing time breaks the anonymity when the average per-mix delay of the
packets is shorter than the packet processing time. In such a case, the packet becomes
over-delayed at the mix as the packet processing time is the overwhelming proportion of
the actual per-mix delay experienced by the packet. Thus, these packets are vulnerable
to packet-distinguishing attacks, which were also novelly presented. To mitigate against
the effects of the processing overhead, the average per-mix delays should be sufficiently
large to account for the vast range of possible machines used as mixes in order to
maintain the anonymity property of the continuous-time mixnet. The greater average
per-mix delay results in a greater probability of per-mix delays that are longer than the
packet processing time of the mix, reducing the adversary attack surface.

One approach to enable mixnets for image transmission is to reduce the per-mix delay
such that the mixnet end-to-end latency shortens to one that is suitable for low-latency
use cases. Given these findings, it is not possible to reduce the average per-mix delay

1https://www.statista.com/statistics/617136/digital-population-worldwide/
2https://www.torproject.org/download/

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.torproject.org/download/
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directly as it could compromise the anonymity of the network. This warrants the work
presented here which does not impact the anonymity guarantees of the mixnet.

1.3 Problem Statement

In image transmission, packets carrying the image information traverse the mixnet
between the sender and the recipient. The recipient would wait for all the packets to
obtain the complete image. To provide the illusion of quickness, we propose that the
recipient stops waiting for the remaining packets once the first k packets arrive. It
effectively reduces the network latency in image transmission to the time taken for the
first k packets to traverse the mixnet. The packets that did not arrive are the slow packets.
The information carried by those slow packets are reconstructed using image inpainting
algorithm, as those slow packets can be regarded as lost. Thus, our reconstruction
framework essentially becomes an information recovery task to conceal packet loss in
image transmission.

A natural question arises at this point: Why are we opting for an inpainting approach
for loss concealment? Modern-day networks employ sophisticated and well-tested
approaches to mitigate the effects of packet loss, such as the automatic repeat request
(ARQ) methods in the transmission control protocol (TCP) and error-correcting codes
[13]. We argue that these approaches are not suitable in the context of mixnets. ARQ
recovers the information loss through packet retransmission. In a mixnet, the retrans-
mitted packets could have long per-mix delays, further extending the overall latency.
Error-correcting codes depend on redundancy, resulting in more data being transmitted.
The increase in data would directly increase the number of packets to transmit as the
payload size per packet is fixed. Therefore, there are more packets to traverse and to
be delayed in the high-latency network. Thus, the image recovery in mixnets must be
performed solely with available information from the received packets on the recipient
end, which image inpainting is well-suited for the task.

1.4 Project Objectives

The primary purpose of this project is to create an illusion of low latency in an inherently
high-latency mixnet. While the approach of the presented work applies to mixnets with
various mixing strategies, this project’s scope focuses on continuous-time mixnets.

This project presents:

• An image reconstruction framework for image transmission in mixnets.

• The category of the inpainting algorithm is suited as an image reconstruction
method in the mixnet setting.

• The design factors considered for the reconstruction framework, such as the type
of inpainting algorithm.

• The proportion of packets out of the total number of packets the recipient waits
for before beginning the image reconstruction process.
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1.5 Contributions

To the best of our knowledge, this work is the first to expand the use cases of mixnet
by creating the illusion of low latency. The main contributions of this project are as
follows:

• Created an image reconstruction framework that is suitable for the mixnet context.

• Designed the components of the image reconstruction framework

• Trained and tested several inpainting models.

• Determined the appropriate components to the reconstruction framework, such as
the type of inpainting algorithm.

• Verified the range of hardware configurations suitable for executing the recon-
struction framework.

• Determined the proportion of packets out of the total number of packets to produce
a close reconstruction of an image.

1.6 Terminology

This section clarifies some key terminologies used in this report that can be confused
for a different meaning in a different context.

1. Recipient: The recipient in this report denotes the machine participating in the
mixnet and receiving the image rather than the actual human operator.

2. Packet: In this report, a packet is defined as the specialised, layered-encrypted
network packet in Sphinx format, specifically used in mixnets.

3. End-to-end latency: End-to-end latency is the time taken from the packet to
traverse through the mixnet from the sender to the recipient. In this report, we
use end-to-end latency and latency interchangeably.

4. Slow packet: A slow packet is a packet that does not arrive before the recipient
begins the image reconstruction process.

5. Image fidelity: Image fidelity refers to the likeliness of an image to its original or
reference image [33]. For historical purposes, image fidelity is also called image
quality in the image inpainting context [32].

1.7 Report Organisation

The remaining of the report is structured as follows:

Chapter 2 gives an overview of the background of this project, including
continuous-time mixnet, image inpainting and its algorithms related to this project. A
discussion of the relevant work in image reconstruction methods is also provided.
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Chapter 3 gives a high-level overview of the proposed image reconstruction framework
and the design factors to consider when deciding on the suitable image inpainting
algorithm for the framework.

Chapter 4 outlines the experimental framework, the experimental data and the experi-
ment setup used to address the design factors for the image reconstruction framework.

Chapter 5 details the experiments carried out and the implications to the image recon-
struction framework based on the summary of results from the experiment.

Chapter 6 evaluates and discusses some of the limitations in this work, and presents
some possible directions for future work.



Chapter 2

Background and Related work

This chapter gives an overview of continuous-time mixnets and a brief introduction to
the background of image inpainting and some of its techniques relevant to this project.
It also presents the metric for image similarity evaluation and the image data source for
the experiments.

2.1 Continuous-time Mixnets

Figure 2.1: A 4 × 3 stratified topological mixnet, where the circles denote the mixes and
the arrows represent the possible links between the mixes.

Mixnet is a decentralised network of mixes - machines that delay and then forward the
packet along its route to its destination [9]. The mixnet design uses a packet mixing
strategy to provide anonymity protection to its users against a global passive adversary
(GPA) [14]. There are two capabilities of a GPA. Firstly, it can observe all incoming
and outgoing traffic of end users and mixes in the network. Secondly, it can perform
traffic and timing analysis attacks to correlate the sender and receiver of any identified
packet by analysing the time of sending and arrival of a packet. A GPA cannot actively
corrupt an honest participant in the network. Adding the per-mix latencies destroys the
network metadata exploited by the adversary, thus achieving the objective of protecting
the sender-recipient anonymity.

6
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A packet passes through a sequence of mixes in a multi-hop fashion similar to onion-
routing in Tor [15]. The multi-hop decentralised design distributes trust across the
participants in the network, thus preventing a particular element of the network from
being adversely targeted. It ensures that no nodes possess complete knowledge of both
the sender and receiver for any packets.

A continuous-time mixnet is characterised by its mixing strategy whereby packets are
delayed individually at each mix, and the rate at which end users send the packets is
modelled stochastically by the Poisson process [11]. The exponential distribution that
the sender randomly samples from when preparing the packets is parameterised by µ. In
the context of mixnets, µ is a preset mixnet parameter that denotes the average per-mix
delay in seconds. The variable µ is the mean of the exponential distribution.

A delay is selected for every mix on the packet’s route through the mixnet. At each
mix, the mix cryptographically transforms the incoming packet so that the packet being
forwarded to its next destination is unrecognisable by the observing adversary [14]. The
delay sampled contributes to the mixing at each mix - the packet is individually delayed
and thus reordered to prevent the adversary from correlating the sender and receiver by
measuring the message sent and arrival times. The anonymity of this mixing strategy
is based on the memoryless property of the exponential distribution [10], where the
probability of the packet being forwarded by the mix is independent of its arrival time.
Consequently, any packet arriving at the mix has an equal likelihood of departing at the
subsequent moment. Notice that the greater the value of µ, the more packets are being
held in the mixes due to the increased average per-mix delay. This results in greater
anonymity at the cost of longer end-to-end latency.

The packets in the mixnet are in the Sphinx packet format [12]. The Sphinx packet
format consists of two parts - the header and the payload - each layer encrypted in
reverse routing order. This means that the outermost encryption corresponds with the
first mix of the packet’s route and the innermost encryption is for the recipient. The
header contains the metadata for the mixes which includes their respective per-mix delay
for mixing and a single element of a cyclic group for its cryptographic operations [35].
In this work, the payload would be a partition of the image data. For the remaining of
the report, we abbreviate Sphinx packets to simply packets, unless otherwise specified.

Loopix anonymity system is a realisation of the stratified continuous-time mixnet
structure, introduced by Piotrowska et al. [35]. Figure 2.1 illustrates an example
of the network structure of a 4 × 3 mixnet in stratified topology. While our image
reconstruction framework is integrated with a Loopix-styled mixnet, the techniques
presented are generalisable to any mixnet structure.

2.2 Image Inpainting

In the context of computer vision, image inpainting is a common digital restoration
technique applied to still images and videos. It is extended from the analogous ancient
practice of artwork restoration used to reconstruct the image to its original state [6, 23].
In digital image inpainting, inpainting is the process of reconstructing lost or deteriorated
regions of the images or videos [23]. Existing algorithms often employ the underlying
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assumption that the geometric structure and statistical information are common between
the visible and missing areas of the image [19]. The unknown regions can be filled by
interpolating from neighbouring known pixels during the restoration process [23]. The
objective of the image inpainting algorithms is to create an inpainted image such that the
result is visually pleasing and close to the original or reference image [19]. Due to its
simplicity, the applications of image inpainting range widely from removing overlaying
objects for image enhancement to concealing information loss due to compression or
packet loss in transmission [16, 19].

2.2.1 Digital Image Restoration

Digital image restoration through image inpainting has been an extensively researched
topic since the 1950s, which began from recovering information loss for images taken
in sub-optimal conditions in astronomical imaging [4]. Since then, image restoration
techniques have been widely applied in image processing. In this section, we focus on
the significant works conducted on image inpainting that are related to the methods in
Section 2.2.2.

Digital image inpainting is considered to have been pioneered by Bertalmio et al. in
[6], of which the NS and TELEA algorithms improve. Their framework emulates the
restoration techniques used by experts on ancient artworks through non-linear partial
differential equations [39]. However, the results were sub-optimal as the inpainted
regions tended to be blurry with some unnatural artefacts.

In deep learning-based inpainting technique, the U-net introduced by Ronneberger
[37] is another popular network structure besides the FCN. The U-net has a greater
computational cost compared to the FCN whilst having the ability to retain a larger
amount of spatial information. Since the inpainting process in the mixnet context is
only meaningful when the inference is completed quickly. Thus, deep learning methods
that utilise the U-net architecture are unsuitable for this project.

2.2.2 Image Inpainting Methods

This section presents some traditional and deep learning-based image inpainting al-
gorithms. These algorithms use inpaint masks to indicate the defective regions to be
inpainted in the image, and those regions are interpolated in the pixel domain using
information in the unmasked areas. A inpaint mask of an image indicates whether the
pixels in the image are valid or unknown; it is visualised as a monochromatic image
with the exact dimensions as the image.

2.2.2.1 Traditional Methods

In literature, traditional methods conventionally refer to the category of non-deep
learning-based inpainting techniques [23, 49]. We highlight briefly the technical details
of two well-acknowledged algorithms implemented in the publicly available OpenCV
library1.

1https://docs.opencv.org/4.x/d7/d8b/group__photo__inpaint.html

https://docs.opencv.org/4.x/d7/d8b/group__photo__inpaint.html
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Figure 2.2: A simplified overview of network structure of DeepFillv1 and DeepFillv2.

2.2.2.1.1 Navier-Stokes Inpainting Algorithm Introduced by Bertalmio et al. [5],
the Navier-Stokes Inpainting algorithm (henceforth, NS) is a diffusion-based approach
based on principles from fluid dynamics. The algorithm directly applies the solutions
of the well-established Navier-Stokes equations; it draws an analogy between image
intensity and stream function for an incompressible Newtonian flow. The inpainting pro-
cess extends the information from known regions determined using partial differential
equations to the neighbouring unknown regions [19].

2.2.2.1.2 Fast Marching Method Inpainting Algorithm Established by Telea [43],
the inpaint technique is based on a numerical technique called the Fast Marching Method
(henceforth, TELEA). The inpaint mask marks the unknown regions on the image, and
the algorithm begins inpainting with the unknown pixels on the boundary to the known
pixels. The process repeats iteratively until all unknown pixels are interpolated. The
pixel to be inpainted at each iteration is selected according to the Fast Marching Method,
and the inpainting propagates to the centre of the unknown regions [34].

2.2.3 Deep Learning-based Methods

2.2.3.1 Motivation for Deep Learning Inpaint Models

There has been much advancement with deep learning approaches in digital image
inpainting algorithms in the study of computer vision and image processing [36]. Deep
learning models build on simpler concepts to learn more complex ones hierarchically
[18]. Variants of the convolution neural networks (CNNs), often in combined usage
with Generative adversarial networks (GANs), adapted for the inpainting task are the
two predominant network architectures in the field of deep learning-based inpainting
methods [56]. Fully convolutional networks (FCNs) are popular CNN variants fre-
quently used in literature [56]. Researchers utilise these deep learning networks to
capture high-level semantics effectively to produce complex inpainting results [49].

2.2.3.2 DeepFillv1 and DeepFillv2 Models

We present two state-of-the-art deep learning-based inpainting methods relevant to this
project: DeepFillv1 [54] and its enhanced version, DeepFillv2 [53].

2.2.3.2.1 DeepFillv1 Proposed by Yu et al. in the paper ”Generative Inpainting with
Contextual Attention” [54], the well-cited generative inpainting framework uses the
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typical two-stage coarse-to-fine network architecture with a novel contextual attention
layer, depicted in Figure 2.2. Classic CNN architectures capture the entire image context
at the trade-off of losing spatial information in deeper layers in the network [54]. This
is because the spatial size of features reduces as the layers increase. The contextual
attention overcomes the shortcomings of classic CNN-based frameworks. It enables
the refinement generator to use feature information from distant spatial locations to
reconstruct the local unknown regions [54].

In coarse-to-fine network architecture, the model performs a coarse prediction at the
first stage and produces a refined result based on the coarse prediction at the second
stage [49]. Both stages were trained jointly under one training process for efficiency.
The network architecture consists of two generator networks and two discriminator
networks. The two generators perform the coarse-to-fine inpainting, and the result is
passed onto the two discriminators with GAN losses for global and local inpainting
evaluation. The global discriminator assesses the images as a whole, while the local
discriminator assesses solely on the inpainted regions. The generators have similar
FCN structures with dilated convolutions [52] at both stages, except that the refinement
generator at the second stage has an additional contextual attention module.

2.2.3.2.2 DeepFillv2 This framework is also proposed by the same team of re-
searchers in DeepFillv1 [53]. Likewise to the network structure of its predecessor
illustrated in Figure 2.2, the framework leverages a two-stage coarse-to-fine network
in DeepFillv2. However, to support irregular inpainting masks, gated convolution is
used in DeepFillv2 instead of the standard convolution in DeepFillv1. DeepFillv2
improves the use of partial convolution on inpainting with irregular masks. Irregular
masks represent a more realistic inpainting task, as the unknown regions are not always
guaranteed to be regular. Partial convolution was introduced by Liu et al. [30] to enable
smooth inpainting with irregularly shaped inpaint masks. Missing pixels are usually
filled with meaningless placeholder information in the image at the recipient. Previous
models, including DeepFillv1, utilise the standard convolution mode, producing blurry
results. It is because the standard convolution is conditioned equally on the valid pixels
and the missing pixels without distinction, when the missing pixels are usually filled
with meaningless placeholder information [56]. Partial convolution ensures that the
convolution results depend only on the valid pixels in the current mask. However, partial
convolution is limited by its restrictive mask updating rule. If the convolution result
depends on at least one valid pixel, the corresponding location is regarded as valid in the
subsequent convolution [30]. DeepFillv2 improves on partial convolution by introduc-
ing gated convolution. Rather than the hard updating rules, the mask update is learned
from the data in gated convolution [53]. Thus, gated convolution can be regarded as a
more general form of the partial convolution with greater flexibility for mask updating
[49]. SN-PatchGAN is an efficient variant of GAN loss novelly introduced in the same
work. It replaces the use of local and global GAN loss in DeepFillv1 as it has been
found to be more suited for the inpainting task with irregular masks.
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2.2.4 Evaluation Metric

2.2.4.1 Structure Similarity Index

The human visual system (HVS) views the images transmitted through the mixnet,
hence it is reasonable to base our evaluation on a perceptual image quality metric
consistent with human visual perception. In this work, analogous to loss concealment in
transmission, the ground truth, i.e. the reference image, is known since it is simply the
pre-transmitted image, objective full-reference metrics are applicable. Thus, we use the
structural similarity (SSIM) index, a popular perceptual-based metric for the evaluation.

Presented by Wang and Bovik in [47], Structural Similarity (SSIM) index is a full-
reference metric that quantifies comprehensively the likeliness of two images, i.e. the
reference/original image and the processed image. SSIM combines the three distinctive
comparisons of luminance, contrast and structure into an overall score. Equation 2.1
denotes the per-pixel SSIM for images A and B with image dimension of M×N.

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y,)]γ, (2.1)

where l is the function for luminance, c is the function for contrast and s is the function
for structure, the parameters α > 0, β > 0, and γ > 0 adjust the relative significance of
their respective components [47].

The authors rewrote Equation 2.1 with α = β = γ = 1 in terms of the mean intensities
µx and µy and their standard deviations σx and σy of pixels x and y respectively to give
Equation 2.2 [47]:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(2.2)

where µx =
1
N ∑

N
i=1 xi, σx = ( 1

N−1 ∑
N
i=1(xi − µx)

2)
1
2 , and C1 and C2 are constants for

stability when the sums in the denominator are close to 0. Note that µy and σy are
defined similarly but are omitted due to limited space. The standard deviations are
indicators of the signal contrasts.

In practice, Wang et al. advise applying SSIM locally rather than globally to more
accurately reflect how the HVS is only able to perceive certain regions of the image
with high resolution at a time, among other reasons [47]. The mean SSIM (MSSIM)
index of the local SSIM scores across the entire image between images A and B is given
by:

MSSIM(A,B) =
1

MN

M

∑
x=1

N

∑
y=1

SSIM(x,y). (2.3)

Since MSSIM is a full-reference metric, one of the images A and B is the reference
image. The MSSIM satisfies the boundedness property [47]. The scores range from -1
to 1, where -1 indicates complete dissimilarity between the images, and a value closer
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to 1 denotes better image fidelity. The value of 1 is achieved when images A and B are
identical.

MSSIM considers structural information in its design to overcome the limitation of
metrics, such as mean square error (MSE) and its logarithmic-based variant (PNSR) [29].
MSE-based metrics are well known for their simplicity and computational efficiency
but also for their drawback of providing a weak indication of perceived visual quality
in human [29, 32, 33, 48]. This limitation is caused by the fact that these metrics
fundamentally perform pixel-by-pixel comparisons, overlooking the overall structural
changes - evident when the image is viewed in its entirety - which the human visual
system is commonly assumed to be.

2.2.4.2 Correlation of MSSIM and Human Quality Perception

While assessing image fidelity is seemingly an effortless task for human assessors, the
underlying mechanism is complex and remains an active area of research. Over the
years, much research has been conducted to build perceptual image fidelity metrics that
emulate the characteristics of the HVS [29]. MSSIM aims to measure image distortion
that reflects the high sensitivity of HVS to structural changes in order to simulate the
perceived image fidelity [32].

Prior research presents the SSIM metric as an effective indicator of degradation or
improvement in the structure of denoised images and shows some correlation with the
subjective human perception of image fidelity [32]. The mean opinion score (MOS),
a subject quality assessment metric, is representative of the human quality perception
since it is defined as the average rating of a given still or video image on a particular scale
from a group of human observers through subject viewing assessments [31]. Wharton
et al. [48] conducted a study comparing objective perceptual metrics with human
evaluation. Among the investigated metrics, they found that the MSSIM achieved the
highest correlation coefficient with the human perception measured by the subjective
Difference Mean Opinion Score when evaluating various types of image distortion.

2.3 Existing Work on Packet Loss Concealment in Data
Transmission

The work undertaken here draws a parallel with the loss concealment in the packet-
based transmission of media data. In data transmission, a packet is the small medium in
which data is transmitted. Packetisation is the process where the data is segmented into
packets that traverse the network when the data is larger than the packet payload size of
a single packet. Packet loss is a common issue in data transmission. Media data such
as audio, images and videos are susceptible to packet loss as they yield undesirable
artefacts that affect the quality of the transmitted data. Packet loss concealment has
been addressed with various approaches in the literature, such as error-correcting codes
at the physical layer, and retransmission at the data link layer [44]. However, the work
of our particular interest is those leveraging inpainting approaches to provide alternative
methods for concealing packet loss during data transmission.
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In audio data transmission, Lee and Chang [27] proposed using deep learning to conceal
digital speech packet loss. Their approach involves a regression-based deep neural
network to reconstruct the features of the lost speech signals. The results showed
that the signals reconstructed using DNN significantly improved downstream speech
recognition tasks. However, their framework operates on the feature level of the audio
signal, which requires feature selection whilst our work is at the pixel level.

Bajić [2] proposed using partial differentiable equation-based inpainting methods to
recover missing features in latent space to maintain object detection accuracy. His work
is applicable in the scenario of collaborative intelligence - where a deep learning model
is divided into the edge-based and cloud-based sections [3]. The relatively lightweight
feature extraction into feature tensors is performed locally on the edge device, and
the resource-intensive inference is completed in the cloud, as there are often more
processing resources in cloud computing than in local hardware. With the lossy nature
of the network/transport layer, parts of the feature tensors could be missing due to
packet loss. While the results showed that latent-space inpainting improves on existing
solutions for feature recovery, the proposed recovery framework is demonstrated on
latent features rather than natural images.

In terms of image transmission over the Internet, there is limited work on inpainting
approaches for packet loss concealment. This is due to present packet recovery methods
such as ARQ and error-correcting codes can be suitably applied in those networks.
Hemami and Meng [21] and Wang and Zhu [46] proposed reconstruction schemes on
transform-coded images. The recovery target was the transform coefficient in block-
transform coded images. The data packetisation in which those schemes are applied
involves partitioning images into 8 × 8 blocks and performing a 2D transformation to
obtain their corresponding transform coefficients. These blocks of transform coefficients
are the payloads of the transmitted packets. Thus, a packet loss indicates a missing block
— the proposed schemes reconstructed those lost blocks by extracting information from
adjacent blocks.

2.4 Birds 525 Species - Image Classification Dataset

The ”Birds 525 Species Image Classification Dataset” (henceforth, Birds525) is a dataset
that consists of 89,885 JPG images of 525 species of birds, dedicated to the public
domain under CC0. Of the total number of images, 84,635 images are the training set,
while the validation and testing sets consist of 5 images per species, resulting in 2,625
images each. The structure of the images is consistent: they are all 224 × 224 resolution
3-channelled images where the three channels denote the RGB colour encoding scheme;
each image consists of a bird that takes up at least half of the pixels in the image [17].
We select this dataset primarily for its fixed-sized images as an image data source
for our experiment, hence the imbalanced species in the training set is not a factor of
concern. The image dimensions are also sufficiently large to justify the occurrence of
slow packets. Since the dataset was curated for image classification tasks, the dataset
includes species labels for each image, which are not relevant to our task and, therefore,
have been omitted.

https://creativecommons.org/publicdomain/zero/1.0/


Chapter 3

Proposed Image Reconstruction
Framework

This chapter outlines the integration of the image reconstruction framework into the
mixnet infrastructure and discusses factors to consider in the framework design.

3.1 Image Packetisation Model

224

224

...
...

Figure 3.1: Image segmentation for data packetisation where the partition unit is a row
of the image. Each row (green) of the image has a dimension of 1 × 224 pixels.

In this section, we establish the packetisation model on which the theoretical assump-
tions of our image inpainting framework will be built. The images in Birds525 all
have dimensions of 224 × 224 × 3 pixels. For the purposes of the data packetisation
in our experiment simulation, the images are represented by a Numpy array with the
shape of (224, 224, 3). The packet payload is assumed to be a multiple of the size of
a row of dimension 1 × 224 pixels. Similar to data packetisation in standard network
protocols, image data is segmented into smaller partitions by the size of the packet
payload as illustrated in Figure 3.1. We place a constraint on the correlation between
slow packet and missing image information, such that the loss of a packet results in
the loss of rows of pixels in the image. The image is also assumed to be packetised

14
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into a stream of packets such that the existence of a slow packet does not affect the
decoding of subsequent rows of pixels in the image at the recipient. These constraints
are analogous to the ones also made on the transform coefficient blocks in the work by
Hemami and Meng [21], and Wang [46]. Thus, the effect of the slow packets in terms
of content loss in the image is limited to the loss of information carried by those slow
packets; the transmitted image would display missing regions in the respective rows of
the slow packets. Based on this packet loss model, we focus on the pixel-wise image
reconstruction techniques in our reconstruction framework.

3.2 But What is a Slow Packet?

Thus far in this report, we have defined slow packets conceptually using the idea of a
cut-off time. In this section, we give a more concrete definition of both slow packets
and the cut-off time.

In order to define slow packets, we first need to define the cut-off time as the arrival
time of k-th packet after the recipient receives the first packet of the stream of packets
for the image. The value k denotes the number of packets required to achieve a close
reconstruction of the pre-transmitted image. We quantity this closeness based on the
MSSIM score because of MSSIM’s correlation with human perception as detailed in
Section 2.2.4.2. The inpainted image P′ and the original image P are close if:

MSSIM(P,P′)≥ 0.70 (3.1)

While there is a previous study by Zinner et al. [59] that presented a mapping from the
objective MSSIM scores to the subjective MOS scores. However, it is not suitable for
this work on still images, as the mapping was primarily based on videos, which have
other factors to take into consideration, such as frame rates.

Thus we decided to define a suited closeness threshold based on the existing literature
on human tolerance on image degradation. It is reasonable to draw an analogy to image
degradation because the quality of the images should reduce with a small k as there is
less information available for inpainting when k is small. Tadros et al. demonstrate that
human observers are robust towards large degrees in many types of image manipulation.
The work by Wang et al. in [47] presents a range of images with various degrees of
distortion and their MSSIM scores. Combining this information, we propose a value of
0.70 as an appropriate closeness threshold for this work, as it reflects humans’ relatively
high tolerance to image distortion.

It is necessary to have this closeness threshold when creating the performance illusion
in image transmission - the end-to-end latency could be perceived as shorter when the
recipient renders an image close to the original image without waiting for all the image
information to arrive. We define slow packets in terms of the value k. Slow packets are
any remaining packets that are yet to arrive after the recipient receives the k-th packet.
The value k is to be determined empirically in our experiments in Chapter 5.
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Figure 3.2: An overview of the integration of the framework into the mixnet infrastructure
with a N ×L mixnet, and the workflow of transmitting an image P from the sender to the
recipient through the stratified mixnet. For simplicity, the cryptographic transformations
on the packets are omitted as the overheads they incur are accounted in per-mix delays.

3.3 Framework Design

3.3.1 Framework Integration

Figure 3.2 depicts the mixnet infrastructure with the image reconstruction framework
integrated at the recipient. As the integration is beyond the actual mixnet, this additional
framework does not alter the functionality of the existing mixnet infrastructure. We
now give a brief description of the workflow of image transmission with this framework.
Since this project focuses on the image reconstruction component, the implementation
details of aspects other than image reconstruction is considered out-of-scope and are
assumed. To transmit an image P between sender and recipient, the sender would pre-
pare the (Sphinx) packets to transmit across the mixnet. Packet preparation begins with
image data segmentation. Likewise to standard networking protocols, data packetisation
segments image data into a stream of packets according to the packet payload size. For
each packet, the sender individually samples every per-mix delay and cryptographically
encrypts the headers and the payloads in layers for the mixes on the packets’ routes.
The stream of packets is forwarded into the mixnet. Once the first packet of the stream
is received, the recipient waits for a certain period of time based on the value of µ for
more packets to arrive. Once the waiting period elapses, the recipient ceases waiting
for further packets. In the case of missing image information due to slow packets, the
recipient begins the image reconstruction process.
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3.3.2 Design Factors of the Image Reconstruction Framework

The appropriate image reconstruction framework should be fast and lightweight, whilst
achieving high image fidelity. Thus the framework design should consider the subse-
quent factors to enhance the adaptability of the framework and the performance of the
mixnet in terms of reduced latency.

1. The image fidelity of the inpainted images with their original pre-transmitted
images is achieved by the inpainting methods. The inpainted image should be
close to the pre-transitted image in terms of the MSSIM score according to
Equation 3.1.

2. The timing overhead incurred when performing the inpainting process

3. The hardware requirement to execute the image reconstruction framework.

4. The conditions under which leveraging the framework is beneficial to reduce the
overall latency. Specifically, the number of packets out of the total number of
packets the recipient waits for before starting the inpainting process.

5. The packet preparation process that aids the inpainting process. In particular, the
way the rows of packets are placed into different packets determines the structure
of the effective pixels during the inpainting process and, thus, the outcome of the
process.

6. The nature of the inpainting algorithm. Inpainting algorithms can be categorised
into two general categories: traditional and deep learning-based, each with its
strengths and shortcomings.

3.3.3 Possible Inpainting Algorithms

As mentioned in Section 3.3.2, there are generally two categories of inpainting al-
gorithms, traditional and deep learning-based in the field of computer vision. We
investigated three inpainting algorithms: (1) NS, (2) TELEA, and (3) DeepFillv2. The
former two are traditional inpainting methods while DeepFillv2 is deep learning-based.
We selected these algorithms primarily for their availability. The NS and TELEA algo-
rithms are natively supported in the OpenCV library, the largest open-source computer
vision library1. Therefore both algorithms can be easily integrated into the image
reconstruction framework pipeline. DeepFillv2 is a state-of-the-art image inpainting
model proposed by Yu et al. [54].

As part of our preliminary studies, we explored several published frameworks such as
the Masked Autoencoder [20] and SimMIM with the Swin transformer [50], which
are approaches used for self-supervised pretraining of computer vision models. These
frameworks are used in the pretraining stage to learn the features in the images. The
models pretrained on these two frameworks have achieved promising results in numer-
ous benchmarks for downstream image-related tasks such as image classification [58].
This is because the self-supervised pretraining objective consists of masking parts of the
image which Masked Autoencoder or SimMIM restores during training. While these

1https://opencv.org

https://opencv.org
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frameworks have general-purpose functionality which can be finetuned for downstream
tasks, it is evident that the stated self-supervised pretraining objective is essentially
equivalent to the objective of our image reconstruction framework. Hence we also
explored these possibilities in the earlier stages of the project.

3.3.4 Why DeepFillv2?

After some experimentation, we decided not to further pursue the Masked Autoencoder
and SimMIM frameworks for the following reasons.

Masked Autoencoder employs a typical pretrain-finetune architecture. For the inpainting
task, we are interested in the pretraining stage where masked images are reconstructed to
learn image features for future downstream tasks. Thus, we would need to perform the
pretraining stage on Birds525. However, the pretraining stage requires large volumes of
data, as the pretraining was conducted on more than 1,200,000 images in the original
paper [20]. Due to the smaller dataset size of Birds525, the pretraining would be prone
to overfitting, which would affect the image reconstruction results. Thus, we deemed
the Masked Autoencoder unsuitable for this project.

For SimMIM, we attempted to integrate the open source codebase of SimMIM2 into
our experiment framework pipeline for the image reconstruction framework. However,
we encountered some technical issues in the process, and there was only limited support
available through the repository’s Issue on the GitHub page. With the tight constraint
of this project timeline, we opted to explore an alternative model in order to continue
progressing through the project.

In terms of DeepFillv2, we selected it as the deep learning method to investigate based
on two reasons: the computer vision task it was designed to solve and the integrability
of the existing codebase into our own frameworks. The DeepFillv2 framework was
designed specifically for the image inpainting task, Therefore it is already recognised
as an advanced image inpainting technique, contrary to the two aforementioned frame-
works. Furthermore, the authors maintained and provided much technical support in
the ”GitHub Issues” page of their codebase3. Despite the reduced online presence of
the authors in the past year, most technical issues we encountered during integration
were addressed through the extensive additional information provided by previous
interactions on the Issues page. Thus we were able to successfully incorporate the deep
learning module for further exploration.

2https://github.com/microsoft/SimMIM
3https://github.com/JiahuiYu/generative_inpainting

https://github.com/microsoft/SimMIM
https://github.com/JiahuiYu/generative_inpainting


Chapter 4

Experiment Framework Methodology

This chapter outlines the experiment setup, including the simulation and environment
assumptions, and the methodology for determining the suitable inpainting algorithm for
the image reconstruction framework.

4.1 Experiment Assumptions

For the purposes of the simulation, we consider the case of one sender and one recipient,
participating honestly in the mixnet. The mixnet through which the packets traverse
before reaching the recipient has a Loopix-style mixnet structure with balanced layers.
That is the mixes are arranged in stratified layers with an equal number of mixes
per every layer. The mixes are physical machines with measurable computational
power which ensures bounded unwrap time. Since this work focuses on information
reconstruction on the recipient end, the mixnet and all its participants are assumed
to be honest and without corruption. This assumption is reasonable as there is prior
literature on detecting and excluding corrupted mixes from the mixnet [28]. Therefore,
any adversarial activities in the mixnet are beyond the scope of this work. The existence
of slow packets is solely due to the longer per-mix delays selected during packet
preparation at the sender. The rows of pixels carried by the slow packets would be
replaced by placeholder values. The inpainting process would replace those values with
more meaningful values. We speculate that our reconstruction approach can be applied
to the situation where the slow packets are caused by adversarial activities in the mixnet.
However, the exact investigation is left as future work.

In terms of the images in the experiment, we assume that the images are transmitted
without compression to ensure all images in the experiment have the same file size.
This is because the image file size influences the number of packets required to transmit
the image from the sender to the recipient. Having the assumption of identical image
file size for the experiments justifies using the same number of packets to transmit
them through the mixnet in our experimental setup. In reality, it is true that images
are exported into image formats such as JPEG or PNG before transmission, which
results in varying file sizes, thus the number of packets required for image transmission
could differ by each image. The aforementioned assumption for uncompressed images

19
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(a) Block-based (b) Interleave-based

Figure 4.1: Visualisation of (a) block-based and (b) interleave-based inpainting masks
simulating 25% of packets as slow packets.

is necessary to simplify the experiment conditions in order to focus on investigating
the inpainting process. We leave extending the framework to support image format-
compressed images as future work.

4.2 Packetisation Schemes and Image Information Loss
Models

Information loss models depict the manner in which missing information is displayed
using inpaint masks. The selected three inpainting algorithms (outlined in Section 3.3.3)
require a binary inpaint mask to indicate the masked region. In our case, we draw
an analogy between the masked regions and the missing regions carried by the slow
packets. The regions marked as unknown in the inpainting mask are the pixels to be
reconstructed. The proportion of masked regions of the image is directly related to the
number of slow packets. Thus, this is the foundation of our information loss model: the
missing pixels are represented by using a binary mask to overlay onto the experiment
images; with more slow packets, the areas of masking on the image increase.

As mentioned in Section 3.3.2, packet payload could be arranged such that the inpaint-
ing algorithm can perform well from the available information. The structure of an
unknown region displayed at the recipient is heavily dependent on the arrangement of
image information during the packet preparation process at the sender. We propose two
information loss models, arising from the two different packetisation schemes: blocked-
based and interleave-based. Block-based packetisation schemes lead to block-based
information loss, and interleave-based packetisation schemes lead to interleave-based in-
formation loss. During packetisation, we operate in units of rows of pixels as detailed in
Section 3.1. The block-based packetisation means that we partition such that contiguous
rows of pixels are put into the same packet. The interleave-based packetisation, as the
name implies, spreads out the rows of pixels in an alternating manner across the packets.
Specifically for N number of packets, we label the packets with packet number n where
n = 0, ...,N −1. The packet pi of which the i-th row is allocated to is determined by:
pi = i mod N, where mod denotes the modulo operation. Thus, for a given percentage
of slow packets, the loss models have distinct displays of missing pixels from their
respective masks. Figure 4.1 visualises the inpaint masks of the missing pixels with
25% of slow packets.
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4.3 Experiment Data

We decided to sample a selection of images with similar file sizes from the training set
of Birds525, which are referred to henceforward as experiment images. The experiment
images are a set of non-overlapping images with the remaining images in Birds525. We
created this separate set of images for the following reasons:

• We can set a number for the total number of packets for the simulation, as an
experiment framework parameter.

• Limited storage on the test machine - for every image, we will make several
duplicates with different masking and inpainting techniques applied, increasing
the total number of images to store for recording purposes.

• For the deep learning inpainting method, finetuning the model would need a
large image dataset. We can regard the experiments as additional testing for the
deep learning model, so the model cannot be trained on the images used in the
experiments. For the experiments, we would need a separate set of images besides
the test subset of images in Birds525 as good machine learning practice.

Considering the storage limitation on the test machines and the need for a large dataset
for finetuning the deep learning mode, we selected 107 images to set aside as the
experiment images. The images are selected randomly as they all have the same
uncompressed file sizes and are curated under the same settings specified in Section 2.4.
The experiment image set is 107 based on our estimates of storage requirements on
the Laptop for a large number of images over several iterations of the experiments.
Notice that for the 107 experimental images and 7 possible numbers of slow packets
(from one to at most seven out of eight total packets) with two masking schemes, there
are 107×7×2 = 1498 images plus their respective masks and masked images. This
number of images is suitable as it is sufficiently large for future statistical analysis with
the normality assumption under the central limit theorem.

4.4 Test Machines

The experiments are conducted on the following machines, they are selected because
of their range of high and low computational power which represent the possible
machine configurations that could be used as a recipient. We run the same experiment
configuration on all the machines for comparable results. The machines are:

1. AMD EPYC 7302 16-core processor @ 3.29 GHz with 512 GB of system mem-
ory.

2. AMD EPYC 7302 16-core processor @ 3 GHz with 192 GB of system memory,
and a NVIDIA GeForce RTX 3080 graphics card with 10 GB of memory.

3. Apple M2 8-core processor @ 3.29 GHz with 16 GB of system memory.

4. Raspberry Pi 3 Model B @ 1.2 GHz with 1 GB of system memory.

For the remaining of the report, we refer to test machine 1 as DICE (SC), test machine
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2 as Lab machine, test machine 3 as Laptop and test machine 4 as Raspberry Pi. DICE
(SC) and Lab machine are categorised as powerful compute-intensive machines, while
the Laptop is a standard daily usage machine, and the Raspberry Pi is a low-compute
intensity microcomputer. Note that the Laptop is the primary test machine, except for
experiments for DeepFillv2 (see Section 4.5.5 for detailed reasoning) and the runtime
experiments, which are conducted on several test machines. It is reasonable to compute
the inpainted images on a single machine since the inpainted outcome of the algorithms
are not hardware dependent.

4.5 Experimental Setup

4.5.1 Uncompressed image file size

With the assumption of uncompressed images of identical file size, it is reasonable to use
the same number of packets for all experiment images. The file size of uncompressed
images depends on its image dimensions and bit depth. Bit depth b is defined as the
number of bits required to represent a pixel. Thus file size S of an uncompressed
M ×N image in bytes is given by1: S = M×N×b

8 . To calculate the file size of the
experiment images, we first need to confirm their bit depths. We extracted the bit depth
per colour channel for each image by inspecting the image file metadata using the
python-magic library2. We confirmed that all images are 3-channelled with 8 bits of
bit depth per channel, thus the overall bit depth b is 3× 8 = 24 bits. Recall that all
images in Birds525 have pixel dimensions of 224×224. The uncompressed file size is
S = 224×224×24

8 = 150,528 bytes.

4.5.2 Number of packets and payload size

The payload size determines the number of packets required to transmit an image. In
this work, The number of rows in an image is directly derived from the image’s pixel
dimension in height. Since our information loss models are related to the rows of pixels,
the value for the number of packets, and hence the packet payload size, needs to be
based on the number of pixel rows. In order to achieve representative results from the
experiments, we need to use a sufficient number of packets to simulate the transmission.
Having a stream of packets for an image, we can investigate the impact between various
proportions of slow packets on the inpainted result.

Jee et al. [24] proposed that a sphinx packet payload size of 4096 bytes provides a good
balance between anonymity and the performance of the network. Anonymity is defined
as the indistinguishability of a packet among all the packets traversing through the
network. The performance of the network is measured by the goodput which is defined
as the rate of useful information traversing the network excluding the network overhead
[24]. However, image file size easily reaches beyond 4 KB for a small monochrome
from our preliminary exploration, we argue that this suggested payload size is not
applicable to this work as we are working with uncompressed images. Uncompressed

1http://preservationtutorial.library.cornell.edu/intro/intro-06.html
2https://pypi.org/project/python-magic/

http://preservationtutorial.library.cornell.edu/intro/intro-06.html
https://pypi.org/project/python-magic/
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images are known to have larger file sizes, which require more packets to transmit
from the sender to the recipient for a payload size of 4 KB. Furthermore, the payload
size suggested by Jee et al. is not based on the number of pixel rows, thus it is not
well-suited for the work here.

Therefore, we propose a packet number (and thus payload size) based on the pixel
dimension in height that is suitable for this work. After some exploration with different
packet numbers, we decided that 8 is a suitable number of packets for this work. It
results in a payload size of 150,528

8 = 18,816 bytes. We give the following reasons for
such a decision for packet number:

• 8 is a factor of 224 which is the height of the image in pixels. Thus, the image
data would partition evenly across all the packets, and every packet contains the
same number of rows. Given one slow packet in the sequence of packets, the
number of valid pixels lost is invariant regardless of which packet in the stream is
actually the slow packet.

• Eight packets gives an adequate range of possible number of slow packets to
investigate in the experiments.

While using 8 packets to transmit an uncompressed image is sufficient in this work, we
acknowledge that different media are likely to require different numbers of packets for
efficient transmission. The implemented experimental framework is directly reusable
with some adjustments for the media type and modification to the total number of packets
during experiment initialisation. However, since the project’s focus was uncompressed
images, we did not investigate other packet numbers and it is left as future work.

4.5.3 Structure of Experiment Framework

For our experiments, it is not required to build the experiment framework on a mixnet
network simulator. Recall that while the slow packets are incurred by the mixnet, the
image inpainting process takes place at the recipient rather than within the mixnet
infrastructure. Thus we are interested in image recovery with the received packets after
the mixnet network at the recipient.

The experiment framework is a pipeline with components implemented in Python, the
experiment pipeline is repeated for different numbers of slow packets, which can in
turn determine a specific value of k (as defined in Section 3.2) that gives reconstructed
images close to their original. Partitioning every experimental image into 8 packets,
there are at most seven slow packets, since the recipient cannot inpaint on no data at all
- they must wait for at least one packet.

Subsequently, for all possible number of slow packets from 1 to 7, the experiment is
outlined as such:

1. We create monochromatic block-based and interleave-based inpaint masks and
write them to file locally for future reference.

2. The created masks are overlayed onto the experimental images using bitwise
AND operation. We refer to these images as the masked images. Thus, it results
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(a) Original (b) Block-masked (c) Interleave-masked

Figure 4.2: A selected image with filename ’485.jpg’ and its block- and interleave-based
masked images when the number of slow packets is 3.

in two sets of seven masked images for every experiment image for blocked-based
and interleave-based masking respectively; each image corresponds to a certain
number of slow packets. Figure 4.2 illustrates an example of the masked images.

3. We apply the three inpainting methods onto each masked image and the resultant
images are referred to as inpainted images.

The simulation for the traditional inpainting algorithms is run by executing
image_comparison_v3.py, specifying the path to the experimental images, the output
directories for the masked images, their masks and the inpainted images. The Python
script first performs steps 1 and 2 to create the masks and the masked images. Then for
step 3, the script executes the traditional inpainting algorithms. For the deep learning-
based method, we use a separate script for the simulation as the deep learning model
is implemented separately. The simulation of deep learning-based inpainting on the
image is run by executing ./multiple_images_test.sh in the terminal, specifying
the paths to the masked images and their masks, and the output directory of the inpainted
images. Here, we are not creating the masked images and their corresponding masks
again. This is because recall that the masked images and masks are created during
the simulation for the traditional inpainting algorithms. We pass the created masked
images and masks to the deep learning simulation, in order to ensure that the deep
learning-based algorithm inpaints on the same set of masked images and masks.

4.5.4 Design of Experiment Components

This section outlines the design of the key components of the experiment framework.
The exact implementation and any relevant modifications to the provided codebase can
be found in the submitted code. For block-based masks, we computed the contiguous
area of rows that needs to be masked, based on the proportion of slow packets out of the
total number of packets. One masked region denotes the information of one slow packet,
thus Figure ?? contains two masked regions as there are two slow packets. Recall that the
per-mix delays are sample randomly, thus the masked regions are also selected randomly
because there is a uniform likelihood of any packets in being a slow packet. For
interleave-based masks, to ensure that adjacent pixel rows are put into different packets,
the interleaving is achieved according to the description in Section 4.2. We selected
pixel rows belonging to the received packets (total_packets - slow_packets) and
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set the remaining pixel rows as masked regions in order to create the mask.

In terms of traditional inpainting methods, for the NS and TELEA algorithms, they
are directly invoked through the cv2.INPAINT_NS and cv2.INPAINT_TELEA flags in
the inpaint() function of the OpenCV for Python library. The provided inpaint
function requires both the masked image and its corresponding monochromatic mask
as parameters to operate. For the deep learning-based inpainting method, the original
Tensorflow implementation for DeepFillv2 is available in the authors’ Github repository.
It includes the script (test.py) to apply the model to inpaint a masked image. We
incorporated the script into a bash script (multiple_images_test.sh) to perform
inpainting for all experiment images. The full bash script is available in Section A.1.

4.5.5 Practical Issues during Setup

There were some technical issues to overcome when preparing the experimental frame-
work. In particular, we encountered package availability issues when setting up the part
of the environment framework for DeepFillv2. This is because the provided codebase for
DeepFillv2 has been frozen; it is only compatible with Tensorflow version 1, which is
supported until Python version 3.7. Moreover, it was advised to run the given codebase
on Python 3.63. This gave rise to the first issue to overcome: the system requirement for
DeepFillv2. Python 3.6 is only available natively on x86 architecture systems. As listed
in Section 4.4, the test machine Laptop has the Apple silicon M2 processor which uses
the ARM64 architecture. From our investigations, there is no native build of Python
below version 3.8 available for Apple silicon processors. The system requirement issue
was resolved by the use of Rosetta 2 to emulate the x86 architecture on the Laptop, thus
earlier Python versions could be installed. However, we then faced the second issue:
disabled Python packages. Since the end-of-life phase of Python 3.6 was reached at the
end of 2021, package managers such as Homebrew have disabled the related Python
packages. The installation of Python 3.6 is no longer available through official channels
as we encountered error messages of deprecated upstream. We also encountered system
requirement issues when setting up DeepFillv2 on the Raspberry Pi as the deep learning
model required resource-intensive packages that are not available for the Raspberry Pi.
Therefore, we decided to perform the experiments related to DeepFillv2 on the Lab
machine as it is an x86 system where we were able to set up the provided DeepFillv2
implementation without errors. For the runtime experiment, we were also able to set up
DeepFillv2 on DICE (SC), as it has a similar system configuration to the Lab machine.

4.6 Evaluation Metric

As the evaluation metric for image fidelity between the inpainted image and the pre-
transmitted image, we are using the mean Structure Similarity Index (MSSIM) because
of its consistency with various distortion types [29]. MSSIM is a full-reference objective
metric that shows a correlation with human visual perception. In the following section,
we give reasonings for using an objective metric over subjective human assessors.

3https://github.com/JiahuiYu/generative_inpainting/issues/105

https://github.com/JiahuiYu/generative_inpainting/issues/105
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4.6.1 Motivation for Objective Quality Metric

Historically both objective and subjective quality assessment metrics are used to measure
the performance of various inpainting methods [8, 29, 51]. Subjective viewing tests
are a type of human evaluation known for their effectiveness; however, they come
with additional challenges since a number of conditions need to be controlled. These
include test conditions such as lighting, image size, viewing angle, viewing distance
and duration of viewing [55]. Additionally, variation in participant conditions needs to
be factored in such as physical health, psychological differences, and the background of
the participant [55]. Maintaining these conditions is expensive, a cost which is added to
by the need for multiple human participants and repeated viewing sessions of various
image distortions with specialised equipment [29]. It is important to include some
post-assessment processing to aggregate the results and evaluate the inter-participant
agreement for every test condition to enable further analysis [29, 55]. The aim of
objective metrics is to reflect the image or video quality such that the scores align with
human perception of quality [41]. Using an objective metric overcomes the technical
challenges inherent in subjective methods: it intrinsically enables repeatability and
allows consistent statistical analysis without further processing [29].

4.6.2 Use of MSSIM in the Experiment

We used the MSSIM formulation where the per-pixel SSIM has default parameters of
α = β = γ = 1, as it gives a good balance between the luminance, contrast and structure
functions. It results in Equation 2.2 in Section 2.2.4.1. For every experiment image, we
compute the MSSIM score in the following scenarios at the recipient.

1. Pre-inpainting MSSIM score: The MSSIM score between the original pre-
transmitted image and the pre-inpainted image before the inpainting process.

2. Post-inpainting MSSIM score: The MSSIM score between the original pre-
transmitted image and the inpainted image obtained by the inpainting process.

Choice of MSSIM implementation There are several open-source Python packages
that implement the MSSIM, namely sewar4, a package specifically for image quality
metrics, and scikit-image5 (also known as skimage), a package for a wide range
of image processing functionalities. In the early stages of the experiments, we opted
to use the implementation provided in scikit-image as the library is popular among
its large user base as well as peer-reviewed code so that the code base is high quality
and consistent. However, we encountered dependencies issues when setting up the
experimental experiment on the Raspberry Pi due to hardware limitations. Since we are
only using the MSSIM functionality, we do not need all the functionalities offered by
scikit-image. To maintain a consistent experiment environment, we switched to using
sewar package, which is more lightweight as it only contains image quality metrics.
The package is actively being maintained and has at least one million installations, thus
it is also a popular package and suitable for this project.

4https://pypi.org/project/sewar/
5https://scikit-image.org/docs/stable/api/skimage.html

https://pypi.org/project/sewar/
https://scikit-image.org/docs/stable/api/skimage.html


Chapter 5

Experiments

This chapter details the experiments conducted to address the design factors in Sec-
tion 3.3.2.

5.1 Image Fidelity Experiments

5.1.1 DeepFillv2 Method

This section details the experiments conducted to optimise the DeepFillv2 model in
order to produce high-fidelity inpainted images.

5.1.1.1 Exploring Pretrained Models

This experiment compares the inpainted results on the experimental images using the
provided pretrained models of DeepFillv2. The authors of DeepFillv2 released two
sets of model weights pretrained on two commonly image datasets Places2 [57] and
CelebA-HQ [25] on their GitHub repository. Places2 consists of more than ten million
images of different categories of natural scenery and man-made constructions, and
CelebA-HQ is a dataset of 300,000 human faces.

5.1.1.1.1 Experiment Workflow To run the inpainting process with the two pre-
trained models, we specified the checkpoint directory of the command line argument for
multiple_image_test.sh to the path to the respective model weight directory. The
inpaint model was required to inpaint on two masking schemes for every image, blocked-
and interleave-based (Section 4.5.3, Step 2). Thus, there were two sets of inpainted
images for each pretrained model. For the sets of inpainted images, the post-inpainting
MSSIM scores are computed and are averaged to give the overall mean for each number
of slow packets. In order to assess whether a model significantly outperforms the other
model in terms of the average MISSIM scores, we computed the difference in the mean
scores obtained by the models and their 95% confidence intervals (CIs). The CIs of the
differences between the means give more robust statistical interpretations; they give
lower false negative rates than the CIs of the mean MSSIM obtained by each model.

27
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Number of slow packets
Block-based Interleave-based

CelebA-HQ Places2 CelebA-HQ Places2

1 0.836 0.836 0.894 0.891
2 0.734 0.731 0.837 0.844
3 0.625 0.623 0.767 0.776
4 0.517 0.512 0.700 0.712
5 0.401 0.399 0.610 0.633
6 0.283 0.283 0.506 0.540
7 0.161 0.169 0.314 0.341

Table 5.1: The mean of the post-inpainting MSSIM scores of block- (left) and interleave-
based (right) masks achieved by the CelebA-HQ and Places2 pretrained models, for
different numbers of slow packets.
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Figure 5.1: The difference in mean post-inpainting MSSIM scores between CelebA-HQ
and Places2 models on the inpainted images (denoted with ’×’) for a various number
of slow packets under block-based (5.1a) and interleave-based masking (5.1b). Error
bars represent the corresponding 95% confidence intervals. The horizontal dashed line
denotes no difference between the mean scores obtained by the two models.

5.1.1.1.2 Results Table 5.1 shows the average post-inpainting MSSIM scores.
Figure 5.1 visualises the differences in the means of the MSSIM scores between the
models with their CIs. The pretrained models were employed on the masked example
images in Figure 4.2 in Chapter 4. The results are displayed in the Section A.2.3.

5.1.1.1.3 Discussion For both Places2 and CelebA-HQ models, the mean post-
inpainting MSSIM scores under the ’Block-based’ column in Table 5.1 decreased
in even intervals as the number of slow packets increased. This indicated that the
reconstructed images of the block-based masking scheme had a steady decrease in
fidelity despite the application of inpainting. Both models achieved similar mean post-
inpainting MSSIM scores for block-based masked images. This was further confirmed
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in Figure 5.1a as the range of CIs all included 0. The findings in Figure 5.1a also agreed
with the 2-sampled t-test at 5% significance level, where the p-values were mostly
hugely greater than 0.05 (See Table A.1). Thus, there was strong evidence at 95%
confidence level that neither model on average produced significantly better inpainted
results when inpainting with block-masked images. Meanwhile, the Places2 model
mostly outperformed the CelebA-HQ model on average post-inpainting MSSIM score
of the interleave-masked images. In the case of inpainting interleave-masked images,
we found that the average post-inpainting MSSIM scores for interleave-masked images
were higher than the ones for block-masked images. The increase in the average scores
was particularly noticeable as the number of slow packets reached beyond 3. The mean
MSSIM scores increased by 34% and 37% from the scores for block-based masking
for CelebA-HQ and Places2 models respectively, when there were 4 slow packets. The
percentage increase of the mean MSSIM scores continued and eventually doubled when
the slow packet number was 7. The full breakdown of the percentage increases is in
Table A.2. Regarding the closeness of the inpainted images and their original images,
an inpainted image was considered to be close to its original when the post-inpainting
MSSIM score was at least 0.70 (Equation 3.1). Therefore, the pretrained models only
reached the closeness threshold when the number of slow packets was 1 (Table 5.1).
Thus, the latency was shortened by the time taken for 86% of packets to arrive, given
there were 8 packets in total.

The limitations in using the Places2 and CelebA-HQ models on the experimental images
are as follows. The visual inpainting outcomes on Figure 4.2a displayed some large
patches of incorrect colours and undesirable artefacts. In terms of the data distribution,
the two pretrained models were trained on various scenes and human faces, while the
model was tested on experimental images which were images of birds. The domains of
the images used for training and testing the models were not the same. Drawing both
training and testing data from the same distribution would give more representative
results. This gave the motivation for finetuning. In the case of testing on the different
domains of images, it is common to finetune the pretrained model weights to the specific
image domain. In the next sections, we attempted to finetune a set of DeepFillv1 model
weights using the Birds525 dataset.

5.1.1.2 Finetuning ImageNet-Pretrained Model on Birds525

Finetuning a model to a specific task is a fundamental deep learning technique that could
optimise the model performance during testing. The datasets Places2 and CelebA-HQ
were of very different domains compared to Birds525. The authors of DeepFillv1
released the pretrained model weights on the ImageNet [38] dataset. Thus, the purpose
of this experiment was to obtain an adapted set of model weights based on the Birds525
dataset.

Whilst the authors had demonstrated some realistic inpainting on images of birds using
the ImageNet DeepFillv1 model in [54], the ImageNet model weights were not directly
usable on the DeepFillv2 model. This was because the shape of the model weights
of DeepFillv1 was not equal to the shape required for DeepFillv21, so we could not

1https://github.com/JiahuiYu/generative_inpainting/issues/345

https://github.com/JiahuiYu/generative_inpainting/issues/345
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Figure 5.2: The overall autoencoder loss for finetuning the ImageNet model weights with
loss ratio 1:1 using the Birds525 dataset.

independently verify the inpainting outcome of ImageNet model weights on DeepFillv2
before finetuning. However, We chose to work with the ImageNet pretrained model
weights as there are selections of bird images in the ImageNet dataset, so ImageNet
images are of a closer domain to Birds525 than Places2 and CelebA-HQ. We deemed
that the ImageNet model weight was a good starting point for this experiment. Thus,
the ImageNet model weights were used for bootstrapping the model initialisation for
finetuning, where we supplemented the learnings from a well-performing model to
bird-specific images of Birds525.

5.1.1.2.1 Experiment Workflow The Birds525 data used for the finetuning process
was the set of training images (non-overlapping with the experimental images) and the
validation images. Thus we could assert that the model had been trained with data of
the same distribution when testing the inpainting process with the experimental images.

As part of the provided codebase, there is a Python script train.py which provides
both train and finetune functionalities (differentiated by the values in the configuration).
In order to finetune the ImageNet model, there were some modifications to the original
DeepFillv2 configuration. The parameter configurations for pretraining (also referred
to as training in the DeepFillv2 code) and finetuning, and the model hyperparameters
were specified in the provided inpaint.yml file. For this experiment, we used the
default configurations as detailed in the inpaint.yml file since previous pretrained
models under those configurations provided high-quality inpainted results. The full
configuration file was given in Section A.3.1. The path to the model to finetune from
was modified to the ImageNet model directory as specified in the instructions on the
GitHub repository. To begin the finetuning process, we ran the provided train.py
which initialised the model and training parameters as specified in the configuration file.
The finetuning process took approximately 157 hours on the Lab machine.

From the information provided for DeepFillv2 [53, 54] and its supplementary Github
repository, the implementation of DeepFillv2 does not include an explicit metric to
measure model convergence. It is advised to stop the finetuning process when the losses
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used in the model converge. The loss function relevant to our finetuning process was
the overall autoencoder loss of the entire image. It denoted the overall reconstruction
loss and was defined as the sum of the pixel-wise l1 loss in the masked regions and the
SN-PatchGAN loss.

5.1.1.2.2 Results Figure 5.2 gives the curve of the overall autoencoder loss through-
out the finetuning process.

The loss curve did not move to converge throughout the duration of the finetuning
process. The inpainted results also contained many undesirable artefacts (see Figure A.3
for an example). We suspected that the finetuning had failed as the curve did not
plateau towards convergence. Thus, this motivated the hyperparameter tuning in the
next section.

5.1.1.3 Tuning Loss Ratio Hyperparameter

In this experiment, we adjusted the ratio that combined the pixel-wise l1 loss and the
SN-PatchGAN loss. The default was set to 1:1 in the configuration file. We found
several discussions posted by other researchers on the DeepFillv2 Github repository on
tuning such ratio by reducing the parameter for the SN-PatchGAN on a trial-and-error
basis to produce results with fewer artefacts.2,3

5.1.1.3.1 Experiment Workflow We experimented with two different ratios on the
finetuning process by reducing the parameter for the SN-PatchGAN; the ratios were
0.5:1 and 0.9:1. We also tested the ratio 1:1 again in order to verify whether the previous
finetuning failed was due to the randomness of the finetuned model which was particu-
larly sensitive to the experimental images. The finetuning process took approximately
28 hours, 107 hours and 107 hours for ratios 0.5:1, 0.9:1 and 1:1 respectively.

5.1.1.3.2 Results Figure 5.3 illustrates the overall autoencoder loss for the afore-
mentioned loss ratios. The finetuning process for ratio 0.5:1 was stopped at around 3000
steps as it was clear that the model had failed from the non-converging autoencoder loss
curve in Figure 5.3a. Figures 5.3b and 5.3c show that the model loss for ratios 0.9:1
and 1:1 had converged as the curves plateaued. The loss curves indicate that the models
had been successfully finetuned.

We tested the inpainting process with the experimental images using those two models.
The mean of the MSSIM scores achieved by the models are given in Table 5.2. Com-
paring with scores achieved by the CelebA-HQ and Places2 model in Table 5.1, the
two pretrained models mostly outperformed the Birds525-finetuned ImageNet model.
While the finetuned ImageNet model achieved higher average MSSIM scores when
there were 6 and 7 slow packets with block-based masking, the scores were lower than
the closeness threshold of 0.70. Thus, we concluded that finetuning an existing model
to the Birds525 specific task was not more suitable as the inpainting algorithm for the
image reconstruction framework.

2https://github.com/JiahuiYu/generative_inpainting/issues/421
3https://github.com/JiahuiYu/generative_inpainting/issues/267

https://github.com/JiahuiYu/generative_inpainting/issues/421
https://github.com/JiahuiYu/generative_inpainting/issues/267
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Figure 5.3: The overall autoencoder loss for finetuning the ImageNet model weights
using the Birds525 dataset, for loss ratios 0.5:1, 0.9:1, and 1:1.
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Number of Slow Packets
Block-based Interleave-based
0.9:1 1:1 0.9:1 1:1

1 0.834 0.833 0.871 0.872
2 0.730 0.726 0.768 0.761
3 0.621 0.617 0.682 0.652
4 0.513 0.509 0.597 0.552
5 0.401 0.397 0.500 0.467
6 0.289 0.286 0.398 0.365
7 0.181 0.178 0.243 0.221

Table 5.2: The mean of the post-inpainting MSSIM scores of block-based (left) and
interleave-based (right) masks achieved when the loss ratios are 0.9:1 and 1:1, for
different numbers of slow packets.

We suspected that the lack of improved performance was caused by out-of-distribution
finetuning - that is, the mismatch between the distributions of the data used in the
pretraining and finetuning processes. Kumar et al. [26] demonstrated the significance of
in-distribution when finetuning, as the finetuned models often underperform, particularly
in the case of a large difference in the data distributions and high-quality pretrained
features. In our situation, ImageNet contains a much wider range of categories such that
it consists of only a small subset of bird images. Thus, there are possible dissimilarities
between the pretrain and finetune data distribution. In the following section, we
attempted to overcome the out-of-distribution issue by training the model from scratch
using the Birds525 dataset.

It is also interesting to note that the model train with a loss ratio of 0.9:1 generally
produced higher MSSIM scores than the one with a ratio of 1:1. It is possible that other
loss ratios would result in MSSIM scores closer to the closeness threshold. However,
it was not investigated further as there was a fundamental issue of out-of-distribution
finetuning which would not yield good results.

5.1.1.4 Training on Birds525 from Scratch

This experiment trains the DeepFillv2 model from scratch and assesses whether the
average MSSIM scores improve. Training the model from scratch had the advantage of
learning features and representation for inpainting solely on the Birds525 dataset.

5.1.1.4.1 Experiment Workflow In the configuration file, we set the training data
path to the training set of Birds525. The set of training images of Birds525 used did not
overlap with the experimental images as it is good machine learning practice to test on
unseen data. Despite the findings in the previous section, it was difficult to determine
whether there were other factors in the finetuning that contributed holistically to the
improved MSSIM values. Hence, we decided to leave the loss ratio as the default 1:1
since the model was being trained from scratch. To start the training process, we ran
the train.py script. The training process took approximately 230 hours.
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(a) DeepFillv2 on block-masked (b) DeepFillv2 on interleave-masked

Figure 5.4: Various inpainted images of Figure 4.2 using the DeepFillv2 algorithm for
the block-masked image (Figure 4.2b) on the left, and the interleave-masked image
(Figure 4.2c) on the right.

Number of Slow Packets Block-based Interleave-based

1 0.835 0.882
2 0.731 0.802
3 0.623 0.720
4 0.517 0.638
5 0.406 0.526
6 0.290 0.401
7 0.174 0.263

Table 5.3: The mean of the post-inpainting MSSIM scores of block-based and interleave-
based masks per number of slow packets, achieved by the DeepFillv2 model trained
from scratch on Birds525.

5.1.1.4.2 Results The converged autoencoder curve is omitted here due to space
limitation as it has a similar shape to Figure 5.3b; the actual plot can be found in
Figure A.4. Figure 5.4 shows the inpainted results of the example image in Figure 4.2
of Chapter 4. Table 5.3 gives the average post-inpainting MSSIM score per number of
slow packets for the two masking schemes.

In Figure 5.4a, DeepFillv2 successfully inpainted the scripts of masked regions whilst
preserving the contours of the bird, thoigh there were some colour inconsistencies
and missing features such as the beak. It was also apparent that there were clear
markings in Figure 5.4b at the masked areas. Inspecting the figure closely, we found
that while the model inpainted the correct type of colours such as a yellow colour for
the masked regions around the valid yellow regions, the markings were caused by the
wrong shades of the colours being inpainted. We hypothesised that the model produced
these inconsistencies due to the difference in the masks used in the original training
and in the testing here. The masks in the original training had a rectangular patch with
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(a) NS on block-
masked

(b) NS on interleave-
masked

(c) TELEA on block-
masked

(d) TELEA on
interleave-masked

Figure 5.5: Various inpainted images of Figure 4.2 using NS, TELEA, and DeepFillv2
algorithms. Figures 5.5a and 5.5c are for the block-masked image (Figure 4.2b), and
Figures 5.5b to 5.5d are for the interleave-masked image (Figure 4.2c).

several other irregular patches, while the masks that were applied to the experimental
images have rectangular patches spanning across the images. The mean post-inpainting
scores reflected the visual outcomes. The inpainting on the interleave-based masking
scheme reached the closeness threshold defined in Section 3.2. The features of the bird
remained evident, albeit the blurriness. The inpainting on the block-based masking had
lower MSSIM scores as the image no longer contained the beak nor the eye of the bird.

5.1.1.5 Conclusion on the DeepFillv2 Experiments

Based on the experiments performed on the DeepFillv2 model, we concluded the
following findings. Firstly the interleave-based masking (hence the interleave-based
packetisation scheme) produced consistently higher post-inpaint MSSIM scores for
all possible numbers of slow packets. Secondly, the provided Places2 and CelebA
pretrained models overall achieved the highest MSSIM scores, followed by the Birds525
model that was trained from scratch. We suspected it was because the pretrained models
had the optimal model hyperparameters. However, we decided to use the Birds525
model for DeepFillv2 in subsequent discussions as it produced better inpainting visually
as there was less colour inconsistency in the inpainted images.

5.1.2 NS and TELEA Methods

This experiment compares the image fidelity achieved by the traditional-based inpainting
methods, in order to establish an inpainting method that was acceptable for the image
reconstruction framework.

5.1.2.1 Experiment Workflow

The traditional methods are used directly as they, by design, do not require any addi-
tional processes for optimisation as DeepFillv2 in the previous sections. The average
MSSIM scores per number of slow packets were computed as part of the execution of
image_comparison_v3.py.
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Number of Slow Packets
Block-based Interleave-based
NS TELEA NS TELEA

1 0.900 0.901 0.972 0.969
2 0.797 0.800 0.893 0.886
3 0.687 0.691 0.832 0.820
4 0.575 0.578 0.795 0.798
5 0.455 0.460 0.711 0.714
6 0.335 0.340 0.614 0.616
7 0.207 0.213 0.506 0.517

Table 5.4: The mean of the post-inpainting MSSIM scores of block-based (left) and
interleave-based (right) masks achieved by the NS and TELEA algorithms, for different
numbers of slow packets.

5.1.2.2 Results

Figure 5.5 gives the inpainted results by NS and TELEA algorithms on Figure 4.2a, for
comparison purposes with the results of DeepFillv2.

In Figures 5.5a and 5.5c, the two algorithms performed worse visually than the Deep-
Fillv2 model as the outline of the bird was heavily misaligned at the boundaries and
regions of masked regions. Examining the MSSIM scores reported in Table 5.4, the
traditional methods had higher average scores at smaller numbers of slow packets than
DeepFillv2. This could be because the height of the masked regions was small which
was advantageous for interpolating from nearby known pixels. We decided that the tra-
ditional algorithms were well-suited for up to 5 slow packets according to the closeness
threshold and the visual outcomes, as the general features of the birds in the images
remained distinguishable. A two-sampled t-test was performed between the scores for
NS and TELEA under interleave-based masking; there was no significant difference
between the algorithms at 5% significance level [(t(1496)=-0.04480, p=0.9643].

5.2 Runtime Experiments

This experiment compares the time taken for the NS, TELEA and DeepFillv2 models
to complete the inpainting process, on the test machines listed in Section 4.4.

5.2.1 Experiment Workflow

We assumed that the recipient always loaded the inpainting algorithm prior to receiving
image packets. Thus the model loading time was not part of the experiment. We
defined the inpainting time as the elapsed time in seconds between the start and end
times to perform the inpainting on a single experiment image through calling of the
inpainting function of the inpainted algorithm. Specifically, the time at which the
function to inpaint the image was called, is denoted as the start_time. Once the
inpainting function finished, the time was recorded, marking the end_time. This timing
mechanism was added to the experiment framework and was implemented with the
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Test Machine NS TELEA DeepFillv2

Laptop 11.5 ± 6.33 11.3 ± 5.75 N/A
Lab machine 22.1 ± 11.9 18.5 ± 9.59 488 ± 23.3
DICE (SC) 19.2 ± 5.86 21.0 ± 7.10 315 ± 25.9

Raspberry Pi 313 ± 172 320 ± 170 N/A

Table 5.5: Mean inpaint times of an image and their standard deviation in milliseconds
given various inpainting methods on interleave-based masking on different test machines.

time module in Python before and after the invocation of the inpainting algorithm
to mark the relevant start and end times. Based on the previous experiments on the
two masking schemes, we decided to test interleave-based masking only because of
its consistently better performance. Thus for each test machine, we collected the sets
of inpaint times for interleave-masked images using the NS, TELEA, and DeepFillv2
models. The inpaint times for DeepFillv2 were collected on the Lab machine and DICE
(SC) as those were the only machines that met the system requirements for DeepFillv2.

5.2.2 Results

Table 5.5 summarises the average inpaint times on the experiment images under the
interleave-based masking scheme for the test machines.

As expected, the average inpaint times of the traditional models were much shorter
than the ones of the DeepFillv2 model. There was at least a 22-fold and 15-fold
increase when compared to the traditional methods on the Lab machine and DICE (SC)
respectively. The Raspberry Pi was only able to run the traditional methods. When
comparing its inpainting times against those of the other test machines, the Raspberry
Pi exhibited at least 14-fold increase for both the NS and TELEA algorithms.

In terms of the specific traditional methods, two-sampled t-tests were performed to
compare the difference between the average inpainting times of NS and TELEA. There
was a significant difference in the average inpainting time between the two tradi-
tional algorithms on the Lab machine [(t(1496)=8.161, p=6.976e-16] and DICE (SC)
[t(1496)=5.440, p=6.220e-08]. The differences in inpainting times for the Laptop and
the Raspberry Pi were insignificant at the 5% significance level. We suspect there were
other factors that contributed to the record runtime, such as system load during the
experiment, since neither traditional algorithm was significantly different across the test
machines consistently.

5.3 Implications on the Mixnet Image Reconstruction
Framework

This section summarises the experiment results to address the design factors detailed
in Section 3.3.2. From the image fidelity experiments, leveraging the interleave-based
packetisation model was beneficial. Given an inpainting model and a certain number of
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slow packets, the model would achieve higher MSSIM scores compared to block-based
packetisation. Thus in the mixnet context, the sender should prepare the stream of
packets such that the image pixel rows follow the interleave-based packetisation to
maximise the reconstructing performance of the inpainting model at the recipient.

The image fidelity experiments also addressed the minimum number of packets the
recipient should wait for before starting the image reconstruction process, i.e. the value
of k. The value of k is dependent on the ability of the chosen inpainting algorithm. We
should select a model that maintains high MSSIM scores w.r.t. the closeness threshold
even as the number of slow packets is large. Given 8 total packets, we investigated the
three inpainting models under all possible numbers of slow packets. We found that
CelebA-HQ and Places2 pretrained DeepFillv2 model could tolerate at most 50% slow
packets under interleave-based packetisation while the traditional methods permitted 5
slow packets. Thus the recipient could begin the image reconstruction process once three
(thus 38%) packets arrive using a traditional inpainting method in the reconstruction
framework. Note that since the packets arrive out-of-order, the packet preparation
process needs to be modified to include the total number of packets in the headers of
every packet so that the recipient can set the value of k.

It is crucial to consider the timing overhead incurred by the inpainting algorithm as part
of the design of the image reconstruction framework. This is because a key objective
of this work was to reduce the perceived latency by leveraging the reconstruction
framework. Hence the timing overhead must not dominate the mixnet network latency
for the usage of the image reconstruction framework to be meaningful. Conducting
the runtime experiment could identify the inpainting algorithms with the most efficient
implementation. While DeepFillv2 was designed to be lightweight compared to other
deep learning models, it remains the most complex model among the models explored
in this work. Its complexity in model architecture reflected its longer inference time
during inpainting. Combining the good inpainting performance and the fast runtime,
the traditional methods are most suited as the inpainting algorithm for the image
reconstruction framework, with no significance preference over NS or TELEA.

In terms of hardware for the inpainting task, by using the traditional algorithms, the
image reconstruction framework is executable from all the test machines of various
hardware configurations. However, we note that the runtime experiments showed that
the Raspberry Pi was not a suitable candidate as a recipient in practice as it displayed a
much slower average inpainting time compared to the other test machines on the fast
inpainting models.



Chapter 6

Project Evaluation

This chapter evaluates the overall work done in this project by discussing some of its
limitations and some interesting future work that could be built on the work here.

6.1 Evaluation and Limitations

We acknowledge that the evaluation in this work has taken a restrictive approach
to measuring human perception of image fidelity quantitatively since our primary
evaluation metric is the MSSIM score, an objective metric. We discussed repeatability
as an important advantage of objective metrics. Repeatability is crucial to this project
especially when training the DeepFillv2 models, as the MSSIM scores were used
to guide hyperparameter selections. In the future, it would be interesting to build a
mapping of our MSSIM-based findings to a subjective metric such as the MOS, to
further enhance the experiment results.

Improving the MSSIM performance of the different DeepFillv2 models explored in
Section 5.1.1 was challenging. Notably a significant period of the experiment stage of
the project timeline was dedicated to setting up and training the DeepFillv2 models
with various sets of parameters. The models, such as the model trained from scratch
on Birds525, eventually showed promising results and could be improved to match the
performance of the traditional methods. However, we decided not to pursue the deep
learning model further as its high runtime is impractical for actual usage in the image
reconstruction framework. For the time taken to inpaint the missing pixels using the
deep learning models, the recipient could simply wait for more or even the remaining
packets to arrive to render the complete image.

The traditional inpainting methods explored in this work are diffusion-based, which
means that the inpainting is limited to the information provided by the known pixels
nearby to the unknown pixels. Thus, these models cannot leverage a holistic, high-
level understanding of the image semantics. Hence, diffusion-based models are often
more suited for inpainting missing patches in the image background. However, in
this work, we have demonstrated that such restriction could be compensated by using
the appropriate packetisation schemes that are suitable for the inpainting algorithms,
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namely, interleaved-based packetisation.

While we have shown that inpainting algorithms can effectively fill in realistically the
masked areas in images, it comes with an important implication. Utilising an inpainting
algorithm to reconstruct missing information could include additions to the image that
might influence the true semantics of the original images. From our experiments, none
of the inpainting models reached an MSSIM score of 1, indicating a perfect replica of the
original image. Thus, there is no guarantee that the reconstructed image is semantically
identical to the original image. In some use cases such as on the Birds525 dataset, it was
acceptable that there were some alterations compared to the original images. However,
there are other use cases, such as in legal documents, where modifications would not
be acceptable. It is the responsibility of the human operator at the recipient to decide
whether the image reconstruction scheme is applicable.

6.2 Future Work

To the best of our knowledge, our application of an image reconstruction scheme is
novel in the context of continuous-time mixnet. We have demonstrated that on the
Birds525 dataset, the recipient could obtain a closely reconstructed image using only
38% of the total number of packets transmitted. Thus, the recipient only needs to wait
for the shortened duration of time for the first 38% packets to arrive instead of the entire
duration for all the packets to arrive. This approach to shortening the perceived latency
of information transmission is also applicable to many other media, such as videos, text,
and audio signals.

We give a brief discussion on some of the considerations when applying the recon-
struction approach to text. There are different granularities to tokenise text data. Text
data is also subject to complex linguistic processing for semantics, such as long-range
dependencies and linguistic ambiguity to perform prediction, adding another layer of
complexity. It would be interesting to explore the model for the reconstruction task.
Most state-of-the-art text models are large language models (LLMs) such as the GPT-3
[7]. The LLM architectures are more complex than the models explored in this project.
In addition to different media transmission, there could be more exploration of other
types of packetisation schemes which further improve the inpainting results.

These are all interesting aspects to explore. Extending the work presented here to other
low-latency media transmission can further widen the use cases of mixnet.
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Appendix A

DeepFillv2 Supplementary Materials

A.1 Bash Script for DeepFillv2

1 #!/bin/bash
2

3 # This script is used to test the multiple images inpainting
↪→ model.

4 # Parameters: <path_to_masked_images_folder> <
↪→ path_to_masks_folder> <path_to_outputs_folder>

5

6 # Check if the number of arguments is correct
7 if [ "$#" -ne 4 ]; then
8 echo "Usage: $0 <masked_images_folder> <masks_folder> <

↪→ outputs_folder> <checkpoint dir>"
9 exit 1

10 fi
11

12 # Extract folder paths from command-line arguments
13 masked_images_folder="$1"
14 masks_folder="$2"
15 outputs_folder="$3"
16 checkpoint_dir="$4"
17

18 # Check if the folder exists
19 if [ ! -d "$masked_images_folder" ]; then
20 echo "Error: Folder ’$masked_images_folder’ does not exist

↪→ ."
21 exit 1
22 fi
23

24 # Make the outputs folder if it does not exist
25 if [ ! -d "$outputs_folder" ]; then
26 mkdir -p "$outputs_folder"
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27 fi
28

29 # Loop through each file in the folder
30 for filename in "$masked_images_folder"/*; do
31 # Check if the file is a regular file
32 if [ -f "$filename" ]; then
33 # Perform an action here, for example, print the

↪→ filename
34 echo "Processing file: $filename"
35

36 # filename: chunk_mask_dropnum1_total8_filename15.jpg
37 # Extract file_num
38 file_num=$(echo $filename | sed -n ’s/.*filename

↪→ \([0-9]*\).*/\1/p’)
39

40 # Extract mask_type
41 mask_type=$(basename "$filename" | cut -d’_’ -f1)
42

43 # Extract dropnum
44 dropnum=$(basename "$filename" | grep -oP ’(?<=_dropnum

↪→ )\d+(?=_total)’)
45

46 # Extract total_packets, it is the number after ’total’
47 total_packets=$(echo $filename | sed -n ’s/.*total

↪→ \([0-9]*\).*/\1/p’)
48

49 # Print the extracted variables
50 echo "file_num: $file_num"
51 echo "mask_type: $mask_type"
52 echo "dropnum: $dropnum"
53 echo "total_packets: $total_packets"
54

55 # mask_name="${masks_folder}/${mask_type}
↪→ _mask_dropnum${dropnum}_total${total_packets}_filename${
↪→ file_num}.png"

56 # if mask_name is ’chunk’, then use mask_name="${
↪→ masks_folder}/${mask_type}_mask_dropnum${dropnum}_total${
↪→ total_packets}_filename${file_num}.png"

57 # else if mask_name is ’strip’, then use mask_name="${
↪→ masks_folder}/${mask_type}_mask_dropnum${dropnum}_total${
↪→ total_packets}.png"

58 if [ "$mask_type" == "chunk" ]; then
59 mask_name="${masks_folder}/${mask_type}

↪→ _mask_dropnum${dropnum}_total${total_packets}_filename${
↪→ file_num}.png"

60 elif [ "$mask_type" == "strip" ]; then
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61 mask_name="${masks_folder}/${mask_type}
↪→ _mask_dropnum${dropnum}_total${total_packets}.png"

62 else
63 echo "Error: Invalid mask type. Exiting."
64 exit 1
65 fi
66

67 inpaint_name="${outputs_folder}/${file_num}_${
↪→ mask_type}_dropnum${dropnum}_total${total_packets}
↪→ _generative.jpg"

68

69 echo "mask_name: $mask_name"
70 echo "inpaint_name: $inpaint_name"
71

72 python test.py --image "$filename" --mask "$mask_name"
↪→ --output "$inpaint_name" --checkpoint_dir "$checkpoint_dir"

73

74 # Catch error
75 # Check the exit status of the Python script
76 if [ $? -ne 0 ]; then
77 echo "Error: Python script failed. Exiting."
78 exit 1
79 fi
80 fi
81 done

A.2 Places2 and CelebA-HQ Pretrained Model Results

A.2.1 Significance Test Results

Block-based Interleave-based

Number of slow packets t-statistic p-value t-statistic p-value
1 -0.1606 0.8726 0.9069 0.3655
2 1.1030 0.2713 -1.5871 0.1140
3 0.8569 0.3925 -1.6166 0.1075
4 1.8652 0.0635 -2.0317 0.0434
5 0.8487 0.3970 -4.0398 0.0001
6 -0.0681 0.9458 -5.7306 0.0000
7 -3.0139 0.0029 -5.2194 0.0000

Table A.1: Significant test results for the difference in mean of post-inpainting MSSIM
scores between Places2 and CelebA-HQ models.
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A.2.2 Percentage Increase from Block- to Interleave-based Masking

Percentage Increase (%)

Number of Slow Packets CelebA-HQ Places2
1 6.5 6.1
2 12.3 13.3
3 18.5 19.7
4 26.2 28.1
5 34.1 37.0
6 44.0 47.6
7 48.8 50.5

Table A.2: The percentage increase of mean post-inpainting MSSIM scores from block-
to interleave-based masking achieved by the pretrained models.

A.2.3 Selected Inpainted Outcome for CelebA-HQ and Places2 Pre-
trained Models

A.2.3.1 Places2 Pretrained Model

(a) DeepFillv2 on block-masked (b) Places2 on interleave-masked

Figure A.1: Various inpainted images of Figure 4.2 using the Places2 pretrained model
for the block-masked image (Figure 4.2b) on the left, and the interleave-masked image
(Figure 4.2c) on the right.
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A.2.3.2 CelebA-HQ Pretrained Model

(a) DeepFillv2 on block-masked (b) Places2 on interleave-masked

Figure A.2: Various inpainted images of Figure 4.2 using the CelebA-HQ pretrained
model for the block-masked image (Figure 4.2b) on the left, and the interleave-masked
image (Figure 4.2c) on the right.

A.3 Finetuning DeepFillv2

A.3.1 DeepFillv2 Configuration File

The default configuration of the inpaint.yml file, provided by the authors:

1 # =========================== Basic Settings
↪→ ===========================

2 # machine info
3 num_gpus_per_job: 1 # number of gpus each job need
4 num_cpus_per_job: 4 # number of gpus each job need
5 num_hosts_per_job: 1
6 memory_per_job: 32 # number of gpus each job need
7 gpu_type: ’nvidia-tesla-p100’
8

9 # parameters
10 name: places2_gated_conv_v100 # any name
11 model_restore: ’’ # logs/places2_gated_conv
12 dataset: ’celebahq’ # ’tmnist’, ’dtd’, ’places2’, ’celeba’, ’

↪→ imagenet’, ’cityscapes’
13 random_crop: False # Set to false when dataset is ’celebahq’,

↪→ meaning only resize the images to img_shapes, instead of crop
↪→ img_shapes from a larger raw image. This is useful when you
↪→ train on images with different resolutions like places2. In
↪→ these cases, please set random_crop to true.

14 val: False # true if you want to view validation results in
↪→ tensorboard
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15 log_dir: logs/full_model_celeba_hq_256
16

17 gan: ’sngan’
18 gan_loss_alpha: 1
19 gan_with_mask: True
20 discounted_mask: True
21 random_seed: False
22 padding: ’SAME’
23

24 # training
25 train_spe: 4000
26 max_iters: 100000000
27 viz_max_out: 10
28 val_psteps: 2000
29

30 # data
31 data_flist:
32 # https://github.com/jiahuiyu/progressive_growing_of_gans_tf
33 celebahq: [
34 ’data/celeba_hq/train_shuffled.flist’,
35 ’data/celeba_hq/validation_static_view.flist’
36 ]
37 # http://mmlab.ie.cuhk.edu.hk/projects/celeba.html, please to use

↪→ random_crop: True
38 celeba: [
39 ’data/celeba/train_shuffled.flist’,
40 ’data/celeba/validation_static_view.flist’
41 ]
42 # http://places2.csail.mit.edu/, please download the high-

↪→ resolution dataset and use random_crop: True
43 places2: [
44 ’data/places2/train_shuffled.flist’,
45 ’data/places2/validation_static_view.flist’
46 ]
47 # http://www.image-net.org/, please use random_crop: True
48 imagenet: [
49 ’data/imagenet/train_shuffled.flist’,
50 ’data/imagenet/validation_static_view.flist’,
51 ]
52

53 static_view_size: 30
54 img_shapes: [256, 256, 3]
55 height: 128
56 width: 128
57 max_delta_height: 32
58 max_delta_width: 32
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59 batch_size: 16
60 vertical_margin: 0
61 horizontal_margin: 0
62

63 # loss
64 ae_loss: True
65 l1_loss: True
66 l1_loss_alpha: 1.
67

68 # to tune
69 guided: False
70 edge_threshold: 0.6

A.3.2 Inpainted Result from Finetuning with Default Loss Ratio

Figure A.3: A example of inpainting an image from the experimental images with 3 slow
packets, using the ImageNet model finetuned on Birds525.
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A.4 Training DeepFillv2 from Scratch
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Figure A.4: The overall autoencoder loss for training the DeepFillv2 model from scratch
on the Birds525 dataset.
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