
Trajectory planning for a differential drive robot
following an N-Arc path

Roberto Morassi del Blanco
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
This research investigates trajectory planning for differential drive robots, with a specific
focus on optimizing N-Arc path following. Differential drive robots, characterized by
their independent wheel control, present unique challenges and opportunities in motion
planning due to their distinct movement dynamics. Our study aims to enhance existing
trajectory planning methodologies by introducing innovative approaches tailored for
N-Arc paths. We address the challenge of precise N-Arc path following without the
need for complete stops at every Arc intersection, presenting solutions to mitigate this
issue. Our contributions include the development of trajectory planners for Arcs and
N-Arcs optimizing speed and accuracy and the implementation of algorithms to smooth
out splines for collision-free traversal of N-Arc sequences.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Roberto Morassi del Blanco)

ii

Acknowledgements
I would like to express my sincere gratitude to my parents, friends, and family for
their unwavering support and encouragement throughout this research journey. Their
constant presence and belief in me have been invaluable, providing the motivation and
strength needed to persevere through the challenges.

I extend my heartfelt appreciation to my supervisor, David Symmons, for his guidance
and mentorship. His expertise, encouragement, and constructive feedback have been
instrumental in shaping this research and fostering my academic growth.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 General robotics . 3
2.2 Types of robots . 4
2.3 Path representation . 4
2.4 Motion planning . 5

2.4.1 Path planning . 5
2.4.2 Trajectory planning . 5

2.5 Path planning techniques . 5
2.5.1 Artificial potential method 5
2.5.2 Cell decomposition method 6
2.5.3 Roadmap method . 6

2.6 Trajectory planning . 6
2.7 Minimum time trajectory planning across N-Arcs 7

3 Design and Implementation 9
3.1 Introduction . 9

3.1.1 The differential drive robot 9
3.1.2 Path representation . 11

3.2 Arc . 12
3.2.1 Properties of an Arc . 12
3.2.2 Methodology of trajectory planning 13
3.2.3 Implementation insights . 16

3.3 N-Arc . 16
3.3.1 Properties of an N-Arc . 18
3.3.2 Methodology of Trajectory planning 18
3.3.3 Implementation insights . 19

3.4 Spline . 20
3.4.1 Properties of a Cubic Spline 20
3.4.2 Methodology of Trajectory Planning 21
3.4.3 Implementation insights . 24

3.5 Smoothed Spline . 24
3.5.1 Properties of a Smooth Spline 24
3.5.2 Methodology of Trajectory Planning 27

iv

3.5.3 Implementation insights . 27

4 Experimentation 30
4.1 Estimation of parameters . 31
4.2 Methodology of testing and experiments 32
4.3 Results . 33

4.3.1 Algorithmic results . 34
4.3.2 Simulation results . 37

5 Conclusions 40

Bibliography 41

A Constraint derivations 43
A.1 Longitudinal acceleration limit on the left wheel (constraint 3.3) . . . 43
A.2 Longitudinal acceleration limit on the right wheel (constraint 3.4) . . 44
A.3 Longitudinal deceleration limit on the left wheel (constraint 3.5) . . . 46
A.4 Longitudinal deceleration limit on the right wheel (constraint 3.6) . . 47
A.5 Simultaneous Acceleration & deceleration limit due to changing radiu-

son the left wheel . 48

v

Chapter 1

Introduction

For autonomous robotics, the ability to navigate and execute complex movements with
precision is essential. Planning a collision-free and dynamically feasible trajectory is
fundamental in robotics, with a plethora of use cases in the real world. Differential
drive robots, characterized by their two independently driven wheels, offer a unique
set of challenges and opportunities in motion planning due to their distinct movement
dynamics.

This research delves into the intricate process of trajectory planning for differential drive
robots, focusing on the optimization of N-Arc path following. The core objective of this
research is to enhance the existing methodologies of trajectory planning by introducing
an innovative approach tailored for N-Arc paths. These paths, composed of consecutive
Arc segments, are a natural fit for the movement patterns of differential drive robots.
By optimizing the robot’s trajectory, we aim to achieve a seamless transition between
arcs, ensuring smooth navigation while adhering to the robot’s kinematic and dynamic
constraints.

We present a comprehensive study that begins with a foundational overview of general
robotics and motion planning. It then progresses to a focused examination of differential
drive robots and the specific techniques employed in their trajectory planning. Through
rigorous experimentation and analysis, we strive to push the boundaries of robotic
navigation, ultimately contributing to the advancement of autonomous robotics.

Motivations

N-Arcs, although being a natural fit for the movement patterns of differential drive
robots offer a range of challenges that are not present with other path representation
techniques. Particularly, as will be explained later in the report, if a differential drive
robot wants to follow an N-Arc path with exact precision (without deviating), it must
come to a complete stop at every Arc intersection.

In this paper we examine this pitfall and come up with solutions to mitigate it. In the
process of doing so, we come up with novel ways of carrying out Trajectory Planning.

1

Chapter 1. Introduction 2

Contributions of this project

• Examined the benefits and drawbacks of using a geometric way of representing a
vehicle’s path.

• Created a trajectory planner for Arcs that attempts to follow the Arc as accurately
and as fast as possible, without using the safety buffers.

• Created a trajectory planner for N-Arcs that attempts to follow the N-Arc as
accurately and as fast as possible, without using the safety buffers.

• Created a trajectory planner for Splines that attempts to follow the original N-Arc
path as accurately and as fast as possible, while using the indispensable part of
the safety buffers.

• Implemented an algorithm to smooth out a spline. From this and in combination
with the other aforementioned spline planner, a robot can traverse a sequence of
N-Arcs in a fast and accurate manner without entering into collision with objects.

Chapter 2

Background

This chapter will briefly introduce the concepts and techniques necessary for under-
standing this research. This will include common robotics concepts, motion planning
basics, and common path planning and trajectory planning techniques.

2.1 General robotics

The operating space of a robot is the physical space where it is located and is usually
represented in R3 for three-dimensional worlds (x, y, and z axis).

The configuration of a robot, commonly represented as q, refers to the explicit descrip-
tion of the robot. The nature of the configuration varies between robots as it describes
information such as the position of its joints, the location of the robot and its orientation
respective to a reference frame in the operating space.

The configuration space, often denoted as Cspace, represents all possible robot configu-
rations.

The free space, often represented as C f ree, denotes all possible configurations a robot
can adopt if it complies with all its constraints and does not collide with an obstacle.
The free space thus depends on the intricacies of both the robot and the environment it
operates in.

The obstacle space, frequently denoted as Cobs, denotes all the configurations of the
robot in which it does not comply with a constraint or enters into collision with an
obstacle.

C f ree +Cobs =Cspace

When carrying out motion planning with mobile robots, it is often more convenient and
efficient to use the operating space as the configuration space. A simplification of the
motion planning problem is achieved, as the robot can avoid collisions with obstacles
by checking if its configuration is in the free space or in the obstacle space.

3

Chapter 2. Background 4

2.2 Types of robots

There exists many different kinds of robots that are able to complete a variety of different
tasks. The two types that are most prominent and appear most in the literature are
articulated robots and mobile robots.

Articulated robots are commonly used in industry such as in manufacturing. Articulated
robots have a series of links connected by joints. Actuators can move the robot’s joints
in order to achieve a particular motion (such as, for instance, to mimic human arm
movements). Manipulators are be used to pick up, move, or otherwise manipulate
objects in the C f ree space. They are usually highly versatile given that their multiple
articulated axes which provide freedom of movement. Importantly articulated robots
do not necessarily have the ability to move around a space (the robot base is usually
stationary). [Singh and Banga, 2022]

Mobile robots are the kinds of robots that have the ability to move themselves around a
certain predefined space. There are many different kinds of mobile robots, but the vast
majority of mobile robots fall into one of two categories: car-like robots and differential
drive robots. Car-like robots are those that resemble cars in how they move: they usually
have 4 wheels and two axles (one that can steer - front axle - and one that cannot - rear
axle). Differential drive robots are those that resemble tanks: they usually have wheels
on either side of the robot on fixed non-steering axles, turn by varying the relative
rotation of the wheels on either side, and do not require additional steering motions.
When navigating tight and cluttered spaces, differential drive robots have an advantage
over car-like robots: they can turn on the spot.

For the purposes of this project, we will be focusing on differential-drive robots.

2.3 Path representation

A path is a description of consecutive configurations that a robot should adopt in order
to achieve a certain task. For an articulated robot, this could a list of angles for each
joint to move the manipulator from one place to another. For a mobile robot, this could
a set of locations that the robot should move to in order to achieve a certain motion.

When representing movement in space for mobile robots, paths are almost always
represented as a list of waypoints. These waypoints are pairs of coordinates on a
grid (sometimes with orientation data as well) which the mobile robot should adopt in
sequence. However, as shown by da Silva Arantes et al. [2019], representing paths as a
discrete set of waypoints can lead to constraint violations or entering into collision with
obstacles. This is due to the fact that, while the mobile robot might not be in collision
when located at some waypoint, it might enter into collision when at an intermediary
point in between two waypoints.

da Silva Arantes et al. [2019] proposes a novel approach to solve this issue, where
waypoints in a path are moved around so that at all points in between waypoints are also
collision-free. However, this approach can be computationally expensive and requires
the use of commercial solvers, which limits the potential use cases of the solution.

Chapter 2. Background 5

An alternative way to represent a path is by using geometric shapes such as lines,
circles, or arcs. By using this representation, we have a continuous representation that is
infinitely precise (defined for infinitely small time steps). Therefore, one can be certain
a robot does not enter into collision with an obstacle if it follows the designated path.

2.4 Motion planning

Motion planning is the general problem of finding a sequence of actions that moves a
robot from an initial state to a desired goal state, while avoiding collisions with obstacles
and satisfying the robot’s constraints. For mobile robots, the initial and goals states are
usually represented in the operating space.

In classical approaches to mobile robot motion planning, a divide-and-conquer approach
is followed. The motion problem is usually divided into three sub-problems: path
planning, trajectory planning, and tracking control [Rimon and Koditschek, 1992]. In
these approaches each consecutive step is considered completely independent of the
others. In this project, our focus will mainly be on the trajectory planning aspect.

2.4.1 Path planning

A path planning algorithm is one that generates a path from an initial starting point to a
final objective point while avoiding obstacles.

This path is usually defined in the operating space of the robot, although it can also be
defined in the configuration space of the robot. This is because the starting location, the
end location, and the obstacles to avoid (which are all relevant to path planning) are all
usually defined in the operating space rather than in the configuration space.

2.4.2 Trajectory planning

A trajectory planning algorithm adds time-dependent information to a previously gener-
ated path.

Particularly, a trajectory planning algorithm takes a path generated by a path planner, as
well as the kinematic and dynamic constraints of the robot, and generates a trajectory in
the form a time-dependant version of the path. This could be, for instance, represented as
a list of waypoints with values for velocity and acceleration. By adding time-dependent
information to a path, a trajectory planner is implicitly defining the inertial forces to
which a robot is subjected to, as well as the efficiency of the overall motion [Gasparetto
et al., 2015].

2.5 Path planning techniques

2.5.1 Artificial potential method

This approach treats the robot as a particle influenced by an artificial potential field,
representing it as a point in the Cspace. The primary objective of this method is to

Chapter 2. Background 6

guide the robot towards attractive regions while steering it away from repulsive fields
within its operational environment. In this context, obstacles are assigned as sources of
repulsive forces, while the robot’s destination point is treated as a positive force.

One common issue encountered is the robot becoming trapped in a local minimum
of the potential field. To address this problem, various solutions have been proposed,
including techniques such as random walks and backtracking. [Campbell et al., 2020]

2.5.2 Cell decomposition method

This approach involves partitioning the Cspace into cells. Cells containing obstacles are
further divided into smaller cells, while obstacle-free cells are incorporated into the
path sequence. These cells are then analysed to determine the relationships between
adjacent ones, with the ultimate objective of constructing a collision-free path from the
starting point to the destination. The process completed by identifying a path of cells
that join the starting and ending points. [Lingelbach, 2004]

2.5.3 Roadmap method

This approach involves transforming the robot’s Cspace into a network representing
feasible configurations and motions. There exist two main approaches to the roadmap
method: the Visibility Graph and the Voronoi diagram.

In a Visibility Graph, the vertices represent the start and goal points as well as polygonal
obstacles and the edges represent the edges of obstacles and connections between
vertices that have a line of sight to each other. A common challenge with visibility
graphs is that the resulting paths may lead the robot to collide with obstacles due to the
proposed path’s proximity to them (the path can be defined along an obstacles edges).

Voronoi diagrams, on the other hand, offer a solution to this issue. For a given set of
obstacles, each Voronoi cell defines the set of points that are closer to one obstacle than to
any other obstacle. The Voronoi diagram would then composed of the lines representing
the perimeter of these cells. This approach inherently ensures the construction of the
safest path for the robot because graph edges are positioned at the maximum distance
possible from nearby obstacles. [Campbell et al., 2020]

2.6 Trajectory planning

Trajectory planning is a classical problem within robotics, with a variety of different
techniques that have been recorded in the literature. Usually a path is assumed to have
been previously generated by a path planner and the optimization carried out by the
trajectory planner consists of finding the timing of motion under a number of constraints
[Massaro et al., 2023].

The main differentiator between trajectory planning techniques is their optimality
criteria.

Chapter 2. Background 7

Common optimality criteria

Time-energy optimal trajectory planning methods aim to balance execution time and
energy consumption. Trajectory planning based on energy criteria offers advantages
such as smoother trajectories, reduced stresses on actuators and manipulator structures,
and energy conservation, crucial for applications with limited energy sources like outer
space or underwater exploration [Gasparetto et al., 2015]. These methods usually
incorporate constraints on velocity, acceleration, jerk, and input force/torque. This can
be seen in the work done by Tokekar et al. [2014] on car-like robots, where they define
an energy model to minimize that is based on aforementioned constraints.

Jerk optimal trajectory planning methods aim to limit the the total jerk (defined as the
time derivative of acceleration) that a robot experiences. Trajectory planning based on
jerk optimality criteria offer advantages such as alleviated stresses on structures and
actuators, and reduced tracking errors [Gasparetto et al., 2015]. In studies conducted
by Piazzi and Visioli [2000], an algorithm aimed at minimizing the maximum absolute
value of jerk along a predefined trajectory is introduced. This technique, known as a
minimax approach, imposes constraints on the trajectory execution time while seeking
to optimize smoothness. By bounding the trajectory execution time and leveraging cubic
splines, this algorithm strives to achieve smoother robotic trajectories, contributing to
enhanced performance and reduced stress on manipulator structures and actuators.

Minimum time trajectory planning methods aim to generate a velocity profile that
minimizes the time it takes the robot to traverse a certain path. Trajectory planning
based on time optimality usually results in the robot accelerating and breaking with
great intensity and maintaining high velocities throughout the entire traversal of the
path.

For this project, it was decided to focus on creating a Trajectory planning algorithm that
minimizes traversal time.

2.7 Minimum time trajectory planning across N-Arcs

To the best of our knowledge, there has been no published research that aims to
create a trajectory planner for a mobile robot traversing N-Arcs. There has been some
limited research done on trajectory planning with N-Arcs, but this was for agricultural
articulated robots that were operating within their own task space [Boryga et al., 2015]
(notably these robots are not mobile - do not move). The algorithms proposed by Boryga
et al. [2015] ensure continuity in displacement, velocity, and tangential acceleration.
It is also relevant to note that there has been work done on path planning for N-Arcs
and car-like drive robots, such as that done by Fraichard [1991] (in this research path
planning was carried out rather than trajectory planning as there is no time-bound
outputs as part of the trajectory).

Okuyama et al. [2021] proposed a real-time minimum-time trajectory planning strategy
for differential drive robots traversing waypoint-based parameterized paths. While they
claim that their algorithm and optimization procedures are fast enough for real-time
usage (trajectory planning takes less than 13.8ms in 95% of test cases when traversing

Chapter 2. Background 8

an area of 1.5m × 1.3m), we believe the runtime of the algorithm could be even faster. In
their research, they proposed a novel friction model that takes into account longitudinal
and lateral forces on the wheels to prevent slipping. They also proposed a novel
optimization strategy based on the Resilient Propagation algorithm. We believe these
two novelties could be quite computationally demanding resulting in a longer-than-ideal
computation time. Especially is the case given that the proposed optimization strategy
has a cost function defined for the entire curve and changes the waypoints of the path to
attempt to minimize said cost - this is very time inneficient given that the changes to the
waypoints occur at random.

We will take inspiration from the literature while attempting to address any known
pitfalls.

Chapter 3

Design and Implementation

3.1 Introduction

To achieve the project’s objectives, we adopted a divide-and-conquer approach and
segmented the challenge into manageable sub-tasks. Initially, we developed a method for
creating a trajectory for a single Arc (the fundamental unit of an N-Arc). Subsequently,
we expanded this method to accommodate N-Arcs (multiple consecutive Arcs). Next,
we adapted and built on top of the previous system to support custom Splines (functions
composed of polynomial segments). Lastly, we integrated a custom version of a Spline
smoothing algorithm. The completed system is capable of producing a realistic velocity
profile for a differential drive vehicle, striving to generate a profile that is fast and allows
the vehicle to accurately follow the path.

This layered approach enabled us to construct a system grounded in fundamental
principles, which we then enhanced incrementally to create a solution that is more
resilient, more effective, and more comprehensive.

The trajectory planner algorithms described in this section assume that there exists a
path planner that has already generated path in the form of a sequence of N-Arcs that
the differential drive robot should follow. Furthermore, it is also assumed that the N-Arc
path has a defined safety buffer on either side of the path where the robot can move
to without entering into collision with nearby obstacles. The output of the trajectory
planner algorithms are a list of velocity values for each wheel, equally spaced in time.
The reasons for this are explained in later sections.

3.1.1 The differential drive robot

In order to conduct this research we needed to chose a particular differential drive robot,
as this choice might then influence design choices at later stages in the completion of
the project (such as the derivation of certain constraints).

When comparing differential drive robots, we need to consider a variety of things
such as the wheel configuration, wheel material and traction, control methods, veloc-
ity/acceleration characteristics and software development environment, among other

9

Chapter 3. Design and Implementation 10

things.

The wheel configuration is extremely important as there are some significant differences
between wheel configurations. Differential drive robots generally fall into one of three
distinct categories: two-wheeled, three-wheeled, and four-wheeled. The differences
between these are highlighted by Stefek et al. [2020].

• The two-wheeled design is mechanically simple and has the highest maneuver-
ability, but severely lacks stability.

• The three-wheeled design can have high traction and maneuverability due to the
forces being distributed through three points.

• The four-wheeled design has the highest traction and grip of all designs due
to there being four points of contact with the surface, but is relatively more
uncommon to find and needs powerful motors.

The wheel material is equally as important, as it dictates the traction that is the vehicle
has against the surface it is moving on. The amount of traction that the wheels have
directly correlates to the maneuverability that the robot has. Having a high maneu-
verability is paramount to making sure that the robot is capable of following all the
commands we generate, such as turning fast around a tight corner (without experiencing
wheel slip) [Kim et al., 2012, Kim and Lee, 2013].

Differential drive robots can be controlled using various methods. In open-loop control,
the robot executes predefined commands without feedback; in closed-loop control,
the vehicle uses feedback from sensors to adjust the robot’s behavior; and lastly, in
feed-forward control the robot anticipates disturbances and adjusts the control inputs
accordingly. Given that we are carrying out research on trajectory planning, we would
need to use an open-loop system. Within open-loop systems there are different ways
that a robot could be controlled: for instance by providing it with torque commands, by
providing it with wheel velocity commands, or by providing it with voltage commands
to each motor [Kolter et al., 2010].

The kinematic characteristics of a differential drive robot, such as the acceleration and
maximum velocity that the wheels of the robot can sustain, act as constrains on the
trajectory that the robot can realistically follow. For instance, if a robot has a maximum
acceleration of 3m/s2, it cannot be expected for the robot to accelerate from 2m/s
to 10m/s in 1s - such a trajectory would be considered unrealizable. The lower the
maximum acceleration of a robot is, the more challenging the task for the trajectory
planner as the constraint would be tighter.

When designing a trajectory planner, choosing the right robot based on software com-
patibility is crucial. Since our trajectory planning algorithm should be compatible
with other preexisting software such as other path planning, localisation, and mapping
algorithms, we would want the robot’s software development environment to be one
that is commonly used in the industry.

When taking into consideration all of the aforementioned factors, one particular family
of robots was chosen to be of particular interest: The family of Turtlebot differential
drive robots. These are a series of differential drive robots that are small, affordable

Chapter 3. Design and Implementation 11

and use a Robot Operating System (ROS) based software stack. These are among
the most popular open source robotics platforms for education, research, and product
prototyping.

In particular among the Turtlebot family, we opted for the Turtlebot 3 Burger model.
This is a platform that is relatively new and has all the important features that are needed
for this project [ROBOTIS e-Manual]:

• It has a three-wheel configuration for good traction and high maneuverability
(note that one of the wheels is inactive and, given the low resistance to motion
of the third inactive wheel, the vehicle dynamics are modeled to behave like a
two-wheeled vehicle).

• The tire material is rubber. Their composition ensures good traction on different
surfaces, allowing the robot to move effectively.

• The Turtlebot 3 Burger is compatible with different Control architectures. Impor-
tantly for this project, it is compatible with an open-loop control architecture that
accepts linear velocity and angular velocity as commands.

• In terms of its kinematic characteristics, the Turtlebot 3 Burger has a low max-
imum linear velocity of 0.22m/s and maximum angular velocity of 2.84rad/s,
but these limits are not physical constraints and can be increased/removed in the
software.

• The robots in the Turtlebot family are all compatible with the Robot Operating
System (ROS) framework. ROS is a powerful and versatile software framework
that provides essential functionality and tools for developing software for robots.

3.1.2 Path representation

As explained previously in the Background section of the report, there are multiple
ways of representing a path. With careful consideration, it was decided that using a
geometrical shape representation was best for this project. Specifically, it was chosen to
represent it using N-Arcs and it was for the following two main reasons:

The first reason for representing the path with geometric shapes relates to collision with
objects. Given that the path planning process should be risk-aware, having the path
encoded in a discretized way such as a list of waypoints would lead to possible violations
of constraints between two distinct and contiguous waypoints (such as colliding with an
obstacle). This is important both for the path itself and for the safety margins on each
side of the path.

The second reason for representing the path as an N-Arcs sequence is directly related to
the type of robot we will be using - the differential drive robot. When a differential drive
robot is moving with a constant velocity on each of its wheels, its traverses the shape of
a perfect circle (as long as the wheel speeds are not equal). Thus, since a differential
drive robot naturally drives in arcs, it would be natural to represent its path as an N-Arc
series.

Chapter 3. Design and Implementation 12

For the fair comparison between the trajectory planning methods used in this section,
we will define a common NArc sequence. This NArc sequence will be used in the
diagrams of this section, can be seen in Figure 3.1 and is defined by the following set of
consecutive Arcs:

1. Arc of radius 1m, length 1.5m, turning RIGHT.

2. Arc of radius 2m, length 1.5m, turning LEFT.

3. Arc of radius 2m, length 2m, turning RIGHT.

4. Arc of radius 2m, length 3m, turning LEFT.

Also note that in all diagrams in this section, the maximum longitudinal acceleration
and deceleration are set to 1.0m/s, the maximum lateral acceleration is set to 2.0m/s
and the maximum longitudinal velocity is set to 1.2m/s.

Figure 3.1: Common NArc sequence used to benchmark the methods described in this
section

3.2 Arc

To generate a velocity profile for an entire N-Arc sequence, we need to generate a
velocity profile for a singular Arc. In further sections we will build on top of the work
carried out in this section.

3.2.1 Properties of an Arc

An arc is generally defined as a portion of the circumference of a circle. It is a smooth
and continuous curve in a two-dimensional plane. In mathematics an Arc is defined

Chapter 3. Design and Implementation 13

for all types of curved shapes, but for the purposes of this research we will limit our
definition to just circles.

An arc has a constant radius r and length l. The angle within the circle that is traversed
by the entire arc can be calculated with θ = l

r (given that the angle θ is in radians).

3.2.2 Methodology of trajectory planning

The goal with this section is to make the differential drive robot traverse an arc while
following a best effort approach to follow the arc accurately (not deviate significantly
from the arc) and quickly (traverse the arc in as little time as feasibly possible). We will
do this without utilizing the given safety margins.

3.2.2.1 Constraints

Given that the trajectory will be defined as the velocities that each wheel of the differ-
ential drive robot should have to traverse the arc, we decided to build our constraints
around velocities and accelerations to be more efficient (in terms of runtime) than
computing the individual forces (as done in other methods).

First we will build constraints to form an ’upper boundary’ on the velocity profile.
Several constraints will form the upper boundary, and the lowest of each constraint at
each point in the path is taken to be the upper boundary (velocities must not surpass
this point).

The first constraint forming this upper boundary will account for the lateral forces that
act on the robot and the tires. The reason we apply this constraint is because if a the
robot goes too fast around a corner, the tires might lose grip or the robot might topple
over. The formula for lateral acceleration is derived from the principals of circular
motion and Newton’s second law of motion. As the robot travels around a curve it
experiences a centripetal force Fc (the force that is directed towards the center of the
curve and is responsible for making the vehicle move in a curved path):

Fc =
m · v2

r

where m is the mass of the vehicle, v is the linear velocity of the vehicle, and r is the
radius of the curved path. From this formula, we can combine it with Newton’s second
law of motion (F = m ·a) to derive the lateral acceleration alat :

alat =
v2

r

From this lateral acceleration we can then combine it with Newton’s third law of motion
(centrifugal force that is acted on the wheels) and we can finally derive our second first:

v≤
√

maxAlat · r (3.1)

where maxAlat is the maximum lateral acceleration that can be sustained by the differ-
ential drive robot before starting to lose grip due to centrifugal forces, or if it starts to

Chapter 3. Design and Implementation 14

tip over. This will be again applied to each wheel (thus r will differ slightly between
each wheel due to the wheelbase of the robot).

The second constraint forming the upper boundary was introduced after discovering
some instabilities during testing. After a certain velocity was reached, the robot would
not accelerate in an expected way, sometimes even accelerating more one wheel than
another thus leading the differential drive robot to unexpectedly turn to one side. This
will be discussed later in the Experimentation chapter. To mitigate this issue, it was
decided that the velocity of each wheel should be limited:

v≤ maxVlong (3.2)

where maxVlong is the maximum longitudinal velocity that can be sustained by one
wheel while still being able to accelerate and decelerate as expected.

By taking the minimum of constraints 3.1 and 3.2 we form the upper boundary of
velocities in the velocity profile. Now, we will create variables that enforce acceleration
and deceleration constraints and thus are able to calculate the true velocity profile.

The third set of important constraints limit the acceleration of each wheel of the
differential drive robot. For any two consecutive points (p0 and p1) in the path, the
velocities of each wheel must not surpass

maxAlong ≥
v1− v0

t

and
maxDlong ≥

v0− v1

t
where maxAlong is the maximum longitudinal acceleration that can be sustained by one
wheel, v0 and v1 are the velocities of the wheels on the same side (left or right) at points
p0 and p1 respectively (p1 is the point directly after p0 in the curve), and t is the time
taken for the robot to travel from p0 to p1.

To eliminate the unknown time variable t, we combine the above constraints with the
following formulas: s = v0L+v0R+v1L+v1R

4 · t (derived from the formula for velocity) and
v1R
r1R = v1L

r1L (ratio of velocities of each wheel is proportional to the radius of curvature
each wheel is experiencing), where s is the distance between p0 and p1, v0L and v0R
are the left and right wheel velocities at p0 respectively, and v1L and v1R are the left
and right wheel velocities at p1 respectively. The final constraints are as follows:

When turning right (r1R≤ r1L),

v1L≤

√
4 · r1L · (r1L+ r1R) · (v0L2 + v0L · v0R+4 · s ·maxAlong)+(r1R · v0L− r1L · v0R)2

2 · (r1L+ r1R)

− r1L · v0R+ r1R · v0L
2 · (r1L+ r1R)

(3.3)

Chapter 3. Design and Implementation 15

When turning left (r1L≤ r1R),

v1R≤

√
4 · r1R · (r1L+ r1R) · (v0R2 + v0L · v0R+4 · s ·maxAlong)+(r1L · v0R− r1R · v0L)2

2 · (r1L+ r1R)

− r1R · v0L+ r1L · v0R
2 · (r1L+ r1R)

(3.4)

Note that the full derivation of these constraints can be found in the appendix (appen-
dices A.1 and A.2). The reason for only constraining the left wheel when turning right is
because the left wheel’s velocity is higher than the right wheel’s velocity during a right
turn, thus the left wheel’s velocity offers a tighter constraint. Similarly, the right wheel’s
velocity is more tightly constrained when turning left. The velocity of the right and
left wheels are bound by the ratio of the radius of curvature at that wheel (v1R

r1R = v1L
r1L);

this can be used to calculate the missing wheel’s velocity from the above constraints.
These constraints are necessary so that traction is maintained and to account for explicit
limitations in the control commands given to the robot.

The fourth set of constraints are limits on the deceleration of each wheel of the differen-
tial drive robot. These constraints are similar to 3.3 and 3.4 (however, in this case v0L
and v0R are the unknown variables whereas v1L and v1R are given). The full derivation
can be found in the appendices A.3 and A.4.

When turning right (r0R≤ r0L),

v0L≤

√
4 · r0L · (r0L+ r0R) · (v1L2 + v1L · v1R+4 · s ·maxDlong)+(r0R · v1L− r0L · v1R)2

2 · (r0L+ r0R)

− r0L · v1R+ r0R · v1L
2 · (r0L+ r0R)

(3.5)

When turning left (r0L≤ r0R),

v0R≤

√
4 · r0R · (r0L+ r0R) · (v1R2 + v1L · v1R+4 · s ·maxDlong)+(r0L · v1R− r0R · v1L)2

2 · (r0L+ r0R)

− r0R · v1L+ r0L · v1R
2 · (r0L+ r0R)

(3.6)

Constraints 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 are to be applied to each wheel and should
not be violated throughout the entire trajectory. Is important to note that maxAlong,
maxDlong, maxAlat , and maxVlong will be estimated later during the experimentation
phase.

3.2.2.2 Methodology

In order to generate a velocity profile, we first discretize the path into distinct points that
can be iterated over. We know that the robot will not enter into collision with any object
because at any point in the arc the robot is not at collision with an object (discretized at
very small timesteps).

Chapter 3. Design and Implementation 16

To generate the velocity profile we propose a three step process, where each consec-
utive layer will aim to reduce the velocity further to stay within the aforementioned
constraints.

The first and second steps will set upper boundaries in the velocity for the lateral
acceleration (constraint 3.1) and the maximum velocity (constraint 3.2). Given that
the radius is constant across the entire arc, the lateral acceleration constraint will be
constant and thus both constraints act as upper boundaries in the velocity profile.

The third and fourth steps will make sure that the acceleration and deceleration con-
straints are not violated (constraints 3.3, 3.4, 3.5, and 3.6).

1. We will first do a forwards pass (iterate through all the points in the arc) to
enforce constraints 3.3 and 3.4. In this step, the velocities v0L and v0R are used
to calculate the velocities v1L and v1R that would maximize the acceleration. If
the resulting velocity values are lower than the previous velocity values resulting
from step 1 and 2, then they are kept.

2. We will then do a backwards pass to enforce constraint 3.5 and 3.6. Similarly to
the previous step, the velocities v1L and v1R are used to calculate the velocities
v0L and v0R that would maximize the deceleration. Again, if the resulting velocity
values are lower than what was previously calculated, then they are kept.

The four described steps make sure that the differential drive robot drives fast and
accurately through the arc.

3.2.3 Implementation insights

It is important to note why we iterate over points in space rather than iterating over
points in time. The reason for this is that each of the aforementioned steps modify the
velocity of the robot at each point in the curve and thus the time it takes to traverse
the curve. It would be infeasible to iterate over time as the time dimension would be
constantly changing. However, given that the output of the trajectory planner needs to
be the velocity of each wheel in time, after all four steps are carried out, the trajectory
is interpolated over time.

In algorithm 1 you can find a simplified pseudocode of our implementation of the code.
It is assumed that all of the constants are given.

In practice, this was implemented in Python. Within the implementation, mathematical
libraries such as numpy were used to speed up the runtime of the algorithm.

3.3 N-Arc

In this section we will build on top of the work done in the previous section in order
to generate a velocity profile for an entire N-Arc sequence. We will do this without
utilizing the given safety margins (the robot should follow the N-Arc sequence as
accurately as possible).

Chapter 3. Design and Implementation 17

Algorithm 1 Trajectory planning for Arc
Require: maxAlong, maxDlong, maxAlat , maxVlong, arc, wheelbase

r← arc.radius
rL← r+ 1

2 ·arc.direction ·wheelbase ▷ Radius of left wheel
rR← r− 1

2 ·arc.direction ·wheelbase ▷ Radius of right wheel
pro f ile1L←

√
maxAlat · rL

pro f ile1R←
√

maxAlat · rR
if arc.direction = 1 then ▷ If turning right, the left wheel will travel faster

pro f ile2L← maxVlong
pro f ile2R← pro f ile2L · rR

rL
else

pro f ile2R← maxVlong
pro f ile2L← pro f ile2R · rL

rR
end if
pro f ile2L← minimum(pro f ile1L, pro f ile2L)
pro f ile2R← minimum(pro f ile1R, pro f ile2R)
for i = 0; i <= len(pro f ile2)−2; i++ do

if arc.direction = 1 then
pro f ile3L[i]← minimum(pro f ile2L[i],CONSTRAINT 3.3)
pro f ile3R[i]← pro f ile3L[i] · rR

rL
else

pro f ile3R[i]← minimum(pro f ile2R[i],CONSTRAINT 3.4)
pro f ile3L[i]← pro f ile3L[i] · rL

rR
end if

end for

for i = len(pro f ile2)−1; i >= 1; i−− do
if arc.direction = 1 then

pro f ile3L[i]← minimum(pro f ile2L[i],CONSTRAINT 3.5)
pro f ile3R[i]← pro f ile3L[i] · rR

rL
else

pro f ile3R[i]← minimum(pro f ile2R[i],CONSTRAINT 3.6)
pro f ile3L[i]← pro f ile3L[i] · rL

rR
end if

end for

tra jectoryL, tra jectoryR← TimeInterpolate(pro f ile4L, pro f ile4R)
return tra jectoryL, tra jectoryR

Chapter 3. Design and Implementation 18

3.3.1 Properties of an N-Arc

An N-Arc is defined as being a consecutive sequence of Arcs. The total length l of
the N-Arc sequence is the sum of the lengths of the individual arcs. The radius r at a
particular point in the N-Arc sequence depends on the arc that point is located in:

Arc(t) =

arc1 if 0≤ t ≤ arc1.length,
arc2 if arc1.length < t ≤ arc1.length+arc2.length,
...

where 0≤ t ≤ narc.length is the step along the N-Arc sequence. From this definition,
one can determine the radius r and the direction of the curve at any point in the N-Arc
sequence.

For the purposes of this research we will use N-Arcs that are C1 continuous. This means
that the N-Arc sequences are continuous even if differentiated once, but not necessarily
continuous if differentiated more than once. This is showcased in the below diagrams
where we can see an N-Arc sequence of two arcs with different radii.

In practice this means that there can exist discontinuity in the acceleration between two
consecutive arcs. Specifically, we can observe that this happens when two consecutive
arcs have different radii or different directions.

3.3.2 Methodology of Trajectory planning

3.3.2.1 Constraints

The discontinuity of the acceleration between two consecutive arcs of different radii
creates a significant problem: the differential drive robot cannot traverse the point that
joins both arcs without violating the wheel acceleration and deceleration constraints
(3.3, 3.4, 3.5, and 3.6), unless it comes to a complete stop.

The following situation will illustrate the problem; Suppose a differential drive robot
(with a wheelbase of 0.2m) is traversing an N-Arc sequence of two Arcs - one turning
right with a radius of 1m and another turning left with a radius of 0.5m. When traversing
the first arc, the left wheel of the differential drive robot is traversing on an arc with a
radius of 1.1m while the right wheel is traversing on an arc of 0.9m in radius. When
traversing the second arc, the left wheel traverses an arc with radius 0.4m while the
right wheel traverses an arc with radius of 0.6m. At the point where both arcs meet, the
differential drive robot is incapable of not violating constraint 3.3, 3.4, 3.5, and 3.6 as
it cannot accelerate/decelerate both wheels fast enough, unless it drives to a complete
stop at that point.

3.3.2.2 Methodology

Given the aforementioned problem due to the discontinuity of the acceleration across
consecutive arcs, we will force the velocity of both wheels to be 0 at the point where

Chapter 3. Design and Implementation 19

the arcs join. This will make sure that no constraints are violated for the entirety of the
generated trajectory.

Since we force the velocity to be 0 at each Arc intersection, we will essentially create
a velocity profile for each Arc individually and then combine it to create a velocity
profile for the entire N-Arc sequence. For this we will use algorithm 1 as described in
the previous section.

Figure 3.2: Velocity profile created by NArc trajectory planner

3.3.3 Implementation insights

For the implementation, we reused algorithm 1 given the similarities between both
solutions. This can be seen in algorithm 2.

Algorithm 2 Trajectory planning for Arc
Require: maxAlong, maxDlong, maxAlat , maxVlong, arcs, wheelbase

tra jectoryL← empty list
tra jectoryR← empty list
for arc in arcs do

pro f ileL, pro f ileR ← Algorithm1(maxAlong,maxDlong,maxAlat ,maxVlong,arc,
wheelbase)

tra jectoryL← tra jectoryL+ pro f ileL
tra jectoryR← tra jectoryR+ pro f ileR

end for
return tra jectoryL, tra jectoryR

Chapter 3. Design and Implementation 20

Figure 3.3: Accelerations of velocity profile created by NArc trajectory planner

3.4 Spline

In this section we will address the pitfalls of the previous methodology of generating a
trajectory for N-Arcs - specifically we will generate a trajectory that does not require
the differential drive robot to come to a complete stop at the intersection of every pair
of Arcs in the N-Arc sequence.

For this, it is necessary to modify the path that the robot needs to follow. Particularly, in
order not to violate the wheel acceleration/deceleration constraints, we need to modify
the path so that it becomes C2 continuous. At this point, we will start using the safety
boundaries at each side of the original N-Arc sequence.

3.4.1 Properties of a Cubic Spline

As previously discussed, N-Arc sequences are only C1 continuous. An N-Arc path can
only be C2 continuous if and only if all the Arcs in the sequence have the same radius
of curvature and turn to the same direction. Therefore, given that we are looking for our
path to have C2 continuity, we need to change our path representation from now on -
from the originally given N-Arc sequence to a new representation.

When exploring different new ways to represent the given path, we considered:

1. Similarity to the original N-Arc sequence in terms of path location (deviation
from its original path) and smoothness.

2. Computational efficiency when converting the N-Arc sequence to this new repre-
sentation and when calculating all the points in the path, along with their first and
second derivatives.

Chapter 3. Design and Implementation 21

3. ”Malleability” in terms of how computationally efficient it is to slightly alter the
location of sections of the path (this will become useful when attempting to make
the trajectory more time efficient - done in the next section).

Ultimately, it was decided to represent the path as a continuous Cubic Spline. A Cubic
Spline is a parameterized smooth curve that is defined piece-wise by polynomials.
Crucially for this research, a Cubic Spline is C2 continuous. A Cubic Spline is created
from the coordinates of points that should be intersected by the curve.

1. A Cubic Spline is smooth in nature and can very similarly approximate the
original N-Arc sequence.

2. Given the piece-wise parameterization of Cubic Splines, it is very time efficient
to calculate all points in the path as well as the first and second derivatives.

3. It is computationally efficient to alter the locations of sections of the path - this is
done by just modifying the location of the coordinates of a point along the curve.

3.4.2 Methodology of Trajectory Planning

3.4.2.1 Constraints

The trajectory will need to be subject to the same constraints as with previous steps.
For this we will directly reuse constraint 3.1 for the lateral acceleration, 3.2 for the
longitudinal velocity, 3.3 and 3.4 for the longitudinal acceleration, 3.5 and 3.6 for the
longitudinal deceleration.

However, an additional set of constraints is needed to account for the possible change
change in the curve’s radius between two distinct points (this situation did not arise
with Arcs, for instance, as they have a constant radius of curvature). Specifically, the
simultaneous acceleration of one wheel and deceleration of another wheel (resulting
from a change in radius) is not accounted for up until this point. The derivation for this
can be found in appendix A.5.

If:

0≤ s ·r1
2 ·r0

2 ·(r1L ·r0R−r1R ·r0L)·(maxAlong ·(r1 ·r0R+r0 ·r1R)+maxDlong ·(r1 ·r0L+r0 ·r1L))

Then:

v0≤
√

2 · s · r1 · r0
2 · (r1L ·maxDlong + r1R ·maxAlong)√

s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0R+ r0 · r1R)+maxDlong · (r1 · r0L+ r0 · r1L))
(3.7)

v1≤
√

2 · s · r1
2 · r0 · (r0L ·maxDlong + r0R ·maxAlong)√

s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0R+ r0 · r1R)+maxDlong · (r1 · r0L+ r0 · r1L))
(3.8)

Chapter 3. Design and Implementation 22

Else:

v0≤
√

2 · s · r1 · r0
2 · (r1L ·maxAlong + r1R ·maxDlong)

−s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0L+ r0 · r1L)+maxDlong · (r1 · r0R+ r0 · r1R))
(3.9)

v1≤
√

2 · s · r1
2 · r0 · (r0L ·maxAlong + r0R ·maxDlong)

−s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0L+ r0 · r1L)+maxDlong · (r1 · r0R+ r0 · r1R))
(3.10)

Therefore, now the upper boundary is formed by constraints 3.1, 3.2, 3.7, 3.8, 3.9, 3.10,
while the actual trajectory generation is done by constraints 3.3, 3.4, 3.5, and 3.6.

3.4.2.2 Methodology

Before generating the velocity profile we need to convert the N-Arc sequence into a
Cubic Spline. Since a Cubic Spline is created from a set of way-points, we will need
to sample the N-Arc sequence (take a point every certain number of metres) in order
to create the Spline. The closer the points are sampled to one another, the greater the
resemblance will be between the original N-Arc sequence and the newly created Spline.

To generate the velocity profile, we will follow a similar approach as we did for a
singular Arc, with some modifications to account for the now not-constant radius and
the addition of a step within the creation of the upper ceiling to accommodate constraints
3.7, 3.8, 3.9, and 3.10.

The first and second steps will set upper boundaries in the velocity due to limits on the
lateral acceleration (constraint 3.1) and the maximum longitudinal velocity (constraint
3.2). Given that the radius is not constant across the entire curve, the lateral acceleration
constraint will need to be computed for every point in the curve. This means that for
one particular point in the curve, both of the aforementioned constraints might differ (at
some points in the curve constraint 3.1 might be more restrictive than constraint 3.2 or
vice-versa).

The third step will consider the newly added constraints (3.7, 3.8, 3.9, and 3.10). In this
step, we would iterate over all pairs of consecutive points in the curve and calculate v0
and v1 such that they are maximized within the constraints. Up to this point we have
created the upper ceiling.

The fourth and fifth steps will make sure that the acceleration and deceleration con-
straints are not violated (constraints 3.3, 3.4, 3.5, and 3.6). For this we will use the same
logic as for the third and fourth steps for the Arc.

The five described steps make sure that the differential drive robot drives fast and
accurately through the a curve that has changing radius of curvature.

It is important to note why we carry out steps 1-3 strictly before steps 4 and 5. The
reason for this is that steps 1-3 create upper boundaries for the velocities of the wheels
at each point in the curve, however, the velocity change between consecutive points in

Chapter 3. Design and Implementation 23

the curve might still violate the longitudinal acceleration and deceleration constraints.
Therefore, it is necessary to complete step 4 and 5 after steps 1-3 to make sure that the
trajectory can realistically be followed by the differential drive robot.

Figure 3.4: Velocity profile created by Spline trajectory planner

Figure 3.5: Accelerations of velocity profile created by Spline trajectory planner

Chapter 3. Design and Implementation 24

3.4.3 Implementation insights

In algorithm 3 you can find a simplified pseudocode of our implementation of the code.
It is assumed that all of the constants are given.

In practice, this was implemented in Python. Within the implementation, mathemat-
ical libraries such as numpy were used to speed up the execution of mathematical
calculations along an entire array of data.

Creating the Spline from an N-Arc is very time efficient thanks to the use of the
library ”CubicSmoothingSpline” from CSAPS. This package implements Cubic Spline
algorithm proposed by Carl de Boor in his book “A Practical Guide to Splines”.

3.5 Smoothed Spline

In this section we will address the inefficiencies in the trajectory that were still present
in the previous methodology of generating a trajectory for Cubic Splines. In particular,
we will attempt to generate a trajectory that does not make the differential drive robot
slow down significantly at each Arc intersection. For this we will utilize as much of the
safety buffers as necessary.

3.5.1 Properties of a Smooth Spline

As seen in the curvature graph of the previous section, the Cubic Spline created from an
N-Arc still has a rapid change in the curvature of the path at the intersection between arcs
of different radius or direction (very pronounced change in curvature in this last case).
This very rapid change forces the differential drive robot to slow down significantly
in order to still be complaint with the longitudinal wheel acceleration/deceleration
constraints.

To minimize the rate of change of the radius/curvature along all points in the curve, it is
necessary to modify and straighten (smoothen) the curve. In order to do this we will
utilize the safety margins. By straightening the curve we also achieve another positive
effect: minimizing the total length of the curve. The combination of having a curve that
is more straight and less long should make it possible for the curve to be traversed faster
by the differential drive robot.

The problem of smoothing a curve is not new and has been extensively studied in
literature. We chose to implement the Convex Elastic Smoothing (CES) algorithm
created by Zhu et al. [2015]. This is an algorithm that was originally intended to
smoothen the paths generated from sampling-based path planners and to be used
with car-like robots. This heuristic algorithm was chosen for its speed (hundreds of
miliseconds) and simplicity over other algorithms. The algorithm literately performs
shape and speed optimization.

Chapter 3. Design and Implementation 25

Algorithm 3 Trajectory planning for Cubic Spline
Require: maxAlong, maxDlong, maxAlat , maxVlong, arc, wheelbase

r← arc.radius
rL← r+ 1

2 ·arc.direction ·wheelbase ▷ Radius of left wheel
rR← r− 1

2 ·arc.direction ·wheelbase ▷ Radius of right wheel
pro f ile1L←

√
maxAlat · rL

pro f ile1R←
√

maxAlat · rR
if arc.direction = 1 then ▷ If turning right, the left wheel will travel faster

pro f ile2L← maxVlong
pro f ile2R← pro f ile2L · rR

rL
else

pro f ile2R← maxVlong
pro f ile2L← pro f ile2R · rL

rR
end if
pro f ile2L← minimum(pro f ile1L, pro f ile2L)
pro f ile2R← minimum(pro f ile1R, pro f ile2R)
for i = 0; i <= len(pro f ile2)−2; i++ do

if arc.direction = 1 then
pro f ile3L[i]← minimum(pro f ile2L[i],CONSTRAINT 3.3)
pro f ile3R[i]← pro f ile3L[i] · rR

rL
else

pro f ile3R[i]← minimum(pro f ile2R[i],CONSTRAINT 3.4)
pro f ile3L[i]← pro f ile3L[i] · rL

rR
end if

end for

for i = len(pro f ile2)−1; i >= 1; i−− do
if arc.direction = 1 then

pro f ile3L[i]← minimum(pro f ile2L[i],CONSTRAINT 3.5)
pro f ile3R[i]← pro f ile3L[i] · rR

rL
else

pro f ile3R[i]← minimum(pro f ile2R[i],CONSTRAINT 3.6)
pro f ile3L[i]← pro f ile3L[i] · rL

rR
end if

end for

tra jectoryL, tra jectoryR← TimeInterpolate(pro f ile4L, pro f ile4R)
return tra jectoryL, tra jectoryR

Chapter 3. Design and Implementation 26

Shape optimization with the CES algorithm

The best way to visualize how the shape optimization aspect of the CES algorithm is to
view the curve as a elastic band whose starting and ending points are fixed. The elastic
band attempts to contract itself and straightens itself in the process.

Points along the curve are modeled to be inside ”collision-free bubbles” and are subject
to artificial forces. There are two types of artifical forces that are applied to the points
in the curve:

1. Tensile forces connect adjacent points in the curve and attempt to pull them closer
together, hence straightening the curve.

2. Balancing forces connect points in the smoothed curve to the respective points in
the original curve and attempts to pull them closer together, hence making sure
the optimized curve does not deviate too much from the original curve.

The weighted sum of the aforementioned forces is then applied to each point (this is
adjusted through a set of coefficients that are analogous to spring constants in Hooke’s
Law). Between iterations of the CES algorithm, these forces move the points that make
up the curve.

Modifications to the CES algorithm

In my implementation I made several modifications to the CES algorithm to better suit
the needs to this project:

1. The CES algorithm literately performs shape and speed optimization, but we
chose to only implement the shape optimization aspect of the algorithm (the speed
optimization is not compatible with our approach since the trajectory planning
part is to be executed after the path smoothing process has been completed).

2. The collision-avoidance features were maintained but instead of modelling the
collision-free space as bubbles around original points, it was modelled to be a
tunnel around the original curve. The width of this ”tunnel” is constant along
the entire curve to take into account the width of the robot and mimic the safety
boundaries. This is the safety buffer from the original N-Arc sequence.

3. After the forces were applied to each point in the curve and a new point was
calculated, the new point was projected to be in the normal line to the original
curve at the original point. This is done to ensure that the aforementioned
collision-avoidance features worked as intended.

4. The running of the algorithm was halted once the sum of the forces on the curve
was lower than a pre-defined threshold. This should speed up the algorithm by
eliminating later iterations that brought largely insignificant changes to the curve.

After running our tweaked version of the CES algorithm, the resulting curve should be
straighter, have less intense changes in curvature, and be shorter length.

Chapter 3. Design and Implementation 27

3.5.2 Methodology of Trajectory Planning

Given that the trajectory planning is to still be done on a Spline, it was decided to run the
same algorithm as the one used for a normals Spline. However, given the improvements
to the curve that is fed to the trajectory planning algorithm, the new velocity profile
should not make the differential drive robot slow down as much at the intersection of
arcs and should be faster given the shorter length of the curve.

Figure 3.6: Velocity profile created by Smooth Spline trajectory planner

3.5.3 Implementation insights

The curve smoothing algorithm was also implemented in Python and relied on numpy
for the quick and efficient numerical computations that were needed.

Chapter 3. Design and Implementation 28

Algorithm 4 Optimization Algorithm
Require: originalCurve, trans f orms, SAFETY MARGIN, SPRING CONSTANT ,

DAMPING CONSTANT , MAX IT ERS, T HRESHOLD, arc
1: points← originalCurve
2: optimizedCurve← Copy(points)
3: for iter in range(MAX IT ERS) do
4: Variables used:
5: prevPoints← optimizedCurve[:−2] ▷ Previous points in optimized curve
6: currPoints← optimizedCurve[1 :−1] ▷ Current points in optimized curve
7: nextPoints← optimizedCurve[2 :] ▷ Next points in optimized curve
8: originalPoints← points[1 :−1] ▷ Original points in non-altered curve
9: normals← trans f orms[1 :−1] ▷ normals to non-altered curve

10: Calculate forces:
11: prevForces← SPRING CONSTANT × (prevPoints− currPoints)
12: nextForces← SPRING CONSTANT × (nextPoints− currPoints)
13: dampForces← DAMPING CONSTANT × (originalPoints− currPoints)
14: totalForces← prevForces+nextForces+dampForces
15: calculatedForces← Dot(totalForces,normals)
16: Restrict forces:
17: newPoint← currPoints+Dot(calculatedForces,normals)
18: f actor← SAFETY MARGIN−Norm(currPoints−originalPoints)

Norm(newPoint−originalPoints)
19: f actor[f actor > 1]← 1
20: ad justedForces← 0 If (f actor < 0) Else (calculatedForces× f actor)
21: Concatenate forces:
22: f orces← [0]+ad justedForces+[0] ▷ First and last points are not modified
23: optimizedCurve← optimizedCurve+Dot(f orces,normals)
24: if (Sum(Norm(f orces))< T HRESHOLD) then
25: break For
26: end if
27: end for

Chapter 3. Design and Implementation 29

Figure 3.7: Accelerations of velocity profile created by Smooth Spline trajectory planner

Chapter 4

Experimentation

In this section, we conduct experiments to benchmark our trajectory planning algorithms
and also offer a point of comparison to other trajectory planning algorithms in the
literature.

Choice of simulation environment

In order to carry out experimentation with a virtual Turtlebot 3 Burger, it is necessary
to select a simulation environment. When chosing the the simulation environment we
considered the following set of characteristics:

1. Features and capabilities: Since we are carrying out research it is necessary that
the chosen environment has a specific suite of features that cater our needs. The
Physics engine should be able to accurately model the robot’s dynamics. The
actuators (in our case we are interested in the independent wheel speeds) on
the robot should be able to be controlled in a realistic manner. The simulation
environment should have extensive integration with other tools (such as ROS,
Python, C++, etc...) for ease of use. Customizability is also an important factor, as
it might be necessary to alter the default behaviour of the robot or the environment.

2. Performance and speed: The simulation environment should be able to run on
our personal computers as we unfortunately do not have access to other hardware
tools.

3. Community and support: It is indispensable for the chosen environment to have
a strong history of support both in terms of software (bug fixes) and knowledge
share (forums, documentation, etc...) to speed up the rate of testing.

Taking into consideration the above characteristics, we narrowed down our selection to
Gazebo, PyBullet, and Webots: all of these are robotics software simulations that are
capable of accurately modelling the physics of the robot in its environment, have good
performance, and are used in the world of research.

Ultimately, the open-source robot simulator Gazebo was chosen as the simulation
environment to use for testing our research. The reason for this was due to its extensive

30

Chapter 4. Experimentation 31

set of features (accurate physics modelling, realistic actuator behaviour, integration with
other tools, customizability) and its large community and documentation base.

Conveniently, there exists an open source Turtlebot 3 Burger model that is compatible
with ROS and Gazebo. By using ROS with the Turtlebot 3 Burger model, we can control
the robot by issuing linear velocity (in m/s) and angular velocity (in rad/s) commands
to control the robot.

Note that we are using Gazebo version 11.11.0 and ROS 2 Galactic.

Integration with the simulation

The trajectory planning software we created with this research is not completely compat-
ible out-of-the box with the ROS/Gazebo software stack. The main reason for this is due
to the fact that the virtual version of the robot accepts commands in linear velocity and
angular velocity, whereas the software we want to test creates commands for individual
wheel speeds (wheel speeds for the left wheel and wheel speeds for the right wheel).

Fortunately, the conversion between both modes of representation is straightforward
with the following formulae:

v =
vR + vL

2

ω =
vR− vL

wb
where v and ω are the linear and angular velocities respectively, vR and vL are the linear
velocities of each wheel (right and left respectively), and wb is the wheelbase of the
robot (distance between both wheels).

To test if the Turtlebot 3 Burger is capable of following our produced velocity profiles,
we publish control commands at a constant frequency and record the location of the
robot in the simulation. The frequency command publishing is chosen to be high enough
so that the motion of the robot appears to be smooth and in line with the planned path.

4.1 Estimation of parameters

In order to run the trajectory planning software that we created throughout this project,
it is necessary have the constants that were defined in the constraints. Specifically,
these are the maximum longitudinal acceleration maxAlong, the maximum longitudinal
deceleration maxDlong, the maximum lateral acceleration maxAlat , and the maximum
longitudinal velocity maxVlong. Some but not all of these constants depend on the
friction that the differential drive robot has on the surface it is riding on.

Given that the Turtlebot specification does not offer any guidance on these constants,
we had to estimate them ourselves by using the simulation to test the limits of the car.

The maximum longitudinal acceleration was estimated by repeatedly issuing commands
of very high linear velocity to the robot and measuring how it performed. Some of
the tests were carried out with the robot at initial stanstill (before accelerating) while
other tests were carried out with the robot already in motion. It was concluded that the

Chapter 4. Experimentation 32

Turtlebot 3 Burger has a hard limit of 1.0m/s2 but is unstable at higher accelerations
(wheels accelerate at different rates and thus the robot is incapable of following the
straight-line intended path). The Turtlebot 3 Burger robot behaved as expected when it
was issued commands that were no higher than 0.4m/s2 in longitudinal acceleration.

The maximum longitudinal deceleration was estimated using a very similar methodology.
The robot initially started from a certain linear velocity and was instructed to quickly
slow down. Similar to the longitudinal acceleration, the simulation has a hard limit
of 1.0m/s2 of deceleration but the wheels do not decelerate at expected rates if the
longitudinal deceleration is higher than 0.4m/s2.

To calculate the maximum lateral acceleration, we relied on the lateral acceleration
formula that was defined in an earlier section of the report.

alat =
v2

r

The robot was issued commands of constant linear velocity and the radius of curvature
was iteratively reduced until the robot stopped following the intended curve - the velocity
and radius values where recorded. This was repeated several times and with different
linear velocities. The maximum lateral acceleration was then computed by plotting all
the results of this experiment and calculating the gradient (v2

r). The calculated maximum
lateral acceleration was around 2.0m/s2.

The Turtlebot 3 Burger specifications dictate that the robot is not capable of going
faster than 0.22m/s in longitudinal velocity, but we deemed this value to be too low to
showcase the true potential of the trajectory planning software we created throughout
this project. It was deemed from the previous experiments that the robot behaved
erratically when its linear velocity exceeded 1.2m/s. This value was used as the new
upper limit for the longitudinal velocity.

Note that all of these were deemed as limits (maxAlong = 0.4m/s2, maxDlong = 0.4m/s2,
maxAlat = 2.0m/s2, maxVlong = 1.2m/s) as the robot behaved erratically when they
were surpassed (robot would not maintain the expected linear or angular velocities).

4.2 Methodology of testing and experiments

The problem space of a trajectory planner defined by the possible states of an NArc
sequence. An NArc sequence can adopt an infinite number of states: there can be
any number of narcs, with any length, any radius, etc... In fact, the state of an NArc
sequence is in the subspace of R5 (number of arcs, arc lengths, arc radii, arc directions,
safety buffer size). Given this high dimensionality, it is very hard for us to accurately
analyze the performance of our trajectory planner solutions.

Due to the high dimensionality of the possible problem space, we decided to utilize the
Monte Carlo approach to obtain metrics about how our algorithms perform. This also
brings our testing methods in line with other research so it will allow us to compare
results more easily.

Chapter 4. Experimentation 33

In Monte Carlo simulations the problem space is sampled randomly and subsequently
the software to test is run. Results are gathered for each iteration and they are used
to create a distribution of some informative metrics. The NArc problem space was
randomized to its fullest, while adhering to some sensible limits:

1. The length of the NArc sequence was randomized but limited to be 3≤ narcLength≤
7. This limit was chosen because, when considering that ultimately the trajectory
planner will generate a trajectory that will only be obeyed at most a couple of
seconds, a path length of longer than 7m would result in a really long trajectory
in terms of physical time taken to traverse by the robot. Note that the arc length
was limited to be an integer for easier comparison in the results stage.

2. The number of Arcs present in the NArc sequence was randomized but limited to
1≤ nArcs≤ 8. This limit was introduced so that, given the limit on the length of
the entire Narc sequence, there wouldn’t be too many short arcs or long arcs.

3. The safety buffer of the NArc sequence was randomized but limited to be
wheelbase≤ bu f f erSize≤ 2.5 ·wheelbase so that there was a minimum buffer
of half the wheelbase of the car and at mose two wheelbases (consider that the
robot is as wide as its wheelbase).

4. The lengths of the individual Arcs within the NArc sequence were randomized
by first sampling the space 0 < point < narcLength a number of nArcs−1 times
(these will be used as arc intersection points), then sorting the samples, and finally
taking the arc lengths as the differences of these samples.

5. The radius of the individual Arcs within the Narcs sequence were randomized but
limited to wheelbase

2 < radius < 20 ·wheelbase.

6. The direction of each Arc was randomized by simply randomly choosing between
LEFT and RIGHT .

It was very important to maintain randomness when sampling the problem space, but it
was equally as important to limit the scope of the tested problem space to be realistic
to avoid unnecessarily testing unrealistic scenarios. Therefore the above limits were
introduced.

We took 5000 samples from the problem space to create random NArcs, which were then
used to benchmark our trajectory planning algorithms. Comparisons and conclusions
were drawn from the algorithms’ performance within the simulation as well as outside
of it.

4.3 Results

The trajectory planning methods compared in below experiments are:

1. NArc curve with NArc trajectory planner (stop at intersection of arcs).

2. Spline curve with Spline trajectory planner.

3. Smoothed spline curve with Spline trajectory planner.

Chapter 4. Experimentation 34

Firstly, each of the randomized NArcs (problem space) was used to generate velocity
profiles using all three of aforementioned trajectory planning methods. The results from
these include runtime comparisons, as well as trajectory time length and path length
comparisons. We will call these the ”algorithmic results”.

Then, a subset of the generated velocity profiles was used to test the feasibility of the
trajectory planning methods in the simulation. We will refer to these as the ”simulation
results”.

4.3.1 Algorithmic results

These are the results of our trajectory planning algorithms before being tested in
the ROS2 Gazebo simulation. These offer a point of comparison between trajectory
planning methods.

Curve improvements analysis

We first compared the differences in curvature between the Spline and the Smooth
Spline curves. The results can be seen in Figure 4.1. Note that the length-normalized
curvature was calculated by computing the area under the curve of curvature against
point in the path (integrated) and was subsequently divided by the total length of the
path for comparison.

Figure 4.1: Curvature comparison

We can observe that the curvature of Spline curves is generally slightly higher than the
curvature of the Smooth Spline curves. In fact the average curvature of Spline curves
was 29.37m−2 whereas the average curvature of Smooth Spline curves was 22.53m−2

(note how a smaller curvature value means a straighter curve). This suggests that our

Chapter 4. Experimentation 35

Table 4.1: Traversal Time Statistics

Mean
traversal (s)

Standard
deviation
traversal (s)

Slowest
traversal (s)

NArc trajectory planner 8.90 2.51 15.82
Spline trajectory planner 6.87 1.54 12.87
Smoothed spline trajectory planner 5.47 1.17 7.60

modified implementation of the CES algorithm works as intended: the curvature and
rapid changes in curvature are reduced.

On average, 2.63 ms to create a Spline from a NArc sequence. Interestingly our modified
implementation of the CES algorithm was much faster than the original: it took 3.03 ms
to Smoothen a Spline (average of 74.07 iterations per run). The original CES algorithm
ran within 13.8 ms ms in 95% of cases where as our implementation only took 5.03 ms
in 95% of cases.

Trajectory traversal time analysis

We compared the traversal time (time taken for the robot to travel along the entire
trajectory) between trajectory planning techniques. This can be seen in Figure 4.2 and
summarised in Table 4.1.

Figure 4.2: Traversal time analysis of trajectories

From the figure and and the table it can be clearly seen that the Smoothed Spline
trajectory planner consistently creates the fastest trajectory and the NArc trajectory
planner creates the slowest trajectory. In the worst-case scenario (slowest recorded

Chapter 4. Experimentation 36

Table 4.2: Runtime Statistics

Mean runtime (ms) Standard deviation
runtime (ms)

NArc trajectory planner 6.88 3.71
Spline trajectory planner 3.82 0.65
Smoothed spline trajectory planner 3.74 0.64

traversal) the Spline planner creates a trajectory that is 18.6% faster than the NArc
alternative, where as the Smooth Spline trajectory is 52.0% faster. The fastest traversal
is the same across all three planners (all within 0.01s of 3.75s).

We believe that the improvements in traversal time of the Spline planners - especially
the Smoothed Spline planner - is due to the much decreased curvature and minimized
changes in curvature that these have. When a path has a high curvature, especially if
there are rapid changes in curvature such as in an NArc sequence, the differential drive
robot has to slow down so that no the constraints are violated (especially limiting are
the longitudinal acceleration and deceleration constraints).

It is interesting to note that there are there are five peaks in the traversal time of the
Smoothed Spline. These peaks align with the 5 different NArc path lengths that the
curve can have. This is a by-product of our sampling of the problem space (if we
sampled floating point NArc lengths they would not appear). Given that these peaks
appear at the Smooth Spline Trajectories and not at the other trajectories it suggests that
the robot is traveling close to its maximum longitudinal velocity - due to the straighter
curve.

Trajectory planning runtime analysis

First we compared the runtime between trajectory planning techniques. This can be
seen in Figure 4.3 and summarised in Table 4.2.

All trajectory planners were very fast, with most of the time generating velocity profiles
within 10ms. This increases their suitability for real time use in autonomous systems,
especially for the Spline and Smooth Spline Trajectory Planners. However, it can be
observed that the NArc trajectory planning had a higher mean runtime and a much
larger standard deviation in terms of runtime than the spline trajectory planner.

This is slightly counter-intuitive as there are some constraints that remain constant
for the duration of entire Arcs in the Arc Trajectory Planner (used within the NArc
Trajectory Planner). This should make the planner faster as less computations are
needed (no need to iterate through the entire velocity profile within the planner for parts
1-2 as described in the Methodology section). Therefore, we believe that the longer
mean runtime and higher standard deviations in the runtime for the NArc trajectory
planner are attributed to overhead needed object orientation within Python. The NArc
trajectory planner needs to calculate the velocity profile for each arc independently
(where as the Spline trajectory planner does all the curve at once) thus needing to switch
between processes and objects.

Chapter 4. Experimentation 37

Figure 4.3: Runtime analysis of trajectory planners

It is important to note that our solutions are all considerably faster than those proposed
by Okuyama et al. [2021]. Particularly, in 95% of cases our Smooth Spline trajectory
planner took less than 4.81ms while the one proposed by Okuyama et al. [2021] took
13.8ms.

4.3.2 Simulation results

Unlike for the algorithimic results experiments from the previous section, it was infeasi-
ble to run the simulation for all of the 5000 randomly generated NArc sequences. This
was due to the fact that the Gazebo simulation could not be sped up much faster than the
real time. To test all 5000 NArc sequences 3 times (for comparing NArc, Spline, and
Smooth Spline trajectory planning) it would have taken aproximately 84 hours. Instead
it was decided to randomly choose a subset of 500 random NArc sequences and run the
tests on them.

To test the feasibility of the generated trajectories, each of the 500 NArc paths was
converted into trajectories using the NArc, Spline, and Smooth Spline trajectory planners
and subsequently run in the simulation. The actual location of the robot was compared
to the planned location of the robot, across the entire path. We also recorded if the robot
deviated from the path beyond the stipulated safety buffer for that path (and thus could
have entered into a collision with an obstacle).

Examples of comparisons between the intended path and the actual path of the robot
can be seen in Figures 4.4, 4.5, and 4.6. In these three trajectories the robot is trying to
follow the following NArc sequence:

1. Arc with radius 1m and length 2m turning right.

Chapter 4. Experimentation 38

2. Arc with radius 1m and length 2m turning left.

Figure 4.4: NArc trajectory example: intended path vs actual path

Figure 4.5: Spline trajectory example: intended path vs actual path

From the simulation experiments, it was observed that the TurtleBot 3 Burger would
deviate slightly from the intended path (the path traversed by the robot would not be
exactly the same as the path it was intended to traverse). It was also observed that this

Chapter 4. Experimentation 39

Figure 4.6: Smooth Spline trajectory example: intended path vs actual (path curve
rotated counter-clockwise for easier comparison)

deviation would increase as the robot traversed the path (the farther the robot went from
the starting point, the farther it deviated from the path). Usually, the robot would be at
the farthest point from the path when it reached the end of the path. This is behaviour
that is unfortunate although not unexpected (as long as the deviations do not become too
large) given that there may exist delays in the system. For instance, if there is a slight
random delay when executing a deceleration command, the robot will then increase its
deviation from the intended path.

From our experimentation, the robot stayed within the specified safety boundaries in
95.4% of cases. This statistic, although quite high, is expected to be higher. We believe
that part of the reason for it not being higher is due to some limitations with the ROS2
and Gazebo simulation software stack. It was observed that when running the tests the
robot would sometimes spontaneously turn towards a random direction (even when ran
multiple times consecutively on the same trajectory). The root cause of this behaviour
was not found, but we suspect that it might be due to control commands not arriving in
real time to the Turtlebot 3 Burger model. If commands do not arrive in real time, then
the trajectory will not be followed as intended as the time distance between commands
is not respected.

Chapter 5

Conclusions

Throughout this research paper, we have:

1. Created a trajectory planner for Arcs that attempts to follow the Arc as accurately
and as fast as possible, without using the safety buffers.

2. Created a trajectory planner for N-Arcs that attempts to follow the N-Arc as
accurately and as fast as possible, without using the safety buffers.

3. Created a trajectory planner for Splines that attempts to follow the original N-Arc
path as accurately and as fast as possible, while using the indispensable part of
the safety buffers.

4. Implemented an algorithm to smooth out a spline while using as much of the
safety buffers as is required. From this, if used with the Spline trajectory planner,
a robot can traverse a sequence of N-Arcs in a fast and accurate manner without
entering into collision with objects.

As we have shown in the experimentation phase, all mentioned algorithms are very
efficient, consistently running in the single or double digit millisecond range. The speed
of the algorithms make the solutions proposed suitable for real-time use in self-driving
systems. These systems could have a computationally expensive software stack and
would benefit from a fast and accurate trajectory plan.

As can be seen in figure 4.6, the car tended to deviate from its intended path as it got
farther from the original starting point. While some of it could be due to inconsistencies
in the simulation tests, I believe some of the blame is also on the Jerk jumps that can
be seen in the velocity profile. Jerk, the 2rd derivative of the velocity profile is closely
related to the actuator limits of the motors. For future work, I recommend attempting to
add constraints that limit the Jerk; this might make yield better results when testing in
the simulation.

On a similar note, it is mentioned in Tokekar et al. [2014] that trapezoidal velocity
profiles (such as the ones seen in this project) might not be very realistic due to large
spikes in the Jerk.

40

Bibliography

Marek Boryga, Andrzej Graboś, Paweł Kołodziej, Krzysztof Gołacki, and Zbigniew
Stropek. Trajectory planning with obstacles on the example of tomato harvest.
Agriculture and Agricultural Science Procedia, 7:27–34, 2015.

Sean Campbell, Niall O’Mahony, Anderson Carvalho, Lenka Krpalkova, Daniel Rior-
dan, and Joseph Walsh. Path planning techniques for mobile robots a review. In 2020
6th International Conference on Mechatronics and Robotics Engineering (ICMRE),
pages 12–16. IEEE, 2020.

Marcio da Silva Arantes, Claudio Fabiano Motta Toledo, Brian Charles Williams, and
Masahiro Ono. Collision-free encoding for chance-constrained nonconvex path
planning. IEEE Transactions on Robotics, 35(2):433–448, 2019.

Th Fraichard. Smooth trajectory planning for a car in a structured world. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, volume 1, pages 318–323. Citeseer,
1991.

Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni. Trajec-
tory planning in robotics. Mathematics in Computer Science, 6:269–279, 2012.

Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni. Path
planning and trajectory planning algorithms: A general overview. Motion and
Operation Planning of Robotic Systems: Background and Practical Approaches,
pages 3–27, 2015.

Jayoung Kim and Jihong Lee. Predicting maximum traction to improve maneuverability
for autonomous mobile robots on rough terrain. Journal of Automation and Control
Engineering, 1(1):1–6, 2013.

W Kim, K Yi, and J Lee. An optimal traction, braking, and steering coordination
strategy for stability and manoeuvrability of a six-wheel drive and six-wheel steer
vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
automobile engineering, 226(1):3–22, 2012.

J Zico Kolter, Christian Plagemann, David T Jackson, Andrew Y Ng, and Sebastian
Thrun. A probabilistic approach to mixed open-loop and closed-loop control, with
application to extreme autonomous driving. In 2010 IEEE International Conference
on Robotics and Automation, pages 839–845. IEEE, 2010.

Frank Lingelbach. Path planning using probabilistic cell decomposition. In IEEE

41

Bibliography 42

International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 1, pages 467–472. IEEE, 2004.

Matteo Massaro, Stefano Lovato, Matteo Bottin, and Giulio Rosati. An optimal control
approach to the minimum-time trajectory planning of robotic manipulators. Robotics,
12(3):64, 2023.

IF Okuyama, Marcos ROA Maximo, and Rubens JM Afonso. Minimum-time trajectory
planning for a differential drive mobile robot considering non-slipping constraints.
Journal of Control, Automation and Electrical Systems, 32(1):120–131, 2021.

Aurelio Piazzi and Antonio Visioli. Global minimum-jerk trajectory planning of robot
manipulators. IEEE transactions on industrial electronics, 47(1):140–149, 2000.

Elon Rimon and Daniel Koditschek. Exact robot navigation using artificial potential
functions. In IEEE Transactions on Robots and Automation Vol 8 No 5, pages
501–518. IEEE, 1992.

ROBOTIS e-Manual. TurtleBot3, 2024.

Gurjeet Singh and VK Banga. Robots and its types for industrial applications. Materials
Today: Proceedings, 60:1779–1786, 2022.

Alexandr Stefek, Thuan Van Pham, Vaclav Krivanek, and Khac Lam Pham. Energy
comparison of controllers used for a differential drive wheeled mobile robot. IEEE
Access, 8:170915–170927, 2020.

Pratap Tokekar, Nikhil Karnad, and Volkan Isler. Energy-optimal trajectory planning
for car-like robots. Autonomous Robots, 37:279–300, 2014.

Zhijie Zhu, Edward Schmerling, and Marco Pavone. A convex optimization approach
to smooth trajectories for motion planning with car-like robots. In 2015 54th IEEE
conference on decision and control (CDC), pages 835–842. IEEE, 2015.

Appendix A

Constraint derivations

A.1 Longitudinal acceleration limit on the left wheel
(constraint 3.3)

Problem statement

The following variables are given: v0L, v0R, r1L, r1R, maxAlong, s.

Assume that we have two consecutive points p0 and p1 on the curve. Then, v0L and v0R
are the left and right wheel’s velocities at p0, r1L and r1R are the left and right wheel
path’s radius of curvature at p1, maxAlong is the maximum longitudinal acceleration
that can be sustained by any particular wheel, and s is the distance between p0 and p1.

We are attempting to find relationships (constraints) for the following variables: v1L
and v1R which are the left and right wheel’s velocities at p1.

The following relationships are given and assumed to always be true:

v1R
r1R

=
v1L
r1L

t =
4 · s

v0L+ v0R+ v1L+ v1R
where t is the time taken for the robot to move from p0 to p1.

v1L− v0L
t

≤ maxAlong

Derivation

The following is the step-by-step derivation of the constraint, built from the aforemen-
tioned relationships:

v1L≤ t ·maxAlong + v0L

43

Appendix A. Constraint derivations 44

v1L≤
4 · s ·maxAlong

v0L+ v0R+(1+ r1R
r1L) · v1L

+ v0L

[v0L+ v0R+(1+
r1R
r1L

) · v1L] · v1L≤ 4 · s ·maxAlong +[v0L+ v0R+(1+
r1R
r1L

) · v1L] · v0L

[v0L+ v0R] · v1L+[1+
r1R
r1L

] · v1L2 ≤ 4 · s ·maxAlong + v0L2 + v0L · v0R+[1+
r1R
r1L

] · v0L · v1L

[1+
r1R
r1L

] · v1L2 +[v0L+ v0R− (1+
r1R
r1L

) · v0L] · v1L− [4 · s ·maxAlong + v0L2 + v0L · v0R]≤ 0

Applying the quadratic formula (negative root ignored):

v1L≤

√
[v0L+ v0R− (1+ r1R

r1L) · v0L]2 +4 · [1+ r1R
r1L] · [4 · s ·maxAlong + v0L2 + v0L · v0R]

2 · [1+ r1R
r1L]

−
[v0L+ v0R− (1+ r1R

r1L) · v0L]

2 · [1+ r1R
r1L]

Simplification:

v1L≤

√
4 · r1L · (r1L+ r1R) · (v0L2 + v0L · v0R+4 · s ·maxAlong)+(r1R · v0L− r1L · v0R)2

2 · (r1L+ r1R)

− r1L · v0R+ r1R · v0L
2 · (r1L+ r1R)

A.2 Longitudinal acceleration limit on the right wheel
(constraint 3.4)

Problem statement

The following variables are given: v0L, v0R, r1L, r1R, maxAlong, s.

Assume that we have two consecutive points p0 and p1 on the curve. Then, v0L and v0R
are the left and right wheel’s velocities at p0, r1L and r1R are the left and right wheel
path’s radius of curvature at p1, maxAlong is the maximum longitudinal acceleration
that can be sustained by any particular wheel, and s is the distance between p0 and p1.

We are attempting to find relationships (constraints) for the following variables: v1L
and v1R which are the left and right wheel’s velocities at p1.

Appendix A. Constraint derivations 45

The following relationships are given and assumed to always be true:

v1R
r1R

=
v1L
r1L

t =
4 · s

v0L+ v0R+ v1L+ v1R
where t is the time taken for the robot to move from p0 to p1.

v1R− v0R
t

≤ maxAlong

Derivation

The following is the step-by-step derivation of the constraint, built from the aforemen-
tioned relationships:

v1R≤ t ·maxAlong + v0R

v1R≤
4 · s ·maxAlong

v0L+ v0R+(1+ r1L
r1R) · v1R

+ v0R

[v0L+ v0R+(1+
r1L
r1R

) · v1R] · v1R≤ 4 · s ·maxAlong +[v0L+ v0R+(1+
r1L
r1R

) · v1R] · v0R

[v0L+ v0R] · v1R+[1+
r1L
r1R

] · v1R2 ≤ 4 · s ·maxAlong + v0R2 + v0L · v0R+[1+
r1L
r1R

] · v0R · v1R

[1+
r1L
r1R

] · v1R2 +[v0L+ v0R− (1+
r1L
r1R

) · v0R] · v1R− [4 · s ·maxAlong + v0R2 + v0L · v0R]≤ 0

Applying the quadratic formula (negative root ignored):

v1R≤

√
[v0L+ v0R− (1+ r1L

r1R) · v0R]2 +4 · [1+ r1L
r1R] · [4 · s ·maxAlong + v0R2 + v0L · v0R]

2 · [1+ r1L
r1R]

−
[v0L+ v0R− (1+ r1L

r1R) · v0R]

2 · [1+ r1L
r1R]

Simplification:

v1R≤

√
4 · r1R · (r1L+ r1R) · (v0R2 + v0L · v0R+4 · s ·maxAlong)+(r1L · v0R− r1R · v0L)2

2 · (r1L+ r1R)

− r1R · v0L+ r1L · v0R
2 · (r1L+ r1R)

Appendix A. Constraint derivations 46

A.3 Longitudinal deceleration limit on the left wheel
(constraint 3.5)

Problem statement

The following variables are given: v1L, v1R, r0L, r0R, maxDlong, s.

Assume that we have two consecutive points p0 and p1 on the curve. Then, v1L and v1R
are the left and right wheel’s velocities at p1, r0L and r0R are the left and right wheel
path’s radius of curvature at p0, maxDlong is the maximum longitudinal deceleration
that can be sustained by any particular wheel, and s is the distance between p0 and p1.

We are attempting to find relationships (constraints) for the following variables: v0L
and v0R which are the left and right wheel’s velocities at p0.

The following relationships are given and assumed to always be true:

v0R
r0R

=
v0L
r0L

t =
4 · s

v1L+ v1R+ v0L+ v0R
where t is the time taken for the robot to move from p0 to p1.

v0L− v1L
t

≤ maxDlong

Derivation

The following is the step-by-step derivation of the constraint, built from the aforemen-
tioned relationships:

v0L≤ t ·maxDlong + v1L

v0L≤
4 · s ·maxDlong

v1L+ v1R+(1+ r0R
r0L) · v0L

+ v1L

[v1L+ v1R+(1+
r0R
r0L

) · v0L] · v0L≤ 4 · s ·maxDlong +[v1L+ v1R+(1+
r0R
r0L

) · v0L] · v1L

[v1L+ v1R] · v0L+[1+
r0R
r0L

] · v0L2 ≤ 4 · s ·maxDlong + v1L2 + v1L · v1R+[1+
r0R
r0L

] · v1L · v0L

[1+
r0R
r0L

] · v0L2 +[v1L+ v1R− (1+
r0R
r0L

) · v1L] · v0L− [4 · s ·maxDlong + v1L2 + v1L · v1R]≤ 0

Appendix A. Constraint derivations 47

Applying the quadratic formula (negative root ignored):

v0L≤

√
[v1L+ v1R− (1+ r0R

r0L) · v1L]2 +4 · [1+ r0R
r0L] · [4 · s ·maxDlong + v1L2 + v1L · v1R]

2 · [1+ r0R
r0L]

−
[v1L+ v1R− (1+ r0R

r0L) · v1L]

2 · [1+ r0R
r0L]

Simplification:

v0L≤

√
4 · r0L · (r0L+ r0R) · (v1L2 + v1L · v1R+4 · s ·maxDlong)+(r0R · v1L− r0L · v1R)2

2 · (r0L+ r0R)

− r0L · v1R+ r0R · v1L
2 · (r0L+ r0R)

A.4 Longitudinal deceleration limit on the right wheel
(constraint 3.6)

Problem statement

The following variables are given: v1L, v1R, r0L, r0R, maxDlong, s.

Assume that we have two consecutive points p0 and p1 on the curve. Then, v1L and v1R
are the left and right wheel’s velocities at p1, r0L and r0R are the left and right wheel
path’s radius of curvature at p0, maxDlong is the maximum longitudinal deceleration
that can be sustained by any particular wheel, and s is the distance between p1 and p0.

We are attempting to find relationships (constraints) for the following variables: v0L
and v0R which are the left and right wheel’s velocities at p0.

The following relationships are given and assumed to always be true:

v0R
r0R

=
v0L
r0L

t =
4 · s

v1L+ v1R+ v0L+ v0R
where t is the time taken for the robot to move from p0 to p1.

v0R− v1R
t

≤ maxDlong

Derivation

The following is the step-by-step derivation of the constraint, built from the aforemen-
tioned relationships:

Appendix A. Constraint derivations 48

v0R≤ t ·maxDlong + v1R

v0R≤
4 · s ·maxDlong

v1L+ v1R+(1+ r0L
r0R) · v0R

+ v1R

[v1L+ v1R+(1+
r0L
r0R

) · v0R] · v0R≤ 4 · s ·maxDlong +[v1L+ v1R+(1+
r0L
r0R

) · v0R] · v1R

[v1L+ v1R] · v0R+[1+
r0L
r0R

] · v0R2 ≤ 4 · s ·maxDlong + v1R2 + v1L · v1R+[1+
r0L
r0R

] · v1R · v0R

[1+
r0L
r0R

] · v0R2 +[v1L+ v1R− (1+
r0L
r0R

) · v1R] · v0R− [4 · s ·maxDlong + v1R2 + v1L · v1R]≤ 0

Applying the quadratic formula (negative root ignored):

v0R≤

√
[v1L+ v1R− (1+ r0L

r0R) · v1R]2 +4 · [1+ r0L
r0R] · [4 · s ·maxDlong + v1R2 + v1L · v1R]

2 · [1+ r0L
r0R]

−
[v1L+ v1R− (1+ r0L

r0R) · v1R]

2 · [1+ r0L
r0R]

Simplification:

v0R≤

√
4 · r0R · (r0L+ r0R) · (v1R2 + v1L · v1R+4 · s ·maxDlong)+(r0L · v1R− r0R · v1L)2

2 · (r0L+ r0R)

− r0R · v1L+ r0L · v1R
2 · (r0L+ r0R)

A.5 Simultaneous Acceleration & deceleration limit due
to changing radiuson the left wheel

Problem statement

The following variables are given: r0, r0L, r0R, r1, r1L, r1R, maxAlong, maxDlong, s.

Assume that we have two consecutive points p0 and p1 on the curve. r0, r0L, r0R are the
centre of vehicle velocity, left, and right wheel’s velocities at p0 respectively; r1, r1L,
r1L are the centre of vehicle velocity, left, and right wheel’s velocities at p1 respectively;

Appendix A. Constraint derivations 49

maxAlong and maxDlong are the maximum longitudinal acceleration and deceleration
that can be sustained by any particular wheel; and s is the distance between p0 and p1.

We are attempting to find relationships (constraints) for the following variables: v0 and
v1 which are velocities of the vehicle at at p0 and p1.

The following relationships are given and assumed to always be true:

v0

r0
=

v0L
r0L

=
v0R
r0R

v1

r1
=

v1L
r1L

=
v1R
r1R

t =
2 · s

v0 + v1
=

4 · s
v0L+ v0R+ v1L+ v1R

where t is the time taken for the robot to move from p0 to p1.

−maxDlong ≤
v1L− v0L

t
≤ maxAlong

−maxDlong ≤
v1R− v0R

t
≤ maxAlong

Derivation

The following is the step-by-step derivation of the constraint, built from the aforemen-
tioned relationships:

maxDlong ≤
(r1L · r0 · v1− r0L · r1 · v0) · (v0 + v1)

2 · s · r0 · r1
≤ maxAlong

maxDlong ≤
(r1R · r0 · v1− r0R · r1 · v0) · (v0 + v1)

2 · s · r0 · r1
≤ maxAlong

(substituted the time relationship and simplified)

This leaves us with two sets of simultaneous equations (since we are finding the
constraints when one wheel accelerates and another decelerates):

maxDlong≤
(r1L · r0 · v1− r0L · r1 · v0) · (v0 + v1)

2 · s · r0 · r1
,
(r1R · r0 · v1− r0R · r1 · v0) · (v0 + v1)

2 · s · r0 · r1
≤maxAlong

or

(r1L · r0 · v1− r0L · r1 · v0) · (v0 + v1)

2 · s · r0 · r1
≤maxAlong,maxDlong≤

(r1R · r0 · v1− r0R · r1 · v0) · (v0 + v1)

2 · s · r0 · r1

From the above simultaneous equations, we solved for v0 and vq, the variables we are
trying to find. We will not show the derivation of the below equations as it is very long
winded.

If:

0≤ s ·r1
2 ·r0

2 ·(r1L ·r0R−r1R ·r0L)·(maxAlong ·(r1 ·r0R+r0 ·r1R)+maxDlong ·(r1 ·r0L+r0 ·r1L))

Appendix A. Constraint derivations 50

Then:

v0≤
√

2 · s · r1 · r0
2 · (r1L ·maxDlong + r1R ·maxAlong)√

s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0R+ r0 · r1R)+maxDlong · (r1 · r0L+ r0 · r1L))

v1≤
√

2 · s · r1
2 · r0 · (r0L ·maxDlong + r0R ·maxAlong)√

s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0R+ r0 · r1R)+maxDlong · (r1 · r0L+ r0 · r1L))

Else:

v0≤
√

2 · s · r1 · r0
2 · (r1L ·maxAlong + r1R ·maxDlong)

−s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0L+ r0 · r1L)+maxDlong · (r1 · r0R+ r0 · r1R))

v1≤
√

2 · s · r1
2 · r0 · (r0L ·maxAlong + r0R ·maxDlong)

−s · r12 · r02 · (r1L · r0R− r1R · r0L) · (maxAlong · (r1 · r0L+ r0 · r1L)+maxDlong · (r1 · r0R+ r0 · r1R))

