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Abstract
This project explores the viability of using radar technology to detect anomalies in hu-
man movement patterns for healthcare applications. Traditional methods for monitoring
human movement patterns include cameras and wearable sensors. However, these meth-
ods have limitations, such as privacy concerns and user compliance. Radar technology
offers a non-invasive, privacy-preserving alternative capable of accurately capturing
detailed movement data. This research, conducted as part of the broader Project Feather
at the University of Edinburgh, evaluates the feasibility and effectiveness of radar for
continuous health monitoring in an assisted living context. The study collected data
from seven subjects performing activities in a simulated environment, showcasing nor-
mal and abnormal walking patterns. The collected data was pre-processed and analysed
using various computational models, including Non-Negative Matrix Factorization
(NMF), Gaussian Mixture Model, One-Class Support Vector Machine, Autoencoders,
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and a
combined CNN+LSTM model. The results demonstrated the potential of radar tech-
nology in human healthcare applications, showing promising results in identifying gait
anomalies. The CNN+LSTM model yielded the best performance among the supervised
models, while the NMF model yielded the best among the unsupervised models. This
study highlights the potential of radar technology as a viable tool in the domain of
assisted living and digital healthcare, offering a non-intrusive and privacy-preserving
alternative to existing data collection methods. Future work can explore the potential of
this technology in detecting collective and contextual anomalies.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Assisted living and digital healthcare have seen significant advancements in recent years,
with a growing emphasis on the early detection of health issues [8]. One crucial aspect
of this field is the monitoring and analysis of human activities and movement to identify
anomalies that may indicate underlying health problems, falls or other emergencies.
Popular methods for data collection in this domain include wearable sensors or cameras
placed in the environment. However, these approaches come with limitations, such as
privacy concerns, the need for constant wear and restricted coverage areas.

To overcome these challenges, radar technology has emerged as a promising alternative
for noninvasive, privacy-preserving, and efficient data collection [36]. Radar systems
can be passively installed in a fixed location, eliminating the need for individuals to
wear sensors continuously. Through sophisticated algorithms, radar technology enables
the extraction of valuable information, including location coordinates, velocity, and
acceleration of a person. By analyzing this data, patterns and deviations from normal
behaviour can be identified, facilitating early detection of potential health issues.

Project Feather is a research project at The University of Edinburgh that aims to facilitate
health and well-being by developing systems for early recognition of urinary tract
infections (UTI). Project Feather aims to analyse human movement data, activities, and
cognitive function through interactions with intelligent agents to detect the presence of a
UTI before it gets fatal. As a subset of Project Feather, the current study investigates the
potential and viability of using radar for noninvasive data collection of human movement
and activities. By leveraging the capabilities of a single radar sensor and developing
robust computational models, this project aims to demonstrate the potential of radar
technology in detecting anomalies in human movement patterns and its applications in
assisted living and digital healthcare.

In summary, this project’s motivation stems from the need for a non-intrusive, privacy-
preserving, and efficient method for detecting anomalies in human movement patterns.
By exploring using a single radar sensor for data collection, this project seeks to advance
assisted living and digital healthcare systems, ultimately improving the quality of life
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Chapter 1. Introduction 2

for individuals who require continuous monitoring and support. The integration of this
project with Project Feather further emphasizes the significance of radar technology in
the healthcare field and its potential to benefit continuous health monitoring systems.

1.2 Research Aims

The primary research objectives of this study are as follows:

1. This project aims to showcase the ability of computational models to detect
anomalies in movement data collected from radar without relying on the use of
multiple sensors or wearables. This study also aims to demonstrate the viability
of using radar technology in this domain.

2. Develop and evaluate the performance of various supervised and unsupervised
learning techniques for anomaly detection. This project aims to develop computa-
tional models such as the Gaussian Mixture Model, Autoencoder, Convolutional
Neural Network and more to identify the most suitable approach for this domain.

3. Compare the performance of unsupervised and supervised anomaly detection
approaches on the collected radar dataset. By evaluating the strengths and limi-
tations of each approach, this project aims to provide insights into the optimal
strategies for detecting anomalies in human movement patterns.

4. Provide insights into radar technology’s effectiveness in assisted living and digital
healthcare for monitoring and detecting anomalies in human movement.

1.3 Thesis Structure

This thesis is split into five chapters as follows:

Chapter 1 introduces the motivation and problem statement, highlighting the need for
an effective and non-intrusive method for detecting anomalies in human movement
patterns. It also outlines the research aims and provides an overview of the thesis
structure.

Chapter 2 presents a comprehensive background on human behaviour representation,
data analysis techniques, and anomaly detection methods in the context of human
activity monitoring systems. It reviews related work on machine learning and deep
learning approaches for human activity recognition and anomaly detection.

Chapter 3 describes the methodology used in this project, including the experimental
setup for data collection, data representation techniques used, and the construction
of the dataset for analysis. It also demonstrates the methodology for developing and
evaluating supervised and unsupervised computational models.

Chapter 4 presents the results of the experiments conducted. It outlines the various
evaluation metrics and the corresponding discussions for the computational models and
compares the performance of all the models tested.
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Chapter 5 concludes the thesis by summarizing the project’s essential findings and
contributions. It highlights the effectiveness of radar technology and the proposed
computational models in detecting anomalies in human movement patterns. This chapter
also discusses the study’s limitations and provides suggestions for future research.



Chapter 2

Background

2.1 Data Collection

In the field of movement quality analysis for assisted living, researchers employ diverse
methods and protocols to collect data on human movement. Most existing scientific
studies in this domain rely on wearable or non-wearable devices for data collection [12].
Data collected through non-wearable devices can further be classified into obtrusive
visual sensing and non-obtrusive type dense sensing [4]. Obtrusive visual sensing
techniques [40] utilize various kinds of cameras, such as infrared (IR), RGB [25], and
depth cameras [11], to capture data. Despite the widespread use of visual sensing in this
field, it presents several drawbacks, including varying illumination conditions, detecting
shadows, and, most crucially, privacy concerns [5]. Similarly, the effectiveness of
wearable devices is contingent upon the user consistently wearing the device, which
may not always be practical. Another proposed solution involves using the sensors
embedded in a user’s smartphone [1]; however, this approach may only be feasible in
some cases, as it requires the user to carry their smartphone at all times.

Non-obtrusive dense sensor networks [9] offer a promising alternative for data collection
without compromising user privacy. This method of data collection uses various
sensors, such as radio-frequency identification (RFID) [54], motion sensors, contact
sensors, pressure sensors, and door sensors [24], which are deployed in the user’s
environment. For instance, the authors of [51] used motion detectors, pressure mats,
break beam sensors and contact switches to perform activity recognition. Similarly, in
[14], the authors used pressure sensors, motion sensors, door sensors and IoT-enabled
technologies to combine individual historical data and environmental data to create
regular activity profiles for patients with dementia. These profiles were used to detect
anomalies and identify changes in a participant’s health and well-being.

In the field of human activity recognition (HAR), some researchers have utilized pre-
existing human activity datasets instead of collecting data directly from users. For
example, the authors of [2] use two datasets from the CASAS project, Aruba and Cairo,
to train their models. These datasets provide an excellent baseline regarding the daily
activities of elderly patients in a smart home. They contain data collected from various
sensors such as motion, temperature, door closure, etc. The data was collected for over
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Chapter 2. Background 5

200 days and labelled with 11 and 13 activities, respectively.

2.1.1 Data Collection using Radar

Existing research clearly shows a need for effective, non-obtrusive contactless sensing
methods. Radar technology provides a method that is not limited by the drawbacks of
other methods, such as cameras [48]. It offers a sophisticated method for collecting
data on movement patterns within a designated area. Through advanced algorithms,
radar systems can transform raw electromagnetic reflections into detailed point clouds
representing objects’ spatial and temporal dynamics within the observed space. The
radar then performs target localization and tracking on the point clouds. It uses a
Kalman Filter variant to estimate the tracked targets’ position, velocity, and acceleration
in a 3D Cartesian space [45]. This technology has been growing in popularity in the field
of human health monitoring. Many studies have used it in human activity recognition
[20], [17], [10], fall detection [55], and gait analysis [43], [33].

2.2 Data Processing and Analysis

Appropriate data processing is crucial for classifying human activities or detecting
anomalies. The data collected from various sensors is typically temporally ordered,
making classifying activities directly or detecting anomalies challenging. Therefore,
relevant features must be extracted from the raw data before any computational analysis.

According to [4], the data pre-processing and analysis process can be divided into
two stages. The first stage, known as the lower sensory level, involves a series of pre-
processing steps, including data filtering, segmentation, feature extraction and feature
engineering. Data filtering helps reduce noise and remove any incorrect values in the
data, ensuring the dataset’s quality. Segmentation allows splitting the data into more
manageable formats, such as smaller windows, facilitating using the sliding window
approach [27] during classification.

Feature extraction is the process of extracting relevant features from the raw data
and transforming them into numerical representations that computational models can
process [34]. On the other hand, feature engineering involves using existing information
from the raw data to create new features that can provide additional insights for the
computational models during the learning process. Creating new features can help
models better capture the underlying patterns and relationships within the data and
improve classification or anomaly detection performance.

Feature normalization is an integral part of data pre-processing, mainly when dealing
with features that have different scales or units. One popular technique for feature
normalization is the Min-Max scaling, which linearly transforms the features to a
specified range, typically between 0 and 1. The MinMaxScaler, a class provided by the
scikit-learn library in Python, is widely used to apply Min-Max scaling to features [39].
This is crucial when using machine learning algorithms sensitive to feature scales, such
as support vector machines or non-negative matrix factorization.



Chapter 2. Background 6

The collected data may exhibit an inherent bias in some cases due to the imbalanced
distribution of data instances across the different class labels. For example, in anomaly
detection tasks, it is expected to have more data instances representing normal be-
haviour than abnormal behaviour. This imbalance in data samples can lead to biased
computational models [28], a phenomenon known as the “class imbalance problem.”

Several techniques can be used to mitigate the effect of class imbalance. One of the most
popular approaches is resampling. This involves either oversampling the minority class
or undersampling the majority class to balance the dataset. Oversampling techniques,
such as the Synthetic Minority Over-sampling Technique (SMOTE), generate synthetic
examples of the minority class to increase its representation in the dataset. On the
other hand, undersampling techniques involve randomly removing instances from the
majority class to reduce its dominance in the dataset. Studies have demonstrated that
resampling techniques can improve the generalizability of learning algorithms in the
presence of class imbalance [3].

The second stage of the analysis process is called the higher sensory level [4]. At
this stage, the output from the lower level is further analyzed from a higher-level
perspective. One essential task at the higher sensory level is anomaly detection, which
involves identifying data instances that deviate from regular patterns. This is achieved
by training models using normal data instances, allowing the models to establish a
baseline for normal data. When a trained model encounters a new data instance that
significantly deviates from the training data, it is classified as abnormal. These anomaly
predictions can be further analyzed at a higher level to derive meaningful insights and
take appropriate actions. For instance, when abnormal activity is detected in digital
healthcare, such as falling or unusual movement gait, the system can notify emergency
services or caregivers to ensure timely intervention and assistance.

2.2.1 Statistical Features for Movement Data

When dealing with temporally ordered movement data, it usually involves a time series
of the subject’s position, acceleration and velocity values. This raw data can be used
to extract a set of statistical features in the time and frequency domain [23], [32]. The
most common statistical features in the time domain include the raw acceleration and
velocity data’s mean, median and standard deviation values. Other features such as the
minimum value, maximum value, the difference of the maximum and minimum values
(maximum−minimum), interquartile range and the direction of movement can also be
extracted. Similarly, features such as mean, standard deviation, median, maximum,
minimum, maximum−minimum value, and the energy can be extracted in the frequency
domain.

2.2.1.1 Interquartile Range

The interquartile range (IQR) is a measure of statistical dispersion, representing the
range between the first quartile (25th percentile) and third quartile (75th percentile) of a
dataset. To extract the IQR feature from accelerometry data, the first quartile (Q1) and
third quartiles (Q3) are calculated using the formulas given in equation 2.1, where n is
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the number of data points. Finally, the IQR can be computed as shown below in 2.2:

Q1 =
(n+1)

4
th term , Q3 =

3(n+1)
4

th term (2.1)

IQR = Q3−Q1 (2.2)

2.2.1.2 Direction Angle of Acceleration and Velocity

The direction angle of the acceleration and velocity can be determined using the
acceleration and velocity values in the X and Y directions by calculating the arctangent
of the ratio between the Y and X components. The formula to compute the direction
angle (θ) is given in Equation 2.3, where ay and ax are the acceleration values, and vy
and vx are the velocity values in the Y and X directions, respectively.

θ = arctan(
ay

ax
), θ = arctan(

vy

vx
) (2.3)

2.2.1.3 Energy in Frequency Domain

The energy in the frequency domain can be calculated after applying the Fast Fourier
Transform (FFT) on the X and Y acceleration or velocity values. First, compute the
FFT of the X and Y components separately, yielding the complex frequency-domain
representations FFTx and FFTy. Then, calculate the energy (E) by summing the squared
magnitudes of the complex FFT coefficients for both X and Y components as given in
Equation 2.4, where N is the number of FFT points and k is the frequency bin index.

E =
N−1

∑
k=0

|FFTx[k]|2 + |FFTy[k]|2 (2.4)

2.2.2 Dimensionality Reduction

Dimensionality reduction is a crucial step in data analysis. It helps simplify high-
dimensional data by transforming it into a lower-dimensional space while preserving
the underlying structure and patterns of the high-dimensional data. The t-Distributed
Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensionality reduction tech-
nique that is particularly effective in visualizing high dimensional data in the 2D or
3D space. It aims to capture the local structure of the data by preserving the sim-
ilarity between data points in the original high-dimensional space and the reduced
low-dimensional space. This technique can be used to create visually interpretable rep-
resentations of high-dimensional data that reveal hidden patterns, clusters and outliers.
This technique has also been widely used in the field of human activity recognition.
In [13], the authors use t-SNE to visualize human activities in the low-dimensional
space. In [46], the authors proposed an ensemble learning framework for human activity
recognition using smartwatches. They improved its accuracy to 96% using the t-SNE
dimensionality reduction method.
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2.3 Anomaly Detection

Anomaly detection in movement patterns or activities is challenging due to the rare
occurrence of anomalies in the data [56]. According to [4], anomalies can be classi-
fied into three distinct types: point anomalies, contextual anomalies, and collective
anomalies.

Point anomalies are the most straightforward type, representing a single data instance
that deviates from the normal pattern. Anomaly detection for point anomalies involves
setting a threshold value. If a new incoming data instance exceeds this threshold, it is
classified as an anomaly. On the other hand, contextual anomalies are data instances that
would not be considered abnormal on their own but are anomalous based on contextual
information such as temporal and spatial features. For example, making tea at 3 AM
would be considered an anomaly, even though making tea itself is normal. Collective
anomalies are a set of data instances considered abnormal as a collection, even though
each instance may not be anomalous. An example of a collective anomaly is a deviation
from a regular sequence of activities.

Anomaly detection models aim to identify data instances that deviate from the normal
patterns. The authors of [4] discuss two primary forms of anomaly detection: profiling
and discrimination. Profiling involves training models using normal data instances and
classifying any new data instances that deviate from this normal data as an anomaly.
The approach followed in [49] falls under this category. In contrast, discriminating
involves training models on abnormal behaviour and searching for similar patterns in
new incoming data instances. The approaches used in [57] fall into this category. Due
to the scarcity of anomalous data instances, profiling is a more realistic approach to
anomaly detection and is more widely used than discriminating.

2.4 Computational Models

Various methodologies have been implemented for anomaly detection, including statis-
tical, probabilistic, and machine-learning techniques. These methods aim to identify
instances that deviate from the normal patterns in the data. Two main approaches
are used when computationally analysing data: supervised learning and unsupervised
learning.

Supervised learning is used when the collected data instances have known ground
truth labels. This process is commonly referred to as activity recognition [59]. In this
approach, the computational models are trained using labelled data, and the aim is to
learn the mapping between the input features and the corresponding labels, enabling the
model to classify new, unseen instances accurately.

On the other hand, unsupervised learning is used when the data instances do not have
known labels. This process is commonly known as activity discovery [50]. In this
method, computational models aim to identify underlying patterns and structures in the
data without relying on defined labels. These methods help uncover hidden patterns,
group similar instances, and identify anomalies based on their deviation from the
discovered patterns.
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2.4.1 Unsupervised Models

The notion that activities exhibit discernible ”regular patterns” has gained widespread
acceptance among researchers in the field of anomaly detection [29]. These patterns
can be effectively identified through unsupervised probabilistic models. In [6], the
authors proposed a profiling strategy based on the Gaussian Mixture Model (GMM) to
capture the normal behaviour of the occupants. The GMM is an unsupervised proba-
bilistic model that estimates the likelihood of activities belonging to the normal data.
The authors also argued that the GMM-based approach offers significant advantages
over previously used Histogram models as the GMM could better capture the activity
attribute’s dependency.

While the GMM has proven effective in anomaly detection, other researchers have
suggested that Hidden Markov Models (HMM) may be more suitable for noisy do-
mains, such as smart homes. HMMs are probabilistic models that capture temporal
dependencies and transitions between different states or activities. They have been
successfully applied in various human activity recognition tasks [58], [52]. However,
the use of HMMs also has limitations. For instance, the authors of [22] pointed out that
HMMs may struggle to identify similar activity sequences accurately, mainly when the
sequence duration differs significantly from the normal patterns.

Non-negative matrix factorization (NMF) is another unsupervised learning technique
that has been applied to anomaly detection tasks. NMF is a dimensionality reduction
and unsupervised learning technique that decomposes a non-negative matrix into two
non-negative matrices. Non-negative matrix factorization (NMF) aims to find an
approximation of a non-negative matrix X ∈ Rm×n as the product of two non-negative
matrices W ∈ Rm×k and H ∈ Rk×n, such that:

X ≈WH (2.5)

The goal is to minimize the reconstruction error between X and WH, typically using a
cost function such as the Frobenius norm:

||X −WH||F where, W ≥ 0,H ≥ 0 (2.6)

The matrix W contains basis vectors, which represent the latent features or patterns
in the data, while the matrix H contains the corresponding coefficients or activations,
indicating the contribution of each basis vector to the original data.

In the context of anomaly detection, NMF can be used to extract latent features from the
data during the profiling phase. NMF captures the essential patterns and characteristics
of normal behaviour by learning a low-dimensional representation of the normal data.
In [15], the authors applied NMF to extract latent features for urinary tract infection
(UTI) detection.

Accelerometer data has been widely used for human activity recognition (HAR) tasks,
as it provides valuable information about individuals’ movement and orientation. The
authors of [31] introduced the Human Activity Recognition Trondheim (HARTH)
dataset, which consists of accelerometer data collected from participants performing
twelve different activities. They evaluated the performance of seven machine learning
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models for activity recognition on this dataset. Among the models tested, the authors
found that unsupervised models, such as the support vector machine (SVM) and the
random forest model, yielded promising results.

In another study, the authors of [53] proposed an ensemble detection model for anomaly
detection in activities of daily living (ADL). The ensemble model consisted of four
components: a one-class SVM (OC-SVM), an isolation forest (iForest), a local outlier
factor (LOF), and a robust covariance estimator. The combination of these techniques
achieved an accuracy of 98%.

2.4.2 Supervised Models

Supervised models have also been extensively used for human activity recognition and
anomaly detection tasks. In [31], the authors evaluated the performance of several
supervised models, such as Bidirectional Long Short-Term Memory (Bi-LSTM), Con-
volutional Neural Network (CNN), and Multi-Resolution CNN, on the HARTH dataset.
These models have shown promising results in capturing the temporal dependencies
and spatial features present in the accelerometer data.

In [2], the authors employed a Deep Neural Network (DNN) for activity classification, an
overcomplete-deep autoencoder (OCD-AE) for anomaly detection within each activity
class and an LSTM for predicting the next activity in a sequence. The authors then
combined all three capabilities into a unified model to help patients with dementia.

Multimodal wearable activity recognition has also been explored using a combination
of CNN and LSTM models. In [38], the authors introduced a deep learning architecture
called DeepConvLSTM, which combines convolutional and recurrent layers to capture
both spatial and temporal dependencies in the sensor data. This approach leverages
the strengths of both CNN and LSTM models to improve activity recognition accuracy.
The authors of [41] trained a CNN on the time series data collected from smartphone
sensors to classify activities.



Chapter 3

Methodology

3.1 Overview

Radar technology is being explored in the field of anomaly detection for walking
patterns due to its ability to preserve user privacy [36]. However, the effectiveness of
this technology in this domain is still being investigated. Unlike previous studies that
rely on multiple sensors or wearables to collect data, this project focuses on utilizing
a single isolated radar in a fixed location within the environment. This study aims to
demonstrate the functionality of radar-based anomaly detection in walking patterns and
evaluate the efficiency of this technology. The project can be divided into the following
parts:

Figure 3.1: Project Structure

In the first part of the project, subjects were asked to perform a series of activities in a
simulated environment. During these activities, a radar was set up in a fixed location to
collect data. Both normal and simulated abnormal data were collected. All participants
who volunteered for this experiment signed a consent form, which is included in
appendix E. In the second part of the project, the collected data was pre-processed into
a desired format for analysis. This step included data filtering, cleaning, and outlier

11
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removal to prepare the data for computational analysis. Finally, in the third part, various
computational models were used to evaluate the efficiency of anomaly detection on
the processed radar data. At this stage, two approaches were evaluated: unsupervised
and supervised learning techniques. Table 3.1 lists the various computational models
assessed in this study. Once the computational models were trained, their performance
was evaluated using unseen data. All data processing, data analysis and computational
model evaluation were done using Python on Jupyter Notebooks.

Unsupervised Models Supervised Models
Non-Negative Matrix Factorization Model (NMF) Convolutional Neural Network (CNN)
Gaussian Mixture Model (GMM) Long Short-Term Memory (LSTM)
One-Class Support Vector Machine (OC-SVM) CNN + LSTM Combined
Autoencoder (AE)

Table 3.1: Computational Models Evaluated

3.2 Data Collection

The data collection process was conducted in the Laboratory for Robotic Assisted
Living (LARA) at the National Robotarium at Herriot-Watt University. Seven subjects
participated in the study, performing activities simulating an average day of their lives.
The activities included making tea, making a sandwich, visiting the toilet, watching
television, reading a magazine, playing with LEGO blocks, and using their mobile
phones.

The AWR6843 mmWave radar from Texas Instruments was used during the data
collection process. It was set up in the corner of the room on a tripod at a height of
160cm and rotated to the right at an angle of 30◦. This ensured a good view of the entire
room. The left side of Figure 3.21 shows the floor plan of the room2, and the right side
of Figure 3.2 shows a picture of the room from the viewpoint of the radar.

Each subject’s data was collected three times in 55-minute intervals. Two sets of
data were collected to show normal walking patterns; one set was collected to show
simulated abnormal walking patterns. To demonstrate abnormalities in the walking
pattern, subjects were instructed to simulate pain in their lower abdomen while moving
around. Furthermore, subjects were asked to vary their walking speed during the
abnormal dataset collection, especially while visiting the toilet.

To provide more context for researchers, the start and end times of each activity per-
formed by the subjects were noted. Moreover, an RGB camera was set up next to the
radar to capture the data collection process. This camera was built using a Raspberry
Pi Model 3 and a Pi Camera. The web interface for the camera was built using an

1Floorplan edited from original illustration drawn by Saber Mirzaee Bafti
2Image is not drawn to scale and is not perfectly accurate. It only provides a better understanding of

the structure of the room
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Figure 3.2: Left: Floor Plan of Room used for Data Collection. Right: The room from the
viewpoint of the radar

open-source GitHub repository [35]. This allowed researchers to better understand the
differences in the subjects’ walking patterns.3

3.3 Data Representation

Unlike the previous data representation methods, which involve using sensors in the en-
vironment, this project relied on data collected from radar in a fixed location. The radar
provided time series data that captured the subject’s X, Y, and Z positions. Moreover,
the radar could also extract the subject’s X and Y accelerations and velocities.

The positional data collected can be used to plot heat maps that illustrate the areas
where the subject spent the most time. These areas can be correlated to the various
activities performed during the data collection process, providing valuable insights into
the subject’s behaviour. Figure 3.3 shows the heat map of the positional data of Subject
D. From the figure, it is visible that the subject spent a considerable amount of time at
the table and on the couch. This is associated with the activities of reading a magazine
and watching television, respectively.

3.4 Dataset Construction

The raw data obtained from the radar included eight columns. Table 3.2 shows an
example of a data sample. The first step in constructing the dataset is filtering the raw
data and removing incorrect values. This process addressed issues where the radar could
not localize the subject correctly, resulting in negative positional values. Similarly, data
instances with positional values greater than 800 were removed, as they were outside
the room’s boundaries.

3The video footage from the camera was used solely by the researchers to aid in data processing and
was deleted promptly after.
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Figure 3.3: Heat Map of Normal Data of Subject D

X Y Z AccX AccY VelX VelY Timestamps
268.39 133.68 60.05 -0.39 -0.26 -0.07 0.39 2023-12-14 09:40:39:607

Table 3.2: Example Data Sample

Since the main focus of this project is to detect anomalies in the walking patterns of a
subject, data samples corresponding to the subject being stationary were excluded from
the dataset. To achieve this, the difference in the Euclidean distance between each subse-
quent data sample was calculated. Data samples were removed if the Euclidean distance
difference was less than 1, indicating no movement or very minute jerk movements.
Furthermore, the X, Y and Z positional columns were removed from the data set. This is
because the primary concern of this study is the movement quality rather than positional
changes. Once the data was cleaned and filtered, feature extraction techniques were
applied to extract relevant information from the dataset before computational analysis.

3.5 Unsupervised Models

Unsupervised techniques are always preferred over supervised approaches in real-
world scenarios where the objective is to detect anomalies in movement patterns. This
is because ground truth labels indicating whether a given data sample is normal or
abnormal are unknown beforehand [7]. Therefore, it is crucial to develop methods
to differentiate between normal and abnormal data without relying on pre-defined
labels. This project employs a profiling strategy to perform anomaly detection using
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unsupervised models. This involves training computational models using normal data
and identifying instances deviating from the normal patterns.

3.5.1 Feature Extraction

Before training the unsupervised models on normal data, relevant features were extracted
from the cleaned time series data. This allows the models to understand better and
capture underlying patterns in the data. This process involved slicing the data into
smaller windows based on a chosen time interval. For example, if a time interval
of 60 seconds were selected, each 55-minute dataset would be divided into 55 1-
minute windows. For each sliced window, statistical features were extracted from the
data. These statistical features capture various measures and characteristics of the
acceleration and velocity magnitudes within each window [37]. Table 3.3 outlines the
features extracted from the data in the time domain.

Moreover, features in the frequency domain were extracted as well. This process
involved applying the Fast Fourier Transform to the X and Y acceleration and velocity
values and extracting statistical features in the frequency domain. Table 3.4 outlines the
features extracted from the data in the frequency domain. 4

Acceleration Magnitude Features Velocity Magnitude Features
Mean Mean
Standard Deviation Standard Deviation
Median Median
Interquartile Range Interquartile Range
Minimum Minimum
Maximum Maximum
Maximum-Minimum Maximum-Minimum
Direction Angle Direction Angle

Table 3.3: Time Domain Features Extracted for Unsupervised and Supervised Models

Acceleration Frequency Features Velocity Frequency Features
Mean Mean
Standard Deviation Standard Deviation
Median Median
Minimum Minimum
Maximum Maximum
Maximum-Minimum Maximum-Minimum
Energy Energy

Table 3.4: Frequency Domain Features Extracted for Unsupervised and Supervised
Models

4These frequency domain features were only used to improve the performance of the OC-SVM Model
and all the supervised models. All other unsupervised models only used the features in the time domain.
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After extracting the features for each dataset, the feature values were normalized using
the MinMaxScaler package from the scikit-learn library in Python [39]. This process
ensures that all features contribute equally to the model’s learning process and prevents
features with larger magnitudes from dominating the others. A feature matrix can be
generated for each dataset using the features from each window. Figure 3.4 shows
the normal and abnormal data matrices for Subject D. These normalized features are
processed further for each computational model into the desired format.

Figure 3.4: Normal and Abnormal Data Matrices for Subject D

3.5.2 Non-Negative Matrix Factorization (NMF) Model

The NMF algorithm is a powerful unsupervised learning technique for anomaly detec-
tion. It decomposes high-dimensional data into low-dimensional latent representations,
capturing the inherent patterns and structures in the data. By learning the system’s
normal behaviour, NMF can effectively identify deviations and anomalies, making it a
robust choice for anomaly detection in complex datasets.

3.5.2.1 Data Preparation

This study collected data from seven subjects, resulting in 14 normal and 7 abnormal
datasets. After the data pre-processing and feature extraction process, 14 normal and 7
abnormal data feature matrices were obtained.

The 14 normal data matrices were split into three subsets: 8 training matrices, 3
validation matrices, and 3 test matrices to prepare the data for training and testing. The
8 training matrices were combined to form the training data for the model, and the 3
test matrices were combined with the 7 abnormal data matrices to form the test data for
the model. This ensured that the model was tested on completely unseen data.
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Figure 3.5: Division of Dataset for NMF Model

Figure 3.5 demonstrates the steps involved in splitting the pre-processed and cleaned
data.

3.5.2.2 Anomaly Detection

The NMF model aims to decompose a data matrix into two smaller non-negative
matrices. These decomposed matrices can be used to reconstruct the original data
matrix, and the reconstruction error between the original and the reconstructed matrices
can be measured. When the NMF model is trained on normal data, it learns the
underlying patterns of the normal data. Once trained, the model should be able to
reconstruct normal data matrices with low reconstruction error. Consequently, abnormal
data matrices should be reconstructed with a higher reconstruction error.

To perform anomaly detection with an NMF model, the model is first fitted with the
normal training data. Then, a threshold for the reconstruction error must be determined
to classify a given data matrix as normal or abnormal. This project used the recon-
struction error of the three validation data matrices to set the threshold value. Any data
matrix with a higher reconstruction error than this threshold was considered an anomaly,
while any matrix with a reconstruction error lower than this threshold was classified as
normal.

3.5.3 Gaussian Mixture Model (GMM)

The GMM is a probabilistic approach commonly used for anomaly detection tasks. By
modelling the normal data as a mixture of Gaussian distributions, the model can capture
the underlying structure and density of the data. If a data instance deviates significantly
from the learned distributions, it is classified as an anomaly.
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Figure 3.6: Division of Dataset for Unsupervised Models

3.5.3.1 Data Preparation

After the data pre-processing and feature extraction steps, there are 14 normal and seven
abnormal datasets. All the normal datasets are combined to form a singular normal
dataset, and similarly, all the abnormal data is concatenated to form a singular abnormal
dataset. The normal dataset is then split into three subsets: train data, validation data,
and test data, following an 80:10:10 split. The training data is used to train the GMM,
and the test data is added to the abnormal data to get the final testing data.

Figure 3.6 shows the division of the dataset for this model.

3.5.3.2 Anomaly Detection

The GMM is trained using the normal training dataset to learn the underlying data
distribution in the normal instances. The trained GMM consists of Gaussian compo-
nents, each characterized by its mean, covariance, and mixing coefficient [18]. These
components collectively represent the learned normal behaviour. The log-likelihood
values of the data instances in the validation dataset are calculated to determine the
threshold for anomaly detection. The maximum log-likelihood value from the validation
set is chosen as the threshold value. Any new data instance with a log-likelihood below
this threshold is classified as an anomaly, while instances with log-likelihood values
above the threshold are classified as normal. By setting the threshold using validation
data, overfitting the model can be avoided while ensuring that the model generalizes
well to unseen data.
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3.5.4 One-Class Support Vector Machine (OC-SVM) Model

The OC-SVM is an anomaly detection technique that learns a tight decision boundary
around normal instances in high-dimensional feature spaces. It is particularly effective
when most training data belongs to the normal class, and anomalies are rare or absent
during training. By learning a hyperplane that maximally separates the normal instances
from the origin, OC-SVMs create a decision boundary that encloses the normal data
points.

3.5.4.1 Data Preparation

To train the OC-SVM model, all the normal datasets from the subjects are concatenated
to form a single normal dataset after data pre-processing and feature extraction steps.
Similarly, combining all the abnormal datasets creates a single abnormal dataset. The
features extracted in the frequency domain were also used for this model. The normal
dataset is then split into training and testing data using an 80:20 split. The testing data
is appended to the abnormal dataset to produce the final testing data. This model did
not require a validation dataset.

Figure 3.6 shows the division of the dataset for this model.

3.5.4.2 Anomaly Detection

The OC-SVM model learns a decision boundary that encloses most of the normal
instances in the training data. The objective is to find a hyperplane that maximally
separates the normal instances from the origin in the feature space. The OC-SVM
model optimizes the decision boundary during training based on the normal training
data. In the detection phase, the trained OC-SVM model classifies new instances based
on their position relative to the learned decision boundary. Instances falling outside the
boundary are considered anomalies, while those inside the boundary are classified as
normal.

3.5.5 Autoencoder (AE) Model

An AE model is an unsupervised learning model that has been widely used for anomaly
detection tasks [19]. The AE’s ability to learn a compressed representation of normal
data and reconstruct it with minimal error makes it well-suited for identifying anomalies.
The model captures the inherent patterns and structures in the data by training an AE
to minimize the reconstruction error in normal instances. Anomalies that deviate from
the normal patterns tend to have higher reconstruction errors when passed through the
trained AE.

3.5.5.1 Data Preparation

To train the AE model, all the normal datasets from the subjects are concatenated to
form a single normal dataset. Similarly, combining all the abnormal datasets creates
a single abnormal dataset. The normal dataset is then split into training, testing, and
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validation data using an 80:10:10 split. The testing data is appended to the abnormal
dataset to produce the final testing data.

Figure 3.6 shows the division of the dataset for this model.

3.5.5.2 Anomaly Detection

The AE model consists of an encoder network that compresses the input data into a
lower-dimensional latent space and a decoder network that reconstructs the original
data from the latent representation. The specific architecture of the AE used in this
project is as follows:

• Encoder:

– 3 Dense layers with decreasing number of neurons

– Bottleneck Layer

– Each dense layer is followed by batch normalization and dropout layers

• Decoder:

– 3 Dense layers with an increasing number of neurons

– Each dense layer is followed by batch normalization and dropout layers

Figure 3.7: Autoencoder Model Architecture

Figure 3.7 provides a visual representation of the model architecture used for the
autoencoder.5

During the training phase, the AE learns to minimize the reconstruction error between
the input and the reconstructed output. The training involves feeding the normal
data instances through the encoder to obtain the compressed latent representation and
then reconstructing the original data using the decoder. After training, a threshold
reconstruction error must be determined for anomaly detection. The validation set is

5Although not explicitly shown in the image, each dense layer is followed by batch normalization and
dropout layers.
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used to set this threshold. The reconstruction errors of the validation instances are
calculated, and a suitable threshold is selected.

The trained AE model is evaluated using the test dataset during the testing phase. Each
test instance is passed through the AE, and its reconstruction error is computed. The
instance is classified as anomalous if the reconstruction error exceeds the predetermined
threshold. Conversely, the instance is classified as normal if the reconstruction error is
below the threshold.

3.6 Supervised Models

Supervised models, such as convolutional neural networks (CNN) and long short-term
memory (LSTM) models, were evaluated in this project to compare their efficiency
and performance with unsupervised approaches. Although supervised models require
labelled data, which may be scarce or costly to obtain, their inclusion in this study
provides a benchmark for evaluating the effectiveness of unsupervised techniques. It
highlights the potential benefits of incorporating labelled data when available.

3.6.1 Feature Extraction

In the field of anomaly detection, the effectiveness of supervised models heavily relies
on the quality of data and the features fed into the model while training [7]. To ensure
that the data is suitable and ready for training and evaluation of supervised models,
the cleaned time series normal data of all subjects are combined into a single dataset.
Similarly, one dataset is constructed for the abnormal data. Ground truth labels are added
to each data instance in both datasets, and additional relevant features are extracted,
including6:

• Change in X and Y positions (dy and dx) between consecutive samples

• Euclidean distance covered between consecutive samples

At this stage, the normal and abnormal datasets are divided into two parts, train and
test, each with an 80:20 split. The training data from the normal and abnormal datasets
are combined to form the combined training data. Similarly, the combined testing data
is formed. To capture the data’s temporal nature, a sliding window approach is used
on this data [27].7 The time series data is divided into windows of specific size. The
window is moved sequentially across the data using a pre-determined stride value. A
set of statistical features is extracted for each window, both in the time and frequency
domains. Table 3.3 outlines the features extracted in the time domain, while Table 3.4
shows the features extracted in the frequency domain. The extracted features were
normalized for each window using the MinMaxScaler from the scikit-learn Python
package [39].

6These features provide the model with information on the relative change in position, indicating the
speed of movement and not position directly

7The data was split into train and test sets before window extraction to avoid data leakage while
testing as the sliding window approach can potentially lead to data being used for training and testing.
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Figure 3.8: An Example of the Sliding Window Approach

Figure 3.8 shows the extraction of windows from the dataset. This sliding window
approach was used for both the train and test sets.

Anomaly detection tasks often face the challenge of class imbalance, where normal
data instances significantly outnumber abnormal data instances. To address this issue,
the data is resampled to balance the number of data instances in both classes. To per-
form data resampling, two methods were used; the first method involves synthetically
oversampling the minority class using the synthetic Minority Over-sampling Technique
(SMOTE). This creates artificial anomalies to balance the training and test data. The
second method involves randomly undersampling the majority class by removing ran-
dom data instances from the majority class to balance the dataset. For data resampling,
the smote, and RandomUnderSampler functions were used from the imbalanced-learn
Python package [30]. The performance of both methods was compared.

Finally, the balanced train and test sets are used to train and evaluate the model’s
performance respectively. This method ensures that there is no overlap between the
train and test sets and that the model is evaluated on completely unseen data.

3.6.2 Convolutional Neural Network (CNN) Model

Using a Convolutional Neural Network (CNN) model for this task is motivated by its
proven effectiveness in learning spatial and temporal patterns from time series data
[16]. CNNs have demonstrated remarkable performance in various domains, including
anomaly detection, due to their ability to extract hierarchical features and capture local
dependencies automatically.

The architecture of the CNN model used in this study is designed to learn features from
the input time series data and classify them as normal or abnormal. The model consists
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of three convolutional layers, each followed by a dropout layer and a max-pooling layer.
The convolutional layers apply learned filters to the input data, capturing local patterns
and extracting relevant features.

Dropout layers are incorporated after each convolutional layer to prevent overfitting
and improve the model’s generalization capability [44]. Dropout layers regularise the
model by randomly dropping out a fraction of the neurons during training and reducing
reliance on specific features. Max-pooling layers help the model focus on the most
prominent features and reduce computational complexity.

After the convolutional and pooling layers, the extracted features are flattened and passed
through two fully connected dense layers. These layers learn high-level representations
and capture complex relationships among the features [19]. Dropout is also applied
between the dense layers to regularize the model further.

Finally, the output layer consists of a single neuron with a sigmoid activation function,
producing a probability score between 0 and 1. This score represents the likelihood of
an input sample being anomalous. Figure 3.9 visually represents the model architecture.

Figure 3.9: Model Architecture of Convolutional Neural Network

3.6.3 Long Short-Term Memory (LSTM) Model

LSTM models are widely used to capture long-term dependencies and temporal patterns
in sequential data [21]. LSTMs are a type of recurrent neural network (RNN) that
have shown exceptional performance in modelling time series data and have been
successfully applied to anomaly detection tasks [47].

The model’s architecture used in this study consists of two LSTM layers, two dense
layers and an output layer. The first LSTM layer has 64 units and returns sequences, al-
lowing the model to capture the temporal dynamics of the input data. The second LSTM
layer has 32 units and returns only the last output, providing a compact representation
of the entire sequence. Dropout layers are added after each LSTM layer to regularize
the model and prevent overfitting. The output from the second LSTM layer is then
passed through two dense layers to help the model learn higher-level representations
and capture complex relationships among the learned features. Dropout is also applied
after each dense layer to regularize the model further.
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Finally, the output layer consists of a single neuron with a sigmoid activation function,
producing a probability score between 0 and 1. This score indicates the likelihood of an
input sample being anomalous. Figure 3.10 visually represents the model architecture
used.

Figure 3.10: Model Architecture of the Long Short-Term Memory

3.6.4 CNN + LSTM Combined Model

The motivation behind exploring a combined CNN-LSTM model is to leverage the
strengths of both architectures in capturing spatial and temporal patterns from time
series data [26]. CNNs have proven effective in extracting local features and learning
hierarchical representations, while LSTMs excel at modelling long-term dependencies
and temporal dynamics [38].

The model consists of three convolutional layers, followed by two bidirectional LSTM
layers and two dense layers. The convolutional layers apply learned filters to the
input data, capturing local patterns and extracting relevant features. Dropout layers
are incorporated after each convolutional layer to prevent overfitting and improve the
model’s generalization capability. Max-pooling layers are employed to downsample
the feature maps, reducing the spatial dimensions and focusing on the most prominent
features.

Figure 3.11: Model Architecture of CNN+LSTM Combined
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The output from the convolutional layers is then passed through two bidirectional
LSTM layers. Bidirectional LSTMs process the sequence in both forward and backward
directions, allowing the model to capture dependencies from past and future contexts
[42]. The first bidirectional LSTM layer has 128 units and returns sequences, while the
second bidirectional LSTM layer has 64 units and returns only the last output. Dropout
layers are added after each bidirectional LSTM layer to regularize the model and prevent
overfitting.

The output from the second bidirectional LSTM layer is then passed through two fully
connected dense layers. Finally, the output layer consists of a single neuron with a
sigmoid activation function, producing a probability score between 0 and 1. This score
indicates the likelihood of an input sample being anomalous. Figure 3.11 visually
represents the model architecture used.
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Results

4.1 Evaluation Method

In this project, the performance of the tested anomaly detection models is evaluated
using various metrics based on the prediction outcomes. These outcomes can be
categorized into four types:

• True Positives (TP): The model correctly identifies anomalous instances as anoma-
lies.

• True Negatives (TN): The model correctly identifies normal instances as normal.

• False Positives (FP): The model incorrectly identifies normal instances as anoma-
lies.

• False Negatives (FN): The model incorrectly identifies anomalous instances as
normal.

Using these values, a general set of evaluation metrics can be calculated. They are:

• Accuracy: This is measured as the ratio of correctly classified outcomes to the
total number of predicted outcomes. It measures the overall correctness of the
model’s predictions.

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

• Precision: This metric evaluates the accuracy of the model’s positive predictions.
It is calculated as the ratio of true positives (TP) by the total number of instances
predicted as positive by the model. It indicates how well a model avoids false
positives.

Precision =
T P

T P+FP
(4.2)

• Recall: Recall measures the model’s ability to correctly identify positive instances
from the test data. It is calculated as the ratio of true positives (TP) to the total

26
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number of actual positive instances.

Recall =
T P

T P+FN
(4.3)

• F1-Score: This metric is the harmonic mean of precision and recall, providing a
balanced measure of the model’s performance. It accounts for both false positives
and false negatives, which is very useful in tasks where the classes are imbalanced,
such as anomaly detection.

F1−Score =
2∗Precision∗Recall

Precision+Recall
(4.4)

4.2 Unsupervised Models

Unsupervised learning techniques play a crucial role in anomaly detection, as they
can identify patterns in normal data instances without the need for ground-truth labels.
This section presents the results of the unsupervised models mentioned in Table 3.1.
Each model was evaluated based on its ability to capture the underlying structure of
normal data and effectively classify abnormal data instances. The results demonstrate
the strengths and limitations of each model, providing valuable insights into their use in
anomaly detection tasks.

4.2.1 Non-Negative Matrix Factorization Model

The first step in evaluating the NMF model was to identify a time sample value that
would allow us to split the normal datasets into smaller segments. After rigorous
testing, the time sample of 80 seconds was chosen for this model. This time sample
demonstrated the best performance in capturing the underlying patterns of the normal
data and effectively identifying abnormal data instances. Figure A.1 shows the three
cleaned datasets of Subject D with an 80-second time sample. From this image, it is
visually evident that there is a difference between the normal and abnormal data.

Before testing the trained model, a threshold reconstruction error was chosen. The
validation dataset was used to find the optimal threshold value, and the trained model
was used to find the validation dataset’s reconstruction error. This error value was
chosen as the threshold for anomaly detection. Data matrices with a reconstruction
error higher than this threshold were classified as anomalies, while those with a lower
error were classified as normal data instances.

The NMF model was evaluated using sevral metrics, including accuracy, precision,
recall and F1-score. Table 4.1 presents the evaluation results for the 80 second time
sample. The model achieved an accuracy of 90%, indicating its overall effectiveness

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
90 91.25 90 89.33

Table 4.1: Evaluation Metrics for NMF Model
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in classifying normal and abnormal data. The precision score of 91% suggests that
the model has a low false positive rate, while the recall score of 90% indicates that
the model successfully identifies a high proportion of actual anomalies. The F1 score
of 89.3% provides a balanced measure of the model’s performance, considering both
precision and recall. Figure 4.1 shows the reconstructions errors of the test matrices in
comparison to the chosen threshold value.

Figure 4.1: Reconstruction Errors of the NMF Model

Since the test set of this model has a very small subset of data, K-Fold cross-validation
was also used to evaluate this model. The model was trained and evaluated using 10
folds. Table 4.2 shows the evaluation metrics after implementing the K-Fold cross-
validation.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
86.53 78.87 86.53 82.44

Table 4.2: Evaluation Metrics for NMF Model with 10-Fold Cross Validation

4.2.1.1 Discussion

The results demonstrate the effectiveness of the NMF model in detecting anomalies in
movement patterns. The selected time sample and threshold value proved optimal for
distinguishing between normal and abnormal data instances. The high accuracy and
f1-score demonstrate that the model can make accurate predictions while maintaining
a good balance between precision and recall, making it a reliable model for anomaly
detection in movement patterns. Moreover, the results obtained from the 10-fold
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validation method further validate the model’s performance. The data used to train this
model involved multiple subjects with varying styles of movement and speeds. Yet, the
model could learn the underlying patterns and generalize to unseen subjects. The cross
validation method further strengthens the performance of the model and its ability to
generalize well to unseen data, which is crucial for its practical application.

However, this approach also has limitations. This approach for anomaly detection
performs well for data extracted over a considerable interval of time. For instance, in
this project, 55-minute datasets were used to train the NMF model. Although the dataset
was split into smaller segments, the model was trained using all of the smaller segments
of each dataset. This provided the model with more information to learn underlying
patterns from. This model might not perform as well if smaller data sets are used. This
implies that performing real-time anomaly detection for a subject would be difficult.
However, if data is collected over a longer time, this approach is an effective anomaly
detection method.

4.2.2 Gaussian Mixture Model Model

To train the Gaussian Mixture model, a similar approach to that used to the NMF model
was used. First, a time sample had to be determined. After performing an in-depth
analysis with a wide range of time samples, 130 seconds was chosen. This time sample
rate yielded the best performance in capturing the underlying structure of the normal
data and effectively classifying abnormal data instances. Once the model is trained,
it outputs the log-likelihood values of a new data instance being a part of the normal
distribution.

To perform anomaly detection, a threshold log-likelihood had to be determined. The
validation dataset was used to choose the optimal value. From all the log-likelihood
values of the validation dataset, the maximum log-likelihood value was chosen as
the threshold. New data instances with a log-likelihood less than this threshold were
classified as anomalies, while those with a higher log-likelihood value were classified
as normal data instances.

The GMM model was evaluated using the accuracy, precision, recall and F1-score
metrics. Table 4.3 outlines the evaluation metrics for the GMM. The GMM achieved an

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
85.52 87.66 85.52 80.3

Table 4.3: Evaluation Metrics for GMM Model

accuracy of ≈ 85% indicating that it can differentiate normal data from abnormal data
fairly well. The precision score of ≈ 87% shows that the model has a relatively low
false positive rate, while the recall score of ≈ 85% suggests that the model successfully
identifies a substantial proportion of actual anomalies.
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4.2.2.1 Discussion

The results demonstrate the effectiveness of using a Gaussian Mixture Model in detect-
ing anomalies in movement patterns. The time sample and threshold chosen proved
to yield good performance by the model. From the accuracy and f1-score, it is clear
that the model can effectively perform anomaly detection while maintaining a balance
between precision and recall. Like the NMF model, the GMM is also effective in
generalizing data instances of different subjects. This is a very desirable quality of a
well-performing model in this domain.

Moreover, unlike the NMF model, this model can identify anomalies in a shorter
duration. Since the chosen time sample for this model is 130 seconds, this trained GMM
should be able to identify anomalies in data samples of 130 seconds. This provides a
better method of anomaly detection that can be tuned further to use in real time.

4.2.3 One-Class Support Vector Machine Model

An optimal time sample had to be selected to split the normal data into smaller, more
manageable segments to train the OC-SVM model. Rigorous testing was conducted to
determine the optimal time sample rate for the OC-SVM model. Various time sample
rates were evaluated, and their impact on the model’s performance was assessed. The
time sample that best-balanced model performance and computational complexity were
chosen. After testing, this was identified as 30 seconds.

Furthermore, different kernel functions were explored to identify the most suitable
one for the OC-SVM model. The tested kernels included linear, polynomial, radial
bases function (RBF) and sigmoid. The performance of each kernel was evaluated and
compared using the evaluation metrics. The RBF kernel demonstrated the best accuracy
and was selected as the optimal kernel for this domain. However, the other kernels also
have their merits.

The OC-SVM model with different kernels was evaluated using the accuracy, precision,
recall and f1-score metrics. Table 4.4 presents the evaluation metrics for the OC-SVM
model with the different kernels.

Kernel Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Linear 68.24 60.19 68.24 62.09
Polynomial 69.35 62.31 69.35 63.42
RBF 69.53 60.09 69.53 61.78
Sigmoid 67.96 58.51 67.96 61.06

Table 4.4: Evaluation Metrics for OC-SVM Model

4.2.3.1 Discussion

The results demonstrate that the OC-SVM exhibits varying performance in detecting
anomalies, depending on the choice of the kernel function. Among the kernel functions,
the RBF kernel displays high accuracy and recall values of ≈ 70%. This indicates
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that the model effectively captures the underlying patterns of normal behaviour and
identifies actual anomalies. However, the ≈ 60% precision value suggests a relatively
high false positive rate. This may lead to some normal instances being misclassified as
anomalies.

The polynomial kernel also demonstrated comparable performance to the RBF kernel,
with an accuracy and recall of ≈ 69%. However, it has a higher precision score of ≈
62%, indicating a lower false positive rate when compared to the RBF kernel. The
linear and sigmoid kernels exhibit similar performance on almost all metrics, but the
linear kernels performs slightly better on all metrics.

The choice of the kernel function plays a crucial role in the performance of the OC-SVM
model in anomaly detection. The RBF and polynomial kernels perform better than the
linear and sigmoid kernels. This suggests that the RBF and polynomial kernels are more
suitable for capturing the complex and non-linear patterns present in the movement
data. However, despite the RBF kernel achieving the highest accuracy and recall, its
lower precision score indicates a trade-off between correctly identifying anomalies and
minimizing false positives.

It is important to note that the performance of the OC-SVM model still needs to improve
compared to some of the other unsupervised anomaly detection models evaluated
in this study. The inherent complexity and variability in movement patterns across
subjects prove challenging for the OC-SVM model. Nevertheless, the OC-SVM model,
particularly with the RBF or polynomial kernel, can serve as a complementary approach
to another anomaly detection technique. Further research and exploration could improve
the performance of the OC-SVM model in detecting anomalies in movement patterns
collected with a radar.

4.2.4 Autoencoder Model

A wide range of samples were evaluated to determine the optimal time sample for the
AE model. The impact on the model’s performance was assessed every time the sample
was tested. After thorough experimentation, the time sample of 40 seconds was chosen
as it yielded the best performance.

Furthermore, several hyperparameters were tuned to optimize the performance of the
AE model. The activation function for all the dense layers was evaluated, and the ’tanh’
function was identified to yield the best results. A grid search also tuned the learning
rate and number of epochs. A model with a learning rate 1e-05 combined with the
Adam optimizer was trained for 1000 epochs to yield the best performance. Moreover,
L2 regularization with a value of 0.01 was applied to each dense layer to mitigate
overfitting. Furthermore, checks for early stopping and overfitting detection were set up
to prevent training beyond the required capacity.

The AE model was evaluated using the accuracy, precision, recall and f1-score metrics.
Table 4.5 provides an outline of the evaluation metrics for the AE model for all the
activation functions tested. The best AE achieved an accuracy of ≈ 56%, indicating
moderate effectiveness in classifying normal and anomalous instances. Notably, the
model demonstrated a high precision of ≈ 85%, suggesting a low false positive rate.
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Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 52.91 83.22 52.91 61.86
ReLU 51.84 85.1 51.84 60.68
Tanh 55.52 84.88 55.52 64.04

Table 4.5: Evaluation Metrics for AE Model

This means that when the model classifies a data instance as an anomaly, it is highly
likely to be a true anomalous instance. However, the moderate recall score of ≈ 56%
indicates that the model might miss some actual anomalies, resulting in a higher false
negative rate.

4.2.4.1 Discussion

The results demonstrate that the model can effectively identify anomalies, especially
when trying to minimise the false positive rate, which can be crucial depending on the
application. Moreover, it can be seen that the model with the ReLu activation yields a
slightly better precision score than the model with the Tanh activation. However, the
other metrics are better for the model with the Tanh activation.

Although the model demonstrates a high precision score, the model only shows moderate
accuracy and recall scores. This can be attributed to several factors. Firstly, the inherent
complexity and variability in the movement patterns across subjects could pose a
challenge to the model. The AE model may struggle to capture all the nuances and
variations present in the data, leading to some anomalies being missed.

Secondly, the limited depth of the AE architecture may restrict the model’s capacity
to learn intricate patterns. While deeper models were explored, they consistently led
to overfitting, indicating that the available data might not be sufficient to support a
more complicated architecture. To improve the model’s performance, future research
can involve more diverse training data or incorporate ensemble models to combine the
strengths of multiple models.

4.3 Supervised Models

Supervised learning is a powerful technique for anomaly detection when labelled data
is available. These models learn from examples of normal and abnormal data instances
to effectively identify new instances as normal or abnormal. In this section, the results
of the evaluated supervised models are presented. Each model was trained on labelled
data using a sliding window approach. These results show the strengths of supervised
models in the domain of anomaly detection in movement patterns of data collected
through a radar.

All of the models evaluated followed a sliding window approach. This involved splitting
the data into train and test sets first. Then, the data samples were split into smaller
windows based on a chosen window length. The windows were extracted by sliding
the window across the data with a chosen stride value. This allowed the training and
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testing data to effectively capture the temporal nature of the data. After thorough
experimentation, a window size of 200 and a stride value of 50 were chosen. A window
size of 200 is approximately equal to 20 seconds of data collected. These values were
selected to balance the available data while capturing enough information in each
window to perform anomaly detection accurately.

Moreover, all the models were trained for 200 epochs and optimized using the Adam
optimizer. Checks for early stopping and overfitting detection were set up to ensure a
model was not trained beyond the required capacity. At the end of training, the model
with the best weights was chosen for evaluation.

It is important to note that data collected with the radar was imbalanced and contained
more normal than abnormal instances. To better evaluate the supervised models, the
collected data was resampled to balance the dataset. Two approaches are evaluated:
synthetic oversampling of the minority class and random undersampling of the majority
class. The results of both methods are presented.

Multiple activation functions were evaluated in all the supervised models tested. The
functions evaluated were the ELU, ReLU, and Tanh activation functions for the dense
and convolutional layers. For a particular model evaluated, all the layers in that model
used the same activation function unless specified otherwise.

4.3.1 Convolutional Neural Network

The evaluation metrics of the CNN model are presented below. Table 4.6 presents the
evaluation metrics for all the activation functions when the minority class was synthet-
ically oversampled using the SMOTE function from the ‘imbalanced-learn’ Python
package [30]. Table 4.7 presents the evaluation metrics for all activation functions
when the majority class was randomly undersampled using the RandomUnderSampler
function from the ’imbalanced-learn’ Python package [30].

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 88.38 86.38 91.16 88.7
ReLU 83.56 88.33 77.35 82.47
Tanh 86.05 81 94.2 87.1

Table 4.6: Evaluation Metrics for the CNN Model with Minority Class Oversampling

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 82.7 75.74 96.22 84.76
ReLU 82.43 81.25 84.32 82.76
Tanh 85.41 81.04 92.43 86.37

Table 4.7: Evaluation Metrics for the CNN Model with Majority Class Undersampling
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4.3.2 Long Short-Term Memory

The evaluation metrics of the LSTM model are presented below. Table 4.8 presents the
evaluation metrics for both the activation functions when the minority class was syntheti-
cally oversampled using the SMOTE function. Table 4.9 presents the evaluation metrics
for both activation functions when the majority class was randomly undersampled using
the RandomUnderSampler function.

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 81.77 90.21 71.27 79.63
ReLU 81.77 90.21 71.27 79.63
Tanh 81.22 96.31 64.92 77.56

Table 4.8: Evaluation Metrics for the LSTM Model with Minority Class Oversampling

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 78.92 72.2 94.05 81.69
ReLU 88.1 88.95 87.03 87.98
Tanh 86.49 86.1 87.03 86.56

Table 4.9: Evaluation Metrics for the LSTM Model with Majority Class Undersampling

4.3.3 CNN + LSTM Combined Model

The evaluation metrics of the CNN+LSTM model are presented below. Table 4.10
presents the evaluation metrics for the activation functions when the minority class
was synthetically oversampled using the SMOTE function. Table 4.11 presents the
evaluation metrics for the activation functions when the majority class was randomly
undersampled using the RandomUnderSampler function.1

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 81.63 88.29 72.93 79.88
ReLU 83.98 90.73 75.69 82.53
Tanh 81.21 88.18 72.1 79.33
CNN-tanh, Dense-relu 88.95 88.95 88.95 88.95

Table 4.10: Evaluation Metrics for CNN+LSTM Model with Minority Class Oversampling

4.3.4 Discussions

The supervised models tested, namely, CNN, LSTM, and a hybrid CNN+LSTM com-
bined model, demonstrate impressive performance in detecting anomalies in movement

1These tables only show the metrics of models with the same activation function for all layers and the
best-performing model that used more than one activation function. The evaluation metrics of all the
models can be seen in Table B.1 and Table B.2 of the appendix
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Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 83.51 77.43 94.59 85.16
ReLU 85.4 84.66 86.49 85.56
Tanh 85.13 78.51 96.76 86.68
CNN-tanh, Dense-elu 88.1 84.06 94.05 88.76

Table 4.11: Evaluation Metrics for CNN+LSTM Model with Majority Class Undersampling

patterns. Tables 4.6 to Table 4.11 showcase the effectiveness of these models with
different activation functions and data resampling methods.

When the minority class is synthetically oversampled using SMOTE, the CNN+LSTM
model achieves the highest accuracy, precision, recall and F1-score with the convolu-
tional layers using a tanh activation and the dense layers using a relu activation. Most of
the models with other activation functions have significantly lower metrics. The LSTM
model achieves an accuracy of ≈81% and an F1-Score of ≈79% across all the activation
functions. However, the tanh activation has a slightly lower performance than the other
two activation functions. The similar performance across the activation functions for
the LSTM model can be attributed to the activation function only being applied to the
dense layers in the model. The CNN model with the elu activation function performs
almost as well as the CNN+LSTM model, while the CNN model with the other two
activations has a lower performance.

When the majority class was randomly undersampled, the models maintained high
performance. Once again, the CNN+LSTM model achieved the highest accuracy and
F1-Score amongst all models. The best-performing model used a tanh activation for the
convolutional layers and an elu activation for the dense layers. The LSTM model showed
a drastic difference in performance when the majority class was randomly undersampled.
The performance of the models with the relu and tanh activation functions increased
when compared to when the data was synthetically oversampled. This can be attributed
to the fact that synthetically oversampling the data might not contain the same temporal
nature as the original data, but randomly undersampling the majority class can preserve
the original temporal nature of the data. However, the model with the elu activation had
significantly lower performance when the data was undersampled compared to when
the data was oversampled. The CNN model showcased similar performance across both
resampling techniques; however, when the data was undersampled, the best-performing
model used the tanh activation. The performance of the CNN model across the other
two activation functions was similar.

The impressive performance of the supervised models can be attributed to many factors.
Firstly, the feature extraction process, including features from the time and frequency
domains, provides a comprehensive representation of the data, capturing relevant
patterns. Including additional features such as the Euclidean distance, dy, and dx further
enhances the model’s ability to learn patterns in the data.

Secondly, the high performance can also be attributed to the resampling techniques.
The data resampling techniques ensure the dataset is balanced, allowing for an equal
distribution of normal and abnormal instances. This ensures that the model is trained
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equally in both cases and prevents the model from favouring one class over the other.
Furthermore, using SMOTE to oversample the minority class yielded the best overall
performance. This can be attributed to the fact that using this technique for data
resampling generates more training data for the model to learn from. Randomly
undersampling the normal data reduces the overall size of the dataset, resulting in less
data for the model to learn from.

The t-SNE dimensionality reduction technique was used to further support these evalua-
tion metrics. The data can be plotted on a scatter plot by reducing the high-dimensional
data to two dimensions. Figure 4.2 shows the high-dimensional data for the training
and test sets plotted in two dimensions.

Figure 4.2: t-SNE Dimensionality Reduction of Training Data

Based on the scatter plot, it can be observed that there is some level of distinction
between the two classes in the reduced dimensional feature space, although not very
clear. This indicates that the model is able to detect some inherent patterns within
the data but not with complete accuracy. Moreover, there are multiple areas where
the classes overlap, which suggests that there are some challenges in making precise
classifications. This observation is also reflected in the evaluation metrics of the models.
This difficulty in accurate classification is expected as the data collected is highly likely
to be similar across both class labels due to the simulated nature of the abnormal walking
patterns.
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Conclusions

5.1 Summary

This study demonstrates radar technology’s viability in detecting anomalies in move-
ment patterns. It develops and evaluates anomaly detection models for movement
patterns using data collected from a single radar in a fixed location. This allows for
anomaly detection in movement patterns without infringing on user privacy or needing
multiple sensors or wearables.

The data collection process involved seven subjects performing activities in a simulated
environment at the Laboratory for Robotic Assisted Living (LARA). Each subject’s data
was collected three times, in 55-minute intervals, with two sets representing normal
walking patterns and one set representing abnormal walking patterns. The AWR6843
mmWave radar from Texas Instruments was used to collect the data.

The collected data was pre-processed by filtering, cleaning and removing outliers in the
data to prepare it for analysis. This study evaluated both unsupervised and supervised
approaches to identify anomalies in movement patterns from the radar data effectively.

Before running computational analysis with unsupervised models, feature extraction
was performed. The cleaned radar data was sliced into smaller windows based on a
chosen time interval. For each window, a set of statistical features was extracted from
the acceleration and velocity values in the time domain. Statistical features were also
extracted in the frequency domain for the One-Class Support Vector Machine Model.
The extracted features were then normalized using the MinMaxScaler.

Of the unsupervised models, the NMF model achieved the best performance with an
accuracy of 90% and F1-Score of 89.3% when a time interval of 80 seconds was used.
The GMM model, with a 130-second time sample, achieved an accuracy of 85% and
F1-Score of 80.3%. The performance of the OC-SVM varied depending on the kernel
function used, with the RBF kernel achieving the highest accuracy and recall of ≈70%.
The AE model demonstrated a high precision of ≈85% but moderate accuracy and
recall values of around 55%.

A different process was used to perform computational analysis using supervised

37
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approaches. A sliding window approach was used on the cleaned radar data to extract
windows of length 200, using a stride of 50. This is approximately 20 seconds of data.
For each window, feature extraction was performed. In the time domain, 14 statistical
features were extracted from the acceleration and velocity values. In the frequency
domain, 14 statistical features were extracted from the acceleration and velocity values.
Features such as Euclidean distance and X and Y position change were also extracted.
All the features were normalized using the MinMaxScaler.

Since the collected data contained more instances of normal data than abnormal data,
it was resampled to balance the dataset. Resampling techniques such as SMOTE and
RandomUnderSampler from the ‘imbalanced-learn’ Python package were tested [30].
The performance of all the models using both resampling techniques was evaluated.

When the minority class was oversampled, the CNN model with elu activation achieved
an accuracy of ≈88% and an F1-Score of ≈89%. The LSTM model with elu and relu
activations performed equally well with an accuracy of ≈82% and an F1-score of ≈80%.
The CNN+LSTM model had the best performance with an accuracy and F1-score of
≈89%.

When the majority class was undersampled, the CNN model with the tanh activation
yielded the best performance with an accuracy and F1-score of ≈85% and ≈86%,
respectively. The LSTM model yielded an accuracy and F1-score of ≈88%. The
CNN+LSTM model had an accuracy and F1-score of ≈88% and ≈89%, respectively.

This study highlights the effectiveness of both unsupervised and supervised models in
detecting anomalies in movement patterns using radar data. The results show that su-
pervised techniques perform better at anomaly detection than unsupervised approaches
overall. This can be attributed to the availability of labelled data in this study. Moreover,
the feature extraction process, data resampling techniques, and the combination of
time and frequency domain features could have contributed to the performance of the
supervised models.

In conclusion, this paper demonstrates the potential of using radar to detect anomalies
in movement patterns. This method is a nonintrusive, privacy-preserving alternative
to other widely used data collection methods. The study’s findings support the use
of radar technology in assisted living and digital healthcare domains to monitor and
detect anomalies in human movement. The results also show that with enough research
into the development of robust computational models, radar technology is a viable
non-invasive privacy-preserving data collection alternative to existing methods.

5.2 Future Work

This study effectively demonstrates the viability of radar technology for anomaly
detection in movement patterns. However, there are a lot of limitations to this study.
Firstly, the data collected involves simulating pain in the lower abdomen while moving
around. The data collection process should be repeated with subjects with known
abnormal walking patterns in future works. This would provide a more accurate
representation of anomalies in movement patterns. Moreover, there is a vast disparity
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in the number of ordinary to abnormal data instances. This imbalance in the dataset
should be addressed in future works to allow computational models to learn underlying
patterns in the normal data more effectively. This study included seven subjects in the
data collection process. Increasing the number of participants will allow the model
to have more data to learn patterns better while also better generalizing to the general
population.

One possible scope of future work is predicting subjects given a data instance. This
will further support the potential of radar technology in this domain. If computational
models are able to accurately identify subjects from a data instance, they would be able
to identify intricate patterns in the movement quality. This would also indicate that the
model can perform anomaly detection with better performance.

Another scope for future work is the detection of contextual and collective anomalies.
This study focused on point anomaly detection. However, contextual and collective
anomaly detection is a field that can provide immense benefits to the assisted living and
digital healthcare domain. Future studies can explore computational analysis involving
contextual features such as position. For collective anomalies, future studies can focus
on detecting anomalies in a subject’s activity sequences.

5.2.1 Subject Prediction

This study also considered an initial exploration of subject prediction. This demonstrates
the possibility of this work in the future and its potential to benefit this domain.

A supervised approach was followed to perform subject prediction. A CNN+LSTM
model was used to identify a subject based on input from a normal data instance. To
perform subject prediction, all the subjects’ normal data were combined. The data was
first split into test and train sets. Then, a sliding window approach was used to extract
smaller windows of length 200 with a stride of 50. For each window, features in the
time and frequency domain were extracted. Additional features used in the supervised
anomaly detection were also extracted. For windows that had data instances of multiple
subjects, the mode of the subjects in that window was chosen as the ground truth label
for that window. The CNN+LSTM model was trained for 30 epochs using the Adam
optimizer. Early stopping and overfitting detection measures were also used. After
training, the model with the best weights was used for testing. Table 5.1 shows the

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
55 30.25 55 39.03

Table 5.1: Evaluation Metrics for CNN+LSTM Model for Subject Prediction

evaluation metrics of this model for subject prediction. This model only demonstrates
the ability of a computational model to perform subject prediction. The moderate
performance of this model can be attributed to the lack of sufficient training data to
accurately learn the differences between the movement patterns of each subject. In the
future, this work can be improved further to yield better-performing models for subject
prediction.
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5.2.2 Activity Sequence Anomaly Detection

Detecting anomalies in activity sequences is extremely important in digital healthcare.
This initial exploration of collective anomaly detection demonstrates an initial approach
that can be used to evaluate the performance of collective anomaly detection models.

First, the normal sequence of activities must be extracted from the collected normal
data to detect anomalies in activity sequences. In this initial approach, using the X
and Y positions of the subject, four zones were defined in the room where the data
was collected. Figure C.1 in the appendix visually represents this. The time series
data was converted to a sequence of activities based on the zone where the subject was
present at every data sample. An activity was only considered if the subject spent at
least 2 seconds in a given zone consecutively. This ensured that randomly walking
around multiple zones was not considered an activity in each zone. Moreover, multiple
consecutive data instances in a single zone were regarded as only one activity instead of
the same repeating activity over time.

Once the normal activity sequences for each subject were extracted, these activities
were mapped to numerical values to ensure compatibility with computational models.
Furthermore, a sliding window approach was used with this sequence of activities. A
window of 6 activities was chosen, with a stride length of 4 activities. The normal data
was then split into train, validation and test sets. The test normal data was combined
with the abnormal data to produce the final testing data. The normal data was then used
to train a Hidden Markov Model (HMM). When the trained HMM encounters a new
data instance, it outputs a log probability score of the data instance being a part of the
learned model. If the log probability is high, the data instance is classified as normal.
If the log probability is low, then the data instance is classified as an abnormal data
instance.

A threshold log probability score must be determined for anomaly detection using the
HMM. The validation set was used to choose an optimal threshold. The truncated value
of the log probability of the validation data was selected as the threshold. Using this
threshold, the model was evaluated on the test data. Table 5.2 presents the evaluation
metrics of this initial model. These metrics can be used as a proof concept to show that

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
67.5 25 22.22 23.53

Table 5.2: Evaluation Metrics for HMM for Collective Anomaly Detection

radar data can be used for collective anomaly detection. However, the model’s moderate
performance indicates that more research needs to be conducted to accurately identify
collective anomalies from radar data. In the future, various models can be explored to
achieve better performance for collective anomaly detection.
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Appendix A

Data Matrices for 80 Second Time
Samples

Figure A.1: Data Matrices for Subject D with an 80-second time sample
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Appendix B

Evaluation Metrics for CNN+LSTM
Model

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 81.63 88.29 72.93 79.88
ReLU 83.98 90.73 75.69 82.53
Tanh 81.21 88.18 72.1 79.33
CNN-relu, Dense-elu 78.73 87.68 66.85 75.86
CNN-relu, Dense-tanh 81.63 91.04 70.17 79.25
CNN-elu, Dense-relu 80.8 86.79 72.65 79.1
CNN-elu, Dense-tanh 88.12 88.98 87.02 87.99
CNN-tanh, Dense-relu 88.95 88.95 88.95 88.95
CNN-tanh, Dense-elu 85.22 79.04 95.86 86.64

Table B.1: Evaluation Metrics for CNN+LSTM Model with Minority Class Oversampling

Activation Function Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ELU 83.51 77.43 94.59 85.16
ReLU 85.4 84.66 86.49 85.56
Tanh 85.13 78.51 96.76 86.68
CNN-relu, Dense-elu 84.59 78.07 96.22 86.2
CNN-relu, Dense-tanh 82.7 88.54 75.14 82.29
CNN-elu, Dense-relu 80.54 74.67 92.43 82.61
CNN-elu, Dense-tanh 85.41 81.64 91.35 86.22
CNN-tanh, Dense-relu 87.3 83.82 92.43 87.91
CNN-tanh, Dense-elu 881 84.06 94.05 88.76

Table B.2: Evaluation Metrics for CNN+LSTM Model with Majority Class Undersampling
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Appendix C

Zones for Collective Anomaly Detection

Figure C.1: Location of Zones in the Room for Collective Anomaly Detection
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Participant Information Sheet 

 

Project title: Facilitating health and wellbeing by developing systems 

for early recognition of urinary tract infections - Feather 

Principal investigator (PI): Kia Nazarpour 

Researcher(s): Lynda Webb; Saber Mirzaee, Emilyann Nault, Bhavith 

Manapoty, Jeong Younwoo, Aidan McConnell-Trevillion  

PI contact details: kianoush.nazarpour@ed.ac.uk 

 

This study is certified according to the Informatics Research Ethics Process, RT 

number 671984. Please take time to read the following information carefully. You 

should keep this page for your records.  

 

Who are the researchers? The research team are members of the Feather Project 

from The University of Edinburgh, Heriot-Watt University and research partners. Kia 

Nazarpour is Principal Investigator. Nigel Goddard (UoE), Steve Leung (NHS Lothian), 

Lynne Baillie (HW) and Mauro Dragone (HW) are Co-Investigators. Saber Mirzaee 

Bafti, Lynda Webb, and Emilyann Nault who are researchers in the team. They may 

be accompanied by PhD and BSc students, Aidan McConnell-Trevillion, Bhavith 

Manapoty and Younwoo Jeong, while conducting this project. 

 

What is the purpose of the study? The objective of this study is to explore how non-

invasive sensing technologies, for example wearables and RADAR, can register 

movement patterns during the activities of daily living in a simulated home 

environment. 

 

Do I have to take part? No – participation in this study is entirely up to you. You may 

decide to stop being a part of the research study at any time without explanation. You 

have the right to ask that any data you have supplied to that point be withdrawn or 

destroyed. You have the right to refuse to answer or respond to any question that is 

asked of you. You have the right to have your questions about the procedures 

answered (unless answering these questions would interfere with the study’s 

outcome). If you have any questions as a result of reading this information sheet, you 

should ask the researcher before the study begins. You will have the option of taking 

part in the longer or shorter experiments.   

 

What will happen if I decide to take part?  The study will be conducted at the 

National Robotarium in the Laboratory of Robotic Assistive Living – LARA, which is an 

accessible home, based on the "Concept Blackwood House".  

 

In this experiment, participants will be monitored over a three-hour period.  The 

participants will engage in various everyday activities such as reading, eating, drinking, 
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and more. During some periods they will be asked to simulate the experience of pain 

and the impact this pain may have on how you sit/move/walk.  

 

The extent of this simulation is entirely under your control. Researchers will monitor 

your actions from a separate room, and our sensing technology including, for example 

a contactless radar device, a camera and a wrist-worn wearable device will track and 

record your movements throughout the experiment. 

 

At the start of the experiment, you will receive instructions about the activities and their 

duration. You will be provided with all the equipment for these activities which include 

reading a magazine, watching TV, paying video games on tablets, completing a jigsaw 

puzzle. Making and consuming tea/coffee, preparing and eating a sandwich, and visits 

to an adjacent room/facility within the flat, where you will be requested to wait for a set 

amount of time. 

 

Time Commitment The experiment will not take more than three hours and 15 

minutes including the introduction and breaks. 

 

Are there any risks associated with taking part? There are no risks associated with 

participation.   

 

What will happen to the results of this study?  The results of this study will be used 

to evaluate and iterate our sensing technology and inform the development of data 

analysis methods to detect changes in people's movement and behavioural patterns. 

The results may be summarised in published articles, reports and presentations. Data 

may also be used for future research. Raw data will be anonymised and archived on 

a public data repository as per the requirement of the funding agency.  

 

Data protection and confidentiality Your movement records from our movement 

tracking device and the wearable, along with videos from the camera will be 

electronically stored on a secure hard drive. Your data will be processed in accordance 

with Data Protection Act (2018). All information collected about you will be kept strictly 

confidential. Your data will only be viewed by the research team, as described above. 

All electronic data will be stored on a password-protected encrypted computer, at The 

University of Edinburgh's School of Informatics’ secure file servers and all paper 

records will be stored in a locked filing cabinet in the Principal Investigators office. 

Your consent information will be kept separately from your responses to minimise risk. 

The data will be kept as long as is required by Government Regulation, typically 4 

years. 

 

What are my data protection rights? The University of Edinburgh is a Data 

Controller for the information you provide. You have the right to access information 

held about you. Your right of access can be exercised in accordance Data Protection 
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Law. You also have other rights including rights of correction, erasure and objection. 

For more details, including the right to lodge a complaint with the Information 

Commissioner’s Office, please visit www.ico.org.uk. Questions, comments and 

requests about your personal data can also be sent to the University Data Protection 

Officer at dpo@ed.ac.uk.  

 

Who can I contact? Kia Nazarpour will be glad to answer your questions about this 

study at any time. You may contact him at kianoush.nazarpour@ed.ac.uk. If you want 

to find out about the final results of this study, you can contact Dr Nazarpour directly.  

If you wish to make a complaint about the study, please contact inf-

ethics@inf.ed.ac.uk. When you contact, please provide the study title and detail the 

nature of your complaint. 

 

 

Signature   

 

By signing below, you are agreeing that:  

• you have read and understood the Participant Information Sheet,  

• questions about your participation in this study have been answered 

satisfactorily,  

• you are aware of the potential risks (if any), and  

• you are taking part in this research study voluntarily (without coercion).  

Participant’s Name (Printed)*:    _________________       

Participant’s signature*:              _________________   

Date:                 _________________ 

*Participants wishing to preserve some degree of anonymity may use their initials. 
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Participant Consent Form 
 

Project title: Facilitating health and wellbeing by developing systems 
for early recognition of urinary tract infections - Feather 

Principal investigator (PI): Kia Nazarpour 

Researcher(s): Lynda Webb; Saber Mirzaee, Emilyann Nault, Bhavith 
Manapoty, Jeong Younwoo, Aidan McConnell-Trevillion  

PI contact details: kianoush.nazarpour@ed.ac.uk 

 
By participating in the study, you agree that:  

• I have read and understood the participant information sheets (PIS) and I have had the 
opportunity to ask questions, and that any questions I had were answered to my satisfaction. 

 
• My participation is voluntary, and that I can withdraw at any time without giving a reason. 

Withdrawing will not affect any of my rights. In addition, should I not wish to answer any 
particular question or questions, I am free to decline. 

 

• I consent to my anonymised data being used in academic publications and presentations. 
 

• I understand that my anonymised data will be stored for the duration outlined in the 
Participant Information Sheet.  

 
Please tick yes or no for each of these statements.  

  Yes No 

1.  I agree to being video recorded.  
•  •  

2.  I allow my data to be used in future ethically approved research. 
•  •  

3. I understand that my responses will be kept strictly confidential. I give 
permission for members of the research team to have access to my 
anonymised data and responses. I understand that my name will not be linked 
with the research materials, and I will not be identified or identifiable in the 
report or reports that result from the research.  

•  •  

4. I agree to take part in this study. 
•  •  

 
 
_____________________                             _______________                 __________________ 
Name of Participant                                        Date                                         Signature  
 
 
_____________________                              _______________                 __________________ 
Name of person taking consent                               Date                                         Signature  
To be signed and dated in presence of the participant  
 
 
___________________                                  _______________                 __________________ 
Name of Chief Investigator                                       Date                                        Signature  

 
 
Once this has been signed by all parties the participant can receive a copy of the signed and dated 
consent form, participant information sheets and any other written information provided to the 
participants. A copy of the signed and dated consent form will be kept with the project’s main 
documents in a secure location. 


