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Abstract
This project presents a study on the emulation of the waggle dance of Apis mellifera
using robotics, aiming to capture the core of this complex bee communication method.
This research focuses on a dancer robot that performs path integration during foraging
to return to the hive and subsequently executes a simplified dance to communicate
the location and distance of food. A follower robot, observing the dance, decodes the
signals to derive a vector, enabling it to locate the food source. A practical realisation
of the waggle dance was achieved in a robotic context, with the simulation system
achieving accuracy within an average deviation of 3.334° and a distance error of 0.146
meters. The work navigated technical challenges, including sensor integration and
mechanical replication of biological motion, and assessed their impact on the fidelity of
the simulation. These findings offer insights into the potential of robotics to simulate
animal behaviour, providing a groundwork for future applications in current robotic
systems and contributing to the broader understanding of bio-inspired technology.
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Chapter 1

Introduction

At the intersection of biology, cognitive neuroscience, and robotics, this project inves-
tigates the fascinating waggle dance of honeybees, showcasing the interplay between
complex communicative behaviours in insects and the application of biomimetic prin-
ciples in robotics. Central to the study is the waggle dance, a sophisticated form of
communication among honey bees that conveys information about the distance, di-
rection, and quality of food sources through a series of symbolic movements. The
foundational discoveries by Karl von Frisch have expanded the understanding of animal
communication and opened new avenues for technological innovation, particularly in
the design and implementation of autonomous robotic systems that mimic biological
intelligence and functionality.

This interdisciplinary research focuses on bridging the gap between the biological
processes underlying dance communication and their implementation within the robotics
field. A cornerstone of this project is the development and refinement of computational
models for path integration and dance communication. These models are inspired by
the neurobiological mechanisms of bee cognition, specifically targeting the central
complex (CX) of the bee brain, which plays a pivotal role in spatial orientation and
navigation. By translating biological insights into algorithmic frameworks capable of
execution by robotic platforms, the project aims to replicate the sensory processing,
spatial navigation, and communicative capacities of honey bees in a robotic context.

Embarking on this project presented a multitude of technical and conceptual challenges.
On the technical front, integrating sensors and actuators to mimic the cues from the
dance required a solid understanding of both hardware capabilities and biological
functions. Conceptual barriers, involving the abstraction of biological intelligence
into computational algorithms and the simulation of highly adaptive and fluid natural
behaviours in mechanical systems, were equally challenging.

Despite these challenges, significant steps were made in performing the waggle dance
within robotic systems. Through programming and hardware integration, a model for
path integration that closely mirrors the bee’s ability to navigate and store resource
position was successfully implemented. Furthermore, this project can act as an interac-
tive educational platform, merging biology, robotics, and computer science to inspire
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Chapter 1. Introduction 2

cross-disciplinary exploration. By using robots to simulate bee dances, it engages the
public in complex biological communication in an accessible way. The development of
bee cognition models aims to enhance cognitive science, providing a controlled setting
for testing theories on memory, learning, and communication, thus linking theoretical
concepts with practical observations.

In conclusion, this project comprises the following subtasks:

• Implemented ROS 2 control on TurtleBots.

• Reimplemented an existing neural network for path integration.

• Created a local coordinate system backup to prevent robots from erroneous
movements.

• Programmed hive recognition

• Created a waggle dance behaviour model.

• Designed a multi-sensory system for the follower robot.

• Implemented the extraction of relative angle estimations.

• Applied mathematical model converting relative angles to resource direction.

• Established sound detection.

• Conducted multiple full-cycle tests on the system.



Chapter 2

Literature Review

2.1 Introduction of Dance Communication

The waggle dance of the honey bee (Apis mellifera) has been extensively studied as
one of the most complicated and fascinating examples of a non-human communication
system in nature, captivating scientists from various fields for decades (Frisch, 1993;
Dyer, 2002; I’Anson Price and Grüter, 2015; Barron and Plath, 2017; Dong et al.,
2023). In the dance, foraging bees share the location and quality of food sources outside
the hive with fellow nestmates, as well as potential nesting sites (Frisch, 1993). This
remarkable behaviour represents unique evidence of sophistication in animal language
and its significance extends beyond its biological novelty, offering insights into the
cognitive and communicative capabilities of these social insects.

Figure 2.1: Schematic diagram of the wag-
gle dance of Apis mellifera (Barron and
Plath, 2017)

The waggle dance was first brought to
the attention of the scientific community
by the pioneering work of the German
scientist Karl von Frisch in the mid-20th
century, who unveiled various aspects of
dance language and was awarded the No-
bel Prize in Physiology or Medicine in
1973 (NobelPrize.org, 2023). His ground-
breaking research discovered that the wag-
gle dance is a form of symbolic commu-
nication within invertebrates, exclusive to
the genus Apis, and a mechanism through
which bees convey detailed quantitative
distance and directional information of
resources relative to the hive using a series of highly stereotyped movements in a figure-
of-eight pattern (Frisch, 1993). Its distinctive ‘waggle run’ involves wing vibrations
and abdomen waggling from side to side as the bee moves forward in a straight line
on the comb inside the dark hive upon successfully finding resources (Dyer, 2002).
The duration of the waggle phase indicates the distance of the resource from the hive,
while the orientation of the waggle phase relative to gravity or the direction of the sun
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Chapter 2. Literature Review 4

indicates the direction of the resource (Gardner et al., 2008; Schürch et al., 2013). The
mechanism of dance communication will be described in detail in Section 2.3.

Figure 2.2: Inputs to the central complex, which play a role in orientation, are also
believed to be involved in the dance (Barron and Plath, 2017)

Beyond performing the dance, understanding how bees obtain information about re-
source locations before communicating it via the dance is important for appreciating the
complexity of this system. The underlying neurobiological processes involve gathering,
memorising, and encoding spatial information from the environment. Comparative anal-
yses within the genus Apis and among other social insects (El Jundi et al., 2014; Pfeiffer
and Homberg, 2014; Heinze and Homberg, 2007) have shed light on the CX in the bee’s
brain, a key area involved in spatial orientation and navigation. It plays a critical role in
cognitive tasks, processing visual cues and optic flow from bees to respectively provide
compass information and distance information (Brockmann and Robinson, 2007; Stone
et al., 2017). Furthermore, Barron and Plath highlight the adaptive significance of the
waggle dance, proposing it as an evolved behaviour that leverages pre-existing neural
mechanisms for spatial navigation (Barron and Plath, 2017). In detail, the CX region
could help connect the processing of environmental information to dance communi-
cation (Figure 2.2). This suggests that the waggle dance is not just a unique form of
communication but also a reuse of the bees’ inherent navigational abilities.

Early research indicates that recruits or followers, who acquire information about
resources from waggle dances, learn from the dancer bees through a sophisticated
integration of sensory information, including visual, vibratory, and olfactory cues, to
decipher the dance’s symbolic message (Rohrseitz and Tautz, 1999; Dyer, 2002; Seeley,
2011). This requires recruits to be in close proximity to the dancer (Gardner et al., 2008),
tracking her through numerous waggle phases to decode the resource’s location with
precision. The dance also communicates the quality of resources through the dancer’s
pheromonal signals and the specific scents of the resources (Galizia, 2014), enhancing
foraging efficiency. Hadjitofi and Webb propose that particular neural circuits in the
central complex brain region could be used to decode the dancer’s directional cues, with
tactile feedback from antennal contact allowing followers to assimilate information
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from various positions (Hadjitofi and Webb, 2024). This highlights the complexity of
how bees interpret dances to find resources, showcasing a complex relationship between
behaviour and brain function in navigating and foraging activities.

2.2 Purpose and Benefit of Dance Communication

The waggle dance of honey bees is not just a mesmerising spectacle but also a highly
evolved form of communication, essential for the survival and efficiency of bee colonies
(Dornhaus and Chittka, 2004; Dornhaus et al., 2006). Its key advantage is guiding bees to
abundant, valuable food sources without the need for individual exploration. This form
of efficient recruitment is especially valuable in environments where floral resources are
scarce, hidden, or highly variable (Sherman and Visscher, 2002; Seeley, 2012). Through
dance communication, a colony can swiftly converge on newly discovered feeding sites,
greatly improving foraging efficiency and, consequently, the overall energy intake of
the colony.

Research indicates that the effectiveness of the waggle dance is context-dependent, pro-
viding the most significant benefits in habitats with particular characteristics (Dornhaus
and Chittka, 2004; Toufailia et al., 2013; Nürnberger et al., 2017). In tropical forests,
for instance, where floral resources are often clumped but ephemeral, the waggle dance
enables bees to quickly exploit these resources before they vanish (I’Anson Price and
Grüter, 2015). This ensures efficient dissemination of location information throughout
the colony, reducing the energy and time expended on unproductive searches. Moreover,
the waggle dance serves as an adaptive response to the diverse ecological challenges
bees face. In regions where food sources are widely dispersed and hard to find, the
dance is invaluable for sustaining the colony and facilitating communication about
resources that might otherwise be overlooked due to individual foraging limitations
(Sherman and Visscher, 2002; Seeley, 2011).

Empirical studies also underscore the dance’s role in selecting foraging targets (Dorn-
haus and Chittka, 2004). Bees tend to perform the waggle dance more for higher-quality
resources—those with greater energetic value or essential nutrients (Seeley and Towne,
1992). This selective communication focuses the colony’s efforts on the most ad-
vantageous foraging opportunities, optimising the balance between collective energy
expenditure and intake. Additionally, the dance promotes a dynamic and responsive
foraging strategy, enabling a bee colony to adjust to changing resource landscapes
(Dornhaus and Chittka, 2004). This adaptability is particularly essential in temperate
regions, where seasonal changes significantly impact the availability and distribution of
floral resources.

The evolution of the waggle dance is believed to have been driven by the need to
efficiently locate and exploit floral resources. Originating from an ancestor likely
nesting in open environments, honey bees developed this unique communication form
(I’Anson Price and Grüter, 2015). The precise timeline of its evolution is uncertain, with
some estimates dating it between 40 million and 20 million years ago, around the time
when extant honey bee species diverged during the early Miocene (Engel and Schultz,
1997; Nieh, 2004; Engel et al., 2009). Fossil records and phylogenetic analyses suggest
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a potential origin in Europe or Asia, in climates ranging from sub-tropical to temperate,
with patchy vegetation (Kotthoff et al., 2013). Initially, the dance may have evolved to
aid foraging in these settings, where finding and utilising clustered, high-quality food
sources was essential for colony survival.

2.3 Mechanism of Dance Communication

2.3.1 Prerequisite: Path Integration on Central Complex Model

From Section 2.1, the foraging of honeybees starts with a common strategy known
as path integration to calculate their homeward route, which utilises neural circuits
in the CX area (Srinivasan, 2015). This is achieved by continuously integrating the
distances covered in each direction during their outbound journey, forming a home
vector containing the direction facing the hive. Unlike some insects that rely on a mix
of self-generated motion cues (Seelig and Jayaraman, 2015), bees primarily use visual
information for path integration. They utilise celestial skylight cues, such as polarised
light, for directional guidance and optic flow for distance estimation (Stone et al., 2017).

In detail, honeybees possess specialised regions in their eyes that detect polarised light,
which relates to the sun’s azimuth. They have the ability to encode heading directions
within a global reference frame for navigation purposes during foraging (Heinze and
Homberg, 2007). Research on the tropical nocturnal bee, Megalopta genalis (Warrant
et al., 2004), shows that neurons in the CX region exhibit a significant response to
polarised light. Stone and colleagues identified these neurons as TB1 neurons, located
within the protocerebral bridge, and as CPU1 neurons, in the upper division of the
central body (Stone et al., 2017), based on the earlier discovery of locusts’ compass
neurons (Vitzthum et al., 2002; Warrant et al., 2004). Their activities support the
conclusion that the CX operates as an internal compass for bees, facilitating their
navigation.

Besides compass information, acquiring speed information is also essential for path
integration. This is achieved through the interpretation of translational optic flow
(Srinivasan, 2014), a form of visual streaming across bees’ retinas when they move
continuously in one direction. Then the neurons in the CX encode this visual movement
information. Studies involving Drosophila and cockroaches (Weir et al., 2014; Kathman
et al., 2014) indicate the presence of CX neurons sensitive to large-field motion cues.
Specifically, in the honeybees’ brain, noduli tangential neurons (TN neurons) show
strong responses to translational optic flow (Stone et al., 2017). These neurons, with
subtypes TN1 and TN2, exhibit differential responses: TN2 neurons show increased
firing rates proportional to the velocity of optic flow in a forward direction, whereas TN1
neurons respond to backward flight (Stone et al., 2017). Meanwhile, these encodings by
TN neurons form the groundwork for representing holonomic movements, in which the
bee’s body axis is not aligned with its direction of movement, along its flight trajectory
(Stone et al., 2017). Such responses allow TN neurons to act as a neural odometer in
complex environments.

The path integration circuit utilised in the current project was first introduced by Stone
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Figure 2.3: Principal connections of all cell types from the proposed path integration
circuit in the CX region, from Figure 5F Stone et al. (2017)

et al. (2017), featuring five layers of neurons specifically designed for processing visual
information (Figure 2.3). In 2019 (Le Moël et al., 2019), the model underwent further
refinements with the additional layer for Vector-Memory and its recalibration. This
update introduces a hypothetical memory neuron that uses synaptic weights for vector
storage, effectively inhibiting CPU4 integrator cell outputs. Each CPU4 output fibre is
linked to sixteen inhibitory synapses, with their weights calibrated based on the activity
of the CPU4 fibre at learning instances, potentially indicated by a reinforcer neuron.
ICPU4 values are processed through. a sigmoid function that excludes instantaneous
noise, aiming for an accurate reflection of CPU4 activity. Learning is initiated by specific
events, such as discovering food and facilitating navigation back to the locations where
vectors were stored. With all necessary inputs provided and a new feature incorporated,
the subsequent paragraphs will sequentially describe the CX model, layer by layer.

The first layer of the CX model receives compass inputs from TL neurons and speed
inputs from TN neurons, as outlined in previous sections. Layer 2 inversely processes
outputs from TL neurons to generate inputs for CL1 neurons, which are the columnar
cells of the lower division of the central body (ellipsoid body), thereby linking compass
inputs to the protocerebral bridge (PB). These inputs are thought to directly influence
the TB1 neurons in Layer 3, which are tuned to specific azimuth directions, effectively
segmenting the azimuthal space around the honeybee. The interaction among TB1
neurons suggests a ring attractor model, which establishes a stable and distributed
sinusoidal pattern. Here, the activity of TB1 neurons represents the bee’s current
heading direction.

Layer 4 contains a collection of integrator cells named CPU4 neurons that process
information regarding the bees’ speed from TN neurons. Their input is modulated in
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conjunction with TB1 neuron activity, resulting in the accumulation of distance data in
the direction opposite to the current heading. This process constructs a representation
of the home vector, delineating the path home. In the final stages of navigation, CPU1
neurons, serving as steering cells in Layer 5, are engaged. In the updated version of
the model, the inputs of CPU1 depend on the state of the bee: only as the honeybee
is homing, they evaluate the activation of CPU4 (target direction) against that of the
current direction cells to ascertain the correct turning angle. Otherwise, the steering
cells update themselves. This sophisticated system supports complex navigation and
homing mechanisms and even provides the basis for dance communication.

2.3.2 Encoding Waggle Dance by Dancers

Figure 2.4: Diversity of dance
and nest forms, Figure 1 from
I’Anson Price and Grüter (2015)

Following successful foraging, this section ex-
plores the role of biological mechanisms of
dance communication. Most honeybees, such as
Apis mellifera, primarily perform their waggle
dances on vertical combs within dark nest cav-
ities, using the orientation of the waggle phase
relative to vertical gravity to signal the direction
of resources relative to the solar azimuth upon
departure from the hive as Figure 2.4 B and C
(Frisch, 1993). In these instances, the CX model
must not only process celestial, landmark-based,
or proprioceptive information but also incorpo-
rate information on gravity, as gravity is used
as an orientational reference frame (Barron and
Plath, 2017). To deal with gravitational infor-
mation, geosensing in honeybees is potentially
located in the neck, where the inclination of
the thorax alters the pressure exerted on it by
the head, influencing geotactic behaviour and
dance orientation (Lindauer and Nedel, 1959;
Frisch, 1993). While other potential geosens-
ing sites exist, such as the thorax-abdomen joint
and leg joints (Srinivasan, 2011), their roles in
dance behaviour and their integration into the
CX network require further exploration by the community.

In this project, we focus on dances performed on the horizontal surfaces on the top of the
comb at the hive entrance, characteristic of dwarf honeybees such as Apis andreniformis
and Apis florea in Figure 2.4 A (Barron and Plath, 2017). These species construct their
nests as a single sheet of comb suspended from a tree limb. For their horizontal waggle
dances, the waggle run points directly towards the resource, utilising celestial cues (the
sky) and landmarks processed by the CX circuit to guide the dance (Dyer, 2002).

The duration of the waggle phase (t in seconds) is a critical component correlating with
the distance from the resource to the hive (d in kilometres), fundamentally linked to
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the concept of optic flow—the visual perception of landscape movement experienced
during flight. Recent studies (Gardner et al., 2008; Schürch et al., 2013) confirm that
the longer the waggle phase, the further the resource is from the hive, usually showing
a positive linear correlation between waggle duration and distance, despite noticeable
variations around the linear fit. (Kohl and Rutschmann, 2021) has proposed that the
relationship between distance and duration might be more accurately depicted by a non-
linear model when foraging distances surpass a certain threshold, thereby advancing
and complicating the original concept by (Frisch and Jander, 1957).

Kohl and Rutschmann (2021) segmented the entire dance circuit of honeybees into two
parts: the waggle phase and the return phase. It was found that waggle phase duration
exhibits a non-linear relationship:

tw = 0.1993+
(

2.0018
0.6717

)
×
(

1− e−0.6717∗d
)

achieving an unbiased fit with r = 0.946, which suggests a flattening slope as distance
increases, in contrast to the linear model tw = 0.4476+ 1.1152 ∗ d which resulted in
a slightly biased fit with r = 0.935. Similarly, return phase durations increased with
distance, described by a relationship tr = 1.3712+ 0.5238 ∗ d. Across the datasets,
circuit durations were better explained by non-linear models:

tc = 1.467+
(

2.893
0.6519

)
×
(

1− e−0.6519∗d
)

with an r-value of 0.904, compared to linear models tc = 1.8187+1.6390∗d with an
r-value of 0.894, indicating a complex interaction between distance and dance durations.
Nonetheless, for practical implementation purposes and due to the minor difference in
model fits, linear models are used in the current computations.

2.3.3 Decoding Waggle Dance by Followers

Upon grasping the process of generating dance movements, the subsequent step focuses
on an exploration of how honeybees gather resource information from waggle dances.
In earlier research, those bees were referred to as recruits. They can track the dancer
from multiple positions through various mechanisms, including physical contact with
their antennae on the dancer’s body (Frisch, 1993; Rohrseitz and Tautz, 1999), substrate-
borne vibrations, acoustic signals, and airflows generated by the vibrating wings of
the dancer. This complex communication allows recruits to decode the dancer’s direc-
tional and distance cues from following directly behind (Judd, 1994; Michelsen, 2011).
Moreover, recruits often need to observe more than one waggle phase to accurately
locate the indicated resources (Couvillon et al., 2012; Schürch et al., 2013). Despite
variations in individual waggle runs and ongoing debates about the optimal position
for following the dance, it is evident that observing multiple waggle phases enhances
recruits’ understanding of the resource’s location (Tanner and Visscher, 2009).

Building on the previous section, the dance primarily communicates the existence and
specifics of a profitable food source, including its direction—oriented with respect to
celestial cues or gravity for open and cavity-nesting species, respectively—and the



Chapter 2. Literature Review 10

Figure 2.5: Positioning of follower bees and their antennae when following waggle
phases, Figure S2 from Hadjitofi and Webb (2024)

distance, as inferred from the waggle phase’s duration. The central complex of the
bee brain aids in decoding the received dance movements into navigable flight vec-
tors, incorporating direction and distance information and adapting to different spatial
reference frames (Barron and Plath, 2017). Additionally, odour cues, fundamental to
the dance, furnish recruits with details about the resource’s specific floral source, an
understanding further enhanced by nectar donation through trophallaxis (Farina et al.,
2005).

A recent study by Hadjitofi and Webb (2024) has shed light on the intricacies of honey-
bee communication, particularly highlighting the role of the follower bees’ antennae. It
was discovered that honeybees can interpret the waggle dance from multiple positions
around the dancer bee (Figure 2.5) using the relative positions of their antennae to dis-
ambiguate their angle to the dancer (and thus, food). This finding challenges the earlier
belief that bees must be parallel to the dancer to understand the message (Judd, 1994;
Michelsen, 2011). The study uses the term ‘followers’ instead of ’recruits’ to describe
bees observing the dance, a terminology that will be consistently used throughout the
project.

Hadjitofi and Webb (2024) demonstrate that followers can recover the dance vector from
any angle to the dancer, thanks to the mechanosensory capabilities of their antennae.
This negates the necessity for direct visual observation or precise alignment with the
dancer. Video analyses reveal that bees approaching a dancer exhibit a consistent posture,
with antennae symmetrically extended and heads stabilised, suggesting a complex
interaction beyond mere visual cues. The positioning and angle of the antennae relative
to the bee’s body provide insights into how bees perceive their spatial relationship to
the dancer, enabling them to decode the dance’s message from various angles. When
positioned to the left of the dancer, the left antenna angles away from the midline
as shown in Figure 2.5, while the right antenna remains closer, and vice versa for
positions on the right side of the dancer, with a smooth transition observed between
these positions.

Furthermore, the study proposes that a circuit in the CX, shown in Figure 2.6, could be
adapted to convert spatial information from an egocentric to an allocentric perspective
in the context of the dance. In simpler terms, it could convert the dance’s orientation
from the local frame of reference of the follower to the global frame of reference.
Furthermore, similar behaviours were also observed in other insects (Lu et al., 2022;
Lyu et al., 2022). This hypothesis builds on the premise that bees are capable of tracking
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Figure 2.6: Proposed mechanism to assimilate the home vector using antennae, Figure
2 (Hadjitofi and Webb, 2024)

head direction relative to gravity, and the position of the antennae influences directional
processing in the CX (Homberg, 1985). The model then suggests that adjustments
of the antennae during the dance modulate neural patterns in the bee brain, enabling
the accurate determination of flight vectors toward food, regardless of the observer’s
position around the dancer. Incorporating a 360◦mapping of antennae angles and
their modulation of neural activity, the model highlights the system’s adaptability and
effectiveness, even in the presence of signal variability. The principles outlined in this
study are further explored through mathematical simulations, as detailed in Section 3.4,
providing a comprehensive understanding of the mechanisms bees use to navigate and
communicate.



Chapter 3

Methodology

3.1 Hardware Experimental Setup and Scale

Figure 3.1: Dancer Bee TurtleBot Figure 3.2: Follower Bee TurtleBot

The entire simulation was constructed using two TurtleBot 3 units, which are among the
most popular open-source mobile robot platforms. One served as a ‘dancer bee’ and the
other as a ‘follower bee’. The ‘Burger’ model was selected for its smaller size, enabling
it to more accurately mimic the diminutive bees. Both robots were equipped with
Raspberry Pi single-board computers as their controllers, running Ubuntu Server 22.04
LTS (a Pi 4 for the dancer and a Pi 3 for the follower). Embedded Inertial Measurement
Unit (IMU) sensors featuring a 3-axis gyroscope and a 3-axis accelerometer provided
sensory information on the robots’ position, orientation, and velocity. For the dancer bee
(Figure 3.1), additional enhancements included a Logitech WebCam and a Grove Buzzer
for hive detection and waggle dance sound simulation, respectively. To determine the
relative angle between the dancer and the follower, two time-of-flight (TOF) sensors
were installed on the front side of the follower, along with an extra Microphone to
capture the duration of the waggle sound (Figure 3.2). Given the unique capabilities of
the TurtleBot3, the Robot Operating System 2 (ROS 2) Humble, coupled with Python
3.10, was chosen as the programming framework for this project. In this context, each
Python file constitutes a ROS2 node.

12
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Table 3.1: Experimental scale for actual foraging distance in 4 km

Experimental
Parameters

Natrual
Scale

Experimental
Scale

Foraging Distance 4 km 4 m
Waggle Duration 4.0983 s 40.982 s
Return Duration 3.4664 s 34.662 s
Waggle Speed 0.01504 m/s 0.01504 m/s
Honeybee Size 12 mm 14 cm

Single Hexagon in Comb 5 mm 5.83 cm

Figure 3.3: Experiment Field

As shown in Figure 3.3, the experimen-
tal field is a rectangular area measur-
ing 5 meters in length and 3 meters in
width. At the bottom of the field, a rect-
angle measuring 1.20 meters by 0.84
meters was positioned to serve as the
hive, which was filled with hexagons
to mimic the pattern of a comb. The
sun’s location throughout the experi-
ment was fixed to the south of the hive
at an elevation of 30◦above the ground,
represented by a red arrow in the figure.
To commence each subtask of the ex-
periments, both the dancer and follower
robot were required to reset their head-
ing direction towards the sun’s location.
Additionally, five random yellow cir-
cles were distributed within the field,
representing the resource locations for
the bees to explore.

In order to adapt the honey bee forag-
ing behaviours for indoor experimenta-
tion, it is essential to establish an appro-
priate experimental scale that encom-
passes both scaling up and down. This is because the natural foraging distances for bees
are normally measured in kilometres, whereas the experimental field accommodates
distances in meters. Consequently, the foraging distance inputs were scaled down by
a factor of 1000, keeping the same number while converting units from kilometres to
meters. Conversely, parameters such as the size of the bees, the duration of their dances,
and the size of the hive were scaled up to enhance their accessibility for experimental
analysis and to facilitate human observation, particularly when contrasted with the size
of honeybee dances in nature. The specifics of the experimental scaling are detailed
in Table 3.1, which includes an example where the foraging distance is 4 kilometres,
corresponding to the distance of 4 metres between the hive and resource location A in
Figure 3.3.
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3.2 Experimental Procedure and Software Architecture

The experimental procedure and software architecture designed to mimic honey bee
behaviours is supported by five ROS2 nodes: path integration and waggle dance
for the Dancer Bee TurtleBot, along with sun direction, dance communication and
follower foraging for the Follower Bee TurtleBot (Figure 3.4).

Figure 3.4: Experimental Procedure and Software Architecture

The Dancer Bee TurtleBot starts the process by travelling to a random resource location,
controlled manually via keyboard inputs. A CX model accumulates the displacements
in each direction to calculate the home vector through the path integration node. This
vector is vital in guiding the dancer back to the hive by the shortest path, using a
camera that is activated only during the return journey to detect the hive pattern. The
waggle dance node encodes the location of the resource relative to the hive into the
orientation and duration of the dancer vector. This information is then utilised to carry
out a complete dance circuit, which includes the waggle phase and the return run.
The dancer robot executes the dance twice to ensure the follower robot captures the
necessary information.

On the other hand, the Follower Bee TurtleBot is initially positioned to face the direction
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of the sun and utilises the sun direction node to reset the recorded sun’s position in
the system, which is an essential reference for subsequent calculations. Through
the dance communication node, the Follower observes the waggle dance, using TOF
sensors and a microphone to determine the dancer’s orientation from the relative angle
between the robots, as well as to capture the duration of the waggle phase, respectively.
This allows the Follower to decode the direction and distance of the resource. In the
concluding phase, with the help of the follower foraging node, the Follower navigates to
the resource location as indicated by the dance, completing the cycle of communication
and foraging behaviour. The demonstration of the experiment can be accessed by
following the link: https://www.youtube.com/watch?v=NMiQpYrkb1U.

3.3 Dancer Bee TurtleBot

3.3.1 Foraging Procedure

The initial action for the dancer robot is to exhibit foraging behaviour, which is the focus
of the path integration node. The central challenge for this node is to operationalise
the CX model. This implemented model, extracted from InvertPy, is a Python library
devoted to the compilation and execution of computational models for invertebrate
neural processing (Gkanias, 2021). In this project, codes from the IvertPy have been
specifically modified to align with TurtleBot’s hardware for this initiative. It remains
operational throughout the entire foraging process. Although its core functionalities are
consistent with the principles outlined in Section 2.3.1, the model is distinctively charac-
terised by its real-time application. In contrast to executing a pre-programmed route, the
modified CX model processes sensory input and performs calculations simultaneously,
thereby equipping the robot with the agility to handle dynamic movements.

Based on the biological mechanisms observed in honeybees, the CX region of their
brains only processes visual information. In creating a digital simulator, it is typical to
construct a virtual environment that contains environmental cues invisible to humans
but detectable by bees, such as polarised light. Replicating polarised light within a
laboratory setting presents challenges; therefore, to streamline the visual inputs in such
simulations, the optic flow is estimated on the IMU sensor of TurtleBot. This sensor
can deliver linear and angular velocities across three dimensions. By subscribing to
the “cmd vel” topic, the live linear velocity along the x and y axes for the robot is
captured with ease. Additionally, the quaternion components from the “odometry” topic
are converted into yaw rotation in Euler angles. This provides the current heading
direction for the robot, analogous to compass orientation. With the velocities and
heading direction established, it is feasible to approximate the optic flow as perceived
by each of the bee’s ‘eyes’, assuming a standard divergence angle of 45◦to either side.
This calculated optic flow then informs the speed inputs for subsequent processing
within the CX model.

After capturing the speed and compass inputs needed for Layer 1, the following pro-
cesses adhere to the principles laid out in Section 2.3.1, continuing until Layer 5,
which generates the steering output. This introduces a second significant deviation
from the original InvertPy code. In the original model (Gkanias, 2021), because the

https://www.youtube.com/watch?v=NMiQpYrkb1U
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model operated on a pre-loaded route, there was no process for the outbound journeys
and CPU1 neurons were only engaged during homing. The enhanced system’s ability
to process information in real-time requires a responsive approach where the state
of the robot dictates the type of CPU1 neurons’ inputs. If the dancer robot remains
stationary for more than 80 timestamps, it switches from the “foraging” to the “homing”
state. Consequently, CPU4 outputs are then incorporated into the computation of CPU1
neuronal outputs. Furthermore, given the experiment’s spatial limitations, the robot’s
movement yields only minor neuronal accumulation, insufficient to produce a viable
steering angle for an actual robot. To address this, the memory gain of CPU4 neurons is
amplified from 0.0025 to 0.25, and the steering output is scaled up by a factor of 100.

When the dancer robot’s status switches to “homing”, the system marks its current
location as a resource point. At this condition, a local coordinate system is established
with the starting point as the origin, aligning the positive y-axis with the direction of
the sun. Within this local framework, the angle between the direction of the resource
relative to the solar azimuth on departure from the hive is computed geometrically.
Additionally, the distance from the resource to the hive is determined using the standard
Euclidean distance formula. As a result, these two parameters—angle and distance—are
then encoded as the home vector in a text file, which will subsequently be converted
into the dance vector in the following phase. This algorithmic approach differs from
the method described in Section 2.3.1, where the home vector is recorded using the
Vector-Memory Layer of the CX model. The application of this layer within the robot
will be explored in Section 5.2.

The subsequent step involves rotating the robot according to the steering angle de-
termined by the CX model. However, trials with various outbound routes revealed
a systemic error in the model’s performance, which will be elaborated on in Section
4.1. To ensure the dancer can successfully return to the hive for dance communica-
tion, a fallback mechanism was implemented. This mechanism computes the robot’s
target heading towards the hive, factoring in the sun’s direction and the relative angle
ascertained through geometric calculations. The target heading is the sum of the sun’s
direction, the relative angle, and π radians (180◦). The robot’s orientation is then
adjusted by comparing the CX model’s heading and the geometrically derived heading.
If the difference between the two is less than or equal to 0.2 radians (about 11◦), the
CX model’s heading is used. If the deviation is greater, the geometrically calculated
heading guides the robot to rotate to the right orientation.

At this stage, the dancer robot’s sole requirement is to return to and halt within the hive.
Concurrently, the camera thread is activated to identify the hive pattern, operating along-
side the CX model. The Logitech WebCam was selected for its autofocus capability,
light correction feature, and support for HD resolution, delivering high-quality footage
at 720p and 30fps. This webcam is mounted on a 3D-printed stand, angled downwards
towards the ground, with the lens surface tilted approximately 5◦from the horizon.
Image processing is performed by the OpenCV library, which processes the camera’s
feed to detect hexagons in the hive. This involves converting the image to grayscale,
applying a Gaussian blur, and then thresholding to distinguish hexagonal contours based
on their geometric shape and size. The detection proves reliable because the threshold
adheres to the predefined hive conditions under consistent lighting environments. As a
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result, the success rate is nearly 99%, except in cases where the dancer fails to enter
the hive area entirely. However, variations in lighting conditions can lead to different
outcomes, as the camera’s performance varies under different environmental conditions.
Upon detecting the appropriate hexagonal pattern, a flag is set to indicate the hive has
been reached. When this ”reached hive” flag is activated, the robot decelerates and
continues to move for an additional 5 seconds to ensure entry into the hive, marking the
completion of the dancer robot’s foraging process.

3.3.2 Dance Circuit

Upon successful foraging, the dancer robot’s subsequent task is to perform the figure-of-
eight dance pattern with precise orientation and duration. As outlined in the preceding
section, the relative angle and distance between the resource location and the hive are
recorded within a text file. Consequently, the waggle dance node initiates by retrieving
this information from the file.

In the simulation, the dancer robot aims to mimic honeybee dance behaviours that occur
on the horizontal plane of the comb inside the hive, due to limitations in robot mobility
on vertical surfaces. As previously mentioned in Section 2.3.2, these honeybees orient
their dance directly towards the resource, simplifying the robot’s task to merely aligning
itself with the resource direction, without considering any gravity reference. The robot
is initially positioned to face the sun. Subsequently, it adjusts its orientation to match
the angle of the resource relative to the hive, as indicated by the text file, ensuring the
correct orientation for waggle dance.

The program employs linear and non-linear methods to transform distance data into
the waggle phase duration, with the linear model being the default but adjustable to
non-linear if needed. To simplify, the waggle phase is depicted as a straight path
rather than oscillations towards the resource, improving the follower robot’s accuracy
in assessing the relative angle. Further details on waggle dance enhancements are
deferred to Section 5.2. Additionally, a buzzer mimics the sounds of wing vibrations
and abdomen movements during the waggle phase, with its sound duration matching
that of the waggle phase. This feature allows the follower robot to determine the waggle
phase duration by measuring the sound’s length.

In addition to the waggle phase, the complete dance sequence involves the return run—a
smooth arc linking the start and end of the waggle phase, allowing the dancer to maintain
consistent orientation throughout each waggle. While navigating curves is relatively
straightforward for humans, it poses a significant challenge for robots. Typically,
executing a curve involves plotting several points along the trajectory, refining the path
with an algorithm like Bezier curves, and then employing a suitable PID controller
for the robot to follow the path, a process that can be quite complex. Since the return
run does not convey information and isn’t the primary focus of the study, a simpler
half-circle route suffices for the intended purpose. By designating the midpoint of
the waggle path as the circle’s centre and using the waggle’s length as the diameter,
calculating the half-circle’s length is straightforward. With the return duration derived
from the equation in Section 2.3.2, the dancer robot’s linear and angular velocities can
be determined. These velocities, once published to the “cmd vel” topic, will guide the
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robot along the arc automatically.

The final step involves integrating all components. In addition to loading resource
information and adjusting the heading, the action loop encompasses repeating the
waggle phase and return run. A complete circuit consists of an initial waggle phase, a
return run in one direction, a second waggle phase, and a return run on the opposite side.
The starting direction for the return run (either right or left) is determined by the relative
angle between the resource and the hive; for instance, if the dancer turns left during the
adjustment phase, the first return run will be on the left, and the pattern reverses for the
next time. The repetition pattern can be modified in the code, with the default setting to
repeat twice.

3.4 Follower Bee TurtleBot

Switching to the perspective of the follower robot, the main challenge lies in determining
the orientation of the dancer’s waggle phase within its local frame without relying
on communication technologies such as Bluetooth or WiFi. To synchronise both
robots within the same coordinate system, the follower robot must initially align itself
with the sun. This alignment resets the sun’s position in its system and matches the
follower’s local frame with that of the dancer. This functionality is achieved through the
sun direction node, which subscribes to the “odometry” topic and performs the same
heading direction calculations as shown in the path integration node.

3.4.1 Antennae-inspired Algorithm for Orientation of Dancer

Figure 3.5: Method to measure the
relative angle (θ) between robots

Drawing on insights from Section 2.3.3, the fol-
lower bee is capable of discerning its orientation
relative to the dancer by the positioning of its an-
tennae and the angle to the dancer. To simulate
this mechanism, it’s necessary to consider the inte-
gration of small, precisely controlled motors that
can mimic bee-like movements. Additionally, de-
termining the type of sensory data to collect from
the dancer presents a significant challenge. How-
ever, from the standpoint of achieving the primary
goal—to ascertain the relative angle between the
dancer and follower robots—there are various ex-
isting solutions. While these solutions employ
different sensors, their underlying principles are
similar.

The fundamental mechanism involves positioning
two sensors along a baseline, maintaining a fixed
gap between them and ensuring they remain sta-
tionary throughout the observation process. This
approach diverges significantly from the behaviour
of honeybees but is adopted to enhance subsequent calculations. The sensors emit



Chapter 3. Methodology 19

signals perpendicular to the baseline, and the observed object must present a flat surface
perpendicular to the ground. To accomplish this, the dancer robot was enclosed in
a cubic shell (Figure 3.6). When the dancer enters the sensors’ detection zone, the
readings dramatically shift from several meters to a smaller range, specifically within
1.2 meters. Given the hive’s dimensions—1.2 meters in width and 0.84 meters in
length—the maximum size of the dance pattern is confined within this space. Taking
into account that both robots reside within the hive, the threshold for data readings has
been established at 0.6 meters, equivalent to half the hive’s width. When readings from
both sensors fall within this threshold, the system initiates the calculation of the relative
angle between the robots based on the variance in the signals’ reflection.

Figure 3.6: Dancer Bee TurtleBot
with cubic case

Referring to Figure 3.5, by utilising the gap be-
tween sensors (70 mm) and the measurement
difference from readings, one can employ basic
trigonometric functions to calculate the relative an-
gle (θ) between the two robots. The relative angle
(θ) is calculated as:

relative angle θ= arctan
(

gap between sensors
measurement difference

)
A special case occurs when the dancer moves
along the direction perpendicular to the follower’s
heading direction; both sensors will record the
same reading, making the measurement difference
0. To prevent invalid calculations in this scenario,

the program directly assigns the relative angle as 90◦.

Figure 3.7: Illustration of decoding
the heading direction of dancer α

Choosing the appropriate sensor is a crucial aspect
of this algorithm. The current range of solutions
includes various proximity sensors and cameras
available on the market. Considering the natural
conditions inside a hive, which is completely dark,
and the fact that honeybees do not rely on visual
cues during dance communication, cameras are
eliminated from consideration. Among the dif-
ferent proximity sensors evaluated, the ultrasonic
sensor was initially chosen. However, subsequent
testing revealed that the ultrasonic sensor’s range
(15◦horizontally) is relatively broad for the exper-
imental setup, with a gap of 70 mm between the
two sensors, leading to signal interference and sig-
nificant errors in the readings. Consequently, the
Time-of-Flight (ToF) sensor was selected for its high accuracy, offering a resolution of
1 mm and an infrared emitter wavelength of 940 nm, making it well-suited for the study.
Nevertheless, the default TOF sensors share the same address when connected to only
the I2C port in Raspberry Pi, preventing simultaneous readings. To address this issue,
an external Python file, change tof address.py, was created to assign separate addresses
to the left and right sensors.
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In biological systems, the CX processes the relative angle between the dancer and
follower bees, extracting the dancer’s orientation (Section 2.3.3). In simulations, this
angle is determined through vector calculations. By considering the movement vector
of the dancer, the heading direction vector of the follower, and the sun’s direction vector,
these three vectors form a triangle shown in Figure 3.7. In this specific scenario, the
angular difference between the follower robot and the direction of the sun (β) is 90◦,
which serves as the case study in Section 4.2. From the diagram, the relative angle
between the dancer and follower is denoted as θ, and the goal is to determine the relative
angle between the dancer’s direction and the sun, α. The equations are as follows:

β = α+θ

α = β−θ

Therefore, the orientation of the waggle phase could be computed based on the relative
angle from the sensors. However, the relationship between the three angles depends
on the quadrant in which β is located, with details illustrated in Figure 3.8 below. Via
this, if the dancer’s heading aligns to the left of the sun’s direction, the resulting figure
is positive; if to the right, it is negative. This mirrors anticlockwise and clockwise
rotations at the beginning of the dance.

Figure 3.8: Calculations based on different quadrants of the follower’s direction

3.4.2 Decoding the Resource Information

The algorithm enables the generation of a singular orientation for the dancer robot. To
enhance the accuracy of this orientation, the program calculates a relative angle between
the robots at each timestamp, stores them as an array and averages these to refine
the computation of the dancer’s heading direction. This heading direction precisely
indicates the direction towards the resource location. After observing, the follower robot
is positioned at the same departure point as the dancer, with its heading aligned with
the sun’s direction. Similar to the preparation undertaken by the dancer for the waggle
dance, the follower will also rotate towards the desired direction before proceeding
forward.

The remaining element to determine is the distance between the resource and the
hive. This is accomplished with the addition of a microphone, which detects a specific
frequency emitted by the dancer robot during the waggle phase and measures its
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duration. However, the biological method used to obtain the duration will be discussed
in Section 5.2. Additionally, the microphone serves as a flow control mechanism within
the program, triggering the TOF sensors only when the detected frequency reaches a
certain threshold. This aims to prevent the follower robot from making detection during
the return phase. Given that the default repetition for the dance circuit is set to twice, the
system averages the duration from both instances. This mean is then used to calculate
the distance to the resource, utilising the inverse of the equation presented in Section
2.3.2. It is important to ensure that the transformation method chosen for the decoding
phase corresponds to the one used during encoding, whether it be linear or non-linear.

Based on the distance from the resource location to the hive, the follower robot is
assigned a constant linear velocity along the x-axis. Consequently, the duration of
this outbound journey can be calculated. Comparing the total time taken proves more
efficient than computing the Euclidean distance at each timestamp. Upon reaching the
vicinity of the food resource, defined by a circle with a 0.22 m radius with the resource
as its centre, the follower robot will halt, signifying the successful completion of the
entire simulation experiment.

3.5 Summary

In this chapter, the fusion of biology, programming, and robotics is extensively explored
through the simulation of honey bee foraging and communication behaviours using
TurtleBot 3 robots. Comprehensive hardware and software, including Raspberry Pi
computers, various sensors, and the experimental environment, were integrated to
create a dynamic platform for the robots to mimic the dance communications of bees.
Importantly, the methodology proves the biological navigation strategy, facilitates the
accurate encoding and decoding of waggle dances, and enables the follower robot to
identify and locate resources based on the dancer’s movements. This approach supports
the potential of applying robotics to biological studies, bridging the gap between two
distinct fields.

Transitioning to the next chapters 4 and 5, , the outcomes of the experimental simu-
lations are discussed. This includes an analysis of the methodology’s robustness in
accurately simulating bee behaviour, discussions on the implications of the findings,
and potential areas for future research improvements. The insights gained from the
current methodology lay a solid foundation for further exploration, promising exciting
advancements in the interdisciplinary field of robotics and biology, offering a new lens
through which to understand and replicate the wonders of nature.
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Results

To assess the overall robustness of the system, the experimental setup was designed to
evaluate the precision of path integration using the CX model and dance communication,
along with the overarching accuracy of the entire process.

4.1 Path Integration Robustness

The series of experiments focused on evaluating the CX model’s path integration
efficacy across varied complexity levels, utilising Resource A, aligned with the sun
and 4 meters from the hive, as a consistent benchmark. This investigation spanned five
distinct tasks to explore how path complexity impacts the model’s accuracy, measured
by discrepancies in target heading directions between the CX model’s outputs and
geometric calculations. Path complexity was quantified using the Straightness Index
(SI), defined as follows

Straightness Index =
Straight-line distance between two points
Actual path length between those points

Given that the direct distance remains a constant 4 meters, an increase in the actual path
length results in a lower SI value, indicating a greater complexity of the task.

The assessment of path integration showed that the CX model’s highest accuracy was
in Experiment 1, with an SI of 0.98, achieving a minimal heading deviation of -2.06◦.

Table 4.1: Relationship between Path Integration Robustness and Path Complexity

Straightness
Index of Path

Target Heading
from

CX Model (◦)

Target Heading
from

Calculation (◦)

CX Model/
Calculation

Resource
Angle (◦)

Resource
Distance (m)

1: 0.98 84.72 85.48 CX Model -2.06 4.01
2: 0.75 77.34 81.67 CX Model -0.90 4.02
3: 0.66 71.39 73.95 CX Model -1.37 3.98
4: 0.55 63.81 52.20 Calculation -3.47 3.95
5: 0.33 20.57 36.07 Calculation -6.24 3.98
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Figure 4.1: Dancer Robot Path Tracking with five Path Complexity

As path complexity increased, indicated by a lower SI, the model’s accuracy declined.
With an SI of 0.75, Experiment 2 saw a -0.90◦deviation, and Experiment 3, at an SI of
0.66, slightly improved to -1.37◦, illustrating the model’s adaptability. Experiment 4’s
-3.47◦deviation at an SI of 0.55 emphasized reliance on geometric navigation, while
Experiment 5, at the lowest SI of 0.33, experienced the greatest deviation of -6.24◦,
marking a significant accuracy decrease with complex paths. Nevertheless, the CX
model maintained commendable performance as all the traces end within the hive area,
highlighting its reliability amid complexity and the pivotal role of geometric calculations
in navigation accuracy, despite evident systematic errors.

The analysis of columns 2 and 3 in Table 4.1 reveals a significant relationship be-
tween path complexity and the accuracy of path integration using the CX model. This
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comparison uses geometric calculations as a benchmark, assuming they are accurate
unless affected by drifts from IMU sensors from TurtleBot. It is observed that as
paths become more complex, the difference in target heading directions between the
CX model and the geometric calculations increases. This phenomenon highlights a
prevalent issue in robotics: the discrepancy between a robot’s intended command and
its actual execution. The accumulation of steering errors is more pronounced in paths
with numerous curves and loops, resulting in a greater deviation from the intended
destination upon completion of the path. Additionally, inconsistencies between sensory
input and computational outputs in the model further compound this issue. With the
model comprising five layers, the necessary time to process data can introduce delays,
exacerbating error accumulation and potentially causing missed or delayed steering
adjustments. Generally, as indicated by column 4, the current implementation of the
CX model successfully facilitates path integration with an average variation of 6.95◦,
enabling effective navigation back to the hive except in more challenging scenarios.

Moreover, an interesting finding is the variation in target heading directions, which
ranges from 36.07◦to 85.48◦across different tasks. Despite these variations, the “dancer”
robot consistently manages to return to the hive area in every scenario. This success is
likely influenced by the specific environmental conditions of the experimental setup.
Near Resource Location A, the area is encircled by large desktop computers with
powerful GPUs, creating an unstable magnetic field that affects the IMU sensor data
and, by extension, the robot’s navigation. This environmental factor is significant
when contrasted with the vast natural habitats of bees, highlighting the impact of
electromagnetic interference on the experiment. Although this interference skews the
IMU sensor readings and contributes to discrepancies in navigation, the CX model
demonstrates an ability to adjust for a certain degree of sensor error. However, its
overall reliability is undermined in environments with electromagnetic disturbances,
suggesting a limit to the model’s capability to compensate for sensor inaccuracies.

4.2 Dance Communication Robustness

The system’s core relies on accurately conveying location information through dance
between dancer and follower robots. To evaluate this, experiments were set up where
a follower robot deciphers the dance of a dancer robot, which consistently signals
the position of a Resource B, located at a 22.47◦angle and 3.10 meters away (Figure
3.3). The follower robots assume ten distinct orientations around the dancer, with their
heading direction represented by the angle’s sign: negative for clockwise and positive
for anticlockwise relative to the sun’s direction as shown in Figure 4.2. Each trial keeps
the dancer’s waggle dance orientation and duration constant when indicating resource
B, ensuring consistency.

The absence of data for Positions 1 and 2 in Table 4.2 stems from the design discrepan-
cies between the experiment’s robots and real bees. The TurtleBot, designed to emulate
bees, has a square shape, in contrast to the elliptical form of bees that communicate ob-
servationally using their sides. The algorithm, as detailed in Section 3.4, recognises only
signals from the robot’s sides as valid for observation. At Position 1 from Figure 4.2 A,
the robot’s front faces the TOF sensors, leading to inaccurate angle measurements since
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Figure 4.2: Experiments for Dance Communication Robustness

this front is not designed for signal detection, complicating the derivation of the correct
relative angle due to its perpendicular orientation to the dancer’s direction. Similarly, at
Position 2, the robot’s back, which is also not configured for angle computations, faces
the sensors. Thus, with the system’s current setup, it’s impossible to obtain relative
angles for these positions, highlighting a limitation in the robot’s design relative to the
task requirements.

The remaining eight positions offer valid data for translating the dance pattern into
resource location information. Following the methodology outlined in Section 3.4,
the first step involves assessing the relative angle between the two robots. Table 4.2
shows that the discrepancy between the TOF sensor readings and the mathematically
calculated ground truth varies, from a slight 0.21◦in Position 8 to a maximum of
6.3◦in Position 4. The mean deviation is 4.01◦, which surpasses expectations. This
accuracy is partly attributed to the dancer’s slow forward motion during the waggle
phase, allowing the follower’s TOF sensors to maintain stable and consistent readings.
Position 8 warrants further discussion due to its mere 0.21◦variation from the ground
truth. This exceptional accuracy arises when the robots are perpendicular, resulting in a
directly assigned relative angle of 90°, as explicated in Section 3.3. Such an orientation
ensures a consistent relative angle at 90◦. Consequently, after averaging, the error in
the relative angle measurement is significantly diminished. Subsequently, the resource
angle calculated by the follower is compared to the actual resource angle of 22.47◦.
Owing to the direct mathematical conversion from the relative angle to the resource
angle, this step introduces no additional error. The most accurate results are observed
in Position 8, with Position 4 registering the highest discrepancy, following the same
outcome.

All positions successfully interpret waggle duration through the measurement of the
buzzer sound’s length. The most significant discrepancy occurs at Position 7, presenting
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Table 4.2: Dance Communication Robustness based on ten Positions of Follower Bee

Follower
Position

Relative Angle
between Robots (◦) Angle between Heading

Direction of Follower
and Direction of Sun (◦)

Resource
Angle from
Follower (◦)

Buzzer
Sound

Duration (s)

Resource
Distance from
Follower (m)Ground

Truth
Angle from

TOF Sensors
Position 1 3.97 None -154.03 None 38.24 3.03
Position 2 12.73 None 35.20 None 38.47 3.04
Position 3 39.38 43.38 -118.15 18.47 37.58 2.97
Position 4 67.78 61.48 -45.33 16.16 37.69 3.06
Position 5 82.53 76.43 -75.0 28.57 39.07 3.10
Position 6 44.05 42.31 -21.58 20.73 40.11 3.19
Position 7 38.24 40.52 60.71 20.19 31.59 2.43
Position 8 89.79 90.0 112.26 22.26 38.96 3.09
Position 9 67.55 61.69 89.98 27.84 38.62 3.06

Position 10 57.05 62.64 145.42 28.06 39.10 3.10

a variance of 0.67 meters. This deviation arose from an abrupt noise disturbance
during experimentation that prematurely halted detection. Consequently, this data point
is regarded as an outlier and has been excluded from following processes. Notably,
at Position 5 and 10, the follower identifies the resource distance as exactly 3.10 m,
mirroring the dancer’s signal. The recorded duration of the detected sound span from
37.58 seconds to 40.11 seconds, indicating a spread of 2.53 seconds. Meanwhile, the
error in distance measurements for these positions ranges from 0.01 meters to 0.13
meters, a disparity of 0.12 meters. This suggests that the linear correlation between
the duration of sound and distance serves to minimise the errors arising from the
measurements.

On average, the error in interpreting the resource angle based on the dancer’s orientation
is about 4.01◦, with a mean discrepancy of 0.044 m in determining the resource distance
from the buzzer’s duration. These figures highlight the system’s overall effectiveness
and resilience in dance communication. In conclusion, the follower bee is capable of ac-
curately receiving dance vector information from the majority of positions surrounding
the dancer.

4.3 General System Robustness

This section describes the evaluation of a comprehensive foraging cycle: A dancer robot
discovers a resource and performs a dance at the hive to communicate the location.
A follower robot, observing from the same position, then attempts to interpret the
dance and return to the precise resource location indicated by the dancer robot. All
foraging routes are designed with comparable complexity to prevent any influence on
the experimental outcomes.

The experiment designates five resource points across the field (Figure 3.3). Resource
A, requiring no angle change, is 4.0 meters away on the sun’s direct path. Resources
B and C, on opposite sides of the sun’s direction and nearly equidistant from the
hive—3.1 meters for B with a 22.47◦anticlockwise angle and 2.64 meters for C with a
-22.35◦clockwise angle—are set for testing directional accuracy. Resource D is closer,
1.78 meters away with a slight -9.78◦angle, offering a distance variation comparison
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with Resource A. The nearest, Resource E, is at 1.03 meters with a sharp 54.47◦angle,
challenging the system with significant angular differences. Each resource center is
marked by a yellow circle of 0.22 meters radius, amounting to 0.15 square meters or 1%
of the 15 square meter field. Success is defined by the follower robot stopping within
these circles.

Table 4.3: System Robustness based on five Resource Locations

Resource
Location

Resource
Angle

from Dancer (◦)

Resource
Distance

from Dancer (m)

Resource
Angle

from Follower (◦)

Resource
Distance

from Follower (m)
Resource A -1.20 4.02 -1.74 3.97
Resource B 22.47 3.10 26.51 3.09
Resource C -22.35 2.64 -25.24 2.63
Resource D -7.18 1.78 -9.78 1.77
Resource E 54.47 1.03 47.87 1.08

4.3.1 Resource Distance

This task examines how well the system operates over various distances. Figure 4.3 A
illustrates the entire simulation process for Resources A and D. Dancer robots’ paths
are solid lines, while followers’ are dashed, a standard used in later tasks. This figure
directly contrasts the pattern sizes for varying foraging distances with overlapping dance
pattern inside the hive. Figures 4.3 B and C focus on the details of the dance traces
for Resources A and D, underscoring the distinctive figure-eight pattern of the waggle
dance. The duration of the waggle phase varies in proportion to the distance of the
resource, which in turn affects the size of the dance pattern.

Nevertheless, a noticeable divergence is observed between the two waggle phases for
each dance circuit, with the robots exhibiting a drift at the beginning and end points.
This could be due to the minimal angles of rotation required for both Resources A and
D; identical hardware errors may have a disproportionately larger effect on smaller
movements. Additionally, the drift may result from not including the robot’s dimensions
in the return phase calculation. To enhance accuracy, a live adjustment mechanism
could be integrated to monitor the robot’s position, ensuring the dancer robot accurately
returns to its initial starting location. Moreover, bees in natural settings also display
drift in their waggle dances within the hive, suggesting that the robots’ performance, to
some extent, mirrors the behaviour of actual bees.

Table 4.3 generally indicates minor deviations in angles and distances between dancer
and follower robots, falling within the range of acceptable error for effective foraging.
Notably, divergent paths are observed for Resource A, potentially due to cumulative
minor errors in contrasting directions. Analyzing Figure 4.3 A, the dancer’s inbound
angle diverges anticlockwise from the target homing direction, while Figure 4.3 B
shows the dance orientation diverges clockwise relative to the vertical target dance
orientation. When these are combined, the resulting angular difference for Resource
A between the dancer and follower is slight, at 0.52◦, equating to a minimal 0.14%
variation in the table, with the follower halting within the target zone as indicated by
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Figure 4.3: A. Path Tracking for Dancer Robot and Follower Robot on Resource Location
A and D; B. Waggle Dance Pattern for Resource Location A; C. Waggle Dance Pattern
for Resource Location D

the dashed line’s end. The follower’s travel distance is also marginally shorter by just
0.05 m than the dancer’s. For Resource D, the coordination is even closer, with an
angular discrepancy of only 2.6◦and an insignificant 0.01 m distance difference. These
details attest to the system’s considerable robustness in managing distance variances,
showcasing enhanced accuracy at reduced distances.

4.3.2 Direction of Resource Angle

Exploring the impact of resource angle direction on system precision, robots traverse to
Resources B and C, with their paths marked in red and blue respectively in Figure 4.4
A. Figures 4.4 B and C showcase the waggle dances for B and C, highlighting precise
execution by the dancer robots. The waggle phase orientations for B are notably precise,
demonstrating accurate directionality. The dance for C shows minimal deviation from
the optimal figure-eight pattern, as outlined in the Literature Review (Section 2.1). The
difference in pattern sizes between B and C stems from a 0.46 m variation in distance
to each resource.

Despite the consistency in the dance pattern’s direction for Resource B, there is a notice-
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Figure 4.4: A. Path Tracking for Dancer Robot and Follower Robot on Resource Location
B and C; B. Waggle Dance Pattern for Resource Location B; C. Waggle Dance Pattern
for Resource Location C

able discrepancy between the angles when compared to Figure 4.6. This discrepancy
results in the paths for Resource B diverging, with the follower robot stopping outside
the resource region, which is the only unsuccessful simulation. Table 4.3 indicates
an angular difference for Resource B of 4.04◦which, although small, becomes more
pronounced due to the distance of 3.1 meters; as distance increases, even slight angular
errors are magnified for the system. In contrast, the angular variation for Resource C
is a lesser 2.89◦. Looking back at the Figure 4.4 A, the robot paths for Resource C
are more closely aligned, implying more accurate dance communication replication.
For both resources, the system decodes distance information with notable precision,
showing only a 0.01 m discrepancy. Overall, the system demonstrates the capability to
manage resource locations in varying directions with fundamental robustness.

4.3.3 Magnitude of Resource Angle

The study’s last part investigates how the magnitude of the relative resource angle
impacts the communication system’s accuracy. Dancer robots move towards Resources
D and E, their paths shown in Figure 4.5 A. Figure 4.5 B and C display the waggle
dances for D and E. As the dance for D is as described in Section 4.3.1, this section
will focus on analysing the distinct features and challenges of the waggle dance for
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Resource E.

Figure 4.5: A. Path Tracking for Dancer Robot and Follower Robot on Resource Location
D and E; B. Waggle Dance Pattern for Resource Location D; C. Waggle Dance Pattern
for Resource Location E

Figure 4.5 C clearly shows that the waggle dance pattern for Resource E is distinctly
different and confined to a smaller area compared to others. This is attributable to the
short distance to Resource E, only 1.03 meters, which, when translated into the waggle
duration, results in a mere 15-second performance and a forward movement of only 0.2
meters. This movement is relatively small, particularly when considering the robot’s
size of 0.14 meters. At this level of magnification, the rotations occurring during the
return phase are markedly apparent, as all the short arcs are utilised to recalibrate the
dancer’s heading direction, ensuring it can resume the previous waggle orientation.
These arcs are usually inconsequential in other experiments due to their size being
vastly overshadowed by the actual dance movements. However, for Resource E, these
adjustment arcs significantly affect the visualization of the dance pattern. If these arcs
were disregarded, the resultant pattern would bear more resemblance to those observed
for other resources.

Beyond the dance pattern, the brief duration also impacts the decoding of resource
information, both in terms of the resource angle and distance. The system registers
the largest errors observed across all experiments—6.6◦for angle and 0.05 meters for
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distance—as indicated in Table 4.3. The short duration limits the follower robot’s
ability to collect and average more relative angles between the robots. Additionally, it’s
easier for the follower to inadvertently capture data from the back side of the dancer
bee, introducing further inaccuracies into the calculations. For the duration, a shorter
duration coupled with the same microphone delay results in a disproportionately larger
error, leading to less stable resource distance estimates. Despite these errors, there
isn’t a significant deviation between the dancer and follower paths, thanks in part to
the short distance which mitigates the impact of errors. As seen in Figure 4.5 A, the
follower robot ultimately stops within the resource region, demonstrating successful
communication. Therefore, evaluating the performance at Resource E reveals that while
the system is more accurate with smaller relative angles, such as with Resource D, it
still maintains robust performance across a range of relative resource angles.

4.4 Overall

The experimental evaluation of the robotic foraging system revealed significant insights
into its capabilities and limitations. Path integration assessed through the CX model
demonstrated high accuracy in simple navigation, with precision diminishing as path
complexity increased. This highlighted challenges in maintaining accuracy with com-
plex manoeuvres, exacerbated by processing latency and environmental interference.
Furthermore, dance communication robustness, examined through the interpretation
accuracy between dancer and follower robots, showcased minimal discrepancies in
conveying resource locations. Despite design and algorithmic limitations, the system
effectively communicated across different scenarios, indicating strong potential in
replicating biological communication within robotics.

The system’s overall robustness, assessed through comprehensive foraging cycles over
various distances and directions, affirmed its capacity to precisely replicate bee foraging
behaviour, despite a slight reduction in accuracy with the rise in task complexity. The
quantifiable performance of the system, characterised by an average angular error of
3.334◦and an average distance discrepancy of 0.146 meters across five specific resource
locations, underscores its considerable robustness. These metrics highlight the custom-
built simulation system’s effectiveness in emulating complex natural behaviours and
maintaining operational integrity even as challenges escalate.

In summary, the study confirms the simulated foraging system’s efficacy in acting
complex natural behaviours with high navigational and communication accuracy. Fu-
ture enhancements should aim at refining the system in a more biologically inspired
manner and improving performance across complex scenarios. Additionally, conducting
repeated experiments could offer deeper insights into the system’s performance. This
work advances the understanding of robotic mimetics and supports the development of
automatic biological systems capable of composite, coordinated behaviours.
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Discussion and Conclusion

To summarise the project, the primary contributions are as follows:

• Implemented ROS 2 control on TurtleBots with both Raspberry Pi 3 and 4 models.

• Integrated an existing CX model for real-time path integration with reliable
accuracy within the experimental range.

• Programmed robust hive recognition with high accuracy.

• Created a waggle dance behaviour model with bee-like sounds correlated to the
foraging process.

• Designed a multi-sensor operation system to simultaneously capture information
for the follower robot.

• Implemented the extraction of relative angle estimations using TOF sensors.

• Applied a mathematical model to convert relative angles into resource direction
for different cases.

• Established sound detection using a microphone with considerable accuracy.

• Designed experiments to test the system’s robustness.

• Recorded and edited a video demonstration of the simulation.

• Tracked the robots’ movements using the Vicon system to map their paths.

• Conducted 3D modelling and printing of sensor supports.

• Performed soldering for sensor assembly.

5.1 Challenges

In general, the self-proposed project presented a significant challenge, requiring a
diverse set of skills: a solid understanding of biological neuron models, extensive

32
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familiarity with hardware platforms such as Raspberry Pi and various sensors, compre-
hensive experience with ROS 2 programming, and the ability to integrate hardware with
software seamlessly.

Initially, it demanded extensive time to acquire essential biological knowledge, as ex-
ploring insect brain regions diverged greatly from familiar computer science principles.
Starting from the dance communication, it is difficult to familiarise with each neuron
and its functionality in the neuron system. Moreover, the hardware setup phase was
particularly time-consuming. Due to the strict compatibility requirements of the Robot
Operating System (ROS), it was necessary to reinstall Ubuntu 22.04 on the Raspberry
Pi 3 to match the ROS version on the laptop. However, the Raspberry Pi 3 faced limi-
tations due to its insufficient memory capacity, leading to nearly 87.9% of the storage
being used after basic ROS 2 package installations, causing slow system performance.
Consequently, a Raspberry Pi 4 replaced the Pi 3 to ensure computational stability on
the CX model. This transition, along with mastering the intricacies of path integration
and dance communication in bees, took nearly two months.

In the original project proposal, the simulation only considers the dance communication
itself. However, upon understanding the mechanism of dance communication, we
realised the critical role of the foraging actions, where information shared during the
dance is collected. Consequently, we decided to incorporate this aspect into the project
to comprehensively simulate the foraging behaviour, leading to a change in the project
title. Although this idea was great, transforming the neuron model into an executable
programming project presented the greatest challenge. The initial Python package
was a complex project that included various neuron models from insects, with the CX
model representing only a small fraction of the entire system. This complexity made it
unfeasible to implement the whole project on a Raspberry Pi. Identifying the essential
functions required a deep understanding of the program’s workflow and filtering out
irrelevant code, which tested our analytical skills and enhanced our understanding of
the model.

The majority of the remaining challenges stemmed from managing various incidents
caused by the unpredictable nature of the hardware system. Both the Dancer and
Follower TurtleBots experienced system crashes, with the Follower TurtleBot notably
ceasing to respond to commands towards the project’s conclusion. After unsuccessful
troubleshooting attempts, we were compelled to reinstall the operating system and all
software to resolve the issue. Fortunately, there were code backups stored on both
GitHub and the local laptop, which significantly expedited the recovery process. During
this process, the Follower TurtleBot’s 16GB SD card was upgraded to a 32GB one to
enhance the Raspberry Pi 3’s performance.

Additionally, issues related to the connectivity between sensors and the Raspberry Pi
were frequently encountered. All sensors discussed in Section 3.3, except the IMU
sensors, were selected, compared, installed, adjusted, and tested personally, requiring
skills in soldering, 3D modelling, and cabling. For the TOF sensors as mentioned in
Section 3.4, since the Raspberry Pi has only one I2C port and the use of a Grove Hat
Base, both sensors ended up sharing the same I2C bus address. To read data from both
simultaneously, they needed distinct addresses. Owing to time constraints and the inabil-
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ity to procure a multiplexer, a simpler approach was adopted: temporarily disconnect
the left sensor to reset the right sensor’s address to 0x30, then reconnect the left sensor,
which used the default address of 0x29. Those issues significantly strengthened our
problem-solving skills and steadied our response to unexpected challenges.

5.2 Further Study

The primary objective of this project is to closely replicate the biological behaviours of
honeybees. However, due to constraints in the experimental field and time limitations,
certain subtasks could be further aligned with biological principles.

The process begins by interpreting sensory information as inputs for the CX model,
as outlined in Section 2.3.1. Currently, optic flow for speed inputs is simulated using
wheel velocity, but the addition of two cameras, each positioned at a 45◦angle on either
side of the robot, could capture this phenomenon. Utilising OpenCV functions, such
as calcOpticFlowFarneback(), would allow for the computation of speed input for
TN neurons similar to methods detailed in (Stone et al., 2017). For compass inputs,
maintaining the same experimental field, additional ground markers could provide
accurate directional data in the world frame. By upgrading the existing camera to
recognise these markers, it’s possible to refine the heading direction derived from IMU
data. Alternatively, integrating more sophisticated magnetic sensors could ensure more
reliable readings. Transitioning the experimental field to an open area with sunlight,
and employing a polarised camera would greatly enhance the replication of honeybee
eye functionality, offering a closer approximation to their natural navigational abilities.
These improvements would also increase the accuracy of the CX model, potentially
reducing or even eliminating the reliance on geometric calculations.

Further enhancements to the CX model could involve adjusting the gain parameter in
the CPU4 layer to elicit a stronger response to movements. Moreover, the approach
to storing resource location information could be improved by integrating it into the
Vector Memory Layer in the updated CX model, as discussed in Section 2.3.3. As
detailed in Section 3.3, using the Python library (Gkanias, 2021), this layer could be
implemented following the CPU4 processing and activated when the robot locates the
resource. By applying this model, theoretical concepts can be explored within a robotic
context, pushing simulations closer to biomimetic practices.

Consequently, this Vector Memory Layer will supplant the current text file as a means
to guide dance communication. To mimic honeybee behaviour more closely in the
dance circuit, the waggle phase should incorporate constant oscillations along the dance
orientation rather than a mere straightforward movement. However, implementing true
oscillations poses a challenge for the current TurtleBot platform, given its relatively
larger dimensions compared to bees. As a result, it can only execute curved movements
instead of precise oscillations. To tackle this challenge, a promising initial approach
involves crafting a robot with a more bee-like design, particularly one that can execute a
waggle dance by oscillating its main body on a motor while maintaining a stationary base.
Given that the final relative angle between robots is derived from an average, the system
has the potential to maintain its reliability even after performing the waggle dance.
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Angles occurring on either side of the heading direction will average out to a mean
relative angle, mirroring straightforward movement. Nevertheless, this modification
may still present difficulties for the follower robot in precisely decoding the dancer
robot’s movements.

Compared to the dancer robot, the follower robot presents opportunities for more
comprehensive investigations. This stems from the fact that current follower robot
designs are merely inspired by biological mechanisms, rather than directly replicating
them as seen with the dancer robot. The TOF sensors, for instance, are influenced by
the concept of bees using their antennae to gauge the relative angle between themselves,
despite bees not possessing such sensors. These sensors function by emitting and
receiving signals at a fixed position on the bee’s head, maintaining a constant distance
apart, which is not true for honeybees. A more bee-like approach might involve placing
the sensor atop a stick, with a small, precise motor at the stick’s base (where it attaches
to the head) that rotates in response to the sensor’s signals, mimicking the antennae’s
ability to reflect the relative position between two robots. Ideally, there would be two
sticks, each positioned at a default angle of 45◦from the head’s midline, one on each
side, to more accurately simulate bee antennae functionality.

Furthermore, the use of a microphone for duration detection is an overly simplified
approach. The duration of directional accuracy measurement for assimilated foodward
vectors is gauged using the antennae positions of follower bees, beginning when a
nestmate qualifies as a ‘follower’ during the waggle dance and concluding either when
these criteria are no longer satisfied or the dance ceases. This method links the length
of the integrated vector to the waggle’s duration, thus indirectly representing distance
(Hadjitofi and Webb, 2024). Consequently, a function should be developed to compute
the position of the stick sensor to formulate the vector. Subsequently, the duration and
angle information are utilised as inputs for a customised CX model embedded in the
follower robot, translating it into actual resource information based on the principles
outlined in Section 2.3.3. Although these enhancements for the follower are somewhat
speculative, further research and testing are necessary to assess their feasibility and
practical application.

Viewing the system as a whole, the integration between each subtask could be improved.
At present, both dancer and follower robots are manually positioned at the departure,
dance, and observation points. Automating this process could be achieved by placing
ground labels on the hive and employing computer vision to identify and track these
distinct locations for different states. In conclusion, while the existing simulation system
has successfully emulated biomimetic behaviour with notable robustness, there remains
ample scope for further exploration and enhancement.

5.3 Conclusion

This project delves into the honeybee waggle dance, integrating concepts from biology,
cognitive neuroscience, and robotics to showcase the potential for robots to replicate
simple neural behaviours. By creating a simulation system that accurately reflects the
dance communication of honeybees, this work lays the groundwork for reproducing
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honeybees’ foraging behaviour in this robotic system, highlighting the flexibility of
such technologies. The primary achievements and future directions include:

• Successful Biomimicry of Waggle Dance Communication: Achieving an
emulation of the waggle dance, this project showcases the system’s capability to
mimic bee path integration and dance communication with minimal deviation in
orientation and distance.

• Innovative Approach to Robotic Design and Programming: Overcoming vari-
ous technical challenges, the project introduces novel hardware and programming
solutions, depending on recent technology to establish a solid foundation for the
study.

• Pathway for Enhancing Biological Fidelity in Robotics: It lays out strategies
for more biologically accurate simulations, like polarised light navigation and
biomimetic antennae, aiming to closely match robotic systems with biological
processes and guide future bio-inspired robotics enhancements.

Overall, this dissertation contributes to the biomimetic robotics field, offering new
insights into bee communication and aiding in the development of robotics inspired by
biological principles. It underscores the importance of cross-disciplinary work in push-
ing the envelope of what’s possible in science and technology, laying a foundation for
further exploration of current bio-inspired models and the advancement of autonomous
robotics.
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Appendix A

Mathematical Description for CX Model

A.1 Firing Rate Model

Initially, the circuit employed a firing rate model for neurons with the output firing rate
r and a sigmoid function of the input I:

r =
1

(1+ e−(aI−b))

where parameters a and b control the slope and offset of the sigmoid. This value is
added to a Gaussian noise N(0, σ2

r ), where σ = 0.1. The resulting firing rate, spanning
all layers, is constrained to stay within the range of 0 to 1 through clipping. This
constraint ensures that the introduced noise does not exceed the bounds of [0, 1]. The
input I equal the weighted sum of the activity of neurons that synapse onto neuron j:

I j = ∑
i

Wi jri

A.2 Layer 1 - Speed Input and Directional Input

In Layer 1, two inputs are present: speed and directional inputs. The speed input is
attributed to speed-sensing neurons, denoted as TN2 neurons and calculated based
on the optic flow sensed from forward to backward motion, while considering the
diagonally offset preferred angles of TN cells in the CX noduli within each hemisphere:

IT NL = [cos(θ+φ),sin(θ+φ)] · v
IT NR = [cos(θ−φ),sin(θ−φ)] · v

where v is the velocity vector of the agent, θ is the current heading direction and φ is
the preferred angle of a TN-neuron. As TN2 neurons locate their value within the range
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0 and 1, they have responses in a positive linearly proportional manner to IT N while
having zero reflection to negative flow which is produced by backward motion:

rT N2 = min(1,max(0, IT N))

By assuming the bee is moving in the heading direction, the response of each TN2
neuron is the same with IT NL = IT NR cos(φ)v.

The directional input of the first layer contains 16 input TL neurons, which are sensitive
to polarisation, and each of them is located in a preferred direction α in the range of [0,
7π/4]. The inputs follow the equation below:

IT L = cos(α−θ)

A.3 Layer 2

The second layer comprises 16 neurons that receive inhibitory input proportionate to the
output of the initial directional input layer. While this inversion of response across the
array is not essential, it is included to emulate the characteristics found in CL1 neurons
connecting the polarization input to the protocerebral bridge.

ICL1 =−rT L

A.4 Layer 3 - Compass

There are 8 TB1 neurons situated in Layer 3 within the protocerebral bridge of the
CX. Each of these neurons receives input from a pair of CL neurons with matching
directional preferences. Their role is to establish mutual inhibitory connections with
one another, creating a ring attractor circuit. The input to these TB1 neurons is defined
as follows:

IT B1 =WCL1,T B1rCL1 +WT B1,T B1rT B1

where WCL1,T B1 is a [0,1] matrix converting the pairs of CL neurons to single TB1
neurons, and WT B1,T B1 indicates to the matrix of inhibitory weights between TB1
neurons where:

WT B1,T B1 =
d(cos(αi −α j)−1)

1

αi and α j are the preferred directions for their respective TB1 inputs, besides, d = 0.33
is a scaling factor for the inhibition under the comparison of the CL1 excitation.



Appendix A. Mathematical Description for CX Model 43

A.5 Layer 4 - Speed accumulation

The fourth layer comprises 16 neurons associated with the CPU4 cells located in the
upper region of the CX body. These neurons receive inputs from the TB1 neurons and
TN2 neurons and accumulate the heading direction through the inhibitory compass
modulation of the speed-sensitive neurons.

ICPU4t
= ICPU4t−1 +acc× (rT N2t − rT B1t −decay)

with rT N2 as the speed-sensitive response and rT N1 as the compass-sensitive response;
acc = 0.0025 and decay = 0.1 resulting in the relative rate of memory accumulation and
memory loss.

A.6 Layer 5 - Steering Output

Layer 5 consists of 16 neurons that receive inputs from Layer 3 and Layer 4 regarding
the information of the compass and home vector. These inputs can be activated or
deactivated depending on the state of the bees. Compass input is inhibitory, aligned
with Layer 3 to Layer 4 connections. Steering neurons, identified as CPU1, are linked
with these connections, providing a steering signal for the bees. In the ”exploring” state,
the left and right activity is identical, thus no effect on steering. In the ”homing” state, a
comparison between compass and integrator cell (CPU4) heading occurs with an offset
pattern. In the ”using vector-memory” state, the vector-memory balances the integrator,
causing the agent to navigate toward the feeder location. Upon reaching the food, the
search pattern begins. Equations for different states:

ICPU1 =

{
WT B1,CPU1rT B1, when exploring

WT B1,CPU1rT B1 +WCPU4,CPU1rCPU4, when homing

where WCPU4,CPU1 is the connectivity matrix from CPU4 to CPU1 cells.


	Introduction
	Literature Review
	Introduction of Dance Communication
	Purpose and Benefit of Dance Communication
	Mechanism of Dance Communication
	Prerequisite: Path Integration on Central Complex Model
	Encoding Waggle Dance by Dancers
	Decoding Waggle Dance by Followers


	Methodology
	Hardware Experimental Setup and Scale
	Experimental Procedure and Software Architecture
	Dancer Bee TurtleBot
	Foraging Procedure
	Dance Circuit

	Follower Bee TurtleBot
	Antennae-inspired Algorithm for Orientation of Dancer
	Decoding the Resource Information

	Summary

	Results
	Path Integration Robustness
	Dance Communication Robustness
	General System Robustness
	Resource Distance
	Direction of Resource Angle
	Magnitude of Resource Angle

	Overall

	Discussion and Conclusion
	Challenges
	Further Study
	Conclusion

	Bibliography
	Mathematical Description for CX Model
	Firing Rate Model
	Layer 1 - Speed Input and Directional Input
	Layer 2
	Layer 3 - Compass
	Layer 4 - Speed accumulation
	Layer 5 - Steering Output


