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Abstract

While advancements in machine learning have resulted in significant performance im-
provements for traditional vision tasks such as object detection and image classification,
as well as numerous extensive studies exploring further improvement methods and
emerging correlations between effectiveness and facets of the task, the task of emulating
human judgements in the context of image similarity remains an open problem. This
project aims to fill this gap and contribute a comprehensive guide on improvement
techniques and their effectiveness on the task of predicting human estimates of image
similarity. These techniques and their effectiveness are discussed in great detail in light
of current recent work in the field of deep learning, as well as of the particularities of
each dataset that they are applied to. The objective of the project is to shed light on the
most effective techniques, whilst constantly providing indications on which conditions
these techniques are best applied to.
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Chapter 1

Introduction

This chapter aims to give an high-level view of the task undertaken by this project, the
motivation behind it, as well as contributions made as part of this project. It is to be
noted that this project represents the second part of the MInf degree qualification and is
a continuation of the project undertaken in the previous year of study [67]. Thus, last
year’s work will be summarised and the manner in which this project extends the past
work will be explained.

1.1 Machine Learning Task Description

We refer to a “machine learning task™ as a concept, representing a problem or objective,
that we would like a complex mathematical model to address or emulate. In our case, we
would like a mathematical model to emulate properties of human perception and vision
by learning how to solve the problem of correctly choosing the most similar image, out
of two image choices, to some given reference image. By a “correct choice”, we mean
a choice identical to that made by a human. We say that the mathematical model is
given the task of predicting human estimates of image similarity. The discussion to
follow concerns the collection and structure the datapoint set for the desired concept
to be emulated, and how the model makes use of this set to assess whether it correctly
aligns with human judgements.

1.1.1 Human Visual Similarity Judgements

The image datapoints that we will apply the mathematical model to are of triplet
structure: we see one main image and two secondary images - the puzzle we need to
solve is choosing which of the two secondary images are more similar to the main
image. By human estimates of image similarity above, we mean the judgement from a
human with regards to which secondary image is most similar to the main image. These
judgements are collected by conducting a survey [85, 5] involving multiple human
participants who are given a single main image and a number of secondary images
and asking them to rank the most N, in our case N = 2, similar secondary images to
the main image. Such as survey is depicted in Figure 1.1. Such a survey will result
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Figure 1.1: Example of the interface used in a human similarity judgement collection survey.
(a) The participant is given 9 images, the highlighted middle image represents the main image,
the rest are the image set. (b) The participant chooses (in order of their ranking) the most and
second most similar image to the main image. Image and study credit: [85], also used in [67] -
Chapter 1.

in a datapoint collection where each datapoint is a triplet of the following images: a
main image - called the query, the first most similar secondary image to the query -
reference 1, and the second most similar image to the query - reference 2.

1.1.2 Image Triplet Datasets of Human Judgements

Following the collection process described above, we end up with a number of triplet
sets. The triplet sets used in this project have been collected as part of three separate
studies [85, 109, 5]. The three sources of triplets to be used in this project are: a
general Image-Net [20] based source spanning multiple categories [85], a birds species
centric source presenting a manageable number of categories [5], and lastly, a vastly
different dataset from the previous two which presents image distortion-based triplets
[109]. A triplet example from each source is depicted in Figure 1.2. Chapter 4 details
these datasets and each of their purposes. Each triplet contains a query image and two
reference images.

1.1.3 Machine Learning Framework

We can denote our machine learning model, momentarily simplified to a complex
mathematical function, as f, which takes as input variable x and produces output y:
f(x) =y. In our case, x is an image in a triplet datapoint, and y is a vector representation
of this image which is somehow generated by our function f. The way in which the
function is applied to the triplet set is: given triplet datapoint (x1,x2,x3), where x1 is
the query and the other variables are the references, we apply the function f to each
image in the triplet and obtain three output vectors: (y1,y2,y3). We then calculate the
distance between the vector output of the query image and of each reference image, the
reference image whose vector is closest to the vector of the query image is considered
the answer that our model gives to the question: “Which of the two references images
is closest to the query image?”. Figure 1.3 illustrates this framework.

We both evaluate and train the framework exemplified above. By evaluating, we mean
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Figure 1.2: (a) An image triplet example from the bird species dataset [5]; (b) An image
triplet example from the ImageNet-based dataset [85]; (c) An image triplet example from the
distortion-based dataset [109].

that we check its predictions - the answers it gives to the aforementioned question-
against the actual human judgements for that triplet. By training, we refer to the process
of teaching the model to recognise the patterns and intricacies necessary to adjust its
predictions to better adhere to the expected human judgements. The model adjusts its
predictions by modifying its parameters.

1.2 Previous Work

As previously noted, this project is the second part of the MInf degree qualification
and builds directly on top of the findings from the first part of the project [67]. The
findings of the first part are detailed in Chapter 2. The first part of the project focused
on drawing parallels between human perception and model predictions by evaluating
model predictions on the three aforementioned datasets [5, 85, 109]. Human vision
and perception properties and biases [84, 57, 5, 99, 28, 105, 65] were compared against
experiments results at every step of evaluating model predictions. The purpose of
drawing these parallels was to find the model architectures and frameworks which were
best-suited for emulating human vision and perception and which model properties
were correlated to better triplet similarity prediction (to exemplify, such a property was
the number of parameters in a model).

The second part of the project focuses less on drawing parallels to human perception,
and instead, more on the effectiveness of different improvement techniques on the
triplet prediction task. The way in which the second part builds on top of the first part is
by selecting the top performing architectures and fine-tuning (training on the specific
triplet sets) paradigms found in the first part of the project, and take steps towards
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Figure 1.3: Depiction of the framework used to apply models of interest to a single triplet
datapoint and obtain a prediction. In this instance, the prediction is correct as the model predicts
the first reference which is also that chosen as most similar to the query image by human
judgement. Image is inspired from: [67] - Chapter 1, Figure 1.2.

improving their performance using a variety of techniques proven to be effective by
past studies.

1.3 Project Scope

The scope of the project is to explore various improvement techniques to be applied to
the models undertaking the triplet similarity prediction task. The goal of these methods
is to improve the accuracy of the models on the aforementioned task - by accuracy, we
mean the percentage of correct similarity predictions. To do so, the intention of these
techniques is to “encourage” the models to output vectors for images in such a way that
we maximise the similarity between vectors of the query and the first reference, and
minimise the similarity of the vectors of the query and the second reference. These
techniques can be applied to various aspects of the framework shown in Figure 1.3: to
the model itself [11, 12, 25, 102, 62, 104, 46] - namely f in our previous simplified
discussion; to the similarity metric used to compare image output vectors [109, 25]; as
well as to the way in which we train [53, 45, 2] our model framework on the triplet sets.

1.4 Motivation

The scope of the project - namely, to increase the accuracy of our model predictions
on the task of predicting human estimates of image similarity - is motivated by the
possibility to consequently emulate desirable human perception and vision properties
[34, 85, 98, 96, 28, 5]. Not only, emulating human vision properties - whether desirable
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or factual, such as the neutral fact that human vision is biased towards shape [84, 57]
- has been shown to translate to increased accuracy on other image-based (vision)
machine learning tasks [98] as well. To enumerate desirable properties of human vision:

* Ability to generalise better to new tasks and datasets [28] - respond more ap-
propriately to new stimuli. Contextual understanding in humans [85] plays a
great role in achieving this advantage - namely, visually dissimilar images may
be connected due to the connection in meaning or scope of the objects that they
represent;

* Proven robustness of human vision when faced with adversarial perturbations
of the data [24]: for example, imperceptible perturbations to human vision can,
oppositely, greatly change model predictions [34];

* Human vision allows to learn from very few examples - few-shot learning. This
property is highly desirable for models as it would greatly reduce the amount
of data required for training models, and not only, it would enhance the use of
machine learning in fields where adapting to new stimuli is crucial - such as
autonomous systems and rare event detection [82].

Not only, approaching model representations to human perception, and consequently,
aligning model predictions to human values, is crucial in order to avoid unintended
consequences and allow for ethical decision making [60] - especially applicable in
nuanced domains such as criminal justice, for example [49].

1.5 Contributions

We see existing past work in the field of machine learning in vision tasks focusing
on approaching and comparing neural network representations to human perception
and vision [98, 27, 5, 29, 109, 85, 58, 87, 67], as well as on generally improving the
performance of neural networks on a variety of vision tasks such as classification and
object-detection [64, 81, 104, 77, 61, 70, 104, 46], however, current work in the field is
yet to provide a comprehensive evaluation of improvement techniques applied to the
task of triplet similarity prediction on a variety of triplet sources - this project is meant
to fill in this gap. The main contributions of this project thus are:

* A comprehensive guide on improving triplet similarity task prediction on three
human judgement datasets [85, 109, 5], 7 fine-tuning paradigms [7, 36, 16, 31,
73, 15, 39], 3 similarity metrics, and 8 base models (Table 3.1);

* An evaluation of meaningful patterns and correlations between improvement
technique effectiveness and facets of the datasets - difficulty-related and structural
factors;

* An evaluation of meaningful patterns and correlations between improvement
technique effectiveness and facets of the backbone model - training-related and
structural factors.



Chapter 2

Background

This chapter aims to give a high-level overview of the essential knowledge required
for comprehending the project scope and findings. To understand the purpose of the
project, we shall discuss: the concepts our machine learning models intend to emulate
- the task they are evaluated on - namely, human vision and perception, and how the
concepts differ; details on the models of choice - neural networks; as well as, related
work and state-of-the-art in the field of aligning model predictions to human perception,
and of improving machine learning predictions in general.

2.1 Human Vision and Perception

As discussed in the first part of the project [67], human vision and human perception,
distinctive from each other [54, 95, 26], are both utilised in assessing image similarity.
Whilst vision is concerned with processing the raw visual information (colours, shapes,
textures, and so on), perception is concerned with obtaining a subjective image interpre-
tation using complex cognitive processes (memory, contextual understanding, and so
on) and the visual information. Estimating image similarity involves both concepts. We
highlight this distinction to explain how, due to the involvement of complex cognitive
processes in perception, machine learning models emulating the human visual system
would not necessarily obtain near-human image similarity predictions.

Thus, this still remains an open problem due to the fact that human image similarity
judgements are not only based on visual properties of the images [37, 109] such as
Gestalt shape ([95] - Chapter 5, [84, 57]), for example, but also on our own individual
experiences and subjectivity. To exemplify: although specific machine learning archi-
tectures have been heavily based on human vision [63] - namely Convolutional Neural
Networks [75] - past work has highlighted different architectures - Transformers [100] -
as better emulators [30, 98] of human vision and perception. Not only, the first part of
the project [67] observed consistently better results when applying Transformer-based
architectures to the given triplet prediction task detailed in Chapter 1.
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2.1.1 Similarity Perception

Having discussed human vision and perception in general, we shall now discuss similar-
ity perception for the purpose of better understanding the cognitive processes involved in
the participants’ similar image selection in the collection surveys introduced in Chapter
1 and not only, to better understand the underlying complexity of similarity judge-
ments. Similarity perception concerns the cognitive process responsible for recognizing
similarities between different concepts or objects.

Similarity, in the field of machine learning, may be considered from the simplistic
categorical point of view [23] - in other words, we use as criterion for deeming two
images as similar, whether the images belong to the same category (from a pre-defined
set of categories). We may thus think about similarity perception from the perspective
of category learning [4, 9]: naturally, all beings assign concepts to separate categories
in order to respond to them differently. Human categorical learning studies [4, 9] in
the field of cognitive psychology present various ways of explaining human category
learning. The most relevant concept to our project being prototype distortion [41].
This theory suggests that categorical decisions in humans involve perceptual learning
and similarity judgement processes, and categories are based on distorted versions of
a prototype. Namely, to assign a concept - an image in our case - to a category, we
compare this concept to our subjective version of the average member of the category.
However, in the context of vision, our mental representation of this typical image in a
category is in fact imperfect and different from the true central sample of that category -
it is distorted. This distortion is a result of personal, social and cultural experiences,
cognitive biases and so on [90]. An example of this is the way that individuals from
different regions perceive geometric illusions, as explained in Figure 2.1.

However, it is to be noted that similarity is much more than image categorisation [101].
The concepts are correlated [93] - visual similarity and picture categorisation - however,
not equivalent. The reason why we bring about the discussion of simplifying similarity
judgements to categorical judgements, is to highlight that even the simplified version of
the problem still involves great complexity due to the involvement of human perception
and thus individuality and subjectivity. The correlation between categorisation and
similarity will also be of use in latter section when discussing improvements to be

(a) (b)

H a b
—

Figure 2.1: (a) The Miiller-Lyer illusion [19] and the (b) Sander parallelogram illusion [89]
were used in a study [90] where people from various countries were sampled. The study shows
that culture does have an impact on illusion susceptibility: European and American participants
being much more susceptible to the illusion compared to their non-western peers. Image
credit: [90].
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Figure 2.2: (a) A representation of a simple neural network architecture with activation layers
(note: we often see activation layers tied to previous whose outputs they apply activations to). (b)
A representation of a number of fully-connected layers - where each unit in a layer is connected
to each unit in the following layer and each connection presents weight wiayer.unit-

applied to our current models: namely, applying experiments in which we improve
categorisation predictions in order to positively influence similarity predictions.

2.2 Introduction to Machine Learning Models

This section provides an overview of the machine learning models of interest, as well
as how they are applied in the context of our task. The information encompassed in
this section is high-level and serves the purpose of offering enough information for
understanding the discussion of past work from later sections in this chapter.

The specific machine learning models which are of interest to us are neural networks
[33] due to the fact that they have been proven to be the state-of-the-art in various vision
tasks [91, 21, 1]. Neural networks’ effectiveness is explained by their ability to learn
complex and high-dimensional data representations. They present the ability to learn
intricate patterns from raw data ([33] - Introduction), due to their layered design which
incrementaly capture more complex raw data representations. These machine learning
models and the specific architectures used in the project are detailed in Chapter 3.

We can imagine these models as mathematical functions structured in a manner that is
roughly based on the human neural system [55] - thus the name. They are made up of
individual units, also called nodes, grouped into layers - Figure 2.2 (a). In the simplest
case of a neural network, namely that of a feed-forward neural network ([33] - Chapter
6) - an FNN, the input is passed from the first layer (input layer) to the second layer and
so on, until it reaches the final layer (output layer), which generates the output. Middle
layers are called hidden layers. Each node from Layer N is connected to the nodes in
Layer N+1, and each connection has a weight - we may think of this weight - Figure
2.2 (b) - as a coefficient which indicates the importance of the previous node to the
following node. We also see activation layers - which are non-linear functions applied
to Layer N outputs (multiplied by weight) to generate Layer N+1 inputs. These allow
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the network to approximate any non-linear function [18].

The two neural network architectures used in this project and further detailed in Chapter
3 are: Convolutional Neural Networks (CNN), designed for grid-like data such as
images and based on the human vision system [44, 63]; and Transformers [100],
initially designed for sequential data and later adapted to images [22] - these networks
deploy attention mechanisms to weigh the importance of different input components.
Despite being based on a non-vision intuition from CNNs, past work [98, 30] has shown
that internal representations of Transformers may be better aligned to human image
perception.

The project will use the terms “features” and “embeddings” interchangeably. These
are matrix-like data structures obtained by sampling the output of hidden layers in our
network - they are representations of the input data that make sense to the network, in
the sense that they convey meaningful information, such as the presence of edges, for
example. As the network progresses through its hidden layers, it learns increasingly
more intricate representations of the input. The output from the final hidden layer serves
as the feature representation for the input image. The way in which these models are
deployed in the context of our similarity prediction task is shown at a high-level in
Figure 1.3, where the image output vectors are in fact model embeddings, and detailed
in Chapter 3.

2.2.1 Training Neural Networks

As part of our experiments aimed at improving model predictions, we will train some of
the networks on image sets obtained from the three sources described in Section 1.1.2.
Training a neural network means teaching it to perform a specific task, such as, for
example, teaching it to get embeddings of similar images closer and those of dissimilar
images farther apart, by adjusting the parameters of the neural network in an iterative
manner, after inputting a number of triplets and assessing the performance of the model.
This process is described in Chapter 3.

We may either train the models on the task that they will be evaluated on - namely,
triplet similarity prediction - or, on a different vision task. Models can be trained on a
different task to learn general image features - they thus gain some general knowledge
which can be applied to our own task. This represents the concept of transfer learning
[10] - the knowledge of the model gained from a task (such as classification training
on a large dataset such as ImageNet [20]) can be transferred to a different, related, task
(such as our triplet similarity prediction task).

2.3 Related Work

Following the sections which established the necessary foundational knowledge to
understand past work, this section now aims to give an overview of how this project
aligns with current and previous research on the topic of approaching machine learning
models to human perception, and on the topic of exploring improvement methods for
neural network predictions. Predicting human estimates of image similarity remains
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an open problem [58, 85] due to the subjective and individualistic [90] nature of the
expected outcome. This expected outcome cannot be reached by following logical rules
(rule-based categorical learning [4, 9]) and may not be agreed upon by all (a “universal
truth™).

The past decades have seen significant progress in the domain of improving neural
network predictions at various vision tasks [64, 81, 104, 77, 61, 70], of better aligning
neural network predictions to human judgements [98, 27, 5, 29, 109, 85, 58], as well as
in the domain of available human judgement datasets [85, 5, 109, 87]. The subsections
to follow shall discuss past work undertaken in the field, of particular relevance to our
experiments, in more detail.

2.3.1 Minf: Part |

Chapter 1 discusses the contributions of the first part of the project [67] at a very
high-level, this section aims to provide more detail, as well as present the concrete
results obtained in the first part [67]. To briefly summarise the contributions of the
previous project: it provided an evaluation of a number of neural network architectures
and fine-tuning frameworks on the three similarity judgement datasets [5, 85, 109]; and
it highlighted correlations between certain model properties (such as accuracy on a
different vision task, or the number of its hyper-parameters)/dataset properties (such as
general similarity amongst images) and the triplet prediction accuracy achieved.

The first part of the project [67], Chapter 6, also predicted different paths to continue the
work such as branching out and exploring the addition of language and mutimodality
in the models we use to obtain the model features, as well as, varying the training loss
or similarity metric (applied as indicated in Figure 1.3). Both of these improvement
methods appear in the current work undertaken and will be detailed in the sections to
follow.

2.3.2 Approaching Model Representations to Human Perception

Research work on aligning model properties to those of human perception [67] highlight
a number of emerging vision properties: human visual perception presents a shape bias
[84, 57] - we assign higher importance to shapes rather than other image properties
(colours, textures and so on) - CNN models tend to be biased towards texture instead
[27]; whilst human similarity perception is asymmetric [99, 5] (pair-wise similarity of
images A and B may be different to that of image pair B and A). One study [27] has
shown that by reducing the texture bias of CNN and allowing the model to re-focus
on shape, image classification results on ImageNet [88] are improved. Similarly, it
has been shown that by allowing models to make asymmetric similarity judgements,
accuracy can improve [5].

These represent main differences between human and machine vision. The previous
part of this project ([67] - Chapter 2) enumerates many more studies which delve into
approaching model internal representations to human perception.
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2.3.3 Large Vision Models

Due to the increased availability of training data sets - such as ImageNet-21k [83] in
our case - and computing resources - especially GPU capabilities [42] - we see the
popularisation of large machine learning models [35]. By large model, we may refer to
a machine learning model with a large number of parameters, such as the GPT-3 model
[11], or a model trained on a very large dataset, such as CLIP [79] and Distillation with
No Labels - DINO [12]. The latter two are of interest to us.

The reason why we are interested in large vision models is due to the fact that, by being
trained on very extensive datasets, we expect them to may be able to better capture
intricacies of their training data and thus present superior performance on vision tasks
when compared to regular neural network models [102]. Not only, we also expect
them to generalise well [62] - in the sense, a large model trained on a different dataset
from ours is expected to still perform well on our own dataset. CLIP and DINO are
the two large vision models used in this project. Both represent training paradigms in
which models of regular size are trained on very large datasets. To picture the extent
of the training data: a typical PyTorch pre-trained CNN model is typically trained on
1.2 million datapoints (from ImageNet-1k ILSVRC 2012 [88] - a subset of the full
ImageNet dataset [20] 1), oppositely, a CLIP CNN is trained on 400 million datapoints
[79] and a DINO CNN on 14 million datapoints (on the whole dataset of ImageNet
[20]).

Another reason why CLIP is of great interest to us is due to its multimodality: whilst
DINO is trained on images only, CLIP is trained simultaneously on both images and
text. Namely, the task that CLIP is trained on is matching images to their corresponding
text description. CLIP’s multimodal approach has proven to improve predictions on
vision and language tasks alike [13, 59, 8] due to its enhanced contextual understanding
stemming from the model analysing two different perspectives (visual and textual) and
also, from CLIP’s ability to learn more fine-grained visual concepts due to the use of
language in its training. Other studies [104, 46] also highlight the effectiveness of using
language-based models for extracting image features in vision tasks.

2.3.4 Varying Similarity Metrics

The effectiveness of different similarity metrics has also been highlighted in previous
work [109]. We use similarity metrics to compare the resulting image features from
our models - namely, to calculate how similar vectors are to one another - the manner
in which we use similarity metrics is described in Chapter 1. The previous part of
the project [67] made use of cosine similarity to compare feature vectors. Cosine
similarity is used by a number of other studies to obtain similarity between image
feature vectors [106, 72, 109, 85] in a variety of tasks. The measure only takes into
account the angle formed by two vectors. Euclidean distance, also called L2 distance,
is also used in vision tasks [109, 66] and is a much more intuitive similarity metric
between feature vectors as it measures the actual straight-line distance. It is also the

'ImageNet-1k contains only on the 1k high-level categories, rather the approximately 22k original
categories of ImageNet. Usually studies are conducted and models pre-trained using ImageNet- 1k.
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similarity measure of choice for Learned Perceptual Patch Similarity - LPIPS [109].
LPIPS is a popular image similarity metric which measures the similarity between two
images by first obtaining their feature vectors from some pre-trained neural network
and then comparing these features using the L2 distance - this framework is in fact what
inspired the framework we shall be using and which is depicted in Chapter 1. Lastly,
we see a number of studies[107, 66] making use of Manhattan distance, or L1 distance,
to obtain image embedding similarity measures. Alike L2 distance, L1 distance is
also more intuitive than cosine similarity, however, L1 distance may provide additional
robustness to outliers compared to the L2 distance [48].

Using a similar architecture to LPIPS, DreamSim [25] claims to align much better to
human judgements than LPIPS by using a concatenation of image features obtained
from pre-trained large vision models such as CLIP and DINO. DreamSim thus inspired
our exploration of a LPIPS-adjacent architectures which utilises features from large
vision models in our experiments.

2.3.5 Varying Fine-tuning

Fine-tuning refers to training an already pre-trained neural network on our own data -
namely, on images from the sources discussed in Section 1.1.2. The manner in which we
fine-tune a model can vary greatly, as well as the model’s final performance, by varying
the fine-tuning parameters: such as the loss - a measure of how well the actual outcome
meets the expected outcome, or vision task that we use for training (classification, object
detection, triplet similarity prediction, and so on). A number of studies [53, 45, 2]
explore the effectiveness of different training variations on vision tasks and inspire our
choice of training variations to explore in later chapters.

Not only, other studies [53, 52] have also compared a number of losses used to train
models for classification tasks on the ImageNet [20] dataset: the study not only compares
the prediction accuracy obtained after training models with different losses, however
it also explores how different losses lead to different transferability of features. More
specifically, the study deduced that losses which yield good accuracy on the task
they were trained for, namely image classification on ImageNet, have a decreased
performance on different vision tasks - less transfer learning [10] power. To put
this discussion in the light of our triplet similarity prediction task: a model which
is pre-trained on ImageNet and yields great classification accuracy on it, may not
also yield great accuracy on our own triplet prediction task. This finding has also
been shown as part of the first part of the project [67] - Chapter 5, Section 5.1.2:
there is no evident correlation between the accuracy a pre-trained model achieved
on ImageNet classification and that model’s resulting accuracy on our task of triplet
similarity prediction.



Chapter 3

Methodology

The purpose of this chapter is to offer a more detailed overview of the methods involved
in the project’s experiments. We shall first discuss the machine learning models of
choice, namely neural networks, the specific architectures to be used in our projects,
as well as concrete training paradigms. It is to be noted that this information is also
available in the first part of this project [67], as well as in a number of official published
resources [33], and it will thus not be covered to the same extent as in last year’s method-
ology chapter [67] in order to instead prioritise offering more valuable information
on experiment frameworks. Following the discussion on neural networks, the chapter
then delves into the specific variations to be used in experiments of the general model
architectures discussed previously, as well as the structure of the frameworks in which
these models are used.

3.1 Neural Networks

Whilst neural networks, and more specifically feed-forward neural networks (FNN),
have been described at a very high-level in Chapter 1, this section aims to offer more
detail into their inner workings in order to understand the way in which the improve-
ments, the scope of the project, will be applied. We shall first elaborate on manner in
which an FNN works, to provide the necessary foundational knowledge for discussing
the more intricate architectures to be used in the project.

In an FNN, each node in a layer is connected to all nodes in adjacent layers as depicted
in Figure 2.2 (b) in Chapter 1, and each node-to-node connection is weighted by w;
where [ is the layer and u is the unit number of the start end of the connection. A
non-linear activation function is found between layers of fully-connected nodes as
depicted in Figure 2.2 (a). Given an input x to a node, its output to the next node is
the input, multiplied by the weight, plus a bias b; ,: x X w; , + b, - to which we then
apply the activation function. The weights and biases - the model parameters - are
gradually adjusted during training to better match expected outputs - they are “learnt”.
To represent this calculation on a per-layer basis, for a layer N we have parameter
matrices: Wy of size I x O where I is the number of nodes of layer N — 1 and O of
N + 1 respectively; layer N bias vector by of size O x 1 where O is the size of layer

13
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N + 1. The element-wise activation function is denoted by ¢x. The output of layer N,
denoted zy, when given input vector x can be seen in Equation 3.1.

zy = On(Wyx+by) (3.1

3.1.1 Convolutional Neural Networks

To re-iterate the introductory information presented in Chapter 1, Convolutional Neural
Networks (CNN) [44, 63] have been designed with grid-data in mind and have become
the de facto standard for a number of computer vision tasks with the emergence of
CNN architectures such as AlexNet [56]. CNNs leverage hierarchical features and
spatial relations within images. This concept is inspired by the hierarchical processing
observed in the visual cortex of animals [44]. Earlier layers extract low-level features
from raw pixel data - simple patterns such as edges and shapes, while deeper layers
produce higher-level features of a more abstract and non-interpretable nature.

CNN’s architecture is more intricate than that of an FNN as it contains convolutional
layers, pooling layers, fully-connected layers, as well as activation functions which can
be inserted after any layer. A convolutional layer applies filters or kernels - matrices
designed to capture patterns, also representing the learnable weights of a convolutional
layer - to the input data and generates a set of feature maps, representing extracted
input features - as output. Each kernel, typically smaller in dimension than the input,
is slid over the input and the dot product between the input patch where the filter is
currently applied is calculated and inserted into the output feature map. This matrix-
based convolution is usually implemented as cross-correlation - ). Given a layer N
and an input (image or feature map) with a single channel x of size i X j, a single layer
kernel w of size m X n, a bias term b and an activation function ¢y, the convolution
operation formula can be seen in Equation 3.2. Generally, the input has multiple
channels - an RGB image has three colour channels for example - and a layer has
multiple kernels. This dimensionality makes convolutions expensive and pooling layers,
which downsample spatial dimensions by aggregating - via a maximum or average
function - nearby values in a feature map, are introduced.

2y (i, j) = On (W) (i, /) +b) = O (X Bf g Xik, 1wk +b)  (3.2)

A CNN generally employs a sequence of convolutional layers to extract features of an
image, followed by a series of fully-connected layers which use these features to fulfil a
task, such as predicting whether or not the image contains a certain object. The first
part of the project [67] convolutions and downsampling in detail in Chapter 4.

3.1.2 Transformers

Also introduced in Chapter 1, Transformers [100] have been designed with language
sequences in mind and became the de facto standard for language tasks, however, a
recent contribution called Vision Transformer (ViT) [22] adapted the network to be
used in vision tasks, where it has sometimes surpassed the performance of CNNs. The
image is processed as a sequence by being divided in equal patches and fed to the ViT
network as a sequence of patches.
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ViT presents components - each made up of several layers - such as: patch embedding,
feature extraction and a classification head. The patch embedding component takes
an input image x of dimension H x W x C, breaks it down into M equal patches of
dimensions p X p X ¢, and outputs the vector representation of each image patch. Each
vector is of size 1 x (p?*c). This vector sequence is then multiplied by a learnable
vector E of shape (p? #¢) x d - where we choose d - to output M embedded patches
of size 1 X d. A vector X4 Of dimension 1 x d which represents an aggregate of all
patch vectors is then added at the beginning of the sequence. A positional learnable
matrix K, of size (M + 1) x d is added to the concatenated M patch vectors to output
the final concatenated patch embedding component zo. This process is explained by
Equation 3.3.

Zo = [xclass;x},E;xiE; xjpwE} +E 0, E € R(”Z'C)Xd,Epm c RM+1)xd (3.3)

The feature extraction component takes embeddings zy and extracts significant features
using a “stack” of encoders. These encoders contain the attention mechanism denoted
as MSA, which aids in “focusing” on the relevant parts of an input, a 2-layer FNN and
normalization layers LN to scale inputs to reduce training time [6]. The propagation
formula for the feature extraction component can be seen in Equation 3.4. The classi-
fication component, a simple FNN, is then applied to the last resulting output of the
feature extractor for the x.,ss token. Equation 3.5 shows this last step. Appendix ??,
Figure ??, depicts this process.

z) = MLP(LN(z))) +2, where z; = MSA(LN(z;_1)) +2_yand[=1..L  (3.4)
y = LN(z}) (3.5)

3.2 Training Paradigms

Following the sections explaining different neural network architectures and the way
input data propagates through each architecture type, we shall now discuss how to make
these models “learn” the expected mapping between an input and an output by adjusting
their parameters. This process is called training a neural network and has been briefly
introduced in Chapter 1.

Training is performed by inputting a number of D training datapoints x; where i € [0...D],
each with expected corresponding output §;, into our model to obtain actual output y;.
A loss function ([33] - Chapter 8), which can take on a variety of forms, measures how
close the actual output is to the expected output. This measure is then used to guide
the model to update its weights in order to yield better predictions. For a classification
task of the form: given an image of a training set with D datapoints, assign it to one
of C classes, where the predicted probability of datapoint i belonging to class ¢, and
y(i,c) being the true label - 1 if the datapoint belongs to class ¢, 0 if not - we would
make use of cross-entropy Loss. The loss is calculated by summing over all classes
and penalizing the difference between the predicted probabilities and the actual class
labels for each datapoint and across all classes. The formula can be seen in Equation 3.6

L=

D C
Y Y y(i,e)log(3(i,c)) (3.6)

i=lc=1

1
D
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Figure 3.1: Depiction of how CLIP uses an image enconder (our chosen backbone) and a text
enconder to obtain the features for a batch of datapoints and compute the pair-wise similarity
between each pair of resulting feature vectors from images and text. Image credit: [79].

Backpropagation then occurs, which is a process in which the weights of the neural
network are updated such that the loss function is minimised. The method involves
calculating, from the output to the input layer, the gradient of the loss function with
respect to each network parameter, using the chain rule. These gradients indicate the
magnitude and the direction of change for the parameters to reduce the loss. Once
gradients are obtained, a function called the optimizer updates the parameters using the
gradients and a hyper-parameter named the learning rate o, which dictates the size of
steps taken towards minimising the loss. This process is repeated iteratively, an epoch
representing a full pass over the training dataset, until loss is minimised to a desired
level.

Our optimizers of choice are Stochastic Gradient Descent [50, 33] (SGD) and Adaptive
Moment Estimation [51] (Adam). There is no “best” optimizer for a given task or
model, finding an optimal optimizer is an experimental process. SGD updates the model
parameters by moving in the opposite direction of the gradient of the loss function and
using a subset of the training data for each step. Adam presents a more intricate method
that does not only consider the average of the past gradients from a subset alike SGD,
but also adapts the learning rates for each parameter individually, using estimates of
the first two averages of gradients. Adam is typically used for complex datasets and
tasks as it may be prone to overfitting on smaller datasets ([33] - Chapter 5). A much
more in-depth explanation of optimizers can be found in the first part of the project [67],
Chapter 4. The information was not repeated due to its availability in other resources,
as well as the fact that our experiments do not involve experimenting with optimizer
choices.

3.2.1 Supervised Training

In supervised training ([33] - Chapter 5.7), we are aware of the correct input-output
mapping. For example, in the case of our triplet sets depicted in Chapter 1, Figure 1.2,
we know the correct answer to the question which represents the machine learning
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model task: “Which of the two reference images are more similar to the query image?”.
We are aware that the first reference is more similar to the query. We will discuss the
supervised losses used in model pre-training (models we choose come already trained
on some task and present some foundational “knowledge”), and model fine-tuning.

Model Pre-training Loss: Cross-Entropy Loss is used in model pre-training for all
non-large vision models we shall use in our experiments. These models are pre-trained
on ImageNet [20], on a classification (matching the class to the image) task, using
Cross-Entropy Loss. On the other hand, CLIP’s supervised training paradigm is much
more intricate and involves the use of text labels as mentioned in Chapter 1. CLIP
trains its models, regular CNN or ViT architectures, on a vast dataset of 400 million
image-text pairs found across the Internet, from various sources rather than ImageNet
alone. The machine learning task given is to match the image with the correct text
description. During training, a feature vector is generated for the image and one for
the text, CLIP then uses a variant of contrastive loss (explained later in this section)
such that the model trains to minimise the distance between feature vectors of correct
image-text pairs and maximise it between mismatched pairs. CLIP uses the Adam
optimizer, which is a typical choice for large datasets. To explain CLIP’s training
process for CLIP model using a specific CNN backbone: CLIP uses two models, one
to get the feature vector of the image (the CNN backbone) and one to get the feature
vector of the text label (some set transformer-based model). CLIP processes batches of
image-text pairs and it computes the feature vectors of the image and text in each pair
per batch. It then calculates the similarity between every image and text in the batch -
this process is depicted in Figure 3.1. Contrastive loss is then applied, with the intent to
increase the similarity measure between correct pairs and decrease the distance between
mismatches. Both the image and the text enconder are trained simultaneously.

Model Fine-tuning Loss: In our experiments, we use three different supervised losses:
triplet loss [7], contrastive loss [36], and quadruplet loss [16].

Triplet loss is the most intuitive choice due to the structure of the datapoints in our task:
image triplets. After we obtain feature vectors for each image in our triplet, the query
and two references, we input them into the triplet loss function as: a - the query feature
vector, p - reference 1 vector which is most similar to the query (positive example),
n - reference 2 vector which is less similar/dissimilar to the query (negative example).
The function aims to minimise the distance between the vectors a and p of similar
images, and maximise that between vectors a and n - of dissimilar images. We make
use of simplistic Euclidean distance in the formula below: |a — p|? being the Euclidean
distance between a and p. An arbitrary margin hyperparameter is used to indicate the
minimum required separation between positives and negatives. The triplet loss function
is shown in Equation 3.7.

Triplet Loss(a, p,n) = max(|a — p|*> — |a—n|? + margin, 0) (3.7)

Contrastive loss instead takes pairs of images, rather than triplets, as its input. Its
goal is similarly to minimise the distance between the query a and a positive example
p feature vectors, and maximise that between the query a and a negative example n
feature vector. Given an image triplet with resulting feature vectors (a,p,n), we make
use of contrastive loss in the following way: we first give the loss function pair (a,p)
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for which it adapts the weights to minimise the distance using the Adam optimiser;
we then give it pair (a,n) to perform the opposite action.The function can be seen in
Equation 3.8. T = 0 if we look at similar pair (A, P) and 1 otherwise.

Contrastive Loss(a,p,n) = (1 — T)%(|a —p»)?+ T% max(margin — |a—n|?,0)?
(3.8)
Quadruplet loss can be considered an extension of triplet loss where we consider
instead quadruplet (a,p,nl,n2) as the query, positive and respectively two negative
image feature vectors. We thus modify our training datasets for each source so that
their datapoints are quadruplets where the first reference is similar to the query, and
the last two references are dissimilar/less similar - this process is detailed in Chapter
4. Equation 3.9 shows the process. The formula uses two margins, margin; indicates
minimum separation between positive pairs margin, between negative pairs.

Quadruplet Loss(a, p,n1,n2) = max(|a—p|> — |]a—n1|? + margin,, 0)+ (3.9)
max(|a — p|* — |p — n2|? + margin,, 0) '

3.2.2 Unsupervised Training

Opposite to supervised learning, in unsupervised learning ([33] - Chapter 5.8), we do
not know the correct input-output mapping. Self-supervised learning is used both to pre-
train models, as well as fine-tune them. Self-supervision is a sub-type of unsupervision
where the model creates its own supervisory signal from the available data - namely,
it creates its own input-output mappings that it considers to be correct. The network
essentially creates a dummy task using the available input data: this is called a pre-
text task. A very simple example may be: given an input datapoint, we apply two
transformations to it 71 and 72, to obtain two datapoints. We give the model these two
datapoints as input, one by one, and give the model the task of asigning each input to a
class of transformations, either 71 or T2.

Model Pre-training Loss: The only pre-trained models using a self-supervised
paradigm are the backbones of DINO. Despite the lack of supervision, DINO matches
the performance of a number of supervised state-of-the-art networks [12]. As mentioned
in Chapter 1, DINO is a large vision model and trained on the 14 million unlabelled
images from the complete ImageNet dataset [20]. Each datapoint is a single image in
DINO’s training. The self-supervision method used is novel and involves training two
separate networks called a student and a teacher. Each image datapoint is transformed to
obtain two images which are different augmented views of the original image. The two
distinct augmented view images are given to the two networks and the feature vectors
are obtained. The task of the student network is then to match its output feature vectors
as closely as possible to that of the teacher network. DINO uses, unusually, cross-
entropy loss to measure the similarity between the student and the teacher predictions.
We discussed cross-entropy loss in the context of classification tasks, however, DINO
makes use of it by treating the teacher’s feature vectors as “pseudo-labels” that must
be matched by the feature vectors originating from the student model. The student
parameters are updated through backpropagation, whilst the teacher weights are updated
as an exponential moving average of the student model’s parameters in order to allow
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for a slower and smoother evolution. When using a DINO model, it is the student
network’s features that we actually make use of.

Model Fine-tuning Loss: To fine-tune pre-trained models on the set of unique images
that make up the triplet sets for one of the three sources mention in Chapter 1 - the
process of obtaining these training sets is detailed in Chapter 4 - we use the pre-text
tasks: rotation prediction [31], Jigsaw puzzle [73], SimCLR [15], MoCo [39]. We
shall explain how each of these will be applied to our training datasets detailed in
Chapter 4 - keeping in mind that each datapoint is now a single image.

Rotation prediction works by taking the aforementioned input image and applying
a random rotation to it by some degree in a list of fixed degrees: for example, we
can apply either rotation of [0, 90, 180, 270] - the model randomly picks to apply
a 270 degree rotation. The rotation options are essentially classes and the task that
we give the model is to predict the class of the rotation using the input image - the
expected output is 270. Cross-entropy is used as a loss function as this is essentially
a 4-way classification task. The reason for choosing rotation prediction is due to its
intuitive nature and simplicity, yet effectiveness as it forces the model to understand the
orientation of object and consequently enhance spatial understanding.

Jigsaw puzzle is less simplistic and found to outperform a number [109] of self-
supervised learning paradigms used in a similar triplet prediction context to ours when
analysed as part of the BAPPS dataset study [109]. The input image is first divided into
a number of titles or patches (in grid-like 9 x 9 division, for example, alike a puzzle)
and the order of the titles is shuffled - using a random permutation option from a fixed
list of N possible permutations (this fixed list of possible permutations will become our
classes). The shuffled titles are then given as input to the network. This will be treated
as a classification problem where the model, given as input an image of permutated
equal patches, choose the correct permutation from a fixed list of permutations. The
supervision method makes use of cross-entropy loss for a N-way classification problem.
SimCLR is closer in intuition to the supervised tasks applied to the triplet datasets as
it equally involves bringing image embeddings of similar images closer and those of
disimilar images farther apart. We thus deploy the method in the interest of observing
whether a logical link between the pre-text task and the actual task the trained model
will be applied to increases performance. SImCLR was deemed state-of-the-art by
its creators [15] at the time of its creation, surpassing other self-supervised training
paradigms tested on ImageNet and using ResNet [38] backbones. The way in which it
works is by taking a single image and creating two different augmentations for it. The
two augmentations, different images in themselves, are then passed to the network to
obtain the feature vectors of each. The task given to the model is to bring augmentations
of the same image closer in distance, whilst distancing augmentations of different
images. Training is achieved using contrastive loss.

MoCo (its most recent version) surpasses the performance of SimCLR on ImageNet
classification tasks using a ResNet [38] backbone. Identically to SimCLR, given an
image, we perform two augmentations of it and feed it into the network. The task is
again similar to SimCLR, involving distinguishing between pairs of augmentations
originating from the same image or different images, using contrastive loss. The
difference, however, is that MoCo has a queueing mechanism which keeps track of the
negative image samples (dissimilar) it has seen for a batch. This allows to have a variety
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of negative examples on hand for comparison: for an iteration, we bring augmentations
of the same image closer, and we distance the augmentations of the current image and
the images in the queue.

3.3 Similarity Metrics

Lastly, before delving into the concrete frameworks used in the project experiments, we
detail the last remaining component: the similarity metric. As depicted in Chapter 1,
Figure 1.3, a similarity metric takes the feature vectors and determines the similarity of
the image pairs. Three different similarity metrics have been chosen according to their
proven effectiveness in past work in indicating image embedding similarity: cosine
similarity [106, 72, 109, 85], Euclidean distance [109, 66] - L2, as well as Manhattan
distance - L1 [107, 66].

Cosine similarity is invariant to vector scale, only taking into the account the angle that
they form, and it is thus of interest when the magnitude of the vectors is not of interest -
as it is in our case as all feature vectors to be compared will have the same number of
components. Given two feature vectors a and b, which are outputs of some pre-trained
feature extractor applied to two arbitrary images, with n as the dimension of the feature
vectors, and a; and b; as the i-th components of the feature vectors, the formula for
calculating the cosine similarity between the two vectors is detailed in Equation 3.10.
It is to be noted that the greater the cosine similarity, the more similar we deem the
features to be.
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On the other hand, L2 distance is a much more intuitive similarity metric between
feature vectors as it measures the actual straight-line distance. This is also the metric
of choice for LPIPS models [109]. It is widely used in classification tasks - we may
thus imagine that image features from a model which was pre-trained in a supervised
way using classification may benefit more from the use of the L2 distance - detailed
in Equation 3.11. Oppositely to cosine similarity, the greater the distance, the more
dissimilar we deem the features to be.

Cosine Similarity(a,b)

(3.10)

L2 Distance(a,b) = (3.11)

Alike L2 distance, L1 distance is also more intuitive than cosine similarity. However, L1
distance may provide additional robustness to outliers compared to the L2 distance [48]
due to summing the absolute difference in each dimension. The formula can be found
in Equation 3.12. Similarly to the L2 distance, greater L1 distance signifies greater
dissimilarity.

d
L1 Distance(a,b) = Y _ |a; —b;| (3.12)
i=1
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3.4 Model Frameworks

Following our discussion of the separate components making up the frameworks to
be used in project experiments, we shall now discuss the concrete structure of the
frameworks and how they are applied in the context of evaluation and fine-tuning.

Firstly, we shall define the separation between a model’s feature extractor [78] and
classification block: a neural network is typically split into a feature extractor - which
obtains the feature vectors of the input data - and a classification component which
is typically a linear block (a sequence of fully-connected layers). The classification
component takes the features and uses them to make predictions for a given task:
be it assigning these features to categories or embedding the features in a smaller
dimsenional space. The feature extractor is of main interest to us as it is the component
which captures the relevant patterns, defining of a model’s inner representations, of the
input data. Typically, the feature extractor is made up of convolutional, downsampling
and residual connection [38] (allows us to skip passing information over layers to
mitigate the vanishing gradient problem [40]) layers for CNN architectures; and of the
self-attention mechanism described in Section 3.1.2 for ViT architectures. Figure 3.2
depicts this separation using a simplistic CNN-like architecture.

Following the above foundational knowledge of the feature extractor/classification com-
ponent split, we can now discuss the concrete variations of CNN and ViT architectures
to be used in this project. All of the architectures have been pre-trained extensively
on image datasets on an array of tasks. We only make use of the feature extraction
component of each pre-trained model: we evaluate the feature extractor on the triplet
sets exemplified in Chapter 1, as well as fine-tune these feature extractors using either
triplet or single image sets - explained later in this chapter.

3.4.1 Pre-trained Models

This section aims to discuss the concrete CNN and ViT variations to be used in experi-
ments. These models have been discussed extensively as part of the first part of project
[67] - Chapter 4, Section 4.2.2, however, will be briefly summarised in this text. Firstly,
we choose the Resnet [38] architecture, a CNN, which pioneered the use of residual
connections to mitigate the vanishing gradient problem, due to its proven top perfor-
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Figure 3.2: Illustration of the separation into a feature extractor and classification component
of a CNN network. It is to be noted that images are processed as tensors by the network: that is,
three - per colour channel in RGB - matrices of values. Image inspiration credit: [67].
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Pre-training | Pre-training Pre-training | Pre-training
Model ID Supervision | Task Loss Dataset
ResNet-50_BASE Supervised Classification Cross-Entropy | ImageNet-1k [88]
EfficientNetV2-M _BASE | Supervised Classification Cross-Entropy | ImageNet-1k [88]
ViT-B-16_BASE Supervised Classification Cross-Entropy | ImageNet-1k [88]
AlexNet_ BASE Supervised Classification Cross-Entropy | ImageNet-1k [88]

CLIP_ViT-B-16_ BASE Supervised Image-Text Map | Contrastive Custom [79]
CLIP_ResNet-50_ BASE | Supervised Image-Text Map | Contrastive Custom [79]
DINO_ViT-B-16_BASE Unsupervised | Student-Teacher | Contrastive ImageNet [20]
DINO _ResNet-50_ BASE | Unsupervised | Student-Teacher | Contrastive ImageNet [20]

CLIP_ResNet-50x4 Supervised Image-Text Map | Contrastive Custom [79]
CLIP_ResNet-50x16 Supervised Image-Text Map | Contrastive Custom [79]
CLIP_ResNet-50x64 Supervised Image-Text Map | Contrastive Custom [79]

Table 3.1: Pre-trained feature extractors to be used in experiments. Only the feature extractors
with ”_BASE” in their identification will be fine-tuned.

mance on the ImageNet-HSJ [85] dataset on image similarity estimation specifically.
Another CNN of choice is EfficientNet [97] due to its distinct scaling procedures that
allows efficient computation despite the depth of the network. The last CNN of choice
is AlexNet [56], which, although the oldest and simplest - presenting only 8 layers - of
the two CNN-architectures, it still manages to almost match the performance of many
deeper CNN architectures. Lastly, we make use of the transformer architecture ViT [22]
due to its proven efficiency on mirroring human perception [98, 29, 27] and on vision
tasks in general, matching that of state-of-the-art CNN architectures.

The specific model variations used in this project have been chosen based on the top-
performing model feature extractors from the first part of the project [67] - Chapter 5.
These chosen top-performers are: ResNet-50, ViT-B-16, AlexNet and EfficientNet-V2-
M. It is to be noted that although ViT-B-32 offered slightly better performance than ViT-
B-16, we selected ViT-B-16 due to its more extensive use as a backbone for large vision
models, CLIP and DINO - which allows for more meaningful comparisons. Moreover,
we selected EfficientNet-V2-M instead of EfficientNet-B7 due to the new version’s
significantly faster training time and its comparable performance to EfficientNet-B7.

Table 3.1 presents all pre-trained feature extractors to be used in our experiments. It is
to be noted that only those identified by ”_BASE” will be fine-tuned as well. It is to be
noted that the top-performing feature extractors from the first part of the project [67]
are exclusively PyTorch pre-trained models: the scope of this part extends to include
CLIP and DINO pre-trained models using the top-performing architectures from the
previous project as backbones (if available - only ViT-B-16 and ResNet-50 are available
as CLIP/DINO backbones). It is also to be noted that ResNet-50-based CLIP models
with different increases in the number of filters (namely: x4, x16 and x64) are not base
models - namely, we will not fine-tune them.

3.4.2 Evaluation Framework

The evaluation framework builds on top of the simplified version shown in Chapter 1,
Figure 1.3 and is used to evaluate the quality of the features predicted by the models
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Figure 3.3: Illustration of evaluation framework used to assess whether a feature extractor
correctly predicts the most similar reference to the query image. Image credit: [67].

enumerated in Table 3.1 (as well as the quality of the features of the fine-tuned extractors
of these models). The evaluation framework always takes as input a triplet from one of
the triplet sets described in Chapter 4. It then obtains the feature vectors for each image
in the triplet, and compares, using one of the similarity metrics described in Section 3.3.
Figure 3.3 illustrates the evaluation framework.

3.4.3 Fine-tuning Framework

The fine-tuning framework is more complex due to the fact that experiments involve 3
supervised fine-tuning paradigms (using triplet, constrastive and quadruplet loss), and 4
self-supervised fine-tuning paradigms (rotation prediction, Jigsaw puzzle, SimCLR and
MoCo). Thus, in reality, there are 6 distinct fine-tuning frameworks - as SImCLR and
MoCo share the same framework - MoCo simply keeps track of past negative examples
during training. All frameworks, however, have one component in common: a linear
block to either reduce feature dimensionality or aid with classification problems. This
linear block - simply a sequence of fully-connected layers - is added at the end of the
feature extractor and the entire model (feature extractor and linear block) is fine-tuned
on the relevant data. The linear block is identical for all supervised tasks (as well as
SimCLR and MoCo) - where it is used with dimensionality reduction in mind - and
distinct for the class-based self-supervised tasks: for rotation prediction for example,
the block will output a vector of size four (rotation classes); for Jigsaw puzzle a vectors
of size 36 (possible permutation). Figure 3.4 (a) depicts the fine-tuning framework used
for fine-tuning models using supervised triplet loss, whilst Figure 3.4 (b) depicts the
fine-tuning framework used for fine-tuning models using self-supervised SImCLR. The
frameworks for the rest of the supervised and self-supervised paradigms can easily be
extrapolated from the illustrations in Figure 3.4.

It is also to be noted that whilst supervised fine-tuning makes use of triplet datasets, self-
supervised fine-tuning instead uses single image datasets where the images are unique
and form the triplets belonging to a triplet set for a specific source. The creation of the
fine-tuning datasets used in the supervised and self-supervised versions is detailed in
Chapter 4. It is also to be noted that whilst the first part [67] of the project experimented
with fine-tuning using a frozen feature extractor - in the sense that weights of the feature
extractor are not updated during fine-tuning, only those of the classification block - this
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project is only making use of unfrozen fine-tuning due to better proven results.



Chapter 4

Datasets

This chapter shall define all data sets used to evaluate and fine-tune models in the
project, as well as how these triplet datasets were obtained and pre-processed from three
distinct sources [5, 85, 109]. This section presents two main dataset types: datasets
used in the evaluation process of models, and datasets used in the fine-tuning process of
models. Information is presented briefly as it is also present in detail in the first part of
project [67] - Chapter 3.

4.1 Data Sources

Ongmal Perturbed

g ©

LR ENENENEREY
EEEEEEE
ddddddd

ImageNet-HSJ Sample Birds-16 Sample BAPPS 2AFC Sample

Figure 4.1: Sample images from the three image sources used in the project: (a) [85], (b) [5],
(c) [109].

We make use of three triplet data sources [85, 5, 109] which present human judgements
of image similarity collected via collection surveys involving human participants -
Figure 1.1. Figure 1.1 - 1 query image and 8 reference images and the task of ranking
the 2 most similar to the query image - shows an 8 rank 2 trial. The human judge-
ments for the datasets have also been collected using 2 rank 1 trials: where human
participants are given three images (query and 2 references) and are asked to deem 1
single reference which is more similar to the query. The datasets have been chosen as
they are vastly different from each other and may each bring to light different valuable
observations with regards to model performance on triplet similarity prediction. As part
of pre-processing, each image - dictated by common machine learning resizing patterns
- is resized to 224 by 224 pixels image before being given as input to the model.

ImageNet-HSJ: ImageNet Human Similarity Judgements (ImageNet-HSJ) [85] triplet
data was collected using images from the ILSVRC (Large Scale Visual Recognition

25



Chapter 4. Datasets 26

Challenge (ILSVRC) [88]) validation set - containing 50,000 images and 1000 cate-
gories - and conducting collection surveys of the type 8 rank 2 trials. The 9-image
pairs to include in each individual step of the trials were not randomly chosen from
the 50,000-image ILSVRC dataset, but rather were carefully selected using an active
learning paradigm ([85], Section 4). Engagement for each trial was also measured by
introducing catch trials - where the answer was highly obvious. We only make use of
trials where all catch trials were correctly answered. Figure 4.1 (a) shows a sample of
the ImageNet-HS]J trial images. The motivation behind choosing the ImageNet-HSJ
dataset its generality and high object category number, as well as the quality of the data
collection.

Birds-16: The Birds-16 [5] triplet dataset was collected using trails of type 8 rank 2
and 2 rank 1, and images from a bird species dataset - 208 unique images spanning
4 bird families [86] - Figure 4.1 (b). The triplet set source was chosen due to the
fact that images concerning bird species are more similar to each other compared to
ImageNet-HSJ where each image may depict completely different objects, and may
thus pose a more difficult challenge from a perceptual point of view. The existence of
both 8 rank 2 and 2 rank 1 trials may highlight interesting performance variations in
our models of choice.

BAPPS 2AFC: The Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset
2AFC [109] contains image patches, not full images. The collection survey involved 2
rank 1 trials - each trial involved an image - the query - and two alternative distortions
of that same image - the references. Table 2 of the original study [109] enumerates all
distortion operations used. To summarise the manner in which we refer to all available
distortions: colour, deblur, interpolation and super resolution-based distortions as real
algorithm distortions; the others as CNN-based and traditional distortions. The survey
involved catch trials alike the ImageNet-HSJ. Figure 4.1 (c) depicts images occurring in
the BAPPS 2AFC triplet sets. The triplet dataset was chosen due to its distinct content:
images in a triplet do not differ by content, but rather, they differ by the way in which
they visualise the same query image. Contextual knowledge of individuals cannot thus
play a part in similarity judgements.

4.2 Evaluation Triplet Sets

The triplet sets described in this section are those resulting from the trials conducted by
each of the three source dataset studies [109, 5, 85]. We apply our own pre-processing
to these triplets to obtain 11 triplet sets in total. These triplet sets will be used to evaluate
the performance of feature extractors as depicted in Chapter 3, Figure 3.3. Each triplet
set contains 1000 triplets obtained from the aforementioned sources by selecting 1000
trials at random (with correct catch trials). Each triplet is of the form: query image,
reference 1 (most similar image to the query image), reference 2 (either second most
similar or a random dissimilar image from the query image). We define three triplet
types based on the trial they originate from, as well as the second reference image we
choose to include in the final triplet: 8rank2 similar triplet - comes from an 8 rank
2 trial and its reference 2 image is the image deemed the second most similar to the
query; 8rank2 dissimilar triplet comes from an 8 rank 2 trial and its reference 2 image
is an indirectly chosen dissimilar image to the query image, randomly chosen from
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the images which have not been chosen as the most similar or second most similar
images to the query image; 2rank1 dissimilar triplet comes from a 2 rank 1 trial and
its reference 2 image is a directly chosen dissimilar image to the query - as the user did
not choose this image as the most similar to the query. Figure 4.2 depicts all 11 triplet
sets: 6 BAPPS 2AFC triplet sets correspnding to the number of distinct distortions, 2
ImageNet-HS]J triplet sets and 3 Birds-16 triplet sets (as it presents both 8 rank 2 and 2
rank 1 trials).

4.3 Fine-tuning Data Sets

Different datasets need to be used to fine-tune the base models presented in Table 3.1
using the frameworks depicted in Figure 3.4, both in the interest of keeping the number
of experiments manageable, as well as to create datasets that adhere to the pre-text tasks
used in the self-supervised fine-tuning methods. If we would fine-tune the models on
each of the 11 triplet sets, whilst also varying the supervision/self-supervision methods
enumerated in Chapter 3 - this would result in: 11 (triplet sets to train on) x 8 (base
models) x 7 (supervised and self-supervised paradigms) = 616 framework versions to
train. As a solution, we instead create a single dataset per supervision method and triplet
source pairing to be used in fine-tuning - of 1000 datapoints each. A table summarising
all fine-tuning datasets can be found in Appendix A - Table A.1.

Supervised Fine-tuning Data Sets: We make use of triplet, contrastive and quadruplet
loss. Both triplet and contrastive loss-based supervised paradigms will make use of the
same triplet sets, whilst quadruplet loss will make use of quadruplet sets. There will be 3
triplet datasets and 3 quadruplet datasets, for each of the three distinct data sources. The
way in which we create the 3 triplet datasets, one per triplet source (ImageNet-HS]J,
Birds-16, BAPPS 2AFC): for all triplets originating from the same source, we sample
1000 random triplets, ensuring a balanced selection from each triplet set in a source.
To exemplify: for all 6 triplet datasets originating from the BAPPS 2AFC data source,
we sample 1000 random triplets, ensuring that each of the 6 triplet datasets are equally
represented (approximately 1000/6 images in the fine-tuning BAPPS 2AFC dataset to
represent each BAPPS 2AFC triplet dataset based on a different distortion as shown in
Figure 4.2). The way in which we create the 3 quadruplet datasets: we once again
sample 1000 random triplets (ensuring balance) from all triplet sets for a data source,
however, we then add an extra image to each triplet form a quadruplet. This image is
dissimilar to the query and is obtained in 8 rank 2 triplet sets by selecting a random
(dissimilar) image from the same trial that the triplet came from. In 2 rank 1 triplet
sets, it is obtained by selecting a random image from a random, different, 2 rank 1 trial
triplet.

Self-supervised Fine-tuning Single Image Sets: All self-supervised fine-tuning
paradigms use single-image data sets, one for each of the three triplet sources. We create
the 3 single-image datasets by: creating a set of all unique images used in the triplet
datasets for a specific data source (e.g.: all unique images making up the 6 BAPPS
2AFC triplet datasets), and then we sample 1000 random images from this set.
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Figure 4.2: Triplet set examples from the 11 triplet sets from each of the three data sources
[5, 109, 85]. Figure best viewed on screen. Figure credit: [67].



Chapter 5

Experiments and Results

This chapter aims to explain the details of each experiment and its purpose, as well
as interpret the experiments results on a hypothesis-structured basis. Discussion of
experiments results shall be done in light of past academic work and findings. The
experiments performed aim to vastly extend those performed in the first part of this
project [67], both in scope and in breadth, whilst exploring the task of similarity
prediction and human perception alignment from an improvement-driven perspective.

5.1 Experiments

All experiments concern improving the performance of our chosen neural networks
on the task of image triplet similarity prediction. We divide our experiments into two
high-level categories: those applied on pre-trained feature extractors and a similarity
metric - the framework depicted in Chapter 3 - Figure 3.3, and those applied to the
fine-tuning process of a feature extractor and a custom linear block - framework depicted
in Chapter 3 - Figure 3.4.

5.1.1 Pre-trained Model Experiments

Firstly, the most simplistic improvement experiment on the pre-trained models is
varrying the similarity metric which is used as depicted in Figure 3.3. Three different
similarity metrics - detailed in Chapter 3 have been chosen according to their proven
effectiveness in past work in indicating image embedding similarity: cosine similarity
[106, 72, 109, 85], Euclidean distance [109, 66] - L2, as well as Manhattan distance -
L1107, 66].

Another experiment involves utilising image features from large vision models CLIP
and DINO - detailed in Chapter 3. CLIP and DINO models are considered large
due to the extensive size of the datasets that they are trained on - which may result
in better foundational understanding of the the image data and consequently, richer
internal representations. The two large vision models both employ vastly different
pre-training techniques which result in additional valuable experiments themselves.
Pre-training supervision type experiments come from the fact that DINO deploys
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Figure is recommended to be viewed on a screen. Figure shows all pre-trained
model evaluation results on all triplet sets. It is to be noted that the three different quadrants in

each subplot, denoted by “COS”, “L2” and “L1”, represent the similarity metric used. Each

subplot top-performer is indicated by a green triangle.

Figure 5.1

a self-supervised pre-training paradigm. All other pre-trained models from Table 3.1

use a supervised paradigm. The choice for self-supervision is due to the supposed

increased generalisation power - ability to perform well on new, unseen data - of the

ts originate from

the fact that CLIP makes use of multimodality - image-text pairs - in its supervised

ining experimen

features. On the other hand, language-based pre-tra

training, which has been shown to improve training stability in some scenarios [43].

Applying CLIP-based models to our triplet similarity prediction task may offer more

semantically rich feature representations as CLIP’s output vectors are not only based on
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pixel-level features, instead, they also incorporate high-level semantic understanding
derived from the training text labels which contained descriptions. Backbone scaling
experiments will also be executed using CLIP’s backbone offering and namely ResNet-
50x4, ResNet-50x16 and ResNet-50x64 - corresponding to the last three rows in Table
3.1. The “x4”, “x16”, and “x64” indicate the width - the number of channels or feature
maps learnt from the input data - of the backbone architecture compared to the original
ResNet-50. This may allow for capturing more detailed features from input images and,
as a consequence, leading to improved performance.

5.1.2 Fine-tuned Model Experiments

The fine-tuning experiments revolve mainly around varrying the supervised loss and
self-supervised pre-text task for all base models in Table 3.1. This experimentation
aims to expose models to broader range of learning scenarios and challenges and
possibly establish correlations between certain supervision paradigm’s effectiveness and
the datasets/models they were applied to. It is to be noted that to assess the performance
of fine-tuned feature extractors on the 11 triplet sets, we remove the linear block and
evaluate the feature extraction component only. This is done in order to ensure fairness
accross supervision paradigm comparisons - as self-supervised tasks’ linear block is
non-applicable to triplet similarity prediction task. Fine-tuning implementation details
for reproductibility purposes can be found in Appendix A.

5.2 Results and Discussion

Following the discussion concerning the experiments carried out as part of this project,
the results shall now be discussed with respect to a number of hypotheses. Due to the
extensive number of experiments - over 300 concerning both evaluation and fine-tuning
- experiment results will only be displayed and discussed if they bring informational
value in relation to a hypothesis. Colours chosen for the graphs have been selected with
colour blindness friendliness in mind using the process described in Appendix C. It is
to be noted that due to great similarity in results and patterns, we average and group
together results for the following triplet types (Chapter 4, Figure 4.2): CNN and colour
distortions from BAPPS 2AFC, real algorithm distortions for BAPPS 2AFC (alike
the grouping in the original paper [109]), as well as, 2 rank 1 and 8 rank 2 dissimilar
triplets from Birds-16. We begin by discussing evaluation-based hypotheses, followed
by fine-tuning-based hypotheses.

5.2.1 Large Vision Models Pre-Trained Features

Hypothesis: Large vision model-generated features align better with human similarity
judgements.

We shall first discuss the reason for which the above hypothesis is of interest to us. Due
to the extensive training datapoints that our large vision models, CLIP and DINO, have
been pre-trained on, we infer greater potential in extracting more intricate and nuanced
image features and more interesting emerging patterns and relationships between images.
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We deploy these models in the hope that this added feature complexity may breach the
gap between machine and human vision. Previous studies have explored the capabilities
of large models as achievers of state-of-the-art performance [103, 74] on datasets such
as ImageNet on classification and object-detection tasks. On the other hand, studies
[94] have also assessed the “cognitive” (language, vision, problem-solving processes)
abilities of these large models and have concluded that a large cognitive gap still remains
between large vision models and humans.

Figure 5.1 shows the results from evaluating the pre-trained models listed in Table
3.1 on all triplet sets, using three similarity metrics. It is to be noted that large-vision
model-based frameworks have been shown consistently to be top-performers. However,
interesting patterns emerge from this observation: we notice that DINO ViT-based
models are consistently top-performers on triplets sets where the overall accuracy is
lower (harder sets); whilst CLIP ViT and CNN-based models are top-performers on
triplet sets where overall accuracy is higher (easier sets). A look at Figure 4.2 suggests
that easier sets involve triplets where the second reference is visually different to the
query, as well as easier, more describable, distortions related to colour. We may thus say
that CLIP models perform best on triplets where (dis)similarity can be “put into words”.
CLIP is pre-trained in such a way that it learns visual concepts from natural language -
this allows the model to understand images in a manner closely aligned with human
language descriptions - thus explaining its increased accuracy on easier triplets. Human
judgement similarity predictions’ link to language has been observed in previous studies
[68], highlighting how models can predict human similarity judgments using word-
embedding representations - this illustrates the benefit of text-image multimodality and
how the link between image and text similarity aligns in some measure with human
similarity conceptualisation.

On the other hand, harder triplet sets instead present references which are both similar
to the query image and not only, also more difficult “to put into words” distortions.
CLIP’s lack of efficiency, when compared to DINO, concerning these models may be
the fact that language cannot capture such granularity of image intricacies that would
make similar images (in an 8 rank 2 similar triplet - the references) in fact be predicted
as dissimilar. On the other hand, DINO models, via self-supervised training solely
on images, build a deep understanding of visual content, and thus capture nuanced
visual similarities and differences. It has been shown before [74] that certain versions
of DINO outperform CLIP models, despite the lack of supervision, on image similarity
prediction tasks involving specific datasets.

Not only, another property of large vision models when compared to regular PyTorch
pre-trained models is their robusteness to the change in the similarity metric: whilst
switching to L1 and L2 distance from cosine similarity has a negative impact of
considerable magnitude on PyTorch pre-trained models, large vision pre-trained models’
accuracy is impacted a lot less, their accuracy remaining somehow consistent irrelevant
of the similarity metric.

We thus affirm that the experiments prove the hypothesis that large vision models are
indeed better emulators of human perception as indicated by their superior performance,
as well as robustness to similarity metric variation, on human judgement similarity
prediction.
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5.2.2 Pre-training Supervision Type

Hypothesis: There is a specific pre-training supervision type which better aligns with
human judgements.

This hypothesis is of interest to us due to the rise in popularity [32] of self-supervised
pre-trained backbones, which showcase certain generalisation advantages [3]. Studies
[32, 3] suggest that self-supervision’s advantage lies in its increased capability for
generalisation and adaptability to new datasets, especially valuable in transfer learning
[10], as pre-trained models will ultimately be used on a different dataset from the
one they were pre-trained on. Not only, similarly to our case where we use triplets
from a number of different sources, a model’s ability to adapt to differently structured
images is highly important. On the other hand, supervised pre-trained models may
sometimes learn “too well” (overfit [33] - Chapter 5) the intricacies of their pre-training
dataset - such as ImageNet-pretrained models only performing well on evaluation
triplets originating from the ImageNet dataset (ImageNet-HSJ), for example.

We compare ViT-B-16 and ResNet-50 pre-trained models from PyTorch/ CLIP (super-
vised), and DINO (self-supervised). With the justification above in mind, we would
thus expect DINO models to be the sole top-performers of triplet sets originating from
datasets which differ vastly from the datasets on which our supervised backbones have
been trained on, such as BAPPS 2AFC triplets. None of the pre-training datasets present
distortions alike those seen in BAPPS 2AFC triplet sets, yet our previous affirmation
about DINO as a sole top-performer is quickly invalidated by the top subplots in Figure
5.1. Not only do CLIP models (and on one occasion, a PyTorch-pre-trained ResNet-50)
outperform DINO models for CNN and colour-based distortions, but we also see that
performance of DINO models does not greatly surpass that of CLIP and PyTorch models
on the distortion-derived triplet sets. The effects of the pre-training, as proven in a
previous section, may thus not be related to the supervision type, as much as they are to
the number of datapoints in the pre-training dataset and the specific pre-training task.
On the other hand however, as discussed in the previous section, DINO-based models
(pre-trained via self-supervision) display best results on harder (conceptually more
difficult) triplets than on easier triplets. A similar pattern is shown in the original study
[109] for the collection of the BAPPS-2AFC dataset, where self-supervised networks
seem to outperform supervised networks on more difficult (measured by lower overall
model accuracy) distortion types. However, DINO’s effectiveness in our case may be
explained by the competition that we draw parallels to: CLIP uses language whose
semantics may not capture the granularity of difficult image similarity tasks, whilst
PyTorch models are inherently disadvantaged by the low number of data points they
have been pre-trained on.

The results are thus inconclusive in light of the hypothesis that an emerging pattern
proves a pre-training supervision type superior in estimating human perception.

5.2.3 Optimal Similarity Metric

Hypothesis: There is an optimal similarity metric which benefits all architectures and
supervision types.
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Figure 5.1 applies three similarity metrics to our pre-trained models, as explained in
Section 5.1.1. The overall observation is that cosine similarity outperforms both other
metrics for all models, and on all triplet sets. However, despite the straightforward result
of this hypothesis, more meaningful observations can be drawn. Firstly, surprisingly,
although the switch to L1/L2 distance negatively (sometimes drastically) impacts most
architectures, simpler architectures such as AlexNet seem to be the least affected,
presenting consistent performance accross similarity metrics. AlexNet is an older model
and presents 8 layers only: its features may thus not be as abstract and as nuance-
enconding as the features resulting from deeper or more complex models, but rather
simpler and easier to measure by cosine similarity and L1/L2 distance alike. The
combination between AlexNet and L2 distance has been shown to be optimal before by
the original Learned Perceptual Image Patch Similarity (LPIPS) metric paper [109].

Going back to the results in Figure 5.1: we observe that more complex PyTorch CNN
pre-trained models are the most negatively affected by the switch from cosine similarity
to L1/L2 distance. On the other hand, large vision model predictions are not nearly as
negatively affected - despite being on the opposite end of the complexity spectrum to
AlexNet. We may thus say that features of large vision models are complex enough
to be meaningful and informational in themselves, without heavy reliance on optimal
similarity metrics. ViT-based models, no matter the origin, seem to be robust in the
face of similarity metric variation - this can be explained by the surprising property of
ViT-based features compared to CNN-based features shown in Figure 5.2 and discussed
in Section 5.2.6: ViT-based features seem to offer better spatial separation of images
into categories and this may be why ViT-based models’ performance is not as affected
by traditional distance measuring metrics such as L1/L2.

Between L1 and L2 distance however, L1 seems to generate the worst performance.
Not only, if we detail our observation, L1’s sub-optimal performance is not as sereve
on triplet sets of image patches (originating from BAPPS 2AFC), as it is on full-size
image triplets (ImageNet-HSJ, Birds-16). This may be due to the fact that L1 is more
sensitive to exact pixel differences (essentially how our distortions are structured) and
thus unsuitable for capturing broader structural (dis)similarities in images (essential
for full-image triplet sets). On the other hand, L2 distance is capable to some extent to
also capture overall differences in images, making it more effective that .1 distance on
full-image tasks.

The results thus prove the hypothesis which affirms the existence of an optimal similarity
metrics, namely cosine similarity, irrespective of supervision type.

5.2.4 Language in Pre-training

Hypothesis: The addition of language in pre-training vision models may provide
semantic understanding of images and minimise the gap with human judgements.

The interest in the hypothesis stems from curiosity involving the link between images
and text in the context of both human perception and tasks: studies have previously
proposed (and demonstrated advantages) utilising language-based models [108] and
image-text multimodality [79, 43] for obtaining image features for pure vision tasks.
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As discussed in Section 5.2.1 and shown in Figure 5.1, CLIP models (trained on image-
text pairs) provide especially strong performance on triplet sets where (dis)similarity is
defined in a context that aligns well with human textual descriptions. However, CLIP
models are outperformed by DINO models for a number of tasks, despite DINO’s lack
of supervision. CLIP’s efficiency due to its use of language in pre-training is thus fully
dependent on the nature of the dataset it is evaluated on - the inclusion of language in
pre-training is thus not a universal solution to improving accuracy.

The results thus disprove the hypothesis as, despite language in pre-training providing
a level of semantic understanding that can be applied if structural differences of triplets
can be “put into words”, the use of language is not a universal solution for minimising
the gap between machine and human vision.

5.2.5 Increased Number of CNN Filters

Hypothesis: Increasing the number of filters in a CNN architecture will lead to greater
complexity of patterns retained by features and thus minimise the gap with human
judgements.

Following the popularisation of CNN architectures by AlexNet [56], the de-facto
standard for improving model performance on vision tasks was to increase the number
of parameters [92] up until the apparition of EfficientNet [97]. The hypothesis thus
considers this old-fashioned approach and looks into increasing the efficiency of CNN
architectures on the human similarity judgement task by increasing the number of filters
- detailed in Chapter 3. This experiment is possible due to the fact that CLIP offers 4
ResNet-50 backbones: regular, x4, x16, x64 - Chapter 3. Increasing the number of
CNN filters may result in more detailed and nuanced feature representations, potentially
improving model performance.

The results shown in Figure 5.1 aid us conclude that whilst increasing the number of
filters in CLIP CNN-architectures improves performance in patch-based triplet sets
(BAPPS 2AFC) - even yielding a top-performer for CNN and colour distortions - it
makes negligible difference in full-image-based triplet sets (ImageNet-HSJ, Birds-16).
This improvement in patches only may be due to the fact that patches focus on smaller
regions of interest in an image and thus, increasing the number of filters allows the
model to capture more intricate details about these smaller information areas. On the
other hand, full-images provide broad context that can be captured with lower number
of filters as well. CLIP models with an increased number of filters are not amongst
top-performer models for most triplet sets in Figure 5.1.

The results thus disprove the hypothesis that increasing the number of CNN filters
yields better results on estimating human judgdments of image similarity.

5.2.6 Pre-trained Transformers Versus CNN Architectures

Hypothesis: Transformer architectures present emerging properties which explain their
proven efficiency, compared to CNN architectures, at estimating human judgements.

The hypothesis is of interest to us as multiple studies [17, 103, 5, 98] showcase ViT
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Figure 5.2: Features of ViT and CNN-based large vision models plotted using non-linear
dimensionality reduction tool UMAP [69]. Features are generated for each unique image in the
Birds-16 data set.

models as better estimations of human vision and not only, as being able to achieve
this without the supervision or pre-training that a CNN would make use of [17]. The
first part of this project [67] also observed the increased performance of ViT over
CNN-based architectures. The reason for this is the vastly different manner in which
ViT and CNN networks are built [80] - attention mechanism versus filters, as detailed
in Chapter 3.

Figure 5.2 depicts the dimensionality reduced features of the 208 unique bird images
making up the Birds-16 image triplets, of ViT-B-16 and ResNet-50 models from both
CLIP and DINO. The reason why CLIP models provide vastly superior separation into
categories is due to the fact that they are trained in a supervised manner, whilst DINO
is trained in an unsupervised manner. However, another observation comes to light:
ViT-based models are much better at separating images into categories, irrespective
of the pre-training paradigm or the use/lack of language. This may be one facet of
why ViT networks are the top-performers in all subplots (so when applied to all triplet
sets) with the exception of the CNN and colour-based distortion triplets subplot. This
may be explained due to how ViT’s process images: the self-attention mechanism
applied to patches of the image may allow the network to capture both local and
global relationships [22, 17] and this global perspective may be the factor that allows
this nuanced differentiation into bird categories. In the case of CNN’s, due to their
hierarchical application of filters, they have the capacity to capture local and afterwards
increasingly more abstract embeddings, however lacking the global perspective [17].

The results illustrated in Figures 5.2 and 5.1 thus prove the hypothesis that transformer-
based architectures present emerging properties which partly explain the quality of their
alignment with human perception.
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5.2.7 Link Between Fine-tuning And Pre-training Supervision

Hypothesis: The effectiveness of the improvement applied by fine-tuning a pre-trained
feature extractor depends on the possible link between the supervision type of the
fine-tuning and that of the pre-training.

The purpose of this hypothesis is to affirm or deny that there may be a link between the
optimal-fine-tuning supervision type and the pre-training supervision. Past work [14]
suggests the existence of such a relation, although nuanced and complex, between pre-
training and fine-tuning supervision types influencing optimal fine-tuning approaches.
In essence, the pre-training of the model sets a foundational “knowledge” that can
determine the most effective fine-tuning strategy.

Figure 5.3 shows the accuracies obtained form fine-tuning the base models - with the
exception of AlexNet and EfficientNet architectures, which brought little informational
value due to their similarity to PyTorch’s ResNet-50 and consistently lower-end results.
The results in Figure 3.4 show a pattern in the efficiency of self-supervised training
depending on the supervision of the pre-trained backbone. Firstly, it is to be noted that
supervised fine-tuning remains the most effective fine-tuning paradigm - generating
the top-performers for each plot - all with the use of quadruplet loss. Secondly, we
see that self-supervised fine-tuning generates a smaller increase on supervised pre-
trained backbones, and a much more significant increase on self-supervised pre-trained
backbones. This may be due to the fact that self-supervised backbones still benefit
from gaining a deeper understanding of images, whilst supervised backbones - due
to the specificity of their training - already possess “knowledge” of image basics. To
further support this claim, we also notice that self-supervised fine-tuning has even less
of an effect on large vision backbone models trained in a supervised way, compared to
PyTorch supervised model backbones. Another hypothesis [110, 76] may be that self-
supervised backbone models simply benefit from fine-tuning approaches that continue
the theme of self-supervision as these models, not having been trained on labelled data,
gain more from being allowed to explore the input space instead during fine-tuning.

The results, despite the interesting emerging patterns on self-supervision, disprove the
hypothesis as ultimately, supervised fine-tuning still obtained superior results compared
to self-supervised fine-tuning in all use cases.

5.2.8 Fine-tuning Loss or Pre-text Task

Hypothesis: There is a universally better supervised fine-tuning loss or self-supervised
pre-text task which approaches models to human perception.

This is a hypothesis of interest because it is not immediately obvious which loss is
optimal: although triplet loss is highly aligned to the logic of the triplet similarity
prediction task, quadruplet loss is more complex and provides a link to an additional
dissimilar reference image which may uncover new relations in the dataset and also
aid in adding robustness to the feature space. On the other hand, the choice of self-
supervised loss is similar: both SimCLR and MoCo are the closest in logic to our
similarity prediction task, yet Jigsaw and Rotation tasks may again reveal previously
uncovered nuanced structure in our data. The fine-tuning paradigm variation results
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presented in Figure 5.3 are straight-forward in showcasing optimal supervision losses.
On the other hand, we see less obvious patterns in self-supervised pre-text tasks. Firstly,
we see that in all cases, quadruplet loss is the best performing training paradigm in
general, followed by triplet and lastly, contrastive - this is a sustained pattern in the vast
majority of experiments. From a supervised point of view, we may thus say that the
hypothesis is proven.

Self-supervised fine-tuning pre-text tasks present less direct patterns: generally, we see
that pre-text tasks SImMCLR and MoCo are better performing than Jigsaw and Rotation.
This excludes BAPPS 2AFC triplet sets where SImMCLR and MoCo offer especially
poor performance which may be explained due to the fact that BAPPS 2AFC images
are patches and both SimCLR and MoCo rely on augmentation. Augmenting an image
patch - a patch itself already focuses on a part of a whole image and thus has lower
informational value - may result is an overly cropped portion of an image that holds
little informational value with the exception of pixel-level differences. However, the
other full-image-based triplet sets suggests that self-supervised fine-tuning pre-text
tasks which approach the logic of the evaluation task yield better improvements. From
a self-supervised point of view, we may thus also say that the hypothesis is proven.

5.2.9 Fine-tuning Results’ Linked to Triplet Type

Hypothesis: There is a link between the optimal fine-tuned supervision type and the
perceptual difficulty of the triplet set that it is evaluated on.

As mentioned in Chapter 4, triplets may be of two types: 8 rank 2 or 2 rank 1 similar -
where the second reference image is also similar to the query, however we expect the
model to deem it dissimilar - a harder triplet set; and 8 rank 2 dissimilar, an easier
triplet set. We may thus assume that the perceptual difficulty of the task has an impact
on the optimal fine-tuning loss or pre-text task - a harder dataset may require the use of
quadruplet loss (which is more strict), for example, whilst an easier dataset may require
the use of a less strict loss such as triplet loss.

The results displayed in Figure 5.3 indicate an overall loss choice, despite of the
triplet type it is applied to - namely, quadruplet loss is a top performer. All triplet
types, no matter their perceptual difficulty, seem to benefit the most from the use of
supervised fine-tuning, as opposed to self-supervised. We notice the same difference in
effectiveness between supervised and self-supervised paradigms for all triplet sets and
not only, the same amount of general improvement. The only interesting observation
is the lack of effectiveness of augmentation-based methods on patch triplet sets as
described in Section 5.2.8. Another interesting pattern, applicable to non-patch-based
triplet sets only, is the fact that SImCLR and MoCo pre-text tasks in self-supervised
learning appear to uncover performance benefits on more difficult tasks - namely,
similar triplets. When applied to perceptually difficult tasks, SimCLR and MoCo
almost perform to the level of supervised contrastive loss. For easier tasks however, the
accuracy gap between supervised and self-supervised methods grows. It may be that
SimCLR and MoCo uncover less obvious patterns and nuanced differences that make
similar images in fact dissimilar: as the model needs to predict the second reference as
being dissimilar, despite having been deemed similar.
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Figure 5.3: Figure is recommended to be viewed on a screen. Figure shows all fine-tuned base
models (with the exception of AlexNet and EfficientNet - of particularly low informational
value). Each cluster in each subplot represents a base model and the 7 different fine-tuning
paradigm results applied.

Thus, whilst there is a link between the perceptual difficulty of the triplet set and the
results of fine-tuning, the optimal method remains the same (quadruplet loss) which
disproves the hypothesis.
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Conclusion

Optimal improvements techniques on the task of predicting human estimates of image
similarity have been highlighted in Chapter 5, as well as meaningful patterns and
correlations between improvement methods and various task facets. Firstly, we generally
observed a superiority in the quality of predictions of both pre-trained and fine-tuned
large vision models (top-performers), as well as of ViT architectures. A clear correlation
between perceptual difficulty of a triplet set and optimal model choices and fine-tuning
paradigms has also been shown. We also observe links between the structure of the
image in a triplet, patch or full-image, and the effectiveness (or lack thereof) of certain
fine-tuning paradigms and similarity metrics. Lastly, we also demonstrate the clear
superiority of supervised fine-tuning, however observe an unexplained potential of self-
supervised fine-tuning on perceptually difficult triplet sets. To conclude, this project
fulfils its scope of acting as a guide for providing a number of methods, and their
effectiveness given task particularities, aimed at closing the gap between machine and
human vision and perception via the triplet similarity prediction task.

6.1 Future Work and Limitations

Future work may concern the introduction of new fine-tuning losses. We have proven the
effectiveness of fine-tuning supervised losses, with quadruplet loss as a top-performer.
Alike models being improved by increasing their parameters post-CNN emergence [92],
we may follow the same strategy and attempt to improve predictions by considering
more and more positive/negative image samples (N-tuplet loss). Additionally, N may
change each epoch based on the quality of the predictions from the previous training
epoch. Secondly, another valuable future direction, may be the collection of an extensive
dataset of human similarity judgements of both images and text cues/hints.
Limitations in approaching machine and human perception stem from the complex
nature of human perception [68, 71], and may lie in the intersection of understanding
human perception inner workings, and machine learning models. Human perception is
too nuanced and subjective for one to provide a computational model of it. Alternatively,
despite recent advances, models present an inherent complexity and non-linearity [47]
which still obscures part of their decision making process.
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Appendix A

Dataset Pre-processing

A.1 Fine-tuning Datasets for Supervised and Self-Supervised
Paradigms

The below table concretely summarises the datasets used in fine-tuning our models both
in a supervised and self-supervised manner.
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Dataset ID

Source

Data Point Extraction
Method

Supervision
Method

Triplet ImageNet HSJ

ImageNet-HSJ

Random selection of
1000 triplets out of
2 triplet sets.

Supervised Triplet/Contrastive

Random selection of

Triplet Birds-16 Birds-16 1000 triplets out of Supervised Triplet/Contrastive
3 triplet sets.
Random selection of

Triplet BAPPS 2AFC BAPPS 2AFC | 1000 triplets out of Supervised Triplet/Contrastive

6 triplet sets.

Quadruplet ImageNet HSJ

ImageNet-HSJ

Random selection of

1000 triplets out of

2 triplet sets. An addition

of a random dissimilar image
from the same 8rank?2 trial.

Supervised Quadruplet

Quadruplet Birds-16

Birds-16

Random selection of
1000 triplets out of

3 triplet sets. An addition
of a random dissimilar
image from the same
8rank? trial or just
random image from

a different 2rankl1 trial.

Supervised Quadruplet

Quadruplet BAPPS 2AFC

BAPPS 2AFC

Random selection of
1000 triplets out of

6 triplet sets. An addition
of a random image from
different 2rank]1 trial.

Supervised Quadruplet

Singleton_ImageNet_HSJ

ImageNet-HSJ

Random selection of
1000 images used in the
2 triplet sets.

Self-supervised All

Random selection

Singleton_Birds-16 Birds-16 of 1000 images used in the Self-supervised All
3 triplet sets.
Random selection of

Singleton BAPPS 2AFC BAPPS 2AFC | 1000 images used in the Self-supervised All

6 triplet sets.

Table A.1: Fine-tuning datasets from the source triplet sets. It is to be noted that datasets whose
identification contains “Triplet” are triplet datasets alike the original 11 triplet sets, whilst those
with ”Singleton” in their identification are datasets where each data point is a single image. The
distinct ”Quadruplet” datasets are used for quadruplet loss in supervised training and contain a
triplet and an additional dissimilar image.




Appendix B

Fine-tuning Implementation Details

For reproductibility of results, we include the concrete fine-tuning parameter choices for
our models. Optimal fine-tuning parameters were obtained in an experimental manner.
Experiments observed that higher learning rates and thus more significant updates seem
to work better on self-supervised paradigm. This information is contained in Table B.1.
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Supervision of
Base ID If;):li/PreteXt ﬁ:atlznmg Epochs | Batch Size
Fine-tuning
ResNet-50_BASE Supervised ALL le-4 20 64
EfficientNetV2-M_BASE | Supervised ALL le-4 20 64
ViT-B-16_BASE Supervised ALL le-6 30 32
AlexNet BASE Supervised ALL le-4 20 64
CLIP_ViT-B-16_BASE Supervised ALL le-5 25 32
CLIP_ResNet-50_ BASE | Supervised ALL le-4 20 64
DINO_ViT-B-16_.BASE | Supervised ALL le-6 25 32
DINO_ResNet-50_ BASE | Supervised ALL le-4 20 64
ResNet-50_BASE Self-supervised | SimCLR le-4 25 64
ResNet-50_BASE Self-supervised | MoCo le-4 25 32
ResNet-50_BASE Self-supervised | Rotation le-4 25 32
ResNet-50_BASE Self-supervised | Jigsaw le-4 25 32
EfficientNetV2-M_BASE | Self-supervised | SimCLR le-4 25 64
EfficientNetV2-M_BASE | Self-supervised | MoCo le-4 25 32
EfficientNetV2-M_BASE | Self-supervised | Rotation le-3 25 16
EfficientNetV2-M_BASE | Self-supervised | Jigsaw le-4 25 16
ViT-B-16_BASE Self-supervised | SimCLR le-5 30 64
ViT-B-16_BASE Self-supervised | MoCo le-5 30 16
ViT-B-16_BASE Self-supervised | Rotation le-5 30 32
ViT-B-16_BASE Self-supervised | Jigsaw le-5 20 32
AlexNet_BASE Self-supervised | SimCLR le-3 30 32
AlexNet_BASE Self-supervised | MoCo le-3 30 64
AlexNet_BASE Self-supervised | Rotation, Jigsaw | le-3 30 32
CLIP_ViT-B-16_BASE Self-supervised | SimCLR le-5 30 64
CLIP_ViT-B-16_BASE Self-supervised | MoCo le-5 30 32
CLIP_ViT-B-16_BASE Self-supervised | Rotation, Jigsaw | le-5 30 32
CLIP_ResNet-50_ BASE | Self-supervised | SimCLR le-4 25 64
CLIP_ResNet-50_BASE | Self-supervised | MoCo le-4 25 32
CLIP_ResNet-50_BASE | Self-supervised | Rotation, Jigsaw | le-4 25 32
DINO_ViT-B-16_ BASE | Self-supervised | SimCLR le-5 30 64
DINO_ViT-B-16 BASE | Self-supervised | MoCo le-5 30 32
DINO_ViT-B-16_ BASE | Self-supervised | Rotation, Jigsaw | le-5 30 32
DINO_ResNet-50_ BASE | Self-supervised | SimCLR le-4 25 64
DINO_ResNet-50_ BASE | Self-supervised | MoCo le-4 25 32
DINO_ResNet-50_BASE | Self-supervised | Rotation, Jigsaw | le-4 25 32

Table B.1: Concrete choices for fine-tuning our models. It is to be noted that each of the rows
apply for all training dataset sources - 3 per row.



Appendix C

Graph Information

Graph colours have been chosen by testing out a number of helper tools - eventually
the following was used: https://davidmathlogic.com/colorblind. The palette
selected for the graphs can be seen in Figure C.1 - it is to be noted that not all colours
are used in a single graph - green/orange or blue/purple, for example, are too visually
similar to be used in a single graph.

True Prot. Deut. Trit.

Figure C.1: Colour palette chosen for the results graphs: the first column shows the unaltered
colour and the following rows show the colour seen by individuals affected by certain conditions.
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