
Fair data structures for stronger performance
isolation guarantees

Rachel Somerset
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2024

Abstract
In shared environments such as operating systems, database servers, and hypervisors
we often come across situations where entities with varied requirements compete to
access shared resources. Ensuring fair resource allocation between the users requires
careful scheduling and proportionate opportunity for each user.

In this thesis we introduce data structures as one such resource, and ask if we can fairly
allocate this resource between entities. We successfully taxonomise data structures
into the classifications: Shared, Correct, and Performance and discuss the foundation
that this builds for fair allocation. We discuss what fair allocation looks like for a data
structure and define fairness for this shared resource as ’each entity bares to cost for it’s
own actions’ or performance isolation.

We propose a fair data structure that, unlike existing structures, guarantees performance
isolation through partitioning the data on a per user or function basis. Using microbench-
marks, we show that our fair data structure is efficient and achieves high performance
with minimal overhead under extreme workloads. We also show that our solutions are
easily adaptable to the implementation of other complex data structures.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Rachel Somerset)

ii

Acknowledgements
I would like to fairly allocate my thanks to several entities (people).

To my supervisor Dr Yuvraj Patel for all his guidance and help. Thank you for the
many sheets of paper covered in red ink, never taking a holiday, and your analogies. I
have thoroughly enjoyed working on this project, will forever be thankful for having an
excellent supervisor.

I would also like to thank my parents, my boyfriend, and, to keep it fair, my sisters.
Thank you for your constant support throughout my years at University. I am very
grateful for all the proof reading you have done, the meals you have made and, when
needed, leaving me alone.

iii

Table of Contents

1 Introduction 1
1.1 Overview . 2
1.2 Outline . 3

2 Background 4
2.1 Concurrent Systems . 4

2.1.1 Cloud Systems . 4
2.1.2 Operating Systems . 5

2.2 synchronisation . 5
2.2.1 Locks . 6
2.2.2 Pthread spinlock . 7
2.2.3 Scheduler Cooperative Lock 7
2.2.4 Non-blocking algorithms . 8

2.3 Data Structures . 9
2.3.1 Linked List . 9
2.3.2 Hash table . 9

3 Motivation 10
3.1 Unfairness within Data Structures 10
3.2 Simulated Example . 10

3.2.1 Scenarios . 10
3.2.2 Results . 11

3.3 Real World Examples . 15
3.3.1 Taming Adversarial synchronisation 15
3.3.2 Algorithmic Complexity Attacks 16

3.4 Gap in the Research . 17
3.5 Summary . 18

4 Design 19
4.1 Design Goals . 19
4.2 Scenarios . 19
4.3 Data structure taxonomy . 20
4.4 Non-shared solution . 21
4.5 Shared solution . 23

4.5.1 Shared – Correct . 23
4.5.2 Shared – Performance . 25

iv

4.6 Summary . 27

5 Evaluation 28
5.1 Fairness and Performance . 28
5.2 Internal Locks . 33
5.3 Dynamic Scenario . 34
5.4 Hash table . 35
5.5 Summary . 37

6 Conclusions and Future Work 38
6.1 Contributions . 38
6.2 Future Work . 39

A Important Algorithms 44
A.1 Pthread spinlock . 44
A.2 Scheduler Cooperative Lock . 45
A.3 Linked list . 46
A.4 Hash table . 47

B Table of Scenarios 48

v

Chapter 1

Introduction

Data structures serve as the foundational framework for organizing and manipulating
data efficiently, playing a pivotal role in various computational tasks and algorithmic
implementations. The significance of data structures in shared systems lies in their
ability to facilitate efficient and organized data management, enabling collaboration
and resource allocation among multiple users within a networked environment. Today,
shared systems play an important part in promoting collaboration, resource sharing, and
in coordinating users or entities. In these systems the scheduling of resources between
these users is important to promote their popularity and growth, and we must strive to
constantly keep up with the growing demands placed upon them.

One such way to do so - concurrency - refers to the ability of a system to execute
multiple tasks simultaneously, providing the illusion of parallelism. Concurrency is
essential for improving system performance, responsiveness, and resource utilization. It
allows programs to efficiently handle multiple tasks which is crucial in various domains
such as operating systems, distributed systems, and parallel computing. Concurrency is
typically achieved through mechanisms such as multithreading, multiprocessing, and
asynchronous programming. Multithreading involves executing multiple threads within
the same process, allowing different tasks to run concurrently. Multiprocessing, on the
other hand, involves running multiple processes simultaneously, leveraging multiple
CPU cores for parallel execution. Asynchronous programming enables non-blocking
execution of tasks, allowing programs to perform other operations while waiting for
certain tasks to complete. These enable programs to efficiently utilize modern hardware
with multiple cores and support the development of highly responsive and interactive
applications.

However, concurrency also introduces challenges and limitations. One of the major
challenges is the complexity of concurrent programming, which can lead to issues
such as race conditions, deadlocks, and thread synchronisation problems. These issues
are notoriously difficult to debug and can lead to unpredictable behavior and system
failures. Another limitation of concurrency is the potential for performance bottlenecks,
especially in scenarios with shared resources. Contention for shared resources can
degrade performance and scalability, requiring careful design and optimization strate-
gies to mitigate. Additionally, achieving optimal concurrency often requires careful

1

Chapter 1. Introduction 2

consideration of trade-offs between parallelism and overhead. Fine-tuning concurrency
mechanisms and synchronisation primitives to balance performance, scalability, and
complexity can be challenging and time-consuming.

The scheduling of these resources so that all users or tenants are operating at their
highest potential has led to optimising memory usage, network traffic, CPU schedulers,
and even focused into common/significant spots of contention within such systems such
as locks. optimisations look at allocating these resources fairly between the entities so
that all have equal or proportional opportunity and the behaviour of each entity has no
impact upon the performance of any others —performance isolation.

We add to this by now considering shared data structures. In such systems as mentioned
above shared data structures are used to communicate between entities, provide access to
global information, and for performance enhancing purposes whilst saving on memory.
We find that in addition to access to such structures as a point of contention, the
behaviour of entities within the data structure is intertwined, and malicious or expensive
actions within such structures can seriously damage the performance of unassuming
threads by taking advantage of, or inadvertently causing, unfairness within.

In this thesis we ask the question: Can we start treating data structures as a resource
and ensure fair allocation to entities?

1.1 Overview

• We start this thesis with some essential background into concurrent systems,
mentioning on cloud based systems and operating systems where shared data
structures are often used. Then we move to where contention comes from within
these systems and synchronisation methods used to ensure the correctness of
shared data when such contention arises.

• To study contention in data structures we first work with a linked list to highlight
the extent of the damage unfairness can do and discuss known attacks that
manipulate the unfairness that we bring to light.

• We classify all data structures into Shared, Correct, and Performance and describe
these in detail. By producing a detailed taxonimisation we begin the discussion
into data structures as a resource to be shared.

• We propose a solution of a fair data structure that removes the unfairness through
partitioning the data in such a way as to guarantee performance isolation for those
structures within the Non-Shared and Shared Correct classifications.

• Using micro benchmarks we show that in a variety of synthetic workloads, our fair
data structure achieves the desired behaviour. We also investigate the scalability
of the solution, showing that it is adaptable and provides high performance when
used by many applications concurrently with high workloads.

• Finally we evaluate our solution and discuss the future work stemming from this
thesis.

Chapter 1. Introduction 3

1.2 Outline

this thesis contains the following sections: We start with a background chapter pre-
senting important preliminary topics to the project, then there is a motivation chapter
on the reasons and drive behind the research we have performed into fairness within
data structures. Then we discuss the design and implementation details of our main
contribution - our fair data structure in the design chapter. This is followed by the
evaluation chapter where we discuss our experiments and empirical evaluations of our
solution. Finally we summarise, conclude, and describe potential future research in the
chapter Conclusions and Future Work.

Chapter 2

Background

2.1 Concurrent Systems

Concurrency is an optimisation used within computers to improve performance [18] .
Every task to be completed by a computer can be broken up into sections of executable
code that don’t necessarily need to be performed sequentially. These can be run by
different CPUs in parallel.

2.1.1 Cloud Systems

Many tasks these days are data driven and require working on data sets of significant
sizes it is common practice now to use a cloud-based system as they are scalable,
adaptable, and much better equipped than a single computer to run such a task. A key
aspect and benefit of cloud computing is distributed processing allowing a task to be
executed across multiple computers. This approach enables large amounts of data to be
processed in parallel taking a fraction of the time it would sequentially.

There are three different service models for cloud computing [1]; The Infrastructure-as-
a-Service (IaaS) which uses virtualization to share hardware resources, the Platform-as-
a-Service (PaaS) model which hosts the applications of customers, and the Software-as-
a-Service (SaaS) which provides an up and running hosted application. In all three of
these systems, we encounter the same concurrency, performance, and security concerns.
Multi-tenant Applications will share one instance of an application between many
tenants and provide each tenant a dedicated share of this instance that is isolated from
the others. This isolation is easy as these issues are handled by the application domain.
In most cases, all the tenants will use an application in a similar way however the
number of users and the peak times might defer, and the tight coupling of tenants results
in strong interference of non-functional system properties. A hypervisor runs several
virtual machines on the same hardware. A virtual machine is a computer which is
not directly accessing the hardware by leveraging virtualization. Thus, several virtual
machines can run in parallel and share the resources. However, research done by [13]
shows that different virtual machines can interfere with each other whilst running at the
same time.

4

Chapter 2. Background 5

Isolation between these tenants and applications in such systems is vital, to provide
security and reduce potential loss of performance [26]. Sometimes the system itself can
have some control over the performance of a single user if the minimum level service
agreement is not violated. An extreme solution is to isolate the computational resources;
however, this leads to a lot of idleness within the system. Other solutions are to utilise
the scalability of the cloud system to scale itself up or down depending on the necessary
computational power to handler tenant requests, however malicious users can find ways
around this and they do not ensure complete isolation or fairness between all parties.

2.1.2 Operating Systems

Operating systems are another place where we see the constant use of concurrency. In
operating systems concurrent tasks are assigned to a CPU by a scheduler. Schedulers
are a separate process that organises the running of tasks based upon their priority,
length of time or some other feature [10]. On some architectures a CPU may also have
more than one thread assigned to it – multithreading – and must switch between the
threads to keep them all progressing forward [17].

Schedulers define how resources are allocated using a scheduling algorithm There
are many different schedulers, and the vastness of these implementations mirrors its
importance in ensuring a well performing system [3], [10], [11]. Scheduler fairness
is extremely well researched. Fair schedulers focus on ensuring that processes get
‘fair’ CPU time, whether that be an equal amount, based upon task priorities, or task
workload. The most common schedulers known are those currently used by major
operating systems such as the Completely Fair Scheduler[3] used by linux. The paper
‘Proportionate Progress: A notion of fairness in resource allocation’ defines a new
fairness p-fairness which is related to resource allocation by the scheduler [2]. The
approach is to maintain a proportionate progress: ‘each task is scheduled resources
in proportion to its weight’. We call this proportionate fairness or P-fairness. This
measurement of fairness is used in other papers which compare the fairness of different
current operating systems [3]. The paper compares current scheduler implementations
to the ‘idealised’ fair scheduler and, uses the notion of ‘lag’ to measure fairness within
these schedulers and in resource allocation. Lag measures the difference between the
number of resource allocations that task x ”should” have received in the set of slots
[0, t] and the number that it received. So fair resource allocation and therefore a fair
scheduler come from reducing this lag.

2.2 synchronisation

Now we are more familiar with concurrent systems we can discuss concurrent data
structures. This is organised data that is stored in shared memory and accessible to
multiple tenants [24]. They are very useful and are used in all areas from data centres,
to hypervisors, to operating systems. Modern day computer systems and data centres
have hundreds of processes running concurrently and there is the potential that all
could interact with a single shared data structure. As the performance of computers is
pushed to achieve greater and greater speeds each task, process, and thread is subject to

Chapter 2. Background 6

individual performance requirements that must be met. Ensuring that each application,
tenant, or thread does not detrimentally hold back others to meet its own requirements is
known as performance isolation [27]. Accessing a shared data structure is a likely way
to fall short of performance isolation requirements so systems must be fast and correct
when accessing these structures and extra mechanisms need to be put in place to ensure
no errors occur if two or more threads try to use the data simultaneously. Cloud servers
and data centres often contain many shared data structures which can cause a bottleneck
of interaction. Tenants can be unregulated in such systems so these structures could
be shared with malicious users or even genuine users performing heavy work on the
shared system.

If a data structure is accessed at the exact same time the execution of different applica-
tions/threads can become interleaved [14]. A simple example of this is a counter. We
start with two threads (referred to as thread A and thread B) on a single CPU, both want
to increment an integer counter variable. The instruction for this is broken down into:

a. Load the counter into a local register (at its current value).

b. Increment the counter (current value + 1).

c. Store it back into the memory.

If we do not put restrictions on the threads, we may have thread A load the counter
into its registers, and then increment the counter. However, before it can store the
new value back to memory the CPU switches to thread B. Thread B then loads the
old counter value from memory into its registers, and increments it, and then stores
back to the memory. Thread A then does a store and overwrites the value written by
thread B. Instead of incrementing the counter by two, the value in memory will now
only show an increase of one. As you increase the number of threads and CPUs this
interleaving of the instruction is only exacerbated, and the value stored in memory from
the counter becomes wildly incorrect. In this scenario the scheduler oversees which
thread is running on the CPU and so the amount of CPU time each thread has is usually
predetermined based upon previously mentioned factors i.e. threads with higher priority
will get more CPU time. In terms of performance, this is a clear example of how the
two threads are not isolated.

2.2.1 Locks

One method to prevent tenants read and writing to a memory location simultaneously is
to use a lock [14], [16]. The sections of code the threads execute that write to shared
variables and data structures are defined as critical sections. Locks prevent two threads
from entering overlapping critical sections at the same point by ‘locking’ the saved
variable when a thread accesses it. Adding a simple lock to the counter variable, when
thread A calls increment it first acquires the lock to stop other accesses, and then
performs instructions a. and b. The CPU then switches to thread B, which tries to
acquire the lock and cannot as it is still held by thread A. Thus, it remains at this stage
trying to acquire the lock. Once the CPU switches back to thread A, it carries on and
stores the value back to the memory location and now releases the lock. Thread B can
acquire the lock once the CPU switches back and can perform the increment resulting

Chapter 2. Background 7

in the counter correctly being incremented by two. This basic example is inefficient
as it ‘blocks’ threads that are waiting to acquire the lock, so performance is not good,
but correctness is guaranteed. It offers no guarantee of equality between threads as the
same process can acquire the lock continuously if it has a short non-critical section and
others need to be woken up before they themselves will try to acquire it. Deadlock
[4] can happen where two threads hold two locks, and each want the others lock but
can’t move forward and release the lock they hold so neither thread progresses. Priority
inversion [23] is where a high priority thread is stuck waiting for a low priority thread
that holds the lock and so it cannot move forward, and this affects the performance.
Various popular versions of locks have been designed to combat these issues, such as
a ticket lock [21] which records the order that threads attempt to acquire the lock and
allows them access in that order. A priority lock [23] allows threads of a higher priority
to acquire the lock before those of a lower priority to combat the priority inversion
problem. We follow with some relevant examples of locks.

2.2.2 Pthread spinlock

A spinlock is a basic version of a lock and is commonly found in systems. We use a
version of this, the pthread spinlock, which is provided by the pthread library [22]. The
lock is made up of a single integer variable that can be set to 0 (unlocked) or 1 (locked).
Atomic commands are used to perform the updates to this integer. It is initialised to 0 so
the first thread to attempt a to acquire the lock, used the atomic command test-and-set to
set the value to 1, indicating it is locked. If it is successful, it carries on into the critical
section, if it fails, it spins, checking the value of the shared integer until it returns 0,
then it tries atomically to set it to 1 again. If it fails it continues spinning following the
same pattern as above. To evaluate the spinlock, we can see its simplicity, the ease in
implementing it, and it has minimal memory overhead, however there is no fairness
between threads trying to acquire the lock. We provide some psuedocode of a basic
implementation in Algorithm 1 in Appendix A.

2.2.3 Scheduler Cooperative Lock

A lock that is relevant to this thesis is the Scheduler Cooperative Lock [19]. This
advanced lock guarantees ‘lock usage fairness’ and ‘lock acquisition fairness’. They
develop a new measurement ‘lock opportunity’ which is defined as ‘the amount of time
a thread holds a lock or could acquire the lock, because the lock is available’. The SCLs
achieve fairness by the following components:

1. Lock usage accounting: Each thread has an allocated (fair or proportional)
amount of lock opportunity. Each lock keeps track of its usage across each thread
that can access it.

2. Penalizing threads depending on lock usage: Each thread receives a quota and
once that quota has been reached the thread is forced to sleep if they prematurely
try to reacquire the lock.

3. Dedicated lock opportunity using a lock slice: This is a window to time
dedicated to a thread in which it can acquire and release the lock when it would

Chapter 2. Background 8

like without interference or competition.

Returning to the scheduler unfairness example above with the addition of a scheduler
cooperative lock on the shared variable. If thread A holds the lock and is within its
allocated time slice it can increment the counter variable. If the CPU switches threads
during thread A’s critical section, then thread A holds the lock but only for the remainder
of its time slice. Thread B cannot immediately acquire the lock, it must wait for thread
A time slice to be up and then it can acquire the lock and its own time slice will begin.
If thread B continues the attempt to acquire the lock more than its fair share it will
be penalised and put to sleep. Thus, fairness has been guaranteed and a solution to
the problem known as scheduler subversion has been provided. SLCs performance
is comparable with other implementations of locks with the added benefit of this
fairness. One drawback however is that in systems where many different platforms and
applications are integrated together there is no way to guarantee which lock is being
used to protect concurrent data structures.

2.2.4 Non-blocking algorithms

Non-blocking or lock-free alternatives are available that use the hardware and atomic
instructions to ensure that sequential ordering of threads is preserved but does not
put to sleep threads that are waiting. This alternative guarantees forward-progress of
‘some’ thread even if others are delayed. Whilst these have benefits over locks, they
are logically more difficult to design and implement and can often be slower than a
well performing correct lock. While little research has been done into how fair these
lock-free alternatives are or how to guarantee fairness one paper Fair synchronisation
by Gadi Taubenfeld [25] provides a solution to the fair synchronisation problem. He
defines this by the following three points:

1. Progress: If a process is trying to enter its fair section, then some process
eventually enters its fair section.

2. Fairness: A process cannot complete its fair section twice before a waiting
process complete its fair and exit sections once.

3. Concurrency: All the waiting processes which are not enabled become enabled
at the same time.

He then provides a fair synchronisation algorithm that can integrate into a data structure
to provide a fair synchronisation data structure. This guarantees that processes get the
same amount of access to the data structure and that once a process has been given
access, it cannot then access it again until all other processes have had access. The
paper defines any data structure combined with this algorithm as a fair data structure.

Chapter 2. Background 9

2.3 Data Structures

2.3.1 Linked List

A linked list is a simple data structure of linked nodes that contain at the least a piece
of data and a pointer to the next node in the list. We can perform three operations on
the linked list: insert, find, and delete. The insert() function creates a new node struct,
with the data entered as a parameter put into the variable. The nodes *next pointer is
then updated to the head of the list and the linked list structure is then altered to point
at the new node. The find() function starts at the head of the linked list and iteratively
checks if the data stored in that node matches the value being searched for. If so, it
returns that node, if not it moves to the next node until it reaches the end of the list. If
it has not found the value it returns NULL. The delete function is similar to the find
function however if it finds a node with the value it then points the previous node to
the next node around the found value and then releases the memory where the node is
stored. The psuedocode for a linked list can be found in Algorithm 3 in Appendix A.

There are many implementations that may vary slightly. Some implementations have
a key for each node, which can be searched for instead of the data value. Some
implementations will not allow duplicates of data (or keys), others may act as queues
and add the new nodes to the end of the linked list and other variations.

2.3.2 Hash table

The psuedocode is shown below in Algorithm 4 in Appendix A. A hash table consists
of a data structure and a hash function. The hash function takes in a key value and maps
it to a fixed set of values. It may be a simple function such as for a key X and a fixed
set [0, .., N] we may have X mod N or it may need to be purposed for the use of the
hash table for example if it needs to be secure, or needs some keys to be hashed to the
same number. The hash table is made up of a predefined N buckets. The mapping of the
hash function defines which bucket a node will be stored in. A collision occurs when
two nodes are hashed to the same bucket. Again, different implementations deal with
this differently, we choose to map these nodes to the same bucket using a linked list.
When a new node is inserted at a bucket with entries already it is treated as a linked list
insert and added to the head of the bucket. Other implementations include rehashing to
move around bucket entries. A hash table has the same three functions as the linked
list, insert(), find() and delete(). The insert function takes a key and value and creates a
node to be inserted. The hash function is used to calculate which bucket the entry is
added to, and within the bucket the node is inserted to a linked list using the linked list
functionality. The find function takes in the key parameter and uses the hash function to
calculate which bucket to search. It then iterates through the entries in this bucket as a
linked list. The delete function acts similarly to the find function however it deletes the
node if it finds it.

Chapter 3

Motivation

3.1 Unfairness within Data Structures

‘Each entity bares the cost of its own actions.’

Within concurrent systems data structures are used to store and share information
between entities, it is their key method of communication (users/applications/threads).
These are a global structures maintained in the shared memory that rely on scheduling,
accounting and namespaces to prevent interference. Fair schedulers consider CPU time
as a resource, and fairness as splitting this resource equally or proportionally between
entities. The Scheduler Cooperative Lock also takes this approach with fairness in
the lock, it defines lock opportunity as a resource and allocates this fairly between the
interacting entities. The purpose of this thesis is to ask: Can we start treating data
structures as a resource and ensure fair allocation to entities? Fair opportunity and
access are provided by a fair lock so we in this thesis look at fairness not as equality
but as striving to performance isolation i.e. the performance of each entity whilst in the
structure is only affected by its previous actions.

3.2 Simulated Example

3.2.1 Scenarios

To start to answer the question we need to understand the action that can occur within
data structures.

We choose to focus at this stage on a linked list. This is because it is a simple data
structure with only a couple of operations, that is commonplace in cloud based and
operating systems. Linked lists form the base for more complex data structures such
as queues, hash tables, and graph structures so by looking at fairness of a linked list
we can understand fairness in many other data structures. These scenarios provide a
comprehensive list of what behaviour we might expect to see within a linked list, and
cover the different purposes and features that a data structure might require that could
affect these scenarios. From these scenarios we are able to uncover the behaviour of

10

Chapter 3. Motivation 11

these structures, decide what is fair or unfair, and then start to look at what would make
it fair. There are many cases of unfairness as shown in table B in Appendix B, that
can be solved with something like the scheduler cooperative lock, however we uncover
unfair cases where there the fairness cannot be resolved —this is where we want to
work.

In all of these scenarios what we see as unfair is an interaction between the threads
of the linked list, this is exacerbated by the threads showing increasingly different
behaviours such as one having a higher insertion rate or one not accessing the data
structure until later on in it’s task.

3.2.2 Results

Base case In order to show the unfairness in the scenarios we run some simulated
examples on a linked list. Following the example of [15] we group our threads in 4 as
applications that share data within them. These threads perform one of two functions,
they either continually insert entries or they perform a find on the linked list. We
introduce an insert ratio parameter which is the ratio percentage of threads that are
insert threads for each application. This allows us to simulate the above scenarios by
changing the ratios of each thread, and thus alter the behaviour of each application.

We run a single application initially and then two applications in parallel. To ensure
there is no interference we run the experiments on Cloudlab [7], a cloud based computer
cluster, which provides hard isolation from other users. We use a single Intel Xeon
CPU E5-2660 v3 @ 2.60GHz, with twenty CPUs split evenly between two sockets. We
pin each thread to single CPU on the same socket and set the priority of each thread
to default so that they are all the same. We run each experiment for 64 seconds. We
measure throughput - the number of operations each thread completes, the latency -
total time spent by each thread within the critical section, and lock opportunity time -
the total time that the lock is free and that thread is available to acquire it PLUS the time
that the thread spends inside the critical section. This differs between different locks.

Figure 3.1 shows the critical section length and throughput of a single application with
increasing ratios of insert to find threads. When running experiments with 100% find
threads, throughput is high as the linked list is empty and so all operations are quick
without any traversal of the list. When we have a single insert thread, we see a drop in
the throughput of the find threads and as the number of insert threads increase, we see a
continued decrease. The total critical section time for each thread within the application
in a) when there are no insert threads is very similar. Images b), c) and d) show that find
threads have a much higher total critical section time than the insert threads. This is
because they must spend time traversing the growing linked list in order to find the entry.
These graphs show a significant jump in the critical section time of the find threads as
the insert threads increase, the only change here is the length of the linked list so we
can conclude that this increase is directly linked. We see some contention between the
insert threads and the find threads, in image b) and c) the insert threads spend very little
(in comparison to the find threads) in their critical section.

The discrepancy in our expectation in this experiment is partly that the results are

Chapter 3. Motivation 12

(a) 1 application, ratio 0:100. (b) 1 application, ratio 25:75. (c) 1 application, ratio 50:50.

(d) 1 application, ratio 75:25. (e) 1 application, ratio 100:0.

Figure 3.1: The throughput and total critical section of a single application with increasing insert
ratios. We label them in the following way: Ratio (Insert:Find). The columns measure the total critical
section time and the values above the column refer to the throughput. We display the time and throughput
in a log graph output to account for the wide difference in values between the two types of threads.

skewed by lock contention. The spinlock is known to unfairly favour the thread that
held it last, leading to one thread outperforming others. To remove this unfairness
and improve our results we run these experiments with the scheduler cooperative lock
(SCL). Figure 3.2 displays the results with the SCL instead. Here we again show the
results of running a single application for reference. We now expect when running a
single application that:

• The find threads have a higher total critical section time than the insert threads.

• The throughput of the insert threads is higher than that of the find threads despite
a difference in critical section time.

• As the number of insert threads increase, we see a decrease in the throughput of
the find threads.

One point of note in figure 3.2 is that the insert threads are not using their full lock
opportunity, this behaviour was unexpected and currently we are unsure of why this is,
however it does not affect our simulation.

(a) 1 application, ratio 0:100. (b) 1 application, ratio 25:75. (c) 1 application, ratio 50:50.

Chapter 3. Motivation 13

(d) 1 application, ratio 75:25. (e) 1 application, ratio 100:0.

Figure 3.2: Throughput and total critical section time when we change the global structure lock to
a SCL. A single application with increasing insert ratios. We label them in the following way: Ratio
(Insert:Find). The columns measure the total critical section time and the values above the column refer
to the throughput. We display the time and throughput in a log graph output to account for the wide
different in values between the two types of threads.

Figure 3.2(a) shows a higher and equal critical section time of all of the threads than
in figure 3.1(a). As we increase the insert thread ratio, we notice that the find threads
now fully use their allocated lock opportunity slice, the SCL does not allow the thread
to go over this opportunity (as that would reduce the opportunity of another thread).
This indicates that the slice is limiting the throughput of the threads in this duration.
However by allowing this we are able to see the effect on the number of operations each
thread performs over the same time period with no lock contention or unfairness so we
have removed extenuating factors, and now we can clearly analyse the data and use it as
the base case when multiple applications. As we change the ratio in favour of insert
threads we notice a slight decrease in the throughput of the find threads. Now that we
have an understand our base case, we can add another application that shares the linked
list and monitor the changes.

2 Applications:Fixed Ratio Figure 3.3 displays running two applications on 8 CPUs.
When running two applications we expect to see the following results:

• Due to the workings of the scheduler cooperative lock, we expect to see a re-
duction in the total critical section time, as each thread is assigned a slice of
opportunity and this is now divided between 8 threads, not just 4.

• When application 2 contains no insert threads, application 1 looks proportional to
the base case figure 3.2 where it runs using the linked list alone.

• As we increase the number of insert threads in the second application, the through-
put of the find threads in application 1 decreases.

(a) 2 applications, app 2 ratio 0:100. (b) 2 applications, app 2 ratio 25:75. (c) 2 applications, app 2 ratio 50:50.

Chapter 3. Motivation 14

(d) 2 applications, app 2 ratio 75:25. (e) 2 applications, app 2 ratio 0:100.

Figure 3.3: Throughput and total critical section time running two concurrent applications. We keep
application 1 the same with a ratio of 50:50 and increase the ratio of application 2. We label them in the
following way: Ratio (Insert:Find). The columns measure the total critical section time and the values
above the column refer to the throughput.

• As we increase the number of insert threads in the second application, the through-
put of the insert threads in application 1 is not affected. This is because the thread
only interacts with the first entry in the data structure when it performs an insert.

As expected we see these points above which indicates interference between the two
applications. Additionally the graphs also show:

• In 3.3(a) we see very little throughput in application two. This is due to the fact
the as it has no entries in the linked list so it traverses the full length each find
operation that it performed.

• The insert threads never use their full lock opportunity.

• The throughput of the insert threads is slightly reduced when insert threads are
added to the second application, as seen between 3.3(a) and 3.3(b).

This example has shown a direct interference between these two applications and their
critical section length. It also exhibits the correlation between the critical section length
and the throughput.

Application 1 Application 2
Insert Find Insert Find

Ratio 1 throughput throughput Ratio 2 throughput throughput
0:100 0 210M 0:100 0 211M
0:100 0 1K 100:0 120M 0
25:75 28M 264K 25:75 28M 425K
25:75 28M 153K 75:25 85M 166K
75:25 85M 149K 25:75 28M 158K

Table 3.1: Notable combinations of two application ratio showing total throughput and critical section
time separated by find and insert threads. We show the ratio and then the total throughput of each type of
thread, and then the latency of each type of thread. Each application is four threads.

2 Applications:All Ratios We ran an exhaustive set of experiments of all ratios with
two applications, Table 3.1 shows the notable results that we want to comment on.
By running all the different ratios we are able to simulate all possible scenarios, and
conclude that unfairness is present. For ease of reading we only show significant

Chapter 3. Motivation 15

results, the table displays the ratio of each application and the throughput of the find
threads combined and the insert threads. From this table we can see the extent of the
unfairness as it applies to every experiment we perform. In no column do we see a
result proportional to the base case i.e. no interference. In this table we are able to show
the results of our edge cases, where the danger of unfairness can be seen.

• Row 1 shows an experiment with application 1 running only find threads while
application 2 runs only find threads also. We see high throughput for both cases
since there are no entries added to the linked list.

• In row 2, application 1 runs all find threads while application 2 runs all insert
threads. This case shows a very low throughput for the find threads. This is
because the find threads must traverse the whole linked list each time it performs
an operation, this is the worst case behaviour. We see here the effect such
behaviour has on the insert application also, it only completes half the operation
it did previously, showing the interference between the applications.

• Row 3 shows running two applications with the same ratio. The throughput of
the insert threads is very similar between applications but we see a difference in
the find threads throughput, displaying clear unfairness between applications.

• Finally rows 4 and 5 show the ratios 75:25 and 25:75 run on each application.
This shows that regardless of which application we run the ratios on we receive
similar results.

3.3 Real World Examples

We now know there is unfairness within the data structures and the scenarios that can
lead to this unfairness, however we don’t yet know the potential damage that can occur
in real systems through this unfairness. The following papers identify some actual
scenarios where this unfairness is exploited.

3.3.1 Taming Adversarial synchronisation

Using Trātr to tame Adversarial synchronisation [20] describes some examples of unfair
data structures used maliciously within the Linux kernel. The paper defines some
vulnerabilities of the operating systems concurrent data structures notably an input
parameter attack and a framing attack. An input parameter attack is ‘when an attacker
targets a synchronisation primitive and uses input parameters to increase the critical
section size’. A framing attack is a type of synchronisation attack that targets weak
complexity guarantees of a data structure. synchronisation attacks make the victims
stall longer; framing attacks additionally make them spend more time in the critical
section. A fair data structure would prevent such an attack by providing isolation and a
solution to actively block such an attack within the data structure.

An example from this paper is the futex table [9][6] in the Linux kernel. A futex is a
certain type of lock that when there is no contention can be handled in the user-space
without having to enter the kernel. This is possible as the futex is simply a memory

Chapter 3. Motivation 16

address in the user-space e.g. a 32-bit lock variable field. If the lock has already been
acquired and another thread attempts to acquire it then the lock is updated to note there
is someone waiting for it and the sys futex(FUTEX WAIT) syscall is used. This triggers
the kernel to add the waiting process to a wait queue for that lock.

Rather than have a wait queue for each futex variable, the kernel contains a futex table
which is a hash table that hashes the futex variable address to a hash bucket that holds
the wait queue. As multiple futex addresses may hash to the same bucket it stores a
shared wait queue. Once the thread holding the futex is finished it checks the lock to
see if there are threads waiting, if so it sends a syscall sys futex(FUTEX WAKE) to
wake up waiting threads. This traverses the shared queue, and then releases the first
thread waiting or all the threads waiting for this futex. Within the paper the authors
successfully create an attack on the futex table where a malicious thread spawns a few
thousand futex variables and then probes the hash buckets and identifies the busy wait
queues based upon the time taken to complete the syscall. It then creates thousands of
threads that wait upon that futex variable elongating these busy queues and affecting
performance. This is the framing attack mentioned above.The attacker spends a small
amount of effort adding entries and then sits quietly whilst the damage occurs.

The input parameter attack is also relevant to our thesis and is performed on data
structures such as the inode cache. An inode stores metadata about a file such as its size
and permissions. Also in the Linux kernel the inode cache stores inodes maintained
by the Virtual File System to minimise expensive reads to the disk to for file metadata.
This is stored as a hash table where the hash combines the unique inode number and
the address of the file system super block. When an inode is created, it is added to the
inode cache. An attack is possible which allows unprivileged users to arbitrarily create
inodes and target a shared bucket within the hash table, elongating the list stored and
thus critical sections.

3.3.2 Algorithmic Complexity Attacks

The paper ‘Surge Protector’ [1] gives a simple example of an attack in a shared data
structure between clients. Pigasus is a hybrid FPGA+CPU, 100Gbps IDS, and it
implements partial TCP reassembly to detect attacks that span across multiple packets
in a TCP bytestream. This system uses a linked list to store incoming packets from an
out of order system. A reassembly engine traverses its linked list when a packet arrives
to sort it based upon its packet sequence number into the correct place in the list i.e.
next to the packet that ends with that sequence number. When segments are in order
they are released. As each packet reordering can take up the full size of the linked list
n cycles to find the correct placement, if the system cannot keep up with the load of
arriving packets it is forced to drop some.

A relevant attack on this system comes under the branch of Algorithmic Complexity
Attacks [5]. These are attacks on the algorithms or data structures of a system to
trigger their worst behaviour scenarios. Here, an attacker targets this effort of cycles per
packet by maliciously sending packets that require a significant reorganisational effort.
This causes the system to lag, so it drops some packets to compensate. In this way a
malicious packet that takes perhaps five times as long to sort can cause the system to

Chapter 3. Motivation 17

drop five genuine packets. Such as attack manipulates the data structure by unfairly
inserting in such a way that genuine users are denied service.

The above papers identify a gap in fairness within concurrent systems and show how
this gap can be exploited. In this thesis we want to build on the work of the scheduler
cooperative lock and the fair synchronisation algorithm and look at making more than
just access to the data structure fair but look at extending this fairness to the structure
itself, and in doing so provide a data structure that is immune to the attacks brought to
light by the Trātr paper and more.

3.4 Gap in the Research

Relevant papers look at performance isolation in concurrent systems and the fairness of
opportunity in these concurrent systems. One such paper is Wait-free synchronisation
[12]. This paper defines a wait-free concurrent data object as ‘one that guarantees that
any process can complete any operation in a finite number of steps, regardless of the
execution speeds of the other processes.’ This is a very similar definition to performance
isolation, as we can guarantee that the operation will only take at most some n steps
regardless of the actions of other steps. The variable n however is dependent upon
the number of threads and the consensus number of the data structure. The consensus
number of a concurrent object is defined to be the maximum number of processes in the
system which can reach consensus by the given object in a wait-free implementation.
This means that the number of tasks that can assure that the shared object is correct
control whether the implementation of the data structure will be wait free. Simple
structures such as lists, queues and b-trees have a consensus number of 2, so with only
up to two threads can we successfully implement a wait free structure. This paper
goes on to prove it is impossible to construct wait-free implementation of some of the
most basic data structures such as a set, queue, and list when run with a consensus
of more than 2 processes. Thus, if we consider wait free to be the same as isolated
performance this paper conclusively shows that we cannot design a perfect fair data
structure, therefore we must strive for as close to isolated as possible.

A similar paper [8] also discusses lock-free linked lists and provides implementations
that are on par performance wise with locks. Still their average performance is linear
in the length of the linked list plus some contention. As we have discussed above, the
length of the linked list is dependent on other threads, thus we cannot describe such im-
plementations as fair or isolated. From this paper we can see that other implementations
to improve such data structures look at the lock aspect, rather than the data structure.

Both papers Scheduler Cooperative Locks [19] and Fair Synchronisation [25] look
at fair entry usage as fair access to the data structure. If each process is offered a
fair opportunity to access the data structure, then it is fair. However, the SCL paper
acknowledges that the length of the critical section introduces a different aspect to
guaranteeing fairness. Consider the case of a linked list that has entries from two
threads A and B. All the entries of A are at the head of the linked list and thread B’s are
at the end. For thread B to access any entries that it has inserted it must first traverse
all of A’s entries. If A has thousands of entries before the entries of B then thread B’s

Chapter 3. Motivation 18

critical section is going to take significantly longer than that of A or another thread C
that has perhaps added a single entry to the front. Performance is not isolated here as
even if the access to the shared variable is as fair as can be, thread B is still affected by
the entries that thread A has added within the list.

3.5 Summary

In this section we have given the motivation behind our work. We first give a simulated
example displaying the unfairness within a data structure. We then move to some real
life examples of malicious behaviour that target the unfairness shown above. Finally we
discuss the gap in research into fair concurrent data structures, looking briefly at papers
that highlight this.

Chapter 4

Design

4.1 Design Goals

1. Controlled fairness within the data structure. Our design should guarantee a
level of performance isolation/fairness for each thread. In the general cases this is
complete isolation where required, or in specific cases we look for no interference
from malicious threads.

2. A solution for ALL scenarios. Our solution should be correct and fair for all
use cases that may arise. It may adapt to fit these cases when necessary.

3. No significant overhead and has a scalable performance. When used in
the place of a regular data structure our design should not be too complex to
implement, with no major changes to increase overhead and as we increase the
number of threads or users the performance it provides should scale.

4.2 Scenarios

Now that we move from motivation to designing the new data structure framework we
go over all possible scenarios that could occur when using a concurrent linked list. This
is to highlight any scenarios where unfairness with the structure can be seen. In table B
in Appendix B we give a comprehensive list of scenarios including a description, if the
scenario is fair, what would make the scenario fair, and how this can be achieved. Some
scenarios are already fair. Others are the scenarios that we want our design to address.
From our list of scenarios, we are able to pull out features of the data that shape the
purpose of the data structure. We aim to develop a solution that can cover all scenarios
with either small tweaks or on/off flags if a feature does or does not apply. We divide
our scenarios and design into four quadrants and show that all scenarios fit into one of
these four quadrants.

19

Chapter 4. Design 20

4.3 Data structure taxonomy

We taxonomise data structures to better understand how to address data structures as a
resource and to determine best how to address unfairness. In some cases, sharing may
be incidental, and partitioning the data structure is best, similar to per-thread variables.
In others, sharing may be central to the use of the data structure, so other approaches
are needed.

The first observation we make is that shared data structures differ on whether the
contents of the structure are shared. For some structures, such as caches used by the
file system, the structure elements represent global data (files in a global namespace)
and are thus logically shared and cached data is accessible to all entities. For other
structures, the shared data structure is used as a convenient mechanism to manage and
group data that is only accessed by a single entity. For example the ESX page sharing
hash table pages are typically private to a process and only shared if and when a process
requires an identical physical page. We term data structures with shared content Sharing
data structures (S), and those without shared content Non-sharing data structures (NS).

For sharing data structures, contents cannot be effectively partitioned by the entity, so a
fair solution must look at a different method to ensure fairness such as managing the
ability of an adversarial user to extend the structure. For non-sharing structures, it may
be possible to partition data.

Our second observation is another two major classes of data structures. Several struc-
tures are designed as performance optimisations, where the contents are used to speed
up important operations, but the presence of elements is not required for correctness.
Caches fall in this category, such as the inode cache. Similarly, kernel same-page
merging (ksm) maintains a tree with pages that are candidates for deduplication, but
this tree is used only for performance optimization (sharing memory) and the presence
or absence of a page in the tree does not affect correctness. We term these Performance
data structures (P)

In contrast, for many kernel data structures, the contents must be present for correctness.
For the futex table from the previously described attack in the motivation section,
threads must be present on the waitlist to correctly implement synchronisation. We term
these Correctness data structures (C).

Figure 4.1: The three features placed in a quadrant. This figure is to highlight how the three features
we describe interact with each other. Applications of data structures can only be in one of the four
quadrants.

The distinction between these structures dictates how we can implement fairness in the

Chapter 4. Design 21

structure and we design our solutions based upon these four quadrants.

Taking both dimensions together, as shown in Figure 4.1, helps pick a strategy for
addressing fairness on different types of data structures. For any performance structure
(P), we have the flexibility that fairness may come from discarding elements from the
structure to reduce the complexity of access. For correctness structures that do not
provide sharing (NS+C), it is possible implement separate data structures or to partition
the structure elements so that each entity accesses only the data it uses. For structures
that support sharing and are necessary for correctness (S+C), it is not be possible to
implement fairness by removing entries, so it is important to instead prevent unfairness
through partitioning or some other method.

We believe that the S + C quadrant is the target to address the isolation concerns.
As multiple entities share the data, the presence or absence of an entry impacts the
correctness of multiple containers/applications. Hence, one needs to prioritize isolating
these global data structures.

For data structures in quadrant NS + C, when data is not shared among users (NS), the
performance isolation concerns subside even though correctness is paramount. Often
for such structures supporting something like a per-container/user structure will need
more memory and managing individual structures can be difficult. Thus, we believe the
simplicity of using the existing global data structures and the benefits of aggregating
resources outweighs the security concerns that may arise. For data structures designed
for performance purposes belonging to the other two quadrants - S + P and NS + P, the
same benefits of simplicity and aggregating the resources subside the security concern.
The presence or absence of an entry is not going to impact correctness. Consider the
example of the inode cache used to cache the inodes to prevent frequent access to the
disk and support global namespace. Supporting separate caches need more memory and
is difficult to manage as the containers need to access common files.

4.4 Non-shared solution

Algorithm 1 Psuedocode for a non-shared link list.
1: Structure:

Node:
data
next

Thread Node:
id
next ▷ points to the next Thread Node
list ▷ points to the head of the sub list

2: Insertion:
3: function INSERT(head, targetId,data)
4: newNode← createNode(data)
5: curr← head
6: while curr ̸= NULL do ▷ search through the Thread Nodes
7: if curr.id = targetId then
8: newNode.next← curr.list ▷ add the Node to the head of the sub list
9: curr.list← newNode
10: return
11: end if
12: curr← curr.next

Chapter 4. Design 22

newIdNode← createIdNode(targetId,newNode) ▷ create a new Thread Node
newIdNode.next← head ▷ insert it to the head of the list
head← newIdNode

Find:
function FIND(head, targetId, target)

curr← head
while curr ̸= NULL do ▷ search through the top list

if curr.id = targetId then
currNode← list
while currNode ̸= NULL do ▷ search through the sub list

if currNode.data = target then
return currNode

end if
currNode← currNode.next

end while
end if
curr← curr.next

end while
return head

end function=0

When the data is not shared between applications the solution is straightforward. We
partition the data according to the application that inserts it, by creating sub-lists within
the list. We create an additional type of node structure that we call the thread node from
which the linked list is now made. Each of these thread nodes has a pointer variable to
a node object which is the entry point to the sub-list of nodes that have been added by
that thread. We show the psuedocode for this new thread node in Algorithm 1 which
displays the changes to the functions as described in table 4.1 below to complete our
design. The differences can be seen by comparing to the psuedocode for the linked list
in 2. Here we have contained all our changes providing fairness to the data structure
implementation. We show the design is fair as per the goals specified in section 1.1.

Name Changes
Structure Create an additional thread node structure containing an id variable

pointer to the sub-list and a pointer to the next thread node

Insert When a thread inserts it’s first entry it passes in the key, value, and it’s id.
Initially the process traverses the linked list of thread nodes, looking for
the thread id. As this is it’s first entry it will not be found, so once the whole
list has been checked and the find unsuccessful, it then creates a new thread
node with that thread id, pointing to the new node entry and inserts the thread
node at the front of the list.
When a thread now inserts an entry again, when searching for the thread node
by the thread id it will perform a successful find and insert the new entry at
the head of the sub-list stemming from that thread node.

Find To find an entry, we again first find the thread node for that thread id, and
then perform the find as before on the sub-list

Delete To delete an entry. We follow the steps of a find, however when finding the
entry in the sub-list, we point the entry a head of it to the one after it and free
the memory, deleting it.

Controlled fairness within the data structure We have provided controlled fairness
through the isolation of the data per thread by separating into sub-lists. Now each

Chapter 4. Design 23

thread will only traverse the entries they have added without the additional critical
section time spent moving through other threads entries. Each thread may add as many
entries as they need without any effect on other threads when they access the linked list.
This particular solution covers many scenarios of the above, and works for many data
structures beyond our linked list. This solution effectively covers at least a half of the
quadrant above, which hosts a wide range of the uses of shared data structures.

No significant overhead and has a scalable performance There is some overhead
during the insert operation as it must first traverse and find the correct thread node
before the insertion into the sub list. This overhead depends on the number of threads
that are using the shared linked list, if there are many it may be a considerable overhead
but remove this with a simple optimisation described below. An application will only
have a sub list if it contains an entry so, in the worst case it is still the number of threads
interacting which is less than or equal to the number of total entries so we have improved
the best and worst cases with our fair data structure. Performance is improved as we no
longer have to search through the entries of other threads, when the the number of these
entries is large (potentially in the millions as shown in the real life example section).
Removing their traversal time has a significant effect on the performance during the
critical section.

optimisations and Limitations Further improvement for this design is made by us-
ing individual locks per sub-list. This will speed up performance as it will increase
parallelism between the threads as the critical section spent holding the global lock is
reduced, and the majority of the operation can be placed inside a different lock with no
other contenders.

We can also counteract the potential overhead of a thread traversing many thread nodes
of many threads to find its own which could potentially impede performance. To protect
from this we can have a hash table that stores the thread id and a pointer to the address
of the thread node, allowing for an average time to find the thread node of O(1). Cases
with many threads and few entries are rare and there in these cases the optimum solution
may be to have separate linked lists per thread.

4.5 Shared solution

When the data is shared between multiple applications we must consider that others may
need to access the data added by another thread. This initially seems to contradict with
our saying ‘bare the weight for what you add’ as now they may need to look through
some ”weight” from other threads. How do we then apply our definition?

4.5.1 Shared – Correct

In the cases where the data cannot be separated by thread we need to think deeper about
the solution to a fair linked list so we consider another approach utilising our base
solution. With correct data structures we can find a common point that connects the data
to be shared between a group of users i.e. when data is shared between this group of
users the reason for this leads to us being able to isolate the groups from each other. For

Chapter 4. Design 24

Figure 4.2: The set up of the non-shared solution. In this diagram we can see the changes that would be
made for a fair data structure. The head node shows the entry point, and the new node structure can be
seen in the top row with the additional pointer. The sub lists then come from these new nodes, linked
together as they were previously.

example we consider again the futex hash table. The threads are placed in the hash table
as they wait on futexes - our common point - and so within the wait queues they can be
grouped by the futex that they wait upon. There cannot be duplicates (they cannot wait
upon more than one futex at once) and the nodes here cannot be lost. The futex then
is our common factor as we can group users by this for a very effective solution. This
solution is successful for applications serving different purposes, some applications
need to interact to progress and we can group these in such as way, whilst still allowing
others to have isolation from them. If then a heavily used futex shares a wait queue with
a lightly used futex, the release of threads waiting on the lightly used futex does not
need to be impeded by the other waiting applications - thus still providing performance
isolation.

Another example is a message queue. An incoming message can be for a specific user, or
it can be for a group of processes, or it can be for anyone.User often wait for a message
to come through before they can continue. In this case we can split the data structure
into sub lists based upon the message. We can have sub lists for single users, each of
the different groups, and then for everybody. Users can then search the sub lists that are
relevant to themselves, thus they do not have to consider messages that are not meant
for them. These users want to communicate with each other through the data structure
and are not interested in the entries of those outwith their group so we manipulate this
to the advantage of our solution. There cannot be performance isolation Where data
is shared between these users as they must be able to access the entries of each other.
However here the linked list is fair as the users or applications aren’t adversely holding
each other back, but providing a route forward by communicating through their entries.
We again can split the data into sub lists by this common factor rather than by user. To
implement this we can rename the thread node to be purpose specific, and where the
parameter passed in is the thread id we change this also to the common factor between
these users. The implementation of functions as described in table 4.1 do not have to
change any functionality with the different names and parameters, displaying the ease
and flexibility of our solution.

Controlled fairness within the data structure This implementation is fair for these
shared data scenarios as it provides performance isolation between groups and applica-
tions. If the data is shared then the users ’agree’ to take on the cost of other users in the
group, there is no unexpected cost from anyone outwith the group.

Chapter 4. Design 25

No significant overhead and has a scalable performance As the implementation is
the same as the non-shared solution we have already shown no significant overhead and
scalable performance. As we add more groups to share the linked list we will not see an
effect on the other groups (other than through lock contention). If we add more threads
to our group then we will see longer critical sections to account for their entries, but
still this performance is no worse than the original implementation of the linked list.

Optimisations and Limitations Our limitations with this design are that we must be
able to group the data and the users in some way and this does not apply to all scenarios
as we can see from those listed in B. If we end up with one single group which we
must account for we will then simply have a linked list. Now that we have partitioned
the data we can optimise with some simple additions to reduce the lock contention and
improve both fairness and performance further. We can remove our global SCL lock
and implement a SCL lock per sub-list. This change of position removes the contention
of many threads for one lock to a wide dataset to a few threads on each lock to the
relevant dataset. We then can use a simple spin lock on the global structure, so that
when ThreadNodes are inserted or deleted there is no danger of de-sychronisation. The
spin lock is only held until the SCL lock is reached so a spin lock is effective enough
here as although it is not fair it will allow threads to reach the fair locks without too
much overhead. Many threads will be waiting on the internal SCL lock at any one
moment which will reduce the lock contention of the spin lock considerably.

4.5.2 Shared – Performance

Due to time constraints we only list here some possible solutions that need some devel-
opment before they can be implemented. When combining Shared and Performance we
note:

• We can consider an unfair thread as an actor/user whose actions are negatively
impacting the others to a significant extent. This may be malicious or it may not.

• The goal of any such data structure is to be fast i.e. to speed up some action that
would have a significant overhead, whilst not adding too much time itself if the
action much be completed (a cache) or to reduce the time is takes to search the
whole data structure as a precaution such as a tree.

• We must consider here the greater fairness of entities. Thus, punishing threads
that are being unfair to others could be acceptable.

Below we list some ideas for this section:

Idea Potential Limitations Image

Allow pointers
between sub lists.

Allow the sub lists
to point at entries in
other sub lists. We
need to provide a
way to point back at
the rest of the other
sub list through the
shared entry.

We need a way to
know where/if a
previous entry is
stored in the data
structure. This
solution could work
for applications with
high find rates.

Chapter 4. Design 26

Sort the
substructures by
insertion rate, so that
is they must traverse
the whole data
structure they can
look through the
shorter sub lists first.

This removes the
harm from looking
through long sub
lists of other threads
which are more
likely to be
malicious.

We may then
penalise threads that
need entries in
genuine but long
sub-list.

Allow duplicates of
entries in each sub
list when using the
solution described
above.

If we allow
duplicates of entries
then each
thread/user can be
kept separate and do
not need to look
through the entries
of others.

This takes up
(slightly) more
memory and we
must ensure some
way that values are
kept synchronised.

We make the
structure circular, so
that each application
can search it’s own
entries first and then
the entries of other
applications.

This provides the
opportunity for each
user/thread to search
it’s own entries first,
and then the entries
in the rest of the
structure.

As we still may
search the rest of the
structure we do not
provide isolation
from unnecessary
entries/users.

Rebalance the data
structure when
detecting unfairness.

Spread entries fairly
within the list so that
no thread/user
spends more time
searching than
others.

This does not fit our
definition of fairness,
but if we have no
way to achieve
performance
isolation or have as
much isolation as
can be given. Then
we may have to look
at fairness as
equality.

Create further sub
lists for data shared
between threads

If an entry is to be
shared by a

This does not fit our
definition of fairness,
but if we have no
way to achieve
performance
isolation or have as
much isolation as
can be given. Then
we may have to look
at fairness as
equality.

Chapter 4. Design 27

We can control the
size of the data
structure to reduce
sizable interference,
each of these data
structures will have
a mechanism for
removing old/
obsolete data such as
the least recently
used(LRU) queue in
cache tables or they
will prohibit adding
new entries until
some have been
deleted.

This solution has
good potential
within cache-like
structures, if we can
allow each thread to
add a proportional
amount of entries
that is can control
whilst other entries
can look through
these without being
impeded by looking
through an excessive
amount of entries.

The main limitation
is that we may
penalise a genuine
thread/user that
needs to add many
entries, if we cut
them off or starve
them then we may
do some serious
damage.

+ We can combine
the above with
tracking the data
structure usage of
each thread or
application. We may
track the insertion
rate, the number of
entries they have
added. We may want
to look at insert to
find ratio and
penalise threads
based upon these
factors.

The adds to the
above solution, and
would allow us to be
more exact and
make informed
decisions when
setting limits for
each thread or user.
The overhead could
be kept low for a
solution such as this.

We still may
penalise a genuine
thread.

4.6 Summary

In this chapter we outline our design for a fair data structure that acts as a resource. We
begin by taxonimising data structures and determine that different solutions are required
for different data structures. We then discuss the design of these solutions, beginning
with the non-shared category where we design a solution that partitions the data based
upon each entity. Our shared-correct solution follows this pattern or partitioning the
data guarantee performance isolation and fair resource allocation. Finally we list viable
solutions for the section of data structures and discuss their potentials and limitations.

Chapter 5

Evaluation

Here we evaluate the effectiveness of our solution for non-shared and correct data
structures. Using the same micro-benchmarks as we used to show unfairness in the
Motivation section we show scalable performance and controlled fairness within our
linked list. We also show that the solution can apply to other data structures by
implementing the solution with a hash table.

We use a synthetic workload to stress different aspects of the default linked list side by
side with our solution. The workload consists of a multi-threaded program; each thread
executes a loop and runs for a specified amount of time. Each loop iteration consists of
two elements: time spent outside a shared lock, i.e., non-critical section, and time spent
with the lock acquired, i.e., critical section. Unless explicitly specified, the priority of
all the threads is the default thereby ensuring each thread gets an equal share of the
CPU time according to the CFS default policy.

We use the following metrics to show our results: (i) Throughput: For synthetic
workloads, throughput is the number of of operations completed (e.g., inserts or finds).
This metric shows the bulk efficiency of the approach but is also used to show how
isolated a thread or applications performance is. (ii) Lock Hold Time: This metric
shows the time spent holding the lock, broken down per thread. This shows whether the
lock is being shared fairly.

When we refer to performance here we move away from our definition in the taxonomy
section back to the typical definition. We measure performance by throughput as through
the fair lock we are confined to the time slice or opportunity to perform operations.

5.1 Fairness and Performance

Intra-application To gauge the fairness and isolation of threads in our solution we run
this synthetic workload with two applications. Each application has four threads that
can either continually insert into the structure or continually find and the combination
creates synthetic workloads that we use to run test. The desired result or ideal data
structure is where our applications will show similar throughput, latency and lock usage
to our base case in figure 3.2 in Motivation when we run a single experiment. The

28

Chapter 5. Evaluation 29

ultimate goal is to achieve such isolation that there is absolutely no interference between
applications. To show performance isolation we want to see that the application’s
threads are performing a similar amount of operations at each ratio of insert to find
regardless of any other applications running.

Figure 5.1 shows five graphs with increasing insert to find ratios. We plot our base
case first on each graph, which shows the ideal results which come from running single
applications no separate linked list with no interaction. Then we show the throughput
and lock hold time of the default linked list with two applications of four threads each
running. Finally we have the throughput and lock hold time of our solution with two
applications.

Figure 5.1 a) b) c) d) and e) show the ideal result as a comparison for the default linked
list and our solution. The ideal data structure here is the result of running two single
applications, as each of two applications in the most fair case would have no contention
with each other. We can see in all figures that the lock hold time of all applications
is either using all or almost all of their lock hold opportunity, so time is split equally
between all applications and threads. Throughput in the find and insert threads in
applications in the default linked list is about half of the base case value, and in our
solution although improved is still only slightly more than half. This is because of the
contention on the global lock. We look at addressing this in the next section.

Figure 5.1 a) shows that when we run a 50:50 application next to an application full of
find threads, the default linked list manages more inserts and finds than our solution
because these find operations are very short as there are no entries in the sub list. We
focus here on the results of a 50:50 application as the experiments of other ratios show
similar results in fairness and performance. Figures 5.1 b) c) d) and e) show that when
a 50:50 application is run beside an application with an increasingly higher insert:find

(a) 2 applications, app 2 ratio 0:100.

(b) 2 applications, app 2 ratio 25:75.

Chapter 5. Evaluation 30

(c) 2 applications, app 2 ratio 50:50.

(d) 2 applications, app 2 ratio 75:25.

(e) 2 applications, app 2 ratio 0:100.

Figure 5.1: Throughput and total lock hold time running two concurrent applications. We keep
application 1 the same with a ratio of 50:50 and increase the ratio of application 2. We label them in the
following way: Ratio (Insert:Find). The columns measure the total critical section time and the values
above the column refer to the throughput.

ratio, the default linked list shows a reduction in throughput in application 1 at every
ratio increase of application 2. However in our solution as the insert ratio increases,
the throughput in application 1 per thread stays the same. The lock hold time of each
thread does not change in all solutions showing that our solution does not result large
overheads that cut into the lock opportunity of each thread. In order for each thread
to perform the maximum throughput it must utilise as much of it’s lock opportunity
as possible. Thus between threads within applications our solution shows controlled
fairness whilst maintaining performance.

Inter-application Figure 5.2 considers the above experiment focusing on fairness
between applications by the total find thread throughput of an application when run
in parallel with another, both performing operations on the shared linked list. We can
discard the insert throughput here as it is unaffected by the changing length of the
linked list or sub lists and by our solution as seen in figure 5.1 we see no change in the

Chapter 5. Evaluation 31

Figure 5.2: Throughput of find threads in linked lists. We show the ideal case, the throughput of the
default linked list, and then our solution. We we want to see here is a straight line to show no changes to
the throughput regardless to changes to the x-axis.

values. We plot the throughput of the 50:50 ratio application (Application 1) against
the changing ratio of the other application (Application 2). We start by plotting the
ideal fair linked list where throughput is high (as we have no lock contention) we see
no change as the other application changes. The default linked list starts lower due to
lock contention and shows a decrease in throughput as we increase the insert ratio of
application 2, showing interference between the two applications, as more entries are
added to the shared linked list. Our solution however is much fairer than this. We see
changing the ratio of application 2 has no effect on the throughput of application 1 as
the applications are now isolated from each other.

Figures 5.2 and 5.1 all show improved overall throughput combined of the two applica-
tions. Since each of the find threads in all applications at all ratios are performing more
operations whilst running. The overall throughput and and performance is greater than
in the applications running on the default linked list.

(a) Max-min throughput ratio of find threads in applications On the
x axis we have the number of applications running. On the y axis we
have the ratio between the highest and lowest throughput of a find
application over all ratios.

(b) Max throughput of a find thread in an application
On the x axis we have the number of applications running.
On the y axis we have the maximum throughput of a find
thread within an application over all ratios.

Figure 5.3

Chapter 5. Evaluation 32

Scalable performance To show scalable performance we run experiments with more
than two applications. We tighten our parameters (since running 10 applications with a
possibility of 5 different ratios for each is too much data to analyse). We now consider
two types of applications, find applications which have a ratio of 25:75 (insert:find) and
high insert applications which have a ratio of 100:0. We choose the ratio of 25:75 for
the find threads so that there are entries in the data structure for the application to find.
The ratio of 100:0 for the insert threads is chosen as it is the worst case of behaviour
that could occur. Figure 5.3 shows the impact on throughput to the find applications as
we increase the number of high insert applications running concurrently. We run this
experiment on 4, 8, and 10 applications. 10 is the maximum we are able to run, as each
application has 4 threads, and we can only assign to 40 CPUs. The CPU architecture is
made up of 20 CPUS but has the added functionality of hyper-threading, allowing two
threads to be run on the same CPU concurrently.

Figure 5.3 a) shows max-min total find throughput of each experiment as we change
the find:high-insert application ratio. For example with four applications we have four
experiments, with eight applications we have eight experiments. From this figure we see
that for the default linked list we have a large max-min ratio throughput indicating there
is interference between applications as changes are made to the ratio of find applications
to high insert applications. However for our solution this ratio is much smaller, never
reaching more than 1.5 and indicating less interference between applications. Thus we
have also shown achieved our fairness goal on a scalable level, and shown it is possible
between threads in applications and between applications. Figure 5.3 b) also shows
the max find throughput for each of the applications run over their experiments. For
the default linked list we can see that the maximum throughput is not very high in
comparison to our solution, and combined with the max-min ratio from b) we can see
that the max and minimum performance of find applications on the default linked list is
less than the results of our solution. Thus with solution we show an much improved
performance.

Figure 5.4: Throughput of find threads in linked lists. We show the ideal case, the throughput of the
default linked list, our solution, and then our solution with internal locks. What we want to see here is a
straight line to show no changes to the throughput regardless to increase along the x-axis.

Chapter 5. Evaluation 33

5.2 Internal Locks

Design Now that we have our base fair solution the bottle neck once again becomes our
fair lock so we implement internal locks as mentioned in the Design chapter.

Inter-application With this change we reevaluate the fairness of the solution. In figure
5.4 we add the throughput of the fair linked list with the internal SCL locks on each sub
list to show the improvement to performance to the graph above. The ns c lock fair
solution with the internal locks clearly outperforms our solution and the default linked
list. Moving the locks inside allows multiple operations to be completed on parts of
the linked list at once so we can perform more than just the ideal case of twice a single
application’s performance. To evaluate fairness we can show the change to throughput
of the ns c lock fair solution as we change the ratio of application two. As we increase
the ratio we see little to no change in the throughput of application 1 yet again, which
again clearly indicates performance isolation between the applications.

(a) Max-min throughput difference of find threads in applica-
tions On the x axis we have the number of applications running.
On the y axis we have the difference between the highest and
lowest throughput of a find application over all ratios.

(b) Max throughput of a find thread in an applica-
tion On the x axis we have the number of applica-
tions running. On the y axis we have the maximum
throughput of a find thread within an application
over all ratios.

Figure 5.5

Scalable Performance To evaluate the scalable performance of the internal lock solution
we run the same test with multiple applications as for our original solutions. In figure
5.5 a) we show the max-min ratio when running 4, 8, and 10 applications as different
find:high insert ratios. The performance solution with the internal locks shows some
variation in throughput amount of the find threads however this is still less than is seen
by the default linked list. For the performance of this solution over multiple applications
can be seen in figure 5.5 b) against the performance of the base solution and the default
linked list, we can see that the maximum throughput is significantly higher than either
of the other linked lists.

Chapter 5. Evaluation 34

Figure 5.6: Throughput of linked lists in a dynamic environment. Initially running one application
consisting of one find and one insert, after 16 second intervals we add or remove applications until we
once again each a single running application.

5.3 Dynamic Scenario

We also want evaluate the solutions in a dynamic environment to show they are adapt-
able to changes whilst maintaining fairness and performance. We simulate a shifting
environment by growing and shrinking the number of applications accessing the shared
structure. Our simulation builds up and removes threads over a period of time. Each
application is identical with one find thread and one insert thread for simplicity.

In figure 5.6 we plot the throughput of these applications running in a dynamic environ-
ment. We plot for each of the default linked list, the fair linked list, and our fair linked
list with improved performance. Within the default linked list we see that as we add
applications we do not get an even increase in throughput. After the initial thread we do
not note any significant change in throughput as we move through the simulation.

For our fair solutions as we add new applications that interact with the shared linked
list, we see an equivalent increase in throughput, and as we remove applications an
appropriate decrease.

The difference between our two solution is that once we add the internal locks we
see a much higher total throughput, and that as we add and remove applications there
is a much more equal step between the throughput as it increases. This displays the
contention that we remove in the dynamic scenario from changing from a singular

Chapter 5. Evaluation 35

global lock to multiple internal locks.

(a) Default hash table

(b) Fair hash table

(c) Performance fair hash table

Figure 5.7: Throughput and total critical section time running eight concurrent applications. We show
eight applications running concurrently on each implementation, four are find applications (with a thread
ratio of 25:75(insert:find) and the others are high inserts (100:0). A pair of each share a bucket and so
interactions occur between these applications only. We show lock hold time through bar locks, with the
lock opportunity of each thread also shown for context, with the throughput shown above each bar.

5.4 Hash table

We also give a fair implementation of a hash table and show that through using our fair
linked list as a base we can guarantee the same design goals for more complex data
structures that build off of this linked list.

Design The hash table builds on the linked lists by implementing these fair linked lists
as collision-prevention mechanisms within the hash buckets. We use a base design with

Chapter 5. Evaluation 36

four buckets in the hash table to allow us to compare first the fairness and performance
of the individual buckets and then to look at collisions within the buckets. We use
the same experimental design as described above for the linked list, with applications
continually running operations on shared data, this time within our hash table.

Inter-application To show inter-application fairness we now add collisions to the 4
buckets by running an experiment with eight applications. This leads to two applications
accessing each bucket.

Collisions/Intra-application Figure 5.7 shows eight applications performing appli-
cations on a shared hash table. We hash two applications to each bucket, in the
configuration of application 0 and 4, 1 and 5, and 2 and 6, 3 and 7. Per bucket we have
one high-insert application (described above) and one find application. Each sub figure
shows the lock hold time, with the lock opportunity shown behind it and throughput
of each application shown above the graph. We see from these graphs that the lock
hold time of the find threads in all hash table implementations is very nearly identical,
although in our fair performance table we use all of the lock opportunity for the find
threads. The lock hold times of the insert threads are also very similar, with some varia-
tion in our fair performance application (which likely some contention introduced from
the spin lock). The throughput values also show performance improvement between
these implementations as our fair hash tables perform significantly more operations
than the default hash table.

Figure 5.8 shows the find throughput of an application accessing the hash table against
the changing ratios of the other seven applications running. We choose to focus on a
application with the same ratio in each experiment so that we can analyse its throughput
as other the applications change. The default hash table shows throughput decreases
when we reach four high insert threads. This is expected because buckets are shared by
two threads, so we have shown that there is no interactions between threads in different
buckets but that once they share a bucket, we can clearly see interference from the drop
in throughput. For our fair solutions we do experience this drop in throughput, showing
isolation between applications. For our ns c lock solution which uses internal locks
per sub list we see a small amount in intra-application interference from the spin lock,
however as shown the throughput is much better than the default hash table so we can
accept this.

Figure 5.8: Throughput of find threads of each hash table. We show the throughput of the default hash
table, our solution, and then our solution with internal locks. What we want to see here is a straight line
to show no changes to the throughput regardless to increase along the x-axis.

Chapter 5. Evaluation 37

(a) Max-min throughput ratio of find threads in applications
On the x axis we have the number of applications running. On
the y axis we have the ratio between the highest and lowest
throughput of a find application over all find:high insert ratios.

(b) Max throughput of a find thread in an application On the
x axis we have the number of applications running. On the y
axis we have the maximum throughput of a find thread within an
application over all find:high insert ratios.

Figure 5.9

Performance To look at the performance of our hash table over an increasing number
of applications we plot the results from 4, 8, and 10 applications running in parallel. In
figure 5.9 a), we see the max-min ratio of find throughput in the applications. We see that
when running 4 applications as mentioned above, each application has it’s own bucket
which gives us very fair results. From figure 5.9 b) we see that the max throughput for
each hash table is very high and with little variation so we can conclude all solutions
provide excellent throughput here. When we move to 8 applications the results are
more interesting, in a) we see that the default solution provides the highest variation
in throughput over the experiments indicating variations in the results and interference
between applications. When we reach 10 threads we see that this interference is very
significant. When we also compare with (b) we can see that the performance for the
default hash table decreases also as we add applications. For our solutions however
we show a small amount of variation with the throughput of the applications over the
different experiments. We see an expected reduction in performance but it is not as
severe as the default hash table showing we have saved some performance with our
isolated solutions.

5.5 Summary

In this section we show that our solution is fair as it guarantees performance isolation
both between threads inter-application and intra-application. We show also they meet
the design goal of scalable performance, outperforming the default linked list (and hash
table). We perform further experiments with dynamic applications to show that our
solution continues to guarantee performance isolation and allocate the linked list as a
resource between joining applications. Finally we show the solution is adaptable to
more complex data structures though running tests on a fair hash table that builds on
our linked lists.

Chapter 6

Conclusions and Future Work

6.1 Contributions

We summarise our contributions from this thesis below:

• We identified a gap in research into fairness of data structures in concurrent
systems. Research has been undertaken into the fair access of such shared
structures but we take this further by considering fairness within these structures.

• We have defined a fair data structure in time as a guarantee of performance isola-
tion between entities that interact with the structure. We have shown unfairness
exists in the basic implementation of data structures by showing it can be seen in
the simple structure of a linked list through interference with the operations of
threads and applications that interact with the linked list.

• We have shown the dangers of this unfairness and highlighted how it could
be maliciously exploited to attack [19][5] an operating system or shared cloud
system. Vital shared structures such as the futex table are at risk of exploitation
that takes advantage of this unfairness to extend the critical section of users and
stunt their progress. Algorithmic Complexity Attacks are defined in [5] which
covers attacks that exploit this unfairness.

• We develop a taxonomy of data structures in which every data structure has a
place under the classifications of Shared, Correct, and Performance. By creating
such classifications we can group data structures and consider their purpose as a
resource within these. This allows us to now discuss such structures as resources
and answer our question.

• We have developed a system for solving this unfairness that encompasses all
scenarios based upon the use cases and taxonomy of the data structures.

• We give a solution for the non-shared and shared-correct scenarios implemented
on a linked list. This solution importantly meets all the goals we set out at the
beginning of the design section. The solution - partitioning the linked lists into
sub lists based upon a shared feature or variable such as a futex variable or id -

38

Chapter 6. Conclusions and Future Work 39

provides fairness through isolation of entities that do not need to interact whilst
maintaining the same or better overall performance.

• We have shown that this solution is scalable to many concurrently running applica-
tions, showing even with high contention and potential interactions between many
applications our solution conserves both its fairness and performance qualities.

• We have shown the solution is adaptable to dynamic workloads, allowing it to be
applicable in any environment where a shared data structure may be required. We
show fairness and isolation is instantaneous in these variable scenarios.

• We have shown that this solution is adaptable to other complex data structures such
as a hash table. Through implementing a fair hash table that builds on our linked
list solution we show that it exhibits the same features of controlled fairness and
scalable performance intra-application (between threads) and inter-application.

6.2 Future Work

Implementation of fair kernel data structures The next step following the evaluation
of our Shared Correct solution is to implement it in the place of such data structures in
the kernel. Focusing on the futex table here would show the real life application and
potential of the fair data structure in defending against the framing attack described in
[19] and [5] and other algorithmic complexity attacks.

Final quadrant In the future a solution should be developed for the final quarter of
the quadrant - Shared/Performance. This section will need a different approach to
the correct design as described in the data taxonomy of the design section, and must
ensure the performance factor is as good as, if not better, (which we have shown is a
really possibility) than the default structures used. There are several viable solutions
listed in our design section with a brief initial evaluation into their design, potential
and feasibility that was discussed. More development of these ideas is required as
whilst it initially seems simple, the solution is more complex than originally thought.
A development or combination of these would lead to the final nail in the coffin for
unfairness in data structures.

Fairness over space We have shown conclusively in this thesis that we can achieve
fairness in data structures over time. This is just one dimension of concurrent systems,
and some consideration should be given to fairness over space also where this is
particularly relevant to the system. Our partitioning solution for example does not
necessarily ensure fairness over space if the unfairness is being injected by a malicious
thread which voids entries. Fairness over space would require a different definition for
fairness that was not related to performance isolation, and such solutions would need to
consider this change to provide fairness over space. Solutions would focus more heavily
on preventing unfairness in the size of the data structure rather than adapting to it or
spreading it evenly.

Expansion to complex data structures Developing and sharing implementations for
more complex data structures that are commonly shared in concurrent system is an
important task for the future. Structures such as the binary tree used for searching and

Chapter 6. Conclusions and Future Work 40

manipulating directories or database indexing, n-ary trees, or graphs are very important
for big data manipulation and machine learning. We believe these structures have the
potential to play an crucial part in the future of shared systems and envision a future
where they are easily implemented or inserted into systems in the place of their default
predecessors.

Bibliography

[1] N. Atre, H. Sadok, E. Chiang, W. Wang, and J. Sherry, “Surgeprotector,” SIG-
COMM ’22: Proceedings of the ACM SIGCOMM 2022 Conference, Aug. 22,
2022. DOI: 10.1145/3544216.3544250. [Online]. Available: https://doi.
org/10.1145/3544216.3544250.

[2] S. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel, “Proportionate progress: A
notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600–
625, Jun. 1, 1996. DOI: 10.1007/bf01940883. [Online]. Available: https:
//doi.org/10.1007/bf01940883.

[3] J. Bouron J., S. Chevalley, B. Lepers, et al., “The battle of the schedulers: Freebsd
ule vs. linux cfs,” Jul. 11, 2018. [Online]. Available: https://www.usenix.
org/system/files/conference/atc18/atc18-bouron.pdf.

[4] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,” ACM
Computing Surveys, vol. 3, no. 2, pp. 67–78, Jun. 1, 1971. DOI: 10.1145/356586.
356588. [Online]. Available: https://doi.org/10.1145/356586.356588.

[5] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic complexity
attacks,” in 12th USENIX Security Symposium (USENIX Security 03), Washing-
ton, D.C.: USENIX Association, Aug. 2003. [Online]. Available: https://www.
usenix.org/conference/12th-usenix-security-symposium/denial-
service-algorithmic-complexity-attacks.

[6] U. Drepper and Red Hat, Inc., “Futexes are tricky,” Nov. 5, 2011. [Online].
Available: https://www.akkadia.org/drepper/futex.pdf.

[7] D. Duplyakin, R. Ricci, A. Maricq, et al., “The design and operation of Cloud-
Lab,” in Proceedings of the USENIX Annual Technical Conference (ATC), Jul.
2019, pp. 1–14. [Online]. Available: https://www.flux.utah.edu/paper/
duplyakin-atc19.

[8] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip lists,” PODC ’04:
Proceedings of the twenty-third annual ACM symposium on Principles of dis-
tributed computing, pp. 50–58, Jul. 25, 2004. DOI: 10.1145/1011767.1011776.
[Online]. Available: https://doi.org/10.1145/1011767.1011776.

[9] H. Fuss, IBM Thomas J. Watson Research Center, R. Russell, IBM Linux Tech-
nology Center, M. Kirkwood, and matthew@hairy.beasts.org, “Fuss, futexes and
furwocks: Fast userlevel locking in linux,” Ottawa Linux Symposium, pp. 480–
481, 2002. [Online]. Available: https://www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf.

[10] A. Gupta, A. Tucker, and S. Urushibara, “The impact of operating system
scheduling policies and synchronization methods of performance of parallel

41

BIBLIOGRAPHY 42

applications,” SIGMETRICS ’91: Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, Apr. 2, 1991.
DOI: 10.1145/107971.107985. [Online]. Available: https://doi.org/10.
1145/107971.107985.

[11] S. Haldar and D. K. Subramanian, “Fairness in processor scheduling in time
sharing systems,” Operating Systems Review, vol. 25, no. 1, pp. 4–18, Jan. 2,
1991. DOI: 10.1145/122140.122141. [Online]. Available: https://doi.org/
10.1145/122140.122141.

[12] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 13, no. 1, pp. 124–149, Jan. 1, 1991. DOI: 10.1145/
114005.102808. [Online]. Available: https://doi.org/10.1145/114005.
102808.

[13] N. Huber, M. Von Quast, M. Hauck, and S. Kounev, “Evaluating and modeling
virtualization performance overhead for cloud environments,” Proceedings of
the 1st International Conference on Cloud Computing and Services Science,
Jan. 1, 2011. DOI: 10.5220/0003388905630573. [Online]. Available: https:
//doi.org/10.5220/0003388905630573.

[14] H. P. Katseff, “A new solution to the critical section problem,” STOC ’78: Pro-
ceedings of the tenth annual ACM symposium on Theory of computing, Jan. 1,
1978. DOI: 10.1145/800133.804335. [Online]. Available: https://doi.org/
10.1145/800133.804335.

[15] R. Krebs, C. Momm, and S. Kounev, “Metrics and techniques for quantifying per-
formance isolation in cloud environments,” Science of Computer Programming,
vol. 90, pp. 116–134, Sep. 1, 2014. DOI: 10.1016/j.scico.2013.08.003.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167642313001962.

[16] L. Lamport, The mutual exclusion problem: part II—Statement and solutions.
Oct. 9, 2019. DOI: 10.1145/3335772.3335938. [Online]. Available: https:
//doi.org/10.1145/3335772.3335938.

[17] P. Moorhead, “Intel’s newest core processors: All about graphics and low power,”
Jun. 4, 2013. [Online]. Available: https : / / www . forbes . com / sites /
patrickmoorhead/2013/06/04/intels-newest-core-processors-all-
about-graphics-and-low-power/.

[18] “Operating systems: Three easy pieces.” (), [Online]. Available: https://pages.
cs.wisc.edu/˜remzi/OSTEP/.

[19] Y. Patel, L. Yang, L. Arulraj, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. M. Swift, “Avoiding scheduler subversion using scheduler-cooperative
locks,” Fifteenth European Conference on Computer Systems (EuroSys ’20),
Apr. 15, 2020. DOI: 10.1145/3342195.3387521. [Online]. Available: https:
//doi.org/10.1145/3342195.3387521.

[20] Y. Patel, C. Ye, A. Sinha, et al. “Using Trātr. to tame adversarial synchroniza-
tion.” (2022), [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/patel.

[21] “Pthreads pinlock(3)− linuxmanual page.” (), [Online]. Available: https://
man7.org/linux/man-pages/man3/pthread_spin_lock.3.html.

BIBLIOGRAPHY 43

[22] pthreads pinlock(3)−Linuxmanual page. [Online]. Available: https://man7.
org/linux/man-pages/man3/pthread_spin_lock.3.html.

[23] L. Sha Jr., R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization,” 9, Sep. 1990, pp. 1175–1176. [Online].
Available: https://www3.nd.edu/˜dwang5/courses/spring17/papers/
real-time/pip.pdf.

[24] G. Taubenfeld, Contention-Sensitive data structures and Algorithms. Jan. 1, 2009,
pp. 157–171. DOI: 10.1007/978-3-642-04355-0_17. [Online]. Available:
https://doi.org/10.1007/978-3-642-04355-0_17.

[25] G. Taubenfeld, “Fair synchronization,” Journal of Parallel and Distributed Com-
puting, vol. 97, pp. 1–10, Nov. 1, 2016. DOI: 10.1016/j.jpdc.2016.06.007.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2016.06.007.

[26] B. Tekinerdoğan and A. Oral, Performance isolation in Cloud-Based big data
architectures. Jan. 1, 2017, pp. 127–145. DOI: 10.1016/b978-0-12-805467-3.
00008-9. [Online]. Available: https://www.sciencedirect.com/science/
article/abs/pii/B9780128054673000089#.

[27] B. Verghese, A. Gupta, and M. Rosenblum, “Performance isolation,” Sigplan
Notices, vol. 33, no. 11, pp. 181–192, Oct. 1, 1998. DOI: 10.1145/291006.
291044. [Online]. Available: https://doi.org/10.1145/291006.291044.

Appendix A

Important Algorithms

A.1 Pthread spinlock

Algorithm 2 Spinlock
1: Variables:
2: lock ▷ Boolean variable indicating if the lock is acquired

3: Initialization:
4: lock← false ▷ Initialize lock as unlocked

5: Acquire Lock:
6: function ACQUIRELOCK
7: while lock = true do ▷ Spin until lock is acquired
8: do nothing
9: end while
10: lock← true ▷ Lock acquired
11: end function

12: Release Lock:
13: function RELEASELOCK
14: lock← false ▷ Unlock the lock
15: end function

44

Appendix A. Important Algorithms 45

A.2 Scheduler Cooperative Lock

Algorithm 3 Scheduler Cooperative Lock
1: procedure FAIRLOCK ACQUIRE
2: if current thread is the owner of this lock slice then
3: if no thread waiting on lock then
4: atomically mark lock as acquired
5: else
6: atomically change next thread from READY TO ACQUIRE to NEXT TO ACQUIRE
7: end if
8: if atomic operation succeeds then
9: record time and return
10: end if
11: end if
12: if current is banned then
13: wait until ban expires
14: end if
15: while True do
16: get the last thread waiting on lock and atomically swap it with current thread
17: retry if atomic operation fails
18: if no thread waiting on lock then
19: set current thread as ACQUIRED
20: set next thread of lock as current thread
21: else if next thread is holding the lock then
22: set current thread as NEXT TO ACQUIRE
23: set next thread of previous thread as current thread
24: else
25: set next thread of previous thread as current thread
26: wait for notification from previous thread
27: end if
28: wait until the current slice expires
29: wait until state becomes READY TO ACQUIRE and atomically swap it with ACQUIRED
30: if current thread has next thread waiting behind then
31: set next thread of lock as next thread of current thread
32: set next thread as NEXT TO ACQUIRE and notify
33: else
34: atomically mark lock as acquired
35: end if
36: set new lock slice and claims ownership
37: record time and return
38: end while
39: end procedure
40: procedure FAIRLOCK RELEASE
41: if no thread waiting on lock then
42: atomically mark lock as free
43: else
44: set next thread of lock as READY TO ACQUIRE
45: end if
46: measure critical section time and accumulate usage metric
47: if overuse lock time proportional to thread weight then
48: mark current thread as banned
49: relinquish lock slice
50: end if
51: end procedure

Appendix A. Important Algorithms 46

A.3 Linked list

Algorithm 4 Linked List Operations
1: Structure:

Node:
data
next

2: Insertion:
3: function INSERT(head,data)
4: newNode← createNode(data)
5: newNode.next← head
6: head← newNode
7: end function

8: Find:
9: function FIND(head, target)
10: if head = NULL then
11: return head
12: end if
13: if head.data = target then
14: return head
15: end if
16: curr← head.next
17: while curr ̸= NULL do
18: if curr.data = target then
19: return curr
20: end if
21: curr← curr.next
22: end while
23: return head
24: end function

Appendix A. Important Algorithms 47

A.4 Hash table

Algorithm 5 Hashtable Operations
Structure:
Hashtable:

array[size]

function HASHFUNCTION(key,size)
return key mod size

end function

function INSERT(table,key,value)
index← HASHFUNCTION(key,sizeof(table.array))
node← new Node with key and value
node.next← table.array[index]
table.array[index]← node

end function

function FIND(table,key)
index← HASHFUNCTION(key,sizeof(table.array))
current← table.array[index]
while current ̸= NULL do

if current.key = key then
return current.value

end if
current← current.next

end while
return NULL

end function

Appendix B

Table of Scenarios

48

A
ppendix

B
.

Table
ofS

cenarios
49

Scenario Fair? Why Desired Behaviour
Two threads are inserting into a shared data structure
2 threads are adding items to a linked-list No The rate of insertion is even with a fair No contention.
at an even rate. lock there is not much contention but

still some interference.

Threads are taking turns on the No One thread may hold the lock and We can use a Scheduler
same CPU. starve the other thread when it is Cooperative Lock.

running on the CPU.

Thread A adds entries at x times the No The thread with the lower rate may hold We can use a Scheduler
rate of Thread B. the lock for a disproportionate time. Cooperative Lock.

Thread A changes its insertion rate at No The lock opportunity time may not We can use a Scheduler
some point in change to reflect this. Cooperative Lock.
time.

Thread A makes inserts until a point No The lock opportunity time may not We can use a Scheduler
of time and then stops, thread B change to reflect this. Cooperative Lock.
continues.
There are entries already in the list and two threads want to insert more.
Thread A has x entries in the list - Depending on the data structure and the Thread B does not interact
and thread B now wants to add an insert functionality it may add to the front of with the entries of thread A.
entry. the struct, or need to traverse some entries.

Thread A has x entries in the list - Depends upon the functionality of the insert. Thread B does not interact
and thread B now wants to add y with the entries of thread A.
entries.

A
ppendix

B
.

Table
ofS

cenarios
50

Thread A has x entries in the list - Depends upon the functionality of the insert. The threads do not interact
and thread B and A now with the entries of the other
wants to add y, z entries. thread.

Each add x entries (“fairly”) then No Thread A must traverse some or all entries Thread A does not interact
Thread A does a lookup. of thread B. with the entries of thread B.

Both threads have inserted entries and now want to lookup data.
Thread A has inserted x more entries No Thread A must traverse some or all entries Thread A does not interact
before Thread B goes of thread B. with the entries of thread B.
in to do a find().

Thread B has one entry that No Thread B must traverse some or all entries Thread B does not interact
it will lookup every access of thread A, as the list grows it may get with the entries of thread A.
while Thread A is still adding entries. longer, increasing the find time.

Threads perform finds at an equal rate Yes The entries are shared by both threads so -
on shared entries. access to all entries is needed.

Threads perform finds at an equal rate No The threads must traverse entries added by There is no interaction with the
on only the entries they have added. the other thread. entries they have not added.

Threads perform finds at an unequal rate No The thread performing more finds may not
on only the entries they have added. One have a proportional opportunity for this,
thread performs x more finds th an the and within the structure it has to interact with
other. the entries of the other thread.

A
ppendix

B
.

Table
ofS

cenarios
51

Threads perform finds at an unequal rate No The thread performing more finds may not have a
on only the same entries. One thread proportional opportunity for this.
performs x more finds than the other.

A thread only performs finds on data Yes The entries are shared by both threads so -
added by other threads, it performs access to all entries is needed.
no insertions.

External factors have an effect on the threads.
One thread has a higher priority than No A simple lock will have no regard for the priority We can use an Scheduler
the other thread and so should have of the thread. Cooperative Lock.
a proportional access to the data.

Threads must find an entry within an No Another thread’s entries are the cause of not
within a certain time. They must provide providing these guarantees.
some performance guarantees.

A thread wants to delete entries from the structure.
A thread wants to delete all entries No They must traverse the entries of other threads There is no interaction with the
that were added by this thread. in order to find all of their own entries. entries they have not added.

We want to flush the data structure No One thread here is responsible for all the deletions The threads share this responsibility.
of all entries.

External factors have an effect on the data structure.
We must limit the size of the data Yes Some threads will be prevented from
structure due to memory constraints. inserting more entries or a

section on entries will be deleted.

A
ppendix

B
.

Table
ofS

cenarios
52

The primary purpose is storing data, Yes - -
and the structure is expected to be
large.

Entries must be unique. - - -

Entries must be sorted. - - -

The structure needs to be re-balanced. - - -

The structure uses some probability within . - - -
it’s find function.

Table B.1: Scenarios of uses cases for a data structure.

