
Development of SudoDuel: A Competitive
Online Multiplayer Sudoku Game

Thomas Tudor
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
The popularity of Sudoku has endured over time, with the game evolving to include
digital versions, themed variations, and online multiplayer modes. This project focuses
on the development process of SudoDuel, a competitive online multiplayer Sudoku
game. Key considerations in designing and implementing features for such a game are
investigated and discussed. Multiplayer functionality is crucial, allowing players to
compete or collaborate with others in real-time. To make sure the playing experience
remains smooth, it is crucial that the game can handle high volumes of players and has
good scalability.

When developing a game, creating an interface that is easy for users is also necessary.
This includes things like different levels of difficulty and notes aimed at improving the
actual playing experience. We also need to deal with issues in development, such as
synchronising events or managing big numbers of players at once. The project aims to
offer an understanding of the technical and design choices made for making SudoDuel.
This interactive online Sudoku game allows players to compete against each other.

i

Research Ethics Approval
Instructions: This project was planned in accordance with the Informatics Research
Ethics policy. It did not involve any aspects that required approval from the Informatics
Research Ethics committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Thomas Tudor)

ii

Acknowledgements
I would like to express gratitude towards my supervisor, Professor Nigel Topham, for
his assistance throughout the duration of the project.

I would also like to thank my friends and family for supporting me during the writing
of this paper.

Lastly, I extend my gratitude to the dedicated community and developers behind the
Godot Engine, whose efforts and commitment to open-source game development have
made this project possible.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 The Sudoku Problem . 3

2.1.1 Outlining The Problem . 3
2.1.2 Solving Sudoku Grids . 4

2.2 Game Design & Development . 5
2.2.1 Game Engines . 5
2.2.2 Game Design Elements . 7
2.2.3 Competitive Game Design 9
2.2.4 Game Development Process 10

2.3 Existing Applications . 11
2.3.1 UsDoku . 12
2.3.2 Sudokill . 12
2.3.3 Tetr.io . 12

3 Design 14
3.1 Gameplay . 14

3.1.1 Objective . 14
3.1.2 Competitive Twist . 15
3.1.3 Difficulty . 17
3.1.4 Game Balance . 18

3.2 Multiplayer . 19
3.2.1 Matchmaking . 19
3.2.2 Real-Time vs. Turn-Based 20

3.3 User Interface . 21
3.3.1 Layout . 21
3.3.2 Interactivity and Input Methods 22
3.3.3 Accessibility . 23
3.3.4 Aesthetics . 24

3.4 Requirements . 25
3.4.1 Gameplay Requirements . 25
3.4.2 Multiplayer Requirements 25
3.4.3 User Interface Requirements 25

3.5 Unimplemented Design Concepts 26

iv

3.5.1 Local Multiplayer . 26
3.5.2 Team Based Competition . 26
3.5.3 Bot Detection and Anti-Cheat 27

4 Implementation 28
4.1 Application Architecture . 28
4.2 Puzzle Generation . 29
4.3 User Interface . 30
4.4 Abilities . 30

4.4.1 Peek . 30
4.4.2 Rotate . 31
4.4.3 Redact . 31
4.4.4 Shield . 31
4.4.5 Double Points . 32
4.4.6 Hint . 32
4.4.7 Eraser . 32
4.4.8 Blur . 32
4.4.9 Lock . 32

4.5 Multiplayer . 32

5 Evaluation 34
5.1 Game Performance . 34

5.1.1 Storage Space Utilization . 34
5.1.2 Memory Usage . 35
5.1.3 CPU Usage . 36
5.1.4 Network Bandwidth . 37

5.2 Issues and Limitations . 37
5.3 Requirements Evaluation . 38

6 Conclusions 39
6.1 Achievements . 39
6.2 Improvements . 39
6.3 Future Extensions . 40
6.4 Final Remarks . 40

Bibliography 41

A Profiler Results 44

v

Chapter 1

Introduction

The evolution of game development, particularly within the realm of online multiplayer
platforms, presents an intricate blend of technical prowess, creative vision, and user
experience design. This field has expanded dramatically due to the progress in digital
technology, creating an environment for game developers to make exciting and interac-
tive experiences that bring together players worldwide. A competitive Sudoku game
for playing online against people across the globe, created using the Godot engine’s
robust features, is a clear sign of this advancement. This project aims to break down the
complex process involved in making a game that is accessible but also challenging and
goes beyond typical Sudoku by including competitive multiplayer aspects.

This paper delves into the comprehensive process behind designing and developing
a multiplayer Sudoku game. It goes into detail about the important choices in game-
play mechanics, network structure, user interface design, and compatibility between
platforms. It gives extra attention to difficulties and answers found in transforming a
puzzle game typically played alone into an interactive online multiplayer experience.
The conversation also includes the decision to use Godot as a development framework,
explaining its ability to handle the complicated networking needs of the game and make
the development process smooth.

The culmination of this project is a fully functional online multiplayer Sudoku game
compatible with Windows and Linux operating systems. It has a mode of quickplay that
lets players easily join online games, giving a smooth blending of competitive playing
inside the digital world. This version adds extra excitement to the regular Sudoku play.
Now, you can use abilities that affect the state of play and have the potential to slow
down your rival’s advancement. This brings new strategies and involvement that are
not seen in usual Sudoku games. Using these abilities together with matches against
opponents happening at that moment changes the solo puzzle experience into an active
and exciting mental fight where every game is about more than just solving puzzles
but also beating your competitor. This fresh method of Sudoku emphasises the game’s
unique role in digital gaming, providing a new and thrilling competition for those who
love Sudoku and competitive players too.

The following chapters of this paper analyse the project’s development cycle. Chapter

1

Chapter 1. Introduction 2

2 investigates the origins of Sudoku, game design principles, and similar applications.
This background information sets the stage for understanding the game’s design ratio-
nale. Chapter 3 talks about the design process, which involves gameplay mechanics,
multiplayer framework, and user interface. This chapter gives an understanding of the
gameplay decisions and technical thoughts that affected how the game was made. Chap-
ter 4 covers the technical implementation, including Godot’s High-Level Multiplayer
API, server management on DigitalOcean Droplets, and cross-platform compatibility.
Chapter 5 evaluates the game’s performance, limitations, and whether it met the require-
ments mentioned in Chapter 3. It provides beneficial information for possible game
improvements later on.

Chapter 2

Background

2.1 The Sudoku Problem

2.1.1 Outlining The Problem

The Sudoku puzzle is a specific variant of the mathematical problem known as Latin
Square theorised by Euler [6]. The modern problem started appearing in 1979 in
newspapers. The puzzles at the time were called Number Squares. They only started
gaining popularity in 1986 when Japanese puzzle company Nikoli published the same
style of problem under the name of Sudoku, meaning Single Digit or Single Number.

The total number of valid Sudoku grids is 6,670,903,752,021,072,936,960 [8]. This
number has been reduced to 5472730538, essentially different grids if you account for
transformations of existing grids using some symmetry. [24]

When it comes to ranking the difficulty of a Sudoku problem there are a few criteria that
determine it. The most obvious one is the number of clues in the grid. Logic assumes
that the more clues available, the easier the given problem. Researchers Maji et al. [19]
used Table 2.1 to compare difficulty to the number of clues provided, scaling from
Extremely Easy to Evil. Figure 2.1 is an example of an easy Sudoku problem from
Sudoku.com [4].

Take notice of the fact that evil difficulty Sudoku Problems have a minimum of 17 clues.
The problem of minimum Sudoku problem was first proven in 2010 by Lin & Wu [18]
using Artificial Intelligence. This was elaborated and confirmed by McGuire [20] in
2012.

Table 2.1: Number of clues for each difficulty level

Difficulty Level # of Clues
1 (Extremely Easy) > 46
2 (Easy) 36−46
3 (Medium) 32−35
4 (Difficult) 28−31
5 (Evil) 17−27

3

Chapter 2. Background 4

8 2 9 1
2 3 4 5 1 7
7 1 8 5 4
6 1 3 5
1 8 5 7 2

4 6 2 8
6 8 4

1 6 2
4 7 5 3

Figure 2.1: Easy Sudoku Problem

2.1.2 Solving Sudoku Grids

Sudoku puzzles have been extensively researched. To the masses of readers of the
newspapers, people often use popular techniques such as ”X-Wing” or ”Swordfish”[15]
to solve complex grids. These are examples of propagation techniques that can be used
in a constraint problem.

The general problem of n2 ×n2 boards of n×n blocks, however, has been proven to be
NP-Complete by Yato and Seta in 2003[34]. Because of this, specific algorithms can
be used to solve a Sudoku grid. The most straightforward algorithm to implement is a
brute-force method known as backtracking.

Backtracking can be described as, for a given problem, exploring all the potential nodes
of a particular branch and, if none are valid, going up one node, making a new branch,
and exploring all the potential nodes there. This depth-first search strategy is guaranteed
to find all solutions, given enough time, to a Sudoku puzzle given the finite number of
valid grids. For a Sudoku problem, the algorithm will go through each cell and assign
it a number from 1-9; then, it will check that the grid is valid at that point. If it is, it
will proceed to the next cell; if it is not, it will try the next digit until it is either invalid
for all numbers or proceeds. If the algorithm finds that none of the numbers 1-9 fit
that particular cell, it will go to the previous cell and try the next digit. Eventually, if
a solution is found, the algorithm will terminate. Otherwise, it will try every single
possible solution in the search space. Figure 2.2 shows a simplified visual representation
made by Pelánek of the backtracking algorithm.[21]

Chapter 2. Background 5

Figure 2.2: Simplified Representation of Sudoku Backtracking for a 4x4 grid. Numbers
over arrows indicate number of steps without branching

This algorithm can be improved upon as, at the moment, the algorithm has a time
complexity of O(9n) where n is the number of empty spaces. The most noticeable
improvements are cell ordering and value elimination. Cell ordering is sorting the
available spaces by their constraints and using the most constrained cells first. Value
elimination is an improvement that removes any potential values for a given cell that
would be invalid. Alternatively, values could be ordered to use the most common or
used numbers first to speed up the backtracking process.

2.2 Game Design & Development

2.2.1 Game Engines

This section will outline the different choices of game engines I had access to in this
project and each of their pros and cons with developing them.

2.2.1.1 Unity

The Unity Game Engine[30], made by Unity Technologies, is a widely used 2D &
3D game engine and IDE. The engine can produce applications for a wide range of
platforms. In terms of puzzle games made on the platform, some notable names include
Monument Valley[10], The Room Series[10] & Lara Croft Go[14].

In terms of features, Unity has a visual interface that allows developers to create and
edit game scenes, manage assets, and tweak settings. It provides a WYSIWYG (What
You See Is What You Get) environment where game elements can be dragged, dropped,
and arranged as the developer sees fit.

Game scripts are written in Microsoft’s C# programming language. Unity has its own
”GameObject” class, where several different components can be assigned to the object
to define its behaviour or actions.[31] These components include but are not limited

Chapter 2. Background 6

to rendering, physics, sound, and scripting. Scripting components are created using
Unity’s ”MonoBehaviour” class[32] and allow for many different object behaviours.

2.2.1.2 Unreal Engine

The Unreal Engine, developed by Epic Games, is a highly regarded game engine and
development environment. The engine boasts capabilities to craft games for a diverse
array of platforms. Regarding puzzle games crafted using this engine, notable mentions
are The Witness, Q.U.B.E. 2, and Tetris Effect.

As for its functionalities, Unreal Engine provides a visual workspace known as the
Blueprint system that offers developers an intuitive way to design gameplay mechanics
and events without the immediate need for code. It embodies a node-based interface
where game logic can be visually pieced together, offering a direct insight into how
events will unfold in the game.

If not done through Blueprints, gameplay scripts and logic are primarily crafted using
C++ in Unreal, ensuring robustness and flexibility in the development process. The
engine has a core “Actor” class, which is the foundation for all interactive objects.
Similarly to Unity, various components, like mesh rendering, physics simulations,
audio, and AI behaviours, can be attached to these actors. Using its “UObject” class and
associated subclasses, developers can design intricate and diverse gameplay elements
tailored to their vision.

If the Unreal Engine were to be used to make the Sudoku application, Unreal would
feature a dedicated toolset for 2D games called Paper2D. It offers sprites, flip-books for
animations, tile maps for grid-based level design, and specialised 2D physics. Integrated
with Unreal’s powerful Blueprint visual scripting system, Paper2D allows developers
to create efficient and visually compelling 2D games within the Unreal environment.
While not as popular as some other 2D-focused engines, it provides a robust platform
for those seeking the capabilities of Unreal in a 2D space.

2.2.1.3 Godot

The Godot engine is an open-source, cross-platform game development tool designed
to provide developers with a powerful and user-friendly platform for creating games. It
has been designed to facilitate the creation of both 2D and 3D games across a variety of
platforms. When considering its use for puzzle games such as Sudoku, Godot’s flexible
scene system and easy-to-use script language, GDScript, make it a suitable choice for
developers such as myself aiming to create games like online multiplayer Sudoku.

One of Godot’s key features is its scene and node architecture, which allows developers
to organize game elements in a modular and reusable manner. This system is particularly
beneficial for the structured design required in a Sudoku application, where different
game components can be managed and interacted with efficiently.

For gameplay logic, as previously mentioned, Godot offers GDScript, a Python-like
scripting language designed to be accessible to newcomers while still powerful enough
for advanced users. Additionally, the engine supports VisualScript, a node-based

Chapter 2. Background 7

Figure 2.3: The Godot Development Environment

programming language, and C#, providing developers with multiple options to suit their
preferences or project requirements.

With online multiplayer capabilities, Godot features a high-level multiplayer API to
make the setup of multiplayer sessions more straightforward. In particular, Godot
features a dedicated MultiplayerSynchronizer node, which can synchronise different
objects between peers simply and intuitively.

Godot does have some limitations. It is a versatile tool for many games, but its
performance may lag behind other engines for highly demanding 3D applications and
games. Fortunately, this is less of a concern for a Sudoku game, which is not graphically
intensive. Another drawback of the engine is that it has a much smaller community
than Unity or Unreal. As a result, fewer third-party tools and assets are available to
developers, requiring them to invest more time to create custom solutions.

However, despite these drawbacks, Godot’s dedication to being open-source and free
means there are no financial barriers to entry making it an appealing option for solo
developers and small studios. The active community and comprehensive documentation
further support developers through the development process.

For a project like an online multiplayer Sudoku game, Godot’s strength in cross-platform
development, flexible scripting languages, and solid networking capabilities make it a
strong candidate. While the engine’s limitations in terms of third-party add-ons and a
relatively steep learning curve for networking might pose challenges, the comprehensive
development environment and active community support made it the most compelling
option for this project.

2.2.2 Game Design Elements

When developing any sort of game, the core gameplay loop and its mechanics are
critical to get right to achieve an enjoyable game. In this context, a gameplay loop
refers to a sequence of actions that players repeat over and over as the core of their
interactive experience with a game. For example, in the case of solving a Sudoku puzzle,
the gameplay loop consists of identifying empty cells, analyzing existing numbers in

Chapter 2. Background 8

the row, column or square that the cell is in, and filling in the cell with an appropriate
number. Fabricatore explains the importance of core gameplay[7] which he defines
as the activities the player will undertake most during a game. He also says that the
mechanics that enable this core gameplay are the most critical things that should be
designed.

Fabricatore also recommends minimizing the number of core mechanics and their
complexity whilst also ensuring that these mechanics stay relevant and do not become
redundant. Maintaining relevance allows players to gain a sense of mastery over these
mechanics by repeating the core activities. Finally, he also suggests including ”satellite
mechanics” to add variations and keep the gameplay fresh using variations on existing
mechanics.

Adams and Dormans provide a framework for analyzing game mechanics in terms of
their effect on the player’s physical and mental skills.[1] They categorize core mechanics
as those that are available to the player throughout the majority of the game and directly
impact progress, aligning with Fabricatore’s definition. Designing compelling core
gameplay with balanced and engaging mechanics is crucial to a game’s success.

In the context of Sudoku and similar puzzle games, Rollings and Adams point out[23]
that the core gameplay loop in puzzle games typically revolves around the player
attempting to solve a puzzle using logic, deduction, pattern recognition, or trial-and-
error experimentation. Schell notes[26] that puzzles themselves are the main mechanic,
and rules constraining the player’s manipulation of the puzzle elements create the
challenge. Sudoku is a well-known puzzle format, and thus, the underlying mechanic is
standard; the difficulty in developing a competitive multiplayer variation on Sudoku is
to modify the underlying mechanics in such a way that provides engagement and fun
without drastically affecting the gameplay loop.

Unlike action games, progression in puzzle games such as Sudoku, is usually discrete
and tied to solving each self-contained puzzle. Since the core logical rules of Sudoku
tend to remain constant, the progression takes the form of the overall skill of the player
when it comes to solving Sudoku boards. As a player does more puzzles, they should
be able to complete them faster, as they become better suited at analysing the board and
making logical deductions faster.

As Koster explains[16], puzzle games can create variety by changing the visual pre-
sentation or specific puzzle configurations between levels. But the underlying abstract
mechanics, whether arranging shapes in Tetris or filling a grid in Sudoku, are often
tightly constrained and elegant in their simplicity. This allows the player to focus on
mentally engaging with the puzzle rather than manipulating complex game objects.

To summarise, the core gameplay in puzzle games like Sudoku revolves around the
abstract mechanics of the puzzles themselves. Designers craft the specific puzzle
instances and their difficulty to create an engaging solo or competitive experience.
The minimal interface and constrained interactions focus on the mental challenge of
puzzle-solving using logic and deduction.

Chapter 2. Background 9

2.2.3 Competitive Game Design

Competitive game design involves creating game systems and rulesets that facilitate en-
joyable player-versus-player experiences. A key aspect is ensuring a level playing field
where skill and strategy determine the winner, rather than luck or unfair advantages[29].
In a multiplayer Sudoku game, this means generating puzzles of equal difficulty for all
players or generating the same board. And provide them both with the same interface,
controls, and access to any extra or additional features.

Another important factor in competitive games is the depth of strategy and decision-
making. Games with a wide possibility space for player choices, risks, and optimization
usually provide greater strategic depth according to Burgun[2]. Sudoku’s gameplay is
inherently deep, requiring players to make logic-based decisions about which numbers
to place constantly. Designers can further increase depth through mechanics like
power-ups or abilities that can negatively affect an opponent.

In multiplayer Tetris games, clearing multiple lines at once will send ”garbage” rows
to the opponent’s playfield, which appear at the bottom and push their existing blocks
upward[33] Garbage rows usually contain gaps, requiring the opponent to clear them
strategically to avoid reaching the top of the playfield. The number of garbage rows
sent depends on the line type clear - for example, a Tetris (4 lines) will send four rows
of garbage.

Garbage adds an important competitive mechanic to player-versus-player Tetris. Players
aim to send as much garbage as possible to their opponents while managing the garbage
they receive. This creates an intense back-and-forth dynamic as players try to overwhelm
each other with successive attacks. Quick reactions and strategic planning are vital to
countering incoming garbage and launching effective counterattacks.

A similar mechanic could be adapted to a competitive multiplayer Sudoku game. Filling
in enough cells or completing rows, columns or squares could let the player cause an
effect on the opponent’s grid that could hinder their performance, such as obscuring
their view or deleting their notes. Players would need to adapt their problem-solving
strategies to work around these obstacles while finding opportunities to attack their
opponent back.

Over time, competitive games often give rise to a ”metagame” - the most popular
strategies, tactics, and setups that emerge around a game[25]. Metagames arise as
players discover dominant and practical techniques, counter-strategies, and cyclical
patterns in high-end play. They make up ”the game outside the game”, which is the
ever-evolving body of knowledge and techniques that shape how the game is played at
the highest levels of competition as explained by Elias et al.[5]

In a competitive multiplayer Sudoku game, a metagame could emerge around the most
efficient solving patterns, logic deduction techniques, or the most advantageous abilities
to select and when to use them. For example, the community could develop strategies to
identify and execute multi-cell patterns quickly. The player base could also figure out an
optimal loadout of abilities to impact their opponent the most. Counter-strategies would
likely arise as these strategies become widely adopted, creating an evolving metagame.

Chapter 2. Background 10

Elias et al. also explain that a healthy metagame can deepen the strategic complexity
of a game and reward player ingenuity[5]. As players continually seek to outplay
established strategies, they push the boundaries of the game and uncover new ways to
play. This can extend the lifespan of a competitive game by keeping it dynamic and
challenging long after the core mechanics have been mastered.

Metagames can also have downsides. If a metagame becomes too stagnant or if a
particular strategy ”solves” the game, with only a narrow range of viable playstyles, it
can lead to repetitive matches as discussed by Harper[12]. Overly dominant strategies
can make a game feel imbalanced and limit the room for player creativity. In a Sudoku
context, if an unbeatable solving pattern or technique is discovered, it could undermine
the integrity of the competition.

To ensure a metagame stays fresh, developers can release balance patches, introduce
new mechanics, or provide tools for players to customise the game. In a competitive
Sudoku game, this could mean adding new abilities for players to use, modifying the
way current abilities work, or introducing new win conditions that disrupt established
patterns, such as limiting mistakes. By carefully monitoring the metagame and making
informed interventions, designers can sustain a dynamic competitive environment.

Anticipating and shaping the metagame is a key consideration in competitive game
design. For a multiplayer Sudoku game, the designer should aim to create mechanics
that allow for a diverse range of viable playstyles and counter-play. By striking a balance
between rewarding skill and leaving room for innovation, they can cultivate an engaging
metagame that enhances the depth and longevity of the competitive experience.

2.2.4 Game Development Process

The method of making a video game is called the game development process. This pro-
cess follows a planned structure, starting from ideas to final release. Game development
goes through many stages for designing, building and testing the game so it works well
and gives pleasure to players. The various stages of development are discussed below.

2.2.4.1 Pre-Production

Pre-production is the initial phase where the game concept is conceived and refined[26].
Game designers think up ideas, explore themes, and establish core gameplay mechanics.
They also carry out market investigations to know about the people they are aiming
at with their game, look into rivals’ games, and find trends in gaming[3]. The pre-
production stage ends with the making of a Game Design Document (GDD). It acts as a
detailed plan for the whole project, explaining all aspects like the game’s characteristics,
narrative, persons, and general design as explained by Rogers[22].

During pre-production, developers also create prototypes to test and refine the core
mechanics. It is a method that enables developers to test out multiple ideas and receive
input at the beginning stages of development. Fullerton explains the importance of
prototyping[9] as it assists in finding design mistakes and improving the play experience.
This iterative process helps find out possible problems and guarantees that the game is
enjoyable before too much time or resources are invested into complete production

Chapter 2. Background 11

2.2.4.2 Production

Once the pre-production phase is complete, the game enters the production phase of
development. This is where the actual development of the game takes place. Assets
such as models, textures, and audio are created while programmers implement gameplay
mechanics and features.

The production phase is highly iterative; the game goes through many loops of devel-
opment, testing, and polishing. As a solo developer, I’m expected to fulfill multiple
roles including researcher, designer, artist, programmer, and tester. Effective project
management during production is necessary to maintain the development process.[3]
This involves task allocation, progress tracking, risk management, and ensuring the
various parts of the game work cohesively to achieve the project goals. Poor project
management can lead to delays, cost overruns, and a compromised final product.

2.2.4.3 Testing and Quality Assurance

To guarantee a stable and bug-free release, thorough testing is essential for the game.
QA teams conduct different types of tests, such as functionality testing, compatibility
testing, and playtesting, to evaluate the user experience and ensure a balanced game.[27]

Playtesting should produce ideas and feedback for improvement. It should also test the
wide variety of platforms and configurations the game is supposed to be built for. The
game should support each platform as laid out in the GDD and should be optimized
for each platform. User experience research is another crucial aspect of QA, where
unbiased feedback is gathered from players to make necessary adjustments to gameplay
and features, ensuring that the game delivers the intended experience

2.2.4.4 Release and Post-Launch Support

Last but not least the release phase is when the game development process comes to its
peak, and the game becomes accessible for everyone. But, it doesn’t mean that work is
over. Post-launch support and live operations are very important for keeping up with
changes in market conditions and making improvements to the game as time goes on.

Post-launch support is for handling any troubles that show up after the game’s launch,
like fixing bugs, improving performance, and balancing adjustments. Live operations
are about maintaining the game’s appeal by introducing fresh content and features for
players.

This project focuses primarily on the pre-production and production phases of game
development. But, the testing/QA and post-launch phases are also crucial for a game’s
success. So, they could be examined more in a subsequent project.

2.3 Existing Applications

Sudoku is an extremely popular puzzle and thus several applications allow users to gen-
erate and solve Sudoku puzzles in a competitive manner using timers and leaderboards
and there are also other multiplayer versions of Sudoku. The version of Sudoku I have

Chapter 2. Background 12

made however is closer to other similar competitive puzzle games which I will detail
below. That being said, there is not much literature on the topic of competitive Sudoku
however there are some relevant and adjacent applications which are discussed below.

2.3.1 UsDoku

UsDoku is a website that offers a multiplayer Sudoku experience. Players can run games
for others to join and then either can compete against each other to see who is faster
or help each other solve a board more cooperatively. Games are run in real-time and
provide an interactive way to enjoy Sudoku, adding a social element to the traditionally
solo puzzle-solving activity.

Players can create either public or private rooms to run games and these games can
be of easy, medium, or hard difficulty boards. Public rooms are available via a server
browser and private rooms can be joined via a unique 4-letter code that the host can
share.

2.3.2 Sudokill

Sudokill introduces an innovative competitive twist to a traditional Sudoku puzzle,
turning it into a turn-based dynamic two-player game. It started as a class project in
a heuristics course at New York University where students were tasked with making
”player bots” that real users could play against.

The game is hosted online, allowing players to connect from anywhere. To start playing,
participants enter their player names on the start page and connect to the game. Once
connected, players can either join a game and choose to compete against other online
players or select a computer-controlled opponent from a list.

The gameplay involves taking turns to place numbers on the Sudoku board. The first
move can be placed in any free square, but subsequent moves must be made in the same
row or column as the opponent’s last move, provided there’s an open square available.
If no such space exists, the player is free to choose any open square on the board for
their next move. The core objective of Sudokill is to not only complete the Sudoku
grid correctly but to strategically force your opponent to make an illegal move, one that
violates the rules of Sudoku. This competitive edge and the additional rules add a layer
of strategy and anticipation, as players must think several steps ahead to outmaneuver
their opponents players can intentionally insert incorrect numbers into the grid provided
they are legal moves, allowing players to set traps.

2.3.3 Tetr.io

Tetr.io, made by OSK, is a free-to-play online multiplayer and single-player version of
the classic game called Tetris. It offers both competitive and casual gameplay options
depending on the user’s preference. Players can choose to participate in ranked matches
against people around the world through a ”Tetra League” mode, or they can play
casually with quick play or custom rooms.

Chapter 2. Background 13

The game features mechanics such as a standard ”change on attack” attacking system,
adjustable tuning settings, and a new attack table with a ”multiplier” system. In standard
games of multiplayer Tetris, a very common strategy was to leave a four-wide gap in the
board, either in the center or at one of the sides. In Tetr.io however, players are rewarded
when executing several ”difficult” moves such as T-spins or quad clears. Building up
a multiplier means more garbage will be sent to your opponent, meaning that if you
risk tricker moves, you will be rewarded for it. With the inclusion of this ”multiplier”
system, Tetr.io was able to take an existing game with a somewhat stale metagame
and introduce a new mechanic that made the game more interesting in the higher-level
competitive scene.

Most of the essential game mechanics and multiplayer aspects of an online Tetris game,
like Tetr.io, can be applied to an online Sudoku game with no significant alterations. For
instance: the scoring method in Tetris where players gain points for line clears, combos,
etc., could be changed in Sudoku to give points for finishing squares, rows, or columns.
The online multiplayer feature where Tetris players can compete in real-time could
be transferred to enable Sudoku players to race against each other, trying to complete
the same puzzle at the same time. Therefore, even though the rules for these games
are not the same, we can reuse the basic technical setup and design patterns that make
competitive multiplayer possible. This only needs a few changes to adjust for different
game mechanics.

Chapter 3

Design

3.1 Gameplay

In this section, we discuss what a normal round of the game that has been developed
looks like. The core gameplay of the competitive multiplayer Sudoku game is to
combine the traditional puzzle-solving experience with fast-paced and competitive
elements to create a continually active gaming experience. Players are tasked with
filling a 9x9 grid with digits so that each column, each row, and each of the nine 3x3
subgrids contain all of the digits from 1 to 9, adhering to the classic Sudoku rules. The
game is won by the first player to solve their board, or if time runs out, the player with
the most points. The application brings extra competitive elements that we will talk
about below.

3.1.1 Objective

The Sudoku game’s main goal is to involve two players in a 1 versus 1 competition
to solve a normal 9x9 Sudoku board. The board is randomly generated with a single
solution. For quick games, the grids should be of easier difficulty having between
36-46 clues according to the table used by Maji et al[19]. This should allow players
to solve the board in a short amount of time. The inclusion of a planned time limit of
four minutes per puzzle helps reinforce the importance of quick thinking and decision-
making, turning each session into an exciting competition against both time and your
rival.

While the elements of competition can make the game more thrilling, we should always
see if an individual is engaged in solving the board as the main goal. The aim is to fill
in the entire grid correctly. Success should come from a mix of speed, accuracy, and
logical deduction equally. Depending on the strategy or method they use to complete the
task at hand (filling in each cell), someone who values quickness shouldn’t necessarily
outperform someone else with identical experience but different priorities such as
focusing on accuracy instead. To keep the game fair and interesting each player is given
the same randomly generated solvable board with the same available clues.

14

Chapter 3. Design 15

3.1.2 Competitive Twist

To make my game unique compared to similar applications, the game introduces a
competitive twist. This is inspired by the lively and head-to-head feel found in other
multiplayer puzzle games such as Tetris or Puyo Puyo. The twist brings an element of
strategy and surprise which makes the experience more exciting. Players not only need
to complete their grids within the time limit but also are engaged in a battle against their
opponent where they can use different abilities to get ahead or interfere with other’s
progress by earning points by solving tiles correctly.

3.1.2.1 Points Acquisition

As a round of the game goes on, players will accumulate points as they correctly fill
in tiles. When a cell is filled correctly by a player, it grants them 1 point. If someone
fills out the cell without employing any jottings on that specific cell and answers it
correct on their first attempt, they get 2 points. This encourages accurate puzzle-solving
under the pressure of competition whilst also making it so that players need to use their
mind and Sudoku-solving abilities, taking the game to a more advanced level. Finally,
one last incentive is that completing a row, column, or square will earn the player 5
additional points.

This system of points is fair because it rewards various aspects of playing. The main
point you get when solving a tile is that players are always involved and they know
they will be rewarded for their attempts. The extra point received for filling in the tile
without any notes creates a balance between risk and reward, allowing players to decide
if they want more points but with the possibility of making mistakes and losing all
earned points from that specific tile. Lastly, the bonus for finishing a row, column, or
square improves this strategic aspect. It motivates players to not only solve separate
tiles on their own but also consider the puzzle as a whole.

As an example take the Sudoku grid in Figure 3.1 with 38 clues. A beginner player who
uses jottings has the potential to earn 178 points on this grid as there are 43 available
tiles and a combined total of 27 rows, columns, and squares available, which is the
maximum, totalling 135 points. At the same time, a skilled player who can solve tiles
without making jottings would get 221 points because they earn twice as many from the
no-jotting bonus.

Chapter 3. Design 16

8 2 9 1
2 3 4 5 1 7
7 1 8 5 4
6 1 3 5
1 8 5 7 2

4 6 2 8
6 8 4

1 6 2
4 7 5 3

Figure 3.1: Easy Sudoku Problem with 38 Clues

To avoid cheating or exploiting, the game confirms if jottings were ever used for the tile.
This stops players from simply deleting their jottings before filling in the tile.

3.1.2.2 Abilities

The accrued points can then be spent on abilities to affect the flow of the game. Abilities
are mainly employed for two purposes - one is to influence positively on your board
while the other is to impact negatively on your opponent’s board. Using these abilities
strategically may potentially alter a game’s outcome significantly at crucial moments,
rendering every match thrilling and unpredictable. In an ideal scenario, this could help
Sudoku match-ups become less lopsided where less-experienced players have better
chances against those who are more skilled or knowledgeable in playing Sudoku.

Depending on the strength of the effect each ability has a different point cost associated
with it. The abilities are split into 3 tiers of point cost, with the weakest being 15 points,
the middle tier being 30 points, and the strongest being 45 points. For every ability
there is also an associated timeout period expressed in seconds that matches its point
cost; this prevents abilities from being used repeatedly and enforces a need for strategic
use.

Abilities that are to be implemented are outlined below

• Redact - 15 Points - Temporarily blocks a random row or column on the oppo-
nent’s board, obscuring their view. It hampers their advancement by slowing
down work in that area.

• Erase - 45 Points - Removes all notes or jottings from the opponent’s board. Since
notes are very important for strategizing in Sudoku, removing them can greatly
disadvantage an opponent.

• Shield - 30 Points - This defensive move shields you from the next hostile ability
your opponent uses. It helps to protect your progress and also makes the adversary
use up their points without effect.

• Hint - 30 Points - Fills in 2 random tiles on the player’s board correctly. This boost
can speed up a player’s progress, providing a significant advantage, especially
when used strategically.

Chapter 3. Design 17

• Peek - 15 Points - This ability lets players look at their opponent’s board for five
seconds. It is an information-based power that can unblur the other player’s board.
So, you can not only copy filled-in tiles but also it gives hints about whether you
should attack or defend.

• Rotate - 15 Points - Rotates the opponent’s board by 90 degrees in a random
direction. This can cause some initial confusion to an opponent as it disorientates
them before they resume their puzzle-solving.

• Double Points - 30 Points - For the next 30 seconds, each tile solved accurately
will give double points. This effect doesn’t influence the bonus for completing a
row/column/square, but it encourages fast and correct solving of single tiles.

• Blind - 45 Points - This powerful ability allows players to blind their opponent by
applying the same blur effect used to obscure the opponent’s board. For the next
15 seconds, the opponent’s board is obscured heavily hindering their ability to
make progress, allowing the player to potentially get ahead of their opponent.

• Lock - 45 Points - The player can put a lock on any number of their choice for
the next 30 seconds. During this time, the opponent cannot place that particular
number anywhere on their board. To use it well the player must have good timing
and understand what numbers are important to their opponent’s board state; if they
succeed in blocking a key number this could potentially stall the other player’s
progress

3.1.3 Difficulty

In the subject of Sudoku, the challenge and appeal often lie in the puzzle’s difficulty
which can range from straightforward to extremely complex. In the design of this
competitive multiplayer Sudoku game, the decision to classify all generated boards as
”Easy” with 36-46 clues provided serves a specific purpose. This is done purposely
to keep the speed fast and make it accessible for players of different skill levels. This
method finds a good middle ground: it’s not too hard for new players, yet the extra
mechanics provide a satisfying challenge for experienced ones. It also ensures that
matches are brief and engaging.

Each round of the game is restricted by a four-minute time limit, a design choice that
injects a sense of urgency into the gameplay. This time constraint encourages quick
thinking and decision-making, pushing players to refine their strategies under pressure.
The inclusion of an ”Easy” difficulty setting across the board does not lessen the game’s
challenge but rather ensures that the competition remains a key focal point, with players
not only challenging themselves by solving the puzzle but also challenging each other
and competing against their opponent’s tactics. This difficulty is selected to maintain
quick and lively matches, avoiding lengthy standoffs while keeping a constant stream of
competitive play. It also permits more varied methods for solving boards; players may
tackle different parts of the board in their own unique manner. Using a harder difficulty
board could lead to a more linear solution which would hinder some of the abilities
listed previously, affecting engagement.

Chapter 3. Design 18

Finally, the ”Easy” difficulty setting facilitates a more inclusive gaming experience,
making it simpler for individuals who are not familiar or skilled with solving com-
plicated puzzles to participate and enhance their abilities. The decision to choose an
easier difficulty should offer an approachable entry point to the Sudoku community,
where learning and competition go hand in hand. As players get to grips with solving
Sudoku puzzles, the challenge shifts from solving the puzzle to mastering the strategic
use of abilities to outmanoeuvre opponents within the time limit and figuring out which
abilities fit their playstyle the best. This delicate way of handling difficulty makes the
game not too hard but still interesting, giving pleasure to all players.

3.1.4 Game Balance

In my game, achieving game balance is tied to the design of the abilities system and
the methodology behind point acquisition. This equilibrium becomes very important
for making sure that games are fair and competitive, giving an interesting experience
where good strategies and skilful playing get rewarded. The abilities system allows
players to use points obtained from solving tiles to affect their board or interrupt their
opponent’s progress. This introduces a tactical element that goes beyond just solving
Sudoku problems traditionally. The costs assigned to these abilities, along with their
cooldown periods, are adjusted to motivate careful and strategic activation rather than
repetitive use. Abilities that have a big effect come with more costs and need a longer
time to recharge; this guarantees that players must think carefully about when they want
to use them based on their present situation.

The equal distribution of opportunities between opponents is essential to the game’s
balance. Initially, they begin with the same puzzle setup and starting clues. This
indicates that success is not based on chance, but more on skill and tactics. During a
game round, both boards are shown on the screen all the time. But the opponent’s board
is blurred; only showing where tiles are filled but not revealing their numbers. This
brings in a strategic element of uncertainty while still letting players understand how
far along others have come in their own progress—yet they cannot copy moves directly
unless helped by an ability that keeps it fair and competitive.

For the abilities system, all players have access to the 9 abilities. But before a game
starts, each player must select one ability from every point tier. This is done to make
sure there’s balance in choices of abilities. This selection necessitates a good sense of
strategy as it needs to take into account, not just personal strong points and weak points
that could be aided by selecting specific abilities but also predict possible upcoming
difficulties or chances for attacking and defending. However, points are also a precious
resource. If the players run out of time, then the victory goes to the player with the most
points. This forces players to determine if using abilities is worth the risk of potentially
having a lower point score overall, possibly leading to defeat.

Through these carefully considered design elements, the game strives to foster an
environment where good decision-making, adaptability, and Sudoku-solving prowess
are equally rewarded. This approach promotes an environment where each match is a
test of not only puzzle-solving ability but also wit; it’s possible for strategic choices to
greatly influence the competition’s outcome. The game maintains a fair competitive

Chapter 3. Design 19

landscape by giving all players equal tools and the same challenge, allowing success to
be determined by skill, strategy, and good tactics.

3.2 Multiplayer

The multiplayer component of the Sudoku game is designed around a real-time, server-
client model to deliver a seamless competitive experience. This architecture is chosen
to optimize performance, reliability, and scalability, accommodating a broad player
base while maintaining game integrity and responsiveness. By employing dedicated
servers for matchmaking and game management, players are afforded the convenience
of quickly finding and entering games, ensuring a smooth and efficient path from the
lobby to gameplay. For people who want a game that is more private or controllable,
the option to host a server on one peer’s machine allows for direct connections through
IP addresses and ports. This choice gives players the flexibility to compete in the larger
community or within their environment. The server instances are made to use resources
efficiently, reducing delays and making sure the game stays in real-time. This method
of multiplayer design was chosen to offer a reliable and easy-to-use platform for fans of
Sudoku.

3.2.1 Matchmaking

The matchmaking system in the Sudoku application has been designed to accommo-
date both spontaneous and planned multiplayer encounters, ensuring that players can
engage in competitive puzzles according to their preferences. This dual approach to
matchmaking is one of the game’s aspects that help its accessibility and community
engagement, while also addressing the practical aspects of online connectivity and
server management.

Through the matchmaking options below, I have aimed the game to cater to a wide
range of player preferences, ensuring that every player can find the competitive Sudoku
experience that they are looking for, whether through quick and easy random matchups
or the aimed nature of direct connection.

3.2.1.1 Random Matchmaking

For players looking to just boot up the application and get right into a game, the random
matchmaking option serves this purpose. When chosen, players begin connecting to
a dedicated server that cycles through all game instances hosted across various ports,
stopping at the first instance with an open player slot. This process is designed to
be quick, painless, and, ideally, easily scalable. The matchmaking system prioritizes
quickly putting players in a game, using many server instances for lower waiting times.
When two players are connected to the same game instance, they start playing without
any delay. Because each game is on its own instance, if one server crashes, then others
are not impacted, and matchmaking can still cycle past the downed instance.

To summarize, this method offers a straightforward way for players to test their skills
against a random opponent, making every match a new and exciting challenge provided

Chapter 3. Design 20

there is a diverse enough player base.

3.2.1.2 Direct Connection

For users seeking a more tailored multiplayer experience, the option to host a game
lobby on their machine provides a perfect solution. Players can create their own game
server, essentially allowing one of the players to act as both the host server and a player
simultaneously, which others can join by entering the host’s IP address and port number.
This setup is ideal for friends looking to compete directly with one another or if games
need to be played in a tournament-like environment. While this method requires the
host to configure port forwarding on their router, the steps to do so are relatively simple
and other popular multiplayer games such as Minecraft or Terraria require this to host
servers as well.

3.2.2 Real-Time vs. Turn-Based

The decision between real-time and turn-based gameplay is important in crafting not
just a Sudoku application but also for designing any multiplayer puzzle game. Each
format has its own benefits and disadvantages, affecting player interaction with the
game and other players.

In a turn-based system, players would take turns making moves, potentially following
speed chess rules where players have a set amount of time to make all their moves. If
someone uses up all their time before the game ends then they lose. This way of playing
allows for more thought and strategy because people can take longer to plan out what
they will do next in the game. It brings down the stress related to quick decision-making,
converting the game into more of a puzzle-solving skill and less about swiftness. The
main problem with turn-based playing is that it has the potential to slow down the
game’s speed significantly, leading to longer matches and reducing the sense of urgency.
Additionally, it might not fully capitalize on the competitive, high-energy potential I
have set out in the creation of this game, where part of enjoyment comes from direct
and immediate competition.

Alternatively, opting for a real-time format introduces a dynamic and fast-paced environ-
ment where players act simultaneously. This approach heightens the sense of urgency
and competition; not only must players hurry to solve puzzles, but they also compete
against time and their opponent. Real-time gameplay emphasizes quick mental analy-
sis, adaptability, and stress-handling skills which can decide victory or defeat within
seconds of gameplay. There are some potential flaws with the real-time system. One
could be that the need for fast action in a game could make players concentrate more
on short-term moves rather than thinking about long-range tactics. In Sudoku, where
thoughtful planning is crucial, the real-time style may not allow players to thoroughly
interact with their puzzle and its complexity could be reduced. A faster pace could also
make players who do not excel at thinking fast feel stressed, or even just those players
in remote regions with slower internet connections are at risk of losing more often as
their speed of play is inhibited. This accessibility barrier could limit the game’s appeal
which would not be ideal.

Chapter 3. Design 21

Yet despite its shortcomings, real-time gameplay was selected for my application. This
choice was made because it best highlights the thrilling and captivating elements of
competitive play within the Sudoku community. It aligns with the intention to create
a lively, high-stakes environment where players are constantly engaged and where
the thrill of competition is sought after. Real-time matches help maintain a quick
tempo for gameplay, suiting well the brief yet intense multiplayer Sudoku experience.
In terms of play style, turn-based games have their advantages, particularly when it
comes to strategic complexity. However, for delivering the quick and lively competition
that keeps online multiplayer games interesting to a broad range of players, real-time
game-play is more suitable in this instance.

3.3 User Interface

The user interface of any game should be designed to be as inclusive and accessible as
possible and the Sudoku application does not break this design philosophy. Recognizing
that the quality of the user interface can significantly influence a player’s engagement
and satisfaction, I have aimed to create an interface that is both visually appealing
and functionally seamless. The UI serves as the bridge between the player and the
game’s mechanics, ensuring that players of all skill levels can navigate through the
game, understand its rules, and access all the features it offers without unnecessary
complexity or confusion.

3.3.1 Layout

The game layout of the game is designed to provide an easy-to-access user experience,
segmented into four key pages: the Main Menu, Ability Select Screen, Connection
Screen, and the Game Screen. Each page is crafted to facilitate ease of navigation
and ensure players can access all necessary features without confusion, enhancing the
overall gameplay experience.

Firstly the Main Menu serves as the entry point to the application. It is designed to be
simple and functional. Players are presented with clear options to either join a game
or choose their abilities. Additionally, a dedicated ”How to Play” button brings up
a window that explains controls for both keyboard and controller users, ensuring all
players, regardless of their preferred input method, can comfortably navigate and enjoy
the game. Lastly players can enter an options menu to change audio levels and set
controls to their liking.

Next, the Ability Select Screen, which is accessed from the Main Menu is a critical part
of the pre-game strategy where players are introduced to the nine available abilities,
categorized into Basic, Advanced, and Elite tiers. This tiered system prompts players
to choose one ability from each category, fostering strategic thinking from the outset.
Detailed explanations of each ability’s effects are provided through pop-up bubbles
when hovered over, ensuring players are well informed about the abilities, leading to a
more fulfilling experience.

Also accessible from the Main Menu is the Connection Screen. This screen facilitates

Chapter 3. Design 22

the transition from solo preparation to multiplayer engagement. Players are prompted to
input a username, adding a personal touch to their game presence. Following this, they
are given the choice between random matchmaking or direct connection, depending on
what sort of game they are looking for as previously detailed in the multiplayer section.

Lastly, there is the actual Game Screen. Arguably the most important screen in the
application, it has been designed for clarity and competitive balance. The layout is
split into two clear halves, red and blue, with the opponent’s side blurred to obscure
specific details while still indicating their progress. A prominent timer at the top tracks
the remaining game time, ensuring players are always aware of the urgency of their
puzzle-solving efforts. Abilities are displayed below each player’s grid, with distinct
icons and color coordination reflecting their tier and providing at-a-glance information
on point cost and cooldown, enabling strategic ability use during the heat of competition.

Together these four pages form a coherent and user-friendly game layout, supporting
the player’s journey from initial engagement through strategic preparation and into the
competitive fray ensuring an enjoyable Sudoku dueling experience.

3.3.2 Interactivity and Input Methods

The game’s user interface has been designed to cater to different player preferences
and input methods. By allowing players to choose between keyboard, mouse or a
combination of both, the game can follow the golden rule of universal usability in
user-interface design[28] as outlined by Shneiderman et al. This approach ensures that
players can interact with the game in a way that feels most comfortable and intuitive to
them, adding to their overall experience and satisfaction.

For keyboard users, the ”WSAD” or arrow key navigation provides a familiar and
efficient way to navigate the Sudoku grid. A looping mechanism when reaching an
edge of the board ensures a seamless and uninterrupted flow, reducing the frustration of
having to rapidly press a key if a player wants to get to the opposite side of the board.
The use of number keys for cell input and specific key combinations for abilities (Shift
+ number for jottings, Ctrl + number for abilities) follows multiple golden rules of
interface design including those of consistency, ease of control and lastly reducing short-
term memory load. By keeping keys consistent but adding modifiers, users don’t have
to memorize confusing key bindings and this leads to a more enjoyable and efficient
user experience.

Users who prefer to use a mouse have access to a central keypad and click-based cell
selection, which provides a direct and intuitive way to interact with the game. The
keypad mimics the familiar layout of a physical Sudoku puzzle, making it easy for
players to input numbers without the need for excessive mouse movements. The toggle
switch for jottings and actual numbers is a clear way to switch input modes, reducing
the likelihood of errors and enhancing usability.

The combination of mouse and keyboard support gives players who prefer a hybrid
approach to easily swap between the two based on their needs and preferences. This
flexibility allows players to optimize their gameplay experience which hopefully can
lead to better enjoyment.

Chapter 3. Design 23

Godot’s InputMap and action system allows for easy remapping of keys providing
flexibility for players to customize controls to their liking. Additionally, Godot’s key
mappings are based on the physical location of keys, not just their assigned letter. This
means that players using international keyboards with layouts other than QWERTY will
not have awkward key placements when playing games made in Godot.

There is one unfortunate caveat to the input method that I have used in the design of
this application. The current control scheme makes it difficult for two players to share
one keyboard for local multiplayer. Since the keyboard controls are mapped to allow
a single player to fully control the game and their Sudoku grid using WASD/arrow
keys for navigation, number keys for inputting numbers, and modifier keys like Shift
and Ctrl for abilities and notes, there are no remaining keys for a second player to use
simultaneously on the same keyboard. This would limit a theoretical local multiplayer
mode to be turn-based, as players take turns using a single keyboard. This hinders
the intended fast-paced nature of the game and also limits the accessibility of local
multiplayer.

Despite this inconvenience, the game’s user interface design follows the golden rules of
universal usability by supporting multiple input methods including keyboard, mouse,
and a combination of both allowing players to interact with the game in the way that feels
most accessible to them leading to a more enjoyable user experience. The consistency
of key bindings and a familiar layout reduces the likelihood of errors and provides
a consistent and familiar experience. The game’s input system, built using Godot’s
InputMap and action system, provides flexibility for players to customize controls and
supports international keyboard layouts, further enhancing its accessibility.

3.3.3 Accessibility

The design of the game has incorporated several accessibility features to ensure a wider
range of players can enjoy the game. The support for both keyboard and mouse input,
as well as the option for a hybrid of both, allows players with different preferences or
physical abilities to interact with the game in a way that suits them best. This kind of
flexibility in input methods is crucial for accessibility, as it can accommodate players
with motor disabilities who may find one input method easier to use than another as
explained by Yuan et al.[35].

Auto-scaling the game window to fit monitors of different sizes is a crucial accessibility
trait. It guarantees that the user interface of the game stays readable and functional,
no matter what screen resolution or size it is viewed on - a feature very significant for
players who have sight problems.

The inclusion of a simple and understandable ’How To Play’ page in the main menu is
a useful tool for assisting with cognitive accessibility. It helps new players, especially
those with cognitive disabilities, to learn the game mechanics at their own pace, reducing
the cognitive load and making the game more approachable.[11]

Volume control for music and sound effects in the options menu is a standard but
essential feature for auditory accessibility. It can be altered by players who have trouble
hearing, so they can set it according to their requirements or likes. This feature also

Chapter 3. Design 24

benefits those playing games that may produce some sounds they are sensitive to, along
with people who play in surroundings where high audio is not suitable.

Another important design decision is to give players the ability to rebind keys in the
settings menu. This is a critical accessibility feature for players with motor disabilities.
It allows them to customize the control scheme to fit their range of motion and comfort,
which can make the difference between being able to play the game or not.

When in a match, high-contrast colours are used to differentiate between each player’s
Sudoku grid, the numbers on the grid and the background it is all on. Abilities are
colour-coded based on their point cost using a standard green-blue-red colour scale.
All of these features assist individuals with visual impairments in distinguishing game
elements at a glance as mentioned by Jarmillo-Alc et Al. in their case study[13]. The use
of distinct shapes and icons, such as the power-up buttons with unique symbols, allows
for easier recognition and can be helpful for players with colour vision deficiency. The
different point tiers are consistently colour-coded to assist in this recognition and are
ordered from least to most expensive to ensure that the gestalt principles of continuity,
symmetry and similarity[17] are followed throughout the game.

Additionally, the game interface includes a large, easily readable timer at the top of the
screen, which benefits players with cognitive disabilities by providing a clear indication
of the time remaining. The points are shown big and they update in real time, this is
very important to make the game accessible because it gives the player a fast response.
The option for ”jottings,” or small notes inside the Sudoku cells, could assist those with
memory impairments by helping them remember possible number positions.

To sum up, the game’s user interface is made with accessibility in mind. This includes
visual cues, high contrast and supportive features to suit players who have varying
abilities. These design decisions are compatible with the recommended methods for
making online games accessible and enhancing an all-inclusive gaming experience.

3.3.4 Aesthetics

The main objective of the aesthetics of the user interface was to avoid clutter and keep it
simple to achieve a good user experience. The game utilizes a blackboard backdrop to
invoke nostalgia for a classroom setting where Sudoku puzzles might be enjoyed, such
as a Maths class. The chalk-like typography shown prominently in the game adds to
the educational theme. The colour palette consists of calm colours with white text to
provide a focused environment suited to a game like Sudoku that requires concentration.
Menus are kept clutter-free to add an emphasis that the game is built on its gameplay
rather than any impressive graphics.

I named the game Sudoduel to convey to users what the game is from a glance. The
game is a literal Sudoku duel, where players go head-to-head of wits and deduction
within the familiar framework of Sudoku puzzles. During a round of the game, the two
Sudoku grids side by side help signify the game’s duelling nature. The game utilizes red
and blue tones for the opposing sides to represent the competitive nature of the game.

Chapter 3. Design 25

3.4 Requirements

This section lists the particular conditions that must be met by each distinct part of the
game to be considered successful.

3.4.1 Gameplay Requirements

• Objective - The main goal is a 1v1 competition to solve a 9x9 Sudoku board with
a single solution that can be solved within a 4-minute time limit. Success should
come from a mix of speed, accuracy, and logical deduction.

• Fairness - To keep the game fair and interesting, each player should be given the
same randomly generated solvable board with the same available clues. Players
with different strategies (e.g. focusing on speed vs accuracy) should have equal
chances to perform well.

• Points - The game should have a functioning point acquisition system in place
that rewards players more when lines are filled with no jottings than players who
fill single cells with notes.

• Abilities - The game should have multiple abilities implemented that positively
affect a player’s board or negatively impact their opponent’s. They should be of
different point tiers based on strength and feature a cooldown time to prevent
overuse.

• Difficulty - The generated board should have 36-46 clues for quicker, faster-paced
games to maintain engagement

3.4.2 Multiplayer Requirements

• Architecture - The game should feature a real-time, server-client model that can
be scaled easily

• Flexibility - Players should have the option of joining matches randomly, or by
hosting private games that can be joined via a direct connection

• Efficiency - Server instances should be designed to use minimal resources and
minimize delays ensuring real-time gameplay.

3.4.3 User Interface Requirements

• Intuitive - The game should feature an interface which users can navigate easily
and should not get confused by.

• Accessible - The game must have a user interface that can be usable by all users
regardless of input method.

• Functionality - The game’s interface should be fully capable of navigating
through menus and altering options. In a round, the user should be able to
navigate the puzzle without issue

Chapter 3. Design 26

• Responsiveness - The game’s interface must respond to the user’s actions and
adjust appropriately if the screen size is altered.

3.5 Unimplemented Design Concepts

This section outlines three design elements which were designed in further detail but
were unable to be implemented due to time constraints or technical limitations.

3.5.1 Local Multiplayer

Playing together in the same room can sometimes make gaming more fun, turning it
from a single activity into a social gathering where players can be physically present
and compete with each other. The idea of a side-by-side local multiplayer option in
SudoDuel could introduce a new level of personal interaction and real-time strategy,
providing an immediate, shared experience that online play is unable to replicate.
However, the way the game is designed now, with a mouse and keyboard setup, makes
it quite hard to add a local multiplayer option. The game’s interface and control method
are made for one user in mind only. To make room for two players at the same time, I
would need to change the control mechanics greatly. This not only means disrupting
how things work in playing but also needing a new design of player actions with game
elements - making local multiplayer an impossible addition without rethinking basic
ways to input data at its present stage.

3.5.2 Team Based Competition

In SudoDuel, if a 2v2 competition mode was added it would change the game from
being just a duel of wits to an area where strategy and working together are very
important. In this setting, every team member would handle their grid but with a
variation: their puzzle matches up to one of the opponent’s, making it an indirect contest
and possibly allowing for sabotage. The grids become battlegrounds where every play
has consequences not only for players but also for their teammates. This interaction
makes the game more complex because participants need to manage their puzzle-solving
with chances to help their partner. This could be from strategic play or utilizing abilities
that delay the other side.

In this joint framework, the gathering of points is a team effort that highlights the
significance of working together and achieving victory as one. People who are playing
have to communicate well, discussing when and who they will attack with their abilities.
This adds an element of strategy; it isn’t only about being quick at solving but also
about which group can handle their gathered points cleverly, plan out attacks together
and adjust to changes in both their and rival’s grid situation. Also, this mode could
bring about a more diverse competition environment. Teams might start to create their
own methods and tactics. Players could take on roles similar to offence or defence,
depending on what they are good at solving in Sudoku and the powers they select for
themselves.

Chapter 3. Design 27

3.5.3 Bot Detection and Anti-Cheat

Anti-cheat systems in a game such as SudoDuel, where skill and strategy are very
important, need to be complex and have many facets. To find bots or false players,
they would use multiple methods of detection. The first method is by examining the
behavior inside the game for certain patterns that indicate non-human play like doing
repetitive movements, deciding too quickly at an unnatural speed, and maintaining
perfect gameplay over a long period which isn’t probable for even skilled human players.
Also, the system can follow the path of mouse movements and the pattern of clicks.
This is because bots usually show straight or simple movements with their cursors,
unlike the complex and less predictable patterns of a human player.

However, crafting an anti-cheat system that is both effective and non-intrusive is a
complex challenge. Cheaters are continually evolving their methods, and to stay ahead,
developers need real-world data on how these individuals are exploiting the game. If
the game is not accessible to a large number of users, it becomes hard to collect this
data and understand how widespread the use of cheats is.

Additionally, sometimes anti-cheat methods unintentionally impact real users too -
they require careful implementation. It’s a sensitive equilibrium between protection
against fraud in games and ensuring an amusing experience for every player. Anti-cheat
systems that are good usually need a ’learning’ time from real user actions. This implies
the game must be allowed to face possible cheating, so it can improve how well and
successfully its detection methods work.

Chapter 4

Implementation

4.1 Application Architecture

The game architecture is split into two main nodes: the Game Node and the Player
Node. This separation of concerns allows for a clear division of responsibilities and
encapsulation of related functionality.

Upon the creation, the game node adds two instances of the player node, one for each
user. Figure 4.1 shows a round of the match in play. The area contained inside the green
box is the game node. It features the central keypad, jotting switch and in-game timer.
By keeping these elements in the Game Node, they can be easily accessed and managed
from a central location.

Figure 4.1: Screenshot of a match from the perspective of Player 1/ the Red Player

The area contained within the red box in figure 4.1 is a player node. It includes the
81 cells in a grid container, and the three abilities below the grid, which have been
implemented as custom button nodes with an Enum attribute. It also includes the

28

Chapter 4. Implementation 29

player’s name and the point label. This encapsulation guarantees that every player’s
data and functionality are kept within their entities and can be handled separately.

Both the game node and the player node access a global game controller, which is
created using Godot’s autoload feature when the application is first run. The game
controller stores player information such as name, multiplayer ID, the amount of points,
and the player’s selected abilities. By using an autoload, this data can be easily accessed
from any part of the game including in the pre-game matchmaking section without the
need for passing references or complex communication between parent and child nodes.

Communication between nodes is handled through direct method calls and signals. The
game node can directly control the player nodes using functions of the player node since
they are the child nodes of the game node. If a player node needs to communicate with
the game node to notify it an ability is being used for example, then the game node can
use Godot’s signals. This allows for loose coupling and event-driven communication. If
the game node needs to communicate with both player nodes at once, on both separate
clients, then the game node can call functions using a Remote Procedure Call.

Object-oriented design is the main philosophy behind Godot, making it possible to
compose game elements in a modular way. This design is supported by scenes, nodes
and a scene tree structure that forms a hierarchy. The architecture of Godot also involves
an effective signalling system for communication among game objects.

This is important as it has led to an implementation that provides several overall
advantages such as there’s a distinct separation of responsibilities between things
related to the entire game and those specific only to players; player data and functions
are contained inside Player Node, providing good encapsulation; game-wide elements
can be managed centrally within Game Node; accessing shared player information is
made simple through autoloaded game controller, and nodes can communicate flexibly
using direct method calls along with signals plus RPC.

4.2 Puzzle Generation

For the creation of the Sudoku puzzle, I first make a 2D array having size 9x9. Then I
fill in the top left cube, middle cube and bottom right cube with numbers from 1 to 9
mixed randomly as shown in Figure 4.2. This is done so that these three cubes don’t
impact each other because Sudoku only looks at vertical and horizontal constraints, not
diagonal ones. Filling in these cubes first makes it easier for the generator to fill in the
rest of the tiles.

Chapter 4. Implementation 30

8 5 6
2 3 4
7 1 9

1 4 3
8 9 7
6 5 2

4 9 8
1 6 2
5 3 7

Figure 4.2: Sudoku puzzle partially generated

After filling these initial cubes, a solving mechanism is used to fill in the remainder
of the board. This involves recursively trying random numbers in each empty cell,
checking if the number is valid in that position, and backtracking if a solution cannot
be found. The solving mechanism continues until the entire board is filled with a valid
Sudoku solution. Once the board is filled, a duplicate is created and stored as the solved
board. This will serve as the reference for the final puzzle.

To create the actual puzzle, the original filled board is taken and some of its cells are
cleared. The numbers 1-81 are shuffled in a list, and then, in a loop that runs between
36-46 times (for easy difficulty), items are popped from the shuffled list one by one.
Each popped number corresponds to a cell in the Sudoku grid, and that cell is cleared.
The number of cells cleared determines the difficulty of the puzzle, with more cells
cleared resulting in a harder puzzle. As discussed in the design chapter, an easier
difficulty was chosen for a better gaming experience.

After clearing the cells, the remaining cells that still have numbers are marked as
disabled on a separate 2D array. This array will be used to keep track of the pre-filled
cells during gameplay and can be used as a reference in case the board is affected, such
as if it is rotated.

4.3 User Interface

4.4 Abilities

There have been nine abilities implemented in this application at the time of submission,
with three per tier. Their implementations are explained below.

4.4.1 Peek

When triggered, the player node sends a signal to the game node indicating a hostile
attack. The game node then runs a function on the opposing player, but not via RPC as
this ability’s effect is client-side only. The function called simply toggles all the cells

Chapter 4. Implementation 31

between their blurred state and their normal state. A timer is then started for 10 seconds,
and upon timeout, the cells revert to their blurred state.

4.4.2 Rotate

Similar to the above, on being triggered, the player node sends a ”hostile action” signal
to the game node. However, unlike peek, the rotate effect should appear on both clients
and thus the game node calls the function on the opponent via RPC.

Because the Sudoku grid is represented as a 2D matrix, rotating it 90 degrees is simple.
First, the matrix is transposed, so that rows become columns and columns become rows.
Then each row is reversed. This produces a matrix that is rotated 90 degrees clockwise.

This rotation is applied to the current board state, the solved board, the disabled cell
array, and lastly the array keeping track of jottings.

The jotting array is a special case as each cell is given a 9-bit integer, and when
represented as a binary, the correlating jottings would be shown. For example if we take
the number 147 when represented as a binary it produces 010010011. From this, we
can gather that the jottings 1,2,5 and 8 are active on that cell.

With all of these matrices rotated, the game can continue as normal, and the board
remains solvable.

4.4.3 Redact

When triggered, the game node receives the ”hostile action” signal and calls the redact
function on the opponent via RPC as the effect should be shown on both clients.

This ability activates an animation player node that Godot uses. Firstly via a random
number generator, it is decided which row or column is chosen to be redacted. At that
point, the player node moves a simple coloured rectangle to the start of the row or
column based on relative coordinates to its parent node. The rectangle starts with one
of its dimensions set to zero, depending on if it is vertical or horizontal. The animation
player then starts its appropriate animation. Over the next two seconds, the animation
player changes the size of the rectangle such that it covers the whole line, and then after
10 seconds, it reverses back to its original size.

The size and position of the shape are synchronised via the player node’s Multiplayer
Synchroniser so that the rectangle appears in the same place on both screens.

4.4.4 Shield

When this ability is triggered, the player node sends a signal to the game node indicating
that the player is using a buffing ability. The game node calls the shield function via
RPC to ensure that the player is shielded for both clients, otherwise it could lead to
desync.

The shield function simply sets a boolean from false to true. For any hostile abilities
used on a shielded player, after points are spent but before the ability is triggered, the

Chapter 4. Implementation 32

shield prevents the ability from activating but sets the shield flag to false in the process.

4.4.5 Double Points

In the point calculation section of the code, points awarded are multiplied by a modifier.
Typically this modifier is set to 1, but when this ability is triggered, the modifier is set
to 2 for the next 30 seconds.

4.4.6 Hint

When triggered, the player node randomly goes through the current board and selects 2
empty cells, and fills it with the correct number from the solved board array.

4.4.7 Eraser

When triggered, the hostile signal is sent to the game node, which then calls a function
via RPC that forces the opponent to erase all of their jottings on each cell.

4.4.8 Blur

This ability is very similarly implemented to the peek ability, but instead of unblocking
the opponent’s board for the player that used the ability, it simply blurs the board of
the opponent on their screen. The screen of the player who used it remains unchanged.
After 15 seconds, the blur effect wears off.

4.4.9 Lock

This ability sends the hostile signal to the game node, but instead of calling a function
on the opponent’s board, it sets the player node to a state of waiting for an input in the
form of a number either via the central keypad or just the player’s keyboard. After a
number is chosen, the player sends a signal to the game node with the chosen number
attached. This number is then sent to the opponent player via RPC and locks the number.
For the next 30 seconds, that number cannot be used to fill in cells or add jottings of
that number anywhere on the board.

4.5 Multiplayer

The multiplayer component of the online Sudoku game is a cornerstone feature that
allows players to engage in real-time duels against each other. The multiplayer frame-
work is powered by Godot’s High-Level Multiplayer API. This API makes the process
of managing network state synchronization, peer-to-peer communication, and RPCs
(Remote Procedure Calls) less complicated. The use of this API guarantees that all
networked events like placing numbers on the Sudoku grid or activating abilities are
effectively spread to every connected client in real time. This helps in keeping gameplay
integrity and responsiveness intact.

Chapter 4. Implementation 33

The dedicated servers, where the quickplay sessions are hosted, are run on a Digi-
talOcean Droplet. DigitalOcean offers cloud servers which are dependable and can be
easily scaled up, making them suitable for an online multiplayer scenario. The game
utilizes screen sessions, which are virtual terminal sessions that can be detached and
reattached, allowing for persistent server processes. This setup enables the game servers
to run continuously in the background, even when no active administrative session is
connected, ensuring players can connect to a quickplay server at any time.

Upon selecting quickplay, the game initiates a connection attempt to the designated
server IP on port 9980. To provide a seamless player experience, a timeout threshold
of 3 seconds is implemented to prevent prolonged waiting periods during server con-
nection attempts. If the first server is at capacity or otherwise unavailable, the client
automatically proceeds to attempt connections on subsequent ports, incrementing by
one each time (9981, 9982, etc.). This approach not only allows for efficient server load
distribution but also ensures that players can quickly find and connect to an available
game session without manual retries.

In the event that all servers from port 9980 to 9990 are full, the system is designed
to loop back and retry from port 9980. This cycling mechanism acts as a dynamic
load balancer, redirecting players to the first available server slot. Automating the
process of finding open ports helps to remove players from the possible annoyance of
servers not being available. The variety and ability of ports, along with DigitalOcean’s
adjustable structure, guarantee that game can handle more people playing at same time -
an important feature for any online multiplayer game that is growing. This orderly and
player-centered method of managing multiplayer servers highlights the dedication of
the game towards offering a strong and easy-to-use competitive stage for Sudoku lovers
worldwide.

Chapter 5

Evaluation

5.1 Game Performance

In evaluating the performance of SudoDuel, it is essential to assess the various perfor-
mance metrics that directly impact the user experience and system efficiency. Measuring
performance in online gaming is complex. It includes not only how fast and reactive
the game feels to a player, but also the way resources are used for creating this expe-
rience. In SudoDuel, metrics like storage space needed, memory usage (both RAM
and VRAM), CPU use, and network bandwidth are important parts that help make sure
the game runs well with good response time for players while providing an interactive
multiplayer atmosphere without putting too much pressure on their hardware or network
system’s capacity. Below is an analysis of the game’s performance to give an all-around
view of how SudoDuel stands in terms of efficiency.

5.1.1 Storage Space Utilization

The export system of the Godot Engine works well for getting games like SudoDuel
ready on different platforms. It compiles game code, assets and configurations into
an executable to run along with a .pck file - this compressed package contains all the
resources needed by the game and has been optimized specifically for the devices it
targets, these being Windows and Linux systems. The asset pipeline is efficient at
converting resources into formats that allow them to be efficiently used across various
hardware, showing how adaptable Godot is in deployment.

For Windows and Linux, the sizes of SudoDuel without compression are 107.88 MB
and 109.21 MB respectively. These values match with what is normal in the industry
as we see similar Godot games like ”Godoku,”1 which has a size of 105.66MB. These
numbers show that SudoDuel uses storage effectively because it manages assets very
well and can give a high-quality multiplayer experience even while making good use
of space for saving data. The size difference between these two platforms could be
due to specific dependencies related to each operating system, highlighting the careful
optimization aspect during the development process for this game.

1https://templewulf.itch.io/godoku

34

Chapter 5. Evaluation 35

5.1.2 Memory Usage

5.1.2.1 RAM

Figure 5.1 displays the overall RAM usage in SudoDuel. The graph is split into three
clear sections. The first is the initial starting of the application and the menu navigation.
The second is when the client enters actual gameplay, and lastly, the final section is
when the client returns to the main menu after a game is completed.

Figure 5.1: Graph detailing the RAM usage of the game over the course of 1 match

During menu navigation, the game maintains a low and stable RAM footprint, which
shows good menu asset optimization and no memory leak problems. This stable
condition makes sure that the starting interface of the game is active and provides a
strong base for the gaming experience.

Upon entering gameplay, there is a significant yet expected rise in RAM usage. This
peak correlates with the game’s transition from simple menu screens to the more
resource-intensive gameplay, where additional assets are loaded, and game logic be-
comes active. However, even with the rise in RAM usage, the highest point doesn’t
show an overuse of memory. This implies that game assets and scripts are efficient in
terms of memory use.

After the gameplay concludes and the game returns to the main menu, the RAM usage
drops back down close to its initial state, demonstrating that the game effectively
deallocates memory that was used during gameplay. This coming back to almost a
baseline level of memory usage is a good sign because it means that ”SudoDuel” is
effective in clearing up resources, not allowing unnecessary memory growth across
many games. In general, the RAM usage graph suggests that this game has been
fine-tuned to control its memory – guaranteeing steadiness and an uninterrupted gaming
experience for players.

Chapter 5. Evaluation 36

Figure 5.2: Graph detailing the VRAM usage of the game over the course of 1 match

5.1.2.2 Video Memory

Figure 5.2 demonstrates the game’s effective VRAM management, showing low usage
at the start when we navigate through menus. This suggests that menu graphics are well-
optimized since they can handle different GPU capabilities. When a match is started,
there’s a sharp rise in VRAM use because the game needs more complex graphical
assets for competitive gameplay; this shows the necessary boost to render a competitive
play environment without overloading typical GPU capacities.

The VRAM consumption decreasing back to almost the starting point at the end of
gameplay indicates good resource cleanup and deallocation by the game. This handling
efficiency with VRAM guarantees stable performance, even during long playing periods,
and shows promise for smooth operation on different systems—a crucial factor in
accessibility and player experience. The maximum VRAM being under 512MB also
indicates that the game should run without issue on a CPU’s integrated graphics, thus
not requiring a dedicated video card expanding the potential player base further.

5.1.3 CPU Usage

Appendix A features screenshots taken of three frames in which critical actions are
taking place. The first image, shown in Figure A.1 shows when a player hosts a
game. The ”host game” and ”on host button down” functions take 2.3 ms and 1.88
ms respectively. Compared to the other script functions, they take a slightly longer
amount of time. This can be expected since hosting the game requires the initializing of
network services and preparing the lobby. These tasks typically demand more of the
CPU. Despite this, however, the script takes less time than the time it takes to process a
frame.

Joining a game is shown in Figure A.2 and the ”on join button down” function takes
4.21 ms indicating that the process of connecting to an existing game server and syn-
chronising the player’s initial game state with the new client is well within a reasonable
time frame.

Chapter 5. Evaluation 37

The most notable CPU time is observed when a game is started as shown by Figure
A.3. Overall, it takes 622.74 ms to run the function that starts the game for the client.
This suggests a considerable workload during this phase. This is because at this point
the game is setting up logic, loading assets, and generating the initial Sudoku Puzzle.
These are one-time costs at the game’s start and are not recurring per frame which is
critical to ensuring the game’s performance.

In general, the usage of the CPU is in a good range for hosting and joining matches. This
shows that tasks related to the network are optimized well. The increase in CPU usage
when starting a game is significant, but because it matches with an event happening only
one time compared to continuous frame-by-frame cost, it does not necessarily point
towards a performance problem. The one-time cost could be reduced if the initialization
of the game is optimised, such as using a more efficient Sudoku-solving algorithm.
However, considering this takes less than a second, it should not be overly noticeable to
the player. It could be disguised by adding a short loading screen to the game.

5.1.4 Network Bandwidth

In SudoDuel, direct player connections during hosted games exhibit commendable
network efficiency, with both upload and download speeds averaging around 15 KiBps.
The fact that the game only requires a small amount of bandwidth indicates that it
uses a lightweight networking protocol. This kind of protocol is designed to efficiently
transfer data, making sure players can play smoothly even if they have slower internet
connections and minimizing lag.

Conversely, when players connect to a dedicated server, the upload requirement in-
creases to 30 KiBps, a needed increase to handle more communication load between the
server and its clients. Although there is a rise, Despite this increase, the upload speed
remains modest, indicating that SudoDuel maintains network efficiency even in more
complex server-client interactions. This is essential to sustain the integrity of the game
and ensure that all players have a synchronized and fair gameplay experience that is as
lag-free as possible.

The low bandwidth in SudoDuel can be attributed to the game’s implementation of
multiplayer synchronizers, which avoid syncing every frame. Instead, they employ
a consistent replication rate, updating game states at regular intervals that balance
real-time interaction with network resource conservation. This approach helps reduce
the overall network load and preserves bandwidth

5.2 Issues and Limitations

The current server infrastructure of ”SudoDuel” shows a significant constraint in its
demand for separate ports for every game server. This one-port-per-server design might
create problems of expansion as the game becomes more popular. It needs a wide
range of open ports to handle many games happening at once, making network settings
complex and possibly risky from a safety perspective. In a shared hosting setting, the
maximum number of open ports can also limit how many games can be played at one

Chapter 5. Evaluation 38

time. This might prevent the game from growing its player community without moving
towards a more intricate and potentially expensive server arrangement.

Additionally, the requirement for players to set up port forwarding to host a game
introduces a complexity that might discourage those who are less interested in technical
details. When it comes to setting up port forwarding, this is a task that differs depending
on the type of router being used and normally demands a particular level of networking
know-how which regular players may lack. A matchmaking server could make this
procedure more straightforward, resulting in an easier hosting experience for users.
With a matchmaking server, players could effortlessly connect to game servers without
the need to tinker with their network settings, thus enhancing the accessibility of game
hosting and potentially increasing the game’s adoption.

A third aspect where SudoDuel is lacking is controller support. The absence of these
features affects the game’s accessibility as many players prefer or are accustomed to
using a gamepad for different reasons such as personal comfort, disability access and
device type being utilized (keyboard/mouse vs joystick). Although it is usual to use a
keyboard and mouse for puzzle games, adding controller support could make the game
more appealing and accessible. This way, people who like playing with a controller can
also enjoy SudoDuel, making it an inclusive experience for everyone involved! Looking
at the future updates of ”SudoDuel”, it may be a big enhancement to offer controller
support as the gaming sector is shifting towards varied input methods.

These issues highlight the importance of playtesting and iterative development in game
creation. It is through these processes that developers can identify practical challenges
and areas for enhancement, making the game better in successive versions, so it is more
enjoyable and easier for users to play. Regularly improving and responding to user
feedback is very important for turning a good game idea into an excellent final product
that people love.

5.3 Requirements Evaluation

Personally, I believe that the game fulfils almost all of the requirements laid out in
Section 3.4. In particular, all of the gameplay elements have been implemented as
intended. The finished game is fair and features a working points system. All abilities
are fun and work as designed. Lastly, the generated boards are often able to be completed
within the time limit laid out.

Whilst the multiplayer architecture is currently quite complex, it does fulfil the criteria
of being a server-client model. Players can quickly connect to a dedicated server or host
servers themselves, provided they have port forwarding configured. The bandwidth used
during a match is considerably low suggesting that the game runs efficiently, allowing
for a smooth real-time experience.

Finally, the user interface of the game is certainly functional and responsive as the game
uses minimal resources to operate the game’s interface. Players can very easily interact
with the game through mouse or keyboard inputs with the only limitation being the lack
of controller support.

Chapter 6

Conclusions

6.1 Achievements

The following is a list of achievements of this project:

• Comprehensive literature review on the evolution of Sudoku, including various
solving techniques, the development and design principles behind successful
games, and an in-depth analysis of game engines with a special focus on the
justification for selecting Godot as the development platform.

• Design and implementation of an efficient Sudoku board generator for easier
difficulty puzzles

• Design of a user interface that is accessible to a range of users and is intuitive to
use and understand.

• Implementation of a unique abilities system that adds to the classic Sudoku
game, giving a new difficulty for players and encouraging strategic thoughts in a
competitive multiplayer environment.

• Successful integration of multiplayer features, utilizing Godot’s high-level mul-
tiplayer API to ensure seamless online interactions among players, including
real-time puzzle solving and competition.

• Utilizing Godot’s profiling tools to evaluate the game’s performance identifying
and addressing potential bottlenecks to optimize the overall gaming experience.

• Critical assessment of the game’s limitations and areas for improvement, helping
identify areas for future enhancements and iterations of the multiplayer Sudoku
game.

6.2 Improvements

As discussed in the evaluation of the application, the biggest limitation of the game is
how multiplayer servers are hosted and run. Using a port multiplexer or proxy server

39

Chapter 6. Conclusions 40

structure can simplify the one-port-per-server model in SudoDuel. With a proxy server,
all players are able to connect through one entry point that is commonly on standard
ports like 80 or 443 which are usually open in many networks and can pass through
firewalls without difficulty. The proxy server then smartly directs these connections
toward the correct game server instance, managing network resources effectively and
lessening the number of ports required for handling.

This setup is enhanced further when paired with a matchmaking server, which may
assign players to their game sessions without revealing the intricacies of server selection
and network setups.

Lastly, one more improvement that could be made is introducing a leaderboard or
ranking system to SudoDuel to create a stronger competitive advantage by promoting
progression and competition among players. This characteristic would give clear
objectives and acknowledgement for players’ abilities and accomplishments, motivating
them to keep playing and participating as they compete for better rankings and superior
status within the game’s community.

6.3 Future Extensions

If this project were to be continued further the following extensions could be made:

• Incorporate User Feedback Mechanisms: Program in-game systems that permit
users to give direct feedback on aspects like difficulty levels, user interface design,
and overall game satisfaction.

• Player Technique Analysis: Develop discrete and non-invasive analytical tools to
study how players interact with the game. This data could then be used to refine
game mechanics and balance difficulty.

• Addition of a Matchmaking System: Create a matchmaking system that pairs
players based on skill level, ensuring fair and challenging matches. This system
could use a hidden rating or visible ranks to improve the competitive aspect of
the game.

• Social Features and Community Building: Integrate social features such as friend
lists, private messaging, and community forums. These features would foster a
sense of community, encourage engagement, and make it easier for players to
connect and organize matches.

6.4 Final Remarks

This report has explored the process of designing and developing ”SudoDuel,” an online
multiplayer Sudoku game, highlighting its requirements and innovative solutions that
shaped its creation. Through performance evaluations and the implementation of key
features, the project fully explored the area of game development to produce a finished
product. Despite some of the limitations found in the evaluation, all goals were achieved
and requirements fulfilled, thus I consider this project a success.

Bibliography

[1] Ernest Adams and Joris Dormans. Game mechanics: advanced game design. New
Riders, 2012.

[2] Keith Burgun. Game design theory: A new philosophy for understanding games.
CRC Press, 2012.

[3] Heather Maxwell Chandler. The game production handbook. Jones & Bartlett
Publishers, 2009.

[4] Easybrain. Play free sudoku now! https://sudoku.com/, 2018.

[5] George Skaff Elias, Richard Garfield, and K Robert Gutschera. Characteristics of
games. MIT Press, 2012.

[6] Leonhard Euler. Recherches sur un nouvelle espéce de quarrés magiques. Ver-
handelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te
Vlissingen, pages 85–239, 1782.

[7] Carlo Fabricatore. Gameplay and game mechanics: a key to quality in videogames.
2007.

[8] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible sudoku grids.
Preprint available at http://www. afjarvis. staff. shef. ac. uk/sudoku/sudoku. pdf,
2005.

[9] Tracy Fullerton. Game design workshop: a playcentric approach to creating
innovative games. CRC press, 2014.

[10] 2018 Game Developer. How the room devs succeeded on mobile, ’the only option
left to, Jan 2018.

[11] Lee Garber. Game accessibility: enabling everyone to play. Computer, 46(06):14–
18, 2013.

[12] Todd L Harper. The art of war: Fighting games, performativity, and social game
play. Ohio University, 2010.

[13] Angel Jaramillo-Alcázar, Paz Cortez-Silva, Marco Galarza-Castillo, and Sergio
Luján-Mora. A method to develop accessible online serious games for people
with disabilities: A case study. Sustainability, 12(22):9584, 2020.

[14] Alysia Judge. An athletic aesthetic: The making of lara croft go, Sep 2015.

41

https://sudoku.com/

Bibliography 42

[15] Zubair Khan, Ashish Kumar, Sunny Kumar, and Uttar Pradesh-India. Sudoku
puzzles by using x-wing techniques.

[16] Raph Koster. Theory of fun for game design. ” O’Reilly Media, Inc.”, 2013.

[17] Steve Krug et al. Don’t make me think, revisited. A Common Sense Approach to
Web and Mobile Usability, 2014.

[18] Hung-Hsuan Lin and I-Chen Wu. Solving the minimum sudoku poblem. In
2010 International Conference on Technologies and Applications of Artificial
Intelligence, pages 456–461. IEEE, 2010.

[19] Arnab Kumar Maji, Sunanda Jana, and Rajat Kumar Pal. An algorithm for gener-
ating only desired permutations for solving sudoku puzzle. Procedia Technology,
10:392–399, 2013.

[20] Gary McGuire, Bastian Tugemann, and Gilles Civario. There is no 16-clue sudoku:
Solving the sudoku minimum number of clues problem via hitting set enumeration.
Experimental Mathematics, 23(2):190–217, 2012.

[21] Radek Pelánek. Difficulty rating of sudoku puzzles: An overview and evaluation.
arXiv preprint arXiv:1403.7373, 2014.

[22] Scott Rogers. Level Up! The guide to great video game design. John Wiley &
Sons, 2014.

[23] Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on game
design. New Riders, 2003.

[24] Ed Russell and Frazer Jarvis. Mathematics of sudoku ii. Mathematical Spectrum,
39(2):54–58, 2006.

[25] Katie Salen and Eric Zimmerman. Rules of play: Game design fundamentals.
MIT press, 2003.

[26] Jesse Schell. The Art of Game Design: A book of lenses. CRC press, 2008.

[27] Charles P Schultz and Robert Denton Bryant. Game testing: All in one. Mercury
Learning and Information, 2016.

[28] Ben Shneiderman and Catherine Plaisant. Designing the user interface: strategies
for effective human-computer interaction. Pearson Education India, 2010.

[29] David Sirlin. Balancing multiplayer competitive games. Sirlin.Net – Game Design,
Dec 2009.

[30] Unity Technologies. Unity real time development platform — 3d,2d,vr,ar engine.
https://unity.com/.

[31] Unity Technologies. Gameobject. https://docs.unity3d.com/2023.3/
Documentation/ScriptReference/GameObject.html, 2023.

[32] Unity Technologies. Monobehaviour. https://docs.unity3d.com/2023.3/
Documentation/ScriptReference/MonoBehaviour.html, 2023.

https://unity.com/
https://docs.unity3d.com/2023.3/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2023.3/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2023.3/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2023.3/Documentation/ScriptReference/MonoBehaviour.html

Bibliography 43

[33] Tetris Wiki. Garbage — Tetris Wiki, The Free Encyclopedia. https://tetris.
wiki/Garbage, 2023.

[34] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 86(5):1052–1060, 2003.

[35] Bei Yuan, Eelke Folmer, and Frederick C Harris. Game accessibility: a survey.
Universal Access in the information Society, 10:81–100, 2011.

https://tetris.wiki/Garbage
https://tetris.wiki/Garbage

Appendix A

Profiler Results

This section features screenshots of the Godot 4 debug profiler discussed in section
5.1.3

44

Appendix A. Profiler Results 45

Figure A.1: Screenshot of Godot profiler during the frame a game is hosted

Appendix A. Profiler Results 46

Figure A.2: Screenshot of Godot profiler during the frame a game is joined by a player

Appendix A. Profiler Results 47

Figure A.3: Screenshot of Godot profiler during the frame a match is started

	Introduction
	Background
	The Sudoku Problem
	Outlining The Problem
	Solving Sudoku Grids

	Game Design & Development
	Game Engines
	Game Design Elements
	Competitive Game Design
	Game Development Process

	Existing Applications
	UsDoku
	Sudokill
	Tetr.io

	Design
	Gameplay
	Objective
	Competitive Twist
	Difficulty
	Game Balance

	Multiplayer
	Matchmaking
	Real-Time vs. Turn-Based

	User Interface
	Layout
	Interactivity and Input Methods
	Accessibility
	Aesthetics

	Requirements
	Gameplay Requirements
	Multiplayer Requirements
	User Interface Requirements

	Unimplemented Design Concepts
	Local Multiplayer
	Team Based Competition
	Bot Detection and Anti-Cheat

	Implementation
	Application Architecture
	Puzzle Generation
	User Interface
	Abilities
	Peek
	Rotate
	Redact
	Shield
	Double Points
	Hint
	Eraser
	Blur
	Lock

	Multiplayer

	Evaluation
	Game Performance
	Storage Space Utilization
	Memory Usage
	CPU Usage
	Network Bandwidth

	Issues and Limitations
	Requirements Evaluation

	Conclusions
	Achievements
	Improvements
	Future Extensions
	Final Remarks

	Bibliography
	Profiler Results

