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Abstract
Coherence tells us if different parts of a text are connected logically and meaningfully.
Thus, developing system that automatically evaluates coherence is crucial to improve
the performances of many NLP tasks, such as text summarization and generation.

In this study, we investigate Discourse Role Matrix, the first discriminative coherence
evaluation method that combines entity-based modeling with discourse relations. We
apply this linguistically-rich framework on Shuffle Test to distinguish between a
coherent original text and an incoherent, random permutation of that text.

Motivated by empirical evidence in designed experiments and other coherence frame-
works, we extend upon Lin et al. [26] and propose additional sources of linguistic
knowledge to improve model performance. These sources of knowledge include: (1)
granularity of discourse relation label (2) intra-sentential and inter-sentential distinction
for discourse relation (3) types of discourse entities and (4) text genre. In addition, we
also investigate if Convolutional Neural Network may be used to extract features with
longer discourse role transitions.

We explore and justify their effectiveness in coherence analyses and make suggestions
for future design choices to improve entity and discourse relation based coherence
model.
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Chapter 1

Introduction

1.1 Motivations

A good writing requires a logical structure to organize and present an author’s thoughts.
Thereby communicate it clearly to the reader. A well-structured paragraph distinguishes
itself from a random sequence of sentences and clauses, because there exists relations
between them. These relations make two sentences or clauses coherent. Consider this
example from Hobbs [15],

(1) Jane took a train from Paris to Istanbul. She likes spinach.

You may be wondering how Jane’s love for spinach relates to her travel. These two
sentences appear incoherent together because we cannot see a relation between them.
By contrast, in this example:

(2) Jane took a train from Paris to Istanbul. She had to attend a conference.

The second sentence gives a REASON for Jane’s travel in the first sentence. Relations
like this hold text spans together with rhetorical purpose and make them coherent.

Discourse, or a group of coherent sentences, is studied to uncover linguistics phenomena
that are beyond a single sentence. Discourse analysis has emerged as an important NLP
task for many document-level application that involves understanding or generating text.
Some downstream tasks include text summarization, essay scoring, question answering,
readability assessment and machine translation [19]. Therefore, modeling coherence
is critical for NLP systems to pay attention to logical and semantic organization of
multi-sentential inputs, and as a result, to improve performance in these downstream
tasks [39].

The main focus of this project is a coherence model that evaluates text coherence
automatically. The model takes a document as an input and returns a score to assess how
coherent the given document is. One fundamental decision which forms the foundation
of a coherence model is whether it is discriminative or generative. Discriminative
models use contrastive learning to distinguish coherent instances from incoherent ones.
By contrast, generative models maximizes the likelihood of coherent training text.

1



Chapter 1. Introduction 2

The coherence model we consider is discriminative. In particular, the model should
be able to distinguish an original text from its incoherent renderings by permutating
its sentences. Discriminative model sees incoherent texts and incorporate coherence
into the the model objective. This is less plausible for generative models that do not see
incoherent instances.

1.2 Goal and Research Question

The goal of this study is to investigate components of Discourse Role Matrix [26],
how other sources of linguistic knowledge can be applied to this model, and their
effectiveness on the discriminative coherence evaluation.

We chose this model because to our knowledge, it is the first model that uses information
of discourse relations to evaluate coherence. In addition, the model also exploits entity
patterns and is compatible with existing entity-based coherence model [2]. Its linguistic
richness warrants in-depth analysis on the model’s performance in coherence analyses,
under various linguistics context. Therefore, the primary research question is:

What aspects of Discourse Role Matrix help a model to evaluate text
coherence?

In the following section, we will break this down further into minor objectives and their
corresponding achievements. We summarize the report structure in Figure 1.1.

1.3 Objectives and Achievements

We first reproduce and analyze Lin et al.’s Discourse Role Matrix to understand the
strength and weakness of this model on discriminative coherence evaluation. We have
successfully implemented (3.1) and replicated the model with comparable test accuracy
(5.1). We have found that discourse units, entities, roles and feature extraction
are model components that we can modify and improve. We do so in the following
objectives:

(1) Interpret what type of relation transition that the model prefers for a text to be
seen as coherent. This provides analysis on what aspects of input text are best
utilized in discriminative evaluation task. We find that the model favors transition
of same relation (5.3). In addition, higher relation density of input text improves
model accuracy with less training data (5.2).

(2) Investigate whether distinguishing inter and intra-sentential relation is beneficial
to the evaluation results. We find that this distinction is indeed helpful and
improves the test accuracy by 6.47%. It also suggests that Discourse Role Matrix
benefits from inter-sentential relation more than intra-sentential ones. This is
because Discourse Role Matrix only models transitions between sentences (5.5).

(3) Investigate the impact of entity extraction on the model performance. We find
that by using gold-standard, better quality named entities, the model retain most
of its performance with far fewer entities (5.4).
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(4) Investigate the impact of more granular label on discriminative coherence eval-
uation. We find that Level-2 PDTB label has no impact on our task, and we
conjecture that this is due to the curse of dimension (5.5).

(5) Investigate whether knowledge in one genre can be transferred to other genres
with Discourse Role Matrix. We find that despite distributional differences across
genres, cross-domain transfer performs well using our model. It implies that the
model trained on discourse role transitions is domain-agnostic. (5.6).

(6) Investigate whether Convolutional Neural Network can be applied to extract
longer transitions from Discourse Role Matrix. To our knowledge, this is the first
study where Discourse Role Matrix is used in a neural setting. We present our
methodology to adapt discourse relations in Nguyen and Joty’s neural coherence
model (3.7). We have found that longer transition length made possible by neural
feature learning is indeed helpful to improve our coherence evaluation task (5.7).

How does Discourse Role Matrix
help to evaluate coherence?

Reproduce Lin et al. and
understand this baseline

Discourse Role

Discourse Unit

Discourse Entities

Type of Relation Transitions

Inter-sentential and Intra-
sentential

Relation Density

Co-referenced Entities

Level-2 Relation

Feature Extraction Convolutional Neural Network

Research Question

Our Extensions

Figure 1.1: Overall Structure with Research Questions and Objectives

1.4 Report Structure

In this report, Chapter 2 introduces the essential background of coherence modeling,
Discourse Role Matrix and the context of related works. Main methodologies are
explained in Chapter 3. Chapter 4 explains our dataset and discriminative evaluation
task, Shuffle Test. In Chapter 5, experimental setup and results are presented and
discussed to answer our main research question. Last but not least, we conclude our
findings in Chapter 6. We discuss limitations of the study and suggestions for our next
steps.



Chapter 2

Background

Good writing requires a logical structure to organize and present a writer’s thoughts.
Thereby communicate it clearly to the reader. Coherence, in particularly, has a pivotal
role in readable and meaningful writing. In this chapter, I introduce studies that
formalize, model and evaluate various aspects of discourse coherence, to put my work
in context.

2.1 Coherence: Theories and Frameworks

How can a reader find one text choppy and disorganized while another clear and con-
nected? The reader can evaluate texts by how coherent they are, which are determined
by how words and sentences are arranged. Coherent text binds sentences together as
a whole, and interpretation of one sentence sometimes depends on the meaning of its
neighbors [32]. Therefore, Discourse analysis considers the position, context, order
and adjacency of a text [39]. These are intrinsic features that help us better understand
text coherence beyond a single sentence.

In a piece of writing (or discourse), coherence refers to how each part of a text has
a consistent meaning. Sometimes, coherence is also subjective and depends on how
a reader interprets the text [41]. While local coherence refers to consistency across
sentences or short passages, global coherence is across a whole document. Global
coherence can sometimes be decomposed into many local coherence decisions, which
we will illustrate in the next section.

Automatic evaluation of text coherence is one of the key components in many down-
stream NLP applications that include essay scoring [5], machine translation [46], ques-
tion answering, readability assessment [2][34] and text generation [30]. Therefore,
various discourse theories and frameworks have been proposed to computationally
analyze coherence. These theories and frameworks deal with language phenomena
across multiple sentences. We will introduce two main linguistic approaches in the
following sections: entities and discourse relations.

4



Chapter 2. Background 5

2.1.1 Entities and Centering Theory

Coherent sentences often share a few important topics. Topics are short and concrete and
should be consistent throughout the passage [41]. Since these topics connect sentences
or even paragraphs, the reader can follow through the text easily. In discourse analysis,
such topics can be approximated to entities, which are objects, groups of objects and
events mentioned in a text [1]. They differ from named entities that discourse entities
can be events (in form of verbs).

In Centering Theory, salient entities capture the focus in a point of discourse. Adjacent
sentences that keep the same salient entity are more coherent than ones that repeatedly
shift between different entities.

Entities are salient when the reader becomes more aware of their existence when
reading a text. To model salience with linguistics features, Centering Theory ranks the
degree of salience by grammatical roles. From most to least salient, these roles are
subject, direct object, indirect object, any other, which are ordered by how prominent a
syntactic position is. Other studies, such as Entity Grid model (to introduce in 2.2.1),
also consider frequency of an entity as salience. In this case, coherence is created by
repeated entity mentions.

To illustrate Centering Theory, consider this example from [10]:

Discourse A Discourse B
a. John went to his favorite music store to buy a piano. a. John went to his favorite music store to buy a piano.
b. He had frequented the store for many years. b. It was a store John had frequented for many years.
c. He was excited that he could finally buy a piano. c. He was excited that he could finally buy a piano.
d. He arrived just as the store was closing for the day d. It was closing just as John arrived.

John is the main character of the story and the salient entity. Two discourses have the
same meaning but Discourse A is more coherent than B. If we consider subjects in both
discourse (underlined), Discourse A focuses on John throughout the text and keeps him
as the subject. However, Discourse B first focuses on John, then the store, then back to
John, then to the store again. Thus, a reader will focus on an entity that the discourse
concerns the most locally [11]. In the example, John is the focus.

2.1.2 Discourse Relation

Discourse relation, or coherence relation, ties text spans with underlying logics or
structures. It is a common device to signify text coherence. Let’s revisit this example
from the introduction:

(1) Jane took a train from Paris to Istanbul. She likes spinach.

(2) Jane took a train from Paris to Istanbul. She had to attend a conference.

(2) is more coherent because the second sentence provides a REASON to the first
sentence. However, in (1) a reader will be less convinced that there is a causal relation.
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As discourse relation is an important aspect of coherence, it has led to a proliferation of
studies that formalize how they are structured in text. In the discourse community, one
such popular model and corpora is Penn Discourse TreeBank (PDTB) [40].

PDTB defines discourse relations in local contexts. Each entry in PDTB mainly contains
a discourse connective, relation sense and arguments. Discourse connectives, such as
because, although, when, since, or as a result, are words that signal the relation type,
or relation sense. Arguments (ARG1 and ARG2) are text spans to be connected by
this discourse relation. When two arguments in a relation are connected by a discourse
connective found in the text, the relation is explicit. The following is a good illustration
of explicit discourse relation in PDTB:

(3) Jane took a train from Paris to Istanbul because
she had to attend a conference.

Here the subordinating conjunction because is a discourse connective that signals a
causal relation between Jane took a train from Paris to Istanbul (Argument 1, itali-
cized) and she had to attend a conference (Argument 2, bold). The relation sense in
PDTB is CONTINGENCY.CAUSE.REASON, which means that ARG2 gives the reason,
explanation or justification, while ARG1 gives its effect [40]. We can label each clause
in predicate-argument style. That is, Jane took a train from Paris to Istanbul is
CONTINGENCY.ARG11. PDTB uses a three-level hierarchical classification so that
the sense label has varying granularity of semantics: it encompasses class (Level-1,
CONTINGENCY), type (Level-2, CAUSE) and subtype (Level-3, REASON) label.

When a discourse connective is not in the text such as (2), the annotator infers the
relation sense (in Sentence 3, REASON) if they can and inserts an implicit connective
(in Sentence 3, because) that best conveys the inferred relation.

Including CONTINGENCY, there are four Level-1 relation senses in PDTB. Below
we provide examples for each Level-1 sense. Level-2 and 3 senses further refine the
semantics in Level-1. The full sense hierarchy, with a more extended example set, is in
Table A.1.

TEMPORAL Situations described in the arguments are synchronous (events have
overlap) or asynchronous (event in one argument precedes the other). In
the example below, knowing and eat are synchronous:

Knowing a tasty – and free – meal when they eat one, the executives gave
the chefs a standing ovation. [wsj 0010]

CONTINGENCY The situation described by one argument provides the reason, explana-
tion or justification for the situation described by the other. In the example
below, no railroad damage is the reason why the service resumes:

But service on the line is expected to resume by noon today.
(Implicit=since) “We had no serious damage on the railroad,” said
a Southern Pacific spokesman. [wsj 1803]

1Throughout this report, I will format discourse relation and argument labels in small caps like this
CONTINGENCY and ARG1, to be distinguishable.
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COMPARISON The discourse relation between two arguments highlights their differences
or similarities. In the example below, the difference between gold thriving
on inflation and stocks thriving on disinflation is contrasted:

After all, gold prices usually soar when inflation is high. Utility stocks,
on the other hand, thrive on disinflation . . . [wsj 0359]

EXPANSION Relations that expand the discourse and move its narrative or exposition
forward. In the example below, speaking Filipino is the detail how turtle
has succeeded:

An enormous turtle has succeeded where the government has failed:
(Implicit = specifically) He has made speaking Filipino respectable.

Table 2.1: Examples of PDTB3 Level-1 relation sense, adapted from Webber et al. [40].
Arg1 is italicized, Arg2 is bolded and the connective is underlined.

2.2 Probabilistic Coherence Modeling

2.2.1 Entity Grid

Based on Centering Theory (2.1.1), Entity Grid represents the transitions of entities in
adjacent sentences. This in turn provides a framework to evaluate text coherence.

In Figure 2.1, the text is split into sentences, which constitutes the rows of Entity Grid.
The entities are extracted from the head of co-referent noun phrases, which include
Department, Microsoft and Netscape. Entity Grid is a matrix where row i represents the
ith sentence and column j refers to jth entity. A cell (i, j) contains the grammatical role
of jth entity in ith sentence, which can be any of subject S, object O, other X or - if the
entity is not in that sentence.
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1 S O S X O – – – – – – – – – – 1
2 – – O – – X S O – – – – – – – 2
3 – – S O – – – – S O O – – – – 3
4 – – S – – – – – – – – S – – – 4
5 – – – – – – – – – – – – S O – 5
6 – X S – – – – – – – – – – – O 6

1 [The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X

with [evidence]X that [the company]S is increasingly attempting to crush [competitors]O.
2 [Microsoft]O is accused of trying to forcefully buy into [markets]X where [its own

products]S are not competitive enough to unseat [established brands]O .
3 [The case]S revolves around [evidence]O of [Microsoft]S aggressively pressuring

[Netscape]O into merging [browser software]O.
4 [Microsoft]S claims [its tactics]S are commonplace and good economically.
5 [The government]S may file [a civil suit]O ruling that [conspiracy]S to curb [competition]O

through [collusion]X is [a violation of the Sherman Act]O .
6 [Microsoft]S continues to show [increased earnings]O despite [the trial]X.

Figure 2.1: An example of Entity Grid from Barzilay and Lapata [2]. The text on the right
is annotated with grammatical role for each entity. This text is represented as Entity Grid
on the left.

Entity transitions are extracted from Entity Grid by taking all sequences of cell entries
in each column. The sequence length is a parameter of the model, and it is often set
to 2 or 3 with best results [2]. A short sequence length thereby captures local entity
transitions, where the scope is across a few adjacent sentences. In Fig 2.1, the entity
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Microsoft contains five entity transitions of length 2: {(S,O),(O,S),(S,S),(S,-),(-,S)}.
One can then calculate transition probabilities in a grid. For example, (S,-) appears
6 times, and there are 75 total number of entity transitions. Therefore, the transition
probability P(S,-) = 6

75 = 0.08. Transition probabilities of all transition types then
become features for a predictor on coherence tasks.

2.2.2 Discourse Role Matrix

In 2.1.2, it is shown that the presence of discourse relation often indicates coherence in
text. What’s more, coherent text often favors arranging text spans in a discourse relation
with one of two possible orderings. Consider this example from Lin et al.:

[Everyone agrees that most of the nation’s old
bridges need to be repaired or replaced.]S1

[But there’s disagreement over how to do it.]S2

There is a CONTRAST relation in this sentence pair. The given ordering is coherent. If
we were to swap this pair, the text will become incoherent. This motivates Discourse
Role Matrix, a model that leverages the preference of relation ordering to assess text
coherence.

While Entity Grid indicates the presence and grammatical role of an entity in a sentence,
The Discourse Role matrix makes use of information on an entity’s discourse relation,
which we refer to as its discourse role. While Entity Grid refers discourse entity as a
class of coreferent noun phrase [2], Discourse Role Matrix relaxes its choice of entities
and uses stemmed form of open class words: nouns, verbs, adjectives, and adverbs [26].

Similar to Entity Grid, in Discourse Role Matrix, row i represents the ith sentence and
column j refers to jth term. A cell (i, j) however contains the discourse relation type
and argument label of term i in sentence j. In Figure 2.2, the term cananea appears in
sentence 1 and takes part in the first argument of relation COMPARISON. Therefore, we
mark (cananea,S1) with COMPARISON.ARG1. If term i does not appear in sentence
j, or there is no relation that contains term i, we mark the cell nil. For example,
(cananea,S2) = nil because the second sentence does not contain term cananea. As in
Entity Grid, the probability of the discourse role transitions is calculated and used as
features. A predictor is trained using these features to discriminate between transitions
in coherent documents and those in incoherent documents.

The intuition behind Entity Grid and Discourse Role Matrix is that the distribution
of entities in coherent text exhibits certain regularities that can be reflected in grid
columns [24]. In particular, a discourse may be centered by a few entities that are
salient throughout the passage. The grid column representing that entity will be dense
with meaningful discourse roles (cananea or operat in Figure 2.2). If you combine the
set of salient entities, sometimes you can even get the gist of a whole text (cananea
is operating something). However, most other entities will be sparse or almost empty
(like depend). They are not the main focus and only provide supporting information to
salient entities.
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Figure 2.2: An example of Discourse Role Matrix from Lin et al. [26]. The text on the left
is annotated with discourse relations.

2.3 Neural Coherence Modeling

With the rapid developments in deep learning, neural models have become prevalent in
coherence modeling, surpassing previous approaches.

The efficiency of Entity Grid representation (2.2.1) in capturing entity distributions has
inspired many extensions: Nguyen and Joty applies Convolutional Neural Network to
the entity grid of an input text. The network looks up local regions of an Entity Grid and
learn high-level entity-transition features with convolution filters. Because the filter
size can be large (they use 5−8), long-range transitions can be captured more efficiently
than traditional Entity Grid. The training uses a supervised pairwise approach, where
the model takes a pair of documents as input (a coherent and incoherent text) and
outputs respective coherence scores. It minimizes the marginal loss, or maximize the
distance between two scores.

Neural feature extraction improves probabilistic approach in two ways. First, probabilis-
tic approach defines a length n for entity transitions of G different grammatical roles.
This results in Gn transition probabilities to be calculated, which grows exponentially
as n increases. Neural entity grid learns k filters of size n and can be applied to an entity
grid globally. This results in only k · n feature sets to train. Secondly, probabilistic
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approach calculates local transitions for a single document, without referencing other
documents. The neural approach uses embedding vectors and convolutional filters to
learn distributed representation of grammatical roles and local coherence patterns. It
trains on many coherent and incoherent instances, which helps the network to generalize
coherence modeling better to a wide range of documents and grammatical roles.

2.4 Current Approach and Rationale

We mainly focus on the Discourse Role Matrix (2.2.2), one of the first coherence mod-
els that utilizes discourse relations (particularly PDTB) to evaluate discourse coherence.
At the time of publication, Discourse Role Matrix has achieved the state-of-the-art result
of 89.25 % accuracy in differentiating between original and permutated text on WSJ
dataset.

As mentioned in previous sections, Discourse Role Matrix combines two key aspects
of coherence modeling: entities based on Centering Theory and discourse relation.
This allows the model to be synergistic with other entity-based models. In fact, Lin
et al. combine features from both their Discourse Role Matrix and Entity Grid of
Barzilay and Lapata and achieve 1.2% improvement in WSJ dataset. Therefore, a
deeper understanding of this architecture allows us to generalize coherence modeling
knowledge to existing entity-based models.

In addition, despite it being a traditional approach that uses feature engineering, entity
grid like Discourse Role Matrix is still utilized in recent work, with various downstream
tasks such as essay scoring [9, 12, 16]. Its linguistic richness warrants closer examina-
tion on how existing approaches and new linguistics information (Section 3) affect its
behavior in coherence modeling.

With recent interest in discourse-aware text generation systems, more work models the
interdependence between sentences when generating coherent text in the document-
level [42, 45]. Therefore, modeling and evaluating discourse coherence have become
more crucial in such systems. In this study, we would also like to extend coherence
relation based Discourse Role Matrix with Nguyen and Joty’s neural model. Discourse
relations are typically modeled as a discrete class in existing literature. The idea that a
discourse role may be modeled as a distributed representation motivates multi-purpose,
latent representations to capture local coherence patterns.

Our work builds on previous studies in coherence modeling with two key distinctions:
First, we provide an extensive and in-depth analysis on how various aspects of Discourse
Role Matrix contribute to discriminative coherence evaluation. To our knowledge,
no research has studied the effect of discourse relation types to a coherence model,
though some work has indicated their desire to do so [9]. Second, recent work to
improve discourse modeling has focused on discourse relation classification (identifying
discourse relation from raw text) [25, 33, 44] rather than coherence modeling. We adapt
neural model to entity and discourse relation based Discourse Role Matrix to see its
performance with long coherence context.



Chapter 3

Methodology

To evaluate text coherence automatically, I use discriminative approach to build my
computational model: Supervised discriminative coherence models are trained to dis-
criminate between labelled coherent and incoherent instances. These instances have
same lengths and topics, therefore these aspects do not alter their coherence. To generate
incoherent examples, Shuffle Test (4.2) permutes sentences in the original text that we
consider to be coherent, so that the incoherent instance consists of the same sentences
but in different order.

We select one of such models, Discourse Role Matrix (2.2.2) because it exploits not
only entity but also discourse relation patterns to assess coherence. Discriminative
model using discourse relations is one of the most recent traditional NLP method and a
common approach to assess coherence and readability [9, 12, 16].

Then, I made modifications on the baseline in how discourse units, discourse entities,
discourse roles and feature extraction are defined. These changes in discourse features
allow me to interpret or improve my model across many phenomena in coherence. This
chapter discusses their methodology and justification.

3.1 Baseline

We reproduce Discourse Role Matrix following parameters used in Lin et al. as the
baseline model. There are four components to construct a Discourse Role Matrix:
discourse units, discourse entities, discourse roles and feature extraction.

3.1.1 Discourse units

Discourse units are text segments that convey semantic meaning. In the Discourse Role
Matrix, discourse units are argument spans in each relation. In my baseline, I divide a
text into sentences, and each sentence defines a matrix row.

In my new model, I consider distinguishing discourse units that span within a sentence
from those that span across sentences. We discuss this in detail in Section 3.2.

11
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3.1.2 Discourse entities

To construct a Discourse Role Matrix, we must decide which words have sufficient
meaning to be considered entities, and how to link different mentions of the same entity.
We follow Lin et al. to use words with following part-of-speech (POS): nouns, proper
nouns, verbs, adjectives and adverbs 1. We use spacy library 2 to tokenize and filter
with these word types. We have selected this tool because it supports in-context POS
tagging. Notice that in the example below, the term orange is tagged as both adjective
and noun depending on other terms in the context:

The orange monster ate the orange .
DET ADJ NOUN VERB DET NOUN PUNCT

This allows us to be flexible in identifying the relevant term as entities. The color
orange is arguably less relevant than the orange being eaten. Determiner (e.g. the),
punctuation, auxiliary (e.g. is) and conjunction (e.g. and) are stopwords. We remove
these common terms that are insignificant to entities extraction.

We also use PorterStemmer to stem these terms. Stemming removes the prefixes
and suffixes of words, so that terms of same root are grouped together. This allows us
to resolve co-occuring entities naively by removing inflections: for nouns, stemming
removes count and possessive case (e.g. bank’s and bank). For verbs, stemming removes
tense (e.g. borrowed and borrow).

In the baseline model, to save computation time, I only consider salient entities. This
means each entity has a term frequency ≥ 2. This reduces noisy rare terms. Each entity
extracted defines a matrix column.

We also consider alternatives of discourse entities, such as co-referred named entities,
for our new model in Section 3.3.

3.1.3 Discourse roles

In Lin et al., discourse roles concatenate Level-1 PDTB discourse relation label
(TEMPORAL, CONTINGENCY, COMPARISON, EXPANSION, ENTREL, NOREL) with
argument label (ARG1, ARG2). Each discourse role defines a matrix cell.

In my new model, I also consider Level-2 relation labels. We illustrate the motivation
and method in 3.4.

To construct a Discourse Role Matrix, we represent row i as the sentence Si and column
j as the entity e j. If entity e j appears in Si with a discourse relation r, then we mark the
cell entry (i, j) with this relation r plus the argument label in which the term is located.
We call (i, j) the discourse role of e j at sentence i.

Each cell (i, j) can be either empty, contain a single or multiple discourse roles. When
an entity does not appear in a sentence, or it does not participate in a discourse relation,

1However, their POS tagging method is not mentioned, so exact replication is not possible.
2with default trained pipeline en core web sm
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the cell is empty, and we mark it nil. When an entity appears more than once in a
sentence and participates in more than one relations, the cell contains many roles.

I follow the above algorithm and settings to re-implement Discourse Role Matrix.
As there is no open-source implementations, I have written all modules myself and
verify my implementation with manual checking of a few examples, and by comparing
experimental result with Lin et al. (see Figure 5.1). Figure B.1 illustrates the pipeline
for my implementation.

3.1.4 Feature Extraction

The three components above create a Discourse Role Matrix representation of input
text. To build a coherence model to use such representation, we need to extract features
for the model to discriminate between coherent and incoherent text. Our baseline uses
the key assumption that “coherent text exhibits measurable preferences for specific
discourse relation ordering” [26]. To illustrate this, consider this example from Lin
et al.:

(1) Everyone agrees that most of the nation’s old
bridges need to be repaired or replaced. (2) But
there’s disagreement over how to do it..

Here Sentence 2 illustrates constrasting information about the Sentence 1 (signaled by
connective but). If we swap them, it will produce an incoherent text [29]. Thus, the
discourse role transition COMPARISON.ARG1 → COMPARISON.ARG2 is preferred in
this context. We would like to capture transitions like this in our feature extraction step.

For every column that represent an entity, we look at local transitions between sentences.
We count the sub-sequence of discourse roles in consecutive sentences of length 2
and 3.3 In a given entity, they resemble bigrams (window of 2) and trigrams (win-
dow of 3) of discourse roles across adjacent sentences. Given the column for entity
cananea below, all bigram transitions from S3 to S4 are (COMPARISON.ARG2 → EX-
PANSION.ARG2), (TEMPORAL.ARG1 → EXPANSION.ARG2) and (EXPANSION.ARG1
→ EXPANSION.ARG2). One of the trigram transitions from S2 to S4 is (nil → EX-
PANSION.ARG1 → EXPANSION.ARG2). Notice we do not consider sub-sequence that
only consists of nil (like nil → nil from S1 to S2). We count all bigrams and trigrams
in a Discourse Role Matrix and calculate their probabilities. For example, if a matrix
contains only cananea, since there are 6 length-2 bigrams, and EXPANSION.ARG1 →
EXPANSION.ARG2 has a count of 1, its probability is 1/6.

S1 S2 S3 S4

cananea nil nil
COMP.ARG2
TEMP.ARG1
EXP.ARG1

EXP.ARG2

3This is the standard in existing work on entity grid [2][26]. Often subsequence longer than 3 scales
up the number of features exponentially and leads to the curse of dimensionality [3] problem. We aim to
resolve this in our neural Discourse Role Matrix in 3.2.
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We also consider alternatives of feature extraction to replace the above probabilistic
approach, using Convolution Neural Network. We illustrate this new model in Section
3.2.

Having defined the base model, we notice that Discourse Role Matrix presents numerous
design opportunity to define discourse units, entities, roles and feature extractions. We
will move on to explore some of these configurations in the subsequent sections.

3.2 Inter-Sentence vs Intra-Sentence Distinction

Discourse relations can be categorized based on the scope of their argument spans. An
intra-sentential relation (Intra-S) contains arguments that both lie within the same
sentence (Sentence 1 below), while an inter-sentential relation (Inter-S) contains
arguments that jointly span across sentences (Sentence 2).

(1) However risky the business, it’s brisk these days. [wsj 0569]

(2) Small businesses say a recent trend is like a dream come true: more-
affordable rates for employee-health insurance, initially at least. But then
they wake up to a nightmare [wsj 0518]

Intra-sentential discourse relations are explored with some degree in Lin et al.: In
Figure 2.2, the fifth discourse relation EXPANSION is intra-sentential. Its arguments are
two clauses in the last sentence. As a result, entities in the same sentence have different
argument labels: operat, in first clause, is EXPANSION.ARG1. It is EXPANSION.ARG2
in second clause.

When modeling discourse roles, Lin et al. and its extended model [9] do not distinguish
between inter-sentential and intra-sentential relations. However, distributions of rela-
tion senses are quite different between them [9]. We suspect that this can affect the
decision boundary when discriminating coherent and incoherent instances. Therefore,
we differentiate them when constructing Discourse Role Matrix. We add another di-
mension in discourse role: INTRA-S and INTER-S. For instance, the first argument of
intra-sentential relation TEMPORAL will now have the role INTRAS.TEMPORAL.ARG1.

3.3 Entity Extraction

In Lin et al., entities are nouns, verbs, adjectives and adverbs that occur in text. Co-
references are resolved naively by the stemmed form (e.g. operat is the stemmed
form of operating and operate). However, when an entity appears as a pronoun, co-
references of that entity cannot be resolved by stemming (e.g. BankAmerica and it). In
addition, term-based resolution cannot map compound noun collectively to an entity.
For example, Bank of America will be mapped to two entities: bank and America. Each
co-reference becomes its own entity or column, which makes the matrix sparse.

Therefore, a robust coreference tool is needed to accurately identify co-occuring entities.
To ensure co-references are resolved accurately, I use the gold-standard BBN Pronoun
Coreference and Entity Type Corpus. The corpus contains a set of antecedents and their
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"But you have to recognize that these
events took place 35 years ago.

" But you have to ...

5:81:40

Tokenized text in BBN

PDTB Raw Texts

Absolute position in PDTB

0:69Cᴏᴍᴘᴀʀɪsᴏɴ.Cᴏɴᴛʀᴀsᴛ

Relation Arg1
PDTB Annotations

... ...

Figure 3.1: An illustration of Corpora Alignment between BBN and PDTB

corresponding pronouns (see below). Antecedent is the first occurence of an entity,
and its pronouns are co-references of that entity, after the antecedent appeared. The
corpus contains pronoun co-reference annotations in Wall Street Journal (WSJ) texts
(4.1), which are the same documents we use to construct Discourse Role Matrix.

Listing 3.1: An example of antecedent and pronoun in BBN Pronoun Coreference and
Entity Type Corpus

( Antecedent -> S2:5-5 -> BankAmerica
Pronoun -> S2: 7-7 -> it )

( Antecedent -> S13:5-5 -> BankAmerica
Pronoun -> S13: 34-34 -> it )

Corpora Alignment Because BBN corpus does not have information on its tokeniza-
tion scheme, much effort is put in to align the term and sentence tokenization between
BBN and PDTB, which we use for baseline. Figure 3.1 illustrates the alignment process:
we first find every term that is tokenized by BBN and locate them iteratively in raw text
and record its absolute position. This allows us to convert sentence and term indices to
absolute position in PDTB raw text. In this way, pronouns and antecedents are aligned
between two corpora. The antecedent and its pronouns are then stored as a single
entity. Both their term and positions are recorded for matrix construction later. The
absolute position of entities is then used to find the discourse relation it encompasses.
We manually checked a few documents to ensure that the implementation is correct.

Resolved vs Unresolved Antecedents In the corpus, antecedents are separated
based on each occurrence of that term. For instance, in Listing 3.1, the antecedent
BankAmerica occured twice in the same text and are stored separately. We combine
antecedents of same term to resolve such co-references. We call them resolved an-
tecedents.

To see the effect of resolution, we also leave the antecedents of the same term the way
it is, without combining them. Specifically, we treat BankAmerica in S2 as a different
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entity from BankAmerica in S13. We call them unresolved antecedents.

We suspect that our model will perform better when antecedents are resolved because
an unresolved antecedent can only capture discourse transitions locally. Its scope is
defined within the sentence indices of that antecedent and all its pronouns (in case of
BankAmerica in S2, its scope is only S2). Therefore, unresolved antecedent cannot
form a long chain of discourse role transitions.

3.4 Level-2 Relation Labels

In Lin et al., Level-1 PDTB relation labels are used as discourse role, which are
TEMPORAL, CONTINGENCY, COMPARISON, EXPANSION. However, Level-1 label
cannot accurately capture exact relation in adjacent sentences, especially when two
different relations of same class co-occur in a context (e.g. EXPANSION.EXCEPTION

and EXPANSION.CONJUNCTION).

Secondly, Level-1 label EXPANSION is a “mixed bucket” that contains Level-2 labels
that are loosely related (e.g. EXCEPTION, CONJUNCTION). We provide full examples
in Table A.1. EXPANSION means that “one of the arguments expands the discourse
and move its narrative or exposition forward” [40]. This is less cognitively salient
than its counterpart such as TEMPORAL, which means that arguments are time-ordered.
Therefore, a coherence model may benefit from a more defined label as Level-2.

3.5 Support Vector Machine and Preference Ranking

Support Vector Machine (SVM) is a pattern recognition technique to create optimal
decision boundary for patterns that are linearly separable. Support vectors are points
that lie closest to the decision boundary. The objective of a SVM model is to find the
linear boundary that is as far as possible from the points in different classes, while
classifying them correctly. SVM takes a set of input pairs (x,y) and returns a set of
weights w on each feature. Its linear combination predicts the value of y [4].

We use SVM to discriminate between a coherent text and a shuffled incoherent text.
For a document, SVM uses input features x = x1,x2, ...,xn, a vector of probabilities
for all possible transitions of discourse roles, where n is the total number of features.
We assume that the distribution of discourse role transitions in coherent texts is distin-
guishable from those in incoherent texts [26]. Therefore, SVM separates coherent from
incoherent instances with an optimal hyperplane.

Since coherence is a relative measure of text quality without an absolute class label, we
follow Barzilay and Lapata and Lin et al. to define the discriminative task as a ranking
problem: Given a pair of texts, the system ranks them based on how coherent they are.
We assign a coherent text d with rank 2 and a less coherent one d′ with rank 1.

A preference-ranking SVM model [17] M uses the feature set for each document,Fd or
Fd′ , as input and outputs a ranking score. Sorting the ranking score then gives the rank.
Two documents of different ranks must meet pairwise preferential constraint. That is,
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the output score given to coherent instance must be higher than that given to incoherent
instance, M (Fd)> M (Fd′ ).

We use SVM-light package with rank setting because its runtime is much faster than
scikit-learn. It is also used in Lin et al. and Feng et al., which helps to validate the
correctness of my re-implementation by achieving equivalent results.

3.5.1 Model Interpretation

SVM in its linear setting, takes the dot product of weight with a given data point
(Equation 3.1). If its result is positive, it belongs to the positive class. If it is negative,
it belongs to the negative class. However, if it is in between, the model is less certain
about its class.

y = sign(wx−b) (3.1)

Therefore, weights indicate some importance of each feature for separating the data
(i.e. the hyperplane would be orthogonal to the support vector). A large weight is more
likely to assign data point with a positive label, given feature values are positive because
they are probabilities. In fact, SVM weights have been used for feature selection in
bioinformatics: Guyon et al. uses w2 as a feature ranking criterion to select genes for
cancer classification.

In my coherence model, positive weights indicate relation transitions that are favored
in coherent text, while negative weights indicate those common in less coherent text.
Thus, SVM weights provide some evidence for model interpretability, which we will
discuss in Section 5.3. To reduce the impact of noisy training data on model weights,
we compare SVM weights in model instances trained from 5-fold cross-validation.

3.6 Genre Distinction and Domain Adaptation

The genre of a text often affects the distribution of discourse relations [44]. We would
like to explore its impact to our model in evaluating coherence. Although PDTB
contains only Wall Street Journal articles, which are mainly expository text, these
articles can in fact be further categorized into essays, highlights, letters to editors,
news articles and erratas (i.e. corrections and amplifications). We cross-reference two
existing genre distinction sets from Webber [38] and Plank [35]. They use patterns in
title, content structure, and other metadata to infer the genre of each document. As a
preprocessing step, we exclude articles if two sources disagree about their genre. Five
genres with the most articles are chosen. Their statistics are listed below. The remaining
three genres (Wit and short verse, Quarterly progress reports, Notable and Quotable)
are left out as they contain fewer than 15 articles.

Essays Highlights Letters News Errata
103 55 50 1902 23

Table 3.1: The number of WSJ articles in PDTB per genre
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We would like to answer: How well does our discriminative model adapt to different
text genre? We use domain adaptation, a particular case of transfer learning. In our
case, domain adaptation applies the same task, coherence evaluation, between different
domains, or genres. We define D1 and D2 as two genres we aim to compare, where
their underlying probability distributions P1 and P2 differ. We present results of our
domain adaptation in Section 5.6.

3.6.1 KL Divergence

To compare the distribution of discourse role transitions among genre, we calculate the
KL divergence between two distributions. Kullback–Leibler (KL) divergence is a
measure for the difference between two probability distributions over the same variable
x. Provided that p(x) and q(x) are two distributions that share a discrete random variable
x, the KL divergence of q(x) from p(x) is denoted as DKL(p(x)||q(x)). This measures
the information lost when q(x) is used to approximate p(x):

DKL(p(x)||q(x)) = ∑
x∈X

p(x) ln
p(x)
q(x)

(3.2)

p(x) and q(x) must fulfill the definition of probability distribution. That is, both p(x)
and q(x) must sum to 1 over all x. p(x)≥ 0 and q(x)≥ 0 for any x in X . KL divergence
of two probability distributions is 0 if and only these two distributions are the same. KL
divergence is asymmetrical. That is, DKL(p(x)||q(x)) ̸= DKL(q(x)||p(x))

We use KL divergence to compare the difference between two distribution of discourse
role transition. In particular, we derive such distribution by counting the frequency of
bigram transition (like COMPARISON.ARG1 → COMPARISON.ARG2 ) and trigram
transition in Discourse Role Matrix (like COMPARISON.ARG1 → COMPARISON.ARG2
→ nil). We then normalize these transitions to ensure that it is a probability distribution
(as discussed in 3.3). We apply smoothing to account for unobserved transitions,
where their probability is 0. This will ensure that KL divergence behaves reasonably in
Equation 3.2 when p(x) or q(x) is close to 0.

3.7 CNN Discourse Role Matrix

While traditional feature extraction has some success in coherence modeling, it is still
limited: By calculating discourse role transitions of length k (3.1.4), with R discourse
roles, the number of such transitions R k increases exponentially with larger k. This
prevents the model from considering longer transitions [3]. In addition, traditional
feature extraction is task-agnoistic, which means the same feature representations
from entity grids are generated regardless of the downstream task. To solve these
two problems, we decide to adopt Nguyen and Joty’s convolutional entity grid to our
Discourse Role Matrix. We discuss the mechanism of the Convolutional Neural Network
(CNN) in the context of our coherence task.

Figure 3.2 summarizes our adapted neural architecture. The model takes a pair of
documents as input, and outputs their respective coherence score. Before the text is
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Figure 3.2: Architecture for convolutional Discourse Role Matrix for modeling coherence
with pairwise training

fed to CNN, we construct its Discourse Role Matrix (Section 3.1). The first layer of
the neural network transforms each discourse role into a distributed representation, or
embedding vector that captures the meaning or relation of a discourse role. The second
layer uses convolution to extract high-level features in each column of Discourse Role
Matrix that represents an entity. The third layer chooses the most important high-level
features, which are then used to compute coherence score for the text. We now elaborate
on each layer of the model.

Lookup Layer We take each column of Discourse Role Matrix (yellow and green),
which represents discourse role transitions of an entity between adjacent sentences.

Discourse roles are fed to our model as indices taken from a finite vocabulary V . We
obtain this vocabulary by finding all discourse role types in TRAIN set. For instance,
our vocabulary will contain ENT.ARG1 and ENT.ARG2, which are first and second
argument of ENTREL. We incorporate entity-specific feature to these discourse roles,
by attaching the frequency of that discourse role found in that entity. For example, if the
column for entity e is (ENT.ARG1, ENT.ARG2, - , ENT.ARG1). Then each ENT.ARG1
in that column will be added to the vocabulary as Ent.Arg1 F2, where F2 means that
the role occurs twice. Similarly, F3 for 3 and F4 for 4 and more. Our vocabulary
size |V |= 43, It includes empty discourse role nil, padding token 0, and all Level-1
discourse roles with frequency F2, F3, F4.
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For a Discourse Role Matrix G, The first layer of our CNN maps each of these roles
Gi, j occuring in the matrix to a distributed representation Rd by looking up a shared
embedding matrix E ∈ R|V |×d . We do so for all m sentences and n entities. The
discourse role found in a matrix is defined in the vocabulary, Gi, j ∈ V . Formally, the
output of Lookup Layer is

L(G) = ⟨E(G1,1)...E(Gi, j)...E(Gm,n)⟩ (3.3)

and is fed to the Convolution Layer. The discourse role embedding E is a model
parameter that can be learned from back-propagation on a downstream task. We use
the setting in Nguyen and Joty and initialize this embedding matrix by sampling from
uniform distribution U(−0.01,0.01). However, it can also be fine-tuned from pretrained
embedding from a general coherence task.

Convolution Layer To extract high-level features from discourse role vectors pro-
duced by Lookup Layer, we use the convolution operation. We multiply weight
parameters, or filter w ∈ Rkd with entity transition of length k, Lt:t+k−1, j. This denotes
the concatenation of k vectors that represent discourse roles from sentence t to t +k−1,
for entity e j. Then we add the product with a bias term bt . Lastly, we apply nonlinear
activation function f to the sum. We follow Nguyen and Joty and use ReLU [31] in our
model. The convolution operation results in a new abstract feature ht .

ht = f (w⊺Lt:t+k−1, j +bt) (3.4)

We apply the same filter w to all possible k-length transitions and entities. This will
output a list of abstract features called feature map, hi = [h1, ...,hmn+k−1]. We can
repeat this process N times with N different filters. This will obtain N feature maps.
Each filter learns a set of transition patterns in our Discourse Role Matrix. For example,
a filter may learn to detect COMP.ARG1 → COMP.ARG2 (2.1), a complete COMPAR-
ISON relation between two adjacent sentences. If an entity has the first argument of
COMPARISON in sentence t, and the second argument in sent t +1, the resulting feature
map in that region will have higher values than other regions without this transition.
This may in turns affect the final layer to score this input higher.

As in Nguyen and Joty, we use the wide convolution [20]. This means that the convolu-
tion operation in Equation 3.4 reach all perimeters of L , regardless of the window size.
To do so, we apply zero-padding to out-of-range vectors t < 0 and t > m,n (gray area
in 3.2), which also separate different columns.

Convolution allows us to model discourse role transitions of arbitrary lengths k in
a location-invariant way. This means that regardless that a transition of discourse
relations occurs toward the beginning or end of text, the convolution will treat it equally
for a given filter.

Pooling Layer After convolution, we apply max-pooling operation to each feature
map hi. This reduces the output dimensionality, distillates the most salient features,
and prepares for Coherence Scoring as the last step. We use µp(hi) to denote the max
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operation to every non-overlapping window of p features in a feature map. We set the
stride size same as the pooling size p so that windows are non-overlapping.

m = [µp(h1)...µp(hN)] (3.5)

Coherence Scoring Finally, the max-pooled output m is passed to a linear layer with
weight v and bias b, to produce a coherence score y.

y = v⊺m+b (3.6)

Training Objective As shown in Figure 3.2, we use pairwise ranking [7] to learn
model parameter θ, similar to our SVM baseline. This means that the given an ordered
pair of documents (di,d j), where di is more coherent, we construct their Discourse Role
Matrix Gi and G j as the model input. Then the model minimizes the following ranking
objective and outputs coherence score y = φ(G|θ). The model shares its parameters
θ when training both coherent and incoherent cases, allowing the network to learn
coherence patterns from both. This is an advantage of a discriminative model.

J (θ) = max(0,1−φ(Gi|θ)+φ(G j|θ)) (3.7)

Incorporating Discourse Roles Nguyen and Joty uses grammatical roles in their
entity grid. This means that an entity can be either absent, subject, object or other in a
given sentence. Unlike grammatical roles, in our model, there may be more than one
discourse roles Gi, j for a given entity ei and sentence j. This makes modeling input
challenging because in the Lookup Layer, the model finds the distributed representation
of a single discourse role in that position. To resolve this, in a given entity ei, we
enumerate all possible combination of that entity column where there is only one
discourse role at at every sentence 1,2, ...,m. This is equivalent to Cartesian product
of discourse roles in an entity column. We randomly downsample the resulting columns
to 1000 for every column, if the number of combinations is too large for the model to
load. Through experimentation, we obtained this upper limit so that the time required
to load the matrices is reasonable.

An entity column

S1 S2 S3 S4

cananea nil nil
COMP.ARG2
TEMP.ARG1
EXP.ARG1

EXP.ARG2

Cartesian Product

S1 S2 S3 S4
cananea nil nil COMP.ARG2 EXP.ARG2

S1 S2 S3 S4
cananea nil nil TEMP.ARG1 EXP.ARG2

S1 S2 S3 S4
cananea nil nil EXP.ARG1 EXP.ARG2

We adapt discourse roles by modifying the open-source implementation published in
Nguyen and Joty 4. The training module uses outdated Tensorflow and Keras framework,
so much effort involves resolving the environment and deprecated functions. Due to
large computation required for hyperparameter tuning (5.7), I have put much time in
setting up multiple Google Cloud virtual machine instances to train in parallel, each of
which require configurations for running our neural model.

4https://github.com/datienguyen/cnn_coherence/

https://github.com/datienguyen/cnn_coherence/
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Data and Evaluation Task

4.1 Data

The Penn Discourse Treebank (PDTB) [36] [40] is the largest discourse-annotated
corpus, with 2162 Wall Street Journal (WSJ) articles. In the discourse community,
PDTB is a gold-standard corpus for training and evaluating coherence model. It has
a higher annotator agreement in relation sense identification and a larger annotated
corpora 1 than its counterpart 2, Rhetorical Structure Theory Discourse Treebank (RST-
DT) [6] [18]. This enables our method to learn from an underlying distribution that is
more representative, with less noise and subjective bias from human annotators.

As discussed in 2.1.2, PDTB contains discourse relations in predicate-argument style:
a discourse connective (e.g. because, and) is a predicate. Two text spans that the
connective joins are arguments, which are stored as absolute positions in text. We use
these annotations to construct discourse role for our model. Below is a snippet of the
dataset. Other discourse information (such as attribution) are left out since they are
irrelevant to our model.

... Connective Semantic Class Arg1 Arg2
COMPARISON.CONTRAST 600..722 543..598
EXPANSION.LEVEL-OF-DETAIL.ARG2-AS-DETAIL 756..776 778..874
COMPARISON.CONTRAST 778..874 876..916
CONTINGENCY.CAUSE.RESULT 921..1043 1046..1104

Table 4.1: A snippet of PDTB (Document wsj 0003)

In Table 4.1, we call each row an annotation (or annotation instance). The column
Connective semantic class refers to the discourse relation between two argument
spans. Notice that it often has three-level (EXPANSION.LEVEL-OF-DETAIL.ARG2-AS-

1RST-DT contains 100K words, while PDTB-3 contains 1M
2RST-DT has 65.8% annotator agreement for all relation identification, while PDTB has 94% for

class (Level-1), 84% for type (Level-2) and 80% for subtype (Level-3) label identification.

22
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DETAIL), sometimes two. This granularity of relation label is utilized in one of our
variant models (Section 3.4).

PDTB 3.0 vs 2.0 In particular, we have chosen PDTB 3.0 as our dataset. It has been
modified from PDTB 2.0 to include more consistency testing, giving the current version
better quality. It cover more instances of discourse relations (∼ 13K more), particularly
in intra-sentential context. When replicating Lin et al., we have removed these additional
annotations to ensure an apple-to-apple comparison between our baseline and theirs.

Dataset Set-up We first randomly splits articles following the experiment setting in
Lin et al. [26]: 1040 articles for training, 42 articles for development and 1079 articles
for testing.

When an article contains more relations, the abundance of relation transitions may
help distinguish the original article from its permutation better [26]. We balance the
train split by the density of relations in an article. The density is the ratio between the
number of relations in the article and the article length. This ensures that the train split
contains a balanced representation of articles of various densities. We discuss its result
in Section 5.2.

4.2 Shuffle Test

Shuffle Test [2] is the most common evaluation for coherence modeling. In this task,
we supervise the model to distinguish between an original document and the same
document in which the sentence order has been permutated. We assume that the original
text is more coherent and is ranked higher than the shuffled one. In fact, this assumption
has been validated in Lin et al. with human evaluation, with 90% inter-subject agreement
in WSJ dataset. Therefore, a successful coherence model should prefer the original
ordering.

The ability to choose the correct sentence order has been essential in text generation
and multi-document summarization [2]. These are common NLP tasks to which an
automatic coherence evaluation model can apply to.

We use documents in Penn Discourse Treebank (PDTB), which contains 2162 Wall
Street Journal (WSJ) articles, the standard dataset for this test. For each document, we
create 20 random permutations by shuffling the original order of the sentences. This
results in 20 pairwise rankings between the original and shuffled text. Documents that
contain less than four sentences can produce less than 20 permutations. In this case, we
include all permutations. We remove any permutation that is the same as the original
text.

Evaluation Using the test split in Section 4.1, we conduct 5-fold cross-validation
and use default regularization parameter C in svm-light package, as in Lin et al.. We
evaluate our coherence model with the ranking accuracy of Shuffle Test:

ranking accuracy =
# of pairwise rankings correctly predicted by the ranker

total # of pairwise rankings
(4.1)
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The pairwise ranking is correctly predicted by the ranker if it returns a higher score to
the coherent original document than the incoherent shuffled one.

When both coherent and incoherent instance are given the same coherence score, as
sometimes found in our CNN model (5.7), we call it ties. When a coherent instance is
ranked higher than incoherent, we call it win, and loss if incoherent instance is ranked
higher. To account for instances of ties, we calculate precision, F1 and recall as in
Nguyen and Joty:

precision =
win

win+ loss
(4.2)

recall =
win

(win+ loss+ tie)
(4.3)

F1 =
2 ·precision · recall
precision+ recall

(4.4)

4.3 Handle Sentence Shuffling

Pronoun

PronounAntecedent

Antecedent

Arg2 1 3 4

4 3 1

Arg1

Arg1 Arg2

Sentence Boundaries

Original
Document

Shuffled
Document 02

0 2

Sentence

Figure 4.1: An illustration for how argument spans and entities are handled in sentence
shuffling. The numbered block denotes a sentence. Each colored block denotes either
argument spans (Arg1, Arg2) or co-reference resolved entities (antecedent, pronoun) in
sentences.

Here we explain how to process text annotations, argument and entity, when we permute
the sentence order. We visualize this in Figure 4.1.

Argument Recall that discourse relations we use to construct our matrices contain
two argument spans: ARG1 and ARG2. In PDTB, the absolute positions of argument
spans in original document are stored (See 4.1). To ensure that argument spans in the
original document match with those in shuffled document, we split the document into
sentences and record the sentence boundaries (i.e. absolute positions at the start of each
sentence) per document before and after permutation. We then find which sentences
these arguments belong to and map argument positions accordingly from original to
shuffled document.

We retain all discourse relations in the original text during Shuffle Test, even if two
arguments are far from each other after shuffling. For example, the original text
consists of sentences [A,B,C] in that order. A contains CONTRAST.ARG1, B contains
CONTRAST.ARG2 and C does not contain any role. Given that the permuted instance is
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[B,C,A], there remains a CONTRAST between B and A. However, the relation transition
is only captured if the transition length is larger or equal to the distance between
B and A. For instance, transition length of 3 can capture the permuted instance as
(CONTRAST.ARG2, nil, CONTRAST.ARG1) but a transition length of 2 can not. This
allows the model to capture long-range relation where arguments are not in adjacent
sentences.

Entities In my baseline, entities are stemmed open class words that occur at least
twice. We store these eligible words in an entity vocabulary, so that they can be used for
shuffled instances of that document. To find which entities are included in an argument
span, we sweep all terms in the span to see if any belongs to our entity vocabulary.
Because co-referred entities are resolved naively through term repetitions, it is not
necessary for us to store the absolute positions of antecedents and pronouns, like we do
in Section 3.3.

However, in our model with co-reference resolutions, absolute positions are necessary
to ensure that the the antecedent and its pronouns are matched. These positions are
recorded in BBN corpora as sentence and token indices. For instance, S1:1-2 means
that the entity is in the first sentence and is the first and second term of that sentence
(see Listing 3.1 for a complete example). To match sentence ordering before and after
permutations, we record the sentence indices respectively. For example, the original
document is [0,1,2,3,4], where each number denotes a sentence. One of its shuffled
instance can be [4,3,2,1,0]. This allows us to trace back the absolute positions of
entities in shuffled text.



Chapter 5

Experiments and Discussion

To answer our research question, what aspects of Discourse Role Matrix help a model
to evaluate text coherence, we first present our reproduced baseline and analyze its
preference on relation density and relation transition. We observe that the baseline
prefers continuation of same relation sense and text with high relation density. This
supports coherence theory and the validity of model behavior. Motivated by our
observations in the baseline model architecture (3.1), we present our linguistically-
enriched models using (1) types of discourse entities (2) intra-sentential and inter-
sentential distinction for discourse relation (3) granularity of discourse relation label
and (4) domain transfer across genres. We investigate their respective implications in
discriminative coherence evaluation. Finally, we present the findings of our new CNN
coherence model and conclude why neural feature learning enhances the statistical
approach.

5.1 Baseline

Accuracy
Lin et al 88.06
Baseline 88.09
Baseline + Balanced 88.65

Figure 5.1: Test set ranking ac-
curacy for Wall Street Journal
(WSJ) data. Test accuracy is
averaged across 5-fold cross-
validations. Baseline + Bal-
anced indicates that the train
set contains balanced repre-
sentation of articles with differ-
ent densities (5.2).

We refer to our implementation of the Discourse Role
Matrix model in Lin et al. as the baseline, which we
will extend in subsequent experiments. We reproduce
the Shuffle Test (4.2) result on Wall Street Journal
(WSJ) articles, where each article has 20 distinct per-
mutations. We create our own permutations because
the random seed in Lin et al. is not provided. However,
upon setting several random seeds, we see consistent
performance regardless of how these permutations are
randomly generated. This is also the case in the lit-
erature, where similar performance is achieved when
replicating Shuffle Test without knowing the exact per-
mutation in each article [26][32].

The similar result of our replication (Row 2 in Fig-
ure 5.1) with Lin et al. provides some evidence that our
implementation is correct. There is 0.03% difference in

26
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Figure 5.2: The impact of relation density on baseline Discourse Role Matrix model

the TEST set ranking accuracy. Some variability is expected because WSJ filenames for
dataset split is not shared in the original study, so the exact duplication is not possible.

5.2 Relation Density

In Lin et al. [26], the accuracy of the model differs across data sets because the density
of discourse relations varies. It is easier to distinguish high density articles from its
permutation. We investigate the impact of relation density within the same dataset, but
with a focus on learning behavior. In each article, we first calculate the density metric,
which is the ratio between the number of relations and the article length. Then we use
it to rank and split all WSJ articles into three equal-sized groups: low, mid, and high
relation density, which have an average density of 0.452, 0.911, 1.38 respectively. To
gauge a typical density, the average density is 1.2 for all WSJ articles [26]. Figure 5.2a
plots the distribution of relation density in each group. 9282 document pairs are held
out to evaluate accuracy.

For each density group, we train a model on different number of training pairs. The
resulting learning curve is presented in Figure 5.2b. It confirms our hypothesis that the
model performance benefits from high relation density. The accuracies for all three
groups increase rapidly until 3000 pairs, where accuracies of mid and high group slow
down improvement. High density group outperforms other density groups most of the
time, although performance of mid density group is comparable to that of high density
group. This shows that the performance advantage of using a density greater than 1 is
diminishing. On the other hand, low density group requires much more training pairs
to reach comparable result like other groups, and its learning behavior is much more
different.

To answer why the learning behavior of low density group is different than others,
we scrutinize its data file. Upon inspection, we realize that in low relation density group,
there are more pairs of coherent and incoherent text containing the same transition
probabilities as feature vector. This suggests that when a coherent text is less dense
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in discourse relations (in an extreme case, without any discourse relation), the chain
of relation transitions may not distinguishable from incoherent text. In this case, the
model needs to resort to other linguistic devices for coherence, such as grammatical
roles (2.2.1) or lexical cohesion [14].

Specific to Shuffle Test, it is also observed that in low-density group, there are often
less sentences. Sentence length can affect the difference between feature sets. A longer
sentence length can often create more displacements when sentences are shuffled (e.g.
Compare [1,2]→ [2,1] with [1,2,3,4,5,6,7]→ [5,2,6,1,3,7,4]). Therefore, the space
of incoherent instances accounted is so much smaller for low-density group. In this
case, an evaluation task would work better if it disrupts natural ordering of phrases and
clauses.

From these observations, we control the effect of density on our model by balancing the
density in the training set. We see a small improvement in test accuracy across all folds
(Figure 5.1, Row 3), which suggests that the model gains advantage from a balanced
representation of articles with different densities.

5.3 Relation Transition

To understand how the model sees coherent and incoherent texts, we interpret
it using weight vectors from linear SVM (Section 3.5.1) and transition probabili-
ties in our dataset. In our model, SVM uses relation transition probabilities as in-
put, so weights indicate the importance of a relation transition in coherence scor-
ing. Though weights are only indicative, we observe general patterns where some
group of relation transitions are recommended or repressed when evaluating coherence.

Figure 5.3: Feature weights for all bigram
transitions

Same-Relation Transition Weights for
all bigrams are visualized in Figure 5.3.
We have marked regions of heatmap with
dashed square for same-relation transi-
tions. In each square, ARG1 → ARG2
is the upper right cell. We observe that
the five bigram transitions with highest
weights are of the same relation type, with
ARG1 followed by ARG2. This does not
come as a surprise. Coherence theory in-
dicates that adjacent discourse units are
often connected with the same relation.
Additionally, in our dataset, the argument
order for adverbials and coordinating con-
junctions is normally ARG1 followed by
ARG2 [36].

We have noticed, however, that HYPO-
HORA.ARG1 → HYPOPHORA.ARG2 is the least important same-relation transition in
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our baseline SVM. We provide an example below, where ARG1 is italicized and ARG2
is bolded. We suspect that this is because HYPOPHORA is a new addition to PDTB3
and is less annotated than any other relation type (constitutes 0.47% of inter-sentential
tokens annotated) due to its specificity in question-answering. This renders the model
with less examples to explore HYPOHORA in the wild. Nevertheless, We do not deny
its contribution in coherence evaluation task. This HYPOHORA transition has a feature
weight higher than 72.39% of all bigram transitions.

(1) If not now, when? “When the fruit is ripe, it falls from the tree
by itself,” he says.” [wsj 0300]

However, it is much less prevalent for ARG2 followed by ARG1 among important
bigram transitions of same relation type. Some relation types actually discourage
placing ARG2 before ARG1. For instance, ENTREL has the most negative SVM weight
in this scenario (Table 5.4). This is because ENTREL often introduces the new entity
in ARG1 before more information about the entity. Therefore, it is reasonable that its
inverse is less coherent. For instance, in the example below, it would be odd to mention
Mr. Milgrim as a successor without introducing him first:

(2) Hale Milgrim, 41 years old, senior vice president, marketing at
Elecktra Entertainment Inc., was named president of Capitol Records
Inc., a unit of this entertainment concern. EntRel Mr. Milgrim
succeeds David Berman, who resigned last month.

An exception for this pattern is NOREL, where the model does not penalize this relation
if ARG2 precedes ARG1. This does not come as a surprise as NOREL means no relation
holds between them. Therefore, reordering its argument does not improve or worsen
coherence:

(3) Jacobs is an international engineering and construction concern.
NoRel Total capital investment at the site could be as much as
$400 million, according to Intel.

We observe similar patterns when we average transition probabilities across all Dis-
course Role Matrices constructed from original PDTB documents. This represents the
distribution of training data that is used for SVM in Shuffle Test. In Figure 5.5, we
annotate each heatmap cell with its probability if it is larger than 1%. This means that
relation transitions in those cell are more typical in coherent texts. Then, we mark the
same-relation transition with dashed square. The upper right cell in each dashed square
represents same-relation transition from ARG1 → ARG2. We notice that these cells are
often occupied with large probabilities, in fact often the largest for that relation. This
again confirms our belief that same-relation transition with ARG1 followed by ARG2 is
most favored in evaluating coherence.

Relation sense Model weight
ENTREL -2.24
CONTINGENCY -1.87
COMPARISON -1.70
EXPANSION -1.34
TEMPORAL -1.22
HYPOPHORA -0.04
NOREL 0.12

Figure 5.4: Same-Relation
Transition where ARG2
precedes ARG1

What is interesting is that, besides same-type relation, cells
of high transition probabilities contain one argument that
is ENTREL or NOREL. These cells are from rows and
columns whose axis labels we have tinted gray. This ob-
servation suggests that ENTREL and NOREL co-occur fre-
quently. Despite their frequent occurrence in the dataset,
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our model does not pick up on this pattern, where its feature
weights are close to 0 (see 5.3). This showcases the benefit
of discriminative model, where it does not overly rely on
the distribution of coherence instances but also learn from
incoherent ones.

Figure 5.5: Saliency heatmap for Bigram
Transition Probabilities macro-averaged
across all Discourse Role Matrix in original
PDTB texts

Relation Transition with NIL nil indi-
cates a break in relation transition, where
an entity is absent, or does not have a
discourse role in neighboring sentences.
This provides evidence for incoherence.
Our result in Figure 5.3 confirms this
belief with low SVM weights when nil
is present (blue patches in nil row and
column). However, nil occurs in a
few bigram transitions with high feature
weights, particular with ENTREL (2.9)
and NOREL (2.3). Nevertheless, it has
also been discussed by Lin et al. that
a text with relations of these two types
are harder to contrast coherence with its
permutated text [26]. This is because
ENTREL and NOREL are less conclu-
sive relation sense: While NOREL simply
means no relation between spans (Sen-
tence 3), ENTREL indicates ARG2 contains some information about entity in ARG1,
but we are uncertain with the exact discourse connective to put between arguments
(Sentence 2).

In addition, the matrix may not pick up the same entity in both spans. It is also not
guaranteed that the same entity mentioned in ARG1 reappears in ARG2. For instance,
the entity may be either inferred (without explicitly mentioned again, as below) or
replaced with pronouns. We can see that simply stemming the entity word is not
sufficient in capturing entity’s re-occurence. This warrants further investigation using
co-reference resolution.

(4) “I am happy to see the spirit of the people,” said Mr. Sisulu,
(EntRel) looking dapper in a new gray suit. (wsj 2454) [wsj 0300]

5.4 Entities Extraction

Motivated by our observations above, we use expert-annotated data as gold-standard
for co-reference resolution (as described in 3.3). We use 1950 WSJ articles that are
overlapped between PDTB, the dataset we use to construct matrices, and BBN, our
gold-standard entity dataset. This generates 33509 document pairs for Shuffle Test.

The results are shown in Figure 5.6. Our first impression is that TEST accuracy using
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gold-standard is lower than our baseline. However, the BBN dataset uses far fewer
entities per document. The average number of entities in BBN is 8.28 (when antecedents
are resolved), compared to 63 in our term-based baseline. This shows that Discourse
Role Matrix is distillated with true salient entities to represent discourse role transitions.
The reduction is also reflected in computation time: On a 2.3 GHz Quad-Core Intel i7
CPU, it takes on average 0.024 second per data pair in our new model, compared with
1.21 second in baseline. To conclude, our model that uses gold-standard entities is able
to achieve comparable performance while retaining only a few entities. It provides a
small trade-off between model accuracy and cost in computation and space.

Accuracy
Baseline 88.09
Resolved Antecedents 84.77
Unresolved Antecedents 84.61

Figure 5.6: Test set ranking accu-
racy for Wall Street Journal (WSJ)
data for model with Entity Extrac-
tion. Test accuracy is averaged
across 5-fold cross-validations.

To answer how much information do entities in
each model convey, we calculate the percentage
of sentences in which each entity appears with a
discourse role. We name this entity information.
If an entity appears in every sentence with at least
one discourse role, then the entity information is
1. A high entity information indicates that the
entity is salient in the passage. To illustrate, the
entity cananea below has an entity information
of 2/4 = 0.5. We calculate this statistics across
all entities in the baseline, our antecedent resolved and unresolved model (3.3). The
distribution of entity information is illustrated in Figure 5.7.

S1 S2 S3 S4

cananea nil nil
COMP.ARG2
TEMP.ARG1
EXP.ARG1

EXP.ARG2

We observe that the distribution of entity information in baseline is more right skewed
than both our extended models. This shows that fewer entities in the baseline contain
sparse entity column, and we believe this is the reason that the baseline outperform our
extended model. Although test performance between resolved and unresolved model are
similar, we can still see the benefit of a resolved model, where its distribution is more
right skewed in the lower tail. This indicates that more entities carry higher discourse
information.

Our model using unresolved antecedents does not degrade the performance significantly.
We believe that it is uncommon that there are many antecedents of same string that are
unresolved in BNN. In particular, when we resolve same-string antecedents, the average
number of entities is 8.28. This is similar to 9.6 when antecedents are not resolved.

If we observe the upper tail of the distribution in Figure 5.7, we can see that more
proportion of entities in our extended model contain filled or almost filled entity column.
This shows the benefit of co-reference resolution. By resolving antecedents with
pronouns, our extended models carry more entities with high information of discourse
role transitions.

Nevertheless, we believe that BNN dataset has its limitation because it only contains
named entities with pronouns. This limits our scope of high information entities
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Upper Tail

Figure 5.7: Full density plot (with upper tail) for entity information distribution in Baseline
(green), Antecedent Resolved (blue), and Unresolved (yellow) models.

because their antecedents are often proper noun. Events (in form of verb), which can be
salient in text, are not annotated in this dataset. We have made an effort to scout out
additional datasets. Nevertheless, this is also true in entity-annotated corpus OntoNotes.

5.5 Ablation Study

We perform ablation study to answer how Level-2 labels and distinction between
inter and intra-sentential relation affect model performance. We eliminate each of
them from the full model (Figure 5.8). In Row 3 and 4, We delete transition probabilities
for intra-sentential and inter-sentential relation respectively. Therefore, Row 3 only uses
relation that contains INTERS in the label, and Row 4 only uses those with INTRAS
(as discussed in 3.2). In Row 5, we delete Level-2 label (underlined below), so only
Level-1 relation is used in the discourse role. An example would be:

INTERS.EXPANSION.CONJUNCTION.ARG1→ INTERS.EXPANSION.ARG1

Row 5 is equivalent to the baseline but with distinction between inter-sentential and
intra-sentential relation (i.e. INTERS and INTRAS in the relation label).

Accuracy
1 Baseline 88.09
2 Level-2 + InterS + IntraS 93.25
3 Level-2 + InterS 94.14
4 Level-2 + IntraS 57.57
5 InterS + IntraS 94.18
6 InterS 94.47
7 IntraS 60.40

Figure 5.8: Test set ranking accu-
racy for Wall Street Journal (WSJ)
data for model with Entity Extrac-
tion. Test accuracy is averaged
across 5-fold cross-validations.

Inter and Intra-sentential Distinction Compar-
ing Row 2 with Row 4, we see drastic perfor-
mance reductions after eliminating inter-sentential
relation. However, comparing Row 2 with Row
3, the performance improves slightly though not
significant, after eliminating intra-sentential rela-
tion. Similar trend can also be observed in the
case where only Level-1 label is used (by com-
paring Row 5-7). These results suggest that inter-
sentential relation plays an important role in mod-
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eling relation transitions, while the contribution for intra-sentential relations is not
significant. We suspect this is because Discourse Role Matrix only models transitions
between sentences. Because the model uses sentences as discourse unit, both arguments
of a relation will be placed in the same cell, making it impossible to model transitions
within a sentence. Surprisingly, to the best of our knowledge, this observation has not
been reported in the literature [9, 26]. Our results shows that for future work, it is
important to design new discourse model that utilizes intra-sentential relations.

Level-2 Label Unexpectedly, Level-2 label does not contribute to better performance.
Comparing Row 3 and 5, there was no significant differences after eliminating Level-2
label. We speculate three probable causes: First, the finer granularity results in less
instances for each Level-2 label. A solution is to use end-to-end discourse parser [27] to
generate more relation-annotated data and augment instances for each Level-2 relation
in the wild. We conjecture that longer document may contain more discourse relations
and benefit from Level-2 distinction.

Secondly, perhaps it is rare for a document to contain multiple instances of Level-2
relation (such as CONTINGENCY.CAUSE), even with more relation-annotated data.
Therefore, transition for Level-2 relations will be sparse, and Level-2 distinction is not
necessary. In PDTB, we have conducted ablation study to eliminate each of Level-2
relations under EXPANSION, and the effect is not significant in the discrimination task.
This corroborates our observation.

Lastly, to represent discourse role transitions, Level-2 label expands the number of
features. While there are 4 Level-1 labels, there are as much as 22 Level-2 labels. The
number of features is further amplified by taking argument label (ARG1 andARG2) and
transitions of length 2 and 3. In particular, given n discourse roles, the Discourse Role
Matrix needs to compute n2 +n3 transitions. Therefore, the curse of dimensionality
problem [3] exacerbates when using Level-2 label. Similar to our second point, the
distribution obtained from training data becomes very sparse and prevents the model
from using more refined discourse role (such as Level-3 label), or longer transitions.
Therefore, we aim to alleviate this problem with neural feature learning in Section 5.7.

5.6 Genre

Prior study has shown that label distribution of relation senses are sensitive to the genre
of given text [44]. In Figure 5.9, we show that even within a homogeneous corpora
of WSJ articles, the label distribution varies across article genres. Similarly to our
analysis in 5.5, we average transition probabilities across all Discourse Role Matrices
constructed from articles in four genres: NEWS, ESSAYS, HIGHLIGHTS and LETTER.
For clarity, we annotate heatmap cells with their probabilities if higher than 25% of all
transition probabilities.

In Figure 5.9, we have found that for each genre, there is a cluster of cells in the
heatmap with high transition probabilities. We mark them in dashed square. These cells
signify common relation senses found specific to that genre. For instance, transitions
between COMPARISON is most common for LETTERS. In fact, COMPARISON was
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Figure 5.9: Bigram Transition Probabilities macro-averaged across Discourse Role
Matrix in original PDTB texts of four genres: Letter (top left), Highlight (top right),
News (bottom left) and Essay (bottom right). Clusters of high transition probabilities are
marked with dashed square
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used approximately twice as often in labelling explicit inter-sentential connectives in
LETTERS than in NEWS [38]. Upon inspection, these LETTERS are addressed from
readers to editors to explain their opinions why an article is erroneous (see example
below), so LETTERS are more argumentative. COMPARISON is thus a common device
to compare what is written in the article (italicized) and what the reader believes (in
bold):

This statement surely buttresses your editorial view-
point that environmental protection is generally
silly or excessive, but it is simply wrong. [wsj
2108]

Similarly, in Figure 5.9, ENTREL is most common for HIGHLIGHTS. EXPANSION is
most common for ESSAY. ENTREL and NOREL is most common for NEWS. We provide
more examples for these genres in Appendix C. It is apparent that the distribution for
NEWS has significantly impacted the overall distribution found in Figure 5.5, where
transitions containing ENTREL and NOREL are most emphasized. We can conclude
from this analysis that there are not only differences in distributions of relation label
between genres, but also relation transitions. These distribution differences are likely
to impact our coherence model when we apply domain transfer.

The findings above motivate our experiment to apply domain adaptation to articles
in these four genres. This allow us to study the potential of transferring knowledge
across text genres in evaluating coherence. In the cross-domain setting, the linear
SVM model is trained on the subset of PDTB articles in the source domain, and then
evaluated on the articles in the target domain. In the in-domain setting, we train the
model only on articles in the target domain and evaluate on a held-out TEST set of that
same domain. Similar to previous experiments, we perform 5-fold cross-validation and
report the ranking accuracy in Table 5.1.

Source → Target News Essay Highlights Letter
News 93.57 98.90 95.51 98.33
Essay 87.63 94.57 88.97 88.19
Highlights 86.02 92.01 96.41 87.36
Letter 83.86 89.45 84.74 88.75

Table 5.1: Test set ranking accuracy for Wall Street Journal (WSJ) data on different target
(columns) and source (rows) domain/genre pairs. Test accuracy is averaged across
5-fold cross-validations. For every source domain, the best performing target domain is
in bold.

We have found that the distribution of relation transitions in HIGHLIGHT is more similar
to that of ESSAY. As evident in Figure 5.9, high transition probabilities are dense in
upper left region of heatmap, where transitions with COMPARISON, CONTINGENCY,
and especially ENTREL and EXPANSION are most frequent. Different than NEWS, both
HIGHLIGHT and ESSAY are low in bigrams with NOREL. This distribution similarity is
evident in cross-domain transfer performance: model trained on HIGHLIGHT perform
the best in ESSAY (excluding in-domain setting), and vice versa.
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Source → Target News Essay Highlights Letter
News - 3.27 7.27 8.60
Essay 1.12 - 4.90 6.44
Highlights 0.76 1.07 - 4.10
Letter 1.13 1.06 7.22 -

Table 5.2: KL divergence of transition distribution in target (columns) domain from source
(rows) domain, or DKL(source(x)||target(x)), where x is the probability of discourse
role transition of length 2 and 3. KL divergence is asymmetrical, DKL(p(x)||q(x)) ̸=
DKL(q(x)||p(x))

To quantify the distributional difference between two domains, we also calculate the
KL divergence between source and target domain. We observe that best performing
target domain in Table 5.1 often has a low KL divergence from the source domain. This
provides evidence that sometimes distributional similarity helps domain transferring
using our model.

Letter Highlight Essay News
79 68 32 4

Table 5.3: The number of transition types that are not found for each genre, from most to
least sparse. Their probabilities are smoothed when calculating KL divergence.

Strong evidence of cross-domain transfer is observed across all source and target genre
pairs, and the model is less susceptible to cross-domain transfer than expected. Despite
the large distributional differences between NEWS and LETTER, the performance of
cross-domain transfer is much more significant than random guess.

We also observe that when a source domain has a complex distribution and a wide range
of non-zero transition probabilities, like NEWS, the performance for domain transfer
is the most successful. This is evident in first row of Table 5.1. NEWS has a low KL
divergence from any other source domain (first column in Table 5.2). This is because
KL divergence is calculated across all transitions, and the probability distribution of KL
in NEWS is less sparse than other domains (Table 5.3).

The success of domain adaptation tells us that in Shuffle Test the model learns from sim-
ilar characteristics across genres despite distributional differences. Our result confirms
Xu et al. that discriminative models work well in domain adaptation. A model that is
trained on a plethora of relation transitions, such as NEWS, is helpful when applying it
to other target domains. Distributional similarity is also helpful when a domain with
complex distribution is not available. We can approximate it with a genre that has
similar but less complex transition distributions.

5.7 CNN Discourse Role Matrix

Experiment Setting We first initialize the CNN model as described in Section 3.7.
Then, we feed the model with Discourse Role Matrix with only inter-sentential rela-
tions, as they are best performing in our ablation study (Section 5.5). To make our result
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comparable with previous sections, we use the same data split and random seed for the
Shuffle Test (4.2). We train the model by optimizing the pairwise ranking loss, which
maximizes the difference of coherence score between coherent and incoherent text 1.
We use up to 25 epochs. To combat over-fitting, we have set dropout after max pooling
and final dense layer. We also early-stop if the DEV accuracy does not improve for 10
executive epochs.
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Figure 5.10: DEV set accuracy on
varying filter sizes, for batch 32,
filter size 150 and pool size 6

Hyperparameter Tuning In our neural model, we
have the following hyperparameters: window size
for discourse role transition, embedding size for dis-
course role, pooling size, number of filters in con-
volution layer and dropout rate for training. We
fix embedding size to 100 and dropout rate to
0.5. We conduct limited search for optimal mini-
batch size in {32,64}, window size in {3,4,5,6,7},
pooling length in {5,6,7,8}, and filter number in
{150,250}. We emphasize search in window size
and pooling length, to study the effect of long range
discourse role transition on coherence modeling. We
have chosen these settings by gauging model com-
plexity with that in Nguyen and Joty. We have found
that the number of our discourse roles (or model vo-
cabulary) are more similar to their extended grid
model 2, so we use their optimal hyper-parameters as a starting point for our tuning.

Figure 5.11: Parallel Plot for Hyperparameter Tuning Results. Red, green and blues line
denote low, mid and high DEV set accuracy respectively. Full result with TRAIN and DEV

loss is in Table B.1
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Figure 5.11 visualizes the hyperparameter search performance on the discrimination
task. The full result with TRAIN and DEV loss is in Table B.1. Each line denotes one
of the hyperparameter combination, and is colored red, green and blue to denote LOW,
MID and HIGH DEV set accuracy that setting achieves. The result confirms our belief

1Using gradient-based online learning algorithm RMSprop, as implemented in Nguyen and Joty.
2Their optimal hyper-parameter setting is the following: batch size of 32, embedding size of 100,

dropout 0.5, filter size of 150, window size of 5 and pool size of 6



Chapter 5. Experiments and Discussion 38

that a larger window size of discourse role transitions benefits model performance. In
Figure 5.10, we observe a leap in DEV set accuracy, from 90.93% to 93.82% when the
window size increases from 3 to 4, in a particular setting. But this trend is seen in other
settings as well. The DEV loss and accuracy continue to improve when we increase the
filter size, which is less feasible in SVM due to the curse of dimensionality [3, 32], as
illustrated in Section 3.7.

In addition, we observe that in general, it is best to set the pool size slightly larger or
equal to the filter size. This is also the case in Nguyen and Joty. We believe that larger
pooling helps the model to generalize local transition patterns and capture prominent
patterns more broadly, thereby reducing the workload on the final layer when calculating
the coherence score. Given comparable window and pool size, our model tends to lose
its generalization ability when mini-batch size is larger (64). This is common in other
deep learning scenarios when a larger batch can attract sharp minima, and thereby less
likely to escape the basins of the gradient descent landscape [21].

Batch Filter Window Pool Train Loss Dev Loss Dev Acc
32 150 8 9 0.0438 0.7953 96.58

Table 5.4: Optimal hyper-parameter for our CNN Discourse Role Matrix

We then use the best performing hyperparameter setting in DEV set (Table 5.4) for the
final evaluation on the TEST set. Neuralizing Discourse Role Matrix has made some
promising improvement from our extended model that uses only Level-1 inter-sentential
relations. This demonstrates that convolutional feature learning and distributed represen-
tation of discourse roles are effective in discriminative coherence evaluation. In addition,
information of discourse relations greatly improve Nguyen and Joty’s neural model that
uses only grammatical role, as these discourse relations formally define logical and
semantic relation, and provide linguistically rich information beyond sentence structure.
Note that their best result uses entity-specific features in their vocabulary, such as named
entity type and whether an entity has a proper mention. We believe that if we adopt this,
there may be further improvements, as evident in their work.

Model Test Accuracy Test F1
Baseline 88.09 -
Nguyen and Joty 88.69 88.69
Level-1 InterS 94.47 -
CNN 95.37 95.38

Table 5.5: Test set performance for coherence evaluation on Shuffle Test, using Wall
Street Journal (WSJ) data

In addition to adaptable window sizes for modeling transitions, our CNN model is also
trained on many coherent and incoherent instances. This enables the neural network
to learn more general and robust feature representations than probabilistic feature
extraction, which is calculated within a document.
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Conclusions

The goal of this project is to examine closely the first coherence model that uses
information from discourse relations and entities, Disourse Role Matrix. To answer
the research question: What aspects of Discourse Role Matrix help the model to
evaluate coherence? We dissect the model into 1) discourse units 2) discourse entities
3) discourse roles and 4) feature extraction, provide in-depth analysis on each aspect,
and investigate their relations with discriminative coherence evaluation.

We first verify the effectiveness of Lin et al.’s model by interpreting what types of
discourse role transition are favored and repressed in coherence evaluation. We use
weights of SVM and statistics of discourse role transitions, and have found that same-
relation transition is favored, which agrees with coherence theory. Transitions with nil
is repressed as they often signify that a discourse relation discontinues (5.3).

Motivated by various design choices in these four aspects, we experiment on using
addition sources of linguistic knowledge to interpret the model or improve its perfor-
mance: We separate intra and inter-sentential relations, as they represent different scope
of discourse units. We find that this distinction improves the model by 6.47% in test
accuracy from the baseline. In addition, since Discourse Role Matrix uses sentences
as discourse units, inter-sentential relations benefit the discrimination much more than
intra-sentential ones (5.5).

For discourse entities, the baseline does not consider entities co-reference and extract
entity naively through part-of-speech. We demonstrate gold-standard co-reference
corpus as an alternative for entities extraction. We find that the model retain most of its
performance with far fewer entities of better quality (5.4).

For discourse roles, we found that even within the same corpus, the relation density
of input text affects model accuracy. In particular, high relation density requires less
training data in learning our discrimination task (5.2). Upon inspecting the hierarchy of
PDTB, we observe that Level-1 senses can contain loosely related Level-2 senses. Thus,
we use granular Level-2 relation labels as an alternative for discourse roles. However,
this does not help the model to further improve its discrimination ability (5.8). We
argue that this is due to the curse of dimensionality and less training instances for each
Level-2 sense. In addition, there often does not contain multiple instances of a Level-2
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relation in an input text.

We supplement the extensions above by investigating how well does our model adapt
to different text genre. This is because the distributions of relation transitions are very
different across genres. However, we have found that the model can generalize well
in a cross-domain setting, which reflects that local coherence cues learnt by the model
has similar characteristics across genres. We also discover that a genre with a plethora
of discourse role transitions, such as NEWS in WSJ, can effectively transfer to another
genre of less complex distribution.

To study the impacts of feature extraction on evaluating coherence, we compare
probabilistic n-gram transitions with features learnt from our new CNN model. The
neural model provides promising improvement and captures longer range of discourse
role transitions, which is less feasible in the statistical approach due to the curse of
dimension. We learn that logical and semantic relation in discourse role is helpful in
modeling coherence, which improves from Nguyen and Joty’s neural entity grid.

The significance of the project lies in its implications for future automatic coherence
evaluation systems. Recent work in discourse analysis has made leap in automatic
discourse relation classification [28]. There is also growing effort in coherence eval-
uation for text generation systems that rely on Centering Theory and entity grid used
in this work [45]. These attempts further illustrate that it is vital to understand this
linguistically rich model to introduce meaningful improvements. We have shown a wide
range of model architecture that largely affects its coherence evaluation ability.

From our experiments in 5.8, we illustrate that existing model does not fully utilize intra-
sentential relations, even though they are majority of annotated instances. Coherence
models should consider beyond adjacent sentences and attend to relation transitions
between clauses or even phrases.

In addition, our CNN model is not fully lexicalized. This means that the model does not
consider other lexical information of entities, such as named entity type (e.g. PERSON,
ORGANIZATION). A more generalized coherence model will consider these entity-
specific information and semantic similarities across text. We aim to explore this in
future by combining in-context entity embedding from language model with linguistic
features suggested in Elsner and Charniak.

Despite that Shuffle Test is a long-standing benchmark for coherence evaluation, these
artificially created instances do not reflect realistic incoherence in the wild. Though
some work has been proposed to design more difficult task, such as k-block Shuffle Test
[22], sentence insertion [37], or predicting human judgment score on real-world text
[23], the community should build more elaborate coherence measures to capture more
complete set of linguistic phenomena in text coherence.

Lastly, this work uses discourse relations in accordance with PDTB. This relation style
uses shallow structures by connecting two clauses and sentences. Recent work has
shown that coherence model using Rhetorical Structure Theory (RST), which annotates
deep hierarchical discourse structure is better at differentiating text coherence [9]. In
future work, we wish to adapt Graph Neural Networks in RST tree (similar to our CNN
Disocurse Role Matrix) and explore its effect on discriminative coherence evaluation.
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Appendix A

PDTB-3 Sense Hierarchy

Table A.1: PDTB-3 Sense Hierarchy collated from Webber et al. [40]. We have left out
Level-3 and SpeechAct senses as they are not used in this work. In Example column,
arg1 is italicized, arg2 is bolded and the connective is underlined.

Level-1 Level-2 Definition Example

TEMPORAL SYNCHRONOUS Temporal overlap between
the events described by the
arguments.

Knowing a tasty – and free –
meal when they eat one, the
executives gave the chefs
a standing ovation. [wsj
0010]

ASYNCHRONOUS One event is described as
preceding the other.

Back downtown, the execs
squeezed in a few meetings
at the hotel before boarding
the buses again. [wsj 0010]

CONTINGENCY CAUSE The situations described in
the arguments are causally
influenced but are not in a
conditional relation.

But service on the line is ex-
pected to resume by noon to-
day. (Implicit=since) “We
had no serious damage on
the railroad,” said a South-
ern Pacific spokesman. [wsj
1803]

CAUSE + BELIEF When evidence is provided
to cause the hearer to be-
lieve a claim.

With this sort of sentiment
common, it’s natural for
investors to seek out “de-
fensive” investment. [wsj
0359]

CONDITION One argument presents a sit-
uation as unrealized (the AN-
TECEDENT), which (when
realized) would lead to the
situation described by the
other argument (the CONSE-
QUENT).

Call Jim Wright‘s office
in downtown Fort Worth,
Texas, these days and the re-
ceptionist still answers the
phone, “Speaker Wright‘s
office.” [wsj 0909]

continues on next page →
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NEGATIVE-CONDITION One argument (the AN-
TECEDENT) describes a sit-
uation presented as unreal-
ized, which if it doesn’t
occur, would lead to the
situation described by the
other argument (the CONSE-
QUENT).

The National Institutes of
Health policy would require
researchers to cut financial
ties with health-care busi-
nesses or lose their govern-
ment money. [wsj 0975]

PURPOSE One argument presents an
action that an AGENT under-
takes with the purpose of the
GOAL conveyed by the other
argument being achieved.

There are the strict mon-
etarists, who believe that
floating exchange rates free
an economy to stabilize its
price level by stabilizing
the monetary aggregate.
[wsj 0553]

COMPARISON CONCESSION An expected causal relation
is cancelled or denied by the
situation described in one of
the arguments.

It’s as if investors, the past
few days, are betting that
something is going to go
wrong – even if they don’t
know what. [wsj 0359]

SIMILARITY One or more similarities be-
tween two arguments are
highlighted

Builders get away
with using sand
(implicit=similarly) and
financiers junk . . . [wsj
1849]

CONTRAST At least two differences be-
tween two arguments are
highlighted.

While the earnings picture
confuses, observers say the
major forces expected to
shape the industry in the
coming year are clearer.
[wsj 2365]

EXPANSION CONJUNCTION Both arguments bear the
same relation to some other
situation evoked in the dis-
course

I can adjust the amount
of insurance I want
against the amount go-
ing into investment;
(Implicit=Conjunction) I
can pay more or less
than the so-called target
premium in a given year.
[wsj 0041]

DISJUNCTION Two arguments are pre-
sented as alternatives, with
either one or both holding.

If we want to support stu-
dents, we might adopt the
idea used in other coun-
tries of offering more schol-
arships based on something
called “scholarship,” rather
than on the government’s
idea of “service.”. [wsj
2407]

continues on next page →
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EQUIVALENCE Both arguments are taken to
describe the same situation,
but from different perspec-
tives

But the battle is more
than Justin bargained for.
(implicit=indeed) ”I had no
idea I was getting in so
deep,” says Mr. Kaye, who
founded Justin in 1982. [wsj
2418]

EXCEPTION One argument evokes a
set of circumstances in
which the described situa-
tion holds, and the other
argument indicates one or
more instances where it
doesn’t.

Some Japanese operations,
such as securities-trading
rooms, may be ahead
of their American coun-
terparts, he says, but
(Implicit=otherwise)
“basically, there’s little
analysis done on com-
puters in Japan.” [wsj
0445]

INSTANTIATION One argument describes a
situation as holding in a set
of circumstances, while the
other argument describes
one or more of those circum-
stances.

Then, as if to show that
he could play fast as well,
he offered the second move-
ment from Saint-Saens’s
Sonata for Clarinet, . . .
[wsj 0207]

LEVEL-OF-DETAIL Both arguments describe the
same situation, but in less or
more detail.

An enormous turtle has
succeeded where the
government has failed:
(Implicit = specifically)
He has made speaking
Filipino respectable. [wsj
0804]

MANNER The situation described by
one argument presents the
manner in which the situa-
tion described by other argu-
ment has happened or been
done. It answers the how
question.

Taking a cue from Califor-
nia, more politicians will
launch their campaigns by
backing initiatives, says
David Magleby of Brigham
Young University. [wsj
0120]

SUBSTITUTION Arguments are presented as
exclusive alternatives, with
one being ruled out.

Eliminate arbitrage and liq-
uidity will decline instead of
rising, creating more volatil-
ity instead of less. [wsj
0118]
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CNN Discourse Role Matrix

Table B.1: Coherence evaluation results of CNN Discourse Role Matrix on hyper-
parameter settings and discrimination task. Best hyper-parameter setting is in bold.

Batch Filter Window Pool Train Loss Dev Loss Dev Acc
32 150 3 6 0.0617 0.9277 90.93
32 150 4 6 0.0508 0.9177 93.82
32 150 5 5 0.0440 1.2807 91.33
32 150 5 6 0.0504 1.0211 94.48
32 200 5 6 0.0586 0.9162 94.09
32 250 5 6 0.0356 1.2543 94.74
64 250 5 6 0.0429 0.9845 92.77
32 150 5 7 0.0575 0.8056 94.74
32 150 7 6 0.0300 1.3591 94.74
32 150 7 7 0.0395 0.7095 95.26
32 150 7 8 0.0572 0.5119 95.13
32 150 8 8 0.0426 0.4144 95.40
32 150 8 9 0.0438 0.7953 96.58
64 150 5 6 0.0442 1.1397 93.17
64 150 6 6 0.0461 0.9982 91.85
64 150 6 7 0.0497 0.9891 93.16
64 150 6 8 0.0530 0.8673 93.69
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Appendix C

Relation Patterns in PDTB Genres

As discussed in Section 5.6, ENTREL is most common for HIGHLIGHTS. These
documents provide entity heavy information because they summarize financial news in
a few sentences. Therefore, we can consider them a more compact version of NEWS.
We color these entities in red in the following examples. Articles in this genre involves
multiple companies and their actions in the financial market:

International Business Machines Corp. – $750 million of 8 3/8% debentures
due Nov. 1, 2019, priced at 99 to yield 8.467%. (ENTREL) The 30-year
non-callable issue was priced at a spread of 57 basis points above the
Treasury’s 8 1/8% bellwether long bond. [wsj 0125]

Sometimes, the entity can be even financial instruments like bonds.

Serial bonds are priced at par (ENTREL) to yield from 6.40% in 1991 to
7.15% in 1999. [wsj 0125]

Unsurprisingly, ENTREL is also most common for NEWS. Similar to HIGHLIGHTS,
articles in NEWS focuses on a wide range of entities and narrates their situations. The
following example focuses on the owner of Giant, a baseball team in San Francisco:

He is an avid fan of a proposition on next week’s ballot to help build a
replacement for Candlestick Park. (ENTREL) Small wonder, since he’s
asking San Francisco taxpayers to sink up to $100 million into the new
stadium. [wsj 0126]

EXPANSION is most common for ESSAY. Articles in this genre often discuss current
issues with opinions from journalists. This often requires providing details to a topic and
carrying multiple points across. The example below is the beginning of an ESSAY and
has already contained two EXPANSION relations. In the first relation, ARG2 provides
detail to why the rationale is clear. In the second relation, ARG2 continues the point in
ARG1.
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The rationale for responding to your customers’ needs faster than the com-
petition can is clear: Your company will benefit in terms of market
share, customer satisfaction and profitability. In fact, managers today are
probably more aware of speed as a competitive variable than ever before.
[wsj 0562]

The rationale for responding to your customers’ needs faster than the com-
petition can is clear: Your company will benefit in terms of market share,
customer satisfaction and profitability. In fact, managers today are prob-
ably more aware of speed as a competitive variable than ever before.
[wsj 0562]
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