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Abstract
Historically, the bottlenecks keeping researchers from being able to answer some of
the central questions surrounding cognition and behavior have been the difficulty of
acquiring meaningful neuronal data. However, advancements in recording techniques
have somewhat fulfilled these limitations, shifting the needs within the field to powerful
computational and statistical techniques. Enter Copula-GP, a recently developed state-
of-the-art parametric mutual information estimator which was found to outperform
other novel non-parametric methods when utilized on highly dimensional data. We
utilized Copula-GP together with Gaussian Process Factor Analysis (GPFA), a novel
dimensionality reduction technique, to investigate the information interaction between
neuronal processes within the visual cortex of live mice and pupil dilation, naming the
combination of methods Copula-GPFA. We found that this combination of methods was
an effective means of investigating neuronal dependence, allowing flexibility in analysis
and finding results in agreement with prior literature. We additionally extended Copula-
GP with a bagging framework, allowing for the aggregation of model estimations
and allowing for more accurate estimation accuracy and representation of dependency
shape. We validated our bagging algorithm on simulated data sampled from known
distributions, and utilized bagged Copula-GPFA on aforementioned neuronal data to
find results in agreement with baseline Copula-GPFA but with more stability. We finally
proposed several extensions, use cases, and possible research projects utilizing Copula-
GPFA and Copula-GP estimator bagging, leveraging it’s flexibility and effectiveness in
analysis.
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Chapter 1

Introduction

1.1 Project Setting, Motivation, and Problem Statement

Not quite as many topics in the sciences have captured peoples’ imaginations as the
mysteries of human thought, behavior, and learning, a topic which has inspired fields
ranging from psychology to philosophy [67, 66]. We now know that human thought oc-
curs within the brain, and understanding the intrinsics of how and where such processes
occur has applications in fields such as prosthetics and neurosurgery, not to mention
how such findings often find a way to spill into related fields, such as machine learning
[31]. Computational Neuroscience aims to answer how cognition and behavior are
encoded in the brain through the use of machine learning and statistical methods on
large amounts of neuronal data, both simulated (in silicon) and real (in vivo) [49, 36, 69].
Some of the primary questions on this frontier include: How is information encoded in
populations of neurons, and how is this information related to behaviors observed [36]?

As advances in recording techniques have allowed for the recording of hundreds to thou-
sands of neurons at once [34, 20], the bottlenecks keeping researchers from answering
these central questions in neuroscience have shifted away from data-related issues to
the purely computational and statistical [69, 27, 54]. Answering such questions with
machine learning comes down to analysis of the intricate highly-dimensional multivari-
ate dependencies (i.e. dependencies and correlations between many random variables,
many of which have different distributions) in recorded neuronal and behavioral data,
much of which varies across spatial and temporal dimensions [36, 34, 27, 54]. This
becomes especially challenging once one considers how different behaviors can occur
on a scale of hours or even days, whereas related neuronal activity can occur on a scale
of milliseconds [50, 20, 42], even more so as more and more variables are included in
the data and the dependencies become even more computationally intense to analyze
accurately (the “curse of dimensionality”) [35]. Thus, in order to properly analyze such
copious amounts of intricate high-dimensional data, we need methods that are both
resistant to high dimensionality as well as equipped with the ability to properly analyze
dependencies between temporally-disparate variables in time series.
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Chapter 1. Introduction 2

1.2 Core Paper and Project Goals

The core paper by Kudryashova et. al, Parametric Copula-GP model for analyzing
multidimensional neuronal and behavioral relationships [36], aims to fulfill this require-
ment via a novel framework for parametric estimation of multivariate distributions and
mutual information through the use of copulas, a probabilistic structure adept at mutual
information estimation. The core paper’s contributions to the body of work includes (but
is not limited to; see section 2.3) the development of the Copula-GP python package, a
package which allows for the training of copulas, model selection, and copula entropy
extraction. Copula-GP was found to outperform other non-parametric mutual informa-
tion estimators when predicting mutual information for a larger number of variables
(≥ 10) [36]. This combined with it’s robustness to the “curse of dimensionality” makes
it well suited for analysis of highly dimensional neuronal data.

In this project, we also validated usage of Copula-GP together with Gaussian Process
Factor Analysis (GPFA), a dimensionality reduction method robust to qualities of neu-
ronal data through which we are able to extract latent variables (we utilize the shorthand
name of Copula-GPFA for the combination of methods). We validated combining
such methods through confirming the statistical dependencies of simulated spike-data
with latent variables of zero entropy, and through confirming statistical dependence
of neuronal data extracted from mice on pupil dilation. Within the literature, there
is very little use of GPFA with mutual information estimators, much less conditional
parametric copulas on neuronal data (or on any data). This project aimed to fill that gap,
with the goal of improving the interpretability of the model by capturing processes in
the brain across groups of neurons as latent trajectories extracted from spike-train data
and estimating the mutual information between latent trajectories X1,X2, · · · ,XN and a
behavioral variable Y , as well as the information interaction I(X1 : X2 : · · · : XN ← Y )
(see equation (3.9)) measuring statistical dependence in X1,X2, · · · ,XN captured by Y .

We also aimed to extend Copula-GP with a method of ensemble model selection through
the use of bagging, wherein we aggregate copula estimations of individual Copula-GP
estimators fit on separate samples of data, validating the ensemble method via entropy
estimation of a known distribution and culminating in usage of bagged Copula-GPFA
on aforementioned real life neuronal data.

To recap, major project goals (with original goals and extensions noted) included:

• Validation of combining novel Copula-GP with GPFA (the combination of which
we dub Copula-GPFA for this paper), with the expected benefits of robustness
to dimensionality and efficient, detailed analysis of neuronal dependence (an
original goal).

• Confirming dependencies between neuronal data from the visual cortex and pupil
dilation through the use of Copula-GPFA (an original goal).

• Justification of possible improvement to the Copula-GP algorithm through the
addition of bagging, confirmed via validation tests and application of bagged
Copula-GPFA to real-life neuronal data (an extension).
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1.3 Paper Outline and Project Contributions

In this introduction, we established the project setting, motivation, and goals. In the
Background Chapter (chapter 2), we introduce basic information theory and neuro-
science principles utilized in this paper, as well as an analysis of prior related work in
the field. In the Methods chapter (chapter 3), we expand upon previously introduced
principles through the formal introduction of copulas and copula entropy and discuss the
implementation of Copula-GP. We also go over the justifications of a bagging extension
(both formalistic and practical), as well as a description of the bagging algorithm utilized
and implemented. We finally round off the Methods chapter with a description of GPFA,
and intended application with Copula-GP. In the Data Providence chapter (chapter
4), we discuss the primary datasets used, including data background, acquisition, and
cleaning. In the Baseline Copula-GPFA Validation and Experiments chapter (chapter
5), we delve into initial validation on in silicon data and experiments on in vivo data
utilizing Copula-GPFA, with discussion of results found. We validate variations of
the proposed bagging algorithm alongside baseline Copula-GP on simulated copula
distributions and apply said bagging algorithm to real life mouse neuronal data in the
Bagging Validation and Experiments chapter (chapter 6). Finally, we round things
off with an overview of contributions made, possible project extensions, and future
applications of methods in the Conclusion chapter (chapter 7).

A brief list of project contributions include:

• A validation of combining novel methods (Copula-GPFA) within the field of
computational neuroscience.

• Application of such methods on in silicon and in vivo data for validation and
experimental purposes.

• An extension of one of the novel methods (Copula-GP) via a bagging algorithm,
complete with formalistic and practical justification.

• Identification of improvements of the bagging algorithm over baseline, and
application to the aforementioned experimental dataset.

• Miscellaneous code contributions to the Copula-GP python code base (see ap-
pendix).



Chapter 2

Background

The aim of this chapter is to provide background knowledge on information theory and
neuroscience concepts utilized in this paper, as well as an overview of related work in
the literature.

2.1 Information Theory Essentials

(Note: knowledge of basic probability theory is assumed in this section.) Information
theory, in broad terms, is the study of formal information quantification and commu-
nication [64]. The key measure of information in this field is entropy, defined as the
negative expectation of the log-probability of an event X’s outcome x:

H(X) =−EX(p(x) log p(x)), x∼ X . (2.1)

Essentially, entropy measures the number of bits of information needed to encode the
total uncertainty of event X [64], and as such acts as a quantification of uncertainty. We
also define the conditional entropy of X given the outcome y of event Y as

H(X |Y ) =−EX ,Y (p(x,y) log
p(x,y)
p(y)

), x∼ X , y∼ Y, (2.2)

and so the mutual information between X and Y is

I(X : Y ) = H(X)−H(X |Y ). (2.3)

Mutual information thus represents the reduction in bits of uncertainty surrounding X
given the outcome of Y . In addition, this quantity is symmetric [64], and so I(X : Y ) =
H(Y )−H(Y |X) as well. In other words, mutual information describes statistical
co-dependence between events X and Y . In addition, we note that mutual information
is positive semi-definite (≥ 0), and so only ever represents a reduction in uncertainty
(this is intuitive; the unconditioned outcome of an event naturally encompasses all
conditions). We extend this to the conditional mutual information of X and Y given the
outcome of event Z,

I(X : Y |Z) = H(X |Z)−H(X ,Y |Z), (2.4)

4



Chapter 2. Background 5

where H(X ,Y |Z) is the conditional joint entropy of X and Y given the outcome of Z, or
the bits of uncertainty in the joint system of X and Y under condition z [64]. Finally,
mutual information is easily extendable to a definition of joint mutual information via
replacing singular entropy with it’s joint definition (as traditional entropy itself is not
the primary concern of this paper, we will skip rigorously defining these terms for
brevity) [64]. Joint mutual information and it’s conditional counterpart are the primary
quantities of interest we wish to estimate in this paper, for reasons we outline in the
next section of this chapter.

2.2 Basic Neuroscience Definitions and Computational
Neuroscinece Ideas

Before we continue, we will first go over basic neuroscience definitions.

• A neuron is the primary cell in the brain, groups of which encode cognitive and
behavioral processes.

• Neurons encode such processes through transmitting information to one-another
in spikes, or instantaneous voltage transmissions to surrounding neurons [26, 47].

• A spike train is the experimental process of recording subject neuronal responses
and behaviors to various controlled stimuli, and in the process gain an understand-
ing of how neurons relate to behavior and stimuli [55].

• A spike train is usually split into trials of recordings replicating the above process
to account for variation in neuronal response [55].

• We call real-life spike train data in vivo spike train data. Due to the difficulty of
recording neurons in a live subject, we often seek to simulate in silicon spike train
data of known characteristics, a method of which we utilize in this paper [33, 13].

If a system of neurons encodes the information that goes into behaviors or cognition,
then we expect a statistical co-dependence between spikes and behaviors in recorded
spike-trains, or in other terms a high quantity of mutual information [26, 47]. By
extension, if we are able to accurately estimate mutual information then we should
thusly be able to map systems of neurons to behaviors and cognition.

As stated in the introduction, computational neuroscience aims to answer questions
surrounding the encoding of cognition and behavior in parts of the brain. In general,
hurdles in answering such questions in the past stemmed from the difficulty of recording
groups of neurons’ behavior with certainty [36], however as of January 2022 we now
have the technology needed for accurate single-neuron resolution spike train trial
recordings in the form of Neuropixel probes [65]. As such, the hurdle of neuron-
behavior-stimulus mutual information analysis is no longer centered on lack of data,
moving instead to the need for accurate and efficient computational and statistical mutual
information estimation techniques, as well as required robustness to dimensionality
when a large number of individual neurons and behavioral variables are analysed [36,
48, 69].
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2.3 Copula-GP and Other Neuronal Mutual Information
Estimators

There are many choice methods in the realm of neuronal mutual information estimation.
Popular novel ones include Bias-Improved Kraskov-Stögbauer-Grassberger (BI-KSG)
[24] and the Mutual Information Neuronal Estimator (MINE) [4], both of which are
effective non-parametric methods. The Copula-GP method implemented in the core
paper by Kudryashova et. al [36] is a parametric estimator found to generally outperform
MINE and BI-KSG in mutual estimation accuracy on highly-dimensional data (≥
10 dimensions), and as such is our chosen method of neuronal mutual information
analysis. It is a method based on copulas, a multivariate distribution with uniform
marginals representative of cumulative distributions and a history of applications ranging
from scientific analysis of dependency (as they are generally used in computational
neuroscience [32]) to the more purely analytical and predictive (i.e. predicting the
outcome of an insurance claim [30]). We delve more into the rigorous definition of
copulas in section 3.1.

Copulas have been used in mutual-information estimation and dependency analysis in a
variety of in vivo and in silicon neuronal data, including spike data, 2-photon calcium
imaging, and multi-modal neuronal datasets [48, 63, 5, 32], and have been successfully
used for both mutual information estimation and dependency shape analysis in neuronal
data [36, 63, 5]. However, recent advances in GPU accelerated processing power
(through the use of popular libraries such as PyTorch [51] and GPyTorch [25]) have
allowed for further refinement of copula implementations and expanded the number
of practical use cases, allowing for the implementation of such a method for high-
dimensional neuronal data, like that of Copula-GP [36].

2.3.1 Primary Contributions of Core Paper by Kudryashova et. al

While the core paper implemented the primary method used in this paper (Copula-GP),
it would be unfair to call that the only (or even primary) contribution; the paper’s primary
strength is the adherence to formalism in their justifications and implementations of the
methods used; the authors’ adherence to formal copula theory allow for the flexibility in
use and application of Copula-GP and adds robustness to variability in data dependency
shape (see section 3.1.5). In addition, it’s comparisons to other popular methods for
neuronal mutual information estimation (MINE and BI-KSG) and the validation on in
vivo neuronal data are able to highlight that Copula-GP even in the worst case tended
not to produce biased or overestimated results, whereas MINE and BI-KSG often do.
These comparisons to baseline methods (as well as the use of Copula-GP on in vivo
datasets) firmly ground Copula-GP as a state-of-the-art method within the setting of
computational neuroscience. For these reasons, Copula-GP is the cornerstone statistical
method of choice in this paper.



Chapter 3

Methods

3.1 Copulas

When looking at the relationships between random variables, we often seek to examine
the “shape” of variables’ dependencies, even when such variables do not share a
distribution [11]. One of the choice methods when it comes to dependency and mutual
information analysis are copulas [59, 36, 44].

3.1.1 Definition and Basic Properties

Copulas are multivariate distributions with uniform marginal distributions, which them-
selves usually represent marginal variables’ cumulative distributions [36, 59] A d-
dimensional copula function C(u1,u2, . . . ,ud) : [0,1]d→ [0,1] is defined as a cumulative
distribution function (CDF) of a vector on the unit hyper-cube [0,1]d with uniform
marginals U[0,1]:

C(u1,u2, . . . ,ud) = Pr(U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud), (3.1)

where Un ∼U[0,1] [36, 59]. Variables of non-uniform distribution are “attached” to the
marginals through the use of CDFs (which by definition map to the interval [0,1] [68]) as
functions of non-uniformly distributed variables, creating a copula as a joint CDF [46].
Sklar’s theorem states that for a d-dimensional random vector X = {X1,X2, · · · ,Xd} and
it’s CDF FX with marginals F1,F2, · · · ,Fd , there exists a copula C such that ∀x ∈ Rd ,
x∼ X,

FX(x1,x2, . . . ,xd) =C(F1(x1),F2(x2), . . . ,Fd(xd)), xi ∈ R. (3.2)

[59, 68] What is most valuable about this construction is the allowance for the random
variables X1,X2, · · · ,Xd to take any distribution, allowing for meaningful dependency
and mutual information analysis between variables of different probabilistic distributions
[59]. We can also condition the copula on some continuous variable y, allowing for the
parametrization of the copula for a variable like time, phase, other marginals, etc [36]:

FX(x1,x2, . . . ,xd|y) =C(F1(x1|y),F2(x2|y), . . . ,Fd(xd|y)|y), xi,y ∈ R. (3.3)

7



Chapter 3. Methods 8

Figure 3.1: Various kinds of copulas. Note the difference in tail distribution representation,
as well as how combining copula variants make a new mixed copula. Courtesy of [36].

Depending on how we define a copula’s CDF, we can dynamically change the shape
of the copula to represent different dependency relationships, with the intention of
better fitting the marginal variables’ dynamic dependency shape (i.e. dynamic tail
dependencies, transitions into different copula families over time, dynamic increases
or decreases in marginal distributions’ correlation) [59, 36]. Doing so imposes strong
assumptions on data however, and can introduce biases in analysis when the shape of
the copula does not fit the true relationship of the individual variables [59]. Various
copula families used in the core paper of this project [36] are depicted in figure 3.1.

3.1.2 Copula Entropy

As before, we consider a random vector X = {X1,X2, . . . ,Xd}, where Fi describes a
marginal distribution of Xi. let u = [u1,u2, . . . ,ud], with ui = Fi(xi). By (3.2) we know
FX is described by a copula C. We define their copula entropy as

HC(X) =−
∫

C
c(u) logc(u)du, (3.4)

where c(u) represents the probability density of the copula at u

c(u) =
∂dC

∂u1∂u2 . . .∂ud
. (3.5)

[41, 32] Let x be a random sample x∼ X. We find that the joint mutual information
between the marginals of X is equal to the negative copula entropy of the distribution:

I(X) =
∫

x
FX(x) log

FX(x)
∏i Fi(xi)

dx

=
∫

x
c(ux)∏

i
Fi(xi) logc(ux)dx

=
∫

x
FX(x)c(ux) log(c(ux))dx

=
∫

C
c(u) logc(u)du

=−HC(X).

(3.6)

[41, 32] In other words, mutual information is negative copula entropy. This also
implies that copula entropy is negative semi-definite as opposed to traditional entropy,
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which is positive semi-definite. Suppose we have some random variable y∼ Y . We can
extend the definition of copula entropy in (3.4) to be parameterized and thus conditioned
in a outside variable y as

HC(X|y) =−
∫

C
c(u|y) logc(u|y)du, c(u|y) = ∂dC

∂F1|y∂F2|y . . .∂Fd|y
(3.7)

(where each Fi|y is the respective conditional marginal probability of Xi) [41] and can
extend further to the definition of conditional copula entropy as

HC(X|Y ) =
∫

y
HC(X|yi)

=−
∫

y
I(X|yi)

=−I(X|Y ).

(3.8)

We also utilize the interaction information between X and Y ,

I(X← Y ) = I(X|Y )− I(X) = HC(X)−HC(X|Y ), (3.9)

representing the change in the mutual information between marginals of X when Y is
learned. In the setting of this paper, we hope for the information interaction between
the two to be firmly negative, implying information surrounding X is captured in Y and
a statistical dependence between the two being posited. Working under the assumption
that the brain is a source of behavioral and motor functions such as pupil dilation, then
if a part of the brain is tied to such a function we expect the information interaction to
be significantly negative.

Instead of calculating the difference between the copula entropies, we can also calculate
the sum, which we find through the chain rule of mutual information is equivalent to the
negative joint mutual information between marginals of X and Y , and thus their copula
entropy:

HC(X)+HC(X|Y ) =−(I(X)+ I(X|Y )) =−(I(X1 : X2 : . . .)+ I(X1 : X2 : . . . |Y ))
=−I(X1 : X2 : X3 : · · · : Y ) = H(X1,X2, . . . ,Y ). (3.10)

Thus, through this method of copula entropy estimation we are able to extract several
metrics surrounding mutual information, both statistical dependence in the form of their
information interaction and the joint mutual information between marginal variables of
X and Y .

3.1.3 Vine Copulas

To scale against higher dimensions, copulas can take a vine copula construction, which
factorize multivariate distributions into conditional distributions modelled as singular
bivariate copulas [49, 44]. A single “vine” in this construction may be represented
as a hierarchy of trees, where each node represents a single CDF (with increasing
conditioning for each tree) and each edge is a pair copula. The cumulative distributions
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of each tree’s bivariate building blocks is then used as the nodes of the next tree in
the hierarchy, and so extends the set of conditioning variables into the next tree (See
figure 3.2 for a visualisation of a copula vine tree hierarchy in d = 4 dimensions)
[17]. A multivariate distribution fX with univariate marginal variable distributions
X1,X2, · · · ,Xd can be factorized in this way as

fX(x1, · · · ,xd)=
d

∏
k=1

f (xk)
d−1

∏
j=1

d− j

∏
i=1

C j,i|1,··· , j−1
(
F(x j|x1, · · · ,x j−1),F(xi+ j|x1, · · · ,x j−1)

)
.

(3.11)
This specific factorization is called a canonical vine, or C-vine [49]. What is special
about vine copulas is both assumed independence between particular marginals in a
tree (due to conditional independence) and the decomposition of a high dimensional
distribution into bivariate building blocks. As such sampling from and analysis of a
high dimensional vine copula is not as affected by the curse of dimensionality given
robustness in the bivariate case [17, 45]. This, combined with the ability for parame-
terization in time and/or space, make vine copulas well suited for analysis of complex
neuronal recordings [49, 36].

Figure 3.2: Two possible constructions for a copula vine in d = 4 dimensions. Panel A)
describes a D-Vine construction, whereas panel B) describes a C-Vine. Nodes in these
trees represent distributions of enumerated variables (1 to 4), possibly conditioned on
some variable(s), whereas edges represent copulas modelling the bivariate distribution
with node distributions as marginals. Courtesy of [17].

3.1.4 Gaussian-Process for Dependence Parameterization

We further expand upon vine copulas with the addition of Gaussian Process (GP) as a
method of estimating parameterization of the relationship between a copula’s marginals
and dependency set [36, 28]. A GP estimator is a regression attempting to estimate the
true relationship between dependent and independent variables by defining a distribution
over functions such that observed points might follow a Gaussian distribution (or, in
short, by means of Bayesian inference) [61]. In more rigid terms, we assume output y
of a function f given a set of observations x can be given as

y = f (x)+ ε, ε∼N (0,σ2
ε), f∼ GP (m(x),k(x,x’)) (3.12)
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where σ2
ε takes the usual definition as the variance of ε, m is the expected value of f

given x, and k is the covariance between the outputs of two separate sets of observations
x and x’ (this specific parameter is often called the kernel of the estimated distribution
GP ) [61]. Different methods of estimating k, m, and σ2

ε exist [61, 21, 28], and so
a method should be selected based on use case. Incorporating GP into our copula
vine, we are able to extend our multivariate distribution to have dynamic dependency
relationships estimated by means of GP. To express this mathematically, we redefine
individual copulas to take the approximate form

FX(x1, · · · ,xd|y′) =C(F1(x1|θ1(y′)),F2(x2|θ2(y′)), · · · ,Fd(xd|θd(y′))|θ′(y′)), (3.13)

where θ1, · · · ,θd,θ
′ : R→ dom(y) are functions mapping some parameter y′ onto the

domain of the conditioning variable y representing the relationships between x1, · · · ,xd
and y′, often called GPLink functions [36, 61]. These GPlink functions are what we
predict via GP, and how GPLinks are estimated varies depending on the specific use case
and implementation of GP [61, 36, 28]. The main innovation extending copulas in this
way is both uncertainty in how the relationship between parameters and marginals are
defined, as well as parameterization of marginals’ dependence. The latter is particularly
useful when the actual dependence relationships in the data are not static and may
instead be dynamic over time [36].

Table 3.1: Different GPLink functions used in Copula-GP for different copula types.
GPLinks are used to parameterize dependence of the particular copula in time (or any
other continuous variable. Courtesy of [36].

Copula Domain GPLink( f ): R→ dom(c j)
Independence - -

Gaussian [−1,1] Erf( f/1.4)
Frank (−∞,∞) 0.3 · f + sign( f ) · (0.3 · f )2

Clayton [0,∞) Exp(0.3 · f )
Gumbel [1,∞) 1+Exp(0.3 · f )

3.1.5 Benefits of Parametric Vs. Non-parametric Copulas

One possible criticism surrounding copulas is that they impose assumptions surrounding
the marginal distributions’ dependency shape; imposing a certain copula can introduce
bias in the data if said copula’s assumptions are not met. While this bias could effect our
findings in the non-parametric case, utilization of copula parameterization and usage of
mixed copula construction (see eq. (3.14)) circumvents this through dynamic tailoring
of copula variant to the parameterizing value [36, 48].

3.2 Copula-GP: A Novel Framework For Dependency
Analysis

While copulas have been utilized in modelling multivariate neuronal dependence and
mutual-information [36, 48, 44], the GP-treated vine copulas described previously had
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only been extensively used on financial time series prior to the core paper [36, 28].
The Copula-GP package was implemented in Python and deployed in Kudryashova
et. al’s paper [36] (which was published in 2022), and is one of the few (if not only)
practical implementations of a GP-treated copula vine model designed with GPU based
acceleration of computation via Pytorch [51]. It is also the first of such models designed
with use on neuronal data in mind, and as such literature on the uses of GP vine copulas
on modelling neuronal data is heavily limited, with the main source for such claims
being the core paper. In simplest terms, the package serves as a framework for GP
copula model parameter estimation, copula model selection, and model deployment as
a vine, with additional built in visualization and entropy extraction utility. The core
paper also utilizes comparison to other popular methods of neuronal mutual information
extraction, yielding superior results in highly-dimensional data (see section 2.3). Any
subsequent claim surrounding the Copula-GP package without a citation attached
in this section comes courtesy of [36].

3.2.1 Implementation

The vine construction implemented used copula building blocks from five distinct
families: independence, Gumbel, Gaussian, Frank, and Clayton copulas, with the inde-
pendence copula preferred for independent variables (see figure 3.1). The factorization
of the vine is that of the C-vine described by (3.11), with accommodations made for
GP-parameterization. To fully capture the tail dependencies and negative correlations in
relationships between marginal distributions, mixed copulas were utilized. In the core
paper, these are defined as

Cmixed(X|Y ) =
K

∑
j=1

φ j(Y )C j(X|θ j(Y )), (3.14)

where K is the number of elements, φ j is the concentration of the jth copula (c j), and
θ j is the jth copula’s parameter GPLink. The GPLink for each copula is determined by
it’s copula variant, as shown in figure 3.1, with θ being defined by GPLink( f ), where
f is sampled from θ∼N (µ,Kλ(X ,X)) (the choice of GPLink depends on the kind of
copula; see 3.1). GP is also utilized to parameterize the concentrations φ j, which are
defined as

φ j = (1− t j)
j−1

∏
m=1

tm, tm = Φ

(
f̃m +Φ

−1
(

M−m−1
M−m

))
, tM = 0, (3.15)

where Φ is the CDF of a standard normal distribution and f̃m is sampled from f̃m ∼
N (µ̃m, K̃

λ̃m
(Y,Y )). This gives us 2M−1 sets of hyper parameters to estimate, {λ}M

kernel hyperparameters for each GPLink θ and {λ̃}M−1 kernel hyperparameters for
each concentration function φ, estimated via the methods described in the next section.

3.2.2 Model Selection and Parameter Estimation

As stated in section 2.2.1, the parameters for the distributions used in GP must be
estimated. In the Copula-GP framework, this is accomplished through the use of
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stochastic variational inference (SVI), with SVI being scaled to high dimensions
by means of Kernel Interpolation for Scalable Structured Gaussian Process (KISS-
GP) [70]. These methods were specifically used for efficient implementation in
aforementioned python libraries PyTorch and GPyTorch [51, 25]. For model hyper-
parameter selection, Watanabe-–Akaike information criterion (WAIC) was used, a
metric which aims to maximise the Akaike information criterion (AIC) by means
of a Bayesian-approach (we more rigorously define AIC in section 3.3). Given f1,
f2 and the true distribution g, WAIC examines the difference in log-likelihood i.e.
I(g : f1)− I(g : f2) =−E(log f1(X)− log f2(X)), and selects the model with the greater
mutual information [1]. The space of models is too large to find the optimal model
when considering the number of combinations of copulas shown in 3.1, and as such the
core paper implements a greedy algorithm of minimising WAIC which can be used with
all copula types and a heuristic algorithm specifically tuned for certain combinations of
copula types. For this project, we utilize the heuristic approach of copula selection.

3.2.3 Entropy and Mutual Information Estimation

As Copula-GP models a copula distribution, possible states of variables can be sampled
from it. As such, the joint mutual information I(X1 : X2 : · · · : Y ) = HC(X|Y )−HC(X)
between parameter Y and multivariate distribution X = {X1,X2, . . .} can be derived
from C(X|Y ) (the C-vine copula Copula-GP estimates). Computing this directly via
integration over the estimated copula density (the “direct integration approach”) is
computationally intensive due to nested integrals, and as such a “estimated approach”
is explored. We choose to find the monte carlo estimate [58] of H(X) (which is also
utilized in the core paper), which involves sampling from the distribution C(X |ŷi)
with parameterization in N random values ŷi ∼U(0,1) and estimating the conditional
entropy as the mean

HC(X |Y ) =
∫

dom(y)
HC(X |yi)dyi ≈

1
N

N

∑
i=1

HC(X |ŷi). (3.16)

Similarly, we estimate the unconditional entropy as the mean entropy of the system
found when fed true values of the parameterizing variable, i.e

HC(X) = Ey(HC(X |y))≈
1
N

N

∑
n=1

HC(X |yn). (3.17)

Due to the law of large numbers, as N goes to infinity both approximations become
more accurate. To find the copula entropy values HC(X |yi), we utilize the Copula-GP’s
vine implementation’s entropy() function to estimate conditional entropy for a fixed
conditioning y via integrating over the estimated probability density of the copula.

3.2.4 Performance and Evaluation of Model Implementation in Core
Paper

As discussed in the core paper and background chapter, the Copula-GP framework was
successful as a method of mutual information estimation. When compared to state of the
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art methods such as DEMINE [39] and BI-KSG [29], Copula-GP outperforms them in
the high dimensional neuronal data used in the core paper (both artificial data in the form
of a baseline multivariate Gaussian, a low-entropy multivariate student-t distribution,
and a no-exact-fit transformed Gaussian distribution) as the comparison methods under-
performs when used with low-sample high-dimensional data. In order to escape the
“curse of dimensionality,” assumptions surrounding the data must be made that BI-KSG
and DEMINE do not do by themselves. Copula-GP is able to make said assumptions
through assuming certain dependency shapes between marginals by means of selection
of copula variant, tailoring the model’s assumptions to fit those present in the data. The
model was found to be a more reliable and accurate estimator of mutual-information,
capturing more mutual information without overestimation than non-parametric models.
In addition, when validated on a neuronal recording in the V1 cortex of live mice, it
was able to identify behaviorally-relevant locations within the V1 cortex without prior
knowledge of the tasks the mice were performing; copulas estimated via Copula-GP
modelling the dependencies between neuronal data and behavioral data (licks) observed
an increase in negative copula entropy (and thus an increase in mutual information) at
the same time that a reward stimulus was given.

3.2.5 Time Complexity of fitting Copula-GP C-Vine

GP parameter inference in Copula-GP works on O(n) time (n being the length of
data), and as this is repeated for each bivariate copula we find a naive algorithmic
complexity of O(n ·d2), where d is the number of dimensions. However, it was found
that the practical complexity of the algorithm is instead much smaller as independence
copulas require no parameterization. The number of non-independence copulas Nni
is much smaller than d(d−1)/2 and as such the effective number of dimensions for
calculation of computational complexity is me f f ∼

√
Nni, and the true computational

complexity of the model was found to scale on O(n ·Nni)∼ O(n ·m2
e f f ). As all copulas

(even independent copulas) take some time to train no matter how small the number of
data points, an estimate for the true complexity of C-vine estimation is thus given as
n · (m2

e f f +c ·m2), where c is a small constant. This low-exponent polynomial scaling in
dimensions for parameter inference is yet another example of Copula-GP’s robustness to
dimensionality, and makes Copula-GP an efficient method of examining the dependence
structures of a large amount of neurons.

3.3 Extension of Copula-GP: Bagging

Copula-GP assumes continuous data for copula fit. However, often we find data is
batched into controlled trials to measure properties of a one-time neuronal response
against consistent stimuli [3, 10]. As such, we implemented an extension to allow for
analysis via bagging. Bagging is a bootstrapping technique wherein multiple “weak”
models are trained and their outcomes aggregated in some way to create a “stronger”
model [8], typically reducing variance and increasing model bias. We propose a formal
justification of copula bagging, taking inspiration from the “Random Forest” algorithm
for bagged regression [9]; we assume the existence of some true copula C describing
a multivariate distribution X . We take N samples {S1,S2, . . . ,SN} and get a copula
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C(n) representing the best copula fit possible on an individual sample Sn. We then
come to a final estimate via a mean aggregation of our estimates. Suppose C(n) is
a C-vine estimate, and let C(n)

i, j represent the i-th copula in the j-th layer of the n-th
estimate. We can create a mean mixture copula Ĉi, j representing the final estimate for
the corresponding true copula Ci, j:

Ĉi, j =
1
N

N

∑
n=1

C(n)
i, j .

As N → ∞, by the law of large numbers (and the fact that copulas are distributions)
we find Ĉi, j → Ci, j, and so Ĉ→ C. In other words, by fitting copulas on individual
spike-train trials and taking the aggregate, we estimate a copula that more closely aligns
with the true probabilistic relationship than those aggregated.

3.3.1 Weighted Aggregation Methods

A simple unweighted mean is appropriate in the infinite case. In practice however, we
often find that a naive mean is insufficient when examining a finite number of samples;
suppose we have finite N uniform length samples Sn and thus have a set of observations
S = {S1,S2, . . . ,SN}, fitting corresponding copula estimates Ĉn. If the n-th sample is
an outlier sample and so Ĉn does not resemble the true copula Cn, we naturally should
discard it. Our first aggregation method utilized the mean bucketed goodness-of-fit R2

score found in the core paper [36],

R2
= ES(R2(Ĉ,Sn)), (3.18)

where R2 takes the usual definition of explained variance between the conditional empir-
ical cdf (ecdf) of observations in a portion of all observations Sn and the corresponding
conditional copula cdf (ccdf) of the fit copula,

R2(Ĉ,Sn) = 1− ∑
u1,u2∈Sn

(ecdf(u1|u2,Sn)− ccdfĈ(u1|u2,Sn))
2

(ecdf(u1|u2,Sn)−0.5)2 . (3.19)

Given the copula R2 scores, we can discard all copulas with scores not around the best
fit found and aggregate only copulas with high explained-variance. Alternatively, we
may also utilize weighted aggregation based on information criterion. We utilized a
Bayesian model aggregation approach utilized by S. Hu et. al [30], which aggregated
copulas via Bayesian Information Criterion (BIC). The BIC value for the n-th estimated
copula is given as

BICn =−2logL(Ĉn|X ,Θ)+ pn log |X |, (3.20)

where logL(Ĉn|X ,Θ) is the log-likelihood of copula Ĉn under observations X and
estimated model parameters Θ, and pn is the total number of estimated parameters of Ĉn
(in the case of Copula-GP, each bivariate copula estimated is a mixture copula and so
possesses mixing and dependence parameters for each copula mixed; if the mixture is a
singleton mixture, we only count dependence parameter. Note independence copulas
have no dependence parameter). BIC essentially rewards model log-likelihood with
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penalty in number of parameters scaling with sample-size [62, 30], with small BIC
values are being preferred (as negative as possible). We arrive at weights for the n-th
model as

Wn,BIC =
exp(−1

2BICn)

∑m exp(−1
2BICn)

. (3.21)

[30] Note this weighting is logarithmic in BICn; consider two models Ĉ1 with BIC of
−0.5 and Ĉ2 with BIC of −0.1. Then the weights of their aggregation as per (3.21) are

W1,BIC =
exp(−1

2(−0.5))

exp(−1
2(−0.5))+ exp(−1

2(−0.1))

≈ 0.55 = 1−0.45≈ 1−W2,BIC = 1−
exp(−1

2(−0.1))

exp(−1
2(−0.5))+ exp(−1

2(−0.1))
. (3.22)

We also utilize the Akaike Information Criterion (AIC) for comparison, which is given
for the n-th copula estimation as

AICn =−2logL(X |Ĉn,Θ)+2∗ pk, (3.23)

and extract weights Wn,AIC accordingly via (3.21), replacing BICn with AICn. AIC
is similar to BIC in that it rewards log-likelihood but has a more relaxed penalty in
number of parameters. If a more complex copula matches the true distribution, this can
lead to possible improvements in aggregation accuracy, but can also lead to over-fitting
via over-parameterization [72] (as we are already utilising mixtures of copulas with a
high ceiling in number of parameters, we expect the latter to be true). We additionally
include dynamic weighting of estimates via calculating the above information criteria
and their respective weights point-wise as opposed to setting weights to be constant
over the observations X; we call point-wise aggregation dynamic bagging and constant
weighting static bagging. We validate our bagging methods with different aggregation
methods on data samples from randomly generated bivariate copulas in section 6.1.

To aggregate C-vines, we can bag one layer at a time; we first bag copulas in the current
layer normally, and gather cumulative conditional probabilities as pseudo-observations
via the bagged copulas’ ccdfs. We then utilize them for BIC, AIC, and R2 calculations
in the next layers’ bagging process, and in doing so effectively propagate the previous
layers’ weightings to the next layer. As subsequent bagged copulas will have worse
BIC, AIC, and R2 calculations if their corresponding C-vines’ previous layers were
found to be bad fits, we in effect prioritize relationships with weaker conditioning using
this method.

3.3.2 Aggregation Implementation

When Copula-GP estimates a parametric C-vine along a given 1-D parameterization
input X , it models each individual copula as a mixture and gets estimated dependence
parameterizations {θi, j(X)} and estimated mixing parameterizations {φi, j(Y )} for each
of i mixture copulas, with each mixture copula being a mix of j(i) copula variants (see
section 3.2). As such, our actual implemented bagging procedure is to aggregate along
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these estimated parameters for each unique copula variant in each mixture (we count
each rotation variant of a Clayton or Gumbel copula as unique). This algorithm is
outlined more formally in algorithm 1. Example application of this algorithm with mean
bagging can be seen in figure A.3. In addition, we implemented model selection for each
C-vine we aggregate, allowing for the bagged vine to contain copula mixtures possibly
unexamined in the heuristic based model selection process. The C-vine aggregation
process is much simpler in implementation, requiring aggregation of copulas by layer
and storing the cumulative distributions of each copula via the bagged copula ccdfs
for weight extraction in the next layer. As such we omit it’s implementation in this
paper (for now; it may be added to the appendix later on). Note that aggregation was
implemented as a module in a local Copula-GP code-base.

3.3.2.0.1 Complexity of Implementation Suppose we have N samples of uniform
length n and dimensionality m. Then the algorithmic complexity of the described
bagging algorithm would thus be O(N ·n ·m2). This is the same algorithmic complexity
achieved via fitting a C-vine via Copula-GP on the concatenation of samples. However,
if we recall from section 3.2.5 we require a small amount of time c to train a bivariate
copula no matter the length of the trial or size of copula. Thus we find the practical
complexity becomes N · (n ·m2

e f f + c ·m2), becoming slightly larger than the practical
complexity of fitting on the full trials N ·m2

e f f + c ·m2 by about (N− 1) · c ·m2. In
addition, when utilizing model selection for each Copula-GP estimator, we find the time
it takes for model selection scales linearly in the number of estimators, which can be
impractical if the number of estimators is high. For example if fitting a C-vine estimator
takes 5 hours in the non-ensemble case, then in the 10 estimator ensemble case it will
take roughly 50 hours. As such, for highly-dimensional data we recommend to utilize a
low number of estimators (single digit) if time-to-fit is a concern. As time-to-fit indeed
was a concern for this project, we utilized 4 estimators for bagged estimations made.

3.3.3 Practical Justification

A averaging rule for bagging has been used to great effect with both GP [14] and copulas
[30]. T Chen et. al [14] verified that a simple averaging bagging regime can boost GP
accuracy to great effect, especially when the GP aims to predict largely unseen and/or
uncertain (difficult-to-measure) variables utilizing known and measurable (easy-to-
measure) variables, and in the case of the in vivo dataset used Copula-GP utilized GP to
model a copula parameterization variable (a difficult-to-measure variable) as an outcome
of pupil dilation (a easy-to-measure variable). As our bagging algorithm implementation
(see alg.1) effectively aggregated GP outcomes, T Chen et. al’s findings may be
applicable. In addition, a recent paper by S Hu et. al [30] found that weighted bagging
of copula families allowed for a unified estimation of tail dependency and increased
an estimated distribution’s resemblance to the true distribution. As such, we posit
that extending Copula-GP with bagging through copula variant and parameterization
aggregation may allow for more accurate representation of dynamic dependency shape.
Finally, A.2 trained estimators have higher uncertainty for parameterizations which
deviate off of mean, as is seen later on copulas fit on the experimental dataset (see figure
A.2). Bagging typically reduces variance through aggregation [8, 14], and thus a bagged
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Algorithm 1 Implemented bivariate mixture copula bagging algorithm. Here, mixture
copulas consist of mixed copula variants variants, their corresponding dependency pa-
rameter values Θ (for each of the m inputs), and their corresponding mixing parameters
mix. We assume weights have been defined over all m input points.

1: Input
2: mixture: A list of mixture copulas to aggregate.
3: weights: Corresponding mixture weights.
4: Output
5: mixture(Variant List, Mix Parameters, Θ): A new mixture copula of variants

Variant List with corresponding mixture parameters Mix Parameters and depen-
dency parameters Θ.

6: procedure BAGCOPULAS(mixtures, weights)
7: N← 0 ▷ Unique variant counter.
8: indexes← dict() ▷ Indexing dictionary.
9: Variants Seen← set() ▷ Set of Copula Variants

10: Variant Counts← dict() ▷ Counting dictionary.
11: Total Variant Weight← dict() ▷ Weighting dictionary.
12: for i, mixture in enumerated(mixtures) do
13: for n, variant in enumerated(mixture.variants) do
14: if variant not in Variants Seen then
15: Variants Seen.add(variant)
16: indexes[variant]← N
17: Variant Counts[N]← 0.0
18: Total Variant Weight[N]← 0.0
19: N← N +1
20: idx← indexes[variant]
21: Variant Counts[idx]← self+1
22: indexes[(i,n)]← idx
23: Total Variant Weight[idx]← self+weights[i]
24: Variant List← list(N) ▷ Final list of variants.
25: Mix Parameters← 0(N×m) ▷ Mixture parameters.
26: Θ← 0(N×m) ▷ Dependency parameters.
27: for i, mixture in enumerated(copulas) do
28: for n, variant in enumerated(mixture.variants) do
29: idx← indexes[(i,n)]
30: Variant List[idx]← variant
31: Mix Parameters[idx]← self+mixture.mix[n]∗weights[i]
32: Θ[idx]← self+mixture.Θ[n]∗weights[i]/Total Variant Weight[idx]
33: return new mixture(Variant List, Mix Parameters, Θ)
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estimator may give a more robust prediction when encountering outlier parameterizing
variables.

3.4 Gaussian-Process Factor Analysis

Our final method covered is our choice dimensionality reduction technique. In general,
the aim of dimension reduction techniques is to discover a handful of unobserved latent
variables that can be used to accurately describe all of the observed variables in our data.
Doing so allows us to both mitigate the problems associated with high dimensionality,
as well as possibly improve the interpretability and informativaty of our model and/or
data [53, 57]. A very common technique in the realm of dimension reduction for highly
dimensional neuronal data is Gaussian-Process Factor Analysis (GPFA), which factors
a matrix of observations X into a product of a loading matrix Ψ and a scoring matrix Θ

as X =ΨΘ (the Factor Analysis step) producing a low-dimensional group of trajectories,
and then smooths said data by means of fitting a GP (the Gaussian Process step) [53].
This operates under the assumption of a linear relationship between observations X and
latent trajectories Θ (utilizing Ψ as a transformation matrix) [71], and models the GP
with bias d as

X = ΨΘ+d + ε, ε∼N (0,σ2
ε) (3.24)

with parameters (d,Ψ,σ2
ε).

3.4.1 Python Implementation Used

The implementation of GPFA utilized is sourced from the Elephant (Electrophysiology
Analysis Toolkit) python library, with the package’s 1.0.0 release (used for the contents
of this paper) being published November 10, 2023 [19]. The Elephant package was
specifically designed for use on neuronal data, motivated by a push to release a stan-
dardized python package for use in computation neuroscience. The GPFA module has
specifically seen use in recent papers [52, 3], and since release has become quite popular.
The GPFA module receives some dimension n to reduce down to and time-bucket size
m (we utilize 10ms and 20ms buckets) to instantiate a GPFA python object. This object
can then be fit on a number of spike train recordings of uniform temporal length given
the start and end time of each recording, summing the number of spikes for each time
bucket and utilizing the bucketed spike counts as the observation matrix in equation
(3.24). As each projection corresponds to the expectation of the latent trajectories
E(Θ|Ψ), these parameters are estimated in the Elephant implementation via expectation
maximization [71].

3.4.2 Utilization with Copula-GP and Proposed Benefits

The Copula-GPFA process consists of GPFA applied to neuronal data to extract latent
trajectory estimations X̂1, X̂2, . . . , followed by fitting a Copula-GP C-vine estimator on
neuronal trajectories. Doing so, we are able to efficiently extract mutual information
estimates describing not just the information interaction between the examined part of
the brain and some parameterizing variable, but the mutual information between the
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brain processes driving neurons as instead of individual neurons themselves [71, 41, 36],
enhancing the interpretability of individual copulas estimated. In addition, by utilizing
GPFA to reduce a large number of neurons to a more manageable amount, we reduce
the computational intensity of mutual information analysis; if we extract 13 trajectories
from ∼150 neurons (as is done in section 5.2.1), then from the naive estimate for the
complexity of training Copula-GP estimators (see section 3.2.5) we can come to an
upper-bound of 1502÷132 ≈ 133 times faster Copula-GP training.

3.4.3 Dimensionality Selection

Before we can utilize GPFA, we first must isolate which number of dimensions n to
reduce down to. For the in silicon dataset, we utilize n = 3 dimensions, which is the
dimensionality of a Lorenz system (see section 5.1). On the experimental in vivo dataset
we chose n via investigating the log likelihood of GPFA fits extracted from a 3-fold cross
validation, from target dimensionality n = 1 to 50. We then plotted the log likelihoods
and saw both where the elbow, or the point of maximum concave slope curvature
representing a “good enough” dimension to reduce down to [2] of the log likelihood
curve was. While there are computational methods for elbow selection [2], there are
few enough points to allow for the elbow to be selected ourselves visually. While it
is entirely possible that optimal log-likelihood may lie further beyond 50 dimension,
fitting Copula-GPFA on n > 50 dimensions is beyond the computational capabilities of
this project.

3.4.4 Additional Post-GPFA Interim Processing Required

Copula-GP’s C-vine framework is fit on single-trial continuous, however Elephant’s
GPFA implementation produces trajectory data that is split into trials. A solution to this
would be to concatenate trials trajectory wise, however per-trial drift in trajectory means
can result in weak Copula-GP fit performance if these lead to large jump discontinuities
and thus loss of smoothness in the data; the kernel for the GP-link functions used in
parameterization will require more restrictions as it encodes the smoothness of the
data (among other things) [61, 71]. For the in vivo data, we found in figure 5.3 that
drift occurs in the 1 second inter-stimulus break in the average trial. As such, we crop
this period out of each trial (50 points), and concatenate trials together trajectory-wise.
While this is by far not a perfect solution, it allows the data to remain roughly smooth
at the cost of continuity in time and residual (small) jump discontinuities, as well as
isolating the data to only when stimulus presentations are occurring. See figure A.1 for
a example of trial-to-trial discontinuities created by this interim step.

3.5 Python Version and Hardware Utilized

Computations were made on the Edinburgh University compute server utilizing 128 GB
of system memory, an Intel Xeon Gold 6142 processor, an NVidia 2080, and an NVidia
2080Ti. Plots were made on a laptop with 8 GB of system memory and an Apple M2
processor. The python version utilized for all computations and plots made was 3.10.6;
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Elephant 1.0.0 and Copula-GP 0.0.5 were utilized for computations, and Matplotlib
3.6.1 and Seaborn 0.10.0 were utilized for plot production.



Chapter 4

Data Providence

In this chapter, we briefly go over data background, acquisition, initial exploration, and
any cleaning and preprocessing regimes. The two datasets utilized are an in silicon
dataset extracted from a Lorenz system [40] and an in vivo dataset extracted from the
visual cortex of live mice.

4.1 Toy in silicon data-set: Simulated Data for Model
Validation

One of the primary methods of generating neurological data is simulating it using
statistical methods that generate a random multivariate distribution of which we can
draw sample data from. For example, neuron spike data was simulated in the core paper
via a GLM and a exponential non-linearity Poisson emission model [36]. For this paper,
we utilize simulated spike data derived from a Lorenz system. The Lorenz system, first
discovered by Edward Lorenz in meteorological systems [40], is a standard chaotic
dynamical system utilized for the production of synthetic neuronal spike data in the
past [12, 33]. The chaotic yet deterministic nature of the system makes this method of
spike data simulation an interesting edge case for model validation in this project.

In mathematical terms, a Lorenz system is essentially a 3-dimensional gradient system
∇F = [∂x,∂y,∂z]T parameterized in some values σ,ρ,β:

∇F(x,y,z) =

 ∂x = σ(y− x)
∂y = x(ρ− z)− y
∂z = xy−βz

 . (4.1)

To model the system as latent trajectory data, we simply get a uniformly distributed
sample of a solution to the system: start with an initial point p0 = (x0,y0,z0) and
iteratively find the next point at some time-step t in the future as

pt = pt−1 +∆ t∇Fσ,ρ,β (pt−1), (4.2)

where ∆t is a parameter for scaling in time [12, 33, 19]. We then project the points
found onto the desired neuronal dimensionality via a projection matrix with added
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gaussian noise. We can see the outcome of such a process alongside the true latent
variables for a solution to this system in figure 5.1a. The motivation behind this method
of data simulation is as a demonstrative toy dataset to explore with Copula-GPFA, as
well as a soft validation method for Copula-GPFA: Copula-GPFA should find near zero
information interaction between the system and time-step t using a C-vine fit onto the
system parameterized in t; there should be 0 entropy in the system outside of projection
noise (see section 4.1.1) as a Lorenz system’s outcome given initial parameters is
deterministic.

4.1.1 Production of Data

We utilized the method of spike simulation found in the Elephant package’s tutorial
for GPFA (found at https://elephant.readthedocs.io/en/latest/tutorials/
gpfa.html), which was accomplished by modelling a random projection of a Lorenz
system to a highly-dimensional space to represent the instantaneous spike-rates of 50
neurons over 30 seconds. Afterwards, we then extracted spike events via application of
a Poisson process [38], utilizing code within the Elephants package and above tutorial.
Picking parameters σ = 5, ρ = 34, ρ = 1.77, p0 = (0,1,1.25), ∆t = 1 ms for our system,
we produce 40000 points and use the last 30000 to represent true neuronal trajectory
values over 30 seconds at a temporal resolution of 1ms with dimensionality n = 3 (we
call the 10000 entries not utilized the transient period). We stores these values in
a matrix Θ and project these values onto a m = 50 dimensional space via a random
projection matrix Ψ

Θ→Ψ ·Θ,Ψ = {mi, j ∼N (0,
1
3
)}. (4.3)

Let this matrix product be Θ′. We then normalized Θ′ by dividing it by it’s max value,
and get neuronal spike-rates via mapping each element of Θ′ to some max neuronal
spike-rate (we use 70Hz in data production) and multiplying together values of the
resulting matrix column wise, producing an instantaneous spike-rate. We then got the
average spike-rate over a 10ms interval via integration to produce neuronal spike-rates
for 10ms time buckets over the full 30s. We can then produce the neuronal spike data at
1ms resolution via a Poisson process. The original system, it’s projection, and resulting
spike-rates of a single trial can be seen in figure 4.1c. We replicated this process 20
times, producing 20 trials with uniform duration of 30s. This produces a large volume of
data (600000 entries; 30000 entries per trial), which is ideal for fitting both Copula-GP
estimators and GPFA.

4.2 Experimental in vivo data-set: Neuropixels Dataset

While in silicon data is useful for reproducability, validation on in silicon data will never
be as applicable to the real world as validation on in vivo data. As such, the main data
set we wished to explore is the Visual Coding: Neuropixels dataset, which is publicly
available via the allensdk python package (visit https://portal.brain-map.org/
and navigate to “circuits and behavior”, then “Neuropixels”). This dataset contains
spike-signals recorded from the visual cortex of live mice at single neuron spatial
resolution utilizing novel Neuropixel probes, a high-fidelity and -resolution brain probe

https://elephant.readthedocs.io/en/latest/tutorials/gpfa.html
https://elephant.readthedocs.io/en/latest/tutorials/gpfa.html
https://portal.brain-map.org/
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(a) (b)

(c) (d)

Figure 4.1: In silicon data generated from Lorenz system. Figure 4.1a shows the Lorenz
system solution utilized for spike trial creation, with an area greyed out to represent the
transient (unused) initial part of the system. Figure 4.1b is the system as represented in
3-dimensional space. We utilize these representations of the lorenz system as references
for our averaged GPFA trajectories in figure 5.1. The system is projected onto a 50-
dimensional space in 4.1c to represent waveforms of instantaneous spike rates, which
are then utilized in production of spike trials, like that of figure 4.1d.
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developed in 2021 [65]. Due to the volume of in vivo data recorded, as well as the
quality metrics included in the data, it is an invaluable tool for analysis of underlying
processes within the visual cortex. All technical claims surrounding the data in question
is sourced from the technical white paper (found through the URL above, or through
this hyperlink). For more information surrounding data production and specificities not
covered in the body of this paper, i.e specifics on how probes were used and how visual
stimuli were produced, one should see the technical white paper.

The spike data was collected via insertion of Neuropixel probes into the visual cortex of
live mice. Probes record spike signals from points in space at single neuron resolution.
These points are called “units,” and are where neurons might be. Units have quality
metrics attached, which can be used to filter for units of better quality (i.e. units with
less noise, units which more certainly record spikes from only one neuron, etc). See
section 4.2.1 for specifics on data retrieval and cleaning.

Pupil dilation has been found to have close ties to processes within the visual cortex
[22, 7, 37]. As this data is directly from the visual cortex, we expected a significant
statistical dependence between pupil dilation and visual cortex trajectories. As such,
the motivation behind utilizing this dataset is as an experimental method of model
validation; Copula-GPFA should be able to extract a significant amount of negative
information interaction between trajectories extracted from the visual cortex and pupil
dilation.

4.2.1 Data Retrieval and Cleaning

Visual Coding - Neuropixels is split into recording sessions, where during each session
a mouse test subject was exposed to varying visual stimuli. Stimuli were presented in
“blocks” of similar kinds of stimuli of varying duration. For this project, we examine
specifically the first 100 stimuli presentations of the first “drifting gratings” block (block
2), as this way we mitigate variation in neuronal response due to differing stimulus
length. In addition, within this block individual presentations are of uniform length (2
seconds of presentation, with a inter-presentation break of 1 second), and so the block
is easily divisible into separate spike train trials (the GPFA implementation used is best
suited for a trial-by-trial format; see section 5.2.1).

The session data contains the full spike recordings of all recorded units within the sub-
ject’s visual cortex. As stated prior, these units possess quality metrics that correspond
to how accurate and noisy unit recordings are. Of these, we utilize Signal to Noise Ratio
(SNR) and Inter Spike Interval (ISI) Violation rate. SNR corresponds to the ratio of the
maximum unit waveform amplitude to one standard deviation of the waveform, and acts
as a metric of how noisy the unit recording is [6]. ISI violation rate is the percentage
of unit spikes that occur during what should be the corresponding neuron’s refractory
period, and serves as a metric to determine whether multiple neurons and/or electronic
interference are being picked up in a single unit’s recordings [18].

Session data used in this project was pulled from a single session (session ID 756029989).
By setting a lower bound for SNR and an upper bound for ISI violation rate, we are able
to filter overly noisy and unreliable units’ spike recordings out of the data set. Utilizing

https://brainmapportal-live-4cc80a57cd6e400d854-f7fdcae.divio-media.net/filer_public/80/75/8075a100-ca64-429a-b39a-569121b612b2/neuropixels_visual_coding_-_white_paper_v10.pdf
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Figure 4.2: Spike raster of a single drifting gratings stimulus presentation (duration of
2s), from the session utilized in model validation (session ID 756029989). Only those
spikes with SNR lower bound of 3 and ISI violation rate upper bound of 0.05 are shown.
Note correlation in spike events present in the raster plot, as well as heightened neuronal
spike-rate at the beginning of stimulus presentation.

a SNR lower bound of 3 and an ISI violation rate upper bound of 0.05 (5%), we found
that in this session 26.0% of units meet these quality thresholds (178 out of the original
total of 684). Example spike data for a single stimulus presentation of 2 seconds is
shown in figure 4.2.

We also utilized pupil area recordings (cm2) to parameterize the copulas in pupil dilation.
Measurements were recorded every 33ms and possess a relatively large range, with
sporadic large spikes in pupil dilation (see pupil dilation curves in figure 4.3a). As such,
we applied a rolling mean with a window of 10 entries for smoothing followed by a
robust normalization procedure Robust(X):

Robust(X) =
X−Q1(X)

Q3(X)−Q1(X)
, (4.4)

where Q1(X),Q3(X) are the 1st and 3rd quartile values of X . Doing so, we reduce the
impact of outliers in the data. As the input for parameterizing values for fitting a C-vine
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(a) (b)

(c) (d)

Figure 4.3: Figures 4.3a and 4.3b represent pupil dilation as function of time over all trials
(duration 600s), raw (4.3a, pupil area in cm2 scaled logistically) and processed (4.3b,
pupil area smoothed and normalized). Processing consisted of rolling mean (window
of 10 entries), a robust scaling, and a min-max scaling. Note the removal of strong
outliers through processing, as well as the large range necessitating a logistic scale in
values present in the raw recordings. Figure 4.3c represents the distribution over all pupil
dilation data utilized (100000 continuous samples / 100 trials). Figure 4.3d represents
the distribution over 1500 continuous samples (15 trials). Note the use of logistic scale
in figures 4.3a, 4.3c, and 4.3d.

via Copula-GP must be the interval [0,1], we map onto via an additional min-max
normalization

MinMax(X) =
X−min(X)

max(X)−min(X)
. (4.5)

We can observe the difference between the raw and processed data in figure 4.3. See
figure 4.3c for the distribution this preprocessing regime created, which appears roughly
normal with few outliers.
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Baseline Copula-GPFA Validation,
Experiments, and Results

5.1 Exploration of In Silicon Lorenz system Data

We first explored the use of Copula-GPFA on the known noisy deterministic simulated
data-set extracted from a Lorenz attractor. In this section, we aim to visualize the
GPFA process and utilize Copula-GPFA to confirm a near-zero information interaction
between the Lorenz dynamics and time.

5.1.1 Extraction of Latent Dynamics via GPFA

We expected the true dynamics’ to be sufficiently reconstructed visually via Elephant
GPFA, which is straightforward to use. We created a GPFA instance with the dimension-
ality 3 and time buckets of 10ms, fitting the instance on and transforming the simulated
neuronal spike train trials. The estimated dynamics can be compared to the true dy-
namics in figure 5.1. In figure 5.1b we can observe that GPFA extracted dynamics
were re-centered on 0, with none of the extracted trajectories corresponding directly to
the original dynamics. Despite this, from figure 5.1a we can see by comparing mean
extracted dynamics to true dynamics that GPFA successfully captured the shape of the
true Lorenz system. With the original trajectories having been sufficiently reconstructed,
we could then utilize Copula-GP to analyze their dependencies.

5.1.2 Copula-GP fit

We first utilized the additional interim processing described in section 3.4.4, cropping
the final 1 second of trials and concatenating them. We then fit a C-vine estimator
onto the trajectories parameterized in time, with the C-vine possessing 2 layers (3
copulas total). We calculated estimations of copula entropy HC(X) and conditional
copula entropy HC(X |Y ) via the estimation methods outlined in section 3.2.3. We found
a mean negative copula entropy −HC(X) of 4.3622 and a mean negative conditional
copula entropy −HC(X |Y ) of 4.3698, yielding a near-zero information interaction of
I(X ← Y ) ≈ 0.0076 (the slight deviation off zero can be attributed to gaussian noise
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during data creation; see 5.1). In other-words, Copula-GPFA correctly identified
little-to-no dependency between time bucket t and the extracted trajectories. With
Copula-GPFA having passed initial validation, we moved on to utilization on the the in
vivo experimental dataset.

(a)

(b)

Figure 5.1: Lorenz derived dynamics, both actual and estimated via GPFA. True tra-
jectories were simulated with Lorenz system parameters σ = 5, ρ = 34, ρ = 1.77,
p0 = (0,1,1.25), ∆t = 1 ms, and consists of a total of 30000 points. GPFA utilized time
buckets of 20ms, and estimated trajectories encompass 1500 data points. Figure 5.1a
are dynamics are spatial coordinates. Figure 5.1b are dynamics as functions through
time. The left halves of each figure are true dynamics, while the right halves are averaged
estimated dynamics, with single trial estimates shown in 5.1a. Note the close approxima-
tion of the shapes of the dynamics in 5.1a, as well as the recentering of dynamics on
0 and the difference scale and directionality present in 5.1b. The conclusion from this
is that GPFA does not estimate trajectories exactly, but instead estimates trajectories
while preserving statistically significant qualities. Other intrinsics surrounding the true
dynamics are encompassed in the estimated scoring matrix Ψ.
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Figure 5.2: Log-likelihood curve for GPFA fit on trials as function of dimension n. Elbow
and max log-likelihood found marked. Note that only dimension up to and including
n = 50 were tested, and it is entirely possible log-likelihood to increase further in
dimensions.

5.2 Experimental Exploration of in vivo Data: Visual
Coding - Neuropixels

For this experiment, the objective was to utilize Copula-GPFA to confirm high statistical
dependence between the visual cortex and pupil dilation. We hypothesised firmly
negative information interaction, thereby effectively confirming that the visual cortex of
the brain is linked to pupil dilation and agreeing with prior results in the literature [7,
23].

5.2.1 GPFA Application and Processing

GPFA was fit on 100 consecutive spike trains during Drifting Gratings stimulus presen-
tations, each of which have a uniform temporal length of 2s followed by a 1s interval
during which no stimulus is presented. We fit the model for the entirety of the dataset
with the dimensionality of the elbow of the log-likelihood plot n = 13 (figure 5.2).
Afterwards, we plot the trajectories for both a single trial and the averaged trial. We can
observe from figure 5.3 a response in the trajectories immediately after both stimulus
presentation start and stop, as well as clear vertical drift on a trial-by-trial basis. We
removed the drift and concatenated the trials as per the process described in section
3.4.4, and moved on to Copula-GP application.

5.2.2 Application of Copula-GP

Application of Copula-GP involved training and model-selection methods described
in section 3.2. We estimated a C-vine over the concatenation of GPFA-treated trials
possessing 12 layers (78 copulas total) with parameterization in normalized pupil dila-
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tion. We can observe in figure A.2 examples of singular bivariate copula estimations
within the vine (low-level). We extracted the entropy of the system of trajectories via
the methods outlined in section 3.2.3. In figure 5.4 we can see pupil dilation values y,
corresponding parametric copula entropy HC(X |y), and the corresponding parametric
information interaction I(X ← y) plotted as functions of time-bucket t. Copula entropy
appears to be highly correlated with pupil dilation in the figure, possessing a almost lin-
ear relationship. In addition, the information interaction stays firmly negative, implying
the multivariate distribution of neuronal trajectories possesses statistical dependence on
pupil dilation (thereby confirming our hypothesis). We found a mean negative copula
entropy −HC(X) estimation of 13.4745 bits (95% CI of 3.0720) and a mean negative
conditional copula entropy −HC(X |Y ) empirical estimation of 7.2221 bits (95% CI of
6.1190), with X being the neuronal trajectories and Y being pupil dilation.

(a) (b)

Figure 5.3: Trajectories extracted via GPFA (dimension n = 13) representing dynamics
driving recorded neuronal activity. Figure 5.3a are two trials’ trajectory data as functions
in time that have been concatenated, giving the appearance of continuity. Figure 5.3b
is the mean trial. Note the clear vertical drift in mean and single trial trajectories post-
stimulus presentation stop. Data is scaled to the range [0.01,0.99] to match Copula-GP ’s
input range of (0,1). Lines are transluscent for visibility purposes.

Figure 5.4: Pupil dilation (in red), estimated copula entropy of neuronal trajectories
parametric in pupil dilation (in blue), and estimated corresponding information interaction
(in green) through time. Copula entropy was estimated via estimating a distribution via
Copula-GP and methods described in A.2.
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Bagging Validation and Experiments

In this section, we validated various Copula-GP bagging aggregation methods alongside
baseline Copula-GP on randomly generated copulas; we validated copula entropy and
mixture selection accuracy on data sampled from a simple bivariate copula, a highly
mixed bivariate copula, and the simple bivariate copula parameterized in time. We then
utilized bagging aggregation weighted dynamically by copula BIC on the experimental
data-set to find a new estimation for the conditional entropy of the system of neuronal
trajectories.

6.1 Initial Copula Entropy Accuracy Validation Tests

To validate our bagging methodology, we tested various Copula-GP aggregation meth-
ods alongside baseline unbagged Copula-GP on generated bivariate copulas (the “true”
copula). Unfortunately, in depth validation on C-vines with increasing dimensionality
could not be completed for paper submission, and as such robustness against dimensions
for now goes unexamined. However, we note that C-vines are made up of bivariate
copula building blocks, with C-vine model selection essentially being made up of con-
secutive bivariate copula selections. As such, validation alongside baseline Copula-GP
on bivariate copulas alone might be indicative of possible improvements in C-vine
entropy estimation via bagging methods described, however without aforementioned
tests such conclusions cannot be confirmed.

For all validation tests in this section, the task was to accurately replicate the true
copula’s entropy and dependency shape. For validation, the weighted aggregation
methods utilized were

• Copulas weighted point-wise dynamically by BIC / AIC on input,

• Copulas weighted statically by BIC / AIC on input,

• Average of copulas with close-to-best explained variance score R2.

32
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Computational metrics used for validation were:

• Copula entropy root point-wise mean squared error (RMSE) of baseline and
bagging methods.

• Absolute error of mean (AEM) in copula entropy of baseline and bagging meth-
ods.

• Visual examination of baseline, BIC dynamically bagged, and true copulas.

To generate the data, we drew 10000 samples from the true copula, splitting sam-
ples and their corresponding parameterizations into train and test sets (80:20 split).
Validation tests 1 and 2 utilized parameterization on a normally distributed variable
x∼N (0.5,0.2), restricted to the interval [0,1]. Validation test 3 utilized a parameteri-
zation in a time-based variable t scaling linearly from 0 to 1. Copula training and model
selection utilized train set samples, with accuracy validation utilizing metrics described
on test set samples. All validations utilized the heuristic algorithm for individual esti-
mator model selection, and for bagged estimations 4 estimators underwent individual
training and model selection routines. We include random seed, module version, and
hardware information for test reproducability purposes in the appendix (see A.1).

6.1.1 Validation 1: Low-Entropy 4-Copula Mixture Copula

Table 6.1: True and predicted mean copula entropies HC with 95% CI of validation
test on low-entropy 4-copula mixture copula with parameterization in random variable
x ∼ N (0.5,0.2) and resemblance to independence copula. Average Error in Mean
(AEM) and Root Meas Square point-wise Error (RMSE) of predicted copula entropies
included. Closest to actual / best scores in bold.

Model HC 95% CI AEM RMSE
True Copula -0.1440 ±0.0154 - -

Baseline -0.0000 ±0.0000 0.1440 0.1442
BIC Dynamic -0.0802 ±0.0147 0.0638 0.0647

BIC Static -0.0791 ±0.0117 0.0649 0.0656
AIC Dynamic -0.0796 ±0.0128 0.0644 0.0652

AIC Static -0.0790 ±0.0123 0.0650 0.0658
R2 Meaned -0.0798 ±0.0133 0.0642 0.0651

Our first validation test was on a low entropy copula with a resemblance to the inde-
pendence copula we expected our bagging algorithm to perform well on. Baseline
Copula-GP when facing such a copula can often “give up” early into heuristic model
selection and select independence if it finds non-independence copulas possess too low
WAIC. We expect that bagging is able to make up for this flaw in baseline heuristic
model selection via it’s bias-variance trade-off, and thus pick up tail dependencies in
the model.

We found that our expectations were held. In table 6.1 we observe that bagging methods
all performed better than baseline (which selected independence), with BIC dynamic
bagging possessing the best model accuracy and capturing much of the variance in the
true copula (i.e. the most accurate 95% CI metric). Finally, in figure 6.1 we find that
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Figure 6.1: Select results of low entropy copula validation. Note how the distribution
“tricks” the baseline estimator into picking the independence copula, but the bagged
estimate is able to catch major tail dependencies in the true distribution (circled in red).

the BIC dynamically bagged estimated copula captures major tail distributions in the
true copula, whereas the baseline estimation of independence does not.

6.1.2 Validation 2: High-Entropy 3-Copula Mixture Copula

Table 6.2: True and predicted mean copula entropies HC with 95% CI of validation
test on high-entropy 3-copula mixture copula, with parameterization in random variable
x∼N (0.5,0.2). Average Error in Mean (AEM) and Root Mean Square point-wise Error
(RMSE) of predicted copula entropies included. Closest to actual / best scores in bold.

Model HC 95% CI AEM RMSE
True Copula -0.6864 ±0.1148 - -

Baseline -0.6680 ±0.0688 0.0184 0.0694
BIC Dynamic -0.6764 ±0.0847 0.0100 0.0719

BIC Static -0.6725 ±0.0793 0.0139 0.0713
AIC Dynamic -0.6664 ±0.0870 0.0200 0.0748

AIC Static -0.6662 ±0.0921 0.0202 0.0658
R2 Meaned -0.6738 ±0.0778 0.0126 0.0651

For this validation test, we expected baseline to perform well and are interested in if the
bias induced by bagging can result in worse performance on distributions the baseline
is well suited for. The true copula here is a high-entropy copula with simple shape,
something that in the core paper [36] was found to be well suited to baseline Copula-GP
as a method.

We find from table 6.2 that all tested methods had similar performance. The BIC dy-
namically weighted estimate had the best AEM, but the R2 meaned estimate possessed
better point-wise RMSE. In addition, we find that AIC weighted aggregation methods
had worse AEM than baseline. In figure 6.2 we find that the BIC dynamically weighted
estimation included a gaussian copula and as such makes incorrect assumption surround-
ing the dependency shape of the true copula. Despite this, the majority bagged copula
estimates still result in similar if not slightly better performance in copula entropy
prediction.
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Figure 6.2: Select results of high entropy copula validation. We find that bagging
methods can result in incorrect selection of copula variant leading to misrepresentation
of dependency shape.

6.1.3 Validation 3: High-Entropy 3-Copula Mixture Copula, Parame-
terized Linearly in Time

Table 6.3: True and predicted mean copula entropies HC with 95% CI of validation test
on high-entropy 3-copula mixture copula, with time based parameterization in variable
increasing linearly from 0→ 1. Average Error in Mean (AEM) and Root Meas Square
point-wise Error (RMSE) of predicted copula entropies included. Closest to actual / best
scores in bold.

Model HC 95% CI AEM RMSE
True Copula -0.6864 ±0.1148 - -

Baseline -0.4556 ±0.2038 0.2308 0.2587
BIC Dynamic -0.5628 ±0.0754 0.1236 0.1388

BIC Static -0.5589 ±0.0650 0.1275 0.1418
AIC Dynamic -0.5382 ±0.0813 0.1482 0.1615

AIC Static -0.5389 ±0.0703 0.1475 0.1596
R2 Meaned -0.5580 ±0.0722 0.1284 0.1420

Our final validation was on a copula parameterized in time. In the core paper, it was
found that “transformed” cases with dependency shape changing as a function in time
can be more challenging for Copula-GP to predict the entropy of accurately. As such,
we utilize the copula in validation test 2 and change it’s parameterization to be in time t
scaling linearly from 0 to 1. We maintain continuity when splitting into train and test
set, and as such the train set consists of parameterization in t = 0.0 to 0.8, and the test
set consists of parameterization in t = 0.8 to 1.0. We hope that bagging distribution
estimations made by estimators trained on continuous subsets of training data can
induce some robustness to time-based transformation in true dependency shape.

Our hopes were confirmed, as we find in table 6.3 that bagging methods all find better
accuracy than baseline. BIC dynamically weighted bagging results in the best AEM
and RMSE (with a 0.1072 decrease in AEM over baseline), while capturing most of
the variance in true copula entropy. From figure 6.3 we see that the baseline estimated
copula possesses much less of a resemblance to the true copula.
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Figure 6.3: Select results of high entropy transformed copula validation. We find that the
bagged estimation possesses much less of a resemblance to the true copula than the
bagged estimation.

6.1.4 Validation Discussion

In general, we found that bagged copula estimations utilizing 4 estimators possesses
similar or better accuracy in copula entropy estimation than baseline. The best bagging
method appears to be BIC dynamically aggregated copulas, possessing the best AEM
for all validation tests conducted. In addition, AIC weighted aggregation methods find
worse performance than the BIC counterparts. Considering the difference between AIC
from BIC is a more lenient penalty in number of parameters, this can be attributed to
overfitting due to over-parameterization. From validation test 1, we see that bagged
estimates can catch dependencies in distributions that the baseline perceives as inde-
pendence. In C-vine model selection, as copulas gain more conditioning marginal
variables’ relationships tend to more closely resemble conditional independence [36].
As such, we may conclude that a bagged estimator might be more likely to pick up tail
dependencies in conditioned relationships where the baseline estimator might assume
independence. From validation tests 2 and 3 we find that the bagged estimator is more
robust to transformations in dependency shape over time, and as such may yield better
accuracy when predicting marginal variables’ dependency shape for time-based data,
such as spike train data. Finally, we note that the BIC dynamically bagged estimator
does not over-estimate copula entropy in validation, much like was found of baseline
Copula-GP in the core paper.

6.2 Application of BIC Dynamically Bagged Copula-GPFA
on in vivo Experimental Data

Finally, we utilized the BIC dynamically weighted bagging method on the neuronal
trajectories extracted from the experimental spike train data (described in section 5.2.1),
and compare it’s negative copula entropy −HC(X) over time with that of baseline
Copula-GP over 15 continuous trials. We expected either similar or lower (more
negative) copula entropy estimates, as was observed in validation.

We can see the outcome of −HC(X) and interaction information I(X ← Y ) calculations
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Figure 6.4: Pupil dilation (in red), copula entropy of neuronal trajectories parametric
in pupil dilation utilizing bagged estimation (in blue), and corresponding information
interaction (in green) through time utilizing bagged estimated. Copula entropy was
estimated via estimating a distribution with BIC dynamically bagged Copula-GP.

Figure 6.5: BIC dynamically bagged vs unbagged Copula-GP estimated entropies and
information interactions. The BIC dynamically bagged entropies curve seems to hover
steadily around a mean, and does not appear to be as volatile as unbagged entropies.

alongside normalized pupil dilation in figure 6.4, and comparison of −HC(X) calcula-
tions in figure 6.5. The bagged estimate found a negative mean copula entropy −HC(X)
of 13.4027 bits (95% CI of 0.7069; only 0.0718 bit difference from unbagged estimate),
and a mean negative conditional copula entropy −HC(X |Y ) of 7.3323 bits (95% CI of
5.9693). From figures 6.4 and 6.5, we can see that like the original baseline estimate
the bagged negative copula entropy appears to be dependent on pupil dilation, with
large dips occurring with pupil dilation. However, we find the bagged estimate is less
sensitive to small changes in pupil dilation than the baseline estimate. In addition, the
bagged entropy estimate appears to steadily hover around the mean negative entropy
found for most observed time-buckets, but will still dip severely at the same time as
the baseline estimate. These differences aside, the bagged and baseline mean copula
entropy and information interaction estimates were quite close, implying that the bagged
estimator does not inherently out- or under perform baseline unbagged Copula-GPFA
in the case of the in vivo data.



Chapter 7

Conclusions

In this chapter, we first go over the contributions to project goals (most of which were
fully completed). Afterwards, we discuss future extensions to this paper, as well as
remark on possible uses of Copula-GPFA and the bagging extension to Copula-GP in
future work.

7.1 Contribution Overview

7.1.1 Validation of Copula-GPFA

In chapter 5, we validated Copula-GPFA as a mutual information and information
interaction extraction method on in silicon data extracted from a Lorenz attractor, and
confirmed significantly negative information interaction between neuronal trajectories
and pupil dilation, agreeing with prior findings linking the visual cortex with pupil
dilation [7, 23, 73]. In addition, Copula-GPFA also allows for easy interpretability
of findings, allowing for visualization of both neuronal trajectories and information
quantities over time. We also justify a significant reduction in computational complexity
via GPFA utilized with Copula-GP, using complexity estimates made in the core paper.
In other words, Copula-GPFA is able to efficiently provide accurate and meaningful
dependency and information quantification analysis and results. As Copula-GPFA
is not inherently a method restricted to the area of neuroscience, it is entirely plausible
Copula-GPFA is able to be meaningfully applied to other fields where dependency
analysis is useful (i.e. bio-informatics or quantitative finance). Finally, we note that
due to paper length restriction we did not thoroughly investigate individual bivariate
copulas within the C-vines estimated. However, each bivariate copula itself represents
a dependency relationship, and as such there is room for even more analysis to glean
from C-vines estimated.

7.1.2 Extension of Copula-GP via Addition of Bagging Capability

In chapter 3, we introduced copula bagging as a means to possibly improve copula
estimation, complete with both formalistic and practical justifications, and implemented
bagging as an extension to the Copula-GP code-base (locally). In chapter 6, we
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identified the implementation of bagged Copula-GP’s estimations’ superiority over
baseline in tail-dependency identification and estimated copula entropy accuracy
in the bivariate case. In addition, we utilized the bagged extension on the experimental
in vivo data, finding results in agreement with baseline estimation of mean copula
entropy with more stability over time, however whether this stability is indicative of
the true distribution or not goes unconfirmed. While our validation is flawed in that
we did not test robustness of the bagged extension to higher dimensionality due to
time and workload constraints, we did find similar results to baseline when utilized
on the in vivo data with 13 dimensions. We also noted C-vine selection in Copula-GP
essentially consists of individual selections of bivariate building blocks, and as such
we believe that benefits found in the bivariate case may carry over into C-vines of
higher dimensions. Our implementation of bagging also follows in the footsteps of the
formalistic approach of the original Copula-GP implementation, and as such maintains
flexibility in use cases outside the realm of spike train data and neuroscience. We also
acknowledge that the ability to bag copula estimations allows for the aggregation of
Copula-GP estimators to be fit on individual trials of data, thereby resolving possible
violations of local smoothness and continuity assumptions caused by concatenation of
GPFA treated spike train trials (a low number of estimators was utilized in the core data
due to time-to-run concerns, and so this goes unutilized as of now). Finally, we note our
bagging implementation can be used without heuristic model selection, and one could
utilize our implementation to bag singleton mixtures (mixture copulas of only a single
variant) as an alternative efficient means of model selection.

7.2 Further Work and Extensions

7.2.1 Further Validation, Optimization, and Use of Bagging Methods

Our validations find that weighted copula estimate aggregation can yield effective
improvements in copula tail dependency identification and copula entropy accuracy.
The obvious extension to validations made would of course be to confirm if such
improvements firmly carry over to higher dimensions. In addition, further refinement of
aggregation methods may be considered, i.e. clustering methods such as k-means as a
way to select copula estimates for datasets. Use of parallel processing in training bagged
estimators concurrently might also be a natural optimization for bagged Copula-GP; one
could even bag bivariate copulas immediately after they’ve completed model selection
on their subsets of data during vine training.

That being said, the validation tests made are still entirely applicable. Bivariate copulas
are still effectively used in fields from computational finance [15] to bio-informatics
[56]. As such, the improvements made to Copula-GP in bivariate copula estimation via
the addition of dynamically weighted aggregation methods may be used to robustify
bivariate copula selection effectiveness in such use cases.
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7.2.2 Possible Future Use of Copula-GPFA

Computational neuroscience as a field is in it’s infancy; only recently have demands
in recording techniques and computational power been met through technologies like
neuropixel probes [65] and GPU-based computational acceleration [51, 25]. As such,
Copula-GPFA may be used to answer questions that have been plaguing the minds of
neuro-scientists for decades.

For example, dysfunction of the cerebellum (a section of the brain located on it’s back)
has been hypothesized in the past to be a central cause of multiple cognitive disorders,
such as Alzheimer’s, Frontotemporal Dementia, and cognitive effects of Multiple
Sclerosis [60, 43]. A possible experiment to discern what parts of the brain could be
effected by cerebellar dysfunction utilizing Copula-GPFA could involve recording of
different parts of the brain, followed by separate GPFA application on those parts of the
brain. Afterwards, Copula-GP might be utilized to investigate dependencies between
cerebellar neuronal trajectories and trajectories extracted from other parts of the brain,
as well as how these dependencies change in response to cerebellar dysfunction. Ethical
considerations not withstanding, such experiments could yield insight on how cognitive
diseases progress and just how parts of the brain are involved.

Alternatively, experiments may also be conducted to further confirm neurological func-
tions; there have been sub-networks identified in the thalamus with a diverse range of
functions [16]. Many of these function remain unknown, and as such utilization of
neuropixel probes to gather single-neuron resolution spike recordings of these networks
combined with Copula-GPFA to uncover statistical dependencies between subnetwork
dynamics might uncover how these subnetworks interface with one-another to accom-
plish processes in the thalamus. Such experiments that could leverage newly available
detail and accuracy in data collection and analysis are only the tip of the iceberg of
what’s possible via recently developed novel technologies.

That is not to say that Copula-GPFA must be restricted to the realm of spike trial data,
or even computational neuroscience; As stated prior, copulas and dependency analysis
have heavy utilization in many fields. For example, bivariate copulas have been used
to model co-expression dependencies in gene pairings [56], as well as for analysis
of risk dependency in insurance claims [30]. The number of use cases for efficient
dependency and mutual information analytical frameworks is quite large, and as such
we hope Copula-GPFA might be used in a wide range of fields.
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Appendix A

Reproducability, Source Code
Contributions, and Additional Figures

A.1 Validation Test Reproducability

All validation tests were done using variations of arguments for the validate bagging.py
python file.

Test 1 For test 1, we utilized:

• Random Seed: 859448723

• Num. Estimators: 4

• Maximum Copula Elements: 5

• Dimensions: 2

• Shuffling of Data: Yes

• Input Type: Random

Test 2 For test 2, we utilized:

• Random Seed: 859443

• Num. Estimators: 4

• Maximum Copula Elements: 3

• Dimensions: 2

• Shuffling of Data: Yes

• Input Type: Random

49
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Test 3 For test 3, we utilized:

• Random Seed: 859443

• Num. Estimators: 4

• Maximum Copula Elements: 3

• Dimensions: 2

• Shuffling of Data: No

• Input Type: Linear

A.2 Source Code Contributions

Contributions to Copula-GP src can be found on the project repository (https://
github.com/mwalden00/HonProj).

• train/train next tree.py: Calls to worker were missing function arguments.
I believe these were meant to be applied via the global statement, but I could not
get the implementation to function that way. As such, I simply added variables
with the global attachment to arguments.

• requirements.txt: Missing seaborn v 0.10.0.

• bvcopula/distributions.py: In GaussianCopula class, there are sometimes
tensor device mismatches that occur when log prob is called.

• bvcopula/conf.py: Possibly ignore; when training a vine I think Gpytorch will
sometimes have floating point errors resulting in constraint violations. This kills
workers in vine training, resulting in failure when they are collected later on.
As such, relaxed constraints by 0.0001, which might break some calculations if
unlucky, but fixed the issue in testing. If Gpytorch fixes this issue later on, there
won’t be a problem.

• synthetic data/synthetic data.py Added minumum vine mixture copula
elements argument for convenience.

• vine/vine.py + bvcopula/distributions.py The entropy functions can
take a lot of memory, resulting in shortages when running on GPU. As such, added
gc.collect() and torch.cuda.empty cache() lines to optimize slightly. It
will be better to fix these in a more elegant way sometime in the future.

• select model/bagging.py: Bagging methods are here; It might be better to
move the vine bits to train. In addition, a method to train singleton mixtures and
combine them via bagging might be a worthy inclusion.

• Many training related files: Miscellaneous device optimizations were put in the
code due to my own misunderstanding. I would recommend removing default
device instantiating on CPU, as it can lead to head-aches in device handling later
on if the user is not properly aware; forcing device specification would make
things easier when learning to use Copula-GP and PyTorch device handling.

https://github.com/mwalden00/HonProj
https://github.com/mwalden00/HonProj
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Figure A.1: Discontinuities present in trajectory data post-cropping and -concatenation
(3 of 13 trajectories shown). Such discontinuities can negatively effect GP performance
when estimating GP-link functions during the Copula-GP fit process.

A.3 Figures
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Figure A.2: Lowest level Copula-GP bivariate copula predictor in a C-vine predictor
fit to neuronal data sourced from mice and mean predicted copulas. The top right
of the figure is copula mixing parameters as a function of pupil-width, with a shaded
region for uncertainty (0.95 CI). At the top left of the figure we find copula dependency
parameters as a function of pupil-width, with a shaded region for uncertainty (0.95 CI).
At the bottom are sample density plots of the copulas extracted for different ranges
of pupil-width values (ranges [0.0,0.4], [0.4,0.6], and [0.6,1.0]), produced from 1500
continuous samples. Note that pupil dilation was robustly normalized, with a mean pupil
dilation of 0.548 (see figure 4.3d for distribution). Copula-GP based estimators were fit
utilizing 10000 data points as part of a C-vine modeling neuronal trajectories (13 total).
Notice in A.2 the large increase in dependency- and mixing-parameter uncertainty as
pupil-width deviates from the mean.

++

Figure A.3: Example of aggregated copula as a naive mean on Copula-GP estimated
copulas via algorithm 1, with the right-most copula being the aggregation of the copulas
to the left of it. Note how the shape of the aggregated copula and the copula tail
distributions are aggregated from the other copulas.
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