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Abstract

A series of experiments were conducted to compare the efficacy of the Java Fork/Join
framework to a manually hand-threaded approach using Java Threads. A number of
algorithms were tested with these different approaches, including: MergeSort, QuickSe-
lect, Fast Fourier Transform, and Strassen’s Matrix Multiplication. These experiments
concluded that the Java Fork/Join framework was an effective, performant abstraction
requiring significantly less implementation effort than the hand-threaded approach.
Following from this, Spooky D&C, a lightweight parallel algorithmic D&C skeleton
built atop the Fork/Join framework, was introduced. It aims to abstract away Fork/Join
framework constructs from the programmer, without doing so in an overly prescriptive
manner. In contrast to existing skeletons, it prioritises the simplicity of: interface,
extensibility, and the skeleton implementation itself. This allows the skeleton to grow
with the requirements of software it supports, rather than limiting development through
overly restrictive generalizations. A further series of experiments were carried out on a
subset of the algorithms tested previously in order to compare the efficacy of Spooky
D&C to the pure Java Fork/Join framework approach. These experiments concluded
that Spooky D&C was capable of matching, or even exceeding, the performance of the
pure Java Fork/Join approach whilst requiring less implementation effort.
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Chapter 1

Introduction

The advent of the parallel programming paradigm has required programmers to adapt.
This shift has brought new potential performance to the table, at the expense of increased
hardware and software complexity, and programmers have been forced to turn to one
of their most reliable tools: abstraction. As such, abstractions have been introduced
in general purpose programming languages such as Java, the focus of this project.
This project investigates the applicability of existing abstractions in Java to parallel
divide-and-conquer (D&C) algorithms and aims to introduce a new one, in the form
of a parallel algorithmic D&C skeleton. Specifically, the Java Fork/Join framework is
compared to a manually hand-threaded approach through a series of experiments to
determine the benefits, if any, in performance and implementation effort for a sample of
four algorithms. The results of these experiments are then used to inform the design
and implementation of Spooky D&C, a lightweight parallel algorithmic D&C skeleton
built atop the Fork/Join framework. Finally, experiments are carried out comparing
Spooky D&C against the baseline pure Fork/Join framework in terms of performance,
overhead, and implementation effort for Java programmers. An overview of the project
and contributions are given below:

» Chapter 2 discusses the background associated with the project along with related
work in order to contextualize the subsequent work and contributions.

» Chapter 3 details the experiments carried out for the selected algorithms, com-
paring the Fork/Join framework approach to manually hand-threaded solutions.
It contains a description of the implementation and testing work carried out, a
discussion of results per-algorithm, and the conclusions reached.

* Chapter 4 introduces Spooky D&C, the parallel algorithmic skeleton based on
the conclusions reached from the previous chapter and is the primary contribution
of the report. This is followed by experiments comparing it to the Fork/Join
framework approach, with another discussion of results per-algorithm.

* Chapter S serves as an overall conclusion, containing a retrospective on the
entire project. It contains a summary of the project focussing on the results and
conceptual problems solved, lessons learned throughout, and a discussion of
future work to be carried out.



Chapter 2

Background

In this chapter a brief outline of the history, current state, and challenges of general-
purpose microprocessors, which gave rise to the ’parallel programming’ paradigm, is
given (Section 2.1). This is followed by a gentle introduction to parallelism in the
context of a modern computer system’s hardware and software configuration (Section
2.2).

An overview of parallelism in the Java programming language is given, consisting
of a more in-depth look at Java Threads and the Fork/Join framework (Section 2.3).
Finally, the concept of ’algorithmic patterns’ is introduced (Section 2.4), which is
followed up by an overview of ’parallel algorithmic skeletons’ (Section 2.5). This
overview includes: a description of what they are, challenges faced by them, and an
examination of previous research on them.

2.1 Modern Computer Architecture

Over the past few decades, general-purpose microprocessors have improved at a rapid
rate due to a combination of architectural and technological advances. One key techno-
logical factor in the evolution of modern microprocessors is the increasing of transistor
density via improvements in the fabrication process, commonly known as ’die shrinks’.
Consequently, an observation known as ’"Moore’s Law’ [Moore (1965)] was posited that
predicted a doubling of transistor count in integrated circuits every year (later amended
to every two years [Moore et al. (1975)]. This in tandem with Dennard scaling [Dennard
et al. (1974)], a scaling law which facilitated constant power density and increased
operating frequencies between successive fabrication processes, was the driving force
behind the huge generational leaps in microprocessor performance seen over the last few
decades. Since the early 2000s, however, the year-on-year exponential improvement
of microprocessors has significantly slowed due to the breakdown of Dennard scaling
around 2007 [Bohr (2007)] and the subsequent end of Moore’s Law around 2015 [Theis
and Wong (2017)]. Figures 2.1 & 2.2 illustrate this.

As a consequence of Dennard scaling and, to a lesser extent, Moore’s Law ending
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modern microprocessor designs have tended towards multicore configurations! [Blake
et al. (2009)] in order to breach through the physical limitations constraining the perfor-
mance of an individual core?. The one caveat, however, is that this change in design
philosophy has shifted a large amount of responsibility onto the individual programmer
to deliver software that efficiently orchestrates computations between these cores. This
added layer of complexity has significantly increased the implementation effort faced by
programmers. As such, there has been a drive to introduce new abstractions to reduce
programming’. [Legaux

the implementation effort associated with this form of ’parallel
et al. (2014)].
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Figure 2.2: Processor benchmarks over time. Performance gains begin to plateau
around 2004, likely as a combinational effect of Dennard scaling ending and Moore’s
Law slowing down. Source: Hennessy and Patterson (2011)

2.2 Parallelism

2.2.1 Parallel Computation

At a high level, parallel computation can be defined as the carrying out of multiple
computational tasks simultaneously. When considered in more detail, it can be observed
that there are multiple distinct forms of parallel computation, all nested at varying levels
of abstraction away from the individual programmer.

Instruction-level parallelism exists at the lowest level within the microarchitecture of
microprocessors, leveraging many clever techniques to execute instructions in parallel
and effectively boost the number of instructions completed per clock cycle.
Data-level parallelism also exists at a similarly low level; however, it is focussed
around maximizing the amount of data operated on by a single instruction/action. For
example: designing the computer architecture around vector operations rather than
exclusively scalar ones.

Task-level parallelism exists at a slightly higher level and is primarily based around
splitting a task into various sub-tasks that can be coordinated and run sequentially at the
same time, i.e. run ’in parallel’.

Thread-level parallelism is a subtype of task-level parallelism where each individual
"thread’ contains a sequence of instructions relating to a subtask and these ’threads’ are
executed concurrently by the microprocessor.

It is also worth noting that these various forms of parallelism are not mutually exclusive
and, in most practical applications, actually complement each other.

Most practical implementations of thread-level parallelism allow each core on the
microprocessor to concurrently execute more than one thread, a technique known as
multithreading [Tullsen et al. (1995)].
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2.2.2 Parallel Programming

The concept of a thread exists at both a hardware level and an operating system (OS)
level. For example: say you have a microprocessor possessing 4 cores, with hardware
multithreading enabled, such that it supports the execution of up to 8 threads at a time.
From this, the naive intuition may be that a program should not utilize more than 8
threads. However, as the OS handles the execution scheduling of threads [Arora et al.
(1998)] the number of threads within a program is primarily constrained by available
memory/limitations imposed by the OS.

The vast majority of modern general-purpose programming languages (GPLs) sup-
port access to these logical threads by the programmer, usually in an abstract way
implemented in a library/package or otherwise. This allows the programmer to fully
leverage thread-level parallelism by not only partitioning the computational work of
their program into threads, where appropriate, but also orchestrating the threads by
defining how they communicate/interact. Whilst this abstract concept of threads eases
the implementation effort that would otherwise be faced by the programmer, there are
still some challenges that would not arise in a fully sequential implementation [Lee
(2006)]. Namely the issue of non-determinism (from the programmer’s perspective) as,
more often than not, the threads rely on some shared state and may attempt to modify
this state at the same time> or a thread may make a false assumption about the state
whilst executing an operation as it was silently modified by another thread. There are
also important performance considerations that the programmer must take into account,
for example: it is vital to consider the granularity* and number of threads employed as
each thread comes with both computational and memory overhead.

It is also worth noting the limitations of parallelism in general and, by extension,
parallel programming. Amdahl’s Law [Amdahl (1967)] places a limit on the potential
speed-up that can be achieved when parallelizing a fraction of a computation.

1

(1-f)+§

—> lim ! = !
Sve (1—f)+4 (1)

where f = parallelized fraction, S = speed-up of fraction

Soverall =

This can be generalized to account for additional fractions with varying speed-ups:
1

Soverall = Iz

(1= (X )+ (Xl 5)

where f; = parallelized fraction i, S; = speed-up of fraction 1

3commonly known as a race condition’
“4amount of work done by each thread
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2.3 Parallelism in Java

2.3.1 Threads

Support for threads has been included in Java’s standard library since JDK1° and, as
of writing, the latest release is JDK21° — so they are very much a longstanding and
foundational construct in the language. The following classes are of particular interest:

* Thread - Defines a simple thread object that performs some task that can be
started/stopped. They can be assigned priorities, so the most critical threads get
the execution time they need when they need it.

* ThreadGroup - Allows for logical grouping and control of threads. Further-
more, ThreadGroup is a composite object as it allows for the inclusion of nested
ThreadGroups.

* ExecutorService - Provides a useful abstraction for running tasks on a collection
of threads. It allows you to define a pool of thread resources and simply pass tasks
to the service, rather than having to manually create/start/stop threads for each
task. In addition to the convenience provided, there are also performance benefits
as the overheads associated with thread creation/management are reduced.

* Future<T> - A parameterized wrapper around some object, T, that may or may
not contain a value at any time. In essence, it is a promise that at some unknown
point in the future it will contain the definitive result of a task, provided the task
completes.

2.3.2 Fork/Join

The Java Fork/Join framework [Lea (2000)] provides a further abstraction on top of
threads and executors. It allows the programmer to define tasks that can be recursively
split into smaller tasks. These recursive tasks are then split’, processed, and recombined®
into a result using a pool of threads. The following classes are of particular interest:

* ForkJoinPool - This defines a pool of both threads and tasks. The threads actively
execute tasks submitted to the pool, with these tasks potentially spawning more
tasks as a result of their execution.

* ForkJoinTask - This is the abstract base class defining a task to be executed by a
ForkJoinPool. Its subclasses (listed below) may be extended by the programmer
to define the computations they wish to perform.

— RecursiveAction - This abstract class defines a ForkJoinTask that has no
return value.

— RecursiveTask<V> - This abstract class defines a ForkJoinTask that has a
return value.

3JDK - Java Development Kit
Ohttps://www.oracle.com/uk/java/technologies/downloads/#java2 1
"this is what *fork” refers to

8this is what *join’ refers to



Chapter 2. Background 7

2.4 Algorithmic Patterns

2.4.1 Overview

Algorithmic patterns are essentially archetypal solutions to computational problems that
can be used to categorise algorithms. One clear benefit of using algorithmic patterns is
that the programmer does not need to work from first principles every time they solve a
problem, rather they can pick the most appropriate pattern and adapt it to their needs.
There are a myriad of algorithmic patterns including, but not limited to:

* Recursion

* Dynamic Programming
* Divide and conquer

* Branch and bound

¢ Wavefront

2.4.2 Divide and Conquer Pattern

Divide-and-conquer (D&C) is an incredibly versatile and well-known pattern that ap-
pears in many popular algorithms. At a high level, the pattern can be defined as the
following steps: take a task, recursively split it into sub-tasks, repeat until the sub-tasks
are directly solvable, compute the results of the sub-tasks, and then combine these re-
sults to obtain the result of the original task. A classic example of this is the MergeSort
algorithm, Figure 2.3 visualizes the execution using a binary tree.

In practice, however, it is worth noting that the recursive calls required to implement
the D&C pattern are not without cost. Each call will consume some amount of memory
and compute, caused by the allocation of a related stack frame and subsequent return
operation. As such, the majority of practical implementations opt to use a ‘recursion
cut-off” where the D&C algorithm switches to a non-recursive algorithm to solve sub-
tasks that fall below the threshold. Consider MergeSort, instead of recursively dividing
the input array all the way down to singleton arrays, an InsertionSort could be used to
sort arrays whose length falls below the recursion cut-off.
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Figure 2.3: (a) illustrates the 'divide’ phase as the input array is recursively split. (b)
illustrates the ‘conquer’ phase as the subtask results are merged to produce the sorted
input array. Source: Goodrich et al. (2013)

It is also worth noting that algorithmic patterns do not explicitly prescribe a sequential
or parallel implementation. As seen in Figure 2.3, the structure of the subtasks appears
compatible with a parallel implementation and maps quite directly to the Fork/Join
framework.

2.5 Parallel Algorithmic Skeletons

2.5.1 Overview

There has been extensive research into the development of parallel algorithmic skele-
tons [Cole (1989), Cole (2004), Gonzélez and Fraguela (2010), Philippe and Loulergue
(2019)]. These skeletons provide an abstraction on top of various algorithmic patterns
and allow the programmer to define, at a high level, the computation they wish to
perform. Then the underlying implementation of the skeleton, hidden from the pro-
grammer, should orchestrate the parallel execution of the computation, applying various
optimizations based on its analysis of the computational structure.

There are multiple challenges faced in the skeleton approach [Gonzalez-Vélez and
Leyton (2010), Danelutto et al. (2021)], the most prominent of which is balancing the
level of abstraction with flexibility for the programmer to define computations that
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do not strictly adhere to the formal definition of a pattern. Another problem faced is
the lack of a generalized specification, which reduces the ability of programmers to
collaborate and reason about skeletal implementations across different programming
environments. However, that is not to say the concept of skeletons has not seen success
in industrial applications, with Google’s MapReduce [Dean and Ghemawat (2008)]
framework and Apache’s Spark [Zaharia et al. (2016)] framework seeing widespread
use in the ’big data’® community.

2.5.2 Related Work

Skandium [Leyton and Piquer (2010)] and Calcium [Caromel and Leyton (2007)]
are two closely related parallel algorithmic skeleton libraries written in Java. The key
distinction between them is that the former is designed for multicore parallel processing
on a single machine, whereas the latter is built on top of the ProActive [Caromel
et al. (2006)] framework designed for parallel processing across multiple networked
machines. The express goal of these libraries is to shield the programmer from all
parallel programming constructs, to the furthest extent possible, so that they only need
to concern themselves with writing simple sequential code (referred to as muscles).
Furthermore, they make use of powerful composition to allow the programmer to
not only compose a skeleton with muscles but also with other skeletons to enhance
performance and remove sequential bottlenecks!?. Additionally, Calcium features a
blame system, which discovers performance issues and highlights the potential cause to
the programmer so they can rectify them by modifying code or tuning parameters.

NQueens 15 —+—

,,,,,,,

SpeedUp
Efficiency

0.4

0.2
NQueens 15 —+—

Pi 4000 ---x---
QuickSort 226 % -

’ L L L L L L L L s
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 2.4: Results comparing the speed-up and efficiency of three algorithms (NQueens,
Pi, QuickSort) utilizing Skandium’s skeleton implementation. Source: Leyton and
Piquer (2010)

Both of the aforementioned skeletons have seen good performance results in regard
to both speed-up and efficiency, with Skandium’s results shown in Figure 2.4. Of
particular relevance to this project is the inclusion of a divide-and-conquer skeleton in
both Skandium and Calcium. In fact, both the QuickSort and NQueens implementation
utilize the divide-and-conquer skeleton provided in Skandium, with the former based

9related to the processing of large volumes of data
103 situation that may limit throughput and reduce performance
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solely upon it. This suggests, and indeed evidences, the viability of applying the
skeleton approach to parallel divide-and-conquer problems.

Threaded Building Blocks (TBB) [Reinders (2007), Kukanov and Voss (2007)] is a
parallel algorithmic skeleton library created by Intel for C++. As with other parallel
algorithmic skeletons, the primary goal of TBB is to guide programmers towards writing
efficient parallel programs without needing to concern themselves with the minutiae of
thread management and work scheduling. In the words of the lead developer of TBB at
its inception, Arch D. Robison: “The key notion is to separate logical task patterns from
physical threads, and to delegate task scheduling to the system.”. The library provides
many skeletons for the programmer to leverage, such as: parallel for, parallel reduce,
parallel scan, and parallel _pipeline. Notable skeletons closely related to this project
are parallel for and parallel reduce which can both be used to implement parallel
divide-and-conquer algorithms.

In practice, TBB has proven popular and offers a good speed-up in many applica-
tions, even potentially outperforming manually hand-threaded implementations, shown
in Figure 2.5. Furthermore, owing to academic interest and the long period of active
development, it offers many additional features aimed to alleviate the implementa-
tion effort associated with its use. Examples of which are the auto_partitioner and
affinity_partitioner which provide automatic, heuristically-driven management of task
granularity to optimize performance by reducing scheduling overhead and, for the latter,
optimizing cache behaviour [Robison et al. (2008)].
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Martonosi (2008)



Chapter 3

Experiments with D&C Algorithms

In this chapter, a series of experiments performed on four distinct D&C algorithms are
presented. The purpose of these experiments was to examine the performance of the
Fork/Join framework when compared to a manually hand-threaded solution. The overall
goal was to determine whether the Fork/Join framework would be a suitable foundation
on which to build further abstractions in the form of a parallel algorithmic skeleton,
presented in Chapter 4. Additionally, throughout this chapter references are made to
Appendix A which contains raw, tabulated results data and an additional runtime chart
for each of the tests conducted.

For one of the algorithms presented, Strassen’s Matrix Multiplication, an effective
abstraction for matrices is introduced in Section 3.5.1. The purpose of the abstraction
was to allow the programmer to easily perform operations on submatrices backed by ex-
isting matrices in memory. This was invaluable for the implementation of the algorithm:
providing greater control over memory usage whilst maintaining good performance
and keeping the client code clean. The benefits provided by the abstraction may extend
further to other algorithms that rely heavily on the recursive slicing of matrices.

3.1 Overview

3.1.1 Motivation

The primary motivation of the following experiments was to gain an understanding of,
and evaluate, two of the mainstream standard library approaches to implementing paral-
lel divide-and-conquer algorithms in Java. A summary of these approaches, Threads
and Fork/Join, can be found in Section 2.3.

For this purpose, four distinct divide-and-conquer algorithms were selected for im-
plementation. Each algorithm was implemented in 3 distinct ways: purely sequential,
parallel via Threads, and parallel via the Fork/Join framework. Each algorithm/method
combination was evaluated both qualitatively based on the implementation effort and
quantitatively via performance testing methods. The algorithms selected were as fol-
lows:

11
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¢ QuickSelect

* MergeSort

* Fast Fourier Transform

* Strassen’s Matrix Multiplication

These algorithms were selected as they represent a robust sample of the different kinds
of divide-and-conquer algorithms that a programmer may commonly encounter. Specif-
ically, aside from varying in obvious ways such as input/output type, they also differ
subtly in the degree' to which each task is divided into subtasks. This can have a direct,
and noticeable, impact on how much each algorithm benefits from parallelism. For
example: QuickSelect was deliberately chosen as each task can only be divided into, at
most, one subtask meaning there should be no tangible benefit from parallelism as there
is only one subtask to execute at a time.

The forward-looking goal of this experimentation was to determine the viability of the
Fork/Join framework for implementing high performance, parallel divide-and-conquer
algorithms. Then, if found to be viable, to explore the building of further abstractions on
top of it such that it can be utilized by programmers in a more prescriptive, easy-to-use
algorithmic skeleton-like fashion.

3.1.2 Implementation Methodology

All relevant implementation code can be found in the following GitHub? repository:
https://github.com/barbourja/ug4-project.

Each selected algorithm was implemented in a standardized way. The general steps

WEreE:

1. Create specialized <Algorithm Name>Strategy interface extending Generic-
Strategy

2. Implement purely sequential algorithm in Sequential class

* Include classes required to properly model the problem domain

* Additionally implement useful helper methods for re-use later
3. Implement parallel algorithm using Fork/Join framework in ForkJoin class
4. Implement parallel algorithm using Java Threads in Threaded class

A more detailed explanation of the constituent classes of each algorithm can be found
in the sections below.

Ithe number of subtasks that can be created from a single task
Zhttps://github.com/
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3.1.2.1 GenericStrategy

A specific implementation of an algorithm is referred to as a ’strategy’. This interface
contains the methods that all valid strategies must implement. The primary purpose of
this was to allow an easy way to interact with each strategy in an abstract way for testing
purposes to reduce code duplication and, in turn, hopefully reduce errors in testing.

All the selected algorithms individually extend this interface to produce a more spe-
cialized interface tailored to the specific input/output types of the algorithm. This
specialized interface is then implemented by all of the algorithm’s concrete? strategy
class implementations. For example: MergeSort has its own MergeSortStrategy
interface that is implemented by the concrete Sequential strategy, amongst others.

3.1.2.2 Sequential

This is a purely sequential implementation of an algorithm following the divide-and-
conquer pattern. This is used to establish a performance baseline in order to determine
the speed-up afforded by a parallel implementation. It is worth noting, however, that the
majority of sequential implementations stray slightly from the exact definition of the
pattern, where they will switch to a non-recursive algorithm for small enough sub-tasks.
This is done to reduce the overhead incurred by recursive calls, and the point at which
this happens is determined by a user provided ’recursion cut-off’ value.

3.1.2.3 ForkJoin

This is a parallel implementation of an algorithm based upon the Fork/Join framework.
The related Sequential implementation is used to execute the base case computation
once the size of a subtask falls below the user-specified parallelism cut-off size*. The
majority of logic specific to the algorithm can be found within a private nested class
that provides a concrete implementation of either a RecursiveTask or RecursiveAction.

The level of parallelism is controlled by the user when instantiating an object of the
class. The parallelism value provided is then used to instantiate a ForkJoinPool with
that number of threads available for executing tasks.

3.1.2.4 Threaded

This is a parallel implementation of an algorithm based upon Java Threads. It constitutes
the most complex implementation type and, similar to the ForkJoin implementation,
uses the related Sequential implementation to execute the base case computation for
sufficiently small tasks. In this implementation strategy, the majority of logic specific
to the algorithm can be found within a private nested class that provides a concrete
implementation of the Runnable interface.

3provides a full implementation for all methods prescribed by its interface and/or superclass i.e. ready
for instantiation as an object
4often referred to as the ’granularity’
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Similar to ForkJoin, the level of parallelism is controlled by the user when instantiating
an object of the class. However, the method employed to control the parallelism is
slightly more complex, using the model of an m-ary tree’ to guide the logic that governs
the creation of threads (illustrated in Figure 3.1). Specifically, the user-provided paral-
lelism value translates to the maximum number of worker nodes that can exist in the tree
at any one time. This decision was made as the worker nodes (usually leaves) represent
threads performing heavy computational work, whereas the majority® of parent nodes
are simply waiting for their children to complete their work. The aforementioned logic
is implemented in a centralized entity, from which individual threads can request the
ability to create more threads.

b
3l m=2 )m=4

parallelism = 6
thread 0

parallelism = 4
max nodes =7

max nodes =7

thread 0
thread 4

Figure 3.1: Examples of how thread creation is handled in Threaded implementations,
using an m-ary tree. a) a simple example where the leaves perform all the computational
work. b) a more complicated example where a parent thread shares some computational
work with its children, still resulting in the requested number of parallel worker threads

3.1.3 Testing Methodology

In order to test the performance of each algorithm’s implementation strategies, test
scaffolding was devised and implemented. This included an abstract class GenericTest-
Suite to work in tandem with the GenericStrategy interface introduced in Section
3.1.2.1. This provided a generic template for testing which was then specialized by
each algorithm, allowing for the generation of algorithm specific test data, for example:
based on the input type of the algorithm.

Two primary testing methods are defined within the GenericTestSuite class: test-
VaryingParallelism and testVaryingMinSize. These aim to determine, respectively:
the speed-up (relative to Sequential) afforded by both parallel strategies (ForkJoin and
Threaded) and the overhead associated with each parallel strategy’s work scheduling
method. More information on these testing methods can be found in the subsections
below.

Shttps://en.wikipedia.org/wiki/M-ary _tree
6some parent threads share the work with their children if they are unable to obtain their full requested
thread allocation
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3.1.3.1 Parallelism Test

The goal of this test was to determine the speed-up and efficacy afforded by each parallel
implementation strategy of an algorithm. The following procedure was carried out for
each strategy under test:

1. Fix an appropriate recursion cut-off for the Sequential strategy, striking a balance
between performance and recursive call reduction

2. Fix a sufficiently large test input size
3. For each value of parallelism under test:

(a) Set an appropriate parallelism cut-off, such that the additional parallel
resources available are utilized

(b) Initialize a pseudo-random number generator with a predetermined fixed
seed

(c) Repeat 10 times:

1. Generate a valid randomized input of the preset test input size using the
PRNG’

ii. Execute the strategy on the generated input and time the execution (in
milliseconds)

(d) Average the runtimes generated across the previous 10 runs, to account for
run-to-run variations

4. Calculate and plot useful statistics, such as speed-up, using the average runtimes
produced from each parallelism value tested

3.1.3.2 Parallelism Cut-Off (Granularity) Test

The goal of this test was to determine the work scheduling overhead associated with
each parallel implementation strategy of an algorithm. This was achieved by creating
an artificially difficult operating environment, through the setting of a high parallelism
value in combination with a low initial parallelism cut-off value to be gradually increased
between tests. The following procedure was carried out for each strategy under test:

1. Fix an appropriate recursion cut-off for the Sequential strategy, striking a balance
between performance and recursive call reduction

2. Fix a sufficiently large input size
3. Fix a large parallelism value
4. For each value of parallelism cut-off under test:

(a) Initialize a pseudo-random number generator with a predetermined fixed
seed

"pseudo-random number generator



Chapter 3. Experiments with D&C Algorithms 16

(b) Repeat 10 times:

i. Generate a valid randomized input of the preset test input size using the
PRNG

ii. Execute the strategy on the generated input and time the execution (in
milliseconds)

(c) Average the runtimes generated across the previous 10 runs, to account for
run-to-run variations

5. Calculate and plot useful statistics, such as speed-up, using the average runtimes
produced from each parallelism cut-off value tested

3.1.4 Testing Configuration

All testing was carried out under the same hardware/software configuration, specified
below.

Hardware Configuration:
* Motherboard: MSI
— Socket: AM4
— Chipset: X470
* CPU: AMD Ryzen 7 5800X3D
— Clock Frequency (Base/Boost): 3.4 /4.5 GHz
— Cores/Threads: 8/ 16
* RAM: 16GB
— Generation: DDR4
— Operating Frequency: 3200MHz
Software Configuration:
* Operating System: Microsoft Windows 10
— OS Version: 22H2
» Java Version: 18
— JDK Vendor: Oracle

For this testing, the hardware configuration is especially important to note, as core/thread
count of the CPU and the system memory can directly affect the speed-up achieved
by parallel implementations. For example, with this hardware configuration: the
performance of a program that offers an ideal efficiency would be expected to diminish
past a parallelism value of 8 (number of cores) and subsequently plateau past a value of
16 (number of hardware threads).
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3.2 QuickSelect

QuickSelect takes an unordered array of values and an integer value, k, as input. It will
then recursively partition the input array in order to find the k'™ smallest value. Partition,
in this case, means to select an element, r, at random and re-order the array such that all
elements smaller than r appear before it and all elements larger than r appear after it.
This is the primary mechanism by which the k™ smallest value is found; a high-level
overview is given below:

1. Partition the array based on r
2. IF the index of r equals k THEN r is the k™ smallest value

3. ELSE IF the index of r is greater than k THEN recurse into the subarray with
the smaller elements as it contains the k™ smallest value

4. ELSE recurse into the subarray with the larger elements as it contains the k™
smallest value

3.2.1 Implementation

The implementation of this algorithm was straightforward for all strategies. Although
the ForkJoin and Threaded strategies required extra boilerplate code to conform with
their respective underlying libraries, the inherently sequential nature of the algorithm
meant little extra consideration of synchronization was required.

3.2.2 Results
3.2.2.1 Parallelism

All tests were carried out with an input array size of 67,108,864 and a k value generated
randomly. The recursion cut-off value of Sequential was set to 1.

The results of testing matched expectations, with the parallel strategies offering no
speed-up over the sequential strategy and slightly diminished performance due to added
scheduling overheads (Figure 3.2, Appendix A.1). Furthermore, both parallel strategies
appeared to perform similarly with Threaded performing slightly better at lower levels
of parallelism, whereas ForkJoin performed better at higher levels of parallelism.
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Figure 3.2: Comparing speed-up of parallel QuickSelect strategies when varying paral-
lelism

This is further exemplified when comparing the respective efficiency® of both parallel
strategies, with consideration® to the hardware the testing was run on (Figure 3.3).
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Figure 3.3: Comparing the efficiency of both parallel QuickSelect strategies

3.2.2.2 Parallelism Cut-off

All tests were carried out with an input array size of 67,108,864 and a k value generated
randomly. The parallelism was fixed at 2048 for all parallel strategies. Furthermore, the
recursion cut-off value of Sequential was set to 1.

8speed-up adjusted for the number of parallel processing cores available
%only considering parallelism values up to 16, as that is the maximum number of hardware threads
offered by the processor
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The results of the testing indicated that both parallel strategies performed similarly, with
significant variation (Figure 3.4, Appendix A.2). This was expected, as the low degree to
which QuickSelect divides tasks means the number of subtasks grows linearly with the
number of divisions rather than exponentially, as is common in most D&C algorithms.
As aresult, there is little extra scheduling work even with a small parallelism cut-off.

Varying Minimum Array Size (granularity)
== ForlJoin Threaded
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Figure 3.4: Comparing speed-up of parallel QuickSelect strategies when varying paral-
lelism cut-off

3.3 MergeSort

MergeSort takes an unordered array of values as input. It will then recursively divide
the original input array into two smaller subarrays until the length of the subarrays falls
below a preset value, in which case they can be sorted by some non-recursive approach.
These sorted subarrays are then merged into progressively larger sorted arrays until the
original input array is fully sorted (visualization in Figure 2.3).

3.3.1 Implementation

The implementation of the algorithm was straightforward for all strategies. In contrast
to how MergeSort is commonly described in literature, the Sequential strategy makes
use of a simple InsertionSort to sort all subarrays that fall below the recursion cut-off.
Furthermore, additional care had to be taken when implementing the parallel strategies
to ensure there were no concurrent read/writes to array elements.

3.3.2 Results
3.3.2.1 Parallelism

All tests were carried out with an input array size of 8,388,608. The recursion cut-off
value of Sequential was set to 8.
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The results of the testing indicated that both parallel strategies offered an appreciable
speed-up over the sequential strategy. Furthermore, both Threaded and ForkJoin
achieved roughly similar speed-ups at all levels of parallelism tested (Figure 3.5, Ap-
pendix A.3). The only notable deviation where Threaded outperformed ForkJoin
occurred at a parallelism value of 32. However, the overall results were indicative of
ForkJoin’s ability to essentially match the speed-up of Threaded for MergeSort.
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Figure 3.5: Comparing speed-up of parallel MergeSort strategies when varying paral-
lelism

It can also be observed that Threaded and ForkJoin offered similar efficiencies, albeit
quite lacking (Figure 3.6). This is likely due to the naive implementation of parallel
MergeSort opting to use a sequential merge procedure rather than a more performant
parallelized procedure [Cormen et al. (2009), Chapter 27.3].
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Figure 3.6: Comparing the efficiency of both parallel MergeSort strategies
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3.3.2.2 Parallelism Cut-off

All tests were carried out with an input array size of 8,388,608 and a fixed parallelism
of 2048. The recursion cut-off value of Sequential was set to 8.

The results of the testing indicated that ForkJoin introduced less overhead when
compared to Threaded (Figure 3.7, Appendix A.4). This difference in overhead was
incredibly significant at the lowest parallelism cut-off value, and gradually improved as
the value was increased. Both strategies appeared to reach parity in performance around
a cut-off value of 65,536. The number of base-level sub-tasks can be calculated as:

InputSize
Tpase = ’V -‘

FParallelismCutOf f

where Tj,,5. = total base-level sub-tasks

Given the input size, this means they reached parity when only 128 base-level sub-tasks
were created, compared to the 2048 (16x more) created for the initial cut-off value of
4096. When considering the scheduling method of the Threaded strategy, this means
only 255 threads were created for the former compared to 4095 for the latter (~16x
more). The relative speed-up between these two cut-off values for Threaded was
~3.48x which suggests that the number of threads created contributed significantly to
the overhead observed.
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Figure 3.7: Comparing speed-up of parallel MergeSort strategies when varying paral-
lelism cut-off

3.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm [Cormen et al. (2009), Chapter 30.2]
takes an even length sequence of complex values as input. It will then recursively
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divide the input sequence into smaller subsequences of even-indexed and odd-indexed
terms, until the length of the subsequences fall below a preset value. The Discrete
Fourier Transform (DFT) of these subsequences is then computed directly, by some
non-recursive approach, before they are combined into progressively larger sequences
until the DFT of the original input sequence is computed.

3.4.1 Implementation

The implementation of the algorithm was slightly more involved than previous im-
plementations. The Sequential strategy makes use of a naive DFT algorithm for
subsequences that fall below the recursion cut-off. The naive DFT algorithm has an
inferior worst case time complexity of O(n?) compared to O(nlogn) for the FFT al-
gorithm. However, this is acceptable for small values of n and even preferable as it
saves on additional superfluous recursive calls. Additionally, it required the creation of
a Complex class to represent complex values and associated operations. Furthermore,
along with the necessary boilerplate code, some care was taken when implementing the
parallel strategies to ensure no concurrent read/writes to array elements.

3.4.2 Results
3.4.2.1 Parallelism

All tests were carried out with an input sequence size of 8,388,608. The recursion
cut-off value of Sequential was set to 8.

The results of the testing indicated that both parallel strategies offered a modest speed-up
over the sequential strategy. Furthermore, ForkJoin appeared to outperform Threaded
consistently at parallelism values above 4 (Figure 3.8, Appendix A.5). This may be
indicative of ForkJoin having less overhead, or perhaps better work scheduling for this
specific workload.

Varying Parallelism
= ForlkJoin Threaded

3.0 -

N e —
P

1 2 4 8 16 32 64

1.5 -

1.0 -

Speedup over sequential

0.5

Parallelism

Figure 3.8: Comparing speed-up of parallel FFT strategies when varying parallelism
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It can also be observed that ForkJoin and Threaded offered similar efficiencies, al-
though they were rather poor (Figure 3.9). This is likely due to the naive implementation
of the sequential FFT [Frigo and Johnson (1998)] paired with an inefficient parallel
implementation, not making use of various optimizations to improve the speed-up at
scale [Gupta and Kumar (1993), Pippig (2013)].
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Figure 3.9: Comparing the efficiency of both parallel FFT strategies

3.4.2.2 Parallelism Cut-off

All tests were carried out with an input sequence size of 8,388,608 and a fixed paral-
lelism of 2048. The recursion cut-off value of Sequential was set to 8.

The results of the testing indicated that ForkJoin introduced less overhead when
compared to Threaded (Figure 3.10, Appendix A.6). The difference in overhead was
incredibly significant at the lowest parallelism cut-off, with Threaded offering notably
diminished performance even compared to Sequential. This gradually improved as
the parallelism cut-off was raised. However, ForkJoin outperformed Threaded for
almost all parallelism cut-off values tested except the largest value (262, 144) where
they reached performance parity and Threaded marginally outperformed it.

Given the input size, this means they reached parity when only 32 base-level sub-
tasks were created, compared to the 2048 (64x more) created for the initial cut-off
value of 4096. When considering the scheduling method of the Threaded strategy,
this means only 63 threads were created for the former compared to 4095 for the latter
(~77x more). The relative speed-up between these two cut-off values was ~2.06x
which suggests the number of threads created contributed significantly to the overhead
observed.
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Figure 3.10: Comparing speed-up of parallel FFT strategies when varying parallelism
cut-off

3.5 Strassen’s Matrix Multiplication

Strassen’s Matrix Multiplication algorithm [Strassen (1969)] takes two square matrices
with matching dimension, Nx/, as input. It then splits these matrices into smaller square
submatrices with dimension %x%] It performs a series of additions and subtractions on
these submatrices before performing 7 multiplications via recursive calls. The resulting
matrices from these multiplications can then be recombined via further additions and
subtractions to return the product of the original input matrices. The base case is invoked
when the dimension of the input matrices falls below a preset value, in which case the

multiplication is performed directly via a naive matrix multiplication algorithm.

3.5.1 Implementation

The implementation of the algorithm was the most complex out of all the algorithms
tested. Implementing a naive parallel Strassen’s algorithm required a large amount of
working memory and was slow due to the large number of Matrix object allocations.
As such, abstractions were implemented to aid the management of working memory,
reduce the number of costly allocations, and keep the code clean.

* Matrix - An abstract class defining the operations that all subclasses must im-
plement, for example: add, subtract, multiply, and helper methods to support
interaction between subclasses.

* ConcreteMatrix - Serves as a wrapper around a 2-dimensional array of inte-
ger values that represents a matrix. This type of Matrix is the most costly to
instantiate and backs all instantiated MatrixView objects.

* MatrixView - Serves as a wrapper around any subclass which extends the Matrix
class, for example: a ConcreteMatrix or even another MatrixView. It allows
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the programmer to specify a submatrix of an existing Matrix in memory then
interact with it as if it were an independent Matrix.

If instantiated from another MatrixView, it will backtrack and follow refer-
ences in order to find and store a direct reference to the ConcreteMatrix backing
it. This hugely boosts performance and ensures the call chain for reads/writes to
the backing matrix is as short as possible, hence reducing the computational cost
of the abstraction.

Another optimization, in order to reduce the memory/compute required, was the use of
Winograd’s form [Winograd (1978), Knuth (2014)] instead of the form described by
Strassen. This alternative form reduces the number of addition/subtraction operations
required whilst still requiring 7 multiplications. This reduced the amount of ’scratch’
working memory required for the sequential implementation and more significantly for
parallel implementations, as each parallel thread requires its own non-shared working
memory. As a result, the final implementation of each strategy is more memory efficient
whilst also being non-destructive to the original input matrices.

3.5.2 Results
3.5.2.1 Parallelism

All tests were carried out with input matrix dimensions of 2048x2048. The recursion
cut-off value of Sequential was set to 32.

The results of the testing indicated that both parallel strategies offered a significant
speed-up over the sequential strategy. However, ForkJoin appeared to almost con-
sistently outperform Threaded at parallelism values above 2 (Figure 3.11, Appendix
A.7). This may be indicative of ForkJoin having slightly less overhead. Furthermore,
a large difference in the speed-up at parallelism values of 16 and 32 can be observed
which likely signals a work scheduling deficiency of Threaded creating a performance
bottleneck amongst worker nodes.
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Figure 3.11: Comparing speed-up of Strassen strategies when varying parallelism
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When inspecting the efficiency of both parallel strategies, it can be observed that
ForkJoin offered consistently better efficiency than Threaded for parallelism values
above 2 (Figure 3.12). Furthermore, both strategies offered a reasonably good effi-
ciency compared to the other algorithms tested, especially when considering the 8-core
configuration of the test system.
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Figure 3.12: Comparing the efficiency of both parallel Strassen strategies

3.5.2.2 Parallelism Cut-off

All tests were carried out with input matrix dimensions of 2048x2048 and a fixed
parallelism of 128. The recursion cut-off value of Sequential was set to 16.

The results of the testing indicated both strategies performed similarly. However,
Threaded appeared to slightly outperform ForkJoin at lower parallelism cut-off values,
with ForkJoin performing better at higher values (Figure 3.13, Appendix A.8). This
may be attributable to the slightly lower fixed value of parallelism compared to other
tests, hence resulting in the parallel strategies not being stressed enough to expose
significant differences in overhead.
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Varying Minimum Matrix Dimension (granularity)
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Figure 3.13: Comparing speed-up of parallel Strassen strategies when varying paral-
lelism cut-off

3.6 Conclusions

From the experimental results, it can be concluded that ForkJoin is an effective, perfor-
mant strategy closely matching or exceeding the performance of the Threaded strategy.
Therefore, in most scenarios, it would be preferable for the programmer to use the
Fork/Join framework rather than manually hand-threading, as it has proven a resilient
abstraction requiring substantially less implementation effort for essentially the same or
better performance.

There are many possible reasons for the ForkJoin strategy’s improved performance
when compared to the Threaded strategy. One reason may be the difference in overhead
between creating threads for execution and creating tasks to add to the ForkJoinPool. In
the official documentation, it is stated that each ForkJoinTask is 'much lighter weight
than a normal thread’, which likely contributes significantly to the reduced overhead
[Oracle (2024)]. Another reason could be the fairer work scheduling method employed
by the Fork/Join framework, opting to use work-stealing to more evenly distribute work
amongst the ForkJoinPool’s threads. This is in contrast to the Threaded strategy’s work
scheduling where work may only be shared by a worker thread with its children. This
can lead to performance bottlenecks, particularly for algorithms with a high-degree of
division for tasks, for example: Strassen’s Matrix Multiplication (Figure 3.14).
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Figure 3.14: An example of how the Threaded strategy would handle an execution of
Strassen’s algorithm with a parallelism value of 32. This is an abbreviated notation, with
each circle conceptually representing multiple nodes (threads).

Referring to Figure 3.14, it can be observed that there are 37 nodes in total with 32 of
these being worker nodes carrying out heavy computational work, in line with the degree
of division and parallelism value set. In the group labelled A, all the worker nodes are
leaf nodes as their parents successfully requested an allocation of 7 threads from the
scheduling entity, hence they can delegate all the work to their children. However, in the
group labelled B we see that one of the nodes received a partial allocation of 1 thread
from the scheduling entity, whereas the others have been left with none. This creates a
large bottleneck in performance, as it is evident that nodes in group A will finish their
work before those in group B — the former has 28 worker nodes, whereas the latter
only has 4. Furthermore, there currently exists no mechanism for nodes in group B to
request additional worker resources once nodes in group A finish their work and are
freed. Overall, this serves as a prime example of one of the many nuanced scheduling
considerations that the Fork/Join framework effectively shields the programmer from.

After due consideration of the experimental results, and the conclusions reached above,
it is clear that the Fork/Join framework would provide a suitable foundation on which to
build a parallel algorithmic skeleton. Using the Fork/Join framework as the execution
engine of the skeleton would not only provide adequate performance, but drastically
simplify the implementation of the skeleton. In turn, this would allow more development
time to be spent on the addition of useful features and the design of a robust user-facing
interface.



Chapter 4

Divide-and-Conquer Skeleton

In this chapter ’Spooky D&C’, a parallel algorithmic skeleton built atop the Fork/Join
framework is introduced. Subsequently, the design and implementation of the skeleton
is presented. This is followed by a series of experiments, similar to those in Chapter 3,
designed to compare the performance of the skeleton to the previously presented pure
ForkJoin strategy.

4.1 Spooky D&C

4.1.1 Overview

The primary goal of the skeleton is to hide the management of ForkJoinTasks and the
ForkJoinPool from the programmer. This was decided as, during the implementation for
Chapter 3, a common pattern emerged between the Threaded and ForkJoin strategies.
Specifically, the code provided by the programmer to implement the Runnable interface
for Java Threads and extend the ForkJoinTask template for the Fork/Join framework bore
striking similarities. Referring to Figure 4.1 it can be observed that, aside from obvious
differences caused by their respective interfaces, the general structure of thread/task
creation and completion is essentially the same.

(b) Task creation/completion for FFT
(a) Thread creation/completion for FFT Threaded ForkdJoin

Figure 4.1: Comparing parallel strategies of FFT algorithm

29
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4.1.2 Design

The design of Spooky D&C is rather straightforward, aiming to split up the D&C
pattern into multiple logical chunks that can be easily implemented sequentially by
the programmer. These logical chunks are then used by the skeleton to orchestrate a
parallel execution of the algorithm on the Fork/Join framework. The only consideration
of parallelism required by the programmer is that these logical chunks can and will
be run in parallel, so any shared state/memory must be considered and synchronized
within the chunks. These logical chunks are named and described at a high-level below:

* Divider - This is responsible for the task division logic of the algorithm. The
programmer must provide: the input type of the algorithm, a function to determine
when an input can be divided, and a function defining the actual division procedure
that returns a collection of divided inputs.

* Executor - This is responsible for the base-level computation logic to solve
subtasks. The programmer must provide: the input and output type of the algo-
rithm, and a function that performs the base-level computation itself. Optionally,
the programmer may provide an instance of another skeleton! to provide the
base-level computation logic.

* Conquerer - This is responsible for the recombination logic for subtask results.
The programmer must provide: the output type of the algorithm, and a function
that returns a single output from a collection of outputs.

Furthermore, Spooky D&C ensures that the ordering of divided inputs from the Divider
is maintained when they are subsequently returned as outputs to the Conquerer.

4.1.3 Implementation

All relevant implementation code can be found in the following GitHub repository:
https://github.com/barbourja/dac-skeleton.

Following on from the design, the actual implementation of Spooky D&C is rela-
tively simple so as to be accessible to more experienced programmers who may want to
dig into its internals (Figure 4.2). Key classes are detailed below:

* GenericDivider<I> - This is an abstract class implementing the IDivider <I>
interface that the programmer must extend and provide a concrete implementation
of. It requires the programmer to provide the following methods: canDivide and
divisionProcedure.

* GenericExecutor<I, O> - This is an abstract class implementing the IExecutor<I,
O> interface that the programmer must extend and provide a concrete implemen-
tation of. It requires the programmer to provide an execute method.

* GenericConquerer<QO> - This is an abstract class implementing the IConquerer<O>
interface that the programmer must extend and provide a concrete implementation
of. It requires the programmer to provide a conquer method.

Ireferred to as *nesting’
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executes with

divides with

¢ GenericDaCTask<I, O> - This class extends the RecursiveTask<<O> abstract

class provided by the Fork/Join framework. The constructor accepts an input value
along with instantiated objects that implement the IDivider, IConquerer, and
IExecutor interfaces. It provides an implementation of the compute() method
that relies on the aforementioned logical chunks provided in the constructor.
This method will then either directly solve the input or recursively spawn more
GenericDaCTasks to be executed by the associated ForkJoinPool, effectively
implementing the parallel D&C pattern.

DaCSkeleton<I, O> - This is a concrete class that implements the [Executor<I,
O> interface. The constructor accepts a parallelism value along with instantiated
objects that implement the IDivider, IConquerer, and IExecutor interfaces.
The primary purpose of this class is to instantiate the ForkJoinPool required for
execution and submit the initial GenericDaCTask required for an input to be
executed on the pool. Furthermore, it is worth noting that if a skeleton is nested,
the execution will take place on the ForkJoinPool of the 'root’ skeleton.

[

<<interface>>
1 IExecutor<l, 0>

+execute(l) : O I

<<abstract>>

RecursiveTask<O> <<abstract>> DaCSkeleton<l, O>
GenericExecutor<|, 0>

stores execution
logic of

- EXECUTOR: |IExecutor<l, O>
A - DIVIDER: IDivider<I>

- CONQUERER: IConquerer<O>
- THREAD_POOL: ForkJoinPool

+ ConcreteExecutor()

+ DaCSkeleton(parallelism:int, executor:IExecutor<l, 0>,

GenericDaCTask<I, O> divider:IDivider<I>, conquerer:IConquerer<O>) ‘_‘
+ executeMultiple(lterable<I>) : Iterable<O>
-input: | + chang rewP Int) : Boolean
- DIVIDER: IDivider<I> + getExecutor : |[Executor<|, O>
1 |- CONQUERER: IConquerer<0> + getDivider : IDivider<I>
- EXECUTOR: IExecutor<l, O> creates 1 | + getConquerer: IConquerer<0>
O o +toString() : String

+ GenericDaCTask(input:l,
executor:|Executor<l, 0>,

o

divider:IDivider<I>, conquerer:IConquerer<0>) o
# compute() : O . k<)
stores conquering °
1 1 1 logic of s
£ 2%
2 5
o 0
] 4
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8l L
<<interface>>
<<interface>> IDivider<i>
IConquerer<0> 1
+ canDivide(l) : Boolean 1
+ conguer(lterable<0>) : O + divide(l) : Iterable<|>
X X
<<abstract>
<<abstract> GenericDivider
GenericConquerer
+ canDivide(l) : Boolean
+ ConcreteConquerer() # divisionProcedure(l) : Iterable</>

Figure 4.2: UML class diagram of Spooky D&C
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4.1.4 Testing

Although the testing implementation had to be adapted to work for Spooky D&C
skeletons, via a new GenericSkeletonTest abstract class, the testing methodology was
identical to that detailed in Section 3.1.3. Furthermore, the same testing configuration
specified in Section 3.1.4 was utilized.

It is difficult to quantify the relative difficulty of implementing the Skeleton strat-
egy when compared to the previous ForkJoin strategy. Therefore, this is done via a
relatively simplistic ’lines of code’ (LoC) metric, for which the definition necessarily
varies between the strategies:

N.B. Multi-line comments are excluded for all line counts

* Skeleton - The number of lines of code required to extend the three generic
classes passed into the skeleton’s constructor.

* ForkJoin - A sum of the following:

— The number of lines of code contained within the ForkJoin and Sequential
classes, from the class declaration line to the end of the execute() method
before the other @Override functions begin. This is done as Sequential
essentially serves as an executor analogue for ForkJoin.

— The number of lines of any methods, contained within static utility classes,
that are called by either Sequential or ForkJoin. This is done since all the
required utility methods for the Skeleton strategy are declared within the
code extending the three generic classes.

It is worth noting, however, that the purpose of the skeleton isn’t necessarily to sig-
nificantly reduce the amount of code the programmer must write. Rather the primary
benefit is the reduction in complexity provided by the effective separation of concerns,
allowing the programmer to primarily focus on their D&C logic and data instead of par-
allel programming constructs. This allows for the fast prototyping and implementation
of efficient algorithms leveraging parallelism; any reduction in the lines of code written
should therefore be considered an auxiliary benefit.

4.2 MergeSort

Algorithm as described previously in Section 3.3.

4.2.1 Implementation

The implementation was straightforward aside from the creation of a new class, Ar-
ray View, designed to essentially bundle together the necessary inputs (backing array
and start/end indices). The implementation required no consideration or direct reference
to the Fork/Join framework. The LoC required for the Skeleton strategy was 106
compared to 132 for ForkJoin.
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4.2.2 Results
4.2.2.1 Parallelism

All tests were carried out with an input array size of 8,388,608. The recursion cut-off
value of the SequentialMergeSortExecutor and Sequential was set to 8.

The results of the testing indicated that the Skeleton strategy offered an apprecia-
ble speed-up over the sequential strategy. Furthermore, the Skeleton strategy broadly
matched the performance of the ForkJoin strategy across all values of parallelism tested,
even marginally outperforming it for values of parallelism up to 8 (Figure 4.3, Appendix
A.9). This was in line with expectations as a decent amount of the work of the skeleton,
incurred by the use of generic types, takes place during compilation. Therefore, these
results imply that the additional overhead of the skeleton during runtime is relatively
low for reasonable values of parallelism and parallelism cut-off.

Varying Parallelism
Skeleton == Pure ForkJoin

3.5 -

2.5 -

1.5 -

Speedup over sequential

0.5
1 2 4 8 16 32 64

Parallelism

Figure 4.3: Comparing speed-up of Skeleton and ForkJoin MergeSort strategies when
varying parallelism

4.2.2.2 Parallelism Cut-off

All tests were carried out with an input array size of 8,388,608 and a fixed parallelism
of 2048. The recursion cut-off value of the SequentialMergeSortExecutor and Se-
quential was set to 8.

The results of the testing indicated that ForkJoin introduced slightly less overhead
when compared to the Skeleton strategy (Figure 4.4, Appendix A.10). The difference in
overhead was more significant at lower parallelism cut-off values. However, Skeleton
appeared to reach parity in performance and slightly outperform ForkJoin at parallelism
cut-off values above 65,536.

Given the input size, this means they reached parity when only 128 base-level subtasks
were created, compared to the 2048 (16x more) created for the initial cut-off value of
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4096. The relative speed-up between these two cut-off values for Skeleton was ~1.19x,
which is small and doesn’t necessarily indicate a large overhead due to the number
of sub-tasks created. However, a slow-down can also be observed between the same
cut-off values for ForkJoin which perhaps signals the need for further testing under
this configuration.

Varying Minimum Array Size (granularity)
Skeleton == Pure ForlJoin

4.0 -

3.0 - /L

2.5 -
2.0 -

1.5 -

Speedup over sequential

1.0 -

0.5
4096 8192 16384 32768 65536 131072 262144

Minimum Array Size

Figure 4.4: Comparing speed-up of Skeleton and Forkdoin MergeSort strategies when
varying parallelism cut-off

4.3 Strassen’s Matrix Multiplication

Algorithm as described previously in Section 3.5.

4.3.1 Implementation

The implementation was straightforward, aside from having to add a new method to
the Matrix class in order to overcome a variable scoping issue with the StrassensCon-
querer implementation. Furthermore, the implementation required the introduction of a
new StrassensInput class to effectively bundle together the required inputs (two input
matrices and the result matrix). The implementation required no consideration or direct
reference to the Fork/Join framework. The LoC required for the Skeleton strategy was
180 compared to 187 for ForkJoin.

4.3.2 Results
4.3.2.1 Parallelism

All tests were carried out with input matrix dimensions of 2048x2048. The recursion
cut-off value of the SequentialStrassensExecutor and Sequential was set to 32.

The results of the testing indicated that the Skeleton strategy offered a significant



Chapter 4. Divide-and-Conquer Skeleton 35

speed-up over the sequential strategy. Furthermore, Skeleton appeared to outperform
ForkJoin by a reasonable margin for all values of parallelism tested (Figure 4.5, Ap-
pendix A.11). There are many possible reasons for this. For example: the more
prescriptive structure of computation enforced by the skeleton could have resulted in
more optimizations being applied during compilation. Regardless, these results are
promising evidence of the potential performance benefits of the skeleton approach.

Varying Parallelism
Skeleton == Pure Forldoin
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Figure 4.5: Comparing speed-up of Skeleton and ForkJoin Strassen strategies when
varying parallelism

4.3.2.2 Parallelism Cut-off

All tests were carried out with input matrix dimensions of 2048x2048. The recursion
cut-off value of the SequentialStrassensExecutor and Sequential was set to 16.

The results of the testing indicated that the ForkJoin strategy introduced slightly
less overhead when compared to the Skeleton strategy at lower parallelism cut-off
values (Figure 4.6, Appendix A.12). However, Skeleton appeared to reach parity in
performance and slightly outperform ForkJoin at parallelism cut-off values above
256, despite a large drop-off in performance for both. Furthermore, it can be observed
that both Skeleton and ForkJoin exhibited a similar rate of speed-up for increasing
parallelism cut-off values below 128. This signals the ability of Skeleton to keep up
with, and broadly match the performance, of ForkJoin in this test.
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Varying Minimum Matrix Dimension (granularity)
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Figure 4.6: Comparing speed-up of Skeleton and ForkJoin Strassen strategies when
varying parallelism cut-off

4.4 Conclusions

From the experimental results it appears that Spooky D&C is capable of matching,
or even improving upon, the performance of the pure ForkJoin strategy under a wide
range of conditions. This was expected, as it is built directly on top of the Fork/Join
framework and designed to introduce a minimal amount of overhead during runtime.

The implementation code for the Skeleton strategies provided convincing evidence
of Spooky D&C being effective as an abstraction. None of the Skeleton strategies
required consideration or direct reference to the Fork/Join framework, nor other related
parallel programming constructs. Furthermore, each Skeleton strategy required fewer
lines of code than the alternative ForkJoin strategy for both algorithms tested. Notably,
the reduction in line count for Strassen’s algorithm was not very significant. That is not
to say that the skeleton is perfect; as touched on before, the programmer must consider
using manual synchronization for shared state where applicable. However, the splitting
of each algorithm by the skeleton into pre-defined logical chunks made it easier to write
modular, clear code focussed entirely on the flow of data and core logic rather than the
orchestration of parallel computing activities.

One of the primary benefits of Spooky D&C lies in the simplicity of the skeleton
itself, provided by using the Fork/Join framework as a foundation. This, in combination
with the logical mapping of D&C constructs to components of the skeleton, leaves it
easily accessible to programmers who wish to delve further into its internals. As a
result, programmers may extend the generic templates or otherwise alter the skeleton
to better suit their needs, hence addressing the problem of limited flexibility faced by
other skeletons. This would hopefully prompt further adoption of Spooky D&C as this
alleviates concerns about the conceptual overhead that would be incurred should the
needs of the programmer eventually outgrow the functionality offered by the skeleton.
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A slightly less obvious benefit of Spooky D&C to the programmer is that it decouples
the client code from the underlying method of execution. Therefore, with a few tweaks,
Spooky D&C could be modified to support a variety of different execution methods
in future. For example: if a new, faster alternative to the Fork/Join framework was
released, then Spooky D&C could be modified to offer this with minimal changes
required to the client code. Additionally, the design of Spooky D&C leaves it open
to further extension, for example: adding the ability for the skeleton to automatically
control task granularity, similar to the auto_partitioner in Intel’s TBB [Robison et al.
(2008)].



Chapter 5

Conclusion

In this chapter, the main body of the report is summarized and conclusions are drawn
about the results obtained (Section 5.1). The work carried out is then critically evaluated,
with a focus on the lessons learned whilst carrying the project through to completion
(Section 5.2). Finally, deficiencies in the presented solution are identified when com-
pared to existing parallel algorithmic skeletons, which paves the way for future work to
be carried out (Section 5.3).

5.1 Summary

In Chapter 2, the challenges faced by programmers due to the advent of multicore
general purpose microprocessors were introduced. Subsequently, a brief overview of
parallelism and the parallel programming paradigm introduced to overcome these chal-
lenges was presented. Then a more specialized view of parallel programming in Java
was detailed, including an introduction to Java Threads and the Fork/Join framework.
Finally, the concept of algorithmic patterns was elaborated upon, with a focus on the
divide-and-conquer (D&C) pattern, followed by the natural progression of these into
parallel algorithmic skeletons.

In Chapter 3, a series of experiments on a collection of D&C algorithms were presented.
These experiments were designed to compare the efficacy of implementations based
on the Fork/Join framework against manually hand-threaded variants. The overarching
goal was to determine the best way to proceed in building a D&C focussed parallel algo-
rithmic skeleton in Java, presented in Chapter 4. A myriad of conceptual problems were
solved in order to carry this work out. Notably, this included the design/implementation
of: a thread scheduling mechanism built on Java Threads, an abstraction to clearly and
efficiently carry out recursive matrix operations, and a generalized testing framework to
ensure consistency between tests of implementation variants. Overall, the results of the
experimentation were quite conclusive and pointed towards the Fork/Join framework
being a remarkably capable solution. It managed to beat the hand-threaded alternative
in both implementation effort and, in many cases, performance.

38
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In Chapter 4, Spooky D&C, a lightweight parallel algorithmic skeleton built upon
the Fork/Join framework, was introduced. The design and implementation of Spooky
D&C was guided by the results and experienced gained from the experiments conducted
in Chapter 3. In order to achieve this, a series of conceptual engineering problems
were solved. This involved: generalizing the expression of D&C algorithms such that
they can be written sequentially but run in parallel; creating a modular, extensible
skeleton architecture; and designing a cohesive interface for programmers to leverage.
An overview of the design and implementation details were presented, followed by a
series of experiments to compare the efficacy of implementations using Spooky D&C
to the baseline pure Fork/Join implementations. The results of the testing indicated
that Spooky D&C was capable of broadly matching, and in some cases exceeding,
the performance of the pure Fork/Join implementations. Furthermore, Spooky D&C
was found to achieve its primary goals of hiding the Fork/Join framework from the
programmer and requiring less implementation effort than using the framework directly,
from both a qualitative and quantitative perspective.

5.2 Lessons Learned

A fair amount of time was spent getting familiar with the Fork/Join framework and
Java Threads, which in retrospect was unavoidable. Regardless, this resulted in slower
progress than desired whilst completing the implementation work for Chapter 3. Fur-
thermore, this was compounded by the need for a fair testing framework, which resulted
in significant refactoring and multiple rewrites to produce the required generalizations
to achieve this. This could have been avoided by spending more time on the initial
planning and placing a greater focus on the testability of code being written.

Whilst implementing the thread scheduling logic, used for the Threaded implementa-
tions, a series of design decisions had to be made. The primary guiding philosophy of
these decisions was to provide a fair competitor, and comparison, to implementations
based upon the Fork/Join framework. Initially, the scheduling logic was defined on the
premise that the user-provided parallelism value would define the maximum number of
threads that could exist at any one time. After running the entire test suite and collecting
results, it was later determined that this was an unfair comparison. As a result, the
concept of worker threads was introduced (see Figure 3.1), which required a significant
rewrite of the scheduling logic along with a re-run of the test suite. This produced a
fairer comparison that could be considered more true to the definition of *parallelism’
in this context, as it now defined threads performing heavy computational work for both
Threaded and ForkJoin implementations.

The implementation of Spooky D&C went smoothly, in part due to the lessons learned
from the Chapter 3 implementation. It was built with more consideration to testability,
hence useful generalizations were introduced at the start of development to be worked
in with the implementation code written later. Additionally, the interface offered by the
Fork/Join framework was well documented and intuitive to work with after getting to
grips with its intricacies.
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5.3

Future Work

Largely, the future work proposed is focussed around refactoring Spooky D&C and
making improvements to it in order to bring it in line with other parallel algorithmic
skeleton offerings. However, there were also a few opportunities for further exper-
imentation left unexplored due to the time and content limitations imposed on this
project:

Refactor Spooky D&C to further simplify the design and improve extensibility.
Specifically, introduce a generalized ’skeleton’ interface and make further use
of object-oriented design patterns to reduce coupling. For example, referring to
Figure 4.2, there is unnecessary coupling between DaCSkeleton<I, O> and the
interfaces of the logical chunks that could be solved by using a creational pattern
such as the factory! pattern.

Implement generalizations in Spooky D&C that make the execution engine
swappable based on the programmer’s preference. This could allow for further
experimentation to compare the centralized thread scheduling logic from Chapter
3 directly to the Fork/Join framework in the context of Spooky D&C.

Implement automatic task granularity control in Spooky D&C, similar to the
auto_partitioner offered in Intel’s TBB [Robison et al. (2008)].

Implement a diagnostic component for Spooky D&C to allow programmers to
more easily identify and fix deficiencies in their code, similar to Calcium’s blame
system [Caromel and Leyton (2007)].

Conduct experiments to compare the performance of Spooky D&C to the current
D&C skeleton offering from Skandium.

Conduct a user study with Spooky D&C to determine where improvements can
be made and to gain more insight into its usability for programmers.

Conduct experiments on the efficacy of the matrix abstraction introduced in
Chapter 3 to determine the overhead introduced when compared to the naive
approach of performing all operations directly on the underlying data structure.

Thttps://refactoring.guru/design-patterns/abstract-factory
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Appendix A

Raw Results and Additional Charts

A.1 QuickSelect Parallelism Testing Results

QuickSelect (Parallelism)

Input Size = 67108864 Raw Run Results
Recursion ) Run Number
Cutoff 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Average (ms)
1 1 1805 | 1e43 | arrr | a4 | w77 | ar20 | ses | 27e2 | 2791 | 1419 2029
p"g"t'i:';"' F i ] 3 3 n 5“'"' "'""h"ﬁ 7 . s m Average (ms)| Speedup | Efficiency
57103864 1 314 1336 766 1189 712 813 4261 3014 7 1788 1814 112 112
33654432 2 3919 1908 1154 2761 936 2427 1338 3981 2986 1805 2326 0.7 0.44
16777216 4 1953 1807 1800 3777 1693 3445 212 2456 1609 2878 2424 0.84 021
8388508 8 3394 2140 2384 4429 527 2255 1960 2524 3144 2133 2539 0.80 0.10
4134304 16 2176 2771 1577 2071 1237 2250 2784 2198 3558 1073 2170 0.94 0.0
2087152 32 3646 2710 26522 4488 1300 2017 1070 2756 1748 576 2283 0.89 0.03
1048576 64 3721 1573 1256 1831 3736 802 2683 2200 1745 2132 2168 0.94 001
P”c“.’,'t,,'.i"' L i 1 2 3 n 5R“" "“"Ib“ﬁ 7 5 3 m Average (ms)| Speedup | Efficiency
57108864 1 2109 2101 1055 3071 1302 2202 2186 1915 1778 662 1833 110 110
33554432 2 3914 2027 272 2878 2549 1455, 1962 1693 2588 1610 2295 0.88 0.44
16777216 4 1684 2177 3378 2970 790 1522 1210 2282 3809 1082 2100 0.97 024
5368608 8 3129 1952 1557 3230 1000 1370 3190 2922 1759 662 2087 0.07 0.12
4134304 16 3524 1516 1953 3261 441 2727 3982 3697 3487 162 2476 0.2 0.0
2087152 32 2644 2073 644 5642 1885 2706 2444 2738 179 4038 2651 077 002
1048576 64 2229 1761 5238 2408 1741 2070 3074 1612 3748 2105 2599 078 001

Figure A.1: Raw results of QuickSelect testing when varying parallelism
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Figure A.2: Comparing runtime of QuickSelect strategies when varying parallelism

A.2 QuickSelect Parallelism Cut-Off Testing Results

QuickSelect (Min Size)

Parallelism I Run Number
Cut-off 1 | 2 [ 3 | 4 [ 5 | [} | 7 | 8 | 9 [ 10 Average (ms)
1 1 2211 | 817 | 2157 | 1477 [ 130 | 1746 | 1686 | 4033 | 2121 | 940 1930
Parallelism L Run Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 8 9 10
2048 32768 3100 1983 2221 2070 2082 3184 1570 4424 1866 838 2334 083
2048 65536 2708 2523 2410 2031 1188 1461 2485 1744 2001 1013 1956 0.99
2048 131072 3871 1968 1926 2617 5338 852 1422 1910 4394 4951 2905 066
2048 262144 2133 2449 3128 3826 602 718 2969 3936 4557 325 2464 0.78
2048 524288 2592 2807 1929 2935 3786 5270 2123 1509 2418 1051 2642 073
2048 1048576 3879 2097 2842 2313 3835 791 3350 1639 3501 487 2473 0.78
2048 2097152 2285 1547 1956 3460 1152 1485 1279 3226 2455 2804 2165 089
Parallelism i Run/Number, Average (ms) Speedup
Cut-off 1 2 3 4 5 6 7 ] 9 10
2048 32768 1564 2257 3442 2798 1013 3676 3196 2125 2116 787 2297 0.84
2048 65536 3441 1688 1911 4803 1892 1199 6780 3958 1647 1415 2873 067
2048 131072 2236 2273 1452 3301 1225 1646 3177 1827 3540 2780 2346 0.82
2048 262144 1756 2037 2006 2609 2845 3412 2860 2542 5726 2569 2816 069
2048 524288 3463 1364 2072 4191 3204 3552 3050 4098 1513 3142 2965 0.65
2048 1048576 1616 2520 1714 2213 712 898 739 3583 2193 1913 1810 107
2048 2097152 2536 2744 1320 3450 1891 492 1748 1242 1646 4119 2139 0.90

Figure A.3: Raw results of QuickSelect testing when varying parallelism cut-off
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Figure A.4: Comparing runtime of QuickSelect strategies when varying parallelism cut-off

A.3 MergeSort Parallelism Testing Results

MergeSort (Parallelism)

Recursion Run Number

Cut-off 1 2 3 | 4 | 5 3 | 7 | 8 | 9 | 10 Average (ms)
8 1 2639 2467 2511 | 2575 | 2502 2535 | 2535 | 2577 | 2860 | 2467 2537

Parallelism Run Number X
Cut-off 1 2 3 4 5 6 7 8 g 10 Average(ms)| - Speedup | Efficiency
3368608 1 2558 2443 2535 2256 2456 2321 2456 2430 2463 2434 2435 1.04 104
4194304 2 1532 1289 1346 1518 1461 1386 1435 1648 1397 1456 1453 1.75 088
2097152 4 368 1040 885 929 1084 1150 1196 937 862 955 991 256 064
1048576 8 306 916 864 971 919 785 665 806 800 957 851 298 037
524288 16 824 904 868 813 340 765 880 689 399 713 820 3.10 0.18
262144 A 863 891 767 840 14 785 680 850 1078 904 839 3.02 008
131072 64 851 1031 851 940 890 452 440 900 943 714 802 316, 005

Parallelism Run Number )
Cut-off 1 2 3 4 5 6 7 8 ] 10 Average (ms)|  Speedup | Efficiency
8383508 1 2377 2669 2444 2455 2450 2433 2443 2432 2414 2450 2459 103 103
4194304 2 1385 1427 1425 1495 1559 1502 i7i1 1322 1478 1361 1467 1.73 087
2097152 4 956 1082 1113 889 1066 1100 507 841 934 942 983 258 065
1043576 3 788 994 675 853 653 920 831 930 1014 927 360 295 037
524283 16 876 949 866 926 602 383 866 376 344 781 347 299 018
262144 2 871 732 851 852 750 549 759 689 878 651 761 333 0.10
131072 64 739 723 623 672 759 840 1074 706 348 1208 319 3.10 005

Figure A.5: Raw results of MergeSort testing when varying parallelism
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Figure A.6: Comparing runtime of MergeSort strategies when varying parallelism

A.4 MergeSort Parallelism Cut-Off Testing Results

MergeSort (Min Size)

- i Run Number
Farallelism Cut-off 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Average (ms)
1 8 2617 | 2533 | 2475 | 2573 | 25389 | 2485 | 2503 | 2431 | 2488 | 2407 2507
~ i Run Number

Parallelism Cut-off 1 2 3 2 s < 7 s s 0 Average (ms)| Speedup
2048 4096 1018 1010 949 890 965 907 914 839 589 904 899 279
2048 8192 884 892 998 874 777 591 866 654 698 506 784 320
2048 16384 800 691 900 997 809 787 492 637 827 911 785 3.1
2048 32788 1321 a7 887 726 661 907 830 914 812 967 900 279
2048 65536 805 893 916 1302 913 957 1020 776 826 911 922 269
2048 131072 898 1071 991 915 980 1153 558 894 992 1120 955 262
2048 262144 800 902 766 1019 903 929 812 957 1035 887 901 278

Parallelism I Run Number Average (ms)| Speedup

Cut-off 1 2 3 4 5 6 7 8 ] 10

2048 4096 3089 2758 2409 2673 2666 2701 2833 2878 3122 2920 2806 0.89
2048 8192 2004 1884 1976 2224 1914 2050 2001 1958 1786 1912 1971 1.27
2048 16384 1522 1026 1166 1345 1238 1251 1047 1063 994 846 150 218
2048 32768 1283 1206 952 139 172 934 779 476 1328 945 1071 234
2048 65536 968 856 929 764 709 715 940 769 842 924 842 298
2048 131072 862 1057 912 1103 813 784 929 1025 782 915 918 273
2048 262144 1329 1004 971 1030 925 1391 919 1319 821 915 1062 236

Figure A.7: Raw results of MergeSort testing when varying parallelism cut-off
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Figure A.8: Comparing runtime of MergeSort strategies when varying parallelism cut-off

A.5 FFT Parallelism Testing Results

FFT (Parallelism)

4937 4991 4676 5059 4812 4883 4637
1 2 3 4 5 6 T 8 9 10
8388608 1 4649 4983 4780 4987 4724 4825 4635 4914 4551 4753 4780 1.02 1.02
4194304 2 3085 3005 3046 2830 2353 3039 2916 2862 3098 3114 2995 163 082
2087152 4 2138 2145 2351 2423 2083 1937 2308 1981 2221 2038 2164 226 057
1048576 8 2026 2064 1796 1761 1990 1731 1722 1752 1887 1999 1873 281 033
524288 16 2066 2064 2111 2069 2038 2048 2038 2032 2117 2046 2063 237 015
262144 32 2081 2251 2380 2313 2191 2089 2263 213 2071 2086 2189 223 007
131072 64 2219 2217 2218 2400 2238 2187 2345 2274 2222 2101 2243 218 003
1 2 3 4 5 6 7 3 9 10
8388608 1 4981 5106 5058 5221 4982 1973 5064 4959 4978 5037 5036 097 097
4194304 2 3041 2051 3201 3064 2953 2973 3014 3155 2813 2845 3001 183 082
2087152 2 2244 2172 2453 2072 2042 1989 2469 1959 2018 2386 2180 224 0.58
1048576 8 1957 1570 1866 2018 1864 2013 2032 2083 2126 2485 2041 239 0.30
524288 16 2204 2149 2097 2071 2121 2203 2194 2104 2216 2151 2151 227 0.14]
262144 32 2282 2338 2315 2329 2376 2242 2244 2235 2302 2335 2306 212 0.07
131072 64 2376 2239 2321 2208 2188 2519 2426 2299 2302 2207 2309 212 0.03

Figure A.9: Raw results of FFT testing when varying parallelism
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Figure A.10: Comparing runtime of FFT strategies when varying parallelism

A.6 FFT Parallelism Cut-Off Testing Results

49

FFT (Min Size)

- i Run Number
Farallelism Cut-off 1 2 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Average (ms)
1 8 5292 5027 5006 | 4651 | 4981 | 4946 | 4889 | 4851 | 4794 | 4655 4879
Parallelism : Run Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 8 9 10

2048 4096 2737 2621 2570 2596 2808 2938 2912 3017 3053 2837 2809 1.74
2048 8192 2665 2650 2604 2709 2854 2765 2686 2779 2801 2804 2712 180
2048 16384 2692 3295 2878 3097 2784 2791 2761 2767 2802 2757 2862 170
2048 32768 3003 3199 2795 3326 2915 2888 2739 2676 2755 2814 2911 168
2048 65536 2753 2736 2836 2890 2922 2842 2887 2852 2805 3109 2863 1.70
2048 131072 2680 3340 2857 3198 2929 2937 3333 3119 3115 2802 3031 161
2048 262144 2890 2907 3408 3133 2823 2767 2677 2924 2930 3537 3000 1.63

Parallelism I Run Number Average (ms)| Speedup

Cut-off 1 2 3 4 5 [ 7 8 9 10

2048 4096 5768 5630 6038 5736 6027 5864 5843 5990 6678 5956 5953 082
2048 8192 4729 4708 4581 4537 4588 4557 4457 4397 4568 4388 4551 1.07)
2048 16384 3784 3923 3700 3816 3770 3803 3781 3761 3883 3889 3811 128
2048 32768 3570 3283 3387 3368 3659 3605 3362 3587 3504 3583 3491 140
2048 65536 3075 3441 3395 3198 3449 3270 3175 3365 3391 3040 3280 1.49
2048 131072 3546 3208 3112 3458 3031 2930 3286 3057 3427 3035 3209 152
2048 262144 2911 3126 3010 2851 2792 2854 2808 2844 2847 2817 2686 1.69)

Figure A.11: Raw results of FFT testing when varying parallelism cut-off
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Figure A.12: Comparing runtime of FFT strategies when varying parallelism cut-off

A.7

Strassen Parallelism Testing Results

Strassens (Parallelism)

Recursion Run Number
Cut-off i 2 | 3 | & | s s | 1 | 8 9 10 [ ermge (ms)
32 1 4834 | 4576 | 4576 | 4518 4576 4642 4622 | 4583 4654 4641 4628
Parallelism Run Number i
Cut-off 1 2 3 4 5 6 7 8 9 o | verage (ms]| Speedup | Efficiency
2048 1 4650 4593 4637 4794 4687 2617 4595 4605 4618 4616 4641 1.00 1.00]
1024 2 3360 2705 3336 2681 3332 2714 3379 3367 3342 3320 3163 147 0.74
512 4 1360 1302 1316 1331 1362 1308 1489 1346 1355 1493 1366 339 0.85|
256 8 386 855 850 844 894 819 842 829 843 855 852 543 0.68|
128 16 670 677 657 662 595 697 685 681 636 641 672 599 0.43]
54 32 660 656 594 672 670 643 645 622 635 684 658 7.03 022
32 64 1537 577 593 592 507 621 571 574 571 551 679 581 01
is Run Number :
"Gl 1 2 3 4 5 6 7 8 9 | verage (ms]| Speedup | Efficiency
2048 1 4807 4592 4539 4505 4555 4514 4630 4668 4591 4584 4589 101 1.01
1024 2 2647 2654 3265 2653 2648 2664 3286 2640 3298 2654 2841 163 082
512 4 1436 1357 1367 1396 1387 2014 1992 1384 1371 2028 1573 204 0.74]
256 8 904 931 911 878 883 854 883 910 908 918 898 5.16 0.65
128 16 985 958 291 966 399 862 824 838 858 862 894 5.18 0.32
54 32 890 916 892 967 936 927 947 890 879 868 911 5.08 0.15
32 64 637 611 850 640 854 624 643 673 665 861 646 717 011

Figure A.13:

Raw results of Strassen testing when varying parallelism
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Figure A.14: Comparing runtime of Strassen strategies when varying parallelism

A.8 Strassen Parallelism Cut-Off Testing Results

Strassens (Min Size)

- i Run Number
Paralielism Cut-off 1 | 2 | 3 | 4 | 5 6 | 7 | 8 | 9 | 10 Average (ms)
1 16 6070 | s812z | se17 | 5783 | seo4 | 5780 | 5776 | 5844 | 5787 | 5754 5623
g I RURTNUM e, Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 8 9 10
128 16 992 814 799 635 943 819 538 816 836 611 851 585
128 32 795 77 798 793 807 815 787 7 793 824 795 7.32
128 64 747 727 782 772 758 311 819 774 774 739 770 756
128 128 774 728 736 774 724 768 768 773 773 786 760 7.66
128 256 813 760 752 622 760 755 744 757 795 745 770 756
128 512 751 757 760 7852 794 766 769 747 769 782 768 758
128 1024 1144 1042 1034 1062 1075 1096 1075 1030 1094 1108 1076 541
Parallelism i Run Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 3 9 10
128 16 804 792 777 793 831 793 811 788 774 829 799 729
128 32 738 731 797 762 808 761 770 787 766 774 769 757
128 64 773 816 7 781 754 772 762 815 766 776 779 748
128 128 787 779 786 775 747 818 800 748 771 765 778 7.49
128 256 812 767 763 804 758 772 825 793 790 810 789 7.38
128 512 743 745 780 775 812 766 748 734 743 808 765 761
128 1024 1031 1092 1098 1077 1024 1064 1091 1052 1007 1036 1057 551

Figure A.15: Raw results of Strassen testing when varying parallelism cut-off
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Figure A.16: Comparing runtime of Strassen strategies when varying parallelism cut-off

A.9 Skeleton MergeSort Parallelism Testing Results

Skeleton | MergeSort (Parallelism)

Input Size = 8388608 Bﬂ!LR!.IlJ.Eﬁ!.I].E
[ _seauental |
Recursion
Cut-off
8
Paralielism Run Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 8 El 10
8388608 1 2490 2215 2430 2384 2400 2253 2391 2268 2288 2376 2330 1.08
4194304 2 1445 1419 1395 1329 1530 1512 1313 1430 1556 1345 1427 1.78
2097152 4 976 1020 931 872 949 951 1065 1012 1024 954 973 2.60
1048576 8 841 745 893 790 837 950 750 952 824 728 831 3.05
524288 16 929 876 742 826 734 919 968 746 943 824 851 2.98
262144 32 768 947 888 548 889 804 759 725 829 759 821 3.09
131072 64 814 983 826 898 788 870 889 912 875 848 870 2.92

Figure A.17: Raw results of Skeleton MergeSort strategy testing when varying parallelism
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Figure A.18: Comparing runtime of Skeleton and ForkJoin MergeSort strategies when
varying parallelism

A.10 Skeleton MergeSort Parallelism Cut-Off Testing
Results

Skeleton | MergeSort (Min Size)

Input Size = 8388608 Raw Run Results

Recursion
Cut-off

8

Parallelism I Run Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 ] 7 ] 9 10
2048 4096 1157 1292 1173 857 1092 997 1012 1005 1107 1034 1073 234
2048 8192 981 859 1197 1058 973 975 927 1058 1000 101 1004 250
2048 16384 1032 982 975 992 870 974 953 931 1010 950 967 259
2048 32768 969 791 920 925 933 956 936 942 1150 959 943 264
2048 65536 855 936 821 1057 885 825 917 927 841 914 898 279
2048 131072 921 897 877 910 829 1014 923 907 861 846 899 279
2048 262144 935 821 857 949 909 844 760 772 888 837 857 292

Figure A.19: Raw results of Skeleton MergeSort strategy testing when varying parallelism
cut-off
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Figure A.20: Comparing runtime of Skeleton and ForkJoin MergeSort strategies when
varying parallelism cut-off

A.11 Skeleton Strassen Parallelism Testing Results

Skeleton | Strassens (Parallelism)

Input Size = 2048x2048 Raw Run Results
| Sequential ]
Recursion
Cut-off
32
' [ i Run/Number Average (ms)| Speedup
Cut-off 1 2 3 4 5 6 7 8 9 10
2048 1 4840 4587 4562 4560 4627 4633 4596 4605 4590 4583 4618 1.00
1024 2 2659 2672 2654 2653 2658 2651 2659 2664 2652 2683 2661 1.74
512 4 1278 1258 1261 1285 1306 1274 1307 1276 1279 1289 1281 3.61
256 8 789 798 859 841 777 764 755 812 798 751 794 5.83
128 16 613 629 637 585 811 644 676 601 617 615 623 7.43
64 32 622 638 651 642 616 633 627 616 621 632 630 7.35
32 64 745 582 611 600 575 578 619 603 618 614 615 7.53

Figure A.21: Raw results of Skeleton Strassen strategy testing when varying parallelism
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Figure A.22: Comparing runtime of Skeleton and ForkJoin Strassen strategies when
varying parallelism

A.12 Skeleton Strassen Parallelism Cut-Off Testing Re-
sults

Skeleton | Strassens (Min Size)

Input Size = 2048x2048 Raw Run Results
[Sequental |
Recursion
Cut-off
16
Parallelism i Run/Number Average (ms) Speedup
Cut-off 1 2 3 4 5 [ 7 8 9 10
128 18 1589 508 814 794 788 503 804 821 794 769 873 663
128 32 878 824 809 804 811 827 818 819 811 817 822 7.09
128 64 798 781 778 804 303 771 785 783 798 308 791 736
128 128 768 766 777 779 776 770 770 763 776 774 772 754
128 256 774 760 769 766 775 766 763 778 775 770 770 757
128 512 768 762 740 749 754 743 745 766 745 748 752 774
128 1024 1004 998 1023 1026 1022 977 1015 1061 971 994 1009 577

Figure A.23: Raw results of Skeleton Strassen strategy testing when varying parallelism

cut-off
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Figure A.24: Comparing runtime of Skeleton and ForkJoin Strassen strategies when
varying parallelism cut-off



