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Abstract
Mobile network operators have not adopted the public cloud as a deployment target
despite its ease in manageability and cost efficiency. In this paper, I present a feasibility
analysis of deploying a cloud-native mobile core network to AWS, based on a holistic
perspective that encompasses qualitative and quantitative data. Through this process,
I identify a potential for improving observability, and present Yagra, an observability
solution for cloud-native cores. With Yagra, the feasibility requirements for public
cloud mobile core network deployments are complete, enabling mobile operators to
explore new opportunities as a result.
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Chapter 1

Introduction

1.1 Motivation

Traditionally, mobile network operators have operated their networks using proprietary
black-box components purchased from vendors. However, with the introduction of
the 5G standard (3rd Generation Partnership Project (3GPP) [2017b]), we are seeing
growing support for containerization and virtualization of functions on open commod-
ity hardware, both from commercial operators (AT&T Business [2024]) and from
governments (HM Treasury Department of Culture, Media and Sport [2017]). These
next-generation cloud-native network architectures have many advantages including
being able to scale dynamically based on demand to save resources, and being able
to upgrade and automate deployment at a much faster pace. These advantages allow
smaller mobile operators to enter the market without the traditionally large financial
investment in single-vendor telecommunications hardware. Running such core network
in the public cloud (e.g., AWS, Azure, GCP) would be beneficial in saving personnel
and maintenance costs thanks to the hardware and parts of the software stack being
managed by the cloud provider. However, we have yet to see a study examining such
core deployment. This paper aims to test the feasibility of running a 5G core network
on public cloud services, and explore the challenges in observability that arise from
doing so.

The core of a mobile network handles user and device management, data transfer, and
all major signaling operations within the network. By and large, implementations of
the core have traditionally been following the recommendation set out by 3GPP in
their standards (3rd Generation Partnership Project (3GPP) [2017b]). In this approach,
data is passed between multiple virtual modules (Network Functions; NFs) that each
perform a specific subset of operations such as policy management, authentication,
signaling, etc. This architecture is seen in open-source 5G cores such as Open5GS (The
Open5GS Authors [2024]) and Free5GC (The Free5GC Authors [2024]). Unfortunately,
this architecture is unable to take advantage of dynamic scaling as demonstrated in
the works of Larrea et al. [2023], due to the inherently stateful nature of the NFs.
Recent research have instead proposed alternative architectures based on container
orchestration and auto-scaling tools like Kubernetes, using stateless workers that can
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Chapter 1. Introduction 2

dynamically replicate on demand (Larrea et al. [2023], Du et al. [2023], Watanabe et al.
[2023], Goshi et al. [2023]). These designs are greatly suited for deploying to the cloud,
enabling cost-efficient resource provisioning.

The advancements in making a mobile core suitable for cloud deployments is also a
financial gain for network operators. Using virtualized hardware from cloud providers
cuts down on datacenter estates cost and physical layer network maintenance costs.
Public cloud service providers in particular often offer services for managed software
infrastructure on top of just virtualized hardware, such as managed Kubernetes clusters.
Such service simplifies the burden of deployment for network operators, and enable
smaller operators to enter the market with smaller investments in specialized personnel
and hardware compared to deploying on premise or on a private cloud. These contexts
strongly motivate the need for a feasibility test of mobile core networks when deployed
to the public cloud. During this study, we also noticed a lack of observability solutions
for cloud-native core network components in general, and this paper has been motivated
to provide a solution in that space as well.

This paper shows a systematized analysis of public cloud deployment options based on
qualitative and quantitative features of a mobile core; an evaluation of an actual mobile
core network based on incurred cloud costs and performance as deployed in various
configurations; Yagra, a system for achieving intra-core observability for cloud-native
core deployments even in limited environments like the public cloud; and an evaluation
of Yagra based on its effectiveness under real-world use cases.

As far as the author is aware, this is the first work to cover the feasibility of mobile
core network deployments to the public cloud. There is also no work that covers
observability specifically for cloud-native and auto-scaling mobile core components,
and this paper is therefore a novel contribution to the field of observable mobile core
network deployments.

1.2 Outline

The remainder of the paper is structured as follows.

Chapter 1 introduces the motivation behind the project and its main contributions to the
field of mobile network core deployments and their observability.

Chapter 2 provides additional background for the goals of the project, and other relevant
research already present in the field.

Chapter 3 presents a method of deployment a mobile core network to Amazon Web
Services, and analyzes its feasibility both qualitatively and quantatively.

Chapter 4 presents Yagra, an observability system for achieving real-time monitoring of
intra-component KPIs in a cloud-native mobile core network.

Chapter 5 summarizes the work of the project. It assesses the public cloud deployment
and the Yagra system, and presents room for future work.



Chapter 2

Background and Related Work

2.1 4G and 5G Cellular Networks

Most modern smartphones, tablets, laptops and IoT devices are capable of connecting to
a cellular network to establish an Internet connection. The connection enables devices
to perform voice calls, browse the web, or send sensor data. Such networks and the
bodies who operate them have nowadays become critical infrastructure for our society,
where any unexpected outages can lead to catastrophic consequences.

Cellular networks, hereon referred to as mobile networks, have had multiple generations
of standards over the years, standardised by the International Telecommunications
Union (ITU) in collaboration with the 3rd Generation Partnership Project (3GPP).
Commercial operators currently predominantly run 4th Generation (4G LTE) networks
(3rd Generation Partnership Project (3GPP) [2017a]), and are gradually introducing 5th
Generation (5G NR) networks (3rd Generation Partnership Project (3GPP) [2017b])
to public use. All cellular networks are structured as having two main parts: a Radio
Access Network (RAN) and a Core Network (the core). This is illustrated in Figure
2.1. The RAN is an interlinked network between the end user device (referred to as the
User Equipment; UE) and the core. It contains most of the physical-layer equipment for
radio access, such as base station and antennas. The core on the other hand is the main
back-end of a mobile network, and consists of multiple functionalities, including the
control plane section that handles signaling for user and device management, roaming
or billing, and the user/data plane section that handles the routing and forwarding of
network packets to achieve data transfer for the end-user.

Traditionally, components of the RAN and core have been provided as black-box solu-
tions that operate only on vendor-specific hardware. However, this proves to be costly
and limiting for operators as it makes them vulnerable to lock-in pricing effects, as well
as supply chain attacks. Multiple initiatives have tackled the problem as a result, such as
the 5G standard encouraging function containerization and virtualization on commodity
hardware. The O-RAN Alliance also leads the O-RAN specifications initiative (O-RAN
ALLIANCE e.V. [2024]), which defines common interfaces between RAN components
for interoperability in a multi-vendored RAN deployment. Government initiatives have
also been a strong proponent for increasing vendor diversification across the network for
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Chapter 2. Background and Related Work 4

Figure 2.1: Network Diagram Illustrating the 5G Cellular Network

national infrastructure security (UK Department for Science, Innovation & Technology
[2022]). These actions have brought an era of software-defined mobile network tech-
nologies, where operators have the flexibility and freedom to mix and match software
components from a wider accessible range of vendors.

A benefit of encouraging the use of commodity hardware and component virtualization
is that the initial investment cost to enter the market as a new network operator becomes
lower (Analysys Mason [2022], Naudts et al. [2016], Oughton and Frias [2018]). A
report by Affirmed Networks and VMWare showed operators saving an average of 67%
of operational expenses through adopting a virtualized 4G packet core (ACG Research,
sponsored by Affirmed Networks and VMWare [2015]). These improvements lead to
healthier market competition, and align well with the business goals of providers in
improving the profit margin in an operational network.

Through all of the aforementioned initiatives for reducing cost and vendor lock-in
however, there is an unwavering assumption that the deployment would be made on a
private setup of commodity hardware – a setup also referred to as the ‘private cloud’.
Such deployments are often preferred by operators for their control over the hardware
and software stack, and the ability to customize the network to their needs British
Telecom [2022]. However, the private cloud setup is not without its own challenges.
The setup requires a significant amount of capital investment, and the operational costs
can be high due to the need for specialized staff to manage the infrastructure. The setup
also requires a significant amount of space, power, and cooling, which can be a limiting
factor for operators in urban areas where real estate is expensive.

A solution to the challenges of the private cloud setup is the use of hyperscaler infras-
tructure, commonly referred to as the ‘public cloud’. Specific large service providers
(‘cloud providers’) include Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP), each of which offers a wide range of services on top of the
bare hardware to simplify the deployment and save costs. The virtualized and managed
technology stacks that each cloud providers offer a lucrative alternative to the private
cloud setup, as their creation, modification and destruction cycle are much faster and
simpler compared to traditional infrastructure. As a result, operators can take advantage
of faster time-to-market and less cost spending on hiring specialized personnel.

Out of the two areas composing a mobile network (RAN and core), it does not make
sense for an operator to move any of the RAN components to the public core due to
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its inherently high coupling to physical hardware like radio receivers. However, this
limitation does not apply to components in the core, which only need to be reachable
over IP connections from the UE and RAN. As a result, there is a potential in exploring
the feasibility of deploying a mobile core to a public cloud infrastructure.

This area of work inherently relates to previous works in network function virtualization
and cloud-native core architectures, as they provide example implementations of core
components for us to examine the deployment feasibility for. These include the 3GPP
NFV specification (3rd Generation Partnership Project (3GPP) [2014]), Open5GS (The
Open5GS Authors [2024]), an open-source 5G core following 3GPP NFV specifica-
tions closely; CoreKube (Larrea et al. [2023]), another open-source 5G core with an
alternative architecture that integrates with Kubernetes for orchestration; Proteus (Syed
and Van der Merwe [2016]), a system for dynamic provisioning of NFVs based on
a template system; and ECHO (Nguyen et al. [2018]), a 4G packet core built to run
in the Microsoft Azure cloud provider. ECHO is specifically of large interest to us
as they have managed to deploy a core to the public cloud as part of their analysis.
However, their work focuses on the reliability of a public cloud core deployment when
compared to on-premise core deployments, and not on the more holistic examination of
operational feasibility, such as performance, cost, or observability as we perform in this
paper.

2.2 Appeals of Public Cloud Infrastructure

The public cloud is a service model where cloud providers offer virtualized computing
resources accessible over the internet as a service, billed by resource usage. The
resources are managed by the cloud provider and hosted in multiple distributed data
centers distributed across the globe. Often, the cloud provider abstracts the underlying
hardware and software stack and instead exposes configuration options through APIs
for customers to interact with in order to provision, manage, and destroy resources.

A feature of every cloud provider service offering is the ability to scale hardware re-
sources on-demand, which is only possible because they are virtualized and managed
by the cloud provider. This ability is particularly useful for applications with fluctu-
ating workloads, allowing customers to save operational cost as a result of the quick
provisioning and de-provisioning of resources. The cloud providers also offer a wider
range of services on top of just virtualized hardware, such as managed high-availability
databases, machine learning services, and serverless functions. These resources can save
customers time and money from implementing or managing a similar stack privately. In
fact, news outlets (Morris [2024]) have reported that major commercial network opera-
tors such as Three and Vodafone are actively migrating to the public cloud for many
of their non-critical IT workloads. With such companies already having knowledge on
setting up public cloud stacks, we cannot understate the appeal of manageability, cost,
and integration with existing services for a public cloud core deployment.
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2.3 Cloud-Native Software Design

Software that is architectured specifically to make use of the characteristics of a cloud
infrastructure are referred to as being ‘cloud-native’. This term is frequently associated
with using tools maintained by the Cloud-Native Software Foundation group (under
the Linux Foundation), such as releasing software artifacts in the form of containerd-
compatible container images (containerd Authors [2024]), or being capable of orches-
tration through Kubernetes (The Kubernetes Authors [2024]).

containerd is a container runtime for running lightweight virtualized software in
isolation, used as the underlying runtime for the popular container management software
Docker (Docker Inc [2024]). It is used to package up software into ‘images’, which can
be downloaded and executed on a remote server to run a ‘container’ instance of it.

Kubernetes is an orchestration software for such Docker containers. It consists of the
Kubernetes control plane and machines (called ‘nodes’) that can run individual collec-
tion of containers (called ‘pods’). Not only does Kubernetes support the deployment of
multiple containers in a deterministic manner using YAML configuration files, it also
supports complex configurations such as assigning one IPv4 address to a set of pods and
randomly routing messages to one (a ‘LoadBalancer’), high-availability deployments
that get replicated across all nodes (a ‘DaemonSet’), or even auto-scaling based on
metrics such as CPU or memory usage per pod (‘Horizontal Pod Autoscaler’; HPA).

The Kubernetes HPA feature in particular is essential for most Kubernetes clusters, as it
allows the user to save costs by only running the minimum number of pod instances
required to handle the current workload. However to get the most out of this feature,
the pods must be stateless in nature. This is so that an instance can spin up or down
under fluctuating load and handle its share without requiring a handover mechanisms
to transfer any persistent data. Stateless pods are also painless to schedule on any
Kubernetes node, whereas pods that have any state require the Kubernetes scheduler to
be aware of this to prevent data loss when e.g., moving pods between nodes.

Software that is truly cloud-native should take such requirements into account. For
example, any cloud-native software that is intended to be scaled dynamically should
ideally be stateless, and similarly, any cloud-native software that interacts with other
Kubernetes pods should be aware of the inherently dynamic and ephemeral nature of
some of these pods.

2.3.1 Cloud-Native Mobile Cores

With regards to mobile core implementations in particular, CoreKube, developed by
Larrea et al. [2023] is the only mobile core to claim that it is cloud-native. CoreKube is
a 4G/5G core implementation that uses a message-oriented architecture for its compo-
nents. This does not follow the traditional 3GPP-defined NFV architecture, but is what
allows the core to be stateless in nature. Instead of components handling different func-
tionalities of the core, the CoreKube Worker component is capable of handling every
type of message from start to end. Additional components include only a lightweight
database to store persistent UE data which the workers can look up or write in, and a



Chapter 2. Background and Related Work 7

Figure 2.2: The architecture diagram of CoreKube, a cloud-native mobile core that
leverages Kubernetes

Front End component which receives the traffic from RANs and UEs before routing in
to any available Worker using Kubernetes LoadBalancers. The architecture diagram in
Figure 2.2, sourced from Larrea et al. [2023], describes this core in detail.

The CoreKube Front End component has an open SCTP port on port 38412 for Next
Generation Application Protocol (NGAP) packets from the UE and RAN (3rd Genera-
tion Partnership Project (3GPP) [2018]). These packets are then re-transmitted as UDP
to the Workers. UDP is used since the Kubernetes LoadBalancer only supports TCP or
UDP traffic, and not the telco-standard SCTP traffic. By making use of the Kubernetes
Horizontal Pod Autoscaler, the CoreKube Workers are able to adapt to changes in
workload quickly by auto-scaling up as necessary. It is also able to self-heal when there
is a fatal error in any of the Worker pods, ensuring that a replacement is quickly spun
up to fill the gap. As a result, Larrea et al. [2023] report the latency and performance
of CoreKube to be exceptionally good compared to other cores such as Open5GS or
MobileStream. These results make CoreKube an ideal mobile core implementation for
cloud-native environments, and make it a solid representative example when considering
deployments to the public cloud in particular.

2.3.2 Cloud-Native Mobile Core Observability

To evaluate and operationally monitor mobile cores when deployed to any setting,
observability is a key requirement. Observability refers to the ability to understand the
internal state of a system by looking at its external outputs, such as logs and metrics.
In a cloud-native environment, observability is particularly important as the core is
expected to be distributed and dynamic in nature thanks to the auto-scaling Kubernetes
feature. Yet, for mobile core deployments, we claim that there currently only exist
general solutions for observability, and nothing specifically to gather core-specific data.
This makes adoption of cloud-native cores, and thus the public cloud, difficult for
operators as they cannot gain insightful data.

Previous work has shown (Ferguson et al. [2023]) that it is possible to use a ‘sidecar’
container that collects network traces of incoming and outgoing packets in the core. A
sidecar container refers to a container used to monitor and provide metrics for another
container within the same pod. Specifically in the works of Ferguson et al. [2023], a
network sniffing Linux tool called tshark was used to decode control-plane NGAP
messages as it entered or exited the CoreKube Front End pod, and provided metrics such
as the number of UEs connected at any given moment. The strengths of this sidecar-
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based approach to observability is that it does not need any modification to the core,
since the observability metrics are gathered externally. However, there are significant
drawbacks that make this method infeasible as a general solutoin to cloud-native mobile
core observability. First, the memory consumption of packet analysis tools like tshark
will inherently grow when used with SCTP traffic, since it has to retain the information
about a flow in case a response message comes at a later time. Ferguson et al. [2023]
solve this by killing the tshark process every 30 seconds, but this is not an elegant nor
production-ready solution. Second, this approach of performing packet analysis to find
useful metrics only worked because CoreKube had not implemented the encryption
procedures, resulting in NGAP packets transmitting unencrypted. In a production
environment, the core will almost certainly use packet encryption. In conclusion, using
a sidecar-container approach to observability is not viable.

Other solutions to observability include generic profilers such as the tracy CPU profiler
(Bartosz Taudul [2024]) or Intel VTune (Intel Corporation [2024a]). These solutions can
give insight into application-internal performance data and improve the observability of
a deployed core. The strength of these lie with their low overhead of approximately 5%
(Intel Corporation [2024b]), allowing fine-grained performance metrics to be collected
without impact to the services that the mobile core provide. However, this solution is
not specific to cores, and cannot collect custom metrics for an operator’s needs.

All in all, existing works demonstrate a lack of tools for gathering core-specific data
for cloud-native cores. Indeed, in Chapter 4, we outline a system for doing just that,
through the introduction of Yagra.

2.4 RAN Emulation

In order to test a core deployment, we need to put it under some traffic load. For this,
we reviewed previously works related to UE and RAN traffic generation. The works by
Meng et al. [2023] to build a scalable and accurate generator for control-plane traffic for
LTE/5G systems fit perfectly for what we require. They have modelled control-plane
traffic of UEs across times of the day, and were able to create a statistics-based traffic
generator that could emulate realistic traffic for 5G cores. Unfortunately, their source
code and model used for building their generator is not publicly available.

Resorting to traditional software-based RAN emulators that require the user to define
the workload, we investigated into srsRAN (Gomez-Miguelez et al. [2016]), OpenAir-
Interface 5G RAN (OpenAirInterface.org [2024]), and Nervion RAN Emulator (Larrea
et al. [2021]). Although each of these support similar features, Larrea et al. [2021]
showed that the memory and CPU footprint of srsRAN and OpenAirInteface was larger
then that of Nervion. This is due to the former two shipping with a full implementation
of the RAN components (such as the gNB, the component responsible for bridging
communication between the UE and the core), whereas Nervion only simulates the
NGAP packets required for putting a mobile core under load. For the purposes of using
RAN emulation in this report, we needed only NGAP-level packet traffic generation
and not a full software radio network implementation. As such, when we apply traffic
load to public cloud core deployments in Chapter 3, we have used Nervion.



Chapter 3

Deploying to the Public Cloud

3.1 Overview on Methods of Deployment

There are numerous services to run a compute workload in the cloud. The largest ones
are Amazon Web Services (AWS), Google Cloud and Microsoft Azure, although there
are many smaller companies that offer platform-as-a-service solutions with varying
fees and capabilities as well. As the largest in the market, we will focus on AWS as
a representative example of a public cloud that a mobile operator may look toward
deploying their core network. However, even within one cloud provider, there are
still numerous options in which one can deploy the same workload, each with their
trade-offs.

In this section, we will list, compare and rank the feasibility of these options in the
context of representative workloads. The analysis and ranking is done qualitatively,
hypothesising the deployment of a containerised workload with compute requirements
akin to a cloud-native mobile core. Specifically, we focus on service offerings that allow
deploying workloads to Kubernetes in order to adaptively scale based on fluctuating
requirements. We will then compare them against each other in the following section
based on estimated cost effectiveness, ease of manageability and potential for observ-
ability. This will conclude with a hypothesised ideal method to deploy a mobile core to
the public cloud, and lead on to actual experimental performance and cost data in the
section following it.

AWS offers largely three distinct methods to deploy workloads on Kubernetes in order
of the amount of manual control: Elastic Kubernetes Service (EKS) with the Fargate
compute engine, EKS with Elastic Compute Cloud (EC2) engines, and finally, self-
managed Kubernetes on EC2 engines. The three are categorised as shown in Figure
3.1.

A managed Kubernetes deployment such as EKS refers to the Kubernetes control plane
being automatically provisioned as a service, and the customer being billed for it in
exchange for less laborious setup work. This is the most fundamental benefit of public
cloud offerings in comparison to running a private cluster within a datacenter, as it
reduces the personnel requirements for keeping the Kubernetes control plane up-to-date

9
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Kubernetes on AWS

Managed

EKS with Fargate Engine EKS with EC2 Engine

Unmanaged

EC2 Engine

Endless scaling Node-level billing

Figure 3.1: Three Kubernetes deployment options on AWS

with security patches, ensuring redundancy and high-availability, and configuring it
ready for production. All major cloud platforms provide a service of this nature (see
Azure Kubernetes Service, Google Kubernetes Engine, etc). In comparison, running a
self-managed Kubernetes control plane on top of the VM offerings of the cloud provider
(such as the EC2 engine) is no simpler in complexity to doing so on private VMs.
Depending on the cloud provider, it may even be more complex than private clouds due
to having to learn the intricacies of the cloud provider’s network configuration APIs.

Fargate and EC2 compute engines are AWS-specific variants of a common cloud
platform offering: the choice between managing workload at the Kubernetes pod
scale, or at the Kubernetes node (underlying VM) scale. Amazon Fargate abstracts
away the concept of Kubernetes nodes, and allows customers to focus on launching
pods in a serverless manner and getting billed for pod-level resource usage. On the
contrary, Amazon EC2 is a VM service which allows customers to choose specific VM
vCPU/memory specs while getting billed at the granularity of those VMs regardless of
the number of pods running on it. With the same operational effort view that favored the
managed Kubernetes deployment, Fargate is a much better choice. However, whether
or not Fargate’s pricing scheme is reasonable depends on the type of workload to be
deployed. This is further explained later. From a financial perspective, EC2 has a
beneficial feature over Fargate in that it allows customers to deploy workloads to Spot
Instances, a cheaper variant of VMs that offer the same power as normal VMs, but have
the restriction that workloads may be evicted from it with short notice.

EC2 (and similar VM services in other cloud providers) additionally has a secondary
layer of customization that Fargate does not offer, where the customer chooses the type
of the VMs specific to their workload. The exact offerings differ for each cloud provider.
For AWS, the VMs are categorized as General Purpose, Compute Optimized, Mem-
ory Optimized, Storage Optimized, Accelerated Computing, and High-Performance
Computing, where within each category there are types ranging in specifications. An
overview of the features that each of these types provide is listed below:

General Purpose VMs These offer access to a burst-able CPU of moderate frequency
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(3.1-3.5GHz [cite]), suited for websites, development environments, and for
hosting application microservices. A representative AWS General Purpose VM is
the T3 series, which uses an Intel Xeon Scalable processor that can burst up to
3.1GHz.

Compute Optimized VMs These come with CPUs with higher performance than
general purpose VMs, which makes it suited for high-traffic servers, scientific
computing and video encoding. A representative example is the C5 series, most
of which use an Intel Xeon Platinum 8000 series processor that can burst up to
3.5GHz. At the same prices as General Purpose VMs, Compute Optimized ones
tend to feature more vCPUs and less memory or internet bandwidth.

Memory Optimized VMs At the other are Memory Optimized VMs like the R5 series,
which are suited for caches, databases, and other memory-intensive workloads.
At the same prices as General Purpose VMs, these tend to feature faster and larger
memory.

Storage Optimized VMs These come with fast disk throughput performance, useful
for applications like logging, databases, and file storage that require lots of disk
I/O.

Accelerated Computing and High-Performance Computing VMs These offer spe-
cific combinations of high-performance CPU, GPU and memory to suit very
intense compute workloads such as video encoding and physical simulations.

As the descriptions of the deployment options have suggested thusfar, the most suited
Kubernetes deployment type depends greatly on the requirements of the workload.

3.2 Mapping to Mobile Core Workload Characteristics

To effectively compare the deployment methods, we review the characteristics that a
typical workload may have when mobile operators consider cloud-native mobile core
deployments. Two main properties are that processing demands fluctuate significantly
due to UE connection patterns and that they must adhere to latency and reliability
requirements that the operator needs.

Fluctuating demands refers to differences in the number of connected devices across
both short and long timespans. For example, national-scale large events like disasters,
festivals, or sport tournaments may cause short spikes to happen across an operator’s
network, causing the mobile core to receive more messages. Regular fluctuations such
as time of day, public holidays and seasonal demands can also affect the traffic demands
on a longer scale. Such increased load in turn demands more processing power in order
to maintain the overall network speed. However, it is financially unreasonable to sustain
this increased processing power at a period of lower traffic. This is because public cloud
provider offerings become costlier when with extra compute power, due to end-user
incurred costs on power usage, hoarding resources, etc. As such, the infrastructure
must be able to automatically scale on demand, keeping the impact on delay as little as
possible in times of exceptional traffic.
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The latency and reliability requirements refer to the requirements that a mobile operator
imposes on themselves as part of their service level agreements (SLAs) with customers
and other services. Typically, the data plane is subject to tighter requirements due to the
larger direct impact on end-users (for example, video streaming, gaming, autonomous
driving, etc). For 5G networks in particular, the ITU imposes the minimum requirement
to be that the one-way end-to-end data plane latency (so, from the UE to the UPF 3rd
Generation Partnership Project (3GPP) [2021b]) should be a maximum of 4ms for
eMBB and 1ms for URLLC. For the 5G control plane, the ITU defines 20 ms to be the
maximum transition time to go from “an idle state to the start of data transfer” (Interna-
tional Telecommunications Union (ITU) [2017]). As per the flow of 5G registration
as described in Figure TODO, there are multiple round-trip control plane messages
required in order for a UE to transition from its idle “non-connected” state to a state of
data plane transfer (NAS Registration Request & NAS Authentication Request, NAS
Authentication Response & NAS Security Mode Command, NAS Security Mode Com-
plete & NAS Registration Accept, NAS PDU Session Request & NAS PDU Session
Accept). If ITU’s recommendation of 20 ms is understood to encompass these four
procedures, then each message has to be handled end-to-end in an average of 5 ms.
Taking into additional time for messages to transmit through the radio network and for
the UE to perform work (such as encryption) on its side, an acceptable average latency
for the core network should be even lower, at around 2-3 ms.

The above two characteristics constrain the deployment types that a mobile core can
feasibly deploy to. The infrastructure a mobile core has to be flexible in its scaling
capabilities to be financially efficient, and must be capable enough to sustain the required
latency values.

We will examine the aforementioned three methods of deployment (and its additional
options) under the newly explained two constraints unique to mobile cores. The exami-
nation will rate each deployment option by cost impact, potential for observability,
and ease of manageability. The three criteria were chosen from the goals of this study:
cost impact is the most important criteria, and the reason why operators consider cloud
deployments in contrast to traditionally costly on-premise setups; observability is impor-
tant for gathering metrics for business KPIs as well as to monitor for security problems
and to diagnose problematic sections of the deployment; and finally, manageability is
important for saving on human resource costs and the traditionally large operational
expenses.

3.2.1 Analysis of EKS (managed Kubernetes) with Fargate

When Fargate is used in tandem with EKS, each pod that matches the customer-specified
criteria will be scheduled as a task on Fargate. However, as Kubernetes operates on
the concept of scheduling pods onto nodes, Fargate presents the scheduled tasks as
having a dedicated node each, sized specifically for the the task it needs to run, and
which exclusively runs the single pod it has been provisioned with. Customers can
specify a vCPU and memory configuration for the tasks according to a set of allowed
combinations Amazon Web Services [2024a], and are billed by the total sum of all
scheduled tasks.
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CPU \Mem 0.5 GB 1 GB 2 GB 3 GB 4 GB
0.25 vCPU $0.00711 $0.01384 $0.02731 $0.04078 $0.05425
0.5 vCPU - $0.01421 $0.02768 $0.04115 $0.05462
1 vCPU - - $0.02842 $0.04189 $0.05536
2 vCPU - - - - $0.05684

Table 3.1: Fargate Resource Configurations and Pricing per hour for eu-north-1 (Stock-
holm) in March 2024, based on data from Amazon Web Services [2024a]

EKS charges a constant fee for the automatic provisioning of the Kubernetes control
plane ($0.1/h). For the scheduled Fargate tasks, in the eu-north-1 AWS region in March
2024, the pricing was $0.0445/vCPU/hour and $0.0049/GB/hour for CPU and memory
resources respectively, resulting in a price matrix for the configurations seen in Table
3.1. The flexibility in pricing ranging from as low as under a cent per hour for the
least powerful configuration is greatly beneficial for Kubernetes workloads that scale,
enabling operators to be financially efficient.

Note that the table has more columns and rows for larger configurations of CPU and
memory, but they have been omitted in this paper to draw attention to the low-resource
configurations. Due to the way Kubernetes’s Horizontal Pod Autoscaler works, there
must be at least one replica of a workload present at any moment, and all replicas must
have the same resource configurations. It is therefore inefficient to request a larger
amount of CPU and memory per replica and be unable to scale smaller, especially as
any reasonable core network implementation would have a low CPU usage when the
network is at the lowest load (such as in rural areas at night).

An issue with using EKS with Fargate is that the scheduled Fargate tasks require some
overhead in connecting with the Kubernetes control plane, incurring up to 256MiB
higher memory use as well as some CPU use. This manifests as a higher cost than
the ideal resource usage of each pod. Further, the limited configuration options means
that one cannot run pods of small sizes efficiently. This is especially problematic for
highly modularized mobile cores with many different components (such as a scalable
implementation of the CNF architecture), as each component may not require a large
amount of resources individually. Another limitation is that the underlying processor and
memory details are not published to the public, nor are they likely consistent, making it
difficult for operators to get a reliable performance out of their core components.

There are also problems with exposing the port 38412 SCTP interface for UEs/RANs
to connect to. Usually, Kubernetes pods can define its open ports through the YAML
configuration in three different ways: ‘NodePort’, ‘HostPort’, or through a Load
Balancer. ‘NodePort’ is used to open a port on every node, where traffic gets routed to
the correct pod internally; ‘HostPort’ is used to open a port on the single node that a
pod runs on; and a Load Balancer assigns an IP or DNS name as an alias for multiple
pods, and performs load-balancing traffic routing to the pods.

However, Fargate does not support ‘HostPort’, leaving us with two ways of opening
the SCTP port. The default port range for ‘NodePort’s as defined by the Kubernetes
control plane configuration is 30000–32767, and it is not possible to change this with a
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managed Kubernetes control plane (Ian Smith [2021]). Furthermore, Load Balancers on
AWS do not support the SCTP protocol. All in all, this means that a core network cannot
exposed if it is deployed on just Fargate. An operator needs at least one non-Fargate
node deployed through EC2 for a functional SCTP server. In the case of low amounts
of traffic, the extra space on EC2 can incur wasted financial resources.

In terms of observability, Fargate is limiting as well. The reason is its abstraction
over the underlying server, which makes detailed tracing and system-level performance
monitoring impossible to do. For example, a common approach to debugging anoma-
listic network behaviour in a Kubernetes pod is to attach what is called a ‘sidecar
container’ with network monitoring capabilities (such as a WireShark instance) to see
the network packet traces. A sidecar container runs in the same Kubernetes pod (and
Fargate task) with the main application container, but with escalated privileges in order
to log network and system traces using Linux capabilities. Such useful method to
debugging is not possible on Fargate however, because AWS disables all privilege
escalation, citing security concerns and process isolation (Amazon Elastic Container
Service Developer Documentation [2024]). Somewhat ironically, the lack of system
visibility makes the deployment less secure for mobile cores that comprises of multiple
third-party components, as it becomes difficult to monitor and diagnose for anomalies
in the containers.

The saving grace of this deployment method is that the the “ready-to-run” nature of the
managed Kubernetes service and the serverless task provisioning marry nicely to make a
strong case for ease of manageability. The maintenance required for security patches in
Kubernetes control planes and underlying server OSes is nonexistent with this approach,
reducing both the depth in specialised knowledge required and the breadth of the work
required just to maintain an existing deployment.

Overall, the managed Kubernetetes deployment with Fargate is a strong contender in
terms of manageability and the ability to handle fluctuations in a financially efficient
manner, but comes with equally strong drawbacks in its limited observability and actual
cost-efficiency when viewed holistically.

3.2.2 Analysis of EKS (managed Kubernetes) with EC2

The AWS EC2 offering works by customers choosing VM types to provision, and the
managed Kubernetes control plane scheduling the pods to run on those nodes. Unlike
Fargate, these are more similar to traditional Kubernetes setups in that the nodes can
host multiple pods, as long as the total requested resources does not exceed that of that
node. By default, AWS imposes soft limits on the number of pods an EC2 node can
host based on the number of attached network interfaces (Amazon Web Services Labs
GitHub [2024]), however this can be increased if necessary using ‘Prefix Delegation’, a
feature where EC2 nodes can be given IPv4 prefixes instead of a single address (Amazon
EKS User Guide [2024]).

As described previously, EC2 offers a range of VM types to choose from. Among the
various optimized VM types, the General Purpose and Compute Optimized are the most
suitable for cloud-native mobile cores. Memory Optimized machines are above our
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requirements as cloud-native software are inherently largely stateless in order to scale,
and thus have a small persistent memory footprint. Storage Optimized, Accelerated
and High-Performance Computing VM types are also not suited for our use for similar
reasons. Generally, even across non-stateless implementations, a mobile core control
plane is mainly CPU-bound (Sama et al. [2015]). Based on this criteria, we filter
our list of potential VM types to those listed in Table X. Similar to our analysis of
Fargate configurations in Section 3.2.1, we focus our attention on the low-resource
configurations in order to reduce idle resources when the core is under low load.

Importantly, EC2 offers two prices for each VM type – On Demand and Spot. On
Demand variants are always available when requested and have a stable pricing scheme.
They allow operators to have full control over the lifecycle of the VM, which makes
it suitable for high-availability workloads and those with persistent data. On the other
hand, Spot variants come with a much cheaper cost (often at half price or less compared
to On-Demand variants) and run with the same machine specifications as On-Demand
variants, but risk not being available when requested or being shut off at short notice
due to other customers’ demands. Spot VMs are naturally suited for stateless workloads,
as such any stateless component of the cloud-native core should have no problems in
operating on it. However, to maintain network availability in case there are no Spot
VMs available, as well as to host the stateful components such as the customer database,
at least one On-Demand node should be used when deploying for production.

Instance vCPUs GB RAM On-Demand $/h Spot $/h
General Purpose

t3.nano 2 0.5 0.0054 0.0052
t3.micro 2 1 0.0108 0.0103
t3.small 2 2 0.0216 0.0209

t3.medium 2 4 0.0432 0.0240
t3.large 2 8 0.0864 0.0369
m5.large 2 8 0.1020 0.0335

Compute-Optimized
c5.large 2 4 0.0910 0.0396
c5a.large 2 4 0.0820 0.0238

c6g.medium 1 2 0.0365 0.0094
c6g.large 2 4 0.0730 0.0234
c6i.large 2 4 0.0910 0.0270

c7g.medium 1 2 0.0387 0.0100
c7g.large 2 4 0.0774 0.0174

c7a.medium 1 2 0.05494 0.0126

Table 3.2: General Purpose and Compute-Optimized VM types and their pricing per hour
for eu-north-1 (Stockholm) in March 2024, based on data from Amazon Web Services
[2024a] and Amazon Web Services [2024b]

The total cost for a deployment on EKS with EC2 is a sum of $0.1/h for the automatically
provisioned Kubernetes control plane, and the EC2 VM costs from Table 3.2. Recall
that the most minimal Fargate resource configuration for a Kubernetes pod was 0.25
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vCPU and 0.5 GB of memory for $0.0071/hour. On an EC2-based deployment using
VMs that come with 2 vCPU and 4GB memory, theoretically up to 8 such pods can be
scheduled at a lowest cost of $0.0432 (t3.medium) with on-demand and $0.0240 with
spot variants. Realistically however, due to some Kubernetes node overhead, the pod
limit may be 6–7, in which case the per-pod cost is $0.0650 or $0.0037/hour, which
makes the price roughly equal to Fargate costs with on-demand pricing, and about half
as much with spot pricing. This is lucrative in itself, but it can be even further optimized,
as many pods do not need the full 0.25 vCPU and 0.5 GB of memory. In fact, Larrea
et al. [2023] saw no improvement in performance when allocating above 0.05 vCPU per
pod for a stateless mobile core worker pod. This means that an EC2 VM can potentially
host many more pods compared to Fargate at the same price, making this deployment
very cost-efficient.

Scaling flexibility is a concern when deploying workloads to EC2 nodes. This is because
the Kubernetes Horizontal Pod Autoscaler can replicate workloads across all of the
nodes registered with the control plane, but is not capable of starting or stopping nodes
to adjust the overall capacity. Overprovisioning or underprovisioning EC2 VMs can lead
to high incurred costs or performance losses, both of which can impact an operator’s
ability to meet customer satisfactions. Thankfully, the Kubernetes Cluster Autoscaler
project (Kubernetes [2024]) can perform this additional level of scaling, and spin up
or down EC2 VMs in what it calls ‘node groups’. These node groups can specify a
minimum and maximum number of EC2 VMs to provision along with the type of VM.
Cluster Autoscaler will continue to monitor the whole cluster for resource shortage,
and provision a new node to the node group or remove an existing one. Whenever
Cluster Autoscaler adjust the number of nodes, new nodes are automatically connected
with the EKS Kubernetes control plane, making it fully automatic and seamless for
the customer when scaling nodes. Similarly, a removal of a node will gracefully move
any Kubernetes pods on it to other existing nodes. With this set up, the manageability
burden of the cluster lessens drastically, and the deployment is able to handle fluctuating
demands at a highly dynamic scale.

Observability potential is higher with pods deployed to EC2 than with Fargate. The
customer gets access to the underlying VM through remote interaction protocols like
SSH, which means that they can install monitoring agents or other privileged software.
Such software can provide insight into the performance of the VM and the Kubernetes
pods that it is running. This is in stark constrast to Fargate deployments where the VM
was abstracted away.

In summary, the managed Kubernetes deployment with EC2 VMs compute engines is
a strong all-rounder that excels in cost efficiency and observability, all the while not
sacrificing any of Fargate’s lucrative flexible scaling or ease of manageability.

3.2.3 Analysis of self-managed Kubernetes with EC2

The final method of deploying a Kubernetes-based workload is to self-manage the entire
stack, letting AWS only manage the EC2 VMs. This way, the customer can have full
control over their Kubernetes control plane, allowing for custom-tweaked deployments
if necessary. Having full access to both the nodes and the cluster control plane makes
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the self-managed deployment option very observable.

Unfortunately, configuring and maintaining a Kubernetes control plane is a lot of
work, especially when taking into account security upgrades and high-availability
requirements (DZone Limited [2023]). This requires both hiring specialized engineers
as well as continuously spending developer time on the maintenance of a cluster. In
addition, from a technical perspective, the Kubernetes control plane must be hosted
on a machine that exclusively acts as the master node. The Kubernetes master node
cannot schedule pods onto itself, meaning that this deployment method will naturally
need at least one VM dedicated for the control plane. Taking all of these difficulties into
account, the operational costs of running a self-managed Kubernetes deployment often
outweigh the service cost of the managed Kubernetes services (e.g. $0.1/h for EKS).

Furthermore, as a matter of principle, when the public cloud is treated as simply a VM
host, it is not much different from private cloud deployments. Many of the network
configurations and VM setup required to make an AWS EC2 node support Kubernetes
pod deployments are the same for an on-premise cloud or a rented remote server. The
similarity voids most of the point of using the public cloud, as there is no benefit to be
gained in ease of manageability or developer effort. The cost may be cheaper compared
to the traditional options, but the benefits of the public cloud are not utilized fully to be
truly cost-efficient.

In summary, using a self-managed Kubernetes control plane with EC2 VMs is not a
recommended approach based on the drawbacks in almost all criteria. It can perhaps
serve as a useful transition deployment while a privately managed Kubernetes cluster
is upgraded to run on the public cloud, but that is the extent to which this method
proves beneficial. In the rest of the report, this deployment method will be omitted from
comparisons.

3.2.4 Summary: Hypothesised “best” Deployment Method

Table 3.3 was created based on the above analysis. We hypothesise that deploying a
mobile core to EKS with EC2 VMs as the compute backend will be the best option for
cost efficiency, observability, and manageability.

3.3 Deployment Evaluation Procedure

In order to evaluate the different deployment methods quantitatively, we took to de-
ploying a functional and production-ready mobile core (CoreKube) to AWS to analyse
the performance and cost under some simulated load. CoreKube’s architecture is rep-
resentative of a cloud-native mobile core, featuring stateless components that scale to
responding demands. This was especially verified true based on how little re-engineering
was required of the CoreKube codebase to support public-cloud deployment. For ex-
ample, based on the analysis of each deployment method performed in the previous
section, it was determined necessary for there to be a lightweight internet-facing core
component that handles the incoming SCTP traffic before routing to either EC2-based or
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Criteria
Self-managed

with EC2
EKS with
Fargate

EKS with
EC2

Cost
≈ $0.025/hr

8pods

$0.1/h +
≈ $0.007/hr

1 pod

$0.1/h +
≈ $0.025/hr

8 pods
Cost efficiency Good Not very good Good

Ease of
Manageability Difficult Easy Easy

Observability Full Control Limited
Nearly

Full Control

Table 3.3: Summary of the qualitative analysis of the three Kubernetes deployment
methods on AWS

Fargate-based components. CoreKube already has a compatible architecture, featuring
a light-weight SCTP front-end, a scalable stateless worker, and a database.

Another choice instead of CoreKube was to use ECHO (Nguyen et al. [2018]), due
to their past success in deploying to Microsoft Azure. Unfortunately, ECHO is not
well-optimized as a cloud-native software as Larrea et al. [2023] points out. Specifically,
ECHO claims it is stateless and supports auto-replicating to handle demand, but the
implementation always routes messages from the same UE to the same component,
easily leading to situations where some instance replicas are underutilized while others
are overloaded. This limitation undermines any attempt to measure performance,
resource usage and cost with it, since the results can be highly skewed and dependent
on the UE connection patterns. In contrast, CoreKube is truly stateless and each worker
can handle any incoming message, allowing the instance-level performance, resource
usage, and incurred costs to be independent of any UE or connection pattern, which
allows easy extrapolation to larger traffic demands.

We describe here the procedure for actually deploying CoreKube to AWS EKS with
Fargate and EKS with EC2, and will then proceed to evaluate the two deployments
through quantitative comparisons. Figure 3.2 describes the deployment setup for using
Fargate while Figure 3.3 describes it for EC2.

Setting each deployment up individually requires multiple complex invocations of the
aws CLI tool executed in order, or navigation through the complex AWS web interface.
This is prone to user error (where mistakes incur costs) and subject to difficulty in
recreating environments reliably. As a solution, we used Terraform to orchestrate the
setup. Terraform is an open-source tool maintained by HashiCorp for abstracting vendor
APIs into simplified JSON-like specifications, that when applied deterministically
create the specified cloud environment. It is widely used in industry for its ability to
do incremental upgrades, setup machines deterministically, and for the vast supply of
plugins that interface with various cloud provider APIs, including ones for AWS.

Firstly, to ensure connectivity between various components, we used an AWS Virtual
Private Cloud (VPC) to provision a local network with 3 private and 3 public subnets,
as well as an Internet Gateway and NAT Gateway. The Terraform code that describes
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Figure 3.2: AWS deployment diagram for deploying CoreKube on EKS with Fargate
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Figure 3.3: AWS deployment diagram for deploying CoreKube on EKS with EC2
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this VPC setup can be found in cli/terraform/base/setup.tf. The private subnets
route externally directed traffic to the NAT Gateway, which then routes it to the Internet
Gateway for access to the wider internet. The public subnets route externally directed
traffic to the Internet Gateway directly. The difference is in the allocation of public IPv4
addresses. Because the Internet Gateway is just a traffic router and does not provide
network address translation (NAT) capabilities, all services within the public subnets
are assigned a unique public IPv4 address. The property makes it suitable for publicly
accessible services such as the mobile core frontend, which needs to have an public
IP address with port 38412 open for NGAP traffic. On the contrary, because private
subnets are behind a layer of NAT, they are only assigned internal IPv4 addresses and
the services within it are not reachable directly by IP. This makes it suitable for securing
workloads from external access, such as other mobile core components that only need
to interface with each other and not the wider internet.

The six subnets were spread across multiple AWS availability zones, which ensured
that a network failure in one physical AWS data-center could promptly hand over to
another subnet to retain connectivity with both the rest of the cloud and wider internet.
They were assigned an address range of /22 each, allowing for up to 1024 different
IPs to be allocated within the subnet. This range was arbitrarily chosen as a result of
some performed experiments, which measured roughly the number of services that the
network would be hosting at its peak load. Since choosing a wider range does not incur
higher costs, operators are encouraged to make sure that their VPC has enough address
ranges for their own deployment.

The managed Kubernetes control plane (EKS) was deployed into the aforementioned
VPC, as both methods under evaluation required it. The relevant Terraform code for
EKS is in cli/terraform/base/ck_cluster.tf. As described in the analysis of
each deployment method (3.2.1 and 3.2.2), the EKS cluster is required to have at least
one EC2 node to host the internet-facing component of the core at SCTP port 38412.
We decided to provision the t3.small VM type for it, which is a small general-purpose
VM with 2 vCPUs and 2 GB memory.

For the Fargate-based deployment, the Terraform code further describes an AWS Fargate
Profile, a description of what Kubernetes pods should be scheduled as a task on Fargate.
This is not enough for a functional deployment to Fargate however, as by default the
Fargate tasks are restricted in their access to other resources (such as the internet-facing
EC2 node). To allow communication between the EC2 node and the Fargate tasks, the
operator must add a rule to the VPC firewall system (‘Security Group Rule’), which is
done through a Terraform definition as well.

For the EC2-based deployment, an installation of Kubernetes Cluster Autoscaler (Ku-
bernetes [2024]) was used to dynamically adjust the number of EC2 nodes depending
on how much the Kubernetes pods scaled by. This is specified through a min size and
max size of the fleet of nodes, and acts as a secondary layer of scaling on top of the
Kubernetes Horizontal Pod Autoscaler (which scales pods onto existing nodes).
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Figure 3.4: Sample output from publicore when running a load simulation

Figure 3.5: Sample output from publicore when creating a new deployment

3.3.1 Publicore: A CLI Tool for Managing Cloud-Native Mobile
Cores

Although Terraform works well for the provisioning of CoreKube and cloud-native
software in general, there was still a lot of manual work required after every deploy-
ment to put them under load and evaluate them, including the setup of the Nervion
RAN emulator, running workload tests, and collecting data. To this end, we created
publicore, a command-line tool written in C++ to provide a wrapper for the most
common operations performed during the evaluation of a mobile core deployment to
the public cloud. A sample output of the program is given in Figure 3.4, and the source
code of this tool can be found in the cli directory. We hope that this tool aids operators
and other researchers in the evaluation of their own mobile core setup when deployed
to AWS.

Publicore requires Terraform and the Kubernetes CLI to be installed as a prerequisite,
and is capable of performing automated deployments (see Figure 3.5) of the core under
test (CoreKube) and the load simulation tool (Nervion RAN emulator), starting and
stopping a simulated load, collecting Prometheus metrics at periodic intervals to write
to CSV files, and to destroy a deployment as necessary after its evaluation. The tool
is built with a modular structure where each C++ class handles a sub-command as
specified at the command-line, and is easily extensible to multiple cloud providers and
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Figure 3.6: Top: Average vCPU usage per Worker pod under a load of 100 UEs, for
different Fargate resource configurations. Bottom: Total vCPU usage per Worker pod
under a load of 100 UEs, for different Fargate resource configurations.

core implementations through the addition of underlying Terraform files. Publicore
also features many command-line flags to customize the data collection behaviour and
simulated loads.

3.4 Quantitative Comparison using CoreKube

Following the methods to deploy mobile core infrastructures using Terraform and
publicore, we performed a quantitative comparison of deploying CoreKube to AWS
EKS with the Fargate backend and with the EC2 backend. The CoreKube deployment
was put under a load of 100 emulated UEs simultaneously connecting and disconnecting
in rapid succession while the average packet latency and resource usage was gathered.

First, Figures 3.6 and 3.7 presents the average and total CPU usage of the auto-scaling
worker component, as well as the average packet latency under three different Fargate
configurations: 0.25 vCPU and 0.5 GB memory, 0.5 vCPU and 1 GB memory, and 1
vCPU and 2 GB memory. The configurations were requested by changing the amount
of vCPU requested in the Kubernetes pod description YAML file. The cost for each of
these are $0.00711, $0.01421, $0.02842 for the three configurations respectively.

The figures show an average packet latency much higher than acceptable based on the
latency requirements set out in Section 3.2 (2-3 ms), ranging between 10 to 100ms.
Note the logarithmic scale used on the vertical axis to contain the variety in latency.
Surprisingly, allocating a higher amount of resources does not improve this latency to
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Figure 3.7: Average control plane message latency under a load of 100 UEs for different
Fargate resource configurations.

tolerable levels, indicating that the additional resources are not being used effectively.

The vCPU usage seen in 3.6 is much lower than the allocated amount, both in average
and total. Throughout the experiment, the total usage is double that of the average,
which is a result of the worker not auto-scaling and staying with its minimum replication
count. This is an indication of resources being over-provisioned and cost-inefficient, as
the incurred costs during idle time and peak load time are the same. For a deployment
to be cost-efficient, it must scale down if the required resources are small, but Fargate
does not let us scale to below 0.25 vCPU and 0.5 GB memory at any time. It also does
not scale upwards or make use of the larger vCPU available to improve the latency,
suggesting that there are other bottlenecks.

From these results, it can be concluded that a cloud-native core deployed onto EKS with
Fargate results in very high latency despite heavily underutilised resource usage. Some
possible causes for the high latency are network delays on communication between pods
on Fargate and EC2, as well as the underlying processor speed. The unacceptably high
latency results undermine all qualitative benefits with the Fargate approach outlined in
Section 3.2.1, such as manageability and the ability to handle fluctuations.

Next, Figures 3.8 3.9 show the vCPU usage and average message latency for de-
ployments made onto EC2, compared across four types of EC2 VMs: t3.small,
t3.medium, t3.large, m5.large, c5.large and c5a.large. These types were cho-
sen based on the list in Section 3.2.2. Note that t3.nano was attempted as well, but was
very prone to memory exhaustion problems, making it unsuited for a test deployment.

The figures show that small general-purpose VM types do not meet the latency require-
ments of 2-3 ms. However, generally, any VM types with at least 2 vCPU cores and 2
GB memory tended to perform well. It is worth noting that although t3.medium has a
theoretically better configuration than t3.small, its average latency was much higher.
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Figure 3.8: Top: Average vCPU usage per Worker pod under a load of 100 UEs, for
different EC2 VM types. Bottom: Total vCPU usage per Worker pod under a load of 100
UEs, for different EC2 VM types.

Figure 3.9: Average control plane message latency under a load of 100 UEs for different
EC2 VM types.
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The reason for this is unknown, but is likely attributable to the burstable nature of the
t3 family (Amazon Web Services [2024b]), which allows it to sustain a higher CPU
clock speed for a predefined amount every hour. We can see that the t3.large instance
briefly reaches similar latency levels as the t3.medium instance, suggesting that it may
have returned to its original CPU speed before bursting again. This attribute is quite
unpredictable however, and the compute-optimized instances appear to provide a much
more stable deployment.

Figure 3.10: Number of CoreKube workers
automatically increasing to handle the load
of 100 UEs under different EC2 VM types.

When it came to resource usage, general-
purpose VMs required higher amounts
of total vCPU to handle the same 100
UEs. The average vCPU usage per
worker pod was at similar levels for all
VM types, indicating that the general-
purpose VMs had required more repli-
cas of the worker pod to handle the
load compared to compute-optimized in-
stances. This is also verified in Figure
3.10, which shows that the four general-
purpose instances t3.small, t3.medium,
t3.large, and m5.large had the highest
number of worker pod replicas. Note that
the t3.large and m5.large had very
similar data, and only one can be seen
as a result.

These quantitative and experimental analysis performed indicated the feasibility of a
functional deployment of CoreKube to AWS, as long as the deployment method is
carefully optimized to avoid using Fargate or small general-purpose EC2 VMs. As a
final verification, we ran tests to verify that CoreKube’s auto-scaling and self-healing
properties still held true, and compared the results against the data in the original
paper. The data in the original paper were gathered inside Powder Platform (Breen et al.
[2020]), a private cloud environment.

Figure 3.11 shows the resiliency of CoreKube thanks to its rapid self-healing. At
the two highlighted timestamps, one CoreKube worker was deliberately crashed by
sending a predetermined malformed packet. However, the figure shows no major
changes in latency post-crash, neither did it decrease the worker pod count. This is
attributable to the fact that the Kubernetes Horizontal Pod Autoscaler detected the crash
and immediately replaced the worker pod within the 5 seconds that was the metrics
collection frequency during this experiment. As a result, the figure seems almost non-
problematic, demonstrating that CoreKube’s resilience and self-healing properties are
still functional in the public cloud deployment.
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Figure 3.11: The average message latency and CoreKube worker pod count. A worker
pod was deliberately crashed at the two highlighted timestamps.

3.5 Limitations in Observability

Although we could analyse and compare the deployment methods based on resource
use, message latency and estimated cost, none of these metrics provide additional
application-level insight into the causes of unexpected delays or throttled vCPU use.
Generally, as it stands we are only able to analyse a mobile core deployment in black-
box approaches universal to all cloud-native software, such as Kubernetes pod-level
resource usage and network traffic trace-based analysis.

This is especially limiting when these deployments are put to production use. 3GPP
defines multiple Key Performance Indicators (KPIs) for operators to monitor in their
core, including the UE registration success rate and the number of connected UEs at any
given moment. These values are also valuable for analysing the deployment methods
for their cost efficiency and for finding bottlenecks.

In Chapter 4, we will show an implementation of a metrics collection system specifically
designed for cloud-native mobile cores, which aims to address these issues.

3.6 Future Work

3.6.1 End-to-End Feasibility with COTS UE

As demonstrated in the previous sections, the deployment of cloud-native mobile
cores (aided with publicore) looks promising from a performance and cost-efficiency
point of view. However, there remain a challenge in order to make it functional as a
connectable core from commercial off-the-shelf (COTS) UEs.

In principle, as the deployed core has a public IP, there should be no problem for a
local device to attach to it like any emulated device, and perform the NGAP registration
procedure over SCTP. In practice however, we encountered issues with SCTP connec-
tivity between residential networks and cloud provider networks. The likely reason for
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this is the existence of routers and NAT boxes between the connections, which tend to
drop SCTP traffic (Andrew Ferguson [2024]). Consequently, COTS UEs are not able to
connect to the core running in the cloud.

A solution to pursue in the future is to find a location that has SCTP connectivity to
both the cloud providers and local internet. With such location identified, a lightweight
proxy core that runs there can forward both up- and down-link packets as necessary.
However, between residential networks and AWS, there exist no location that satisfies
that criteria.

Another solution is to run a proxy at a location that can be connected via SCTP from
the COTS UEs, and have the SCTP traffic tunnelled to the mobile core over UDP. A
similar approach is adopted within CoreKube internally for its communication between
the frontend and the workers, and is also provided as a configurable option in major
SCTP libraries (Randall Stewart and Michael Tuexen [2015]). As it involves no deep
packet inspection, the UDP-SCTP tunneling should be a viable solution that does not
sacrifice performance or latency. However, this solution makes the core interface no
longer conforming to the 3GPP standards, which may limit interoperability with other
components as well as adoption by operators.

3.6.2 Hybrid Deployment with a Local Data Plane

For a UE to successfully maintain an established connection, the core must supply the
location of a data plane. In traditional mobile cores, this is the location of the UPF (User
Plane Function) within the core. However, the latency requirements of a data plane are
much more demanding than the control plane, and as it stands, it is not certain whether
the perceived latency of connecting to a public core for data would be too large.

A remaining work for the future is to attempt a deployment where the data plane is
deployed to a location closer to the UE, limiting the public cloud deployment only to the
control plane. Such a hybrid deployment would provide the operators with the benefits
of both a cost-efficient control plane as well as a fast data plane that satisfies customer
demands.

3.7 Summary

We began this chapter with an overview of the deployment methods available to us
on AWS when considering cloud-native mobile core deployments. Our qualitative
analysis hypothesised that using a managed Kubernetes solution (EKS) together with
the pod-level auto-scaling infrastructure (Fargate) would be the method to choose based
on manageability and ability to handle fluctuations.

We then took to deploying CoreKube to AWS as a representative cloud-native mobile
core. However, the results were not in favour of Fargate, as the unacceptably high
average message latency undermined all qualitative benefits that the deployment method
was supposed to bring. In the end, deploying cores onto EKS with EC2 VM backends
appear to be the most balanced and feasible solution in terms of performance, cost
efficiency, and manageability.
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As highlighted in Section 3.5, collecting only the average message latency and the
vCPU usage does not offer great insight into the mobile core’s performance. This
observability limitation is the one remaining factor in making public cloud deployments
viable for operators. In Chapter 4, we attempt to tackle this through introducing an
observability system for cloud-native cores.



Chapter 4

Yagra: A Solution to Cloud-Native Core
Observability

Following the successful deployment of a cloud-native core to the public cloud in the
previous chapter, we noted the lack of software tools to achieve observability in the core
from a business and monitoring perspective. As it stands currently, overall computing
performance (such as vCPU and RAM usage) can be collected through generic metrics
collection such as Kubernetes Metrics Server (Kubernetes Project Instrumentation
Special Interest Group [2024]), and this was indeed the method used to collect the data
for the experiments outlined in Section 3.4. However, these metrics are too generic
to be indicative of the internal processing that the core undergoes. For example, it is
difficult to detect or trace logical bugs or abnormal performance in limited parts of a
system, a scenario that can arise as a result of multiple vendors supplying software for
various components of the mobile core. Similarly, the lack of mobile-specific metrics
make it difficult for commercial network operators to make business decisions, as many
of the 3GPP-defined Key Performance Indicators (3rd Generation Partnership Project
(3GPP) [2021a]) of an operational network require core-internal data to calculate.

In traditional mobile cores, the solution to this problem is to use a combination of
proprietary software tools and vendor-specific core components to monitor systems
(InfoVista [2022], NETSCOUT [2024]). However, these go against the principles of
cloud-native software development, which aims to be vendor-agnostic and open-source.
Furthermore, these solutions are not designed for public cloud deployments, limiting
the avenue in which smaller operators with less financial resources can start operations
in. Thus, there is a significant gap in the monitoring ecosystem for cloud-native and
public-cloud-compatible mobile cores.

In this chapter, we present Yagra, a solution to the problem of observability in cloud-
native cores. Yagra composes of a C library to integrate with existing core components,
and a Docker image to deploy where collected metrics are aggregated. It is designed
around three principles: to be cloud-native, by being containerized and supporting
metric collection from multiple replica instances of other components; vendor-agnostic,
by exposing a minimal C interface that is easily integrated with existing core implemen-
tations; and open-source, making the full development cycle available on GitHub.

29
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We will first go over the architecture of Yagra in Section 4.2, and briefly compare it
to other solutions. Then, we will explain our implementation of the system in Section
4.3 including the C library libyagra and the Yagra metrics bus, and explain some
of the choices we have made. Next, we will evaluate the results collected from the
observability system during simulated loads and determine whether the metrics are
accurate in Section 4.4. Finally in Section 4.5, we mention the future work for Yagra.

4.1 Goals

The main goal of an observability system when applied to a mobile core deployment
is to enable operators to gather data with regards to business/operational KPIs, core
performance, and especially with public-cloud deployments, incurred and estimated
cost. The three goals are explained in detail below:

Business/Operational KPIs These refer mainly to the KPIs that 3GPP defines (3rd
Generation Partnership Project (3GPP) [2021a] for 5G) as being useful to monitor
for effectively operating a mobile core network. Examples include the latency in
the core network, activity such as mean registered subscribers and mean active
device connections, as well as security and quality-of-service indicators like
success rate of registration requests. A commercial operator would see the value
in these data as it provides concrete proof that they meet their SLAs, insight into
the quality of their provided service, indication of suspicious activity or DDoS
attacks, as well as the general ability to plan business strategies based on the
data. Similarly, a private operator (including educational/industrial) of a mobile
network would find value in similar data for the purpose of network optimization
and security.

Core Performance Although generic black-box monitoring solutions work well for
monitoring the overall resource usage of a deployment (such as at the Kubernetes
pod-level or node-level), application-specific performance data would be bene-
ficial. This includes implementation-specific data such as the average database
access times, NGAP packet decode times, or average allocated memory while
processing a packet. This is useful for debugging and optimizing any core com-
ponent that the operator or vendor has access to the source code for, as well
as for detecting bugs or irregular performance issues in specific parts of a core
component.

Cost As explored already in Chapter 3, monitoring the cloud computing costs of a
network deployment is of utmost importance for an operator. It will not only be
very insightful in terms of detecting potential saving opportunities, but it is also
crucial data for forming business strategies. For example, as mobile operators
typically expand their business to serve multiple slices of their 5G network for
various uses, it would be useful to have data on the cost efficiency of each network
slice. Furthermore, it can be combined with customer data to identify customers
that incur higher cost (through more traffic or specialized network use), allowing
operators to optimize their network share accordingly. The cost data is also useful
in choosing between vendors for a particular core component, as operators can
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pick their choice according to their priorities.

There are two challenges to collecting the kinds of metrics defined above. First, cost
aside, many of the metrics must be collected with insight into the internal data of a
mobile core component. Even network-level metrics such as success rate or latency
must be measured internally, as the NGAP packets are encrypted and any external traffic
analysis can not measure it. This means that core components must be instrumented
extensively, which may leave an impact on the core’s performance. Similar studies in
the past have shown promising results with the data plane (Massimo Girondi [2020])
but none exist with the control plane despite its importance. The second challenge
arises as a result of the auto-scaling nature of cloud-native components when paired
with technologies like Kubernetes. The replicated containers are ephemeral and can
disappear whenever the network load decreases, they cannot store metrics internally
over a long period of time. Further, some statistics must be aggregated across all
replicas, such as the number of registered subscribers.

For regular stateful components, Prometheus (Prometheus Authors [2024]) is an existing
tool that works fantastically for improving the observability of a system. Prometheus
reduces the impact on performance on the instrumented component using a pull-based
approach to metrics collection. This means that the component has to be fitted with
an HTTP server that exposes metrics and their values in an certain format, which
Prometheus scrapes at regular intervals. In this way, the reliability of the component is
not bound to the reliability of Prometheus. However, the pull-based approach does not
work well with auto-scaling and ephemeral containers, as data may get lost if it is not
scraped in a timely manner before a replicated instance is terminated. Prometheus has an
alternative push-based metrics collection system built in for components to send metrics
to at will, however it is discouraged due to the aforementioned bottleneck concerns that
tie the availability of the Prometheus server with the instrumented component.

Yagra aims to achieve this highly internal and app-specific instrumentation that gives
insightful data, all while not sacrificing the performance when reporting from multiple
scalable core components.

4.2 Architecture

The novelty of Yagra is in its separation of the collection and processing of metrics.
The collection of metrics is performed within the critical path of the instrumented
component as necessary, but it uses a persistent external process to aggregate the
metrics and perform required processing on it before exposing it to Prometheus as a
pull source. This separation of concerns allows for metric collection with negligible
performance impact while allowing deep application insight. The overall architecture is
illustrated in Figure 4.1. We refer to the metric collection system as the Yagra Library
as it is provided in the form of a C library, and the external process as the Yagra metrics
bus.

The Yagra C library is capable of measuring time between sections of the critical path
of a core component, such as for measuring database access times or NGAP packet
decode times. These are collected and sent in a ‘batch’, which is coupled with the unit
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Core Component 1 Core Component 2 Core Component 3 Core Component 4
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Prometheus
(Pull-based Data Collection)
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Yagra C Library Yagra C Library Yagra C Library Yagra C Library

Figure 4.1: The architecture for the Yagra metrics collection system

of processing in the component. For CoreKube workers, a batch refers to the metrics
collected over the processing of a single message packet, however this is arbitrary and
can differ based on the functionality and implementation of the core component. Yagra
allows the library integrator to define identifiers for each batch, such as the UE ID or the
message type. These get sent alongside the metrics to the bus, where it is used for both
labeling the Prometheus metrics it exposes, as well as to calculate aggregation metrics
(e.g., number of unique label values observed). Importantly, the Yagra C library allows
small amounts of local processing to handle duplicate metrics collected during a single
batch, before sending them to the Yagra bus. Specifically, it can choose to keep the
average, sum, minimum, maximum, first-seen or last-seen value for a metric. In practice,
this is extremely useful for distinguishing the processing of counter-based metrics (e.g.,
number of database accesses, which should be summed if there are multiple) versus
measurement-based metrics (e.g., database access time, which should have the average
or the maximum recorded). The temporary local processing and batch-collection allows
the library to reduce the number of network calls to the Yagra bus, reducing the impact
on performance. Furthermore, the sending of metrics can be done in a separate thread,
after the collection of all metrics within a batch. When Yagra is integrated in this way,
the performance impact on the critical path is minimal.

The library is further capable of storing small amounts of persistent data as well. While
this stateful nature may seem counter-intuitive at first when considering that Yagra’s
goal is to support cloud-native core components that can be stateless and ephemeral, it is
not a large problem as the persistent metrics are sent along every batch of non-persistent
metrics, making sure that the data arrives at the metrics bus frequently and without loss
when an instance is inevitably terminated at some point.

Communication between the Yagra C library and the bus is one-way over TCP, using
a specialised byte encoding of the metric and label names to save both memory and
network overhead. The bus, upon receiving observed values for metrics, calculates
additional aggregation metrics based on it before making them available for collection
from Prometheus. Finally, Prometheus then acts as a short-term data store to enable
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further applications such as user-friendly visualisations with Grafana dashboards, or
dynamically applied network policies.

4.2.1 Comparisons to Other Solutions

The architecture presents benefits over other solutions for achieving application-level
observability. A related work for cloud-native software in general is Telegraf (Influx-
Data Inc. [2024]), an open-source software made for a similar goal in mind: collect
infrastructure performance metrics from distributed application containers. Unfortu-
nately it is orthogonal with our solution, as Telegraf focuses on the centralisation of
Prometheus-compatible exported metrics collected from different software – not on the
method of software instrumentation itself. Telegraf is therefore unable to instrument
core components and define new metrics, such as for business-specific KPIs.

4.3 Implementation

The library for instrumenting the core components is written in C, as a pair of source
and header files that makes it easy to integrate to any existing component where the
source code is available. It is written with a focus on developer usability, exemplified
by the extensive logging, function documentation, and a clear API. Internally, it con-
tains a TCP client that maintains a socket connection to the metrics server from the
moment yagra_init() is called, and sends metrics at any developed-defined point
using yagra_send_batch().

To use this library, one should define upfront the persistent metrics, the metrics to be
collected for each batch, and the labels to apply to the batch. These are done with the
yagra_define_* functions, which can take as arguments the name and description, the
type of metric, and the local aggregation strategy in case of duplicates. Internally, this
function sends a packet to the Yagra metrics bus with the values passed in as arguments
to request a registration of a new Prometheus metric to expose. Then, at any point a
batch begins (such as when a new message is received from another component in the
core), the developer can use the yagra_init_batch() function to start a batch that
metrics get appended to, and and observe values using the yagra_observe() function.
Note here that the Yagra library has been engineered to intelligently add the observed
value regardless of whether it should be stored as a persistent metric, batch metric, or a
batch label. This results in a very developer-friendly API interface.

The central metrics bus is written in C++ with speed and resource usage in mind. Speed
is important to handle packets from many different components in the core without
becoming a bottleneck itself, and resource usage is optimised so that the adoption of
Yagra as a metrics collection system does not itself incur much cost when deployed to a
cloud environment. Specifically, when the bus receives a message from the Yagra C
library, it launches a separate thread to enable multiprocessing of incoming messages.
Internally, the bus runs two TCP servers: one for collecting metrics from various core
components, and one for exposing the metrics for pull-based scraping services like
Prometheus.
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Figure 4.2: An example Grafana dashboard visualizing metrics collected from Yagra and
Kubernetes Metrics Server, to show both core-specific and generic metrics

Care has been taken to reduce the footprint throughout the Yagra system as metrics are
intended to be collected and sent frequently. For example, after the initial registration of
a metric, the original name is no longer stored to save memory. Instead, the C libary uses
a fast string hash function (Daniel J. Bernstein [1991]) is used to bring down the metric
name to a uint64_t (16 bytes) integer hash. This hash is then communicated to the bus
where it is used as a lookup key into a map of various exposed metrics. Compared to a
string-based approach, this reduces the metrics-reporting network packets from around
2000 bytes on average to just over 150 bytes, freeing up both memory and network
capacity.

To demonstrate the use of metrics collected by Yagra, we used Grafana (Grafana Labs
[2024a]) to visualize the average message latency for CoreKube workers. A screenshot
of the dashboard is shown in Figure 4.2.

4.4 Evaluation under simulated situations

To evaluate Yagra, we put it under test in various circumstances that may arise within a
public cloud deployment of a mobile core. Through these tests, we evaluated whether the
collected metrics accurately represent the test scenario, and determined the practicality
and accuracy of the system for mobile operators to operate their network with efficiency.

We used a deployment of CoreKube patched with Yagra as the observability solution,
together with the malicious patches described below. The patches were choesn to be
representative example of defects appearing in a cloud-native mobile core. We deployed
CoreKube as demonstrated in Chapter 3, within the eu-north-1 region and with EC2
as the compute backend.
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Figure 4.3: Network throughput and UE count for a regular 100 UE workload, until a
core update at the highlighted timestamp causes an extra downlink packet to be sent.

4.4.1 A Component Sending Malicious Packets

With the advent of containerized and multi-component cores, it is becoming possible and
more likely for an operator to use a component of the mobile core supplied by multiple
third-party vendors. This is naturally cost-efficient as operators can pick and choose
the best of each vendor, but come with the possibility of supply-chain vulnerabilities
and difficulty and performing audits. In this test scenario, we assume that an automated
upgrade process in one of the core components introduced a malicious activity, where
every control-plane packet sent by the core is also sent to an attacker-owned UE. This
is a plausible scenario as described in CH-SC3 of the ENISA overview on 5G security
(European Union Agency for Cybersecurity (ENISA) [2022]).

We implement this scenario by patching the CoreKube worker component to send an
extra downlink packet to a set destination every time it is about to send a downlink
packet. Figure 4.3 shows the change in metrics as collected from Yagra. At time 400, the
worker was upgraded from the safe version to the malicious version, and immediately
an increase in downlink packets was seen, verifying that Yagra is able to detect such
situations quickly. In a production setup, these anomalies can be detected and alerted
using tools like Grafana Alerts (Grafana Labs [2024b]).

4.4.2 A Badly Coded Update to a Core Component

An update to a core component may be engineered hastily, requiring more resources
(vCPU and memory) than what is needed for an ideal implementation of the component.
We simulate a badly coded vendor component by patching a CoreKube worker module
to use more CPU cycles than necessary to handle packets, as well as to leak large
amounts of memory. We demonstrate that this defect is revealed as it happens in Figure
4.4. The memory leak is detected as a rise in latency and total pod memory, as well
as a brief drop in connected UE count. The CPU spike is also detected as a sudden
higher total CPU usage, which results in pods scaling and UE connectivity tanking.
These results verify that Yagra is able to give real-time observability information to a
cloud-native core deployment, aiding both developers of cloud-native core functions, as
well operators who use UE connectivity information for their business KPIs.
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(a) Metrics collected as a large memory leak happens at the highlighted timestamps.

(b) Metrics collected as a CPU spike happens at the highlighted timestamps.

Figure 4.4: Top: Connected UE and worker pod count. Bottom: Average latency and
allocated worker memory.
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4.5 Future Work

4.5.1 Detecting Security Threats in the Core

Throughout this report, we have assumed that the public cloud would be suitably secure
for running the control plane of a public cloud. However, this may not always be the
case, as highlighted by the opinions raised by network operators when encouraged to
use the public cloud (British Telecom [2022]). The main concern with public cloud
infrastructure is its use of multi-tenant resources and virtualization layer concerns. The
network operator has less control over the physical security of the servers, and must
trust the cloud provider to keep the servers secure. This is a concern especially with the
control plane, as it is the part of the network that can cause most sensitive data to be
exposed (such as customer data).

To address this concern, a future work would be to implement a security monitoring
system based on Yagra that can detect and alert the operator of malicious activities in the
core. Already, Yagra is capable of detecting unusually high traffic or latency, however
it is not yet capable of integrating with tracing or profiling tools. This makes Yagra a
good observability solution for business and regular performance metrics, but not for
raising concerns about unpredictable malicious behaviour that cannot be expressed as a
metric. For example, unauthorized access into the customer database would currently
go unnoticed. To support such events, Yagra must be rearchitectured to support not just
numerical metrics, but also events and logs, exposing to not only Prometheus but to
other ingestion systems like Loki (Grafana Labs [2024c]).



Chapter 5

Conclusions

In this paper, we have explored and demonstrated the feasibility of deploying a cloud-
native mobile core network to public cloud infrastructure, from a holistic perspective
encompassing ease of manageability, cost, and performance. To this end, we developed
a command-line tool, publicore, to manage reproducible cloud core deployments, and
used it to measure and compare performance across multiple deployment configurations
on AWS. We concluded that a public cloud core deployment is feasible from a cost
and performance perspective, but noticed the lack of observability which could hinder
adoption of such deployment in mobile network operators. In order to fill this gap,
we developed the Yagra system, a cloud-native, vendor-agnostic, and open-source
observability solution for cloud-native cores, and demonstrated its benefits.

Through this research project, I hope to have demonstrated the culmination of my
industrial and academic experience with telecommunications system design. With both
commercial and government interest in the mobile core growing, I believe that my
work and the knowledge I gained through this process will be useful to both the wider
research community and to my career.

Over the coming months, I will be continuing my work under a research internship with
my supervisor, completing the works identified in Sections 3.6 and 4.5. Through it, I
am aiming to take the results of this paper towards a publishable output.
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