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Abstract
In 2022, the IETF published RFC9114 detailing HTTP/3, a new HTTP stack which
uses a different transport protocol to both HTTP1 and HTTP2, called QUIC. With
the introduction and widespread adoption of HTTP/3, the original Google transport
protocol QUIC has now been established as a core element of Internet communication.
TCP traffic has been shown to be vulnerable to website fingerprinting, a traffic analysis
attack that seeks to breach the browsing privacy of a targeted user by observing patterns
in their web traffic. This attack can be similarly employed against QUIC. In theory, the
specific transport protocol used should have little effect on website fingerprinting, as
this is just the method of delivery rather than the content, so it is not site-specific. This
conclusion is generally held in peer-reviewed literature, with one notable exception, in
which Zhan et al. identify a weakness in QUIC in website fingerprinting on early traffic.

This dissertation provides evidence that this weakness is no longer present, critiques of
the methodology, and results that show the difference between the fingerprinting accu-
racy for both protocols is less significant than found by Zhan et al. This dissertation also
uses hyperparameter tuning and AutoML techniques to explore website fingerprinting
on each protocol, finding that the results for both protocols are similar. This suggests
that in the finished product of the IETF’s HTTP/3, there is no underlying flaw that is
significant enough to give an attacker a significant advantage in fingerprinting HTTP/3
traffic to HTTP/2 traffic.
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Chapter 1

Introduction

Website Fingerprinting is a traffic analysis attack that breaches a user’s privacy on
a network. It does this by training a learning algorithm to recognise the destination
of a traffic trace based on features extracted from a user’s traffic. Privacy is vital to
protect online, as different parties can leverage it in many ways. Breaching a person’s
privacy online could be for less malicious reasons like targeted advertising but also
more malicious ones like a government spying on members of its population for signs of
dissent. Website fingerprinting involves “sniffing” the traffic of a network and recording
the metadata of packets as they pass by. Because the attacker does not interfere with the
traffic in any way, this attack is essentially untraceable. Furthermore, as it is powered
by machine learning, it is likely that, as hardware and learning algorithms improve, this
attack will become more potent. Therefore, research into website fingerprinting and
ways to defend against it as it evolves is critical.

The transport protocols analysed in this paper are QUIC and TCP within the HTTP3 and
HTTP2 stacks, respectively. These are the website delivery protocols most commonly
used on the Internet. QUIC is a relatively new protocol but is becoming popular fast
due to the performance benefits it brings to internet communication; therefore, it needs
to be studied. It is essential to know that HTTP3 is as secure as HTTP2, and this paper
will focus on the privacy protection of these protocols and how well they resist website
fingerprinting attacks. This project is not the first paper in the field, although this area
has yet to be researched in depth. Among these papers, the general conclusion is that
HTTP2 and HTTP3 are as good as each other; however, in 2021, Zhan et al. [59]
published a paper regarding a discovered weakness in the early traffic of QUIC when
targeted with website fingerprinting attacks called “Website Fingerprinting on Early
QUIC Traffic”.

This conclusion is surprising, as intuitively, the transport protocol used to communicate
across a network should have an insignificant effect on website fingerprinting. To
understand this, picture the analogy of a postman delivering parcels and a group of
“porch pirates” who try to determine if a package is worth stealing. When choosing a
parcel to steal, the pirates will look at the size and shape of the package; for example,
when seeing a large rectangular parcel that seems heavy to lift, a pirate can infer that
this parcel is a new TV and an ideal target for stealing. What is not useful to the
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Chapter 1. Introduction 2

pirates is the delivery service used to deliver the TV, as this does not tell them about the
package because the delivery process would be the same regardless of the parcel being
delivered. Even if a different delivery service is used, the purpose and general process
are the same; given the same package, different delivery companies may have slightly
different delivery methods, but the package delivered is still the same. In this analogy,
the parcel is a person’s web traffic for a specific website, so a collection of individual
packets and the metadata of these packets would provide an attacker with information
to analyse. In a website fingerprinting attack, rather than looking for lucrative parcels
to steal, an attacker is trying to work out the actions of a network user, for example,
what websites or website sections they are visiting. However, the point remains that the
delivery service, or the transport protocol in a website fingerprinting context, should
not have much effect on determining where the traffic is visiting.

This leads to this paper’s hypothesis that the transport protocol should have an insignifi-
cant effect on the success of website fingerprinting.

The project’s objective is to explore if there is a fundamental weakness in QUIC traffic
that makes it more susceptible to website fingerprinting than TCP-based traffic. In
an attempt to achieve this objective, this project makes several contributions. Firstly,
this paper critically analyses the website fingerprinting on early QUIC traffic paper
to determine the strength of their conclusions. This project also contributes a more
rigorous approach to cleaning traffic data than the original paper to ensure that our
conclusions are strong. Next, this project reproduces Zhan et al.’s experiments and finds
results that contradict those in the original paper, leading to opposing conclusions about
the weakness of early QUIC traffic to website fingerprinting. This paper shows that the
results found in the Early QUIC paper are limited to experimental versions of QUIC
and that following QUIC’s standardisation in HTTP3, the patterns shown in the paper
are no longer present. Unlike Zhan et al., this paper includes standard deviations, where
available, so the significance of the results is verifiable.

Furthermore, unlike the Website Fingerprinting on Early QUIC Traffic paper, this
paper also provides all source code and docker files to facilitate the reproducibility of
the results. This paper also builds from the original paper to explore differences in
fingerprintability by tuning the models used to check if the hyperparameters that make an
effective fingerprinting model for HTTP3 are the same or similar to the hyperparameters
for HTTP2. Again, this is taken one step further by using AutoML. AutoML refers
to systems to automate machine learning tasks such as selecting models and training
hyperparameters. This paper uses AutoML to better understand whether the problem of
classifying HTTP3 traffic is the same or similar to classifying HTTP2 traffic.



Chapter 2

Background

2.1 Definition of Key Terms and Ideas

Attackers can intercept and view the contents of packets that are routed through a router
they have access to. This is known as sniffing but given that internet protocol packet
payloads are standardly encrypted, they can usually only access the packet header,
which should not include any sensitive information of the sender.

The TCP/IP stack is a layered model that defines how to connect two devices across the
internet (and other similar networked systems). Each layer is a grouping of protocols by
purpose. The general model has four layers: the Application layer, the Transport layer,
the Internet layer and the Link layer. This paper focuses on the transport layer, but it is
also useful to understand the application layer. The application layer is the domain
of applications and processes that wish to communicate with other applications on the
network. This includes most user protocols for network communication such as the
Hypertext Transfer Protocol, which is used for browsing websites and is foundational
to the World Wide Web. The transport layer is responsible for establishing a host-to-
host connection to pass messages across. Typically, a connection-based protocol called
TCP will be used, but there are also connectionless protocols like UDP, which can
transfer data without establishing a connection between hosts.

2.2 Website Fingerprinting

2.2.1 The birth of Website Fingerprinting

When the Internet was conceived, it was never intended to be anonymous; this meant
that for every packet sent over the Internet, the source and destination IP addresses
and website domains were visible [14][13]. In these scenarios it is considered that the
content of the packets is encrypted (and cannot be decrypted) as is internet standard
[5]. In the modern day, most people access the Internet from local area networks
with multiple users, so there is some inherent anonymity [31][25] but this is not an
invincible protection particularly considering an attacker who has visibility over this
Local Network such as an Internet Service Provider (ISP). The IP addresses can be
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Chapter 2. Background 4

used to deanonymise users, as from any router in the packet’s path, we can identify
where the packet has come from and where it is going, making it straightforward to
track an internet user’s behaviour. As a response to this problem (and others [26]), The
Onion Routing (Tor) browser used its protocol of onion routing to dissociate the origin
and the destination IP address from routers on a packet’s path. The implementation
of onion routing means a local adversary sniffing packets can only see the origin or
the destination, but not both at the same time, helping to keep users’ browsing history
anonymous.

However, as machine learning capabilities developed, a new kind of attack was intro-
duced. Rather than simply observing the packets’ addresses as they pass by, an attacker
uses a machine learning model to analyse the traffic pattern and create a ‘fingerprint’
corresponding to a specific website. After being trained to identify specific website
traffic, this machine learning model can be used to deanonymise a user’s behaviour.
With reasonable accuracy (over 90% in some scenarios) [56][29][43] an attacker can
now identify the websites a target visits. However, papers tend to make assumptions
about settings and scale that may not hold in the real world [34][39], this means that
this type of attack may not be as effective in realistic open world, large scale scenarios
where traffic patterns are not quite so revealing. Because of the nature of this attack,
we no longer need to see the IP addresses of the packets as features of the traffic are
sufficient. As well we should also consider that while website fingerprinting may be
limited at scale as of today, as hardware and software evolve this may not always hold
true.

Many papers involving website fingerprinting will use Tor [57] [30], VPNs [35] [44],
or both [32] in their setup as these tools are designed to make internet traffic more
anonymous. Hence, an attack to deanonymise users is a more critical problem than it
would be for regular web traffic. However, as most internet users do not use these tools
[12] [10], it is helpful to consider the scenario in which neither of these frameworks is
employed.

2.2.2 What is it?

The aim of an attacker in a website fingerprinting attack is to discover a user’s activity
over the Internet based on network traffic header information. Over Tor, this attack is
performed through the systematic collection of traffic information to train a classifier
to recognise network traffic features to identify a website given a website traffic trace.
The collection of features of a traffic trace is known as a “fingerprint”, so the practice
of creating these fingerprints is known as website fingerprinting. An attacker can
fingerprint from anywhere in the packet’s path, as the condition for fingerprinting is
that an attacker can read a packet’s unencrypted metadata. Some features have been
demonstrated to be more effective for website fingerprinting on Tor than others; features
that have proven to be effective are unique packet size [38], packet size count [32],
packet order [22], and burst size [53] [56] which has shown lots of promise recently.
Website fingerprinting is passive, this means that the attacker does not modify or
interfere with the traffic in anyway making it effectively undetectable on a network.
Attackers are also generally considered to be local, so they can only observe traces
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passing through their local area, such as a single router in a system, rather than having
access and the ability to monitor the whole network.

Website fingerprinting is generally approached as a supervised learning problem. This
means that the input data used will be labelled with a desired output, in the case of
website fingerprinting, this will be a domain or different sections of a domain. The
first step of supervised learning is to identify the problem and collect relevant data,
which will be used during training and testing. For website fingerprinting this will be
traces of visits to a selection of websites. The next step is feature selection: features
are chosen from this collected networked traffic to distinguish these traces. In website
fingerprinting, an obvious feature would be the size of the packets being sent in a trace.
Next, a learning algorithm is required such as a Random Forest, which will be used to
learn the structure of our collected training data and make predictions when provided
with new data. The No-Free-Lunch theorem implies that there is no learning algorithm
which is better than any other algorithm when considered on all types of problems, so
the most appropriate or best performing model will change from problem to problem.
Finally, the model is trained using the data, and then evaluated using the collected test
data (which was kept separate from the training data). The resulting model can then be
used to predict where a user is visiting from our original list of locations.

Website fingerprinting is considered relevant to any adversary who seeks to exploit
private user browsing data. The Adversary Model in Chapter 3 provides a more in-depth
discussion of an attacker in a website fingerprinting context.

2.2.3 Measuring Website Fingerprintability

The main measurement used in Website fingerprinting is classifier accuracy, this is the
measure of how often the classifier gets the correct result in a provided data set, so
whether the predicted domain is equal to the actual domain from which the traffic was
collected.

Website fingerprinting attack and defence papers tend to use accuracy since it is widely
used in the general field of supervised learning classifiers, but this may not tell the
whole story regarding the performance of a fingerprinter. Another possible aspect is
the information leakage of these attacks and defences in combination with the accuracy
of the models, as a low accuracy website fingerprinter does not necessarily mean low
levels of information leakage, thus there is space for improvement in the attack [37].
A key measurement we use in evaluating information leakage is Entropy. Entropy is a
measure of the average levels of unpredictability of a system, this is useful as there is a
fundamental connection between entropy and lack of information [40]. This measure of
information was first pioneered by Shannon in 1948 & 1949 and has been used widely
in website fingerprinting research, but convincing arguments have been made for more
refined measures such as Renyi entropy [23].

2.2.4 Moving away from Tor

Although Website Fingerprinting (WFP) was developed to attack Tor, it has also been
shown to be applicable to general internet traffic. Website fingerprinting on general
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HTTPS traffic provides additional information about a client’s activity online. Although
now the header of a packet can be checked to find the source and destination of the
packet. Still, with website fingerprinting, we can use just information available in the
packet metadata to identify a specific area of a website (and sometimes actions taken on
the website). This is useful as more specific data about a client’s activities on a website
is now available.

WFP on non-tor domains can further compromise a user’s privacy as it provides a
more comprehensive model of their behaviours on the web. While this data can be
used maliciously it is also useful to research website fingerprinting to assist experts in
producing stronger defences and countermeasures, as well as to raise the awareness of
this kind of attack.

2.2.5 Content Distribution Networks

Another important factor to consider in modern web traffic is the wide usage of Content
Distribution Networks (CDNs). In brief, a CDN is a group of servers that caches content
close to end users; they have grown massively in popularity and in the modern-day,
most content is served through CDNs, including from major sites like Netflix, Facebook,
and Amazon [2]. The use of CDN caching technology hinders traditional fingerprinting
feature extraction and attacks because it is an intra-domain WFP problem rather than
inter-domain, which means distinguishing data within the same domain rather than
across domains. Intra-domain fingerprinting is generally more difficult as the content on
a CDN or within a domain will usually follow a similar pattern, i.e. on a typical social
media site, parts of the page are generated using the same template, thus exhibiting
similar traffic [55]. Therefore, new fingerprinting methods that use the DNS resolution
sequence in a CDN fingerprint have been developed, which can effectively identify
HTTPS websites in a CDN cache [54] [55]. Furthermore, centralisation of resources in
this way has been shown to be favourable for attackers utilising website fingerprinting,
particularly for Google’s CDNs [46]. However, as a response to this, Cloudflare, one of
the largest providers of CDN services, has introduced Encrypted Client Hello (ECH),
which is designed to encrypt the Server Name Indication (SNI) that is used to negotiate
a TLS handshake [1]. This will help protect handshake metadata from observers, such
as those wishing to perform a website fingerprinting attack.

2.2.6 Communication Layers and Fingerprinting

A website fingerprinting attack physically takes place at the link layer, through the
physical connection between two endpoints (Fig. 2.1) but through the communication
process, different layers have different effects on the fingerprintability of traffic.

The application and network layers are the most critical in their effect on WFP. The
network layer is responsible for packet routing, so the traffic patterns are ultimately
produced at this layer. This is why many WFP defences target this layer to try and alter
the traffic somehow to make it less distinguishable. The application layer has the largest
role in website fingerprinting; although attackers do not have direct access to this layer
due to encryption, the webpage-identifying features are introduced at this layer, such as
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Figure 2.1: TCP model

the total webpage size in HTTPS, which could be leaked through the web traffic traces
[20].

2.2.7 Fingerprinting the Transport Layer

In between the application and the network layers is the transport layer; this layer is
responsible for organising how packets of data from the application layer are sent from
a source to a destination. In theory, this layer is not helpful for website fingerprinting as
almost all traffic uses the same transport protocols, so no website-unique information
should be revealed at this layer. However, with the widespread introduction of HTTP/3
(HTTP over QUIC), QUIC transport is becoming increasingly ubiquitous over TCP
which has been standard since HTTP/1. Although the mixture of these two schemes
has been shown to have a positive effect on protecting against WFP [49], the principle
remains that if most network traffic uses these transport protocols, there should be little
effect on distinguishing an individual’s web traffic.

2.2.8 Defending against WFP

While we cannot perceive the real-world usage of website fingerprinting as it is unde-
tectable, we do know that similar traffic analysis attacks were revealed in Snowden’s
2013 NSA leaks [42]. Therefore, it’s likely that intelligence agencies may use web-
site fingerprinting on specific targets. Given this as well as its specific threat to more
anonymity-focused browsers like Tor, several other defensive techniques have been
created to defend against WFP specifically. Many WFP defences are often designed
at the network level, but these defences have been shown to require substantial and
arguably unrealistic changes in infrastructure [20].

WFP defences are a trade-off between security and overhead, such as packet injection
increasing latency by using up bandwidth with extra packets of data. This results in the
question posed by Cai et al [18]: How efficient can a defence be while offering a given
level of security?
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Figure 2.2: The HTTP/2 vs. HTTP/3 stack

Figure 2.3: The HTTP/2 vs. HTTP/3 handshake

Many defences exist [17][18][27][38][32][58] but this is something that won’t be
explored in this project, as the focus here is on just the transport protocols and their
effects on website fingerprinting.

2.3 QUIC

This paper discusses the effect of transport protocols on website fingerprinting vulnera-
bility. Specifically, the transport protocols discussed are TCP and QUIC. An overview
of QUIC is provided, along with some specific features of QUIC to provide insight
into the general mechanism, and previous work discussing previous analysis of website
fingerprinting in a QUIC context.

In 2012, Jim Roskind at Google designed, then with assistance developed and deployed
a new transport protocol, designed to improve performance for HTTPS traffic and allow
quicker and easier deployment of new transport mechanisms [9] [36]. This protocol was
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publicly announced later in 2013 as QUIC (Quick UDP Internet Connections). QUIC
was designed to solve key issues with its predecessor TCP, namely the head-of-line
(HOL) blocking problem. In recent years, QUIC has been adopted by the IETF, resulting
in the publication and widespread use of HTTP/3 (HTTP over QUIC). This is important
in the history of the Internet as it was the first major update to the Hyper Text Transfer
Protocol (HTTP) since 2015, so this change in transport protocol brings whole new
opportunities, both positive and negative, for the wider Internet.

2.3.1 What does QUIC replace in the communication stack?

QUIC spans multiple existing layers (Fig. 2.2). We can see that QUIC spans the
application layer due to its user-space implementation (as opposed to previous HTTPS
implementations implemented in kernel-space). In the application layer, we still rely
on HTTP/2 for HTTP protocol parsing - but rely on QUIC to fulfil tasks traditionally
done by HTTP/2, such as multiplexing and link management [60]. As for the Security
layer, RFC9001 section 4 [52] details QUIC’s encapsulation of TLS1.3 and “how TLS
acts as the security component of QUIC”. Unlike the traditional HTTPS stack, TLS is
not decoupled from the other protocols and uses the QUIC 0-RTT handshake. Finally,
QUIC is also situated in the transport layer over UDP, where it builds on top of UDP,
which a more bare-bones transport protocol than the common TCP. Over UDP they
implemented congestion control and several other features [9].

2.3.2 HTTP/3

Both HTTP/1 and HTTP/2 use TLS and TCP over IP (Fig. 2.3), while as of RFC9114
[16] IETF have set out their design for HTTP/3 that uses QUIC as the Proposed Standard
for exchanging data on the World Wide Web. Following this, support for HTTP/3 /
HTTP-over-QUIC was added to Chrome and Firefox in 2019, which became enabled
by default in later years.

This process began with the IETF QUIC working group publishing a QUIC version 1 in
RFC 9000 [33] where they standardise the protocol initially set out by Google (gQUIC).
gQUIC was monolithic, meaning that the transport and cryptographic handshakes were
coupled, it was also designed as a general-purpose transport protocol. gQUIC was then
adapted for use with HTTP by Google and the general community and following this
in 2016 an official IETF working group was established to build what would become
HTTP/3.

QUIC’s development by the IETF working group led to several redesigns as they sought
to retain all the benefits of gQUIC while making the protocol suitable for widespread
adoption [33] [52].

Because HTTP/3 uses TLS1.3 it means that a new feature was introduced called “zero
roundtrip time connection resumption” or 0-RTT. This allows clients to start sending
data without waiting for the TLS handshake to complete, reducing latency produced
by establishing new connections [36] [6]. If the client and server have previously held
a TLS connection, they can use data from that session to create a new one rather than
establishing new connection parameters from scratch [3].
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As HTTP/3 is being widely deployed over many user cases, it is very important that any
issues with QUIC are discovered and resolved, as they will greatly impact the World
Wide Web if left unchecked.

2.3.3 Key Features of QUIC

QUIC solves several problems associated with HTTPS (and its usage of TCP). To help
understand the importance and design of QUIC, we will discuss some key features in
comparison to TCP, although it’s important to note from the previous section on the role
of QUIC in the communication stack that while we are comparing it to TCP, that they
do not fill the exact same space in the stack.

Head-of-line Blocking: One of the most prominent issues with TCP is the head-of-line
(HOL) blocking problem. When a client sends packets over a network, they want to be
sure all the packets of data sent successfully arrive at the provided location. TCP uses a
single channel for communication; this means that if a packet is lost in the stream of
traffic, all the packets behind the packet in the channel will have to wait for that packet
to be sent and successfully received. This hold-up of all other packets is called the
HOL blocking problem and is a big issue as it slows down data transmission. In QUIC,
multiple channels are set up simultaneously between a source and destination, so if a
packet is lost, only the packets within that single channel will be held up, and all other
channels will transmit freely, thus providing faster transmission times. QUIC is not the
first attempt to solve the HOL blocking problem, but is the most successful so far [8].

UDP: While previous versions of HTTP were implemented over TCP, QUIC is im-
plemented on top of UDP. In short, TCP requires the setting up of channels to ensure
the integrity of data transmission, however, this comes with an associated overhead,
making the process of communication slower. UDP is more bare-bones: this means
that it avoids this channel setup overhead as packets, as UDP does not require prior
communication to set up channels or paths.

User Space: Previous versions of HTTPS were based in the operating system kernel,
this means that it is difficult to evolve any transport protocol as it would require clients
and servers to update their operating systems and deploy new versions, something
that is notoriously difficult as it requires lots of collaboration between parties. With
QUIC being implemented in the user space, this allows for much faster updates and
iterations of the protocol, meaning that it will now be much easier to implement different
implementations of QUIC, which could result in better performance or better tailoring
of the protocol to individual needs.

Protocol Ossification: Middleboxes are devices set up in between two network end-
points, they are used to ensure that the Internet works as it is intended to. They perform
many different functions and have thus as the Internet has grown, have required more
and more about the networks and protocols they monitor. One large issue brought about
by these middleboxes is Protocol Ossification. Because middleboxes are so widely used
and when initially deployed were not designed to change their minds about what is
permissible traffic. This means that any new behaviours introduced in attempts to solve
newly found issues or to add new features to existing protocols could end up being
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blocked by these middleboxes. This is especially true for TCP, where changes will often
be blocked as the middleboxes have become so used to how TCP traffic normally looks,
for example, TCP Fast Open was a protocol developed to provide speed benefits to TCP
yet has shown to be difficult to deploy [41] [11]. Another feature of QUIC is that it
encrypts packet transport headers, this effectively prevents ossification as middleboxes
can no longer understand and thus make decisions on how to handle these packets [21].

Padding Frame: To help defend against traffic analysis attacks, the QUIC working
group introduced a Padding frame into its official specification [45] [33]. This can be
used to increase the size of a packet, making patterns in the traffic less distinct. This
packet frame has also been used in the implementation of client-side frameworks to
implement existing WFP defences [45] [48].

Conclusion: From this we now know that QUIC is a fast, secure, and more future
proofed transport protocol to predecessors. However, these new features may result in
weaknesses in privacy that may not yet be fully identified or understood.

2.3.4 Existing QUIC implementations

Because QUIC is implemented in the user-space (see Section 2.3.3) and has been
standardised by the IETF this has allowed for easier creation of implementations of
QUIC. To view these implementations, see the GitHub page for the QUIC working
group [7]. Some important implementations to note are the Chromium implementation
deployed on Chrome versions 85.0.4171.0 and later, and Neqo, the Firefox version of
QUIC and HTTP/3.

2.3.5 Website Fingerprinting QUIC

As mentioned previously in Section 2.2.7, the transport layer should have little effect on
website fingerprinting. Still, in the essence of comprehensive risk mitigation, research
has been conducted into how well QUIC fairs against website fingerprinting. QUIC
is generally considered on par with TLS/TCP in the normal traffic scenario; this is
primarily due to Smith et al., who have studied it in comparison to TCP using a large
open-world dataset using a large range of features [49]. Although there are many
evolving attacks and defences, so it is hard to be sure this conclusion will remain
long-term.

In contrast, Zhan et al. [59], find that QUIC could be vulnerable in the early stages
of communication. This defies intuition, as the transport layer should have no effect
on fingerprinting effectiveness. This result prompts further research into the paper’s
findings on whether the QUIC protocol somehow sabotages the network layer, making
fingerprinting easier or if it is simply due to an immature codebase where issues will
be ironed out given time. Research in this area is vital because, as stated, QUIC has
been introduced with HTTP/3 and is growing in popularity. However, suppose this is a
genuine weakness compared to previous transport protocols. In that case, it must be
addressed as it could lead to a widespread decline in internet privacy. It should be noted
that Zhan et al. do not explore the normal traffic scenario in depth; they focus on the
early traffic, which they define as the first 40 packets of a trace.
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Adversary Model

This project will consider WFP (Website Fingerprinting) in a normal HTTP scenario;
this means that privacy tools such as VPNs or Tor, which manipulate the addresses of
packets, will not be used. However, it is assumed the body of the packets is encrypted,
as is standard for modern web traffic, and that they cannot be decrypted without an
unreasonable amount of effort by the attacker. Therefore, the attacker must use the
packet metadata to perform an attack.

3.1 Adversary Goals

The aim of an attacker in a website fingerprinting attack where no privacy framework is
used is to breach the privacy of a targeted individual. This is useful to parties interested
in what an individual is viewing online. As no privacy framework is employed, the
attack would generally be intra-domain, where the attack reveals information about the
actions or specific areas of a domain being visited. This differs from the courser-grained
inter-domain attack used on services like Tor, which reveals which domain an individual
visits. While this paper discusses only regular traffic without using privacy-enhancing
frameworks, it still focuses on inter-domain fingerprinting. This is because the
Website Fingerprinting on Early QUIC Traffic paper uses inter-domain fingerprinting,
and this paper seeks to recreate their results. Justification for this decision is included
later in Section 4.2.2.

An example attacker for a website fingerprinting attack over HTTPS using no extra
privacy tools could be an oppressive government monitoring a person of interest, visiting
websites like WikiLeaks to see what areas of the page they are looking at, intending to
find incriminating behaviour or evidence of dissent against the government.

3.2 Adversary Capabilities

This paper also considers a passive and local adversary. This means that an adversary
can sit locally on a gateway and view the headers of packets as they pass by. They
are passive, so they do not interfere with the packets in any way. They can then feed
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features based on this collected header information into a pre-trained classifier, which
will output the domain. Because of the passivity of the attacker, they are essentially
undetectable during an attack. We will assume that the adversary has sufficient ability
to collect traffic from a node, and to train a classifier.

3.3 Attack Environment

This paper uses the closed-world scenario like in the Website Fingerprinting on Early
QUIC Traffic paper. The closed-world scenario assumes that an attacker has a list of
websites for which they know the metadata information and that the victim can only
visit these websites. This usually includes not sending the traffic over the internet but
rather keeping it contained to a local network so that there is no interference from other
traffic, as this is simpler to implement. However, a real attacker would conduct this
attack on a large open network. Taken from [24]: “The closed world model is used
when complete information is available. A closed-world model assumes that an attacker
knows the metadata information for a select list of websites. The website visited by a
victim is in the list known by the attacker. It is a strong assumption used to simplify
the threat model, implement the experiment, and evaluate an attack’s success.” Most
research is conducted using the closed-world model [17][18][19][32][38][51][50].

This paper also considers the early scenario for some experiments. This is defined by
Zhan et al. as the first 40 packets [59], which means there is a slight change to the
adversary. Initially, this would not make sense in an undetectable attack, as there is
no more risk of collecting 200 packets than there is to collecting 40. However, this
scenario is not as unlikely as it would first seem if scalability is accounted for. While
deep learning on lots of traffic produces the most effective fingerprinters [47] even on
smaller traces of traffic [15], it also comes with much larger computation and storage
overheads. This is important when scaling the attack up and when attackers have limited
resources. Tian et al. produced a paper regarding this [53], proposing a new attack with
lower associated costs, thus designed for scalability. Zhan et al. also consider this, using
only four size categories and directions when fingerprinting for 40 or fewer packets. A
fingerprinter that uses only the first 40 packets would indeed be easier to scale and use,
even with limited resources.
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Critical Review

This chapter discusses some of the key design decisions performed in the Website
Finger Printing on Early QUIC Traffic (WFP on Early QUIC) paper, highlighting those
that are sound, and potential ambiguities where assumptions have been made about
their methods. Differences between their methods and this paper are described in the
Methodology chapter, where changes from their original methodology are justified
using the discussion and critiques from this chapter. This chapter is split into three
sections, all focusing on the WFP on Early QUIC paper:

• How did they collect data?

• How did they handle that data?

• How did they evaluate the results of experiments using this data?

Only the key contentious design decisions are included in this chapter, there are other
design decisions that could be discussed but they are less relevant.

4.1 Collection Aims

The Website Finger Printing on Early QUIC Traffic paper (WFP on Early QUIC
henceforth) explores the vulnerability of GQUIC, IQUIC and HTTPS and thus collects
encrypted traffic that simulates the visits of a real user to real websites. The three stated
conditions they want their data to meet in their paper are to (1.) be large enough to be
indicative of patterns in the real world, (2.) include sets of traffic for GQUIC, IQUIC
and HTTPS from the same domains and (3.) to be collected how a real adversary would.

Aims 1 and 3 are logically sound and ensure realistic results, showing that the conclu-
sions of the paper should be reflective of real-life scenarios. However, the choice to
collect GQUIC, IQUIC and HTTPS is a little outdated and most likely due to the paper
being published in the early years of QUIC. By modern standards, the HTTPS they refer
to would be HTTP2 and IQUIC has now become standardised as HTTP3, throughout
this chapter, IQUIC will be referred to as HTTP3 or (HTTP over) QUIC and to their
HTTPS as HTTP2 or (HTTP over) TCP. Next, their choice to collect GQUIC traffic
makes less sense as this edition of QUIC is not used over any public networks (although
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it may still be used in Google internal systems), so it would never become the target of
a fingerprinting attack.

4.2 Testbed Design Choices

The WFP on Early QUIC paper makes several design decisions they use when collecting
their testbed of data. This section contains some discussion of some of the overarching
design decisions, where finer details will be discussed in the later chapter regarding my
implementation of their experiments. This section focuses on the key choices in their
design that are the most contentious or where other strong alternatives are available.

4.2.1 Closed World

The WFP on Early QUIC paper collects their data under a closed-world environment,
as opposed to sniffing traffic directly from the internet (open world). They provide two
justifications for this: (1.) to avoid interference and (2.) as many sites do not support all
three of their chosen protocols. Initially, this first justification is not particularly strong
given their aims, why choose to avoid realistic traffic when a stated aim is to collect
realistic traffic? In their justification they give the specific example of wanting to avoid
RST packets in TCP (for HTTP2), this provides more insight as this paper centres on
website fingerprint in the early traffic scenario. This includes creating a fingerprint
when given just the first 5 packets of a trace. Given this their justification is better as
they don’t want random RST packets diluting their small collection of data, this would
also be easy to implement in a real attack. Their second point is sound, particularly at
the time of writing that paper in 2019 before HTTP3 became much more standard and
is justification enough to not collect real internet traffic. Although this is much more
feasible in the modern era this will not be explored in my report (however is explored
more in depth in other papers [49][46][28]).

4.2.2 Inter-domain

In the WFP on Early QUIC paper, they select the landing pages of the top 100 uni-
versities in the 2019 Times World Rankings. Although not directly addressed, this
means the paper explores inter-domain WFP over intra-domain WFP. The choice here
is interesting as they provide no justification for it, which is not abnormal given that this
is the standard for website fingerprinting attacks in the literature. However, the reason
this is the standard is that website fingerprinting was conceived to perform interdomain
fingerprinting on Tor, while this paper does not use Tor and instead performs finger-
printing on regular traffic. As source and destination IP addresses are both accessible in
normal traffic sniffing, this would remove the need to fingerprint as we can already see
the destination of every packet. As mentioned in the adversary model 3, fingerprinting
on normal traffic has a different aim use case, which is to see the sections of a domain a
user visits or interacts with, such as what they interact with on a social media platform
which could reveal personal information about themselves such as their personal habits,
or even their political leanings [55].

https://www.timeshighereducation.com/world-university-rankings/2019/world-ranking


Chapter 4. Critical Review 16

The implicit assumption here is that any discovered weakness in inter-domain finger-
printing in HTTP3 will transfer to intra-domain fingerprinting. This is reasonable,
as the weaknesses making QUIC more fingerprintable will not disappear even in a
different scenario, however, it would still be more appropriate to measure intra-domain
fingerprinting in this context if the aim is to mimic the actions of a real attacker.

4.2.3 Secure Gateway

In the WFP on Early QUIC paper they use a secure gateway for two stated reasons (1.)
to act as a reverse proxy and (2.) to update the local forwarding policy. The latter serves
the expressed purpose of “block access from a client to a specific website” “based on
the results of WFP attacks” [59] (section 4.1). This is ambiguous, as they don’t explain
why they would want to do this; this is interpreted to mean that while loading their
offline website, additional resources may be requested from online websites, which they
have stated they want to avoid. This is well-grounded as communication with these sites
would most likely not use the transport protocol they want to capture in isolation. The
former reason they justify the use of a reverse proxy is that it prevents adversaries from
getting information about the web server from the packets. Therefore, this is posed
as a decision to ensure realistic adversary conditions. Using a reverse proxy won’t
affect fingerprintability, as the attack discovers this information anyway. Although not
included in the paper, this decision is more likely for convenience, as they split data
across three web servers, they use a reverse proxy to manage connections, which should
speed up the collection of their results. This is a rational decision but is misleading to
pose as a realism choice, when this choice is tangential to fingerprinting and when the
collection is already being performed on a local private network.

4.3 Data Handling

4.3.1 Cleaning the Handshake

When tailoring their traffic, because QUIC has a shorter handshake than TCP (1-RTT
compared to 3-RTT) in the WFP on Early QUIC paper, they remove the handshake
from the beginning of all traffic. They don’t explicitly state why, but it is easy to assume
that this is because the handshake is uniform across every domain and, therefore, is
not useful when it comes to website fingerprinting, as it does not leak website-specific
information. Therefore, they want a fair comparison of just the traffic that will leak
information. However, as the handshake process is intrinsic to each protocol, it is
important in a comparison between the protocols to include the handshake process.
Because the paper considers the early traffic scenario where only a small number of
packets are collected to WFP, it seems counterintuitive not to include the handshake, as
a longer handshake should make a protocol more WFP resistant, given an attacker can
only see the first n packets. Another sensible option would be to remove the handshake
but only consider the first n−|handshakepackets| when fingerprinting the early traffic.

Ultimately, as the handshake process is a small section of the whole traffic collection,
for normal scenarios, it should not make a significant difference to the results, but it is
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more reasonable, given the adversary model, to include it when comparing transport
protocol.

4.3.2 General Cleaning

In the original paper, they mention that they delete invalid and error pages, but do
not go into detail about how this is done. This is relevant as in the versions of Caddy
(webserver) and Chrome (browser) they use, QUIC is still an experimental feature,
so we could expect more errors and perhaps less obvious errors than a more mature
protocol like TCP.

4.3.3 Poorly Defined Features

In the WFP of Early QUIC paper, the definitions for the features they use are ambiguous
and poorly defined. For example, they never reference whether only the first n packets
are used when extracting a feature. It is assumed that they do use this in their definitions
otherwise it would defeat the purpose of their paper, but it is not clear. As well, they
sometimes use strange terminology such as cumulative sum, when it would be more
accurate to use sum, this is important as the cumulative sum would be n-dimensional
and the sum is 1-dimensional, so must be inferred from their definition, which is already
vague.

4.4 Evaluation

4.4.1 Top-k accuracy

In the original paper, they call this top-a accuracy, here it will be referred to as top-n
accuracy as this is the standard name used but it can also be known as top-k accuracy
(as n is used elsewhere to describe the number of packets, it will be referred to as top-k
in this paper). Also, they call their fingerprint attack that uses top-k a top-a attack; this
also is not standard as, in reality, top-k would never be used in an attack.

The reason they use top-k in the WFP on Early QUIC paper, is that it exposes a weakness
in QUIC when increasing the value of n, which is not present in HTTP2 (TCP).

The use of top-k could be criticised for making results appear more significant than
they are, for example, a 99% (top-5) accuracy is much more significant than a 10%
(top-1) accuracy. However, in a website fingerprinting context, 10% accuracy would
mean our attack is weak, as it cannot guess the correct website being visited enough to
be useful to an attacker. In a real-world scenario, top-k would not be used in website
fingerprinting as its usage significantly reduces the information leaked from an attack,
which would defeat the purpose of WFP.

However, in the paper, they justify the usage of top-k accuracy as it exposes a possible
weakness in QUIC that would not be identifiable using accuracy alone. This is sound
reasoning, as this suggests a possible fundamental weakness in QUIC that makes
website fingerprinting easier to perform. Finding a higher top-k accuracy for QUIC
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implies that the traffic is easier to fingerprint, as the other top-predictions are more
likely to be correct than TCP traffic. Particularly considering they only used models
with default parameters, if an attacker used tuned models or deep learning, would this
weakness that appears minor become more severe?

4.4.2 Figures

The figures used in the WFP on Early QUIC paper are not always helpful and cast some
doubt on the results of their experiments.

Firstly, they plot PCA and Feature Importance graphs for both protocols, these are
both non-deterministic and could produce significantly different results each time they
are used. Firstly, while feature importance is a valid metric, this varies from model to
model, so it is not certain that across all models the same features would be important.
Feature importance is still useful; however, where if the rankings of feature importance
are the same across transport protocols, this shows that to the same ML model, they are
similar problems which require similar solutions. Next, the PCA model does not make
sense to plot; it does not show anything meaningful other than that as more packets are
considered, the patterns become more distinct, which is a fairly obvious fact. In the
original paper they used only 10 of the 92 websites to plot these figures, so not only
would it not be representative of the protocol in general, but it also is not representative
of the collected traffic in the paper itself.

Next, when comparing model accuracy across the range of 5 to 200 packets, for transfer
features, we can see for GQUIC, that the accuracy of their models at 5 packets is 100%.
This is highly unlikely, even when not considering results from outside the paper, when
we can see for every other experiment, 5 packets produce low accuracy for all models.
This raises doubts about the quality of results, for all experiments.

4.5 Summary

To summarise, in the Website Fingerprinting on Early QUIC Traffic paper, the aim of
their data collection is to be realistic so that the conclusions made in the paper can be
applied to open-world environments. However, there is a bit of conflict about how much
realism is really sought, as the methods they chose do not prioritise realism. Because
the focus is searching for weaknesses in QUIC, it could be argued that striving for
realism is less important, as a fundamental flaw in the protocol should be visible in test
environments as well as real ones.

They make several decisions in the paper that reduce the strength of their conclusions,
such as the lack of cleaning and poorly defining the features used to fingerprint. This
paper does not seek to rectify all these issues however, as the aim is to achieve the same
results found in the paper, so straying too far from the original method would not make
sense.
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Methodology

This chapter describes the methods and implementations of experiments performed
in this paper. This builds on the previous chapter where the methods of the Website
Fingerprinting on Early QUIC Traffic (WFP on Early QUIC) paper are critiqued, which
will provide the reasoning behind many changes in design between papers. Furthermore,
this chapter will reinforce any decisions made to differ from the original paper as well
as discuss some of the alternatives that could have been made. This chapter is split into
three sections, all focusing on the methodology of this paper:

• Data collection process

• Data handling and traffic tailoring

• Experiments performed

The methodology and implementation of this paper follows a similar approach to the
WFP on Early QUIC paper. First sites are downloaded, stored on a webserver, and
visited using a web crawler and a chosen protocol, capturing all traffic in each visit.
The captured traffic is then tested to ensure the collected data is of good quality, and
then the relevant parts of the capture are parsed from which features are then extracted
to be used by a fingerprinting model. The models are trained using this feature data,
where the website fingerprinting performance of captured HTTP2 and HTTP3 can be
compared.

5.1 Data Collection

5.1.1 Downloading Sites

This paper uses the same list of university landing pages used in the WFP on Early
QUIC paper and used the same website copier: HTTrack. This will clone the same
origin resources of the list of websites, up to a chosen depth (i.e. traversing all files in
the first and second levels of the root directory when depth=2). A copy depth of 2 is
used like in paper as inter-domain fingerprinting is being measured, so greater depths
would produce very large sites that are too big to host with current resources. However,
if intra-domain fingerprinting was the aim, the focus would be a single website or CDN
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copied with a large depth, so that different sections of the site can be distinguished
during fingerprinting.

This paper uses the modern versions of the sites, rather than the 2021 versions that
the WFP on Early QUIC paper would have used. Alternatively, the 2021 version of
each site could have been downloaded using an internet archiving tool like the Wayback
Machine. However, downloading sites from this archive is difficult and it is unclear
whether the archiving process affects the site’s structure and fingerprintability.

In total, this paper downloaded and used 94 sites, rather than the 92 used in their paper.

5.1.2 Single machine and Docker

Lacking access to multiple machines, the client-server setup from which to collect traffic
traces was implemented on a single machine. To do this, two docker containers were
created, one for the web server and another for the client. This will provide isolation
on my machine so that they are more representative of a real client and server. Using
Docker also allows for the reproducibility of the results in this paper as it is possible to
clone my containers, and use the same environment used for this paper, independent of
Operating System and other machine-specific details. This is a stark contrast to Zhan et
al. who do not provide any code or containers, so their results are much more difficult
to review.

The single machine that was available was Windows-based, so the containers were also
necessary for running the crawler and using Linux command tools, which were a great
help.

The whole crawl was completed offline, this was to prevent redirection from the copied
sites to download other resources from other origins. This needs to be avoided as these
will not come from the caddy web server so the protocol used may not match the set
protocol, and the focus of this project is on the transport protocols, so it is important to
isolate them.

5.1.3 Caddy Web Server

The webserver is implemented using the same software used in the WFP on Early QUIC
paper: Caddy. A newer version of Caddy is used as this supports a more modern version
of QUIC, where some of the initial quirks from early development should have been
ironed out. This is because this project is concerned with whether the results found in
the WFP on Early QUIC hold today with modern versions of these protocols, as these
latest protocols are used in current systems. In the Early QUIC paper, they are using a
version of Caddy where QUIC was still experimental, and we can see this from their
using multiple versions of the software to alter the QUIC support and because of the
time of publishing. Specifically, caddy server version 2.7.5 is used which allows the
specification of supported protocols, allowing easy switching between HTTP2 support
and HTTP3 support.

Other web-serving software is available, but Caddy was chosen to use the same one as
in the paper to try to stay closer to the original implementation.

https://caddyserver.com/docs/
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5.1.4 Selenium Web Crawler

To crawl the websites stored on my server, in this paper, a selenium web crawler inspired
by Juarez’s crawler [47] is containerised. The browser used by the crawler was Chrome,
the same as in the WFP on Early Quic paper, and traffic was collected using dumpcap.
This crawler had QUIC enabled and forced on when collecting HTTP3 data and avoided
page caching by setting the disk cache and media cache sizes of the browser to a single
byte. Also, a Chrome profile was initialised, which recorded my caddy server as a
certificate authority, as HTTP3 through Chrome is strict when it comes to certificates,
and if there is a suspicious one, it will fall back on using HTTP2 (or not load at all!).

The crawler is supplied with the domains of 100 target websites (although 6 of these
resolve to nothing as they failed to download, like the WFP on Early QUIC paper which
used 92 for the same reason). The reason these failed to download is most likely due to
anti-bot measures on each of the sites, preventing access to the automated web copier.

The crawling process for a single site is:

1. Start a new instance of Chrome with Selenium, with all relevant options (i.e
QUIC enabled) and a preset profile.

2. Wait 2 seconds.

3. Initialise a sniffer, with filters set to capture both TCP (used in HTTP2) and UDP
(used in HTTP3) traffic.

4. Access the chosen site and request all resources (all resources from different
origins will result in 404 errors as the crawler is offline, so only resources from
the caddy server will be retrieved).

5. Wait for the landing page to render completely and return a success state to
Selenium.

6. Save a screenshot of the loaded website for debugging purposes.

7. Then wait for an additional 5 seconds before closing the sniffer process, followed
by the Chrome process.

8. Repeat for a total of 100 captured traces.

This is repeated for all sites and each protocol. As well as this, not every visit is a
success, so each site is visited more than 100 times, to collect at least 100 successful
visits. Especially, when crawling using HTTP3, the crawler will often capture a small
amount of traffic, indicating the full site has not been loaded. For further information
on how this was dealt with see Checking Collected Traffic Section 5.2.1.

An alternative here is to collect empty packets, as is common in other papers. The WFP
on Early QUIC does not mention doing this, and it should not make a difference to the
results as only the packet header is used in website fingerprinting. Here payloads were
included, to follow the methods of the paper, and because this is a quality-of-life design
choice rather than one that will affect the results.

https://www.selenium.dev/documentation/webdriver/
https://www.wireshark.org/docs/wsug_html_chunked/AppToolsdumpcap.html
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5.2 Data Handling

5.2.1 Checking Collected Traffic

As there is an inherent randomness associated with network communication, the traffic
for the same site might not look the same over multiple connections. When crawling,
commonly, a site will not fully load and so the captured traffic file will be very small,
compared to what you would expect of a site of that size. To get rid of these small but
not empty files, as well as any files which did not seem to match the general size of
other visits to that domain, outliers were removed from the captured traffic. This was
done by checking if the size of the file was greater than Q3 + 1.5*IQR or less than Q1 –
1.5*IQR. It is reasonable to do this as if it results in greater accuracy, then an attacker
would likely do it too.

This removed the bulk of outliers, but when plotting boxplots, there were still suspicious
results for some domains, especially for collected HTTP3 traffic (Fig. A.3). These
results contained many close-to-empty captures which distorted the outlier detection.
Following this, the collected screenshots were checked for unsuccessfully loaded pages,
deleting those which had not loaded successfully. To ensure there were 100 successful
captures for each domain, some domains had to be recrawled to fill in the gaps of
removed outlier, or invalid pages.

The distribution of the cleaned collected traffic can be seen in the Figures A.1 and A.2
in the Appendix.

5.2.2 Parsing Traffic

TShark was used to parse PCAP (packet capture) files into CSV files, with the relevant
fields for extracting features (and some extras for debugging). There is a separate process
for parsing HTTP2 and HTTP3 traffic, as there are some differences between the fields
that require different parsing processes (i.e. TCP-specific fields). But the important
fields that are used in feature extraction, such as packet size, are calculated using fields
that are shared between both types of traffic, in case there are slight differences in how
each is calculated (i.e. how much metadata does it include, if any).

The traffic parser is also containerised to allow for reproducibility of results and porta-
bility of the parser across machines.

5.2.3 Checking Parsed Results

Parsed results were also examined for suspicious or off-looking traces that may have
seeped through the cracks of the earlier tests. In particular, the ratios of positive to
negative packets were useful in finding a small number of invalid captures. These tests
were not as rigorous as earlier as by this point the traffic was largely clean.

https://www.wireshark.org/docs/man-pages/tshark.html
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5.2.4 Extracting Features

Firstly, for all features an early traffic limiter was implemented, to prevent any packets
being used in calculating features above a given threshold. The “early” traffic scenario
in the WFP on Early QUIC paper is defined as the first 40 packets, so in this instance,
only the first 40 packets were used to calculate all features. When extracting features,
packets are filtered to only ones going to or from the port of the Caddy server. This is
so that other traffic included in the captures is ignored, and only traffic from loading the
site is used in extracting features.

Also, the handshake is not removed from the collected traffic. Given that the handshake
is part of the transport protocol, excluding it from the data does not make sense in the
early traffic scenario. As the handshake is the same across each domain, it should not
affect fingerprintability. It will have an effect between protocols however as a shorter
handshake for QUIC should mean there are more packets with useful information in the
first n.

The same features used in the WFP on Early QUIC paper are used here as the features
they used were sufficient in finding a difference between the protocols, which the paper
aims to confirm so there is no reason to use extras. These features are split into two
categories: simple and transfer features. The simple feature is an 8-dimensional feature,
which records size and direction, with four size categories, for both positive (towards
the webserver) and negative (from the webserver) directions. The four size categories
are tiny (packet size < 80 Bytes), small (80 <= size < 160 Bytes), medium (160 <=
packet size < 1280) and large (1280 <= packet size).

Next, the transfer features described in the paper were used, although the definitions
were vague in parts and generally unclear, requiring some assumptions to be made. An
example of this is that they never mention whether they limit the calculation of these
features to the first number of packets n (called k in the paper). The definitions for the
features used in this paper are as follows:

• Unique Packet Size (1460-dimension vector, where 1460 is the difference be-
tween the largest and smallest packet). This feature records the unique packet
sizes present in each capture, for example if there is a packet of size 1234 bytes,
the 1234th dimension of this feature is set to 1, while if there is no packet of size
999 bytes then this will be set to a 0. Specifically, (1 i f |{p | |p|= l}p∈T[0:n]|>
0 otherwise 0)l∈[0:1460] where T is the ordered traffic (so p is a packet), and n is
the number of packets to consider.

• Packet Size Count (1460-dimension vector). This feature records the frequency
of different packets sizes in the captured traffic. For example, if 10 packets
are of size 1234 bytes, then the 1234th element of this vector will be set to 10.
Specifically, (|{p | |p| = l}p∈T[0:n]|)l∈[0:1460] where T is ordered traffic, and n is
the number of packets to consider, and p is a packet.

• Packet Order (n-dimension vector). This feature vector records the packet
lengths in order they appear in the traffic capture. Specifically, (|p|)p∈T[0:n] where
T is ordered traffic, and n is the number of packets to consider.
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• Interarrival Time (n-dimension vector). This feature records the difference
between the arrival times of adjacent packets in the captured traffic. Specifically,
(time(pi+1)− time(pi))pi∈T[0:n] where time(p) returns the arrival time of a packet.

• Negative Packets (1-dimensional). This feature records the number of packets in
the negative direction (from the server to the client). Specifically, ∑p∈T[0:n]

negative(p)

where negative(p) =
{

1 i f src = server
0 i f src = client and src is the source of a packet.

• ‘Cumulative Size’ aka Total Size (1-dimensional). This feature records the sum
of the packet sizes. Specifically, ∑p∈T[0:n]

|p|.

• ‘Cumulative Size with Direction’ aka Total Size with Direction (1-dimensional).
This feature records the sum of packet sizes, except that now values in a nega-
tive direction have a negative size. Specifically, ∑p∈T[0:n]

direction(p) · |p| where

direction(p) =
{

−1 i f src = server
1 i f src = client .

• Burst Features (3-dimensional). Records the number of bursts, largest burst
length, and mean burst length. For more information regarding what a burst is see
section VI. C. of Dyer et al., Peek-a-boo [27] which provides a good description.

• Total Transmission Time (1-dimensional). This feature records the total trans-
mission time of the traffic calculated by the sum of the interarrival times. Specifi-
cally, ∑pi∈T[0:n]

(time(pi+1)− time(pi))

The initial implementation of feature extraction was inefficient as each feature was
calculated separately, and all parsed files were processed in sequential order. This led to
the implementation of a faster feature extractor which calculates all features at the same
time and is also multithreaded to extract features from different files simultaneously.
This was necessary as features must be extracted for each different level of n packets,
and the previous implementation would have taken an unreasonable amount of time for
the range of n=(5 → 200), for each protocol.

5.3 Experiments

5.3.1 Website Fingerprinting Early Traffic

With these extracted features several of the experiments from the WFP on Early QUIC
paper were recreated. In their paper they also explore vulnerability under a flawed
network, but the most significant results from their paper are the ones showing a
weakness in QUIC to WFP, so there was a focus on producing these ones.

The most interesting results from their paper are testing the first n packets, using different
top-n accuracies, and a Random Forest model (with default parameters) to classify the
traffic traces. They also perform this using only the simple features described earlier,
as well they don’t record their testing and training splits but do mention earlier in the
paper using 10-fold cross validation, therefore there is an assumption here that they are
still using cross validation even though not comparing different models.
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5.3.2 Protocol Comparison

The experiment from the paper where for both simple and transfer features, and for each
protocol, I record the accuracy of five different models (Random Forest, Extra Trees,
Naı̈ve Bayes, KNN, and SVM) as the value of n (number of packets) increases from 5
to 200, in steps of 5. For this I used 10-fold cross validation, like they used in the paper.

Another experiment from the paper is recreated where for both simple and transfer
feature, and for each protocol, the accuracy of five different models is recorded as the
value of n (number of packets) increases from 5 to 200, in steps of 5. For this 10-fold
cross validation is used, as is done in the paper. This is where a dataset is shuffled then
split into 10 equally size folds, where for each fold, that fold is used as a testing set,
and the other folds combined are used as the training set. Accuracy is calculated for
each split, and then the mean accuracy of all folds is taken. This is also helpful as it
allows us to observe the standard deviation of all folds, to understand the consistency of
the performance for each model.

5.3.3 Feature Importance

The feature importance experiments from the original paper are also recreated. In short,
these were to examine the individual features used in fingerprinting for each different
transport protocol as the number of packets considered increases. This follows the
same method as the previous experiment, except instead of accuracy it outputs feature
importance at each step. Specifically, Gini Importance is calculated from the sklearn
Random Forest model. As mentioned in the methodology critique chapter, plotting
these does not make total sense, but the ranking of the most important features is useful
to compare across the papers.

5.3.4 Tuned Website Fingerprinting

In the WFP on Early Quic paper they perform all experiments using the models’ default
hyperparameters. It could be assumed that in a real attempt to website fingerprint, the
attacker would want to make their website fingerprinter as effective as possible, so
would likely try tuning the models they use. In addition, by tuning the hyperparameters,
we might further expose the weakness of QUIC discovered in the paper. Furthermore,
it should give us insight into how similar the problems are, where if there is a signifi-
cant difference in chosen parameters, we can presume that the models are exploiting
different aspects of the protocols, so they do influence fingerprinting. For these reasons,
another experiment was run where the five models used in the paper were tuned using
exhaustive grid searchto find the combination that worked the best. Grid search is a
straightforward algorithm where a list of values is supplied for each hyperparameter,
and each combination of these is tested to find which values produce the most effective
model.

As hyperparameter tuning takes a long time and tuning needs to be completed for HTTP2
and HTTP3, it was decided to only tune the models for simple features extracted from
the first 40 and 200 packets, using 5-fold cross-validation. The hyperparameters for the
first 200 packets are compared, while the tuned models for the first 40 packets are used
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to recreate the early top-k experiment, this time without the fingerprint, like in the WFP
on Early QUIC paper.

Note that for each model, there are different hyperparameters to tune, whereas the
tree-based models have a larger number of hyperparameters. To see the exact hyperpa-
rameters and values used in the grid search, see the Grid Search Values section in the
Appendix A.4.

5.3.5 AutoML Website Fingerprinting

Following on from the tuning, AutoML is used to see what the best-performing models
were on the early website fingerprinting problem. This is similar to the tuning experi-
ments, but using autogluon, different machine learning approaches will be automatically
tried and combined to produce a high-quality model. Note that this also includes the
tuning of different models. The thought process is that there would be some difference
in the top-performing models for HTTP2 and HTTP3, which could reveal something
about the structure or nature of website fingerprinting for these different types of traffic.

This was first attempted using autosklearn as it is a drop-in replacement for sklearn,
so it would be consistent with the other experiments. However, this package has not
been maintained, so it was decided to use AutoGluon which has proven results in a wfp
setting [28]. Then, the leaderboard was used to visualise the best-performing models
along with the outputted predictor. This will use the simple features for 200 packets, as
it was when just the simple features were used that original differences were found in
the protocols, so this is sufficient.

Ha et al. [28] focus on performance in their paper, while here, the aim is to use AutoML
to understand if website fingerprinting each protocol is a unique problem requiring
different strategies. If the results are significantly different, this should reveal that the
transport protocol does have an effect on fingerprintability.

https://automl.github.io/auto-sklearn/master/


Chapter 6

Results & Discussion

This chapter will provide the results of the experiments noted in the Methodology
chapter, discuss what these results show and why they differ from the original results
found in the Website Fingerprinting on Early QUIC Traffic (WFP on Early QUIC) paper.
This chapter first explores the recreated experiments from the WFP on Early QUIC
paper and then moves on to this paper’s original extension experiments. It will then
discuss reasons that the results differ between papers, as well as show where the results
are unexpected and provide possible explanations for them. This is different to what
was previously discussed in the methodology, where decisions that could have an effect
were identified; here, the aim is to be more specific, referring to the actual results and
proposing likely culprits of certain effects. This will include some of those previous
points, which are now contextualised.

6.1 Recreated Experiments

6.1.1 WFP on Early Traffic using Top-k

In Table 6.1 and Table 6.2, HTTP3 appears to perform slightly better in resisting
fingerprinting, but overall the protocols perform relatively similarly. There is no
significant difference between the performance of the protocols in this scenario, as was
found in the WFP on Early QUIC paper. In these results, no accuracy is anywhere near
sufficient to breach a user’s privacy, even when using top-k.

6.1.2 WFP Resistance Comparison

In the simple feature figures (Fig. 6.1a and Fig. 6.1b), we can see that the trends across
both protocols are very similar. Again, no model reaches sufficient accuracy to pose
any real-world threat. However, we see that the same models that work well on HTTP2
also work well on HTTP3. Comparing the Random Forest results for both protocols in
Fig. 6.1e, it can be seen that the early performance for HTTP3 is marginally better than
HTTP2 but that as more packets are considered, it becomes marginally less resistant to
fingerprinting.

27
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Table 6.1: WFP HTTP2 in the Early Traffic Scenario using Simple Features and Random
Forest

Mean Top-K Accuracy Across Folds (%)
n top-1 top-2 top-3 top-4 top-5
5 5.277±0.63 8.347±1.10 10.789±0.99 13.294±1.03 15.309±1.15
10 6.439±0.54 10.490±0.59 13.603±0.94 16.493±1.01 16.493±0.74
15 7.154±0.98 11.055±1.15 14.200±1.20 16.962±1.12 19.307±1.39
20 8.038±1.05 11.962±1.13 14.925±1.22 17.271±1.02 20.043±1.35
25 8.348±0.98 11.930±0.98 15.362±0.92 18.006±1.53 20.917±1.44
30 9.030±0.80 12.569±0.68 15.256±0.91 18.081±0.65 20.554±1.28
35 9.851±0.92 13.571±1.11 16.375±1.26 18.742±1.33 21.365±1.11
40 10.053±1.03 14.414±1.06 17.644±0.95 20.480±1.04 22.889±0.76

Table 6.2: WFP HTTP3 in the Early Traffic Scenario using Simple Features and Random
Forest

Mean Top-K Accuracy Across Folds (%)
n top-1 top-2 top-3 top-4 top-5
5 3.092±0.32 5.389±0.47 7.750±0.80 10.090±0.73 12.483±0.52
10 4.097±0.51 6.946±0.86 9.370±1.02 11.710±1.01 13.827±1.02
15 4.436±0.37 7.295±0.72 10.101±0.68 12.567±0.74 14.611±0.86
20 4.605±0.44 7.528±0.81 10.323±0.85 13.023±1.34 16.389±1.35
25 4.669±0.60 7.581±0.81 10.651±0.85 13.097±1.33 15.839±1.35
30 5.442±0.64 8.713±0.93 11.805±1.06 14.759±1.06 17.109±1.04
35 6.003±0.58 9.317±0.93 12.705±0.88 15.818±1.09 18.348±1.19
40 7.316±0.98 10.799±0.92 14.113±1.56 17.459±1.41 20.095±1.45
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: WFP performance comparison across protocols

In the transfer features figures (Fig. 6.1c and Fig. 6.1d), we can compare the performance
pattern of all models using transfer features. These figures again show a similar pattern
of model performance across protocols, where the trend for every model is very similar
to its other protocol counterpart. The possible exception here is Naı̈ve Bayes, which
seems to perform better on the midrange of HTTP3 than on the midrange of HTTP2;
however, it still performs very similarly across protocols for earlier and later traffic.
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Next, looking at the direct comparison of Random Forest using transfer features in
Fig. 6.1f, there is a greater accuracy when fingerprinting HTTP3. For the early traffic,
the protocols perform the same but begin to diverge until 75 packets, where a constant
difference of about 10% remains between the protocols. It is difficult to compare patterns
here to the original paper’s experiment as their accuracies are so inflated that they reach
100% midway through the experiment, preventing any meaningful comparison between
protocols. Note that in Fig. 6.1e and Fig. 6.1f, the standard deviations are visible and
relatively small, meaning this is statistically significant.

6.1.3 Feature Importance Comparison

(a) (b)

(c) (d)

Figure 6.2: Random Forest WFP feature importance comparison across protocols

As mentioned in the Methodology Critique Chapter 4, plotting the feature importances
can be slightly misleading, as this is a different metric depending on the model being
used. Therefore, only the feature importance of Random Forest is compared. Also,
rather than focusing on the exact values of feature importance, this paper is more
concerned with the ranking of feature importances, i.e. what feature is the most
important rather than the exact values of feature importance.

Figure 6.2 shows that packet size count, unique packet size, interarrival time and packet
order are the most significant. When comparing the feature importances we see for
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simple features, the ranking of features is the same except at the beginning of the traffic,
where HTTP2 features a different feature ranking. For the transfer feature importances,
we see the same ranking of features across both protocols.

6.2 Extension Experiments

6.2.1 Tuned Hyperparameters

The hyperparameters found through grid search for 200 packets are as follows:

6.2.1.1 HTTP2

• Extra Trees = { ‘max depth’: 20, ‘max features’: None, ‘min samples leaf’: 2,
‘min samples split’: 10, ‘n estimators’: 200}

• Random Forest = {‘max depth’: 20, ‘max features’: ‘log2’, ‘min samples leaf’:
1, ‘min samples split’: 10, ‘n estimators’: 200}

• K-Nearest Neighbours = {‘n neighbours’:17}

• Gaussian Naı̈ve Bayes = {‘var smoothing’=3.51e-5}

• Support Vector Classifier = {‘C’, 1000, ‘gamma’:0.0001}

6.2.1.2 HTTP3

• Extra Trees = {‘max depth’: 10, ‘max features’: None, ‘min samples leaf’: 1,
‘min samples split’: 5, ‘n estimators’: 500}

• Random Forest = {‘max depth’: 20, ‘max features’: None, ‘min samples leaf’:
1, ‘min samples split’: 10, ‘n estimators’: 300}

• K-Nearest Neighbours = {‘n neighbors’: 13}

• Gaussian Naı̈ve Bayes = {‘var smoothing’: 0.0002310129700083158}

• Support Vector Classifier = {‘C’: 100, ‘gamma’: 0.001}

6.2.2 Tuned WFP on Early Traffic using Top-k

In Table 6.3 and Table 6.4, we can see that now, with the handshakes removed and
using tuned random forest that these results do not match the previous ones. We see
that HTTP3 is significantly harder to fingerprint than HTTP2. It should be noted that by
using tuned models, the fingerprinter accuracy is expected to increase, further exposing
the difference between the two protocols.

The effect of the handshake has been discussed previously, and it should be noted
that the handshake will have the greatest effect on the early traffic, where it could
take up a significant portion of the early packets, reducing fingerprint accuracy. The
significant increase in accuracy on HTTP2 is due to a combination of tuning and



Chapter 6. Results & Discussion 32

Table 6.3: Tuned WFP on HTTP2 in the Early Traffic Scenario using Simple Features
and Random Forest

Mean Top-K Accuracy Across Folds (%)
n top-1 top-2 top-3 top-4 top-5
5 7.260±0.87 11.599±1.32 15.448±1.54 18.475±1.82 21.716±1.85
10 11.471±1.31 16.994±1.51 20.640±1.64 23.625±1.66 26.205±1.59
15 12.260±1.26 17.143±1.27 21.226±1.34 23.923±1.54 27.154±1.33
20 12.047±0.70 17.409±0.96 21.130±1.24 24.051±1.60 26.823±1.70
25 12.601±0.71 17.687±1.08 21.269±1.22 24.755±1.10 27.260±1.30
30 12.697±0.67 18.742±1.29 23.188±0.90 26.439±0.89 29.270±0.81
35 13.422±0.48 19.200±0.87 23.252±0.82 26.503±1.06 29.232±1.13
40 14.158±0.86 20.394±1.17 24.638±0.99 27.569±1.19 30.586±1.09

Table 6.4: Tuned WFP on HTTP3 in the Early Traffic Scenario using Simple Features
and Random Forest

Mean Top-K Accuracy across Folds (%)
n top-1 top-2 top-3 top-4 top-5
5 3.618±0.50 6.201±0.89 8.443±0.70 10.854±0.61 13.224±0.79
10 4.632±0.66 7.482±0.87 9.788±0.97 12.669±1.16 15.829±1.07
15 4.686±0.66 7.322±0.78 9.926±0.78 12.381±0.93 15.103±0.84
20 5.187±0.47 8.123±0.74 11.036±0.80 13.619±1.14 16.640±1.23
25 5.081±0.46 8.485±0.63 11.303±0.88 13.801±0.80 16.661±1.04
30 5.646±0.65 9.233±0.92 12.232±1.10 15.412±1.20 17.995±1.21
35 5.550±0.63 9.126±0.87 12.360±1.08 15.807±0.76 18.519±0.83
40 6.799±1.09 10.919±1.17 14.302±1.28 17.073±1.49 21.058±1.80

removing handshakes, where removing the handshake creates a difference, and tuning
then makes this difference more significant.

These results suggest that there is an effect from the transport protocol. However, it
also provides evidence opposite the conclusion from WFP on Early QUIC, finding
that HTTP3 is more resistant to fingerprinting. In terms of implications for website
fingerprinting, if this is true, then this would mean that website fingerprinting would
become harder in the future as more internet traffic uses HTTP3.

6.2.3 AutoML

Table 6.5 & Table 6.6 show the automl results for WFP HTTP2 and HTTP3, from these
we can see that the final weighted L2 ensemble model’s perform very similarly, this
shows that there is little effect from the transport protocol in terms of WFP resistance.
This experiment goes even further than the tuning experiment to tune the models used;
it also combines models to produce a good predictive model. It is this model which
gives us very similar accuracy, so this is strong evidence that the protocols perform the
same. Note that the automl process is performed with handshakes removed and for 200
packets.
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Table 6.5: AutoGluon Tabular Predictor
Leaderboard for HTTP2 WFP

Model Accuracy (%)
WeightedEnsemble L2 30.8
CatBoost 28.1
XGBoost 26.2
NeuralNetTorch 26.2
NeuralNetFastAI 25.5
RandomForestEntropy 25.5
RandomForestGini 25.4
LightGBMXT 25.3
ExtraTreesGini 24.8
LightGBMLarge 24.6
ExtraTreesEntr 24.5
LightGBM 24.5

Table 6.6: AutoGluon Tabular Predictor
Leaderboard for HTTP3 WFP

Model Accuracy (%)
WeightedEnsemble L2 31.0
CatBoost 27.9
ExtraTreesGini 27.7
RandomForestGini 27.5
RandomForestEntropy 27.3
NeuralNetFastAI 27.0
NeuralNetFastTorch 26.8
ExtraTreesEntropy 26.6
LightGBMXT 26.5
LightGBM 25.9
LightGBMLarge 25.5
XGBoost 24.3

Although looking at the results, it can be seen that there is a different ranking of
models across protocols. This could imply that there is some difference between the
protocols. However, the accuracy difference between models on the same protocol is
fairly insignificant (< 4%), so this is not particularly strong evidence.

6.3 Similarities Across Results

Firstly, in the website fingerprinting performance comparison Fig. 6.1, the rankings
of models in this paper’s results are the same as the ranking of models in the original
paper. The tree-based models perform the best across both protocols in both papers,
followed by KNN, Naive Bayes and SVM.

Next, regarding the feature importance Fig. 6.2 for transfer features, both papers observe
that for early traffic, interarrival time is the most important feature, and for general
traffic packet size counts and unique packet sizes are important features.

It is possible that the trend of resistance to fingerprinting using transfer features as
packets increases matches across papers, but because the accuracy in the original paper
is inflated, no patterns can be seen as the models all perform at close to or 100%
accuracy as more packets are considered.

6.4 Difference Between Results

The most obvious is that the accuracies found in this paper are much lower than those
found in the original paper. This is important as the values found for HTTP2 should
be similar across papers. This protocol has been standardised for a long time, so no
significant changes to the protocol have occurred between the publication of their paper
and the writing of this one.



Chapter 6. Results & Discussion 34

Arguably, the most important results from the original paper were those showing
a weakness in early QUIC traffic. They find a significant difference between the
performance of protocols in their experiments while Table 6.1 and Table 6.2 do not
show this same weakness. Not only is there a much less significant difference between
protocol fingerprinting resistance in this scenario, but our results also show much less
variance, with the lower values of n having a slightly higher accuracy and the higher
values of n having a much lower accuracy than the original paper.

Next, when comparing fingerprinting resistance for 5 to 200 packets, we not only see
much higher resistance but also, the patterns between the papers do not match. Using
just the simple features in our paper, we observe a more linear pattern than the original
paper.

Finally, comparing feature importance results across papers; a notable difference can be
seen for the simple feature importance. When comparing simple feature importances
between protocols, the original paper sees a completely different ranking between
IQUIC and TCP, while in this paper the results show that the ranking is very similar
across protocols. For transfer features in this paper’s results, interarrival time remains
the most important feature for the duration, unlike the original paper, where it is quickly
overtaken by packet size count and unique packet size. In this paper, these features are
important but never become the most important.

6.5 Reasons for these Differences

6.5.1 Latest Versions

A large change between their methodology and this paper’s is the usage of the latest
versions of all software and packages at the time of writing (i.e. Chrome, Caddy).
Firstly, using the latest version of Caddy would significantly affect the results, as the
version of Caddy used in the original paper implemented QUIC as an experimental
feature rather than as standard as it is in the latest version. This could mean that an
immature version of QUIC was used that, although it had begun to be standardised
by IETF, had not been finalised in Caddy. It is not just plausible but very likely that
as HTTP3 was developed, the protocol became more standard in its function across
different sites. This is deeply meaningful to website fingerprinting, as it means that
site-specific information is not leaked due to the protocol acting in a certain manner
for different sites. Using the modern standardised version of QUIC is the most likely
reason why, in this paper’s results, there is no significant difference in the vulnerability
to website fingerprinting under top-a accuracy in the early scenario.

This applies to using the most modern version of Chrome too, as it would be expected
that with HTTP3 becoming standard, the way Chrome handles it will have been refined
over time, so that it is no longer experimental but standard. This would affect WFP
vulnerability for the same reasons mentioned earlier.

However, this does not explain the large decrease in accuracy across all experiments, as
we would expect the results for HTTP2 to stay roughly the same between the publication
of their paper and the writing of this one.
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6.5.2 Cleaning the Handshake

As discussed in the Methodology Chapter in Section 5.2.4, in this paper’s implementa-
tion, it was chosen not to remove the handshake (for the recreated experiments), as this
arguably does not make sense in the early scenario when you consider an attacker who
can only access the first n packets of a trace. Intuitively, this should not have a large
impact on this paper’s results as the handshakes are relatively small (2-6 packets) com-
pared to the number of packets used by the fingerprinting models. It should be noted,
however, that because QUIC has a shorter handshake, this should make it marginally
easier to fingerprint than TCP / HTTP2. This would also explain why the observed
difference between protocols remains constant rather than continuing to diverge, as the
effect of the handshake is expected to remain constant even as the number of packets
increases.

To confirm this, when extracting features from parsed traffic, all packets involved in the
handshake were removed, as is done in the paper, and the TCP handshake and IQUIC
handshake in the PCAP files were examined. It was found that, particularly for HTTP2,
it was difficult for some crawls to establish an initial connection to the server, resulting in
a large preamble before any site-specific data was sent. This will significantly impact this
paper’s accuracy, which could be the reason for lower accuracies across all experiments.
This could explain why HTTP2 seems more resistant to website fingerprinting for
simple and transfer features as for larger numbers of packets Fig. 6.1eFig. 6.1f. To
confirm this a random forest model was trained for 200 packets, with the handshakes
removed for both protocols. It was found that for HTTP2, the accuracy increased to
67.6%, and the QUIC accuracy stayed relatively similar at 72.3%, a smaller difference
than was observed initially, but this does not remove the whole difference between
results, and this does not remove the generally lower accuracies found.

6.5.3 The Caddy QUIC Implementation

One significant concern when it comes to analysing these results is the effect of Caddy.
Caddy was never designed to be used in the ways it is used in the WFP on Early
QUIC paper, and that extends to this paper too. In particular, certain workarounds are
necessary to get Caddy working locally with QUIC, which suggests there could be other
inner workings that are less obvious and will affect the results of the experiments. For
example, HTTP3 avoids reestablishing connections by remembering previous sessions
(Section 2.3.2). This should be disabled by the crawler by removing the cache, but the
Caddy server may still remember these connections and thus will not need any TLS
negotiation. It is very difficult to know the exact effects of Caddy as this use case is far
from its intended, so it is unlikely there has been much debugging for how it is used in
this paper.

There is evidence of this in the collected traffic. When observing the capture files
themselves to investigate the protocol handshakes, most QUIC PCAPs have a strange
handshake structure, where they seem to lack an initial connection packet or maybe
multiple initial packets. This could be related to server-side caching, but also could be
that Caddy QUIC connections do not elegantly close, which could cause interference
between visits. Ultimately, it is outside the scope of this paper to debug Caddy’s
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implementation of QUIC in this unordinary setup, so it is difficult to provide a specific
aspect of Caddy that is affecting the results.

It is likely that the strange preamble (or, more accurately, the lack of preamble) to
the Caddy QUIC traffic makes it more difficult to fingerprint compared to HTTP2,
particularly when the handshakes are cleaned and the models are tuned. In the past,
internal Caddy optimisations have caused QUIC trouble [4], so it is not unreasonable to
assume that it may still cause strange behaviour, particularly in this paper’s nonstandard
use case. It is also possible that this was present in the original paper along with other
issues related to the experimental implementation of QUIC in Caddy used in the original
paper.

This is particularly relevant to the tuned WFP experiments that show HTTP3 being
more resistant to website fingerprinting than HTTP3. This would be less obvious in the
initial experiments that included the handshake, which will also make HTTP2 harder to
fingerprint.

6.5.4 Traffic Tailoring

As discussed in the methodology critique Section 4.3.2, while they mention traffic
tailoring, they do not go into depth about their process for removing invalid and error
pages. This paper’s implementation thoroughly cleaned the collected data, removing
outliers and invalid pages. During the cleaning process, it was also noted that invalid
pages were difficult to spot, as they still produced some traffic, and without using
screenshots and more rigorous approaches, they would have been unnoticed in this
paper’s data. It is possible that they may include some erroneous traces in their traffic
tailoring and cleaning process. This may affect the results, but it is difficult to say
whether it will result in higher or lower accuracy.

The HTTP2 and HTTP3 datasets may have effected differently by the cleaning process,
creating some differences in fingerprintability. Observing the figures in the Methodology
chapter, we can see that the bar plots for the same domain are not always the same
across protocols; for example, Sorbonne-Universite has a shorter box for HTTP3 (A.2c)
compared to HTTP2 (A.1c), which is longer. This would affect accuracy as the pattern
for this shorter box is more distinctive than the pattern for the longer box, so should
be easier to fingerprint. Observing the collections, we can see that HTTP3 has more
of these short boxes, which suggests that the dataset is easier to fingerprint based
on distribution. These patterns are likely not a result of the protocol but the cleaning
process, which could explain why the results do not match the expectation of performing
similarly.

It is not impossible, however, that this different distribution is because of the transport
protocol; however, in combination with strange patterns in initial QUIC traffic, a likely
explanation is that the QUIC captures are missing initial packets, resulting in generally
smaller PCAP files for QUIC, effecting the distribution and the cleaning process.
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6.5.5 Discussion of Extension Experiments

From the tuning results it can be seen that many of the hyperparameters found for HTTP2
and HTTP3 are similar, although not the same. When tuning using an exhaustive grid
search, a collection of values to try for each hyperparameter needs to be provided.
For most of this paper’s results, the values found for HTTP2 and HTTP3 are adjacent
in the provided lists of values. There are exceptions to this: firstly, the number of
estimators for HTTP3 seemed to be larger for both tree-based models. Also, the values
for var smoothing for Gaussian Naı̈ve Bayes appear significantly different.

This similarity between results across protocols shows us that not only are the best-
performing models the same across both protocols but also that, generally, the same
selection of hyperparameters does, too. This again reinforces the idea that the effect of
the transport protocol is small.

However, the two protocols still perform differently when using tuned models and
removing handshakes. This could imply that there is indeed an effect from the transport
protocol, or this could also be due to the Caddy QUIC implementation, which is
performing some optimisations that affect the repeated local connections.

6.6 Summary

To summarise, the recreated experiments show that website fingerprinting HTTP2 and
HTTP3 have similar patterns. This proves they are similar problems and provides
evidence that the transport layer has little effect on website fingerprinting. This paper
finds that the weakness discovered in the WFP on Early QUIC paper is absent in the
results. Also, this paper’s results show weak accuracies, which would never be sufficient
to perform an attack. Finally, while this paper shows a difference in fingerprintability
between protocols when more packets are used, this is mostly due to the inclusion
of handshakes and the rigorous cleaning of the data. When accounting for the hand-
shake, this difference is smaller but still noticeable, so this could suggest that HTTP3
is marginally weaker in fingerprinting, but this is not supported by the tuned WFP
experiments. However, previous research has found that in these normal scenarios, both
protocols perform about the same [49], so this is more likely to result from reasons
independent of the protocols, most likely something in the methodology, such as the
cleaning process, or something to do with the way Caddy serves QUIC traffic.

The extension experiments provide further evidence that the problem of website finger-
printing each protocol is very similar. However, it also provides some evidence that
QUIC is harder to fingerprint, this casts some doubt on the methodology, as this is
unexpected for the same reason that QUIC performing worse is unexpected. This could
be for several reasons, but the most likely would be due to the Caddy server performing
internal optimisations (which have caused issues for QUIC in the past) that will affect
the initial packets of a trace in this paper’s setup.



Chapter 7

Conclusions

7.1 Effect of the Transport Protocol

Website fingerprinting is a privacy breaching attack designed initially for use on Tor
but has also been extended to non-Tor traffic, where both source and destination IP
addresses are still associated with each packet. The widespread introduction of a new
transport protocol – QUIC – on the internet within the HTTP/3 stack prompts research
into whether this new transport protocol influences website fingerprinting. Intuitively,
the transport protocol should have little to no effect, yet Zhan et al. discovered an
apparent weakness in the QUIC protocol when website fingerprinting on early traffic
using top-n metrics. This prompted further investigation in this paper, which performed
similar experiments, aiming to discover the same weakness and further experiments
to work towards an explanation of where the weakness is in QUIC or what feature of
QUIC makes it more vulnerable to fingerprinting. The results of this paper dispute
those of the original paper, finding that using the standard version of QUIC in HTTP3
and TCP in HTTP2, this weakness no longer exists. This paper demonstrates that the
exposed weakness has been resolved through the standardisation of the protocol.

Furthermore, this paper extends Zhan et al.’s paper by individually tuning each model
for HTTP2 and HTTP3 separately. This experiment provides further evidence that what
makes each model effective at fingerprinting is independent of the transport protocol
used. This reinforces that the transport protocol has a negligible effect on website
fingerprinting.

7.2 Limitations of Study

The results show around a 10% difference in accuracy when website fingerprinting both
protocols (including the protocol handshakes) in the normal scenario using Random
Forest, this difference is also statistically significant as the standard deviations are
relatively small. This defies the hypothesis and previous studies [49]. This paper
explained that the difference is due to the traffic tailoring and cleaning process. However,
this undermines the hypothesis that the protocols perform relatively equally as the
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results do not clearly show as such, limiting the conclusion’s strength. Moreover, when
removing the handshakes from the traffic and tuning the models, the results show that
HTTP3 is more resistant to website fingerprinting than HTTP2. This does not back up
the hypothesis, and while an explanation is given as to why this is not the result of the
transport protocol, this result still provides evidence against the hypothesis and reduces
the strength of the conclusions.

In the discussion of the results, several reasons are given as to why the results do not
match the hypothesis, unrelated to the transport protocols themselves. For the most part,
these are speculative, so would need further research to confirm or refute.

7.3 Future Work

A possible extension to this paper would be to run similar experiments with intra-domain
fingerprinting. This paper chooses to analyse inter-domain fingerprinting as this was
used by Zhan et al., yet in this case, it would make more sense for Zhan et al. to research
intra-domain fingerprinting, as this is what a real attacker would use. However, the
results would likely match those found in this paper as the transport protocol should
have little effect whether inter or intra-domain fingerprinting. Another extension along
similar lines would be to perform the experiments in the open world like Smith et al.
[49]. This would also avoid the use of Caddy, which is suspected to be interfering
with the results and would ensure the conclusions apply to more realistic and general
scenarios.

Another useful extension would be to recreate the Zhan et al. experiments using the
exact system and versions used in the paper. This was not possible in this paper due to
inaccessibility to multiple machines and a focus on finding a present weakness rather
than a past one. Clearly, this weakness has been resolved inadvertently between the
publication of the Zhan et al. paper and writing this one. Therefore, if the paper
was recreated exactly as described, it could be iterated upon to find exactly when this
problem was solved, and this could provide a basis to discover why it seemed weaker at
the time. This is useful as the problem may not have been related to QUIC itself but
instead to the system used, in which case it is important to learn what element of the
system compromised the protocol for website fingerprinting attacks.

In this paper, an assumption made is that a victim is visiting one website at a time
and completes their visit before moving on to another domain. This paper chooses
to do this as this assumption was made in the Zhan et al. paper. However, Cui et al.
[24] bring up a valid point that this is not necessarily realistic and that users often visit
one website after another continuously or may visit another website while loading the
current one. This prompts future work to ensure that the conclusion that the transport
protocol has a negligible effect is robust by comparing different versions of HTTP under
these circumstances.

Finally, this paper could be extended to analyse entropy and information leakage
from each protocol. Accuracy does not tell the whole story when it comes to website
fingerprintability (Section 2.2.3) so it could be useful to verify further there is no
weakness in the QUIC protocol using entropy metrics.
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Appendix

A.1 GitHub Repository

Link to repository.

A.2 Docker Images

Caddy Server Docker Image

Caddy Crawler Docker Image

Run the caddy server using this command :

$ docker run --hostname=f508090b710f --env=PATH=/usr/local/sbin
:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin --env=
CADDY_VERSION=v2.7.5 --env=XDG_CONFIG_HOME=/config --env=
XDG_DATA_HOME=/data --workdir=/srv -p 2020:443 -p 2020:443/udp
--restart=no --label=’org.opencontainers.image.description=a
powerful, enterprise-ready, open source web server with
automatic HTTPS written in Go’ --label=’org.opencontainers.
image.documentation=https://caddyserver.com/docs’ --label=’org.
opencontainers.image.licenses=Apache-2.0’ --label=’org.
opencontainers.image.source=https://github.com/caddyserver/
caddy-docker’ --label=’org.opencontainers.image.title=Caddy’
--label=’org.opencontainers.image.url=https://caddyserver.com’
--label=’org.opencontainers.image.vendor=Light Code Labs’ --
label=’org.opencontainers.image.version=v2.7.5’ --runtime=runc
-t -d andrewellison/my-caddy-server

Run the caddy crawler using this command :

$ docker run --hostname=25378218787c --user=root --env=PATH=/usr/
local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin --
env=DEBIAN_FRONTEND=noninteractive --env=
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https://github.com/arbezy/effect-of-trans-proto-on-wfp/tree/main
https://hub.docker.com/repository/docker/andrewellison/my-caddy-server/general
https://hub.docker.com/repository/docker/andrewellison/my-caddy-crawler/general
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DEBCONF_NONINTERACTIVE_SEEN=true --env=TZ=UTC --env=SEL_USER
=seluser --env=SEL_UID=1200 --env=SEL_GID=1201 --env=HOME=/
home/seluser --env=SEL_DIR=/opt/selenium --env=EXTERNAL_JARS
=/external_jars --env=SE_DOWNLOAD_DIR=/home/seluser/Downloads
--env=SE_BIND_HOST=false --env=LANG_WHICH=en --env=
LANG_WHERE=US --env=ENCODING=UTF-8 --env=LANGUAGE=en_US.UTF-8
--env=LANG=en_US.UTF-8 --env=NOVNC_VERSION=1.4.0 --env=
WEBSOCKIFY_VERSION=0.11.0 --env=SE_VNC_PASSWORD=secret --env=
SE_SCREEN_WIDTH=1360 --env=SE_SCREEN_HEIGHT=1020 --env=
SE_SCREEN_DEPTH=24 --env=SE_SCREEN_DPI=96 --env=SE_START_XVFB
=true --env=SE_START_VNC=true --env=SE_START_NO_VNC=true --
env=SE_NO_VNC_PORT=7900 --env=SE_VNC_PORT=5900 --env=DISPLAY
=:99.0 --env=DISPLAY_NUM=99 --env=CONFIG_FILE=/opt/selenium/
config.toml --env=GENERATE_CONFIG=true --env=
SE_DRAIN_AFTER_SESSION_COUNT=0 --env=SE_OFFLINE=true --env=
SE_NODE_MAX_SESSIONS=1 --env=SE_NODE_SESSION_TIMEOUT=300 --
env=SE_NODE_OVERRIDE_MAX_SESSIONS=false --env=
DBUS_SESSION_BUS_ADDRESS=/dev/null --env=SE_RELAX_CHECKS=true
--workdir=/usr/src/app -p 443:443 -p 443:443/udp -p 4444:4444
-p 4444:4444/udp -p 7900:7900 -p 7900:7900/udp --restart=no
--label=’authors=’ --label=’org.opencontainers.image.ref.name=
ubuntu’ --label=’org.opencontainers.image.version=22.04’ --
runtime=runc -t -d andrewellison/my-caddy-crawler

A.3 Data Collection Graphs

See Figures A.1 and A.2 for the final cleaned traffic collection.

See Fig. A.3 for a suspect QUIC boxplot, after an initial clean.

A.4 Grid Search Values

See Figure A.4.

A.5 More Differences in Methods and their Effects on
the Results

Number of Sites:

I collected and trained this paper’s website fingerprinters using 94 websites rather than
92. This should make it harder for this paper’s fingerprinter to predict the website being
visited accurately. However, the effect of this should be minimal as two extra websites
should not have a great effect since it is a small difference, but this will still have some
effect.
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Website Size Distribution:

I use newer versions of sites; generally, sites are getting larger as they become more
modern with more content. This will most likely make website fingerprinting easier
as if websites have more content, which stands to reason that their traffic will look
more distinct from other websites. Although this should mean that this paper’s sites
are slightly easier to fingerprint rather than harder, it does not explain the discrepancy
between the two sets.

Collection statistics:

While they provide some information regarding downloading websites, the WFP on
Early QUIC paper does not provide information on the size or distribution of their
traffic collection. This is arguably much more important than the download size of a
website, as this is the data that will be used by the website fingerprinting models after
processing and feature extraction. During the implementation of this paper, there were
several less-than-obvious discrepancies in the collected data, but these were resolved by
visualising the distributions and removing outliers. The original paper does not mention
removing outliers or visualising the collected traffic in any way. This is frustrating as
this is likely why our results do not match, but they have not provided a sufficient way
to verify this. Also, as it was not mentioned, perhaps the original paper did include
outliers in their collection. However, this would most likely result in a worse accuracy
as there is a larger distribution of capture sizes for each domain. But again, there is no
way to verify the extent to which their collection was different to mine due to their lack
of information regarding it.

A very likely reason that our solution would not match is the results of the simple features
extracted from the traffic for this paper’s collection may be much less distinctive than
those found in the paper. It is reasonable to think that the packets seen in this paper’s
collection, with newer websites and up-to-date versions of different software, are more
uniform across sites than the ones used in their paper. For example, when observing the
results of the early features for this paper’s collection, I tended to see most packets being
classified as large, if all collections follow a similar pattern, then the fingerprinting will
be very weak. If the paper provided some insight into the distribution of the collected
packet sizes, this would also help verify this.

Local Machine:

I performed this paper’s experiments on a local machine and achieved isolation between
client and server with docker containers. The use of multiple machines will affect the
experiment results. Two of the extracted features are the interarrival time of packets and
total transmission time, which will be greatly reduced in this paper’s implementation.
However, the early top-k fingerprinting experiment used only simple features, which is
irrelevant.

Using a local machine setup, there is likely less noise than communicating across
different machines, as there are fewer points of failure for each packet. Intuitively, this
should make fingerprinting easier, as it should make patterns in the traffic more distinct.
Therefore, this does not explain the decrease in accuracy across all tests.
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However, perhaps this isn’t the case. Because of other processes communicating across
this paper’s same local machine, there is much more interference than on an isolated
network whose only purpose is to collect traffic traces. This interference could mean
that many of this paper’s packets get lost, missed, and resent, resulting in the same
packet possibly appearing multiple times in this paper’s collected traffic. This would
lower accuracy as fewer of the collected packets are meaningful, so the traffic pattern
for a specific website will be less distinct, making it harder to fingerprint.

Feature Definitions:

As stated in the Methodology section, the features they use are poorly defined. This
leaves room for ambiguity and possible differences in interpreting the features. For
example, they do not use the value of n (number of packets) in the feature definitions;
one must assume that this value was used; however, it is not referenced in the paper.
This does not apply to results that only rely on the simple features, though, but rather to
the transfer features, so it would not explain the large difference in results when just
simple features are used.

A.6 Tuned Hyperparameters

HTTP2, n=40:

• Extra Trees = {’max depth’: 20, ’max features’: None, ’min samples leaf’: 2,
’min samples split’: 10, ’n estimators’: 400}

• Random Forest = {’max depth’: 10, ’max features’: None, ’min samples leaf’:
1, ’min samples split’: 10, ’n estimators’: 500}

• K-Nearest Neighbours = {’n neighbors’: 9}

• Gaussian Naı̈ve Bayes = {’var smoothing’: 0.0023101297000831605}

• Support Vector Classifier = {’C’: 100, ’gamma’: 0.01}

HTTP3, n=40:

• Extra Trees = {’max depth’: 10, ’max features’: None, ’min samples leaf’: 2,
’min samples split’: 5, ’n estimators’: 500}

• Random Forest = {’max depth’: 10, ’max features’: ’log2’, ’min samples leaf’:
2, ’min samples split’: 5, ’n estimators’: 500}

• K-Nearest Neighbours = {’n neighbors’: 13}

• Gaussian Naı̈ve Bayes = {’var smoothing’: 0.0023101297000831605}

• Support Vector Classifier = {’C’: 10, ’gamma’: 0.01}
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Data Collection for HTTP2
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Data Collection for HTTP3
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Figure A.3: Suspicious QUIC boxplot after the first round of cleaning
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Figure A.4: Values used for exhaustive grid search tuning
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