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Abstract
In this thesis, I analyse the feasibility of doing data science in Haskell. The language’s
applicability to data-centric computation is considered from two perspectives: that of
an educational tool for teaching computation basics; and that of an alternative to other
languages commonly used for data science.

The main output of this thesis is a data-centric computation tutorial in Haskell, designed
for first year Computer Science students. This tutorial combines beginner-friendly
features of functional languages such as simple syntax with Haskell’s data science
library ecosystem. The tutorial was also evaluated by this year’s first year students, and
the feedback was overall very positive.

The secondary output is a comparison of Haskell and Python via performance and
feature benchmarks designed to compare the suitability of various languages for data
science and machine learning. The results show that Haskell (both compiled and
interpreted) is slower than Python. However, Haskell’s support for streaming I/O allows
us to use map-reduce computations on datasets larger than memory. Results show
that streaming performance improves with dataset size, and that Haskell is a viable
alternative for large datasets.
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Chapter 1

Introduction

In this thesis, I explore the viability of data-centric computations in Haskell. This chapter
includes the motivation for why data-centric computation in Haskell is interesting based
on previous work in this area (Section 1.1); outlines the aims of the thesis (Section 1.2);
summarises the results (Section 1.3); and includes an outline (Section 1.4).

1.1 Background

1.1.1 Data-centric computation

The initial motivation for this honours project was to design a data-centric tutorial in
Haskell for first-year computer science students at the University of Edinburgh (class
INF1A—Introduction to Computation).

The idea of using data to motivate learning Computer Science comes from Fisler, who
claims that it is important to teach computer science with data science in mind—many
fields nowadays require basic skills in computing to enable people to work with data
specific to their field. [1] During Fisler’s talk at Lambda Days in 2021, they outlined
how creating introductory computing curricula around data-centric computation better
complemented the learning objectives of students in degrees outside of Computer
Science. [2] Furthermore, this approach was also a good way to motivate learning core
concepts in computer science theory from data structures to types, since these are
necessary to understand in order to work with data in a programmatic context.

Earlier work by Krishnamurthi and Fisler claims that data analysis (explicit manipulation
of aggregated data such as cleaning, splitting, or refactoring) is done through operations
that resemble higher-order functions. [3] This means that functional syntax is better
suited for expressing data-centric computation, since we can express operations as
transformations of the data, rather than an iterative element-wise computation used in
imperative languages.

To facilitate teaching data-centric computation, Fisler et al. wrote a textbook for Brown
University’s introductory computing class. [4] This textbook uses a bespoke language

1



Chapter 1. Introduction 2

called Pyret, which combines features from common languages like Python with syntax
often found in functional languages such as Haskell or OCaml. [5]

My work focuses on how we can take the same principles of data-motivated computation
and apply them to Haskell, since the University of Edinburgh’s introductory class uses
Haskell. Unlike Pyret, which is still under development, Haskell is a well-established
language with a stable user base. [6] This means that Haskell already has a relatively large
collection of data science and machine learning libraries. A lot of these are collected
under dataHaskell—an open-source organisation focused on creating an ecosystem of
libraries that leverage Haskell’s features such as its type system, lazy computation, and
support for streams. [7]

1.1.2 Functional languages for beginners

While the idea of using data to motivate learning computation is relatively new, using
functional programming as an introductory computing class is not. Long before the
advent of imperative languages with less boilerplate like Python, lecturers were looking
for more beginner-friendly languages that offered a higher level of abstraction. Back in
the late 1980s, Joonsten et al. switched to teaching Miranda [8]—a lazy, purely functional
language that strongly influenced the design of Haskell [9]—in their first semester
introductory Computer Science class at the University of Twente in the Netherlands.
Their findings suggest that students were better able to describe problems formally,
had an easier time with abstractions, and solved more complex problems than their
counterparts that were taught imperative programming. Moreover, they found that
combining their teaching with imperative programming in semester two lead to the
most well-rounded year one education.

A different study by Yuen et al. done on a group of high school students found
that teaching logical programming made them see Computer Science as more than
just programming—student surveys mentioned that they saw computer science as
problem solving and the study of technologies more than just coding. [10] While there
are differences between functional and logical programming, Paulson and Smith argue
that they are both styles of declarative programming that offer similar benefits in
abstraction and simple syntax. [11] Haskell offers a lot of the desirable features such as a
relatively simple syntax structure with intuitive semantics and a natural connection to
abstraction and logic. The INF1A course exploits this fact by already including logic as
a core component alongside programming in Haskell.

While Haskell’s syntax might be relatively simple, it is also important to keep in mind
that the objective of an introductory computer science course should be an introductory
overview to computing in general first, and a class in a specific language second. Studies
by Chakravarty and Keller, [12] as well as Felleisen et al. [13] argue that the focus of an
introductory computing class should not be on the syntax specific to the functional
language that the course is being taught in. They claim that focus should primarily be
placed on design concepts (that are language-agnostic), rather than design constructs
(that are language-dependent). This might mean limiting the use of abstract concepts
not seen in many languages, such as monads. Thankfully, imperative languages like
Python (and even Java) are slowly adopting features from functional languages. This
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makes it easier to justify teaching constructs such as list comprehensions and pattern
matching in Haskell, since they are becoming more commonplace.

There are also measurable benefits to using a language that can be used outside of
an educational setting. Hughes suggests that students engage better with content that
they perceive as being useful in the future more than content that is interesting from
a purely academic perspective. [14] Therefore, teaching students to use a language that
has a reasonably sized ecosystem and user base might engage their interest further
than a purely educational language. [15] While a language like Pyret that is tailor-made
for beginners can be easier to learn, it does incur a large opportunity cost because
the language has no use case outside of the classroom.1 Even Fisler’s introductory
computing textbook only uses Pyret for the first half of the course, after which it switches
to Python. They argue that this transition should be relatively seamless because the
two languages have similar syntax structure. [2;4] However, there is also the possibility
that learning two mutually incompatible languages with very similar syntax can be
confusing to students. Therefore, having a language like Haskell that borrows from
both sides (it has relatively clear syntax, and a decently sized user base) might offer a
good compromise.

1.2 Aims

The primary goal of this project was to design a Haskell tutorial about data-centric
computation for first year informatics students at the University of Edinburgh. This re-
quired creating back-end code scaffolding that allowed the students to load, manipulate,
summarise, and visualise tabular data (CSV files). Once this framework was completed,
the second step was to write a tutorial for the INF1A class that demonstrates how this
code framework can be used, its capabilities, and limitations. Then, code solutions to
all exercises needed to be made so that students could check their work throughout the
tutorial. Finally, the tutorial needed to be evaluated by the current INF1A cohort.

The secondary goals were to analyse the viability of using Haskell for data-centric
computation, both as an educational tool and as a tool for data science. This analysis can
be viewed from three perspectives: ease of use, feature availability, and performance.
Therefore, in order to compare Haskell to other languages used for data science, the
project needs to define methodology based on which comprehensive and unbiased
comparisons to other languages can be made.

1.3 Results

1.3.1 Tutorial

I have created a code scaffold that supports data-centric computation using libraries
included in the dataHaskell environment. I then used this framework to create a tutorial
consisting of seven exercises which ask questions about a dataset to motivate learning

1The Pyret website does state that the end goal for Pyret is to become a fully featured language. [5]

However, there is no guarantee that the language will develop a stable user base.
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and revising material on functional programming students learned in class. The tutorial
also incorporates data science concepts into both questions and implementation.

To evaluate the efficacy of the tutorial, I sent the tutorial out to the current INF1A cohort
to collect feedback, which I then used to make adjustments for the final tutorial version.
The feedback shows that the tutorial is well designed: students were able to learn new
data science concepts and solidify their functional programming skills; the dataset was
interesting; and students used critical thinking when engaging with the material.

1.3.2 Benchmarks

To test Haskell’s viability as a language for data science in general, I implemented tests
from the Sanzu benchmark in Haskell. I ran benchmarks in both Python and Haskell
on synthetic datasets at five orders of magnitude (103 to 107 rows) to investigate how
performance scales with dataset size. I also ran memory profiling to probe whether
Haskell can stream datasets that are larger than memory.

Implementing these tests showed that Haskell’s ecosystem is not as feature-rich or user-
friendly when compared to more mainstream languages such as Python. Benchmarks
performed on datasets at five orders of magnitude show that Haskell (both compiled
and interpreted) performs worse than Python on all tests, and that both languages scale
at a similar rate with respect to dataset size for most tests.

Memory profiling benchmarks show that memory used when streaming is independent
of dataset size, and that the performance of streaming a map-reduce operation on
a dataset is comparable to loading the dataset to memory and then using the map-
reduce operation on a column. Further benchmarks suggest that as dataset sizes grow,
streaming becomes more efficient due to higher productivity (less time spent on garbage
collection), making streams a better paradigm for dealing with large datasets.

Testing suggests that Haskell can be a good language to use for very large datasets.

1.4 Thesis outline

Chapter 2 gives a detailed overview of the data science tutorial in Haskell I created,
justifies all design decisions made, and evaluates the success of the tutorial based on
feedback collected from this year’s INF1A cohort.

In Chapter 3, I outline the technical difficulties that I encountered while making the
tutorial. Then, I use the Sanzu benchmark to compare Haskell’s data science and
machine learning capabilities with Python. [16] Introduced by Watson et al. in 2017, this
benchmark was designed to test the performance and features of popular data science
languages. The last part of this chapter includes benchmarks on streams, and compares
them to in-memory data frames in Haskell.

Lastly, Chapter 4 contains the conclusions. These include a comprehensive synthesis of
the viability of Haskell for teaching and data science, and future work needed to make
Haskell easier to use for data-centric computation in the classroom.



Chapter 2

Making a Tutorial

This chapter contains a detailed overview of everything related to the data-centric
tutorial I made for first-year computer science students at the University of Edinburgh.
All design decisions made are justified with literature. I start by giving an overview
of the tutorial file and text structure in Section 2.1, followed by my reasoning for the
choice of dataset in Section 2.2. Section 2.3 talks about how the tutorial code scaffold
was set up. Next, I include details about the educational aims and design considerations
for each of the exercises (Section 2.4) and the solutions (Section 2.5). Finally, in Section
2.7 I talk about student feedback for the tutorial. The full tutorial text can be found in
Appendix B, and all the tutorial and solutions code is included in Appendix C.

It is also important to understand the context within which the tutorial was designed.
The Introduction to Computation (INF1A) course consists of both logic theory and
coding in Haskell. As such, the students are assumed to have a semester’s worth of
experience in Haskell, but the specifics of assumed knowledge will be stated explicitly
and explained whenever relevant. The tutorial also aims to lay down groundwork for
data-centric computation while not duplicating the knowledge that is taught in the core
second year class of the Computer Science degree called Foundations of Data Science
(FDS) taught in Python.

2.1 Tutorial structure

The tutorial consists of a PDF file with all the instructions and exercises, a CSV dataset
file, an example plot, and several Haskell files: the main tutorial file; two files with
helper functions; and two solution files (the full file structure with descriptions is listed
in Table 2.1).

The code is deliberately split into multiple files based on their functions. Scaffolding
for the dataset (the Frames library) is located in the main Tutorial.hs file; functions
that operate on columns are located in the Helpers.hs file; and plotting functions
(wrappers for the Chart library) are placed in the Plotter.hs file. Non-code files are
placed within their own directories to separate code from auxiliary files. The tutorial
text is left outside of the tutorial folder, since this is the first file the students should

5



Chapter 2. Making a Tutorial 6

tutorial/ A directory that contains all the code.
|--plots/ A directory into which all plots are generated.
|--|--number of astronauts.svg Example plot (included in tutorial text).
|--datasets/ The dataset directory.
|--|--astronauts.csv The CSV(comma-separated value) dataset.
|--Helpers.hs Scaffolding for operating on columns (lists).
|--Plotter.hs Scaffolding for making plots (Chart).
|--Tutorial.hs The main tutorial file, to be filled in by the student.
| Includes scaffolding for dataset operations (Frames);
| imports Helpers and Plotter.
|--Solutions.hs Solutions and solution printers; imports Tutorial.
|--AltSolutions.hs Streaming solutions alternative; imports Tutorial.
tutorial.pdf The tutorial text.

Table 2.1: File structure of the tutorial. Files are hyperlinked to appendices.

open.

The tutorial text starts with a short overview, which shows the students what they can
expect to be able to do by the end of the tutorial—load and analyse a dataset, and even
create plots. This serves two purposes: it gives the students an idea of what to expect
in the tutorial as well as motivates why the skills taught within might be interesting.
This approach is motivated by a 2008 paper by Hughes, which suggests that students
engage more in concepts that they perceive as having ‘real-world applications’. [14]

This is further supported by cognitive theory, such as the 1990 paper by Hidi. [15] They
claim that learning is enhanced when a text leverages both innate interestingness of the
material and interest due to personal significance (usefulness of the material for the
future).

Then, the tutorial guides the students through how to set up their environment. I
modelled this section after the first tutorial the students are given in their INF1A course,
which guides them through how to install Haskell via ghcup. I found that using GHC
(Glasgow Haskell Compiler) version 9.4.7 was preferable to the recommended version
9.4.8, since some libraries had issues with incompatible dependencies if installed in
the newer version. The tutorial contains full instructions to install and switch compiler
versions using ghcup, and install all libraries with cabal (Haskell package manager) in
three commands that can be copy-pasted directly into the command line. This was done
to minimise the amount of work needed for students to get started. The instructions were
tested on Windows 10 and 11, Linux Ubuntu 22.04, and MacOS 14; both with fresh
Haskell installations and an already in-use system. While these instructions are specific
to this year’s INF1A cohort, they use standard tooling and can be easily adapted.

The next tutorial section introduces the dataset (more detail in Section 2.2), gives a
refresher on the basics of I/O in Haskell, and instructions on how to work with the
dataset (loading, viewing, and getting a column). The students should have knowledge
of basic input and output operations and how to handle side effects in Haskell, but
this is a topic that is introduced very late into the course, so there is little time for the
students to get much hands-on experience. As Hughes suggests, topics taught later in a
course are viewed as harder by students because they have had less time to get familiar
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with the concepts. [14] This is why I spend almost a full page of the 11 page tutorial on
reviewing how I/O works in GHCi (the GHC Read-Eval-Print-Loop) as well as writing
and running IO () functions.

The main body of the tutorial consists of guided exercises. These were designed to
help students solidify their understanding of functional programming by applying what
they have learned in class to a real-world problem—data analysis (see Section 2.4 for
details).

The last two pages of the tutorial discuss when Haskell is useful compared to other data
science languages.

2.2 Finding a suitable dataset

Before I could design any exercises, I first needed to select a dataset. The criteria for a
good dataset look relatively simple on the surface, but each presents their own set of
challenges. Ideally, for a data science tutorial, a dataset needs to:

1. Be interesting enough for the students to engage with the material.

This point is relatively self-explanatory—using a dataset that contains information
the students want to know more about will motivate them to engage with the
material. A 1991 study by Schiefele found that interest in a topic was signifi-
cantly correlated with involvement, enjoyment, concentration, and even levels
of comprehension. [17] They also found that student interest has the strongest
positive correlations with elaboration (finding concrete examples) and seeking
information. We can leverage these benefits by asking interesting questions about
the data and having students find the answers via data analysis.

2. Have diverse enough data to facilitate the analysis of numerical, textual, and
categorical data.

This requirement is needed to provide a more well-rounded learning experience.
Most real-world datasets include all types of data, and teaching how to work
with both numerical and textual data is an important foundation. Numerical data
can be used to introduce concepts of summarising data, while textual (which
oftentimes means categorical) data lends itself well to aggregation operations.

3. Be either pre-processed or contain data that is clean by design.

Despite using a lot of data science, it is important to keep in mind that the purpose
of this tutorial is not to teach data science, but rather to use data science to
motivate students to use functional programming. As such, data cleaning is out
of the scope of the tutorial.

My first idea was to use the an Edinburgh weather dataset (which is a part of the
HadUK-Grid dataset collection). [18] I reasoned that this would be of interest to a lot of
people given its relevance as a practical everyday interest. However, there were several
issues with this choice. Firstly, I had no way to justify whether this dataset would be
of interest to the students. Secondly, I realised that this could clash with a dataset that
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Column name Type Description
numberOverall Int Astronaut world-wide number
numberNationwide Int Astronaut nation-wide number
profileName Text Astronaut full name
profileSex Text Astronaut sex (male/female)
profileYearBirth Int Astronaut birth year
profileNationality Text Astronaut nationality
profileMilitary Text Affiliation with military (military/civilian)
profileYearSelection Int Selection year
profileMissionsNumber Int Astronaut’s mission number
profileMissionsTotal Int Astronaut’s lifetime missions
profileMissionsDuration Double Astronaut’s lifetime mission duration (hrs)
profileMissionsEVA Double Astronaut’s lifetime EVA duration (hrs)
missionRole Text Astronaut’s role on mission
missionYear Int Mission year
missionName Text Mission name
missionVehiclesAscent Text Ascent vehicle name
missionVehiclesOrbit Text Orbit vehicle name
missionVehiclesDescent Text Descent vehicle name
missionDurationTotal Double Mission duration (hrs)
missionDurationEVA Double Astronaut’s EVA duration (hrs)

Table 2.2: Description of all columns in the astronauts.csv dataset. EVA
stands for extravehicular activity.

is used for the second-year FDS class, and I wanted to have this tutorial fit into the
students’ learning with minimal duplication of knowledge.

In order to find a more objective way to select datasets, I used CORGIS (Collection
Of Really Great, Interesting, Situated Datasets)—a project that includes pre-processed
datasets that educators can use with minimal adaptation for their computing classes. [19]

While this dataset collection is mostly intended for computing in Python and Java, they
also offer raw CSV files. I ended up choosing a dataset of publicly-known information
about astronauts who went to space prior to 2020, since it satisfied all three criteria for
a good dataset.

I later found that the dataset was not cleaned properly, as some non-ASCII characters
were missing from the name fields in the CORGIS dataset. I ended up downloading the
raw dataset from the TidyTuesday GitHub [20] and cleaning it manually. This included
reordering and renaming columns to be more descriptive and easier to work with in
Haskell (formatted in camelCase), as well as checking for (and cleaning) faulty text in a
few rows instead of simply dropping them (as was the approach that CORGIS took).
The tutorial text also included a table that contained a column name, Haskell type, and
a short description of what the data meant (including units for mission duration—yet
another piece of information missing from the CORGIS website). This table is also
included here (see Table 2.2).
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There were a number of design considerations that the dataset makes, and they are
explained in the tutorial, with the goal to explicitly point out as many good design
decisions to the students as possible. As Felleisen et al. claim in their 2004 paper on
computer science curricula: instructors should aim to explicitly teach design concepts,
not just design constructs that the students have to assemble themselves. [13] This
is supported by Fisler’s paper, which posits that people construct new programs by
recalling programs they have written or saw before and adapting the high-level structure
to the current problems. [1] This means that explicitly highlighting good design practices
helps students solve similar problems effectively in the future.

The first design choice that is explicitly explained to the students is the dataset struc-
ture. The dataset can be viewed as a list of rows, where each row corresponds to an
observation (an astronaut that went to space on a specific mission) and each column
contains a single piece of information. This way of structuring datasets was popularised
by Wickham’s tidyverse R packages, and is therefore referred to as tidy data. [21]

As Wickham argues, this is a good way to structure a dataset since whenever a new
observation is made, we only need to add a new row. Similarly, if we want to add
a new piece of data to the dataset, we can simply add a new column. This dataset
includes three column categories: index columns (which start with number), columns
that contain information about the astronaut (starting with profile), and columns with
information about the mission (start with mission).

Another explicit design choice was the use of Text instead of String to store textual
data. String is the default Haskell implementation, and it is a type synonym for a
list of characters [Char], while Data.Text is a type defined in the text library and
uses UTF-16 UNICODE encoding. [22] This means that while String is better for
manipulating strings (since it is a list), it uses 5n words compared to Text’s 6 words
+ 2n bytes, where n is the number of characters in a string. [23] It is easy to miss this
detail unless stated explicitly, since the tutorial uses the XOverloadedStrings pragma
(additional compiler instruction), which renders Text and String literals the same way.

2.3 Effective scaffolding

The next big design decision was figuring out how to work with the dataset. There were
two options to choose from: either implement something from scratch or use a library.
The advantage of implementing something from scratch would be transparency for how
files are loaded to the students. Early drafts of the tutorial included teaching the students
how to work with I/O and parse their own CSV file. However, since the tutorial was
supposed to be about solidifying concepts through data science, this idea was scrapped
early. The same reasoning applied when I was deciding whether to choose a relatively
light-weight CSV parsing library such as cassava, [24] or a more feature-rich library
that included an efficient data frame implementation (in-memory representations of a
table) such as Frames. [25]

Ultimately, I decided to use several data science libraries: Frames for data frames,
Chart for plotting, [26] statistics for linear regression, [27] and foldl [28] and pipes [29]

for streams. I could then guide the students through how to use a ‘real-world’ library
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ghci> :load Tutorial.hs
ghci> astronauts <- loadDataset
ghci> getColumn astronauts profileName

Figure 2.1: Getting a list of astronaut names in the GHCi REPL.

ghci> printFrame " " (takeRows 3 f)
profileName missionName
"Gagarin, Yuri" "Vostok 1"
"Titov, Gherman" "Vostok 2"
"Glenn, John H., Jr." "MA-6"
ghci> printDataset 3 f
profileName missionName
"Gagarin, Yuri" "Vostok 1"
"Titov, Gherman" "Vostok 2"
"Glenn, John H., Jr." "MA-6"
ghci> viewDataset 3 f
{profileName :-> "Gagarin, Yuri", missionName :-> "Vostok 1"}
{profileName :-> "Titov, Gherman", missionName :-> "Vostok 2"}
{profileName :-> "Glenn, John H., Jr.", missionName :-> "MA-6"}

Figure 2.2: Comparison of different ways to view the frame f. TOP: Using only
functions that come with the Frames library. MIDDLE: Print the first n rows of a
frame as aligned columns. BOTTOM: Print the first n records of a frame.

with the use of understandable scaffolding code. The students can then reuse the
scaffolding, should they wish to use Haskell for data science themselves.

The Frames library is used in the tutorial to provide the data frame back-end. It only
requires a few lines of code to get the dataset loaded, so these functions are kept
within the main Tutorial.hs file. They include defining the row type, creating a
stream of rows, and then loading the dataset into memory (loadDataset). I also
wrote a helper function getColumn that extracts a column out of the dataset as a list.
Figure 2.1 shows all the necessary steps to get all the astronaut names once GHCi is
started. Notice how simple the syntax is—loading the dataset only requires a call to
loadDataset, which performs an I/O action that loads the dataset to memory, and
getting a column only requires them to call the getColumn function with a getter that
the Frames library defines. These getters are eponymous with the column headers
shown in Table 2.2, which was why it was important to properly name the dataset
columns—Haskell variables cannot begin with uppercase letters, or contain dots.

Alongside the bare necessities (loading the dataset and extracting a column), I also
wrote and included two helper functions to print each row as a record (viewDataset)
and pretty print (printDataset) the dataset to help the students view the dataset
structure more easily. Figure 2.2 shows a comparison between the library functions
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getColumn :: (Foldable t, Functor t) => t a -> Getting b a b -> [b]
getColumn frame col = Data.Foldable.toList $ view col <$> frame

Figure 2.3: Definition of the getColumn helper function.

(printFrame and takeRows) compared to the more accessible helpers viewDataset
and printDataset. The frame f is a two-column subset of the astronauts frame,
which we can obtain by applying a lens onto each record (row), that selects the desired
record fields from the larger row record (that contains all 20 fields corresponding to
the 20 dataset columns). The students were encouraged to try to use these functions to
interactively analyse of the dataset via the GHCi REPL (Read-Evaluate-Print Loop).

While helpers like printDataset might seem like very basic functions, column align-
ment is crucial for effectively viewing and exploring the dataset. Because GHCi is
a command line environment, many systems simply wrap overlong lines. Therefore,
while viewing only a few rows from a two-column subset might be legible, viewing even
just a few lines from the full 20-column dataset quickly becomes extremely confusing.

Indeed, some of these scaffolding functions are nothing more than wrappers for a few
basic functions. For example, the getColumn function shown in Figure 2.3 simply
applies a column getter (a 1-field lens) to all records in the frame and then converts the
one-column frame to a list. The question then becomes: are these helper functions even
necessary? Is there a benefit to including simple function wrappers such as getColumn
as part of the scaffolding?

I believe there is. The getColumn function abstracts a lot of detail that is necessary for
working with the Frames library, while at the same time being superfluous to actually
completing the tutorial exercises. Unlike what we might expect at first glance, the
view function is defined in the microlens library, [30] and Frames does not include any
mechanism for extracting a single column—this syntax is copied from the Frames tuto-
rial. [31] Therefore, the purpose of these helper functions is to isolate the implementation
details from the desired functionality (or, in Fisler’s words: teaching should focus on the
effects of the program, not its implementation). [1] The getColumn function abstracts
the code necessary to work with Frames which is new to the students, and instead
reverts to a standard Haskell list which they are familiar with. This means we do not
need to explain new syntax (such as fmap and its infix equivalent (<$>)) needed to get
a column from a data frame.

There is a large amount of literature that supports this view. Chakravarty and Keller
argue that while functional programming languages are good candidates for beginners,
care has to be taken to remain as language-agnostic as possible. [12] Another paper by
Felleisen et al. also supports the idea that functional programming can lead to the same
tyranny of syntax that imperative programming often results in. [13] This results in the
focus being placed on the language-specific implementation rather than focusing on
more generally-applicable knowledge. Therefore, effective scaffolding is not only about
abstracting implementation details but also implementation syntax that the students do
not need to know.



Chapter 2. Making a Tutorial 12

loadDataset :: IO (Frame Astronaut)
loadDataset = Frames.inCoreAoS Tutorial.astronautStream

Figure 2.4: The type and implementation of the loadDataset function.

inCoreAoS :: (primitive-0.8.0.0:Control.Monad.Primitive.PrimMonad m,
Control.Monad.IO.Class.MonadIO m,
exceptions-0.10.5:Control.Monad.Catch.MonadMask m,
Frames.InCore.RecVec rs) =>
Producer (Record rs) (SafeT m) () -> m (FrameRec rs)

Figure 2.5: Type signature of the Frames.inCoreAoS function.

Also notice that I took special care to adhere to a common naming convention—all
helper functions have the form actionObject (such as functions that deal with the
dataset loadDataset, viewDataset or the column to list function getColumn). This
helps distinguish scaffolding functions from functions defined by the Frames library.

2.3.1 Understandable types

Another reason why scaffolding is important is that it lets us make functions with simple
and understandable types. In Haskell, a function’s type signature can tell us a lot about
what that function does—it describes the full list of inputs types and the output type.
The order of input arguments is sometimes relevant too, since Haskell supports partial
function application.

Let us take the loadDataset function as an example. Figure 2.4 includes the full im-
plementation of this function. Notice: it is very simple! The type signature immediately
tells us that calling this function will perform an I/O action that will give us a Frame of
Astronaut records (rows). The implementation simply calls a function that converts a
stream into an in-memory array-of-structures (AoS) representation of the data frame.
However, the type signature of the inCoreAoS function (shown in Figure 2.5) is too
complex. Not only does it introduce concepts which are out of scope for the tutorial
like monads, it also includes monads from three different libraries: the base Haskell
library, the primitive library, and the exceptions library. Since this is not relevant
to the tutorial (data-centric programming), and unexplained syntax in a tutorial is very
bad practise, this type signature should not be seen by a student.

This example illustrates how writing scaffolding functions that have understandable (or
easily explainable) types provides educational value. I introduce all functions in the
tutorial with their type signature which is then explained, since looking at functions in
terms of their types is a very useful skill to have, and one that is even more important
for a functional language like Haskell.
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ghci> (group . sort) ["a", "b", "a", "c", "b"]
[["a", "a"], ["b", "b"], ["c"]]

Figure 2.6: A code example from the tutorial. This example shows how the group
and sort functions can be used together to aggregate elements into nested lists.

2.3.2 Code examples as a teaching tool

Unfortunately, the abstraction-oriented approach to code scaffolding I chose for this
tutorial directly clashes with the aims stated in Section 2.1—abstracting the implemen-
tation details also means that the students are exposed to an idealised version of the
code for the purpose of education, rather than using functions that come with the library.

In order to fix this disparity, we can take advantage of what Sweller describes as the
worked example effect in his 2006 paper. [32] They argue that people construct new
programs based on a high-level solution structure to similar problems. This approach is
further supported by a 2015 paper about teaching types in programming by Tirronen et
al., who found that providing students with worked examples can have a positive impact
on learning. [33]

This is why the scaffolding code for working with Frames is not hidden in a helper
file but instead remains at the top of the main Tutorial.hs file. These functions also
provide a worked solution for the students to use, should they want to use the Frames
library outside of this tutorial. At the same time, a student can simply read through the
instructions in the tutorial text on how to use these functions and use the scaffolding
without ever looking at how it is implemented.

I used the worked example effect throughout the whole tutorial. Whenever a new
function is introduced, a textual explanation is accompanied by a small worked example
of using the function. These range from small GHCi snippets such as the example in
Figure 2.6 to a list of multiple function calls and their effects such as the examples
shown in Figures 2.1 or 2.2.

2.4 Exercises

The tutorial includes seven exercises grouped under three questions based on the topics
the exercises cover:

(1) Basics (3 exercises);

(2) Aggregation (2 exercises);

(3) Plotting (2 exercises).

Each exercise was designed to introduce as few concepts as possible. As such, the
exercises build on concepts introduced in previous exercises, making the learning path
as linear as possible to remove confusion. Section 2.4.1 includes a breakdown of the
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data science concepts, and Section 2.4.2 breaks down the design decisions behind each
exercise in detail.

Each exercise starts by posing a question about the data. These questions motivate
working with the dataset, and encourage the students to think of their own questions
they could answer using the same tools. The body of each exercise then introduces any
new functions that are needed to complete the exercise. As mentioned in Section 2.3.2,
this is accompanied with a code example if the function is one the students might not
have encountered in their course.

Throughout the tutorial, the students are encouraged to extract columns from the dataset
and work on them with functions that they already know. This helps them get hands-on
time with concepts that are taught later in the semester that students do not have much
practise time with—namely I/O (which is taught within the last two weeks of the
semester) and composing several functions to transform columns into the desired result
(which is taught within the last month). There are multiple reasons behind this choice
of focus for the tutorial.

The first is the aforementioned study by Hughes, which found that students perceived
concepts taught later in the course as harder since they did not get familiar with them.
The second was an analysis conducted by Tirronen et al. that analysed beginner-level
coding sessions for common mistakes. [34] They found that some of the main areas
students struggled with were functional composition (f (g x) is equivalent to (f
. g) x) and application (f x (g y) is equivalent to f x $ g y) alongside pattern
matching and partial application. Unlike features specific to functional languages
like pattern matching, functional composition and application are concepts that are
present in some form in most data science-oriented languages, since working with
the dataset can be thought of as transforming and reducing a large data structure (the
map-reduce paradigm). Therefore, if we want to teach students the concepts behind
computation rather than a specific syntactic implementation (as Fisler claims we should
for introductory computing courses), [1] functional composition and application are core
paradigms we should aim for the students to master.

Alongside implementing the code, some exercises also include framed sections. These
include tips on how to break down a data science problem, or a question about whether
a relation that the students found is causal or simply a correlation. Some even encourage
students to think of potential real-world events that might have influenced the data but
are not included in the dataset. I designed these sections to encourage students to think
about the context within which they are writing code.

I also took inspiration from existing tutorials. The formatting of the tutorial closely
resembles the style that INF1A tutorials use to make the experience as cohesive as
possible for the students. Similarly to INF1A tutorials, I also point out functions that
might be helpful to the students. In this way, the exercise points them in the right
direction without giving them the solutions outright, which I believe strikes a good
balance between hand-holding and freedom. The introduction of functions to load and
view the dataset follows the same general structure that the FDS course uses in their
Python tutorials, since this structure has been tested over multiple years by hundreds of
students.
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2.4.1 Data science concepts

Discounting procedures to transform the dataset (selecting columns or aggregating
data), the tutorial introduces three tools used in data science. This was done on purpose,
since the focus of the tutorial is on using Haskell for data science, rather than doing
data science in Haskell. Therefore, instead of introducing many data science concepts
(which are taught in the second year FDS course anyway), I encourage the students to
think about what their results mean in a larger context. I do this through a series of
boxed questions mentioned previously.

(1) Descriptive statistics (range, mean, median).

The first question introduces descriptive statistics of a list of floating point num-
bers. These include measures of central tendency (mean and median), as well
as measures of variability (minimum and maximum). The tutorial includes a
helper function stats that computes the minimum, mean, median, and maximum
of a list of floating point numbers. This function is introduced in the very first
exercise, alongside an aside on the mean and median—their definition, uses, and
limitations are all explained. The implementation for stats is located in the
Helpers.hs file, since it operates on lists, not on data frames.

The function explicitly implements mean and median. I did not manage to find
any library that computes the median of a list—the statistics library can
calculate the median of a vector, [27] but requires the parameters α and β. These
are non-trivial, since even the documentation refers to a 1996 paper by Hyndman
for their definition. [35] Explaining these parameters would be out of scope of this
tutorial, and it would also clash with the α and β coefficients from regression
defined later, so I deemed a manual implementation necessary. Note that the
code also has the same asymptotic runtime as the statistics function, since
the median implementation is limited by the O(n logn) runtime of the sorting
algorithm. The mean function is also implemented manually for transparency.

(2) Fitting data with a curve.

The second question introduces linear regression as a way to create a linear
fit. This adds a concept from machine learning to the students’ data science
toolkit. The tutorial purposefully omits as much mathematical notation as possible,
since we want to focus on the effects rather than notation. This approach is
recommended by Hicks and Irizarry in their paper on teaching data science. [36]

The regression is also located in the Helpers.hs file, since it deals with a list of
floating point numbers. Its implementation converts the two lists of numbers into
Vector types, which are then passed to a linear regression function implemented
by the statistics-linreg package. [37]

As the tutorial explains, the regression function returns two coefficients α and β,
where the best fit line can be constructed as y = α+βx. The function also returns
the R2 coefficient of determination, which quantifies how good the fit is with a
value between 0 (no correlation) and 1 (data perfectly described by fit).

(3) Plotting.
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scatterPlot :: (PlotValue x, PlotValue y) => FileName -> [(x, y)] ->
-> AxisTitle -> AxisTitle -> Title -> IO ()

scatterPlot fileName data xtitle ytitle title =
toFile fileOptions ("plots/" ++ fileName ++ ".svg") $ do

layout_all_font_styles .= fontStyle
layout_title_style .= titleFontStyle
layout_title .= title
layout_x_axis . laxis_title .= xtitle
layout_y_axis . laxis_title .= ytitle
-- create a line plot with custom styling via liftEC, which
-- nests computation of the points within the plot computation
plot $ liftEC $ do

plot_points_style .= (filledCircles 5 $ opaque black)
plot_points_values .= data

Figure 2.7: Implementation of the scatterPlot scaffolding function. This code
can be found in the Plotter.hs file. Note that fileOptions, fontStyle, and
titleFontStyle are defined earlier in the file. Most comments (marked with --)
are removed to fit the function on page.

Exercises in the last question deal with basic visualisation of data. This is
purposefully introduced all the way in question 3. The students are encouraged
to go back to their previous exercises and see if their answers to the questions
change now that they can see the data visualised. In this way, the tutorial forces
the students to fully consider the pitfalls of using summarising statistics. The
tutorial includes two wrapper functions called scatterPlot and linePlot2
(which plots two lines in one plot) that act as wrappers for the Chart library.
I once again did this with a specific learning objective in mind—the wrapper
functions require the students to put proper labels on their data and axes, which
implicitly teaches good graphing practices.

I decided not to include plotting practices as an explicit point, since the second-
year FDS course spends a considerable amount of time going over good practices
in plotting. Furthermore, there is a difference between using plotting for data
exploration and data visualisation—data exploration focuses more on the shape
of the data, whereas visualisation focuses on communicating data to a wider
audience. Plot features like a legend or axis labels are only necessary for the
latter, which is why tools such as gnuplot that focus on interactive visualisations
for a live audience do not include features such as axis labels by default. [38]

However, unlike functions within the Helpers.hs file, the tutorial encourages
students to explore and modify the plotting code, which combines Chart’s de-
scriptive syntax with comments to fully explain how the plotting function works
and even directs them to the Chart wiki page, [39] which includes more sim-
ple examples for plots. As an example, Figure 2.7 includes a full definition of
scatterPlot.

I use plots to once again solidify Haskell as a language that has ‘real-world’
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uses. INF1A students spend a whole semester working with Haskell within
GHCi and primarily deal with textual input and output. Reinforcing the idea that
Haskell can create images without much trouble once again feeds into enhancing
individual interest for students—programs that have visual I/O are often perceived
by students as being more capable of building fully-fledged applications and
therefore more interesting. [14]

2.4.2 Detailed overview of tutorial exercises

As I mentioned in Section 2.1, the tutorial gives the students an overview of the dataset,
as well as functions to load and view the dataset (both the full dataset and column
subsets), and the getColumn function to extract a column as a list. This means that the
students should be somewhat familiar with the dataset and the corresponding helper
functions by the time they get to the exercises. This allows the focus of the exercises to
be firmly on manipulating data extracted via the getColumn function.

(1) BASIC OPERATIONS AND STATISTICS.

(1.a) How long is a mission? → Getting and filtering a single column. Calculat-
ing basic statistics (minimum, mean, median, maximum).

This exercise introduces the students to the stats function, and asks them
to calculate simple statistics about the length of a mission using data from
the missionDurationTotal column.

Since there are rows in this dataset that have a duration of 0.0, the students
should see that the minimum duration of a mission is zero. I use this to
motivate filtering the dataset to obtain only non-zero duration missions and
ask how many missions have zero duration. I tell the students to use the
filter function, which takes a predicate function and a list, and removes
list elements that do not satisfy the predicate.

This exercise was designed to get the students to think about the meaning
behind data—what does it truly mean to have a zero-duration mission?—as
well as give them practice with the filter function they learned in class.

(1.b) What is the training time and age of an astronaut? → Working with two
columns. Int to Double conversion. Filtering by another column.

When doing data science, we rarely only use a single column from the
dataset. As such, I designed the second exercise to calculate an estimate for
the training time and age of the astronaut by subtracting the mission year
from the selection and birth year respectively. The students are pointed to
the zip function—which takes two lists and creates a list of two element
tuples—and told to apply a lambda function on each tuple to calculate the
ages.

Another common issue in data analysis is that data is often stored in in-
compatible types. Sometimes numbers are stored as text, sometimes as an
integer, sometimes as a floating point number. This exercise introduces this
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concept by pointing out that the students will need to use the fromIntegral
function to convert their numerical values from integers to a floating point
format that stats can accept.

Lastly, this exercise introduces the concept of filtering one column by values
of another column—we want to get the training time per astronaut for their
first mission only. This is the first time the students need to use a function
they might not have encountered in their course, so I point out in the tutorial
text that the three list zip3 alternative to the two list zip function exists.
The students can then do the filtering via the filter function on an element
of the tuple, which is an extension of exercise (1.a). This can either be done
by a lambda function or the helper functions fst3 and tls3 included in
the Helpers.hs file. These are a 3-tuple variant of the standard Haskell
functions fst (extracts the first tuple element) and tail (removes the first
tuple element and returns a two-element tuple).

(1.c) What percentage of mission time is spent on EVAs? → Selective filtering
by a different column. Calculating percentages.

This exercise is a follow-up to the filtering done in (1.b). However, this
time the focus is on missions instead of astronauts. Since there are multiple
observations per mission (one for each astronaut), this exercises introduces
the nubBy function with a code example. This function filters out duplicates
based on a provided predicate function, and acts as a counterpart to filter.
The intention was for students to test for equality of the missionName
column in the predicate, thus filtering out duplicate entries for the same
mission.

Instead of also introducing a new statistic to calculate that the students may
not know, I decided to have the exercise ask for percentages instead. This
is a topic that the students are familiar with and it is a common way to
describe data, making it the perfect candidate to introduce some variety
without another maths explanation.

(2) AGGREGATING DATA AND FITS.

(2.a) What is the number of astronauts per country? → Grouping data by a
column.

Another extremely common operation in data science is aggregating data. In
this exercise, the students are asked to get a list of tuples which contain the
country and the number of astronauts who went to space from that country.
Since each astronaut can go to space multiple times, the tutorial also warns
the students that they need to only include the first mission per astronaut
(filter by column profileMissionsNumber). This serves as a reminder to
once again consider what data we are working with before we start, since
details like this are easy to miss.

The actual grouping operation relies on students extracting a list of country
strings from column profileNationality (after filtering out for astronaut



Chapter 2. Making a Tutorial 19

duplicates). The intention was for students to then use the provided hint of
using (group . sort) to group the country names into nested lists (this
example can be seen in Figure 2.6). Each nested list will contain as many
elements of the country name as there are astronauts, so the data can be
transformed into the desired form by mapping a lambda function such as \l
-> (head l, length l) over the list of lists.

(2.b) What is the percentage of female astronauts before and after the Cold
War? → Combining grouping and (categorical) filtering. Linear regression.

This exercise takes a slightly different approach to aggregation. The intent
of the question is to count the data based on whether an entry occurs before
(inclusive) or after 1991. I designed the question to include both explicit
categorical data (filtering by male and female) as well as creating our own
categorical data (pre- and post-1991).

I also explicitly introduced a real-world event (the Cold War) that is not
directly related to the space program but could have some influence on the
data. The exercise includes a framed question section that asks whether
the student thinks that there is a causal relation in this trend; as well as
encourages them to think of other possible factors that could have influenced
this trend. There is no right answer, and as such no answer is provided, but
possible answers might include looking at the general societal trends on
male-female equality or using the same code to probe whether the astronauts
were associated with the military or not via the profileMilitary column
(since the U.S. space program used to require military training which was
only accessible to men during the 1960s).

This exercise also introduces the linearRegression function. I made the
decision to include it here since this exercise was otherwise a bit shorter
than the others, and I wanted to have each exercise contain an approximately
equal amount of concepts. The regression also acts as a counterpoint to the
more qualitative discussion that the open question about causality opens.
The students now have a tool to not only look at trends based on categorical
separation but also trends based on linear regression. Not only are these
more descriptive, the linearRegression also outputs the coefficient of de-
termination R2 (where R is Pearson’s correlation coefficient), which allows
the students to assess the quality of the fit.

(3) CREATING PLOTS.

This question introduces plotting. Since visualising data is a different paradigm
from numerically summarising data, there is a longer introduction to ensure
everything is explained in sufficient detail. The type signatures of both plotting
functions that the students will use are introduced.

Figure 2.8 shows the type signature of scatterPlot. This type signature is very
useful. First, it tells us that x and y are the values that are being plotted via the
PlotValue type constraint (the tutorial text explicitly states that both integers
and floating point numbers satisfy this type constraint). Second, it tells us that x



Chapter 2. Making a Tutorial 20

scatterPlot :: (PlotValue x, PlotValue y) => FileName -> [(x, y)]
-> AxisTitle -> AxisTitle -> Title -> IO ()

Figure 2.8: Type signature of the scatterPlot scaffolding function. PlotValue
is a type constraint that both Int and Double values satisfy. FileName, AxisTitle,
and Title are both String type synonyms.

and y values are taken as a list of tuples, which implicitly ensures that there is an
equal number of x and y values to form valid plot coordinates. Lastly, by using
String type synonyms, it both reminds students that they exist and describes
what each string is for.

(3.a) What are the trends in the number of missions per year? → Making a
scatter plot.

I designed this exercise to have a similar solution structure to (2.a)—the
students are now grouping by year instead of country (integers instead
of textual data). This means that this exercise is taking advantage of the
worked problem effect, since the students already have a high-level solution
structure that they can reuse.1 In this way, the tutorial also provides an
opportunity for students to reuse their own design constructs, since this is
how data analysis is often done in practice.

The reason why I made this exercise have similar structure to an earlier
exercise is to allow the students to obtain a novel piece of data (motivated by
a new question) but still allow enough time to properly introduce plotting.
The tutorial includes a code example of how to call scatterPlot if the
students already have a list of years and a list of corresponding counts to
reduce any remaining confusion regarding how to use the plotting functions.
Figure 2.9 shows the plot the students should produce.

The plots are produced in an SVG (scalable vector graphic) format using the
toFile back-end function provided by the Chart library directly. Unfortu-
nately, the library does not support making PNG files (I expand on this in
Section 3.1). The advantage that SVG plots offer is that they can be opened
in a browser, meaning that the file can be replaced even while it is being
rendered, and refreshing the browser updates the plot in place.

In order to connect plotting to the different summarising statistics that
the students have been calculating, I encourage the students to also use
the stats and linearRegression functions on the data they obtained in
this exercise, and to see whether they look like they would expect them
to. The intention behind this question was to highlight that statistics and
visualisations can provide two different (and mutually complimentary) ways
to describe data.

1The worked effect comes from a 2006 study by Sweller that describes how worked examples can be
an effective learning tool, [32] and I have already described how this effect is used to create code examples
in Section 2.3.2.
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Figure 2.9: Plot output of exercise (3.a).

This exercise also features another open-ended question, encouraging stu-
dents to think of possible factors that might have influenced this trend. I
connect this question to exercise (2.b) by asking the students whether they
think their answers to the two exercises are correlated. These questions were
designed to make the students see the dataset as a set of correlated columns
rather than a collection of several independent observations.

(3.b) What is the cumulative time spent in space? → Making a line plot with
two lines. Cumulative sums.

Since the linePlot2 function is very similar to the scatterPlot function
(the difference being that the students must provide two [(x, y)] lists,
as well as two labels to make the legend), this exercise instead introduces
cumulative sums. I designed this exercise to combine all the the skills the
students have learned throughout the tutorial.

The first step is to filter out by mission duplicates via nubBy, which the
students learn in exercise (1.a). Then, we need to group both total and EVA
time by year, which is similar to what students did in (3.a). The next step
is reusing the (group . sort) construct from (2.a), but this time using
the functions groupBy and sortOn that are introduced to the students. The
last part is calculating the cumulative sum, which can be achieved with the
library function scanl. I introduce this function as a counterpart to the left
fold function foldl that the students learned in class.

The foldl function takes an identity element, a (2 to 1) accumulator func-
tion, and a list, and reduces the list into a single value by using the accumu-
lator function on each element. In contrast, the scanl function creates a list
with the accumulated value at each step.

All three functions (groupBy, sortOn, and scanl) are introduced by their
type as well as an example on a list of strings. I used strings, since this both
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Figure 2.10: Plot output of exercise (3.b).

showcases the flexibility of the functions, and requires the students to adapt
the solution pattern to numbers.

There is one more step that the students need to do with their cumulative
sums. The time spent on extravehicular activities is minuscule compared
to the total time in space, so the students need to scale the EVA time in
order to see both lines on the plot. The final plot is shown in Figure 2.10.
I believe this is a good example of trying to visualise two sets of data that
are on a different order of magnitude, which is another problem that has
multiple solutions in practice. Other ways to approach this would be to
use two y-axes or a logarithmic scale, but these approaches significantly
increase code complexity.

2.5 Solutions

The tutorial solutions are contained in the file Solutions.hs. I encourage the students
to check these solutions after each exercise since each exercise builds on skills from
previous ones. I also included a reminder that there are several ways to obtain the
correct solution, and that the solutions provide only one possible way to get an answer.

The students have two ways to interact with the solutions: they can load the solutions
file into GHCi directly and call the solutions function, or they can open the file and look
at the implementation. However, since opening the Solutions.hs file would show all
the solutions at once, I made functions to print each solution function individually.

These printed solutions include comments, let statements and print calls even though
these can be omitted in GHCi. I did this on purpose, since these functions are meant
to be useful for students writing exercises in GHCi or in an IO () function. Figure
2.11 shows the output of the two function calls for exercise (1.a). Notice that the printer
skips lines used to print verbose descriptions of the output in exercise1aSolution.
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ghci> :load Solutions.hs
ghci> exercise1aSolution
statistics [min, mean, median, max] for mission durations (hrs)
[0.0, 1051.559637931035, 261.115, 10505.0]

statistics for mission durations (hrs), without zero-duration missions
[0.61, 1056.527636220473, 261.7625, 10505.0]

number of zero-duration missions
6
ghci> exercise1aPrint
Exercise (1.a) solution:
| frame <- loadDataset
| let ds = getColumn frame missionDurationTotal
| (print . stats) ds
| (print . stats . filter (/= 0)) ds
| (print . length . filter (==0)) ds

Figure 2.11: Output of calling the solution functions for exercise (1.a) in GHCi.

exercise1aSolution’ = do
let s = astronautStream >-> P.map (view missionDurationTotal)
dsFull <- foldStream L.list s
dsFiltered <- foldStream L.list $ s >-> P.filter (/=0)
print $ stats dsFull
print $ stats dsFiltered
print $ (length dsFull) - (length dsFiltered)

Figure 2.12: Streaming solution alternative to exercise (1.a).

2.5.1 Streams and alternative solutions

The heavy focus on material that the students already covered in class means that
most of the potential of the Frames library remains unexplored, since the students
never have to interact with a frame directly. In order for the students to still get as
many examples of how to use Frames outside of the tutorial, I also provide alternative
solutions called AltSolutions.hs. This file provides solutions to the same exercises
without loading the full dataset to memory. This is achieved through streaming and
folding the dataset using the pipes and foldl packages. Figure 2.12 shows alternative
solutions for exercise (1.a). Note that these solution files do not include verbose
descriptions, since they are meant to be viewed after finishing the tutorial. This is also
why the AltSolutions.hs do not include printer functions. However, the alternate
solutions functions have a prime (’) at the end of the function name to prevent name
clashes, which allows both Solutions.hs and AltSolutions.hs to be loaded into
GHCi at once.
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foldStream fold stream = Frames.runSafeEffect fold’ stream
where fold’ = (Control.Foldl.purely Pipes.Prelude.fold) fold

Figure 2.13: Implementation of the foldStream helper function.

The alternate solutions never use the loadDataset I/O operation. Instead, we use the
astronautStream directly, and then use the pipe operator Pipes.(>->) to sequence
multiple operations on a single stream in a style similar to UNIX piping. For example,
in exercise (1.a) we can map the view missionDurationTotal lens onto each record
in the stream, reducing the records from 20 fields to 1. The stream is then consumed by
a fold Control.Foldl.list from the foldl library, which converts it to a list. This
means that instead of loading the whole dataset, we only need to load one column,
which yields less than 1/20th of the memory footprint.

Despite these solutions looking simple, there is quite a bit of code required for the stream-
ing solutions to be this concise. Most of the heavy-lifting is done by the foldStream
function (shown in Figure 2.13), which combines functions from three libraries. The
runSafeEffect function is a wrapper for the pipes library function runEffect, im-
plemented by Frames in order to execute a piping operation with frame rows. The
implementation of foldl’ transforms a regular fold into a consumer for the output of a
pipe, and is detailed in the foldl documentation. [28] This interoperability is probably
due to the fact that foldl and pipes are made by the same author, so this was a design
consideration during development of the two libraries.

2.5.2 Motivating data science in Haskell

The alternate solutions work together with the last section of the tutorial, which expands
on the idea of lazy computation and streaming as a benefit of doing data science in
Haskell. It shows students how the Frames library works lazily by comparing a program
which prints the first three names from the profileName column to a program that
prints all the names. The first example uses GHCi with the +s flag enabled, which
makes GHCi print the run time and an estimate of the total memory used. However, we
can do even better—the second example uses a compiled program with runtime system
(RTS) profiling enabled. The tutorial includes an example of how to compile a program
with profiling enabled, so that students can run their own tests if they want to.

Using RTS flag -s allows us to confirm that the maximum memory residency for a
program that prints three names is 230kb while a program that prints all names occupies
up to 1060kb. This is about a four-fold increase for 400 times as many names! This
small example is then used to motivate that Haskell might be a good tool to do data
analysis that benefits from lazy evaluation, or for datasets that are too large to fit into
memory.
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2.6 Changes from draft version

The students were sent a draft version of the tutorial in December in order to gather
feedback. This section lists the main differences between the draft and final version of
the tutorial, as well as why the changes were made. Then, in Section 2.7, I go over the
survey the students filled out.

• All of the tutorial code (all scaffolding functions as well as exercise function
stubs) were included in one file called Tutorial.hs. There was a second file
called Solutions.hs, which was a copy of the tutorial file with the solutions
written out in place of the function stubs. This made it impossible to load both
files into GHCi simultaneously, since each function had two definitions.

The new version of the tutorial properly splits the tutorial into several mod-
ules. This means the new Solutions.hs file can simply import the code from
Tutorial.hs. While I was doing this restructuring, I also decided to split the
helper and plotting functions into their own modules to clearly divide functions
that work with the dataset, functions that operate on lists, and plotting functions.

• The old plotting functions did not include axis labels. This was because I viewed
the plots as more of a part of the data exploration rather than visualisation of
results. However, the lack of axis labels was one of the main points of feedback I
received when I presented the state of my project in January, so I added them to
the new version.

• The old tutorial did not provide alternative solutions. I decided later on that these
might be beneficial to provide students with code examples of how streams can
be used to solve the same exercises. This also required adding foldl to library
dependencies.

• The old tutorial did not include linear regression. While I originally wanted to
focus the tutorial more on purely manipulating the dataset, I decided to introduce
the linearRegression function to fill the gap in data science content in question
2 exercises. This also meant that I had to modify the package installation to
include the vector and statistics-linreg libraries.

• Since there were now more libraries required than fit on a single line, I decided it
would be beneficial to explicitly state which library is required for each module
imported with a comment. This made it much easier to understand why each
library was necessary. It also made the tutorial more robust, since it is easier to
troubleshoot any library conflicts that could arise if the tutorial was adapted in
the future.

• The old version of the tutorial also did not include the printDataset function
or explanations for how to make multi-column subsets via lenses due to time
constraints—I wanted to include pretty printing in the first draft, but could not
manage to do so in time, since I wanted to release the tutorial before the winter
holidays so that more students could fill the feedback form.

These features were low on the priority list since they were not necessary to
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complete the tutorial. The students did not need to explore the dataset since the
tutorial text included a dataset descriptor table and I ensured that the dataset was
properly cleaned. This is an idealised scenario that is often not true with real
datasets. Therefore, I added support for properly visualising the dataset within
the console for the final version of the tutorial:

– The new tutorial version introduces the students to viewDataset and
printDataset, and no longer asks the students to use the library func-
tions printFrame and takeRows.

– The new tutorial text also includes a section on how to lens the dataset to get
multi-column subsets with a code example as well as an in-text explanation.

• The last difference is that despite exercise (3.b) requiring the groupBy function,
this was not mentioned in the question. Since the feedback forms suggested that
most students did not successfully complete all 7 exercises, I added this function.
This also makes the tutorial fully consistent, since all functions needed should be
introduced properly within the tutorial text.

2.7 Student feedback on the tutorial

The draft tutorial text included a link to a survey with 8 questions (5 numeric ratings
(higher is better), two optional text answers, and one choice question) about the tutorial.
Seven students have filled out the survey. This is not enough for the results to hold
statistical significance, since the students most likely to fill the survey are ones that
enjoyed the tutorial enough to engage with it. However, the answers all show a relatively
small standard deviation σ, which means that the students were in agreement in their
rating. Figure 2.14 shows the results of the numeric questions.

Five students answered ‘just right’ when asked about tutorial length, with one reply
each for ‘too short’ and ‘too long’. The optional written responses to the two long form
questions are included in the text below. Note that there is no way to identify whether
the same student answered both questions since all responses are anonymised.

IF YOU DID SOME UNGUIDED ANALYSIS, WHAT DID YOU DO AND WHY WAS IT

INTERESTING TO YOU?

• “I tried to look at intercorrelations between data features, and found some nice
results!”

• “I calculated the percentage of astronauts that were female before and after 2000
and 1980 too to see if the end of cold war was what caused the increase or if it
was a just a general trend independent of the cold war.”

• “One thing I did was to plot the yearly astronaut breakdown by country. I found
myself using stacked charts, bar charts in this case. I found it interesting because
you could get a lot of information that way from just one chart. It was interesting
to correlate them with events in the real world such as the fall of the ussr and the
challenger disaster.”
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Figure 2.14: Student responses to the draft tutorial survey. Numeric questions
only. Allowed value range is 1–10 for top plot and 1–7 for bottom plot.

DO YOU HAVE ANY FEEDBACK ABOUT THE DATASET? IF YOU FOUND A QUESTION

BORING OR INTERESTING, THIS IS THE PLACE TO WRITE IT.

• “The pacing of the questions was pretty good, appreciated the asides and helpful
tips.”

• “I would have liked a more “dirty” dataset so we can practice data cleaning in
haskell.”

• “It was interesting to see how some countries I didn’t know had a space program
had sent some astronauts to space.”

• “I liked the plotting ones.”

The reply about bar plots shows that the student went to the Chart wiki to look for new
plot types, since a bar plot was not provided for the students. The reply which talks
about moving the categorical split from 1991 to 1980 and 2000 is also very welcome,
since it shows that the students used critical thinking while going through the questions.

Overall, it appears that the tutorial was successful in its aims—it taught the students
some foundational data science; reinforced the material they learned in INF1A; and
even encouraged students to do unguided analysis and plotting. It is very encouraging
to see that even though some students only completed four to five exercises without
the solutions, the overall enjoyment of the tutorial remained high, meaning that the
solutions were effective as well.
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Haskell for Data Science

In this chapter, I talk about the viability of the dataHaskell ecosystem. In Section 3.1, I
describe some of the issues that I encountered while working with dataHaskell libraries.
Then, in Section 3.2, I test dataHaskell using the Sanzu language benchmark. [16]

Introduced by Watson et al. in 2017, the Sanzu benchmark was designed to test the
capabilities of popular data science languages and compare their performance. The
benchmark tests the language’s capability on both synthetic and real-world datasets
in six categories: basic file I/O; data wrangling; descriptive statistics; distribution and
inferential statistics; time series; and machine learning. These categories were chosen
to mimic the types of operations with datasets in practice. Lastly, in Section 3.3, I
use memory profiling alongside scaling benchmarks to compare the performance of
streamed and in-memory frames.

3.1 Issues with the dataHaskell ecosystem

The main disadvantage of using Haskell over a more popular language such as Python
is that the ecosystem is very small. Even though the dataHaskell website does include a
relatively expansive set of libraries, they are often not under active development and
oftentimes lack basic features or documentation. I assume that these issues are mostly
due to the fact that many libraries are maintained by a single person or a small group.

Below, I outline a few examples of issues that I encountered while I was working with
the dataHaskell libraries. Keep in mind that libraries such as Frames and Chart are
already some of the best documented libraries in the dataHaskell ecosystem, and they
include materials such as the Frames tutorial [31] or Chart wiki. [39]

3.1.1 Frames

• The library lacks basic viewing functionality. The implementation of showFrame
only takes in a fixed-width string separator, which is not sufficient to properly
display text with varying widths (see Figure 2.2 for examples).

• There is no support for sorting the data frame based on a column, or reordering

28
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sortFrame :: Ord l => Frame r -> Getting l r l -> Frame r
sortFrame frame lens = boxedFrame $ frameRow frame <$> idx

where idx = map fst $ sortOn snd
$ zip ([0..frameLength frame - 1])

(F.toList $ view lens <$> frame)

Figure 3.1: Implementation of the sortFrame helper function.

the data frame based on a provided index. Figure 3.1 includes my implementation
of this functionality.

To obtain a sorted frame, we have to extract the column in question and create a
list of (index, element) tuples; then sort the list based on the element; extract the
list of indices; unpack the frame; and repack it into a different object (a boxed
vector frame instead of a frame of records). Since we can index frame rows in
O(1), this function is still asymptotically O(n logn) due to the sorting. However,
even linear factors can make a big difference when the dataset size goes into
gigabytes. Moreover, this approach is inelegant since we are operating on a list
of the column values, rather than directly sorting the frame.

• Another basic feature that the library lacks is the group-by operation—taking
one column to be a categorical variable and aggregating all other columns based
on a provided function. I believe this is a crucial operation that should not be
missing. There is a dataHaskell library called Frames-map-reduce which should
implement this functionality, [40] but it is poorly documented and the installation
fails due to issues with dependencies (the library and one of its dependencies
require mutually incompatible versions of base Haskell).

• The default way to subset the dataset or to access fields is to use the view
function, which is a part of the microlens package. The Frames library does
include a wrapper function for lensing records called rcast (record cast), but
makes getters that require another package for single-column lenses. This sort of
design inconsistency means that to work with Frames, we need to also explicitly
install and import another library.

• The documentation on how to go from a frame to a different data structure such
as a list is heavily lacking. The Frames library tutorial does shows how to convert
a single column to a list, but this is basic functionality that should be explained in
documentation.

3.1.2 Chart

• The main feature missing from this library is support for heatmaps, which I would
argue constitute one of the basic plot types. The Chart GitHub page does include
issue tickets requesting the functionality, as well as a pull request that would add
basic heatmaps. However, despite being proposed in 2014, with some updates to
the pull thread in 2015, the library still does not have heatmap functionality ten
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years later. This is just one example of a feature that could be supported, if there
was a larger team maintaining the package.

• While the Chart wiki does have over a dozen code examples, none of them
actually work. As I mentioned in Section 2.4.2, the Chart library currently only
supports vector graphic types. However, all the plot functions in the wiki and the
documentation have a PNG file name when calling the toFile function. Calling
the function this way produces a PNG file that cannot be opened. However, when
I manually changed the file extension from PNG to SVG, the file could be opened
without an issue. This looks as if this functionality was supported at some point
in the past, but has since been removed.

I was not able to find which version of the library stopped supporting raster
rendering, or why it was removed. I also spent a considerable amount of time
trying to figure out where in the process I could use the diagrams backend to
render the file into a raster format directly, but I was unsuccessful.

• Another major issue I ran into while making the plots for the tutorial was a
lack of documentation on how to customise the plot. The library includes a
Chart.Easy module which significantly simplifies the syntax, but there is almost
no documentation on how to modify the styling when using this interface. For
example, there is no clear way to add axis labels to a plot this way.

I eventually managed to find how to modify the styling in the following places:
I found how to add axis labels by going through library tests on GitHub (this is
separate from the wiki code examples); I found a way to change the font size in
an issue thread in the Chart GitHub; and I found a way to change the styling of
the plot markers while on StackOverflow. I was unable to find how to increase
the spacing between the axis label and the tick labels.

There are other diagrams-based plotting libraries like plots [41] which do include
features such as heatmaps. However, they lack other core functionality—in the case of
plots, it does not support error bars. This means that in order to have basic plotting
functionality with one syntax, the best solution is not to use Haskell at all. There are
different interfaces to plotting programs that do not require Haskell, but this means
leaving the single-language environment. For example, there are libraries that interface
Haskell with Python’s matplotlib but require Python to be installed; [42] or one can
use Haskell to write to a file and utilise programs such as gnuplot. [38]

3.1.3 Statistics

The only function that I needed to use out of the statistics library is the linear
regression function olsRegress found in the Statistics.Regression module. The
documentation says that function has the following type:

olsRegress :: [Vector] -> Vector -> (Vector, Double)

It takes a list of predictor vectors (y values for each dimension) and a responder vector
(x values) and returns a (line coefficients, R2) tuple.
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However, instead of using the vector package, they use the dense-linear-algebra
package’s internal Vector type defined in the Statistics.Matrix.Types module,
which itself relies on vector. There is no documentation on how to create this
type of Vector, nor is there a code example of how to use the regression function.
This appears to have been enough of an issue that someone else implemented the
statistics-linreg [37] package which uses the vector library directly.

This example of type inconsistency highlights one of the main issues with the Haskell
ecosystem—several features are implemented multiple times by multiple people, often
with conflicting naming conventions and convoluted dependency structures. This means
that compatibility between packages is far from the norm.

3.2 Benchmarks

3.2.1 Test overview

In order to quantify the performance and features of the dataHaskell ecosystem, I
implemented and ran the Sanzu benchmark in both Haskell and Python. The Sanzu
benchmark also includes two types of tests: the micro benchmark uses synthetic
datasets, while the macro benchmark uses real-world datasets. However, since the
macro benchmark relies on time series, and this support is not integrated into the
dataHaskell ecosystem, I only ran tests from the micro benchmark.

The original Sanzu paper compares five languages: R, Anaconda (Python local comput-
ing), PostgreSQL, Dask (Python distributed cloud computing), and PySpark (Python
interface for the Scala-based Apache Spark cloud computing platform). [16] I chose
Python as the common benchmark language for three reasons:

• Python and R were the only two languages which support all benchmark tests.

• Python offered the best performance out of all five languages in all but one of the
Sanzu micro benchmarks (synthetic datasets).

• Python is the most popular programming language, [43] which means that compar-
ing Haskell to Python will be relevant to a large audience.

There is one important point to remember with these benchmarks: most of the data
science computation in Python is not actually done in Python. One of the reasons why
Python as a language is so successful is that it can act as an interface to glue together
different languages. Most functions in libraries like numpy and pandas are wrappers
for highly optimised functions in either C, C++, or FORTRAN. [44;45] There are even
libraries like numba, [46] which can translate numeric calculations in Python into a just-
in-time LLVM architecture. [47] Therefore, when interpreting benchmark results, it is
important to keep in mind that the performance has less to do with the language tested
and much more to do with the implementation of each specific library. This is why I
chose the Sanzu benchmark over a more general-purpose language benchmark.
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Operation Description Haskell Python
memory streams

BASIC FILE I/O
* Read Read from a CSV file. Frames Frames pandas
* Write Write to a CSV file. Frames pipes pandas

DATA WRANGLING

* Sorting Sort frame based on a column. M NF pandas
* Filtering Filter frame based on a column. Frames pipes pandas

Merging Append two frames (inner join). Frames NF pandas
* Group by Aggregate frame based on a column M NF pandas

with a given fold function.
* Duplicates Remove rows with duplicate entries M NF pandas

in one of the columns.
DESCRIPTIVE STATISTICS

* Central tendencies Mean, mode, median of a column. foldl (mean only) pandas
* Dispersion Range and standard deviation. foldl pandas

Rank Rank rows based on column values. NF pandas
* Outliers Remove outlier rows based on column. M pandas
* Scatter plot Plot data from two columns. Chart matplotlib

DISTRIBUTION AND INFERENTIAL STATISTICS

PDF Gaussian probability density function. statistics (LC) scipy
Skew Skewness of data. statistics (LC) pandas
Correlation Correlation of two columns. statistics (LC) pandas
Hypothesis testing Shuffling method hypothesis testing. statistics (LC) M

TIME SERIES

EWMA Exponentially weighted moving average. NF pandas
Autocorrelation Autocorrelation based on time series. NF pandas

MACHINE LEARNING

Regression Linear regression in 2D. statistics (LC) numpy
* Clustering K-Means clustering into 2 groups. kmeans scikit-learn

Classification Naive Bayes classification. sibe (LC) scikit-learn

Table 3.1: Sanzu synthetic benchmarks. Language columns list the library which
offers this functionality. Benchmarks performed marked by *. Legend: M (manual
implementation); NF (no functionality); LC (library conflict—no benchmark possible).

The full overview of tests in Sanzu’s micro benchmark can be seen in Table 3.1. I ran 11
tests out of the benchmark suite. There are three reasons why a test could be excluded:

• Tests could be excluded if the functionality was not supported by a library in the
dataHaskell ecosystem. This is the case for time series tests as well as calculating
the rank of rows. These tests are marked by NF.

• Tests could also be excluded if the functionality was supported, but I could not
implement the tests properly due to library installation conflicts. This occurred
for the statistics and sibe libraries. These tests are marked by LC.

• I also excluded the merge test, because Python’s performance scaled much faster
than all four other languages tested in the Sanzu benchmark. The aim of these
benchmarks was to use Python as a baseline to compare Haskell to other languages
evaluated using the Sanzu benchmark. Python is not representative of other
languages in the merge test due to different asymptotic behaviour.
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Name Type Details
time String Datetime in DD/MM/YYYY HH:MM:SS format.
city String Chosen randomly from a list of 103 city names.
words String Chosen randomly from a list of 105 words.
rand1 Integer Uniform distribution; range 0–106.
rand2 Integer Uniform distribution; range 0–231.
nor Float Normal distribution; full float range.
exp Float Exponential distribution; full float range.
uni Float Uniform distribution; full float range.

Table 3.2: Columns in the synthetic datasets.

3.2.2 Implementation and methodology

The Python benchmarks were adapted from Sanzu files (link can be found in the
Sanzu paper footnotes). [16] I kept the dataset generation scripts untouched besides
troubleshooting minor out-of-bounds indexing errors and fixing CSV writer double-
spacing lines. Table 3.2 includes a description of each of the columns in the synthetic
dataset. Datasets sizes range from 103 rows (corresponds to 91 kilobytes) to 107 rows
(0.904 gigabytes)—five datasets at five orders of magnitude.

I modified each Python test to run each benchmark ten times instead of four, and I
modified the test writers to write a new line entry for each test rather than having
columns run1 to run4 for each test. This data structure was mentioned earlier as tidy
data. [21]

OS Windows 11 Pro
CPU Intel i5-1240P
RAM 16 GB
python 3.11.1
ghc 9.4.7

Table 3.3: Benchmark system.

I wrote the Haskell benchmarks to be as close to the
Python implementations as possible. For Python tests
that index the data frame df directly (such as the line
df["rand1"].mean()), I included column extraction
within the timing window. The full benchmark code
can be found in Appendix D, and details of the bench-
mark machine are listed in Table 3.3. Tests were run
on an otherwise idle machine.

Timing was done using CPU time. The Python benchmarks are relatively simple—we
can obtain the current time via timeit.default timer function before and after the
execution of interest. Benchmarks in Haskell were trickier, since I had to make sure
that the program evaluated the full computation instead of lazily evaluating a part of
it. Haskell benchmarks also included two benchmark functions, since some of the
tests included I/O, which required different syntax to handle impure functions. I used
the bang pattern language pragma (XBangPatterns) [48] to force computations when
assigned to a variable, and methods from the base Haskell Data.Time.Clock module
to obtain the CPU time.

It is important to note that while CPU clock values are given with picosecond (10−12

s) precision, any computation that runs under a millisecond (10−3 s) will be hard to
benchmark due to the implementations of each language’s timing methods. Python’s
time method has a granularity of 1/100th of a second, [49] and Haskell’s precision is
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benchmark computation = do
t1 <- getCurrentTime
let !r = computation
t2 <- getCurrentTime
(putStr . show . nominalDiffTimeToSeconds) $ diffUTCTime t2 t1

Figure 3.2: Implementation of the benchmark function. Forces the full evaluation
of a computation and prints the time taken in seconds.

similar. Therefore, tests for small datasets show times around a microsecond, which are
larger than actual execution time.

The implementation of benchmark can be seen in Figure 3.2. The I/O variant benchmark’
replaces the let statement with a bind to a dummy variable ( <- ioComputation).
This requires no explicit forcing.

The results shown were obtained by computing the geometric mean of the data, with
error bars given by the standard deviation σ. As Fleming and Wallace claim in their 1986
paper on summarising benchmarks, [50] the geometric mean (t̄G = N

√
∏xi) is superior to

the arithmetic mean (t̄A = ∑xi/N) since it includes variability. However, we can take
advantage of the fact that t̄G ≤ t̄A to also include the arithmetic mean. This is useful for
comparing Haskell to other languages that were tested by the Sanzu benchmark, since
Watson et al. used arithmetic means for their results. [16]

3.2.3 Results

Figure 3.3 shows the geometric and arithmetic means of all 11 tests. As we can see,
Haskell (both compiled via ghc and interpreted via the GHCi REPL) is slower than
Python in all but one test. As we would expect, the compiled version performs better
than the interpreted version since GHCi cannot perform any compiler optimisations.
However, the groupby and sort tests show that these do not always result in lower
performance. Note that since most benchmarks have t̄G ∼= t̄A, I will be using arithmetic
means later for ease of computation.

The one test where Haskell is faster than Python is the groupby test. This is ex-
pected, since I implemented this test manually, and therefore only aggregate the column
of interest, whereas the Python implementation has to aggregate all columns into a
DataFrameGroupBy object which we can then index to get the desired results.

It is important to note the major time disparity on the mean and dispersion tests. In
Python, these are implemented by calling a function directly on a column of a data frame
(such as df["column"].mean()), while in Haskell they are implemented by folding
over a lensed dataset (such as L.fold L.mean $ view column <$> df). This also
explains the outliers time disparity, since these rely on filtering by a ±3σ range.

The duplicates test relies on base Haskell more than a library, and therefore benefits
from compiler optimisations more than other tests. The test is implemented similarly to
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Figure 3.3: Geometric mean of benchmark runtime. Arithmetic means shown in
grey (note that t̄G ∼= t̄A in most tests). Dataset with 105 rows. Errorbars given by σ.

the sort test—the column by which we are filtering is extracted, zipped with the index,
and then filtered by element with nubBy to obtain the new index list.

The last test I will comment on here is the scatter test. I suspect the reason why Haskell
performs way worse is because the output is a SVG file rather than a raster file, and
Chart tries to plot all 105 points—the figure file size is 106.7 megabytes! I believe that
Python’s matplotlib performs some sort of optimisation that does not plot points that
would not be seen. This is confirmed by Figure 3.4, where we see that the plot test
scales slower with dataset size in Python compared to Haskell.

In general, we see Haskell and Python scale similarly in both I/O tests (read, write)
as well as descriptive statistics (mean, dispersion), even though they are significantly
slower (keep in mind that ties below 10−3 s are rounded to nearest clock ∆t). This is
expected behaviour, since both loading and statistics should have O(n) runtime.
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Figure 3.4: Arithmetic mean of benchmark runtime based on dataset size.
Some benchmarks were only run on smaller datasets due to long benchmark times.

Groupby and duplicates tests also exhibit interesting behaviour—Haskell tests exhibit
non-linear asymptotic time. This implies that the groupBy and nubBy functions used to
implement these tests are not asymptotically linear (linear fit yields αduplicates = 1.505).

3.3 Stream benchmarks

Unlike a full in-memory data frame, we can only use streams for map-reduce computa-
tions because streams give us access to one element at a time. Since streams combine
reading the dataset with computation, we need to redefine our benchmarks to include
reading the dataset into the computation time in order to obtain values which can be
compared. A second consideration that we need to address is how to benchmark making
streams that use multiple folds for multiple computations at once.

To capture the option of performing multiple folds, I created two tests: a one fold test
that computes the mean of a list and a two fold test that also computes the standard
deviation. I also implemented equivalent in-memory tests that time reading the data
frame, extracting a column, and performing the same fold operations as the stream tests.
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foldStream L.mean $ stream >-> P.map (fromIntegral . view rand1)

foldStream ((,) <$> (L.premap (fromIntegral . fst) L.mean)
<*> (L.premap snd L.std))

$ stream >-> P.map ((,) <$> (view rand1) <*> (view uni))

Figure 3.5: Implementation of folding a stream with one and two folds. L refers
to the Control.Foldl module.

Figure 3.6: Stream benchmarks. LEFT: Maximum memory residency (10 runs).
RIGHT: Geometric mean of runtime ±σ (10 runs).

Figure 3.5 shows the implementation of a one- and two-computation fold using the
Control.Foldl module defined by the foldl library. I chose the mean and standard
deviation as the two test computations, since these are implemented directly by the
foldl library. Most tests from inferential statistics or machine learning categories (see
Table 3.1) would require us to convert the stream to a list (via Control.Foldl.list) or
vector (via Control.Foldl.vector) and then pass the output to another library. While
this is possible—and would require a much smaller memory footprint than loading the
dataset into memory—we would be testing the performance of computation that is not
directly related to streams.

I plot the stream test results on datasets sized 90 kB (103 rows) to 90 MB (106 rows) in
Figure 3.6. From the (geometric) mean runtime, we see that the difference between run-
ning one and two folds is negligible. Moreover, the performance of reading the dataset
into memory and then performing a computation (tests marked core) is effectively
equal to stream performance (tests marked stream). This means that streams are just as
good as in-memory data frames if we only need to do one computation, since reading
the dataset into memory is slower than performing the fold (see Figures 3.3 and 3.4).

Performing linear regression on the mean runtime data shows that the slope is almost
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perfectly linear for both the stream (αstream = 0.976, R2
stream = 0.994) and in-memory

(αin-core = 0.970, R2
in-core = 0.998) benchmarks.

Results from memory profiling are perhaps even more important. When we look at
maximum memory residency (maximum number of bytes occupied by the program),
we see that the stream variant stays constant at 209 kB for all dataset sizes while the
memory residency of in-memory data frames scales linearly with dataset size (the 90
MB dataset occupied at most 163 MB when loaded into memory). This confirms that
we can use streams to analyse datasets larger than memory.

Furthermore, if Haskell tried to allocate more memory than the system could provide
(for example if the dataset was too large), the operating system would start virtualising
memory—writing currently unused parts of memory onto permanent storage, slowing
down the computation. Therefore, while the computation speed is comparable for
streams and in-memory data frames for smaller datasets, streams are preferable for
large datasets.

Figure 3.7: Program productivity

We can quantify this slow down by look-
ing at program productivity, which refers
to the percentage of time that the program
was doing useful calculation. Non-useful
work mostly refers to time spent on garbage
collection—lazy languages like Haskell are
known to have less efficient heap manage-
ment (or even memory leaks) that can cause
low productivity.

When we look at productivity percentages
in Figure 3.7, we can indeed see that the in-
memory frames are a lot less productive,
further slowing down computation com-
pared to streams.

We can therefore conclude that streams are a compelling alternative for large datasets.



Chapter 4

Conclusions

4.1 Summary of work done

In this thesis, I have created a beginner-friendly framework for data-centric computation
in Haskell. I used this code base to explore how Haskell can be used for manipulating
datasets; both for educational and professional purposes.

In order to demonstrate Haskell’s capabilities as an educational tool, I made a tutorial
for first year Computer Science students. This tutorial was designed to help students
solidify their understanding of functional programming through exercises that require
the students to manipulate a dataset of information about astronauts. The code scaffold-
ing and exercises were designed based on well-established techniques from literature
on Computer Science education and cognitive theory. The deliverable included seven
exercises that cover several concepts from data science and machine learning; beginner-
friendly helper functions; and two solution sets. Student feedback shows that the
tutorial is engaging and successfully solidifies students’ understanding of functional
programming.

I also demonstrated that Haskell is a good tool for computations with large datasets
thanks to its built-in support for streaming I/O operations. I used the Sanzu benchmark
to quantify the performance and feature availability of libraries within the dataHaskell
ecosystem, which shows that Haskell is slower than Python in most computations. How-
ever, memory profiling tests show that while small datasets have similar performance
for in-memory and streamed data frames, streaming allows Haskell to compute with
large datasets without memory limitations. This makes Haskell a viable addition to the
data science language toolkit.

4.2 Future work

We can build on top of the code base I have created to make more data-centric edu-
cational materials. Haskell is already used for introductory-level Computer Science
courses, and with proper care it can also be used to create a course that uses data
to motivate learning Computer Science. This would make the computing class more
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accessible for people that do not major in Computer Science, and teach them computing
skills they can use in their own field.

In order to fully evaluate Haskell’s capabilities, it would be desirable to implement
the remaining Sanzu benchmarks and find other ways we can quantify how Haskell
compares to other languages. Furthermore, we should use benchmark results to better
explain the strengths of Haskell in data science computation, and use these results to
motivate further development and optimisation.

In order for Haskell to be more accessible (and therefore widely usable), effort needs to
be put into creating a more cohesive library ecosystem. This includes better compati-
bility for libraries, better documentation with replicable code examples, and creating
content such as wiki pages and tutorials.
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Appendix A

Student feedback collection

A draft of the tutorial was sent to the INF1A students through Professor Sannella (the
current INF1A course organiser and main lecturer). The students received a zip file that
included the dataset, all the code, as well as the tutorial PDF. The tutorial text included
a link to a survey at the front page. The survey was done via Microsoft Forms, with
access granted to university accounts. A dataset containing all the responses can be
found in the project files.

The first page of the survey had a full copy of the information sheet (see Section A.1
for key information) and then two yes/no consent questions (see Section A.2). If the
students provided their consent, they were able to advance to a second page where all
the questions were asked. The results of the survey are discussed in Section 2.7.

A.1 Participants’ information sheet

This study was certified according to the Informatics Research Ethics Process, reference
number 746665. Please take time to read the following information carefully.

Project title: Data-centric programming in Haskell
Principal investigator: Philip Wadler (contact email)
Researcher: Jakub Malý (contact email)

What is the purpose of this study?
Collect feedback about a new INF1A tutorial.

Why have I been asked to take part?
You are a current or past INF1A student.

Do I have to take part?
No, participation in this study is entirely up to you. You can withdraw from the study at
any time until you submit the questionnaire without giving a reason. Your rights will
not be affected.

What will happen if I decide to take part?
You will answer 10 questions about this tutorial and model solutions. The feedback is
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fully anonymous and optional.

Are there any risks associated with taking part?
No.

Are there any benefits associated with taking part?
Engaging with the provided material can help your understanding of data science and
functional programming.

What will happen to the results of this study?
The results of this study may be summarised in published articles, reports and presenta-
tions. Quotes or key findings will be anonymised: We will remove any information that
could, in our assessment, allow anyone to identify you. With your consent, information
can also be used for future research. Your data may be archived for a maximum of 1
year. No potentially identifiable data will be stored.

A.2 Participants’ consent form

The students had to select ‘I agree’ or ‘I disagree’ for each of these two questions:

1. By participating in the study you agree that:

• I have read and understood the information above, that I have had the oppor-
tunity to ask questions (via email to the Researcher or Principal Investigator),
and that any questions I had were answered to my satisfaction.

• My participation is voluntary, and that I can withdraw at any time before
submitting the form without giving a reason. Withdrawing will not affect
any of my rights.

• I consent to my anonymised data being used in academic publications and
presentations.

• I understand that my anonymised data will be securely stored for up to 1
year.

2. I allow my data to be used in future ethically approved research, such as follow-up
studies. (optional).
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Tutorial text

Data Science in Haskell

INFORMATICS 1 – INTRODUCTION TO COMPUTATION

Functional Programming Optional Tutorial

This is an optional tutorial that you can complete to solidify your under-
standing of concepts such as I/O, functional composition and even learn
some data science.

Introduction

Figure B.1: Number of astronauts per year.

In this tutorial, you will learn the tools
needed to be able to do basic data sci-
ence with datasets. You will use func-
tional application and I/O through loading
and analysing a dataset and even creating
plots such as Figure B.1.

47



Appendix B. Tutorial text 48

Installing the prerequisite tools

Most of the libraries you will use in this tutorial are a part of the dataHaskell initiative—
a collection of data science oriented Haskell libraries. [7] More specifically, you will be
using the Frames library to read the dataset, and the Chart library to visualise data.

First, since you will be working with libraries, you need to make sure you have a
suitable version of GHC. To check your version, go to your command line and type:

cmd> ghc --version

If you have version 9.4.7, you’re good to go! If not, you might run into trouble with
incompatible versions so I recommend you install GHC 9.4.7. If you have followed the
recommended set up process, you can use GHCup to install and set it as default:

cmd> ghcup install ghc 9.4.7
cmd> ghcup set ghc 9.4.7

Last, you can use your preferred package manager, such as Cabal, to install the required
packages (note that the command is all in one line):

cmd> cabal install --lib vector split pipes microlens Frames
Chart Chart-diagrams statistics-linreg

The dataset

You will be using a dataset which compiles publicly known information about astronauts
who went to space prior to 2020. [20] The dataset is structured as a CSV (comma-
separated-value) file. This means that each line contains several values separated by
commas, forming a row of data corresponding to an observation. In our case, each line
contains information about an astronaut that went to space on a specific mission (1 line
per astronaut-mission pair).

You might come across this way of structuring the dataset referred to as tidy data. In
essence, it allows us to add observations (rows) to our dataset without modifying the
header (changing the number of columns). The first row of the dataset is a list of column
headers (labels). You can find more details in Figure B.2.

You might have noticed that textual data is stored as Text. This is because Text is more
efficient for storing large volumes of text while String makes modifying text easier.
However, this tutorial uses the OverloadedStrings pragma, which allows you to treat
Text like a regular String when writing your code.

Working with the dataset

In order for you to be able to work with the dataset, you need to load it into memory.
However, since this is an I/O (input-output) operation, it is impure—if you change
the dataset, then the function that reads the dataset into memory will have different
outcomes!
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Column name Type Description
numberOverall Int Astronaut world-wide number
numberNationwide Int Astronaut nation-wide number
profileName Text Astronaut full name
profileSex Text Astronaut sex (male/female)
profileYearBirth Int Astronaut birth year
profileNationality Text Astronaut nationality
profileMilitary Text Affiliation with military (military/civilian)
profileYearSelection Int Selection year
profileMissionsNumber Int Astronaut’s mission number
profileMissionsTotal Int Astronaut’s lifetime missions
profileMissionsDuration Double Astronaut’s lifetime mission duration (hrs)
profileMissionsEVA Double Astronaut’s lifetime EVA duration (hrs)
missionRole Text Astronaut’s role on mission
missionYear Int Mission year
missionName Text Mission name
missionVehiclesAscent Text Ascent vehicle name
missionVehiclesOrbit Text Orbit vehicle name
missionVehiclesDescent Text Descent vehicle name
missionDurationTotal Double Mission duration (hrs)
missionDurationEVA Double Astronaut’s EVA duration (hrs)

Figure B.2: Description of all columns in the dataset. EVA stands for extravehicular
activity.

There are two ways to work with I/O in Haskell: writing I/O functions and using GHCi.
Making I/O functions is a good way to write down your solutions. Here is a simple I/O
function that takes a string and prints it out in ALLCAPS when you call it in GHCi.

shout :: IO ()
shout message = do

let bigMessage = toUpper message
print bigMessage

In general, an I/O method contains a do block where each line corresponds to an
instruction to be executed when it is called. You can also use standard let syntax inside
the do block, but each do block must end with an I/O action—such as printing out text
into the console with print. If you name your function main, it will be executed when
the .hs file is run.

You can also use GHCi. If you enter an expression that has a type IO a into GHCi,
then the interpreter will execute that expression and print out the result if it can. The
Tutorial.hs file defines a function

loadDataset :: IO (Frame Astronaut)

which you can read as “perform an I/O action that gives me a frame of astronauts”. The
Frame is our dataset, and the Astronaut is our observation (row). Let’s use it!
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ghci> :l Tutorial.hs
ghci> astronauts <- loadDataset

The <- syntax binds the result of the I/O function to a variable astronauts, so we have
a name we can use to refer to the dataset. But how does it look like? If you try

ghci> astronauts

it will give you an error: no instance for Show (Frame Astronaut). GHCi didn’t
print anything into console because it doesn’t know how to convert the frame into a
string.

To actually view the dataset, you can use the function

viewDataset :: Show a => Int -> Frame a -> IO ()

defined in the tutorial. It takes an integer n and the frame and performs an I/O action that
prints the first n rows into the console. Alternatively, you can use the printDataset
function, which takes the same arguments but prints the first n rows as formatted
columns.

It might be a bit messy, since there are a lot of columns. Let’s try to look at only a few
columns at a time. We start by typing :i Astronaut into GHCi to see the declaration.
You will find that Astronaut is of type Record, which is the internal representation of
a row. We can then write a lens—a function that extracts only some fields from each
record, and map it over the frame. For example, the following code produces the first
ten rows with columns for the mission year, name, and astronaut name. Note that we
need to set the XDataKinds pragma for us to be able to supply types in a list like this.

ghci> :set -XDataKinds
ghci> lens = Frames.rcast @’[MissionYear, MissionName, ProfileName]
ghci> printDataset 10 $ lens <$> astronauts

1) Basic operations

Now that we have a dataset, let’s calculate some statistics. You can extract a column
from the dataset via the function

getColumn :: Frame a -> Getting b a b -> [b]

The type signature says that getColumn takes a frame and a Getting function and
extracts a column from the frame as a list. Frames conveniently defines Getting
objects to have the same form as the column names. For example, you can get all the
astronaut names by typing

ghci> names = getColumn astronauts profileName

A good way to approach a data science problem is to break it down into a list of
steps that you need to do. For each step, figure out your input and desired output,
then find a function that transforms or reduces your dataset. You can repeat this
process until you get the final result.
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1.a) How long is a mission?

The Helpers.hs file includes a function stats that calculates the minimum, mean,
median, and maximum of a list of Doubles. Use it to calculate statistics about the total
mission durations. Then, use the filter method to filter out zero duration mission
entries, and their number. Is there a lot of them? How much did they impact the
statistics?

A quick aside on mean and median: a mean is the average value of a list, whereas the
median is the value in the middle of a (sorted) list. Comparing these two values can
give you some insights about the shape of your data. For example, if your median is
much smaller than your mean, it tells you that there are lots of small and a few very
large values! But it’s not perfect—it can’t show you stuff like bimodal data (data with
two peaks), which is why exercise 3 shows you how to make plots to fully visualise the
dataset.

[!] You should check your solutions as you go, since the exercises build on top of
each other. You can load Solutions.hs into GHCi and call exercise1aSolution,
or call exercise1aPrint to see the solution code. Keep in mind that there are
many ways to get the correct result!

1.b) What is the training time and age of an astronaut?

Okay, cool, we can calculate statistics about one column. Let’s try more! Let’s calculate
the approximate age of an astronaut during a mission. We can get a rough idea by
subtracting the astronaut’s birth year from the mission year. The easiest way to do this
is to read both columns, then zip them together into tuples and map a function over the
list. Since these columns are Ints, you need to convert them to floating point numbers
before you can use stats, so you need to use (stats . map fromIntegral) on the list
instead.

We can also estimate the amount of training time they got by subtracting the selection
year instead of birth year. However, each astronaut was only selected once, even
though they might have multiple missions. You will need the profileMissionsNumber
column to filter by first mission. You might find the zip3 function useful.

1.c) What percentage of mission time is spent on EVAs?

Astronauts do many cool things in space: they float, they look at space, and they go out
in their spacesuits! The last is called an extravehicular activity, but that is a mouthful
so everyone just calls them EVAs. In this task, you need to calculate the percentage of
time astronauts spend doing EVAs during a mission. Since there are multiple entries for
each mission (one per astronaut), you will need to get one entry per mission. You might
find the nubBy function useful. It takes a function which can be used to determine the
equality of two elements in a list, and then removes duplicates:

ghci> nubBy (\(a,_) (b,_) -> a==b) [(1,"hi"), (2, "hello"), (1, "bye!")]
[(1, "hi"), (2, "hello")]
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2) Aggregating data

2.a) What is the number of astronauts per country?

In this exercise, we want to calculate the number of astronauts per country as a list of
(”Country”, n) :: (String, Int) tuples. Remember that there can be multiple entries per
astronaut, so you need to filter out the duplicates.

You might want to use the methods (group . sort) which first sorts a list and then groups
elements next to each other into sub-lists based on equality:

ghci> (group . sort) ["a", "b", "a", "c", "b"]
[["a", "a"], ["b", "b"], ["c"]]

2.b) What is the percentage of female astronauts before and after the
cold war?

A lot of the early space missions had a political significance in the conflict between the
USA and the USSR. In this exercise, we want to calculate the percentage of astronauts
that were female before and after this conflict. The cold war ended in late 1991, so
include this year in your before group.

[?] Do you think that there is a causal relation? What other factors can you think
of that could have influenced the ratio of women and men in space? It is always
good to keep in mind that correlation does not always imply causality!

You can also use the linearRegression function defined in Helpers.hs

linearRegression :: [Double] -> [Double] -> (Double, Double, Double)

to make a linear fit through the data. It takes xs and ys and makes a (α,β,R2) tuple.
The fit line can be made via y = α+ βx and R2 is the coefficient of determination.
It describes the goodness of fit (1 if the predictors fit perfectly and 0 if the have no
explanatory power).

3) Plotting data

So far, you have done a lot of analysis, but it’s often very hard to get a full sense of data
from just numbers. As the old saying goes, a graph is worth a thousand statistics. The
Plotter.hs file includes two pre-defined functions you can use for plotting: a scatter
plot for a list of x and a list of y values; and a line plot that creates two lines for two lists
of y values corresponding to one list of x values. Both functions have a type constraint
PlotValue, which includes both Int and Double.

scatterPlot :: (PlotValue x, PlotValue y) => FileName -> [(x, y)]
-> AxisTitle -> AxisTitle -> Title -> IO ()

linePlot2 :: (PlotValue x, PlotValue y) => FileName
-> [(x, y)] -> [(x, y)] -> Label -> Label
-> AxisTitle -> AxisTitle -> Title -> IO ()
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Both plot functions take a file name (not a file path!); a list of (x, y) value tuples;
and x-axis, y-axis and plot titles. For the line plot, the function also needs two labels
corresponding to the two y values to create the legend. Note that FileName, Label,
AxisTitle, and Title are all String type synonyms. These functions create a SVG
(vector graphics file) plot inside the plots folder, which you can view in your browser.

These functions are sufficient for this exercise, but I encourage you to play with the
dataset to answer any questions you might have. You can change the styling, as well as
add more lines / points by adding another call to the plot function (see scatterPlot,
linePlot2). Note that the line plot takes a list whereas the points plot takes a value.
For even more plot options, you can look at the Chart library documentation. [? ]

3.a) What are the trends in the number of missions per year?

In this exercise, we want to plot the number of missions per year. Once you have
the lists for years (years) and counts (counts), you can call the plotting function as
follows:

scatterPlot "filename" (zip years counts) "Year" "Missions/Year" "Title"

You can also calculate the same statistics as before via the stats function or make a fit
via linearRegression. Are the values what you would expect from the plot?

[?] Just like in the previous exercise, I encourage you to think of possible factors
that could have influenced this trend. Do you think there are correlations between
your answers for (2b) and (3a)? Does the visualisation change your answers?

3.b) What is the total amount of time all missions have spent in
space?

This exercise combines everything that you have learned in this tutorial. We want to
figure out the cumulative time spent in space (both total mission time and EVA mission
time) per year and then plot it as two lines using the linePlot2 function. You might
need to scale EVA time to see it. Here are a few functions that you might find useful:

sortOn :: Ord b => (a -> b) -> [a] -> [a]
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
scanl :: (b -> a -> b) -> b -> [a] -> [b]

The sortOn function is just like sort, but you provide a transformation function. The
groupBy function works similarly to group, grouping elements based on an equality
function you provided. Last, scanl works exactly like the foldl function, but it creates
a list where each element is one step of the fold operation—you can use scanl for
cumulative sums.

ghci> sortOn length ["aaa", "b", "cc"]
["b", "cc", "aaa"]
ghci> groupBy (\\a b -> length a == length b) ["aa", "b", "c", "dd"]
[["aa"], ["b", "c"], ["dd"]]
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ghci> scanl (++) "start" ["One", "Two", "Three"]
["start", "startOne", "startOneTwo", "startOneTwoThree"]

Benefits of using Haskell

Now that you have done some data analysis in Haskell, you might ask yourself why you
would want to use it over languages which are well-established as the de-facto standard
of data analysis like Python, R, SQL. The answer: lazy computation!

The cool part about Haskell is that even its I/O is lazy. Throughout the tutorial, the
computer never evaluated more than it had to, and more importantly, it also did not read
more data than it had to. This means that Haskell is extremely well-suited for operating
on very large datasets. Where a more mainstream language like Python or R would
have to keep the whole dataset in-memory at all times to operate on it, Haskell only has
to store what it currently needs for a computation.

But there are downsides to this mode of operation: each time you want to do anything
with the dataset, you need to go and read from a file over and over again, and I/O is very
slow compared to memory access. Therefore, whenever you can, you should always
load your data to memory. This is what the loadDataset function does: it takes the
lazy astronautStream function and forces it to produce all its rows at once so it can
store it as a Frame in memory. This is helpful when exploring a small dataset like you
did in this tutorial, but it is not necessary.

Remember that data analysis is just a series of steps that transforms and reduces the
dataset. This means that you can express your whole data analysis as a sequence of
steps that can be applied at once to a stream of data. With a little bit of extra tooling,
you can use what you have learned today to work on datasets way larger than your
computer’s memory!

A lazy example

We can use the +s flag in GHCi to display the time taken and total memory used. Let’s
use it to see Haskell be lazy:

ghci> :set +s
ghci> astronauts <- loadDataset
(0.30 secs, 41,698,360 bytes)
ghci> names = getColumn astronauts profileName
(0.01 secs, 16,632 bytes)
ghci> take 3 names
(0.01 secs, 105,554 bytes)
ghci> take 30 names
(0.11 secs, 579,520 bytes)
ghci> names
(1.74 secs, 23,043,536 bytes)

From these results, we can see that names is indeed just a promise of reading the names
in the future when needed. We also see that if we only take a few names, the amount of
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total memory used is smaller, since only the first 3 (or 30) names had to be read.

While this gives us a general idea of what is happening under the hood, we can go one
step further! If we put the commands we just ran through GHCi into a main method
and then compile the program with GHC, we can run a more rigorous profiling:

cmd> ghc -rtsopts --make Tutorial.hs
cmd> Tutorial.exe +RTS -s

We make two programs, one which prints take 3 names, and the other that prints all of
names. Both of them have about 42 megabytes allocated in the heap, but the maximum
residency (maximum number of bytes occupied at any one time) changes from around
230kb to around 1060kb—that is a four-times increase between printing 3 and over
1200 names! This is exactly what we would expect, since Haskell always reads one
name and immediately prints it, freeing up more space.

We can take this a step further by using streams instead of loading the dataset into
memory. Feel free to have a look at the AltSolutions.hs file which uses the
astronautStream and the pipes library to solve the same exercises without ever
loading the whole dataset into memory.
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Tutorial code

tutorial/
|--plots/
|--|--number of astronauts.svg
|--datasets/
|--|--astronauts.csv
|--Helpers.hs
|--Plotter.hs
|--Tutorial.hs
|--Solutions.hs
|--AltSolutions.hs
tutorial.pdf

Table C.1: File structure directory. Files are hyperlinked.

C.1 Tutorial.hs

{-# LANGUAGE DataKinds, OverloadedStrings, TemplateHaskell #-}

module Tutorial where

--------------------------------------------------------------
-- module library required --
--------------------------------------------------------------
import Pipes (Producer) -- pipes
import Lens.Micro (Getting) -- microlens
import Lens.Micro.Extras (view) -- microlens
import Frames -- Frames
import Data.List
import qualified Data.Foldable as F

import Helpers
import Plotter

56
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---------------------
-- data definition --
---------------------

-- Create a row type (inferred from a CSV file).
tableTypes "Astronaut" "datasets/astronauts.csv"

-- Create a stream of rows (Astronaut) from a CSV file.
astronautStream :: MonadSafe m => Producer Astronaut m ()
astronautStream = readTableOpt astronautParser "datasets/astronauts.csv"

-- Convert the stream into an in-memory data frame.
loadDataset :: IO (Frame Astronaut)
loadDataset = inCoreAoS astronautStream

-- View the first n rows of a frame as records.
viewDataset :: Show a => Int -> Frame a -> IO ()
viewDataset n frame = mapM_ (print . frameRow frame) [0..(n-1)]
-- Pretty printing alternative: view the first n rows
-- of a frame as data-only columns.
printDataset n frame = putStrLn $ prettyFormat "{|}" $ showFrame "{|}"

$ takeRows n frame

-- Get a column of the dataset as a list.
getColumn :: (Foldable t, Functor t) => t a -> Getting b a b -> [b]
getColumn frame col = F.toList $ view col <$> frame

---------------
-- exercises --
---------------

-- exercise 1a: calculating column statistics,
-- mission duration

exercise1a :: IO ()
exercise1a = do

putStrLn "your code goes here"

-- exercise 1b: grouping by astronaut
-- calculating training time and age

exercise1b :: IO ()
exercise1b = do

putStrLn "your code goes here"

-- exercise 1c: grouping by mission,
-- calculating percentage of EVA time
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exercise1c :: IO ()
exercise1c = do

putStrLn "your code goes here"

-- exercise 2a: aggregating by country,
-- number of astronauts per country

exercise2a :: IO ()
exercise2a = do

putStrLn "your code goes here"

-- exercise 2b: aggregating by time period
-- gender ratio before and after the cold war

exercise2b :: IO ()
exercise2b = do

putStrLn "your code goes here"

-- exercise 3a: number of missions per year

exercise3a :: IO ()
exercise3a = do

putStrLn "your code goes here"

-- exercise 3b: cumulative sums
-- total amount of hours spent in space

exercise3b :: IO ()
exercise3b = do

putStrLn "your code goes here"

C.2 Helpers.hs

module Helpers where

----------------------------------------------------------
-- module library required --
----------------------------------------------------------
import Data.List
import Data.List.Split -- split
import Frames -- Frames
import Data.Vector (fromList) -- vector
import Statistics.LinearRegression -- statistics-linreg

-------------------------
-- exploration helpers --
-------------------------
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-- Pretty print a frame by aligning eac column with enough spaces to
-- pad to (maximum word length in column) + 1.
prettyFormat :: String -> String -> String
prettyFormat sep input = unlines

$ map (addPadding . zip splitWidth) splitWords
where splitWords = (map (splitOn sep) . lines) input

splitWidth = (map (maximum . (map length))
. transpose) splitWords

addPadding = (concat . map (\(len, str)
-> str ++ replicate (1 + len - length str) ’ ’))

---------------------------------
-- helper operations on tuples --
---------------------------------

-- Extracts the first element of a tuple.
-- (3tuple equivalent of fst)
fst3 :: (a, b, c) -> a
fst3 (x, _, _) = x

-- Produces a tuple without its first element.
-- (3tuple equivalent of tail)
tls3 :: (a, b, c) -> (b, c)
tls3 (_, y, z) = (y, z)

-------------------------------
-- helper statistics methods --
-------------------------------

-- Calculates the mean of a list of values.
mean :: Fractional a => [a] -> a
mean [] = error "mean: undefined on empty list"
mean xs = (sum xs) / (fromIntegral $ length xs)

-- Calculate the median of a list of values.
median :: (Fractional a, Ord a) => [a] -> a
median xs

| l == 0 = error "median: undefined on empty list"
| odd l = x !! m
| otherwise = ((x !! m) + (x !! (m - 1))) / 2

where l = length xs
m = l ‘div‘ 2
x = sort xs

-- Calculates the minimum, mean, median, and maximum of a list.
stats :: (Fractional a, Ord a) => [a] -> [a]
stats xs = map ($ xs) [minimum, mean, median, maximum]

-- Given a list of responders (xs) and predictors (ys),
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-- calculates best linear fit of data as a (a, b, Rˆ2) tuple
-- where the line is given by y = a + bx
-- and Rˆ2 is the coefficient of determination.
-- Note that xs and ys should have the same length.
linearRegression :: [Double] -> [Double] -> (Double, Double, Double)
linearRegression xs ys = linearRegressionRSqr (fromList xs) (fromList ys)

C.3 Plotter.hs

module Plotter where

import Graphics.Rendering.Chart.Easy hiding (Getting, view)
import Graphics.Rendering.Chart.Backend.Diagrams

-- create type synonyms for plots
type FileName = String
type Title = String
type AxisTitle = String
type Label = String

-- create a new file options type
fileOptions = FileOptions (1000, 600) SVG loadSansSerifFonts

-- define custom font styles
fontStyle = FontStyle

{ _font_name = "sans-serif"
, _font_size = 30
, _font_slant = def -- default value
, _font_weight = def -- default value
, _font_color = opaque black
}

titleFontStyle = FontStyle
{ _font_name = "sans-serif"
, _font_size = 30
, _font_slant = def -- default value
, _font_weight = FontWeightBold
, _font_color = opaque black
}

-- function that creates a scatter plot in the plots folder
scatterPlot :: (PlotValue x, PlotValue y) => FileName -> [(x, y)] ->

-> AxisTitle -> AxisTitle -> Title -> IO ()
scatterPlot fileName data xtitle ytitle title =

toFile fileOptions ("plots/" ++ fileName ++ ".svg") $ do
layout_all_font_styles .= fontStyle
layout_title_style .= titleFontStyle
layout_title .= title
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layout_x_axis . laxis_title .= xtitle
layout_y_axis . laxis_title .= ytitle
-- create a line plot with custom styling via liftEC, which
-- nests computation of the points within the plot computation
plot $ liftEC $ do

plot_points_style .= (filledCircles 5 $ opaque black)
plot_points_values .= data

-- function that creates a line plot with 2 lines in the plots folder
linePlot2 :: (PlotValue x, PlotValue y) => FileName

-> [(x, y)] -> [(x, y)] -> Label -> Label
-> AxisTitle -> AxisTitle -> Title -> IO ()

linePlot2 fileName vals1 vals2 label1 label2 xtitle ytitle title =
toFile fileOptions ("plots/" ++ fileName ++ ".svg") $ do

layout_all_font_styles .= fontStyle
layout_title_style .= titleFontStyle
layout_title .= title
layout_x_axis . laxis_title .= xtitle
layout_y_axis . laxis_title .= ytitle
-- make a solid blue line, width 3, with legend label label1
plot $ liftEC $ do

plot_lines_style .= (solidLine 3 $ opaque blue)
plot_lines_title .= label1
plot_lines_values .= [vals1] -- lineplot takes a list of lists

-- make a dashed red line (pattern 5 line, 3 space), width 3
plot $ liftEC $ do

plot_lines_style .= (dashedLine 3 [5, 3] $ opaque red)
plot_lines_title .= label2
plot_lines_values .= [vals2]

C.4 Solutions.hs

{-# LANGUAGE DataKinds, OverloadedStrings, TemplateHaskell #-}

module Solutions where

import Data.List

import Tutorial
import Helpers
import Plotter

------------------------
-- exercise solutions --
------------------------

-- exercise 1a: calculating column statistics,
-- mission duration
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exercise1aSolution :: IO ()
exercise1aSolution = do

frame <- loadDataset
let ds = getColumn frame missionDurationTotal
putStrLn $ "\nstatistics [min, mean, median, and max]

++ "for mission durations (hrs)"
(print . stats) ds
putStrLn $ "\nstatistics for mission durations (hrs), without

++ "zero-duration missions"
(print . stats . filter (/= 0)) ds
putStrLn "\nnumber of zero-duration missions"
(print . length . filter (==0)) ds
putStrLn ""

-- exercise 1b: grouping by astronaut
-- calculating training time and age

exercise1bSolution :: IO ()
exercise1bSolution = do

frame <- loadDataset
let get = getColumn frame

n = get profileMissionsNumber
bYr = get profileYearBirth
sYr = get profileYearSelection
mYr = get missionYear

putStrLn $ "\nstatistics for the age of astronauts at mission"
++ "(mission year - birth year) in years"

let ages = map (\(b,m) -> m-b) $ zip bYr mYr
-- convert to Double else since stats needs Fractional values
(print . stats . map fromIntegral) ages
putStrLn $ "\nstatistics for the training time per astronaut"

++ "(mission year - selection year) in years"
-- need to filter out by astronaut (only select first mission entry)
let firsts = map tls3 $ filter ((==1) . fst3) $ zip3 n sYr mYr

trains = map (\(s,m) -> m-s) firsts
(print . stats . map fromIntegral) trains
putStrLn ""

-- exercise 1c: grouping by mission,
-- calculating percentage of EVA time

exercise1cSolution :: IO ()
exercise1cSolution = do

frame <- loadDataset
let ns = getColumn frame missionName

ds = getColumn frame missionDurationTotal
es = getColumn frame missionDurationEVA

putStrLn "\nstatistics for the percentage of mission time spent on EVA"
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-- filter out by mission name (1 entry per mission)
let missions = map tls3 $ nubBy (\(n1,_,_) (n2,_,_) -> n1 == n2)

$ zip3 ns es ds
-- create valid pairs (mission duration > 0 to not divide by 0)
let pairs = filter (\(_,d) -> d > 0) missions
(print . stats . map (\(e,d) -> (e/d) * 100)) pairs
putStrLn ""

-- exercise 2a: aggregating by country,
-- number of astronauts per country

exercise2aSolution :: IO ()
exercise2aSolution = do

frame <- loadDataset
let n = getColumn frame profileMissionsNumber

nat = getColumn frame profileNationality
putStrLn "\nnumber of astronauts per country (nationality)"
-- aggregate by astronaut (select first mission only)
let nationalities = map snd $ filter ((==1) . fst) $ zip n nat
-- aggregate nationalities into groups, then create
-- (element, length) tuples

countryCounts = (map (\l -> (head l, length l))
. group . sort) nationalities

-- and sort by number of astronauts
(print . sortOn (negate . snd)) countryCounts
putStrLn ""

-- exercise 2b: aggregating by time period
-- gender ratio before and after the cold war

exercise2bSolution :: IO ()
exercise2bSolution = do

frame <- loadDataset
let mYs = getColumn frame missionYear

sex = getColumn frame profileSex
putStrLn $ "\nfraction of female astronauts before (inclusive)"

++ "and after 1991"
-- filter out by year
let pairs = zip mYs sex

before = filter ((<=1991) . fst) pairs
after = filter ((>1991) . fst) pairs

-- aggregate by astronaut sex, calculate percentage
let beforeCount = length $ filter ((=="female") . snd) before

afterCount = length $ filter ((=="female") . snd) after
print $ 100 * (fromIntegral beforeCount)

/ (fromIntegral $ length before)
print $ 100 * (fromIntegral afterCount )

/ (fromIntegral $ length after)
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-- exercise 3a: number of missions per year

exercise3aSolution :: IO ()
exercise3aSolution = do

frame <- loadDataset
let names = getColumn frame missionName

years = getColumn frame missionYear
-- filter out by mission name (1 entry per mission)
let missions = map snd $ nubBy (\(n1,_) (n2,_) -> n1 == n2)

$ zip names years
groups = (group . sort) missions
xs = map head groups
ys = map length groups

scatterPlot "number_of_missions" (zip xs ys)
"Year" "Number of missions" "Number of missions per year"

-- exercise 3b: cumulative sums
-- total amount of hours spent in space

exercise3bSolution :: IO ()
exercise3bSolution = do

frame <- loadDataset
let ns = getColumn frame missionName

ys = getColumn frame missionYear
ts = getColumn frame missionDurationTotal
es = getColumn frame missionDurationEVA
rows = zip4 ns ys ts es

-- aggregate by mission into (year, total time, EVA time) tuples
let missions = map (\(_,y,t,e) -> (y,t,e))

$ nubBy (\(n1,_,_,_) (n2,_,_,_) -> n1 == n2) rows
-- group by year
let yearGroups = (groupBy (\a b -> fst3 a == fst3 b)

. sortOn fst3) missions
-- extract years
let years = map (fst3 . head) yearGroups
-- calculate sums per year
let times = map (foldl (\(tSum, eSum) (_, t, e)

-> (tSum+t, eSum+e)) (0, 0)) yearGroups
-- convert to years and calculate cumulative sums
let cSumTotal = map (/8760) $ scanl (+) 0 $ map fst times

cSumEVAs = map (*100) $ map (/8760) $ scanl (+) 0 $ map snd times
linePlot2 "time_in_space" (zip years cSumTotal) (zip years cSumEVAs)

"Total time" "100x EVA time"
"Year" "Time spent in space [yrs]" "Mission time"

-----------------------
-- solution printers --
-----------------------
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exercise1aPrint :: IO ()
exercise1aPrint = do putStrLn

$ "Exercise (1.a) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let ds = getColumn frame missionDurationTotal"
++ "\n| (print . stats) ds"
++ "\n| (print . stats . filter (/= 0)) ds"
++ "\n| (print . length . filter (==0)) ds"

exercise1bPrint :: IO ()
exercise1bPrint = do putStrLn

$ "Exercise (1.b) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let get = getColumn frame"
++ "\n| n = get profileMissionsNumber"
++ "\n| bYr = get profileYearBirth"
++ "\n| sYr = get profileYearSelection"
++ "\n| mYr = get missionYear"
++ "\n| ages = map (\\(b,m) -> m-b) $ zip bYr mYr"
++ "\n| -- convert to Double since stats needs Fractional values"
++ "\n| (print . stats . map fromIntegral) ages"
++ "\n| -- need to filter out by astronaut (only select"
++ " first mission entry)"
++ "\n| let firsts = map tls3 $ filter ((==1) . fst3)"
++ " $ zip3 n sYr mYr"
++ "\n| trains = map (\\(s,m) -> m-s) firsts"
++ "\n| (print . stats . map fromIntegral) trains"

exercise1cPrint :: IO ()
exercise1cPrint = do putStrLn

$ "Exercise (1.c) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let ns = getColumn frame missionName"
++ "\n| ds = getColumn frame missionDurationTotal"
++ "\n| es = getColumn frame missionDurationEVA"
++ "\n| -- filter out by mission name (1 entry per mission)"
++ "\n| let missions = map tls3 $ nubBy (\\(n1,_,_) (n2,_,_)"
++ " -> n1 == n2) $ zip3 ns es ds"
++ "\n| -- create valid pairs (mission duration > 0 to not"
++ " divide by 0)"
++ "\n| let pairs = filter (\\(_,d) -> d > 0) missions"
++ "\n| (print . stats . map (\\(e,d) -> (e/d) * 100)) pairs"

exercise2aPrint :: IO ()
exercise2aPrint = do putStrLn

$ "Exercise (2.a) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let n = getColumn frame profileMissionsNumber"
++ "\n| nat = getColumn frame profileNationality"
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++ "\n| -- aggregate by astronaut (select first mission only)"
++ "\n| let nationalities = map snd $ filter ((==1) . fst)"
++ " $ zip n nat"
++ "\n| -- aggregate nationalities into groups, then create"
++ " (element, length) tuples"
++ "\n| let countryCounts = (map (\\l -> (head l, length l))"
++ " . group . sort) nationalities"
++ "\n| -- and sort by number of astronauts"
++ "\n| (print . sortOn (negate . snd)) countryCounts"

exercise2bPrint :: IO ()
exercise2bPrint = do putStrLn

$ "Exercise (2.b) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let mYs = getColumn frame missionYear"
++ "\n| sex = getColumn frame profileSex"
++ "\n| -- filter out by year"
++ "\n| let pairs = zip mYs sex"
++ "\n| before = filter ((<=1991) . fst) pairs"
++ "\n| after = filter ((>1991) . fst) pairs"
++ "\n| -- aggregate by astronaut sex, calculate percentage"
++ "\n| let beforeCount = length $ filter ((==\"female\")"
++ " . snd) before"
++ "\n| afterCount = length $ filter ((==\"female\")"
++ " . snd) after"
++ "\n| print $ 100 * (fromIntegral beforeCount)"
++ " / (fromIntegral $ length before)"
++ "\n| print $ 100 * (fromIntegral afterCount )"
++ " / (fromIntegral $ length after)"

exercise3aPrint :: IO ()
exercise3aPrint = do putStrLn

$ "Exercise (3.a) solution:"
++ "\n| frame <- loadDataset"
++ "\n| let names = getColumn frame missionName"
++ "\n| years = getColumn frame missionYear"
++ "\n| -- filter out by mission name (1 entry per mission)"
++ "\n| let missions = map snd $ nubBy (\\(n1,_) (n2,_)"
++ " -> n1 == n2) $ zip names years"
++ "\n| groups = (group . sort) missions"
++ "\n| xs = map head groups"
++ "\n| ys = map length groups"
++ "\n| scatterPlot \"number_of_missions\" (zip xs ys)"
++ "\n| \"Year\" \"Number of missions\""
++ " \"Number of missions per year\""

exercise3bPrint :: IO ()
exercise3bPrint = do putStrLn

$ "Exercise (3.b) solution:"
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++ "\n| frame <- loadDataset"
++ "\n| let ns = getColumn frame missionName"
++ "\n| ys = getColumn frame missionYear"
++ "\n| ts = getColumn frame missionDurationTotal"
++ "\n| es = getColumn frame missionDurationEVA"
++ "\n| rows = zip4 ns ys ts es"
++ "\n| -- aggregate by mission into (year, total time,"
++ " EVA time) tuples"
++ "\n| let missions = map (\\(_,y,t,e) -> (y,t,e)) $ nubBy"
++ " (\\(n1,_,_,_) (n2,_,_,_) -> n1 == n2) rows"
++ "\n| -- group by year"
++ "\n| let yearGroups = (groupBy (\\a b -> fst3 a == fst3 b)"
++ " . sortOn fst3) missions"
++ "\n| -- extract years"
++ "\n| let years = map (fst3 . head) yearGroups"
++ "\n| -- calculate sums per year"
++ "\n| let times = map (foldl (\\(tSum, eSum) (_, t, e)"
++ " -> (tSum+t, eSum+e)) (0, 0)) yearGroups"
++ "\n| -- convert to years and calculate cumulative sums"
++ "\n| let cSumTotal = map (/8760) $ scanl"
++ " (+) 0 $ map fst times"
++ "\n| cSumEVAs = map (*100) $ map (/8760) $ scanl"
++ " (+) 0 $ map snd times"
++ "\n| linePlot2 \"time_in_space\" (zip years cSumTotal)"
++ " (zip years cSumEVAs)"
++ "\n| \"Total time\" \"100x EVA time\""
++ "\n| \"Year\" \"Time spent in space [yrs]\"
++ " \"Mission time\""

C.5 AltSolutions.hs

{-# LANGUAGE DataKinds, OverloadedStrings, TemplateHaskell #-}

module AltSolutions where

--------------------------------------------------------------
-- module alias library required --
--------------------------------------------------------------
import Data.List
import Frames -- frames
import Lens.Micro.Extras (view) -- microlens
import Pipes -- pipes
import qualified Pipes.Prelude as P -- pipes
import qualified Control.Foldl as L -- foldl

import Tutorial
import Helpers
import Plotter
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-- Reduces a stream with the provided fold operation.
foldStream fold stream = runSafeEffect $ (L.purely P.fold) fold $ stream

------------------------
-- exercise solutions --
------------------------

-- exercise 1a: calculating column statistics,
-- mission duration

exercise1aSolution’ :: IO ()
exercise1aSolution’ = do

let s = astronautStream >-> P.map (view missionDurationTotal)
dsFull <- foldStream L.list s
dsFiltered <- foldStream L.list $ s >-> P.filter (/=0)
print $ stats dsFull
print $ stats dsFiltered
print $ (length dsFull) - (length dsFiltered)

-- exercise 1b: grouping by astronaut
-- calculating training time and age

exercise1bSolution’ :: IO ()
exercise1bSolution’ = do

ages <- foldStream L.list $ astronautStream
>-> P.map (\r -> view missionYear r - view profileYearBirth r)

(print . stats . map fromIntegral) ages
-- need to filter out by astronaut (only select first mission entry)
trains <- foldStream L.list $ astronautStream

>-> P.filter ((==1) . view profileMissionsNumber)
>-> P.map (\r -> view missionYear r

- view profileYearSelection r)
(print . stats . map fromIntegral) trains

-- exercise 1c: grouping by mission,
-- calculating percentage of EVA time

exercise1cSolution’ :: IO ()
exercise1cSolution’ = do

missions <- foldStream L.list
$ astronautStream
>-> P.filter ((/=0) . view missionDurationTotal)
>-> P.map (\r -> (view missionName r,

100 * view missionDurationEVA r
/ view missionDurationTotal r))

-- filter out by mission name (1 entry per mission)
(print . stats . map snd . nubBy (\l r -> fst l == fst r)) missions
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-- exercise 2a: aggregating by country,
-- number of astronauts per country

exercise2aSolution’ :: IO ()
exercise2aSolution’ = do

-- aggregate by astronaut (select first mission only)
nats <- foldStream L.list $ astronautStream

>-> P.filter ((==1) . view profileMissionsNumber)
>-> P.map (view profileNationality)

-- aggregate nationalities into groups; create (element, length)
-- tuples; then sort by count
(print . sortOn (negate . snd) . map (\l -> (head l, length l))

. group . sort) nats

-- exercise 2b: aggregating by time period
-- gender ratio before and after the cold war

exercise2bSolution’ :: IO ()
exercise2bSolution’ = do

before <- foldStream L.list $ astronautStream
>-> P.filter ((<=1991) . view missionYear)
>-> P.map (fromEnum . (=="female") . view profileSex)

after <- foldStream L.list $ astronautStream
>-> P.filter ((>1991) . view missionYear)
>-> P.map (fromEnum . (=="female") . view profileSex)

print $ 100 * (fromIntegral $ sum before)
/ (fromIntegral $ length before)

print $ 100 * (fromIntegral $ sum after)
/ (fromIntegral $ length after)

-- exercise 3a: number of missions per year

exercise3aSolution’ :: IO ()
exercise3aSolution’ = do

missions <- foldStream L.list $ astronautStream
>-> P.map(\r -> (view missionName r, view missionYear r))

let groups = (group . sort . map snd
. nubBy (\l r -> fst l == fst r)) missions

scatterPlot "number_of_missions"
(map (\l -> (head l, length l)) groups)
"Year" "Number of missions" "Number of missions per year"

-- exercise 3b: cumulative sums
-- total amount of hours spent in space

exercise3bSolution’ :: IO ()
exercise3bSolution’ = do

rows <- foldStream L.list $ astronautStream
>-> P.map (\r -> (view missionName r, view missionYear r,
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view missionDurationTotal r,
view missionDurationEVA r))

-- aggregate by mission into (year, total time, EVA time) tuples
let missions = map (\(_,y,t,e) -> (y,t,e))

$ nubBy (\(n1,_,_,_) (n2,_,_,_) -> n1 == n2) rows
-- group by year
let yearGroups = (groupBy (\a b -> fst3 a == fst3 b)

. sortOn fst3) missions
-- extract years
let years = map (fst3 . head) yearGroups
-- calculate sums per year
let times = map (foldl (\(tSum, eSum) (_, t, e)

-> (tSum+t, eSum+e)) (0, 0)) yearGroups
-- convert to years and calculate cumulative sums
let cSumTotal = map (/8760) $ scanl (+) 0 $ map fst times

cSumEVAs = map (*100) $ map (/8760)
$ scanl (+) 0 $ map snd times

linePlot2 "time_in_space" (zip years cSumTotal) (zip years cSumEVAs)
"Total time" "100x EVA time"
"Year" "Time spent in space [yrs]" "Mission time"
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Benchmark code

D.1 Bench.hs

{-# LANGUAGE DataKinds, OverloadedStrings, TemplateHaskell,
TypeApplications, FlexibleContexts, DeriveGeneric, BangPatterns #-}

module Bench where

------------------------------------------------------------------------
-- module alias library required --
------------------------------------------------------------------------

-- benchmark
import Data.Time.Clock
import Control.Monad (forM_)

-- lists, vectors, folds
import Data.List
import qualified Data.Foldable as F
import qualified Data.Text as T -- text
import qualified Data.Vector as V -- vector
import qualified Control.Foldl as L hiding (Vector) -- foldl

-- frames
import qualified Frames.CSV -- Frames
import Frames -- Frames
import Lens.Micro (Getting) -- microlens
import Lens.Micro.Extras (view) -- microlens

-- streams
import qualified Pipes.Prelude as P -- pipes
import Pipes -- pipes

-- statistics
import Statistics.Sample.KernelDensity (kde_) -- statistics

71
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import Statistics.Sample (skewness) -- statistics
import Statistics.Correlation (pearson) -- statistics
import Data.KMeans (kmeans) -- kmeans
import Statistics.LinearRegression (linearRegression)

-- statistics-linreg

-- plotting (requires Chart and Chart-diagrams)
import Graphics.Rendering.Chart.Easy hiding (Getting, view)
import Graphics.Rendering.Chart.Backend.Diagrams

---------------------
-- Micro benchmark --
---------------------

-- load data
tableTypes "Row" "datasets/data1_1000.csv"
rowStream :: MonadSafe m => Int -> Producer Row m ()
rowStream numRows = readTableOpt rowParser

("datasets/data1_" ++ show numRows ++ ".csv")
readFrame :: Int -> IO (Frame Row)
readFrame numRows = inCoreAoS $ rowStream numRows

------------------
-- test runners --
------------------

-- forces and times a computation, prints time in seconds
benchmark computation = do

t1 <- getCurrentTime
let !r = computation
t2 <- getCurrentTime
(putStr . show . nominalDiffTimeToSeconds) $ diffUTCTime t2 t1

benchmark’ ioComputation = do
t1 <- getCurrentTime
_ <- ioComputation
t2 <- getCurrentTime
(putStr . show . nominalDiffTimeToSeconds) $ diffUTCTime t2 t1

-- runs a test and prints result into console in a CSV-friendly format
run n frame test name = do

putStr $ "Haskell-ghci," ++ show n ++ "," ++ name ++ ","
_ <- test frame
putStrLn ""

-- runs tests that can run for any size
do_tests_fast n f = do

run n n read_test "Read"
run n f write_test "Write"
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run n f sort_test "Sort"
run n f filter_test "Filter"
run n f groupby_test "Groupby"
run n f central_test "Mean"
run n f dispersion_test "Dispersion"
run n f outliers_test "Outliers"
putStr ""

-- runs tests that should not be run on datasets over 100k rows
do_tests_slow n f = do

run n f duplicates_test "Duplicates"
run n f scatter_test "Scatter"
putStr ""

-- runs all the tests ten times for a given size
do_tests_full n r = do

f <- readFrame n
forM_ [1..r] $ \_ -> do

do_tests_fast n f
-- limits tests which take too long on large datasets
if n <= 1000000 then run n f clustering_test "Clustering"

else putStr ""
if n <= 100000 then do_tests_slow n f

else putStr ""

-- runs all the stream tests
do_tests_stream n r = do

let s = rowStream n
forM_ [1..r] $ \_ -> do

run n s stream_one "Stream-mean"
run n s stream_two "Stream-mean-std"

-- run all in-core tests
do_tests_core n r = do

forM_ [1..r] $ \_ -> do
run n n core_one "Core-mean"
run n n core_two "Core-mean-std"

sizes = [ 1000
, 10000
, 100000
, 1000000
]

repetitions = 10
main = forM_ sizes $ \n -> do

do_tests_full n repetitions

--------------------
-- basic file I/O --
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--------------------

read_test :: Int -> IO ()
read_test rows = benchmark’ $ do

frame <- readFrame rows
return frame

write_test :: Frame Row -> IO ()
write_test frame = benchmark’ $ do

Frames.CSV.writeCSV "write_test.csv" frame

--------------------
-- data wrangling --
--------------------

sort_frame :: Ord l => Frame r -> Getting l r l -> Frame r
sort_frame frame lens = boxedFrame $ frameRow frame <$> idx

where idx = map fst $ sortOn snd
$ zip ([0..frameLength frame - 1])

(F.toList $ view lens <$> frame)

sort_test :: Frame Row -> IO ()
sort_test frame = benchmark $ do

sort_frame frame Bench.uni

filter_test :: Frame Row -> IO ()
filter_test frame = benchmark $ do

filterFrame ((<500000) . view rand1) frame

groupby_test :: Frame Row -> IO ()
groupby_test frame = benchmark $ do

map (sum . map fst)
$ groupBy (\one two -> snd one == snd two)
$ L.fold L.list
$ ((,) <$> (view Bench.nor)

<*> (view Bench.city))
<$> frame

duplicates_test :: Frame Row -> IO ()
duplicates_test frame = benchmark $ do

boxedFrame $ frameRow frame <$> idx
where idx = map fst $ reverse

$ nubBy (\two one -> snd two == snd one)
$ reverse
$ zip ([0..frameLength frame - 1])

(F.toList $ view Bench.words <$> frame)

----------------------------
-- descriptive statistics
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----------------------------

central_test :: Frame Row -> IO ()
central_test frame = do

let f = (fromIntegral . view rand2) <$> frame
benchmark $ L.fold L.mean f

dispersion_test :: Frame Row -> IO ()
dispersion_test frame = do

let f = ((,) <$> (view Bench.exp)
<*> (view Bench.uni))

<$> frame
benchmark $ L.fold ((,,) <$> (L.premap fst L.maximum)

<*> (L.premap fst L.minimum)
<*> (L.premap snd L.std))

$ f

outliers_test :: Frame Row -> IO ()
outliers_test frame = do

let (std, mean) = L.fold ((,) <$> L.std <*> L.mean)
$ view Bench.exp
<$> frame

benchmark $ filterFrame (\r
-> not $ (view Bench.exp r - mean) > (3 * std)) frame

scatter_test :: Frame Row -> IO ()
scatter_test frame = do

let xs = L.fold L.list
$ ((,) <$> (view Bench.uni)

<*> (view Bench.nor))
<$> frame

benchmark’ $ toFile def ("plots/scatter_test.svg")
$ plot $ points "" xs

----------------------
-- machine learning --
----------------------

clustering_test :: Frame Row -> IO ()
clustering_test frame = do

let points = L.fold L.list $ (\r -> [((fromIntegral . view rand1) r),
((fromIntegral . view rand2) r)])

<$> frame
benchmark $ kmeans 2 points

-----------------------
-- stream benchmarks --
-----------------------
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-- Reduces a stream with the provided fold operation.
foldStream fold stream = runSafeEffect $ (L.purely P.fold) fold $ stream

stream_one stream = benchmark’ $ do
foldStream L.mean $ stream >-> P.map (fromIntegral . view rand1)

stream_two stream = benchmark’ $ do
foldStream ((,) <$> (L.premap (fromIntegral . fst) L.mean)

<*> (L.premap snd L.std))
$ stream >-> P.map ((,) <$> (view rand1) <*> (view uni))

core_one n = benchmark’ $ do
frame <- readFrame n
return $ L.fold L.mean $ (fromIntegral . view rand1) <$> frame

core_two n = benchmark’ $ do
frame <- readFrame n
return $ L.fold ((,) <$> (L.premap (fromIntegral . fst) L.mean)

<*> (L.premap snd L.std))
$ ((,) <$> (view rand1) <*> (view uni)) <$> frame
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