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Abstract
This project converts between commutative diagrams and sets of composed morphism
equations. We design text-representations for sets of morphism equations and com-
mutative diagrams. We then design and implement methods of converting from one
text-representation to the other via a graph. Most conversions are fairly direct, aside
from converting to a set of equations from a graph, where we consider multiple methods
and settle on modifying a depth-first search. This method both converts to a set of
equations and mostly avoids redundant information to our set of equations.
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Chapter 1

Introduction

1.1 Project Goals

Suppose we have some functions and some equations showing which compositions of
these functions are equal, say, for example, the set of equations:

S = {g◦ f = i◦h,
k ◦ j = h,
m◦ l = i,

l ◦ k ◦n = p}.

While representing this information as a set of equations does tell us a lot about how
these functions are structured in relation to each other, much of this information is
obscured or hard to figure out. For example, is i◦ k ◦n = m◦ p? In fact, are i◦ k ◦n and
m◦ p even valid function compositions?

To answer this, we could notice that m ◦ l and l ◦ k ◦ n are valid compositions, so
m◦ l ◦ k ◦n must be a valid combination. Furthermore, m◦ l = i and l ◦ k ◦n = p, so

i◦ k ◦n = m◦ l ◦ k ◦n = m◦ p
i◦ k ◦n = m◦ p.

So, the answer to our questions is yes. However, figuring this out was not a trivial
task, and the task becomes much more challenging for larger sets with more composed
functions equal to each other.

To make this structure more obvious, we can represent the information in S with a
commutative diagram, which for our purposes is a directed graph (a more rigorous
definition is given in Section 2.3). Each function would be an edge, and since we
do not know the type of any function we represent the domain and codomain with
•. Then we use the fact that for f1 ◦ f2 to be a valid composition, the domain of f1
must be the codomain of f2, so the edge f2 will go into the vertex f1 comes out of.
Finally, if f1 = f2, then they must share a domain and codomain, so every composed
function in each equation will go between the two vertices that every other composed
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Chapter 1. Introduction 2

function in that equation goes between. For example m◦ l = i will be represented by

• • •
l m

k

. Figure 1.1 shows S as a commutative diagram.

• • •

• • •

•

f

g

h

i

j

k
l

m

n

p

Figure 1.1: A commutative diagram representing set of equations S from Section 1.1.

Now, to answer if i◦ k ◦n = m◦ p with Figure 1.1 we just need to check if the sequence
of edges • n−→ • k−→ • i−→ • and • p−→ • m−→ • start at the same vertex and end at the same
vertex. If they do, which is the case in Figure 1.1, then i ◦ k ◦ n = m ◦ p. If either
sequence of edges doesn’t appear in the commutative diagram, then the corresponding
composed function isn’t a valid composition.

There are two main goals in this project:

• Given a set of equations showing which composed functions are equal to others,
produce a text-representation of a commutative diagram.

• Given a text-representation of a commutative diagram, produce a set of equations
showing which composed functions are equal, ideally with as little redundant
information as possible.

Additionally, we want to be able to produce a visual representation of a commutative
diagram, ideally with as few edge crossings as possible and with well positioned
vertices.

1.2 Achievements

We manage to:

• Produce a text representation of a commutative diagram from a set of equations.

• Produce a set of equations given a text representation of a commutative diagram.

Additionally, we largely remove the redundant information in our equations, and use
already implemented libraries to produce a visual representation of a commutative
diagram with TikZ.
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1.3 Report Overview

Chapter 2 introduces category theory to give additional context for commutative dia-
grams, and explores existing methods of drawing commutative diagrams.

Chapter 3 explains the design of our text-representations of morphisms and commutative
diagrams, and explains the algorithms used to convert between them.

Chapter 4 gives details on how the algorithms in Chapter 3 are implemented, what
language and libraries where used, and what data-structures and existing code is used to
complete certain tasks.

Chapter 5 evaluates the designs and implementations discussed in chapters 3 and 4.

Finally, Chapter 6 summarises the report, and suggests future work.



Chapter 2

Background

2.1 Directed Graphs

For clarity, we define some graph theory terms that appear often in this report.

Definition 1. A directed graph (or digraph) G contains two collections:

1. A non-empty finite set V (G) of vertices, called the vertex set of G.

2. A finite set E(G) of ordered pairs of vertices (v,w), where v,w ∈ V (G), called
edges. We say (v,w) connects vertex v to vertex w, but does not connect vertex w
to vertex v.

Note that E(G) is a set, meaning we are not considering graphs with more than one
edge from any vertex to any other.

Definition 2. A path is a sequence of consecutive edges such that no edge appears twice
in the sequence.

A path consisting of a single edge will be called a “trivial path”.

Definition 3. A cycle is a path that starts and ends at the same vertex.

2.2 Category Theory

Commutative diagrams are heavily used by mathematicians studying category theory,
so this section offers a brief overview of category theory to contextualise commutative
diagrams.

When studying mathematics, we encounter many different mathematical objects, such
as groups, graphs, vector spaces, sets, natural numbers, and rings, all with their own
rules and structure. There are often similarities and relationships between these objects,
however, when working directly with these objects, these similarities and relationships
can sometimes be hard to see through the different notations and ways of describing
them, especially if the objects come from different areas of mathematics. Category
theory aims to provide a framework for expressing every mathematical object and
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Chapter 2. Background 5

its structure, abstracting away the details so the structures and relationships of these
objects become more apparent. This is done by defining a new mathematical object:
the category.

Definition 4 ([22, Def 1.1.1]). A category A consists of:

• a collection ob(A ) of objects;

• for each A,B ∈ ob(A ), a collection A (A,B) of maps or arrows or morphisms
from A to B;

• for each A,B,C ∈ ob(A ), a function

A (B,C)×A (A,B)→A (A,C)

(g, f ) 7→ g◦ f ,

called composition;

• for each A ∈ ob(A ), an element 1A of A (A,A), called the identity on A.

satisfying the following axioms:

• associativity: for each f ∈ A (A,B), g ∈ A (B,C), and h ∈ A (C,D), we have
(h◦g)◦ f = h◦ (g◦ f );

• identity laws: for each f ∈A (A,B), we have f ◦1A = f = 1B ◦ f .

An example of a category is Set, where the objects are sets, and the morphisms are set
functions between the sets.

Categories do not have to represent mathematical objects such as groups, sets or
numbers. For example, the category Hask [19] represents programs written in the
language Haskell, with the objects being types and the morphisms being functions
between those types.

2.3 Commutative Diagrams

Suppose we have an arbitrary category B, and we want to talk about some of the
morphisms in the category. We can list them using the notation in Definition 4: f ∈
B(A,B), g ∈B(A,C), h ∈B(B,C), i ∈B(D,B), and j ∈B(D,C). However, this
representation suffers similar problems as the set of equations from the introduction
(Section 1.1), namely the structure of the morphisms is hard to intuit. Therefore, we can
use the same solution, and represent our morphisms as a directed graph, where vertices
are objects and morphisms edges.

A B D

C

f

g h

i

j

Figure 2.1: A diagram representing the example morphisms from Section 2.3.
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The directed graph representation is called a diagram. From it, we can easily tell which
morphisms share a domain or codomain by just checking an object’s incoming/outgoing
edges. Additionally, any path in the graph corresponds to a morphism formed by
composing the morphisms that lie on that path.

Figure 2.1 contains two non-trivial paths: the path corresponding to the morphism
h ◦ f : A→C, and the path corresponding to h ◦ i : D→C. This means we have two
morphisms going from A→C: h◦ f and g; and two going from C→D: h◦ i and j. If it
is the case that h◦ f = g and h◦ i = j we call Figure 2.1 a commutative diagram. More
generally:

Definition 5. A diagram is a commutative diagram, or commutes, if, for every pair of
objects (A, B) in the diagram, every path from A to B is equal as a morphism to every
other path from A to B.

2.4 Existing Commutative Diagram Drawing Methods

There are many existing methods of drawing commutative diagrams, from hand-drawn
to dedicated software. However, a method for generating commutative diagrams from a
set of equations does not appear to exist. This section discusses some of these methods
and their benefits and drawbacks.

2.4.1 Hand-drawn

Drawing commutative diagrams by hand is fairly easy and quick, but drawing a good-
looking diagram can be much harder and time-intensive. Arrows, for instance, take
effort to draw uniformly, and curved arrows can be hard to draw smoothly. It can also
be hard to know where to initially position the objects in the diagram to avoid creating
a tangled web of intersecting arrows, especially in large and interconnected categories.

2.4.2 LATEX packages

LATEX is a typesetting system frequently used by mathematicians to typeset mathem-
atical documents. LATEX is recommended by the American Mathematical Society for
authors who want to publish with them [27], and a study in 2009 found that 96.9% of
submissions to 4 randomly selected mathematical journals were typeset in LATEX [4].
Therefore, to look at how to create professional-looking commutative diagrams, we
should look at what LATEX has to offer.

LATEX packages are used to add extra functionality to LATEX. There are general-purpose
packages such as xy-pic[25] and PGF/TikZ [28] for drawing many kinds of diagrams,
but there are also packages that specialise in commutative diagrams. These specialised
packages often build off the more general packages, adding shortcuts and macros to
make commutative diagram creation easier.

The Comprehensive TEX Archive, or CTAN, is the main repository of LATEX packages.
Browsing the “Commutative Diagrams” topic [9] gives us 16 packets, some of which
build on other packets. All the packets ask us to position the objects ourselves, either
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using cartesian coordinates or by using a grid structure. In general, we have to define
the starting position and direction of the arrows ourselves, but some packages such as
CoDi [3] and DCpic [24] just ask us to define which objects the arrows go between.

The benefits and drawbacks of drawing commutative diagrams using these packages are
almost inverse of hand-drawing; they produce professional-looking diagrams, but typing
out the diagrams is much slower and less intuitive compared to the speed and simplicity
of hand-drawing. As with hand-drawing, these packages also have the problem of
a bad initial placement of objects leading to a messy diagram. The ease of fixing a
bad placement relative to hand-drawing depends on the packet being used, ones that
require us to define the position and direction of arrows will need large complicated
re-writes, potentially from scratch, whereas packages that just require object positions
will be fairly easy to re-organise. In conclusion, LATEX packages are good at producing
professional looking commutative diagrams, but take much more effort to produce than
hand-drawing.

2.4.3 Graphical Editors

Dedicated graphical editors for creating commutative diagrams, such as quiver [1] and
tikzcd-editor, [26] mitigate the drawbacks of the LATEX packages by making the creation
of the diagrams much easier. The graphical interface is much more intuitive to use
than typing out the diagram manually, and the ability to drag objects helps mitigate the
object placement problem by making modifications to the diagram much easier.



Chapter 3

Design

The overall design approach can be summarised by Figure 3.1.

Diagram Rep. Digraph Morphism Rep.

diagram extractor

diagram creator morphism extractor

morphism creator

Figure 3.1: Design approach represented as a diagram.

In words, we define a text-based representation for commutative diagrams and morphism
equations. We then design methods to convert each representation into a graph, and
methods to convert the graph into each representation. Each text representation is stored
in a file.

3.1 Representations

Along with converting to text representations, we will want to output a visual form of
the diagram. To do this, we output TikZ code that will render the diagram. Therefore,
we want our text representations to be similar to LATEXso that we do not need to do
much work to make the conversion to TikZ. As such, we delimit objects and morphisms
in the text representations by wrapping them in braces: {}.

3.1.1 Commutative Diagrams

The text representation of a commutative diagram is split in two. First we have the
optional labelling section, followed by the actual diagram section. The labelling section
comes before the diagram section in the file, but makes more sense once we have seen
the diagram section.

In the diagram section, each line represents an edge of the diagram, and takes the form:

8



Chapter 3. Design 9

{morphism}{domain}{codomain}

For example, the edge A
f−→ B will be represented as {f}{A}{B}. This is meant to

mimic common notation for expressing the type of a morphism, such as f : A→ B, or
f ∈A (A,B).

There is a problem with this, what do we do if we want the same object to appear twice?
This is where the labelling section comes in. At the top of the document we add a line
of the form:

L{object}{label}

where object is the object that appears as a domain or codomain in the diagram
section, and label is what we want that object to be displayed as. L stands for label
and denotes that this line belongs to the label section.

If we go back to our previous example, suppose we want the edge A
f−→ B to be A

f−→ A
instead. Then we can keep the line {f}{A}{B}, and at the top of the file add the line
L{B}{A}. The actual vertex in our graph will still be called B, but if we display the
graph it will appear as A.

Labelling is also useful if we have objects with long names, such as A op×B, which
in latex is written as \mathscr{A}ˆ{\mathrm{op}}\times\mathscr{B}. Labelling
lets us assign a shorthand so we do not need to type this out every time we want to add
an edge involving A op×B.

The labelling system is not extended to morphisms because it is not as important that
multiple morphisms can appear. When we convert from the morphism representation
to a diagram we do not know what objects are involved, only the morphisms names.
Therefore, we use a bullet • as a placeholder to represent any possible object, and we
do this for all objects so we need to record that every object is a bullet somehow, hence
the labels.

A B D

C

f

g h

i

j

(a)

{f}{A}{B}
{g}{A}{C}
{h}{B}{C}
{i}{D}{B}
{j}{D}{C}

(b)

A A D

C

f

g h

i

j

(c)

L{B}{A}
{f}{A}{B}
{g}{A}{C}
{h}{B}{C}
{i}{D}{B}
{j}{D}{C}

(d)

Figure 3.2: Examples of text representation. (a) is Figure 2.1; (b) is the text represent-
ation of Figure 2.1; (c) is Figure 2.1 but B is replaced with another A; (d) is the text
representation of (c).

3.1.2 Morphism Equations

Equations are already text representations of the fact that two morphisms are equal, so
we can let each line be an equation. However, there are two tweaks/notation choices
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that should be highlighted.

First, we allow multiple equalities in an equation, e.g. f1 = f2 = f3. We also allow no
equalities in a line, which is useful for telling us two morphisms can be composed even
if there are no equations that can tell us this.

Additionally, consider the composition operator ◦. Writing ◦ in an equation is useful
for two reasons: telling us the morphisms to the left and right are being composed and
not operated on in some other way, like being summed, and delineating where two
morphisms end and begin. However, in our representation the only operation we can
apply to two morphisms is composition, and we wrap each morphism in braces so they
are clearly delineated. Therefore, we do not include the composition operator in the
representation.

S = {g◦ f = i◦h,
k ◦ j = h,
m◦ l = i,

l ◦ k ◦n = p}.
(a) equations

{g}{f} = {i}{h}
{k}{j} = {h}
{m}{l} = {i}
{l}{k}{n} = {p}
(b) text representation

Figure 3.3: Example of a text representation of a set of equations.

3.2 Converting

3.2.1 To and From Diagram Representation

To go from our representation to the graph, we first check the first character of the
current line. If it is L, we know that we have labels, so extract the object, add it as a
vertex to the graph, and then extract and attach the label to that vertex. W repeat this
until we reach a line where L is not the first character.

From here we are in the diagram section, so we extract the morphism, domain, and
codomain, then add an edge from domain to codomain with label morphism to our
graph, also adding any vertices when needed. Doing this for the remaining lines will
create our desired graph.

Converting from a graph is slightly more involved. We need to create two strings, one
for the label section, and one for the diagram section. We will also need a set S to keep
track of all the vertices we have already seen. Then, for each edge from u to v with label
f of the graph, we append “{ f}{u}{v}\n” to the end of our diagram string. Next, we
check our set S to see if u or v have been seen before. If they have not, then we check to
see if they have special labels, and if they are labelled then we add the relevant line to
the label string. We then add u and v to S. Checking the set S stops us from declaring a
label multiple times.

Once we have done this for all edges, we append the diagram string to the label string,
giving us our text representation.



Chapter 3. Design 11

To represent a directed cycle, such as the following,

•

• •

f
g

h

we can store a composed morphism of every edge in the cycle, with the last morphism
and the first morphism the same. This means our example would be stored as:

h◦g◦ f ◦h.

3.2.2 From Morphism Representation

Recall that a composed morphism corresponds to a path in a commutative diagram and
that the order morphisms appear in the composition will be the reverse of the order
in which the relevant edges appear in the path. For example, f ◦g◦h corresponds to

• h−→ • g−→ • f−→ •. Additionally, if two composed morphisms are on the same line they
share a domain and codomain, which means the corresponding paths will go between
the same pair of vertices.

This means we can view each line of our representation as a list of reversed paths that
all go between the same pair of vertices. With this framing, we can then use Algorithm
1 to create our directed graph. The basic idea is to assign a distinct start vertex u′

and a distinct end vertex v′ to each line, then break each line into a list of composed
morphisms then further break each composed morphism into a list of morphisms that
make up the composition. We will iterate through each morphism and if the morphism
doesn’t have an edge in the graph, we give it one. If the morphism does have an edge
(u,v) and would have gone into w if it didn’t already have an edge, we merge v and
w into a single vertex vw. Similarly, if the morphism already has an edge and the
morphism is the final one in the composition, we merge u and u′.

The algorithm assumes a few functions:

• G.add edge((u,v), morphism), which takes a pair of vertices (u,v), and a morph-
ism. The function adds the edge (u,v) to the graph G, and records that it represents
the morphism;

• G.get edge(morphism), which takes a morphism and returns the edge (u,v) that
represents that morphism; and

• G.contract vertices(u,v), which takes vertices u, v. This function takes all the
edges that go into/out of u and redirects them to go into/out of v, leaving u as a
floating vertex with no edges attached to it. u is then removed.

In Algorithm 1 we use G.contract vertices in such a way that vstart and vend will not
change. This keeps the algorithm simpler, and so makes the main ideas clearer, but this
isn’t optimal. Since G.contract vertices(u, v) needs to update all the edges that go into
or out of u, when possible the sum of the in-degree and the out-degree of u should be
less than or equal to v. If we do this, we need to make sure we update vstart or vend if
we contract it into a different vertex.
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Algorithm 1 Converting morphism text representation to a graph
1: procedure PARSEMORPHISMS(representation)
2: i← 0
3: G← empty directed graph
4: for line in representation do
5: vstart ← i ▷ Assigning the start and end vertex of the line
6: vend ← i+1
7: i← i+2
8: for composed morphism in line do
9: ▷ The first morphism in a composition will correspond to the last in a

path ◁
10: vprev← vend
11: for morphism in composed morphism do
12: if morphism has corresponding edge ∈ G then
13: (u,vcurr)← G.get edge(morphism)
14: ▷ We know the current morphism must go into vprev, but if it

already has an edge (v,u) in the graph it must also go from
v to u. Therefore, if u ̸= vprev we contract them into a single
vertex. ◁

15: G.contrect vertices(u,vprev)
16: else
17: vcurr ← i
18: i← i+1
19: G.add edge((vcurr,vprev), morphism)
20: vprev← vcurr
21: G.contract vertices(vprev,vstart)
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3.3 Converting to the Morphism Representation

Just as in Section 3.2.2 we re-frame this problem from a graph-theory point of view.
Recall that we can view an equation as a set of paths, where each path in a list goes
from the same vertex and ends at the same vertex, and our morphism representation is
a set of equations. Then the problem becomes: find a set of sets of paths, where each
edge in the path is only represented by it’s label, such that if we know only that each
path in a set has the same start and end-point, we can recreate the graph.

3.3.1 A Redundant Solution

A good start for solving this would be to find some possible start and endpoints. To
do this, we define the in-degree of a vertex to be the number of edges that end at that
vertex, and the out-degree to be the number of edges that start at the vertex.

If we encounter a vertex v with an out-degree of two or more, we can build at least two
paths with distinct edges from v - the path that starts with the first edge out and the path
that starts with the second edge out. If any two of these paths end at the same vertex
u those paths form an equation. Similarly, every vertex u with an in-degree of two or
more will be the end-vertex of at least two paths that contain edges distinct from one
another.

To find all the paths between two vertices we can use a depth-first search, with the
modification that we only treat a vertex as visited if it is part of the path we are currently
constructing. This avoids creating an infinite loop while letting the same vertex be part
of multiple paths.

To find all equations we can build two sets, Domains and Codomains, by iterating
through all the vertices and adding any vertex with out-degree ≥ 2 to Domains, and any
vertex with in-degree ≥ 2 to Codomains. Next, for each pair (u,v), where u ∈Domains
and v ∈ Codomains, we find every path between (u,v). This will generate all our
equations, but there may be edges that are not part of these paths, for example, any edge
with in-degree zero and out-degree one will not be included.

To account for these, we create a set UnrecordedEdges containing all the edges of the
graph at the beginning of the algorithm. Whenever we use an edge in an equation we
will remove it from UnrecordedEdges. This will identify all these edges, meaning we
just need to pick one and build a path that either starts or ends with an edge not in
UnrecordedEdges, and remove all the edges from the path from UnrecorededEdges.
We keep doing this until UnrecorededEdges is empty.

However, this method produces a lot of redundant information. For example, consider
the following commutative diagram.

6 7

2

0 1 3 4
f

g h
i

k

l

m

j
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The algorithm described would output

S = {h◦g◦ f = j ◦ f ,
i◦h◦g◦ f = i◦ j ◦ f = m◦ l ◦ k,

h◦g = j,
i◦h◦g = i◦ j},

however we only need to know that h◦g = j, and i◦ j ◦ f = m◦ l ◦ k,. Everything else
can be derived from these equations. A set without redundancy would be S = {h◦g =
j, i◦ j ◦ f = m◦ l ◦ k}.

Ideally we want to output a representation with no redundant information. There are
two main approaches considered: trying to find paths; and trying to use a minimal-cycle
basis of the underlying un-directed graph.

3.3.2 Graph Traversal

Finding all the paths between every domain and codomain is overkill. This approach
aims to modify a depth-first search to reduce the number of redundant paths found as
much as possible.

Before we start modifying our depth-first search, we should try and reduce the number
of times we need to run the it. The depth-first search will consider every vertex reachable
from the one it starts at, so we do not need to find codomains. We can just check each
vertex we encounter to see if it is a codomain, and if it is store the current path.

We want to start with a vertex that can reach as many vertices as possible. A vertex
with in-degree 0 will not have any vertices that can reach it, so if our goal is to visit
every vertex we will need to call a depth-first search from each vertex with in-degree 0
at some point. Therefore, for this approach, we expand the definition of a domain in our
graph to be any vertex with out-degree greater than or equal to 2 or in-degree equal to 0.
Similarly we will extend the definition of a codomain to be any vertex with in-degree
greater than or equal to 2 or out-degree equal to 0.

With these expanded definitions, we gather a list of domains and sort the list in ascending
order by the in-degree. When we run a depth-first search we will mark every vertex
we visit. Then we iterate through our list, if the vertex hasn’t been visited we run our
depth-first search from it, if it has we skip to the next domain in the list. Once we have
iterated through the list we should have visited every vertex in the graph, unless the
graph is a cycle. If the graph is a cycle every vertex has an in-degree and out-degree of
one, so a domain won’t be detected.

We do not only go for the vertices with in-degree 0 as a start vertex in case we get a
graph like the following.
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No vertex in this graph has an out-degree or in-degree of 0, but we still need to find the
equation i◦h = g◦ f , with domain D and codomain C.

Algorithm 2 is the pseudocode for our modified recursive depth-first search. MODI-
FIED DFS takes five parameters as input:

• graph: whatever graph we are running the depth-first search on;

• current vertex: the vertex of the depth-first search we are currently on;

• path: list of vertices showing the path from the vertex MODIFIED DFS was
originally called on to the current vertex;

• prev domains: the domains in path, in the order they appear in path (so the
first item will be the first domain in path, the second item the second domain in
path, e.c.t.); and

• prev codomains: the codomains that appear in path.

Note that path is not a normal path, instead of a sequence of edges we store the
sequence of vertices those edges go between. So for example the path A→ B→ C
would be stored as [A, B, C]. When we say “path from A” we mean the portion of
the path that starts at A. In our previous example saying the “path from B” would mean
[B,C].

When we have something of the form path + vertex, such as on lines 17 and 22,
we mean the list produced by adding vertex to the end of path, so [. . ., A] + B =
[. . ., A, B]. Similarly, when we have path1 + path2 we mean the path produced by
adding path2 to the end of path1, for example [. . ., A] + [B, ...] = [. . ., A,
B, . . .].

In a recursive depth-first search, if our function is called on a vertex it is the first time
we will have seen the vertex, so we mark it as visited. We then check to see if it is
a domain or codomain, it is we add it to the relevant collection of previous vertices.
Additionally, if the vertex is a codomain we store the path from each previous domain
in our path to this vertex. We do this since the vertex is a previously unseen codomain
and we do not yet know what domains, if any, form an equation at this codomain. We
do the same for all the codomains. This will be explained later.

Lines 12 to 14 continue like any normal recursive depth-first search. If the adjacent
vertex is un-visited visit it. Where we start differing is in the following lines that deal
with adjacent vertices we have already visited. If we have already visited a vertex it
must have two incoming edges, so it is a codomain. Therefore, we loop through the
domains in our path in reverse order and store the current path from the domain to
the adjacent vertex via the current vertex. If we encounter a domain that already has
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Algorithm 2 Finding equal composed morphisms with minimal redundancy.
1: function MODIFIED DFS(graph, current vertex, path, prev domains,

prev codomains)
2: append current vertex to path
3: mark current vertex as visited from path[0]
4: if current vertex is a codomain then
5: for domain in prev domains do
6: store path from domain
7: for codomain in prev codomains do
8: store path from codomain
9: add current vertex to prev codomains

10: if current vertex is a domain then
11: add current vertex to prev domains
12: for adjacent vertex to current vertex do
13: if adjacent vertex hasn’t been visited then
14: MODIFIED DFS(graph, adjacent vertex, path, prev domains,

prev codomains)
15: else
16: for domain in REVERSE(prev domains) do
17: store path from domain + adjacent vertex
18: if a different path from domain to adjacent vertex is stored then
19: terminate loop
20: for codomain in prev codomains do
21: if there isn’t a path from codomain to adjacent vertex then
22: store path from codomain + adjacent vertex
23: for future path from adjacent vertex to future codomain do
24: for prev codomain in prev codomains do
25: if there isn’t a path from prev codomain to future codomain

then
26: store path from prev codomain + future path
27: if adjacent vertex not visited from path[0] then
28: for domain in prev domains do
29: store path from domain + future path
30: if there exists path from domain to future codomain then
31: terminate loop
32: mark future codomain as visited from path[0]
33: mark adjacent vertex as visited from path[0]
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a path we can form an equation from the two paths, so we store the path, then stop.
If we continued, every path added would be redundant. As an example, consider the
following graph.

0

3 1

2

f

h

i
g

We will run the modified depth-first search from 0, and assume when given a choice the
depth-first search will travel to the smallest vertex first. We go from 0 to 1, then from
1 to 2. When we reach 2 the path will be [0, 1, 2], and prev domains will be [0,
1]. Therefore, we will store that there is a path from 1 to 2: [1, 2], and that there is
a path from 0 to 2: [0, 1, 2]. We then go back up to 1, then down to 3. From 3 we
see the only adjacent vertex is 2, but 2 has been visited, so we start working through
prev domains (which has not changed from when we were in 2) in reverse. The first
domain will be 1, so we store the new path from 1 to 2: [1, 3, 2]. We already have
a path from 1 to 2: [1, 2], so storing [1, 3, 2] can be thought of as saying [1, 3,
2] = [1, 2]. Now, consider what would happen if we did not stop, and added the path
from 0 to 2, which would be [0, 1, 3, 2]. We already have the path [0, 1, 2],
and we know that [1, 2] = [1, 3, 2], which implies that [0, 1, 2] = [0, 1, 3,
2]. Therefore storing [0, 1, 3, 2] is redundant. We know it exists from the already
stored paths.

This works because we keep a vertex marked as visited between runs of our modified
depth-first search, and do not visit vertices twice. We only add vertices to prev domains
if we visit that vertex, so we know that if a vertex is in prev domains it was visited this
run. This means that if there is already a path between a domain from prev domains
and an already visited adjacent vertex, that path must be equivalent to our path for a
certain number of vertices and then splits into a different path at some domain vertex.
Since prev domains stores the domains in the order they are encountered in and we
work through prev domains in reverse, the first time we see a path from a previous
domain to our adjacent vertex this must be the vertex at which the split in the path
happens. Therefore, for every domain in the reversed prev domains after this “split
domain” we will have a path to the adjacent vertex that we found the first time we
visited the adjacent vertex. Furthermore, the path we could store if we did not stop
iterating at the split domain would be implied by the existing path and the paths from
the split domain to the adjacent vertex, so they would be redundant and thus we do not
store them.

This is a similar reason to why we only call our modified depth-first search from un-
visited vertices, since it is a depth-first search if we call it from a vertex we have seen
before it will just visit the exact same vertices it did the previous time. However, if it is
a new run of the modified depth-first search the path and previous domains/codomains
will be different. We don’t want to find paths we have already found before, but if we
don’t save any information about the vertices reachable from the codomains we will
miss out on some paths. For example, consider the following graph.
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If we start our modified depth-first search at 0, and don’t store codomains, when we go
for our next run starting at 1 we will try to go to 2, see that it is visited, and only store
the path [1, 2] as we will have no way of knowing that we could have reached 4 via 2.
This means we will not find the equation g◦ j = i. The loops on lines 7 and 20 store
which codomains are reachable from other codomains, and a single path to each. The
loop on line 23 uses these paths to simulate our modified depth-first search.

To understand these lines, we will go through a slightly more complicated example. The
following is the example commutative diagram from Figure 1.1, with a vertex removed.

0 3 5

2 4

1

h

i

j

k

l

m

n

p

Like in our last example, we will start from 0 and assume whenever given a choice we
go for the lower number. From 0 we go to 2, which is both a domain and a codomain,
so we store the path from 0. Then we go down to 1, which is just a codomain, so we
store the path from 2, then from 0. There is nowhere to go from 1, so we go back up
to 2 then along to 4. As 4 is also just a codomain, we store the path to it from 2 and
0. Then we can only go to 1, which has been visited, so we store the path [2, 4, 1]
from previous domain 2 to 1. We already have a path from 2 to 1: [2, 1], so we stop
cycling through our previous domains. For previous codomains, we store the path from
4 to 1, but again we have an existing path from 2 to 1 so do not bother storing a new one.
Now we go all the way back up our graph to 0, then along to 3. As 3 is a codomain, we
store the path from 0, then the only place we can go is 2, which is already visited, so we
store the path [0, 3, 2]. Now, we also need to update our codomains, the only one is
3, and it can directly reach 2 along k, so we store that path. Then, via 2 it can also reach
4 along l and 1 along i, so we store both those paths as well. Now, we go back to 0 and
we are done with this run of the modified depth-first search. Throughout this whole run
we have been marking each vertex visited as visited from path[0], which was always
0. More generally, path[0] is the first vertex in the path, which will always be the
vertex the modified depth-first search was called from, so we can use it as a unique id
for each run since we will not call a depth-first search from that vertex again.

Back to our example, the domain 5 has not been visited yet, so we call a second depth-
first search from it. It’s first move will be to try and go to 3, but 3 has been visited. As
3 is a codomain we store the path from 5 to 3. However, 3 hasn’t been visited from
5 before, so we store a path from our only previous domain, 5, to every codomain
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reachable from 3. Namely 2: with path [5, 3, 2]; 4: [5, 3, 2, 4]; and 1: [5, 3,
2, 1]. We also mark 2, 4, 3, and 1 as visited from 5. Now we move to the next adjacent
vertex, 4, which is marked as visited from 5. Therefore we store the path from 5 to 4:
[5, 4]. This successfully finds the equation l ◦ k ◦n = p.

After we finish our modified depth-first search runs, we will be left with pairs of
(domain, codomain)s with either one or multiple paths between them, and single paths
between codomains. We can discard any path solely between codomains. For any pair
of domain and codomain with more than one path between them, we convert the paths
into equations of composed morphisms and add them to our text representation. For
(domain, codomain) pairs with only a single path between them we need to be careful.
In graphs like the following:

4

0 1 2 3
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f h

i
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g

the only (domain, codomain) pair with a single path between them is (0, 3), with
possible paths corresponding to h ◦ g ◦ f , h ◦ j ◦ i, and l ◦ k ◦ f . The equations stored
will have been j ◦ i = g ◦ f and l ◦ k = h ◦ g. Note that we have g ◦ f and h ◦ g in the
equations, so we can combine them to get h◦g◦ f , one of our paths. Once we have this
path we can then use the equations to create the other paths, so including this single
path would be redundant. However, if we slide the bottom triangle along a vertex, so it
no longer has an edge in common with the top triangle, we get the following graph:
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From this we would create the equations j ◦ i = g ◦ f , and l ◦ k = h ◦m. From these
equations there is no way of knowing we can compose j and m or k, or similarly if we
can compose g with m or k. However, we will still have a (domain, codomain) pair with
a single path: (0, 3), which corresponds to either h◦m◦h◦ f , l ◦ k ◦g◦ f , h◦m◦ j ◦ i,
or l ◦ k ◦ j ◦ i. Each of these possible paths would tells us that we could compose j or g
with m or k, so it is not redundant.

To deal with this, after generating our paths with Algorithm 2 we go through each pair
of (domain, codomain) which have more than 2 paths between them, convert them into
equations, and store them, with the added step that whenever we query an edge for the
morphism it represents we add (domain, codomain) to a set associated with that edge.
As each (domain, codomain) pair will correspond to a line of our representation, this
works as a unique id for each line and as an id for each composed morphism in a line.

Then for each pair (domain, codomain) with only one path, we go through each pair of
adjacent edges (edge1,edge2) in the path. We are check the intersection of the two sets
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of line ids for each edge. If the intersection is non-empty that composition is already
recorded in our representation, but if it is empty the fact the two morphisms these edges
represent can be composed is not recorded. If this was not true for the previous pair of
edges, i.e. the pair of edges where edge1 was edge2 had a non-empty set intersection,
then we create a new composed morphism from the two morphisms represented by
our edges, and add the current (domain, codomain) to the sets for each edge. Doing
this stops duplication. If the previous pair of edges also had an empty intersection, we
just add the morphism for edge2 to the composed morphism for that pair of edges, and
update the relevant set. We keep doing this until we encounter a pair of morphisms with
a non-empty set intersection or the end of the path, at which point we will store our
composed morphism as it’s own line in the text representation.

This will store all the compositions lost between equations, but because we expanded
the definition of domain and codomain in our graph, every edge should now be part
of a path (unless the diagram is just a series of disconnected cycles). Any edge that
does not appear in an equation will have an empty set associated with it, so trivially the
intersection of the sets in any pair involving that edge will be empty, so this also deals
with the stragglers not involved in any equation.

3.3.3 Minimal-Cycle Basis

This approach attempts to construct a minimal set of equations in the graph using a
minimal-cycle basis of the underlying graph.

The cycle space of a non-directed graph is the set of all cycles in the non-directed graph.
If we take two non-directed cycles which share an edge, we can create a new cycle by
joining the cycles together and removing the shared edges. This is known as taking the
symmetric difference of the cycles.

Definition 6. A cycle basis of an un-directed graph is a minimal set of cycles such that
any cycle in the graph’s cycle space can be created by taking the symmetric difference
of a number of cycles from the cycle basis.

A graph can have many different cycle bases, so in order to reason about whatever basis
our algorithm produces, we need a way to somewhat control what basis gets produced.

If we have a weighted non-directed graph, where each edge contains some numeric
value, then we can assign the weight of a cycle to be the sum of all the weights of the
edges in the cycle. The minimal-cycle basis is then the cycle basis where the sum of the
weights of each cycle in the basis is minimised.

Any directed graph will have an underlying non-directed graph, formed by ignoring
the fact the directed graph is directed and treating each edge as two-way. Looking at a
graph representing a single equation, say f ◦g = h, we see that the underlying graph is
a cycle.

This means every equation is a cycle in the underlying graph, so if we can store a
cycle-basis of the underlying graph we will have all our equations represented with no
redundancy.
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Figure 3.4: The directed graph representing f ◦g = h and its underlying graph.

The minimal cycle basis of a weighted un-directed graph with m edges, n vertices, and
integer weights, can be calculated in O(m2n) time [21]. Therefore, we just need to
ensure that we can encode whatever cycle basis we find.

Adding the edge directions back into a cycle from the underlying graph and counting
the out-degree of the vertices based solely on the edges in the cycle will let us classify
each cycle in the cycle basis:

1. cycles with no domains (vertices with out-degree strictly greater than one) are
directed-cycles;

2. cycles with one domain are equation-cycles; and

3. cycles with multiple domains are unrepresentable-cycles.

We can represent directed-cycles and equation-cycles as a line of the morphism repres-
entation, but we cannot do the same for unrepresentable-cycles. Therefore, to encode
our cycle basis, we need every edge of the cycle-space to be contained in a directed-cycle
or an equation-cycle. With this in mind, we can now try and find such a cycle-space.

As a starting point we can assign each edge of our underlying graph weight one,
which will produce a cycle basis with cycles as small as possible. The major problem
here is that some of these cycles may be unrepresentable-cycles. If we could reverse
the direction of some edges in our graph, this would not be a problem, as we could
convert all of the unrepresentable-cycles into equation-cycles. However, swapping edge
direction corresponds to inverting a morphism, and we cannot assume that a morphism
has an inverse.

One way to overcome this problem could be to find all the equation-cycles that can be
created by the symmetric difference of two or more unrepresentable-cycles. However,
this requires checking every possible combination, and in some cases the number of
possible combinations could be massive.

Another approach could be to discourage a cycle basis from using an unrepresentable-
cycle by increasing the weights along each edge. We could find a cycle basis, and
then classify each cycle in that basis. If the cycle is an unrepresentable-cycle then
we increase each edge weight in the cycle by one. If the cycle is not representable
then we record each edge in the cycle. If every edge in the cycle basis is contained in
some directed-cycle or equation-cycle we can safely halt. However, there are directed
graphs where every edge in the cycle basis can not be represented by a directed or



Chapter 3. Design 22

equation-cycle, such as the following.
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To deal with these cases, we could either give up on finding a cycle basis after a
number of iterations or restrict the cycle space to the edges that are part of a directed or
equation-cycle.

To restrict the cycle space, we could use Johnson’s algorithm [20] to find all the
elementary cycles (cycles where no vertex appears twice) in a graph with m edges, n
vertices, and c elementary cycles in O((n+e)(c+1)) time. We then classify each cycle,
and make a subgraph of all the edges that appear in some directed or equation-cycle.
However, for a graph that can be drawn on a piece of paper with no edges crossing
(known as a planar graph) with n vertices, the number of elementary cycles is bound
above by 2.8927n [5]. This number will be higher for non-planar graphs. This means
the time taken to find and iterate through all elementary cycles will be exponential in
the worst case.

Additionally, even if we have a good way of finding a cycle basis, the cycle basis won’t
contain all the information we need. Consider the following diagram:

• •

•

• •

f

g

h

i

j

k

The minimal cycle basis would correspond to the equations g ◦ f = h and j ◦ i = k,
but from this we have no way of knowing that f and j, or similarly g and i, can be
composed. We would have to check every vertex in our cycle after recording it to verify
that we are not missing composition information.



Chapter 4

Implementation

4.1 Language and Libraries

This project is implemented in Python 3.10, for no reason other than familiarity. The
only non-standard library directly used in this project is NetworkX [17], which im-
plements the graph data structure. Specifically, we use the DiGraph class, which
implements a directed graph with only a single edge allowed for each pair of vertices.
NetworkX also depends on NumPy [18] for some graph layout algorithms, but NumPy
is not directly used in this project. We use version 3.2.1 of NetworkX and 1.26.4 of
NumPy.

Another Python graph library considered was igraph [8]. Both libraries are open source
and well documented; the most significant difference is that igraph is an interface for
a C library with the same name, whereas NetworkX is implemented in Python. The
main advantage igraph has over NetworkX is that igraph is significantly faster on larger
graphs than NetworkX [23]. On the other hand, since NetworkX is Python-based, which
is more familiar, the source code will be easier for me to understand. Also, NetworkX
has subjectively nicer documentation.

NetworkX graphs allow us to store both strings and integers as vertices1. We can also
store information inside of vertices and edges, essentially treating them as dictionaries.
These bits of stored information are called attributes, and we make heavy use of them in
implementation. The only attribute used across all classes is the “label” attribute, which
in vertices stores the label associated with the object represented by the vertex, and in
edges stores the morphism that the edge is representing.

4.2 Classes

The project has three classes: Converter, MorphismParser, and DiagramParser.

DiagramParser and MorphismParser are sub-classes of Converter, and parse the
text representations of commutative diagrams and morphism equations, as described

1NetworkX uses “node” instead of “vertex”.

23
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in Chapter 3, respectively. They do this by taking a file-path pointing to a text file
containing the representation as input on initialisation.

DiagramParser and MorphismParser both take file-paths as input instead of the raw
string mainly because of how much both representations, but especially the diagram
representation, rely on having multiple lines. If we want to write something with
multiple lines we are going to want to use a text-editor, which will give us a text file to
read from anyway, so we might as well use it.

Converter mostly contains methods that convert the directed graph into our text repres-
entations, or TikZ code used to generate a graph.

Structuring our classes in this way lets both representation parsers convert into both
kinds of representation. Being able to convert back into the representation that was just
parsed is helpful for testing and evaluation, as we can get a second parser to parse the
output and check if the graph produced is equivalent in terms of edges and edge labels.

4.2.1 DiagramParser and MorphismParser

Both classes will raise a file not found error if the file-path does not point to a file.

4.2.1.1 Text Parsing

Both DiagramParser and MorphismParser do text-parsing in largely the same way,
only really differing in what happens to the text afterwards and what form the text
takes. The parsers will go through the text-representation line by line, character by
character. In general, any character other than “{” or “%” will be ignored, except for
“=” in MorphismParser and an “L” at the beginning of a line in DiagramParser. Both
parsers treat “%” as a new-line token, allowing us to add comments to a line. This
notation is borrowed from LATEX. In the test files comments are mostly used to store
links to visualisations of the diagram that file is storing.

Ignoring characters does mean errors in the representations will be hard to debug. Error
messages or warnings for unexpected characters were considered, but given low priority
for implementation.

Whenever “{” is encountered in a line, we use the method extract_label(line: str,
start_pos: int), which is implemented in Converter, to extract objects/morphisms
from the text. line is a line of text, start_pos is the position of the first character in
line after an open brace. The method will return all the text between and including
the open brace and its matching closed brace, and the position of said closed brace.
This method is used to extract objects and morphisms from our text representations.
Returning the position lets whichever parser is using it skip to the end of the closed
brace.

The closed brace being the matching pair and not just the first closed brace encountered
is important. We will want the option of displaying whatever is inside the braces in
a LATEX environment, which means we should expect the string inside the braces to
contain multiple open and closed brace pairs.
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Additionally, this method returns the entire string with no whitespace removal or any
other modifications, meaning each occurrence of an object/morphism needs to be exactly
equal to every other occurrence in the representation for the parser to realise they are the
same. This is inconvenient when writing a large representation with complex morphism
names. However, it does allow for the same morphism/object to appear twice in a TikZ
diagram by adding whitespace to differentiate between the two occurrences. Doing
so will cause the same symbols to render in TikZ, but the morphisms/objects will be
treated as distinct by the code.

4.2.1.2 DiagramParser

DiagramParser largely follows the design described in Section 3.2.1. The graph
produced will have string vertices containing the parsed string for each object. If an
object has a label assigned this will be stored in the label attribute, otherwise the object
string will also be stored in the label attribute. For example, the text

L{B}{A}
{f}{A}{B}

will produce a DiGraph with two vertices: a vertex “{A}” with label attribute “{A}”,
and a vertex “{B}” with label attribute “{A}”; and an edge ({A}, {B}) with label attribute
“{f}”.

The parsing of label lines differs from normal. Label lines must be written exactly in
the form

L{ob ject}{label}

with no extra characters in between “L” and “{”, or “}” and “{”. Once label has been
parsed DiagramParser will assume the line is over, and directly move onto the next
line. DiagramParser will raise an Exception if it detects an unexpected character.

The labels section is parsed differently as an experiment in more strict parsing and how
Exceptions could be used. However, there did not seem to be much benefit in changing
either method of text-parsing, so they were left different.

DiagramParser will also output exceptions if it detects empty braces, i.e. “{}”, and if
it doesn’t find a morphism, domain, and codomain in a line of the diagram section.

4.2.1.3 MorphismParser

MorphismParser mostly follows the design described in Section 3.2.2. The main dif-
ference is that Section 3.2.2 says we break each line into a list of composed morphisms,
then break each composed morphism down into a list of morphisms. It says this because
thinking about each line that way makes the algorithm easier to describe, but we do not
actually need to do this step in practice. We can just scan through the line, whenever we
encounter a “{” we have just found a new morphism and whenever we encounter an
“=” we have found the end of the current composed morphism, or the end of the “list of
morphisms”.
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MorphismParser will produce a graph where each vertex is an integer with label
attribute {$\\bullet$}, which renders as • in LATEX. Edges, as usual, store whatever
morphism they represent in the label attribute.

To keep track of what edge is representing which morphism, MorphismParser has
three dictionaries: morphs, which takes a morphism as key and gives the repres-
enting edge as a value; morphs_by_domain, which takes a vertex as a key and re-
turns a list of the morphisms that the edges that exit the vertex represent; similarly,
morphs_by_codomain takes a vertex as key and returns the list of morphisms with that
vertex as a codomain (i.e. whose representing edges go into the vertex). morphs is
used in place of G.get edge(morphism) from Algorithm 1. morphs_by_domain and
morphs_by_codomain are used to update morph when contracting vertices. When
contracting vertices we use the more optimal approach to contraction mentioned at the
end of Section 3.2.2.

4.2.2 Converter

As mentioned, this class mostly contains methods to convert the directed graph into
a text-representation, but also contains a method to produce TikZ code to display the
graph.

Converter has two fields,

• graph: a NetworkX DiGraph representing a commutative diagram;

• comp_morph_paths: paths from a graph domain to a graph codomain. It is a
dictionary that takes a domain vertex as a key, and returns another dictionary
that takes a codomain vertex as key, which finally returns the list of paths found
between the original domain and the codomain.

The field comp_morph_paths being a dictionary of dictionaries is a hold-over from a
method where I would search through all the paths from a domain, so it was beneficial
to have only the domain as a key. It could be re-worked to take the tuple (domain,
codomain) as a key, but there is very little cost in readability for this method, only space
taken, therefore it was decided the refactor was not worth the time it would take. For
the use of comp_morph_paths see Section 4.2.2.3.

4.2.2.1 To the Diagram Representation

Implemented as described in 3.2.1. We start with an empty list for the label section,
an empty list for the diagram section, and an empty set of vertices. Then we iterate
through each edge (u,v) in the graph. We extract the label from the label attribute, and
the vertices from the edge, and add the relevant string to the diagram list. Then we
check both vertices to see if they are in our set, and if a vertex is not we check the
vertex’s label. If the label does not match the vertex, we add the relevant string to the
label array. The vertices are then added to the vertex set, and we continue.

Once all edges are iterated through, add the diagram list to the label list and use
Python’s built-in join function to convert the new list into a string, where each element
is separated by a \n. This string is our diagram representation, so we return it.
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4.2.2.2 To TikZ

This is done by the to_tikz_diagram function, that takes a single parameter scale.
NetworkX has implemented the function to_latex_raw [13] that creates a represent-
ation of our graph in TikZ. For parameters, we use defaults except for edge label,
node_label, default_edge_options, and pos. We assign to parameters edge label
and node_label the string "label", which tells the function to use the label attribute
of our vertices and edges to name the vertices and edges of the TikZ graph. The para-
meter default_edge_options is set to "[->, auto]", and tells TikZ to draw edges
as arrows, and to automatically try and position edge labels so that they are readable.
Finally, pos sets the position of each vertex in the resulting diagram. For this parameter,
we pass in a dictionary generated by another NetworkX function, spring_layout [12].

The function spring_layout implements the Fruchterman-Reingold force-directed
algorithm [15]. The basic idea behind this algorithm is that each vertex emits a force
that repels every other vertex, but each edge also applies a force attracting the two
vertices it connects together. This spreads the vertices out on the graph, but also means
connected vertices should stay closer together than unconnected vertices. By default the
algorithm positions all the nodes randomly, then simulates these forces until the node
positions are close to stable. However, we can supply initial start positions, and this
algorithm does not guarantee edges crossings will not occur.

Therefore, we use NetworkX’s is_planar [10] function, which is based off Brandes’
Left-Right planarity test [2]. If the algorithm is planar, we make use of NetworkX’s
planar_layout [11] function to create a planar layout of the graph using Chrobak
and Paynes linear-time algorithm for drawing a planar graph on a grid [6]. We feed
the resulting positions in as the start positions for spring_layout to try an ensure no
edge-crossings. If the graph is not planar, we just use the spring algorithm. This is where
the scale parameter that to_tikz_diagram takes comes into play. spring_layout
also has a scale parameter, which we feed to_tikz_diagram’s scale parameter. We
do this because by default spring_layout clusters the vertices too close together, the
scale parameter spreads them out.

4.2.2.3 To Morphism Representation

We implement the graph traversal method described in Section 3.3.2 in the function
to_morphism_representation, which takes no parameters.

A step not mentioned in Section 3.3.2 is that we reverse the graph, so that all the edges
in the path will be in the same order as the relevant morphisms in the corresponding
composed morphism. This was done entirely to avoid having to deal with reversing
paths. The morphism representation is a set of strings called rep.

The function __search_for_comp_morphs is our implementation of Algorithm 2.2 It
has parameters

2The double underscore at the beginning of a function name is the closest thing Python has to a private
method keyword.
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• graph: a NetworX DiGraph, assumed to the reversed of the graph representing
the commutative diagram we are converting;

• curr_node: the vertex of the graph we are calling the search from;

• path: the list of vertex we visited on the way to curr_node from the vertex we
initially called the function from, in order of appearance;

• prev_domains: a list of tuples of the form (domain vertex, domain position),
that containing all the graph domains we have seen in path, and their position in
path, in the order that they appear in path;

• prev_codomains: similar to prev_codomains, a set of tuples of the form (codo-
main vertex, codomain position) that contains all the graph codomains seen in
path and their position.

We store paths from domains to codomains in the field comp_morph_paths. We store
paths from codomains to codomains by creating an attribute containing a dictionary
with key (codomain 1, codomain 2) which returns a path from codomain 1 to codomain
2 in each codomain vertex. The attribute is called codomain_children. To check if a
path exists between two objects, we can check if an entry for it exists in the relevant
dictionary.

To mark each vertex as visited we create another attribute called visited that contains
a set of vertices. We create this attribute the first time we visit a vertex, and to store that
the vertex is visited from path[0] we just add path[0] to the set. This way we can
tell if a vertex has ever been visited by if it has the visited attribute, then we can tell
where the vertex is visited from by checking the set.

As previous domains and codomains are always stored with their position in the path,
we can use these and Python list slicing to get the path from a domain/codomain. We
can iterate through lists in reverse with the inbuilt function reverse(list).
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Evaluation and Discussions

5.1 Going To and From the Diagram Representations

Since the text representation is so close to the graph already, there isn’t much to evaluate.
When converting to a graph we only have to iterate through each line once. At each
line we either add a vertex or an edge to the graph. NetworkX uses dictionaries to
store nodes and adjacency information [7]1 which have on average constant time to
add elements, so the time complexity of our algorithm should be O(l), where l is the
number of lines.

Similarly, the worst case for converting to the diagram text representation will be a
graph where every vertex has a label, since we need to create a line for every vertex and
for every label. Thus the worst case for algorithm will have time complexity O(v+ e),
where v is the number of vertices and e is the number of edges in the graph.

However, while the diagram text representation is easy for the computer to parse,
there is a reason the test files contain links to the visualisations of the graphs: the
text-representation is not easy for humans to parse. This is why we have the TikZ
converter, but even that can suffer from a poor object placement. Consider for example
the diagram from the introduction:

• • •

• • •

•

f

g

h

i

j

k
l

m

n

p

Figure 5.1 shows the output of to_tikz_diagram. It’s not clear which edge many
of the labels belong to, and it is oriented at an awkward angle. A better solution for
visualising could have been to make an application that directly output a visualisation

1Also from inspecting source code.
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of the diagram that the user could interact with from the morphisms, removing the need
for a text-representation at all.

If implementing the current project goals took less time implementing something
like this would have been considered, but designing and implementing the graph to
morphism conversion took much longer than expected. Building a visual interface from
the start was not considered do to a lack of experience in building anything remotely
similar to what would be needed. Therefore, the more interesting and novel challenge
of figuring out the conversions were prioritised. There are also existing tools to draw
commutative diagrams, there are none to extract morphism equations from them.

•

•

•

•

•

•

•

g

k

i

l

j

f h

m

n

p

Figure 5.1: The generated TikZ representation of Figure 1.1.

Originally the plan was to experiment with Graphviz [14] layout algorithms, especially
dot’s algorithm [16]. However, due to a problem with Big Sur’s command line tools the
required libraries could not be installed. Therefore it was decided to priorities working
on implementing new code rather than getting third-party code to function.

5.2 To and From Morphism Representation

5.2.1 From Morphism Representation

Similar to the approach for parsing the diagram representation, the morphism rep-
resentation only scans through the representation once. While iterating through the
morphisms the most costly procedure we do is contraction, but we minimise the cost
of this procedure as much as possible. Loosely, the worst cost would be updating half
of the existing morphisms, so the algorithm will be bounded by O(m2) where m is the
number of morphisms in the representation. In practice it should be lower however,
since we shouldn’t ever update m edges.
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5.2.2 To Morphism Representation

In hindsight, prev_codomains and prev_domains should have been one list. Once
we reach a domain with a path to a codomain C, every domain and codomain further
back in the path will already have a path to C, so we can stop checking both domains
and codomains there. Additionally, while we make use of recursion to pass information
into a function, we don’t make use of the fact we can also pass information out of our
recursive call. Instead we iterate over the vertices in our path when the algorithm is
already going to revisit those vertices, we should be passing information along to be
used then. Both these flaws are relics of previous iterations of the design, which due to
a lack of time couldn’t be reworked once the ideas of the design were fully formed.

Evaluating if an unseen graph contains redundancy automatically is hard, as if method to
detect redundancy exists it can be used to remove it. Therefore, to evaluate redundancy
the implementation was tested on both the graphs in Appendix A and the reverse of
the graphs in Appendix A. These tests work by converting each graph to its morphism
representation, then feeding that representation to a MorphismParser. If the graphs
had the same shape, then the test passed. Redundancy was then manually checked for.
This method had the double benefit of also further testing MorphismParser.

A way redundancy can slip in has been identified in the reverse of Figure 1.1. For
reference:

0 4 6

1 3 5

2

f

g

h

i

j

k

l

m

n

p

The equations found are:

f ◦g = h◦ i,
h = j ◦ k,
i = l ◦m,

n◦ k ◦ l = p,
k ◦ i,
h◦ l.

The two single composed morphisms, k ◦ i and h◦ l, are redundant, we could figure out
h◦ l from h = j ◦ k, which tells us j ◦ k is possible, and n◦ k ◦ l, which tells us k can be
composed with l, so we can form k ◦ l, then j ◦ k ◦ l = h◦ l. We can use similar logic to
figure out k ◦ i from n◦ k ◦ l and i = l ◦m.

A possible way to prune this redundancy is: when we get an empty intersection to
then form a second set that is the union of all the incoming edge’s line-id sets. If
the intersection of this set and the second edge’s set is still empty, then we create our
composed morphism. Although a graph that produces a redundant equation may exist,
one has not yet been found.
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The method of converting to morphism equations then parsing those equations and
comparing graphs doesn’t work for unseen graphs, as not all diagrams can be re-created
solely using equations. Consider for example:

•

• • •

•

f

h
g

i

j
k

The only equations we can extract from this diagram are: j ◦ i = k and g◦h = f , neither
of which tell us that k, i, h, or f share a domain. We would need typing information to
be able to reconstruct this commutative diagram.



Chapter 6

Conclusions

We have managed to design and implement an algorithm that can take a set of composed
morphism equations and produce a commutative diagram. We have also managed to
design and implement an algorithm that takes a commutative diagram and produces
a set of equations, and additionally the algorithm largely manages to avoid including
redundant information in the produced set of equations.

We also can produce a visualisation of our commutative diagram, although the layout
could still be improved.

The most challenging section of this project was designing and implementing our graph
to composed morphism equations algorithm, as there was little existing work found to
build off. A variety of approaches were researched and considered, and we settled on
modifying a depth-first search algorithm.

For future work, a front-end that directly builds a graphical commutative diagram would
greatly improve the usability of this project. Additionally, further work can be done
to refine the graph to morphism equation algorithm by taking full advantage of its
recursive nature, further removing the redundant information that still gets output, and
showing it’s time complexity.
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Appendix A

Testing Graphs

The following graphs and the reverse of the graphs were used to evaluate the conversion
to morphism-equations and back.
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Limit:
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Introduction Figure: Needs to have two runs of the modified depth first search.
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Big Cycle Triangles: The goal with this graph is to try and get the depth-first search to
go to deep.
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Bulky Diamond: Largely a trap for the cycle-basis approach, but also reveals the need
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for codomain→ codomain paths:
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Bulkier Diamond: Seeing if making it bigger causes problems.
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Three Branches: Most previous graphs only have two out-edges that cause an equation
to arise, so testing that our methods work when vertices have more edges.
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Figure of Eight: Needs the single-branch path to tell us about composition.
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