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Abstract
Species Distribution Modelling (SDM) is crucial for conservation efforts, but traditional
methods rely on expert knowledge or presence-absence data, which can be expensive
and limited. This study investigates the effectiveness of deep learning architectures for
building range maps using citizen science data with presence-only information. We
explore two deep learning models: a single-species model and a multi-species model
that considers interactions between coexisting species. Our analysis focuses on the
impact of different pseudo-absence generation techniques, a method for estimating
non-observations, on model performance. We demonstrate that deep learning models
can achieve accurate range maps using presence-only data, with the choice of pseudo-
absence generation technique playing a significant role. Our findings suggest that
random sampling is most effective for single-species models, while a hybrid approach
combining random and target-group sampling benefits multi-species models. This
research contributes to the development of cost-effective and data-driven approaches
for SDM using readily available citizen science data.
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Chapter 1

Introduction

“We are at a unique stage in our history. Never before have we had such an
awareness of what we are doing to the planet, and never before have we had
the power to do something about that.”

David Attenborough

1.1 Motivation

Species Distribution Modelling (SDM) is an important facet of environmental science.
Range maps—the geographical spread of a species—often underpin policy decisions
[47, 100], and without informed models, expert knowledge is required to produce
them. There are problems with an expert-based approach for map generation: it is
expensive, as experts must measure presence and absence of a given species over an
area of interest; it is hard to maintain, as species can migrate over time or are displaced
by effects of climate change [34, 14]; and it is not complete, as maps do not exist for
many species which may be of interest. In addition, data is often species-specific and
much is closed-source; when data is made available for other purposes it is frequently
outdated and of limited utility [16].

Computational models are a good alternative to manually producing range maps; they
can be crafted to produce maps at low cost in a potentially generalised manner [105].
Some models consider temporal aspects, such as migratory seasonal patterns or long
term trends across time [37, 10], while others focus on abundance [56]—the number
of a species present in a location—or ecological niches—the role and interaction of a
species with its environment [76]. Many are single species only, and do not consider
interactions of different species cohabiting the same environmental space [62, 45].
Where ecosystems are diverse, this singular approach can result in poor range maps
[93]— particularly when high precision is important, such as modelling presence within
one habitat (e.g., a forest).

Citizen-science sites such as iNaturalist [5], which records “encounter[s] with an
individual organism at a particular time and location,” have contributed to a global
increase of available presence-only data—data documenting observation of a species
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Chapter 1. Introduction 2

[33]. This lacks explicit non-observation information, which presence-absence data
includes, but avoids the need for comprehensive, expensive studies across a region—
which presence-absence requires [38]. However, presence-only data often relies on
pseudo-absence sampling, a method of data generation, to estimate absences. These
methods vary in implementation and can significantly affect model performance [13].
Presence-absence data does not require pseudo-absence sampling, but the increased
data-collection requirements render it more scarce.

1.2 Project Goals and Contributions

In this study we seek to determine effective practices and architectures to produce
range maps using data-driven techniques. Specifically, we investigate whether there are
underlying trends in presence-only distributional data which can be well generalised by
deep learning, and further by joint-species learning, and the effect of pseudo-absence
techniques on model performance.

We first investigate a “shallow” statistical learning technique using random forests on
presence-only data from iNaturalist, which provides us with a valuable baseline to
compare to our deep models.

We then create a deep neural-network architecture which models single-species at train
and test time. We conduct analysis into the best performing architecture, considering
standard machine learning implementations with the inclusion of specific domain
knowledge (e.g., spatial bias alignment, global land distribution).

We further extend our architecture to handle a multi-species scenario, where we consider
the impact of considering many species at once. This multi-label approach considers
species interactions not present many single-species models and in many cases outper-
forms such models. The adaptation requires few new assumptions but is computationally
more expensive to train and requires greater architecture engineering to avoid common
machine learning pitfalls such as vanishing gradient or overfitting.

Finally, to assess the impact of pseudo-absence selection strategies, we evaluate the
performance of two common techniques—random sampling and target-group sampling—
and a combined approach, on both model architectures.

1.3 Dissertation Structure

This dissertation comprises of six main chapters.

Chapter 2 provides the relevant background for understanding the context of this
project by exploring historical data-driven approaches and the migration to current
state-of-the-art, deep models. It also provides an overview of the presence-absence
problem arising from the use of such models.

Chapter 3 introduces both our training and evaluation datasets, detailing dataset statis-
tics, advantages, and disadvantages of each.
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Chapter 4 describes the design and the implementation of the application, introducing
two main models and methods of evaluation.

Chapter 5 describes the design of the experimental methods together with an analysis of
the results from each experiment. Additionally, both model architectures are compared
and suggestions for use are described.

Chapter 6 concludes the report, explaining how the aims of the project were achieved
and providing recommendations for future work.



Chapter 2

Background

2.1 Species Distribution Modelling

Species Distribution Modelling (SDM) is a field of statistics which uses computer
algorithms to analyze data on known plant or wildlife information [40]. By considering
species’ relationship with the environment, SDM can estimate their distribution across
space, which can be used to predict habitat suitability [43] and identify areas of potential
conservation concern [37]. We focus specifically on the task of spatial estimation, not
including periodic (seasonal) or long-term variation (migratory patterns) [19]. We
will first discuss the rise and success of machine learning in this task, followed by the
challenge of generating absence data from datasets containing only presence records.

2.2 Machine Learning in SDM

2.2.1 History

Traditional SDM relies on large-scale surveys to determine presence or absence of a
species. These surveys are time-consuming, expensive, and result in data often kept
local to the institution who has carried these surveys out [17]. Furthermore, these
closed-source practices can lead to outdated information. Surveys often focus on
one species at a time [62, 45] which limits understanding of ecological communities
species interactions. Additionally, the lack of open-source culture contributes hinders
reproducability of studies, which can undermine confidence in their results due to lack
of peer-reviewing opportunities [61].

More recently, there has been a shift in data-sharing attitudes within the ecological
community [17]. However, this growing access has introduced a scalability challenge:
analysis of such datasets is difficult, as it is typically rich but unclean. Data from
environmental systems, for example bat observation systems, can be complex and
require significant processing. It must be categorised, isolated from background noise,
and distinguished from other wildlife sounds, which is intractable by manual processes
[63]. These limitations highlight the need for more efficient advanced data processing
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Chapter 2. Background 5

methods to effectively analyse the large amounts of data collected by modern SDM
approaches.

2.2.2 Rise of Machine Learning

It is partially due to these factors that Machine Learning (ML) models have become
increasingly utilised in SDM. ML is effective at handling large-scale data and can
automatically analyse unclean data at large scales [67]. This is particularly appropriate
for SDM, where inherent complexities can be contained in animal competition or in
the dynamics of depletable resources [42]. In addition, ML methods can effectively
learn complex distributions from data itself obviating the need for bottom-up statistical
approaches mentioned above [74].

The relative portability of ML models makes studies easier to reproduce than typical
methods, which can increase confidence in their results [9]. In addition, ML models
more often use publicly-available data, such as iNaturalist [5], eBird [91], and Pl@ntNet
[72], which are large-scale data repositories of reported sightings of wildlife species.
Use of similar datasets makes studies externally comparable as benchmarks exist on the
data [96, 35], though certain limitations exist when using these datasets which are later
discussed in Section 2.3.

The rising use of ML in ecology has resulted in some friction. ML approaches, which are
data-driven, can emphasise results with limited grounding in little ecological theory, po-
tentially causing less consideration to be given to conclusions [98]. The non-transparent
[31] and non-invertible [78] nature of ML models contribute to this interpretability
issue; many ML studies warn against using results without complimentary ecologi-
cal information [27]. While research is actively ongoing—in the field and for ML in
general—to understand how model predictions can be explained and defended [101],
ML models are currently less suitable for isolated use compared to more traditional
(and often more interpretable) ecolocal aproaches.

While ML offers significant capabilities, it also has limitations, such as challenges in
interpreting model outputs. Nevertheless, the ability to analyze complex, large-scale
SDM data makes ML a valuable tool for ecological research. In order for ML models to
be relied upon in the ecology field, they must be easy to evaluate, show a clear predictive
path that can be easily verified, and be widely applicable across different species.

2.2.3 Machine Learning Approaches

As ML has grown for use in SDM, different approaches have attempted to effectively
model the distribution of species using data-driven, statistical, or heuristic techniques.
We discuss some common approaches in this section.

Modelling the distribution of species is a highly complex system due to the intricate
relationships between species and their environment [42]. Traditional statistical tech-
niques often struggle with inherent variability, non-linearity, and interacting factors
involved in these systems [17, 36].

Modern approaches have moved towards data-driven machine learning models which
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instead assume a complex distribution is present and tries to learn it from the data
itself [96]. The models typically apply supervised learning—where models are trained
on data with known species presence and absence locations [28]. Through iterative
learning, these models learn to to predict the spatial or spatial-temporal distribution
of a species. They differ in several key aspects and we briefly summarise movement
from assumption-driven statistical techniques to data-driven deep learning techniques
(current state-of-the-art) below.

We introduce the terminology of ensemble learning, when multiple models’ predic-
tions are combined to improve overall accuracy (bagging) [22] or when models are
sequentially training to address errors from previous models (boosting) [41]. We also
discuss overfitting, which is decreased performance on novel data due to memorisation
of training data [50].

2.2.3.1 Models

Gradient Boosted Regression Trees (GBT) were one of the first migrations from statisti-
cal techniques, building upon earlier statistical techniques [32]. Tree-based methods
such as GBT recursively split data using binary decisions at each level, allowing them
to fit complex, non-linear relationships in the data. GBTs additionally do not require
manual feature extraction techniques—when information is extracted from the data—
making them less reliant on expert input [36]. While single trees are prone to biases of
the training data, GBTs combine trees through boosting, which minimises training error
(the difference between predicted and actual values) However, boosting can contribute
to overfitting, especially when the training set has distinct outliers or unrepresentative
samples as boosting focuses on the worst performing parts of the data—those which
may be unrepresentative [99].

Due to the sequential nature of boosting, GBT cannot be parallelised—when compu-
tations are performed simulatneously on multiple processors—and therefore can be
computationally expensive when data is complex. As such, GBTs are less suitable for
large, multi-species models which are more complex than single-species models due to
increased data volume [16]. One approach to address this scalability issue is Extreme
Gradient Boosting (XGBoost) [26] which introduced more tunable parameters to allow
for more efficient model training and improved scalability on complex datasets. While
GBTs have been surpassed by other methods, GBTs and XGBoost remain relevant
techniques for tackling some problems in SDM.

Random Forest (RF) models address limitations encountered by GBTs by introducing a
different ensemble learning tecnique, bagging. Bagging—sampling from the training
set with replacement—produces decorrelated trees [23] and allow parallelisation. This
makes RFs significantly more scalable for complex datasets, especially multi-species
models [95]. However, this increased scalability brings increased complexity, meaning
RF models can be harder to interpret compared to simpler models like GBTs [11].
This trend of increased complexity for improved performance is a recurring theme in
machine learning [44].

Following the success of RFs, other data-driven models have emerged such as Support
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Vector Machines, which excel at handling high-dimensional data [52], and Generalised
Additive Models, which can accurately capture non-linear relationships in ecological
data [48, 17]. However, in recent years, deep learning models such as the Feedforwad
Multi-layer Perceptron (MLP) have emerged as state-of-the-art for SDM tasks [60].
This genre of models, inspired by the connection of synapses in the brain, can learn
complex patterns from data through iterative learning processes. We discuss deep
learning models in the following section.

2.2.4 Deep Learning

MLPs are a type of deep learning model consisting of interconnected nodes arranged
in multiple layers. They are universal function approximators, meaning that, given
appropriate complexity (number of layers and nodes), are able to represent any complex
relationship between inputs and outputs [55]. This makes them well suited for SDM,
where the relationship between species and environmental factors can be intricate. In
this section and hence, we will categorize the models described earlier (Section 2.2.3)
as ‘shallow’ models, and MLP as ‘deep’ models. We note there are many powerful deep
learning architectures beyond MLPs such as Transformers [97] and Recurrent Neural
Networks [80]. However, in this study we limit our foucs to fully-connected MLPs due
to their suitability to the task.

Deep models in SDM can be categorised into single-species or multi-species approaches.
Single-species models are computationally less intensive to train and may be suitable
for lower-end systems, such as when models are required to run on environmental
measurement systems and perform inference at measurement time [21]. However, multi-
species models have an intrinsic advantage over multi-species models by considering
species interaction [73]. While these interactions may not be explicitly measured,
presence of a species may consider hidden (latent) information about the distribution
of other species. For example, the presence of a competitor (or predator) may inform
of the presence or absence of a rival (or prey). Deep models are particularly adept
at capturing these underlying trends in location data, allowing them to infer species
interations even when not directly measured.

Deep learning models can incorporate various data sources to improve performance.
Beyond location data, some studies consider environmental factors such as elevation
or ‘meta factors’ like photographer bias [64]. Additoinaly, some models incorporate
temporal data (information on the data over time), while others weight presence data
differently (e.g., giving more weight to recent sightings).

It’s important to consider limitations when evaluating existing literature on SDM. First,
some studies might suffer from reporting bias, where researchers are more likely to
publish results that show improvement over previous work. Second, studies can be
difficult to compare directly due to their focus on different geographic scales (e.g., local
vs global [103, 81]) or specific taxa (groups of organisms). In addition, training data
often contains bias. Teaching models to learn this data includes teaching it the bias,
whereas non data driven or shallow models may be more robust [58]. We note that
many methods perform point-wise evaluation based on single input and output points.
Unexplored in literature is an investigation into performance of models with multiple
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points as input (e.g. a potential range), which could benefit from not only joint learning
between species, but also between environmental factors.

2.3 The Presence-Absence Problem

ML models for SDM require data on both presence (positive observations) and absence
(negative observations) of a species in a particular area. Supplying a model with only
positive data will result in a model which predicts true everywhere, as it will have
no notion of negative space. Presence-only data typically takes the form of reported
sightings of a species, but provides no evidence for what species were not observed
in the area. As people may only report sightings for areas they have visited, presence-
only data is typically spatially biased towards well trodden or accessible areas such
as national parks or tourist destinations [39]. This can lead to underrepresentation
of areas with a high biodiversity, such as the Amazon rainforest, or low biodiversity,
such as the Arctic [46, 30]. In contrast, Presence-absence data contains both positive
observations (where a species is present) and negative non-observations (where it is
not). This approach is less inclined to this bias, as it is typically generated for areas of
interest through scientific study, which may include these areas [86, 90].

While presence-absence data offers advantages over presence-only data by including
reliable information on species absence, it is typically less extensive due to the effort
required to collect negative observations [38]. Unlike presence-only data, which can
be crowd-sourced from reports of sightings, collecting absence data requires expert-
knowledge and significant time investment, and may be specific to a particular species
or study area. This limitation, when put in context of data-hungry machine learning
approaches, often makes presence-absence data less generalisable compared to presence-
only data.

The wide accessibility of presence-only data makes it attractive for many SDM studies.
However, as discussed earlier, lack of absence data requires generation of pseudo-
absences, where artificial points representing species absence are created. We investi-
gate techniques of pseudo-absence sampling in Section 2.3.1.

2.3.1 Absence Generation Techniques: How many, where, and by
what method?

The method of absence generation has a significant impact on the final performance of
presence-only deep learning SDM models [13]. Despite this, there is currently no stan-
dardized method of producing pseudo-absences, and research for the best approaches
for multi-species models is limited [103]. Two methods are popular in literature, which
we will refer to as random sampling and target-group sampling. Random sampling
consists of generating a number of points across a study area uniformly without bias;
target-group sampling is when the presences of species are used as absences for others
at training time. We discuss advantages and disadvantages of both in the following
section.

How many?
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The number of negatives generated is an important consideration in SDM. Too few
negatives result in poor learned negative space—absences of species—and worse overall
performance [57]. Generating too many pseudo-absences will result in an imbalanced
dataset, where the number of negative points far outweigh the number of positive pres-
ence points. ML models perform better when the dataset is balanced, as imbalance will
tend to overfit towards the majority class [77]. To address this imbalance, oversampling
is sometimes used, where the positive samples are duplicated during training to increase
total positive observation numbers and balance with the number of negatives [25].
However, while oversampling might create a numerical balance between positive and
negative observations, it doesn’t necessarily address the underlying issue of potentially
unrepresentative positive data.

By what method?

Pseudo-absences can be attributed with having some form of ‘information content’ [65].
A point which is far away, in already negatively learned space has ‘low’ information
content— the model will not learn anything new given this point during training.
Similarly, a point near a boundary of the predicted presence area, will be highly
informative: an absence will constrict the zone to increase its specificity.

Random sampling, when pseudo-absences are generated uniformly across a target zone,
is a simple approach utilised by many studies, with good results [85]. However, by
uniformly sampling across the space, the most common environmental conditions in
that space are overrepresented [29], meaning less common environments may be un-
derrepresented in resulting range maps. Furthermore, random sampling—particularly
when considering the global scale—may result in sampling many uninformative neg-
atives [103]. That is, points far away from a species’ zone of interest, or points over
water, terrestrial species will not inhabit, may form the bulk of negative observations.
Consequently, resulting SDM models might be less specific, predicting the species’
presence in wider areas than it actually occupies.

Target-group pseudo-absences, absences taken from the presence observations of other
species, mitigate some of these issues by providing points with a bias aligned to that of
the observation points [12]. However, using target group-only points, range maps can
fail to learn important negative space and ranges can become ‘ballooned’, for example
over water where no presences for any species are recorded. In addition, the bias
contained in target-groups will overrepresent well travelled areas. However, this method
has also been shown to produce accurate and precise range maps, and is a popular
method used in many studies [71].

In summary, target-group sampling is efficient but not exhaustive, but random point
generation is exhaustive, but not necessarily efficient. It is possible that a combination
of these points may result in complimentary bias alignment.
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Data

The quality and relevance of the data used to train machine learning models significantly
impact their final performance [84]. For our purpose, presences (positives) and absences
(negatives) were required in order to train a supervised machine learning model to
predict global species range, and ground truth data was required to evaluate our model.

Our positive data comes from open source citizen-scientist website iNaturalist [5].
Section 3.1 provides a brief overview of the dataset and highlights particular limitations
and challenges arising from its use. Ground-truth—gold-standard positive and negative
data used for model evaluation—comes from IUCN Redlist [6], discussed in Section 3.2.

3.1 iNaturalist

iNaturalist focuses on collecting documented observations of organisms. An obser-
vation, as defined by iNaturalist, is “an encounter with an individual organism at a
particular time and location.” [5]. Encounters may include direct sightings—with
evidence—or indirect observations such as stool or tracks. To ensure data quality and
confidence, the dataset excludes unverifiable observations which are not considered
‘research grade’ (Section 3.1.2). Additional exclusionary criteria are non-recent obser-
vations such as fossilisation or historical sightings and observations with unverifiable or
inaccurate locations.

The iNaturalist dataset is a rich source of information used in many research applications
[54, 79], but is also applicable to other purposes. iNaturalist has been claimed to improve
the outdoor experience by providing identification suggestions [20], increase public
knowledge of conservation efforts [87] and decrease biodiversity naivety—limited
understanding of nature’s rich variety—in young people [68].

3.1.1 What is the dataset?

Each observation in the iNaturalist dataset is associated with a taxon ID, which refers
to a group of organisms categorised hierarchically, ranging from broad classifications
(kingdoms) to specific ones (species). However, the non-expert user is not required

10
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to have full knowledge of the taxa they observe: iNaturalist allows submission into a
“Needs ID” category, where taxa will be labeled by species experts. ‘Research grade’
observations are downgraded to casual if the data cannot be verified or there is low
agreement between identifiers [5].

iNaturalist utilises computer vision (CV) to aid casual observer classification. The CV
system is trained on species with greater than 100 observations, and is seen to be more
accurate in high activity areas such as North America or New Zealand. While CV is
useful in the context of identifying common species, it is limited when differentiating
between visually similar animals. CV assisted identifications are labeled as such in the
iNaturalist dataset, but considering this distinction is beyond the scope of our study.

Due to endangerment or particular sensitivity, some observations may be privatised—in
which case they are only available to government or research institution—or obscured,
where observations coordinates are replaced within a 0.2x0.2 degree cell (equivalent
to 500 km2 area at the equator). Examples of original, private, and obscured data is
given in Figure 3.1. Our dataset does not include such observations, which may limit its
effectiveness for affected species.

Figure 3.1: Normal, obscured, and private locations from left to right. Figure adapted from
iNaturalist. Available from https://www.inaturalist.org/pages/help. Accessed 23/03/24

Not all species are equally represented on the iNaturalist website. Birds are well
represented, representing 24.8 million of the 36.8 million total vertebrate observations
on the site [1, 4], wheras mammals and reptiles represent only 3.8 million observations
each [2, 3]. This over representation of some taxa over others continues in our dataset.

3.1.2 How is the data collected?

The process for recording an observation is outlined as follows:

1. A photograph or auditory capture is taken and submitted by an observer, complete
with GPS coordinates, the time documentation was recorded, and other meta-data.

2. By expert knowledge or with aid of built-in species classification, species are
labeled and added to the ‘casual observations’ map.

3. If an observation is verifiable, contains photo or audio documentation, and more
than two-thirds of human annotators agree on an identification, the observation is
granted ‘research grade’ status.

4. Research grade observations are exported and used for large scale surveys of
single and multiple species.
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iNaturalist data is presence-only. As described in Section 2.3, no absence data is
supplied and so in order to be utilised for statistical modelling, absences must be
generated. We refer the reader to Section 2.3 for an overview of these techniques and
we discuss our method later in Section 4.5.

3.1.3 iNaturalist Exploration

Despite the large number of potential species available, some species in the iNaturalist
set have very few observations. We limit our study to species with more than 50
observations, and limit observations per species at 2000. Our dataset consists of 272,037
observations across 500 randomly selected taxa which meet this criteria. Figure 3.2
shows that the observations follow a positively skewed power-law distribution—except
for at our observation limit. For each species in this dataset, there is a corresponding
expert range map from our ground truth dataset discussed in Section 3.2.
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Figure 3.2: Number of observations for species in our iNaturalist dataset.

Figure 3.2 shows a skewed distribution of observations across species.The median num-
ber of observations is 222, which is lower than the mean, 544, meaning the majority of
species have fewer than 250 observations and many species fall into this low observation
category. 63 species in the dataset have the maximum number of observations while
only 3 have the minimum, though a significant portion fall into the 50-100 observation
bin. This observation distribution may pose challenges when training models for species
with this limited data, as fewer data points can lead to overfitting, where the model
performs well on training data but generalises poorly to unseen data.

Figure 3.3 illustrates the geographic distribution of observations. As expected, observa-
tions are concentrated in more developed areas such as North America, Europe, and
New Zealand. Conversely, there are fewer reported observations in sparsely populated
regions areas such as Russia (though accentuated by map projection in the Figure) and
less developed regions of central Africa.
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Reported Observations of All Species

Figure 3.3: Locations of all species observations in our dataset. Showcases higher
concentration of observations in developed regions like North America, Europe, and
New Zealand and fewer in sparsely populated regions like Russia and less developed
regions of central Africa.

This study does not consider temporal (time-dimension) data. As such, each entry in
our dataset consists of one verifiable observation—location and species id—with a high
confidence of accuracy, providing invaluable presence-only data.

3.1.4 The Validation Problem

Many machine learning methods use a random subset of the training set for valida-
tion to measure overfitting—poor performance on novel data despite good training
performance—or predict generalisation performance—performance on unseen data
[49]. However, in SDM, partitioning the training set in this way would place validation
points interspersed within training locations, and therefore is a poor estimation of novel
performance or indicator of overfitting.

Splitting data geographically for training and validation (as seen in some SDM studies
[65, 15]) may not fully address these issues, as each set will retain spatial biases present
in the original presence-only data (Section 2.3). Additionally, presence reports are
often unevenly distributed within a species’ true range. This means some areas with
confirmed presence might have no recorded observations, leading to inconsistencies or
poor model performance during evaluation.

To address the limitations of validation with presence-only data, we adopt a different
approach. We do not use validation during training and instead train the model until it
converges on the training data (details in Section 4). To assess model performance, we
then evaluate its ability to generalise to different scenarios. This evaluation involves
testing models trained on distinct species using the same model architecture (single-
species) or applying the same model to predict the distribution of multiple species
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(multi-species). For this evaluation, we use the unbiased IUCN test set discussed next
in Section 3.2.

3.2 IUCN Redlist: Our Ground Truth

Though iNaturalist provides extensive presence-only observations for many species, it
lacks ground truth information. Through historical studies, human expert-generated
maps are available for many species; many are collated in the International Union for
Conservation of Nature (IUCN) Redlist [6], an online species record collection with a
focus on endangered species. The IUCN Redlist categorizes species into one of nine
categories, ranging from ‘least concern’ to ‘extinct,’ based on information gathered by
trained individuals [6]. Given its extensive data and reliable information, IUCN Redlist
provides an invaluable tool for evaluating our generated range maps.

3.2.1 Comparison to iNaturalist Data

We match IUCN data with iNaturalist at the species level through a common taxon
identifier. Provided by Mac Aodha et al. [64], test location data is in the form of a dense
output grid for which every species has a presence marking for the locations within the
range map determined by the IUCN. Observations not marked as present are assumed
as negative for evaluation purposes. The observations consist of a dense grid covering
the globe which allows point-wise evaluation for model predictions for each species at
every location.

Given that IUCN is based on expert-derived conclusions and not observations, the
distribution of presences in the iNaturalist dataset is different from data in IUCN:
iNaturalist suffers from spatial and other reporting biases discussed in Section 2.3, but
IUCN is less affected by these trends. IUCN is not completely unbiased: species present
in less active areas are underrepresented in IUCN as well as iNaturalist (people tend to
study local species of interest), but we expect species ranges present in the IUCN set to
be accurate. exhaustive.

3.2.2 Limitations of IUCN

Though IUCN has excellent presence-absence information for each species it has in its
set, many species are underrepresented. Data is spatially biased towards land-based (in
particular, forest) ecosystems, and towards animal observations over plants and fungi
[6]. This does not affect our application, as we consider wildlife distributions only,
but does affect the type of studies done and accentuates the gap as species with more
resources are likely to be the subject of more studies.

However, our study does not consider species with less than 50 observations in the
iNaturalist dataset, and rarer species are more likely to fall below this threshold. This is
not unusual in data-driven SDM [75], and it is therefore important as future work to
consider under-represented species and investigate effective ways of producing accurate
range maps for such species. In particular, ‘endangered’ and ‘critically endangered’
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species fall into this low-observation category, and so finding ways to improve low-
observation performance by including more latent information is an important next step
to increase confidence in using data-driven SDM for conservation efforts.

Despite these limitations, the IUCN set contains ground-truth data for 157,190 species
and so forms invaluable evaluation for our models on the species we have available. We
display three example expert range maps for species of varying concern in Figure 3.4.

Expert Range Maps of Least Concern, Vulnerable, and Endangered Species from
IUCN Dataset

(a) Expert range map of least concern
American Robin (taxa ID 103889499)
from IUCN. Map cropped to region for

clarity.

(b) Expert range map of vulnerable Giant
Panda (taxa ID 712) from IUCN. Map

cropped to region for clarity.

(c) Expert range map of critically
endangered Eastern Gorilla (taxa ID
39994) from IUCN. Map cropped to

region for clarity.

Figure 3.4: Ground truth maps of American Robin, Giant Panda and Eastern Gorilla
from IUCN dataset [6]. Accessed 14/3/24.
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Methodology

This chapter focuses on model implementation, first outlining the problem definition
and defining notation used throughout the chapter. We introduce two models: a single-
species model that predicts the probability of presence for a single species at a given
location, and a multi-species model that predicts the probability of presence for all
species simultaneously. Both are fully-connected feedforward multi-layer perceptron
(MLP) models.

We later investigate the impact of pseudo-absence generation techniques on model
performance, and next introduce two methods: random and target-group sampling. The
chapter is concluded with a brief discussion of SDM evaluation, introducing metrics
later used in Chapter 5.

4.1 Problem Definition

Let x = [x1,x2] be a geographical location and y ∈ {0,1}|S | denote the ground truth
presence (1) or absence (0) for each species s ∈ S at location x. Our goal is to predict
ŷ ∈ [0,1] for any x ∈ X such that ŷ estimates y, given observed data {(xi,yi)}N

i=1 for
some N ground truth locations and some X, a set of points across the globe. As
our dataset is presence-only, we only have entries corresponding to yi = 1, meaning
absence (0) is lacking for most locations x ∈ X. To generate absences, we utilise
pseudo-sampling to generate ŷ′ ∈ X, a pseudo-absence in our study area.

For a fixed location encoder g : R2 → R4 such that x̃ = g(x) and some parameters θ,
each model is a mapping fθ : R4 → [0,1]S̄ for S̄ = |S |. The model is parameterised by
ŷ = fθ(x̃), and model output ŷ ∈ [0,1]S̄ is a measure of likelihood for all species s ∈ S
to appear at location x. We look to find

θ
∗ = argminθ

1
N

N

∑
i=1

L(ŷi,yi)

for a suitable loss function L . Once θ∗ has been estimated, we may use fθ to predict
species presence for any location on the globe.

16
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4.2 Single-Species Model

As described above, our model is a mapping fθss : R4 7→ [0,1]S̄ : f (x̃). In the single-
species case, S̄ = |S |= 1, which corresponds to the species of interest. As such, output
dimension for each input location x is one, corresponding to ŷ ∈ [0,1].

The single-species architecture first selects input coordinates, x ∈ X, using a balanced
sampler. This sampler randomly selects presences for the target species with replace-
ment, ensuring an equal number of absences are included in each batch. Each xi ∈ x is
then scaled to [-1,1] before being mapped to R4 via the location encoder (described in
Section 4.4) to get x̃ = g(x).

[x1, x2]
0

[x1, x2]
n

Input 
coordinates

Sinusoidal Encoding

Hidden Block
Input 

Layers
Output Layers

xh

Batch  Normalisation

Sigm
oid

Encode

Input Layer

H
idden Layer

O
utput Layer

ReLU Dropout

[0, 1]0

[0, 1]n

Balanced 
Sampler

Figure 4.1: One batch example of single-species model architecture. ‘h’ is number of
hidden blocks, which varies in experimentation; ‘n’ is size of batch. Number of input
points equals number of output predictions. Input layer projects from input to hidden
dimensions, output layer projects from hidden to binary classification.

A prediction, ŷ = fθss(x̃), is then generated through the architecture seen in Figure 4.1.
First, x̃ is passed to an input layer which projected each input into the hidden dimension.
Data was then passed though a regularisation block consisting of batch normalisation—
which helps mitigate internal covariate shift, where the input distribution varies during
training [82]—a ReLU activation function [66], and dropout, which randomly drops
input weights during training to avoid becoming overly reliant on any one feature
[88]. Data was then passed through h hidden blocks, where h was varied during
experimentation. Finally, data was passed to an output layer which projected to a
binary classification and then a sigmoid activation to normalise to ŷ ∈ [0,1]. We
used no residual connections—where input data is combined with model output after
perceptron layers to facilitate the training of deeper networks—as we experienced no
vanishing gradient during training, though other work has used these in their models
[103, 104, 27].

For training and initial results, we trained on a batch size of 128 with 128 hidden units
and 2 hidden layers. During our experiments, we increased our batch size to 2048
and hidden units to 256 to align with prior work [64]. We used Adam optimiser [59]
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with 0.001 learning rate, no learning rate scheduler, and dropout probability 0.1. As
the single-species task is binary classification, we used PyTorch’s built in binary cross
entropy (BCE) loss function [69], which aims to minimise difference between predicted
and ground truth labels. It computes the negative log likelihood of observed data under
the predicted probability distribution by penalizing incorrect predictions in proportion
to how they are from being correct. Mathematically, for y ∈ {0,1} ground truth label
and predicted outcome ŷ, the BCE loss for each location is given as:

L BCE(ŷ,y) =−((y log(ŷ)+(1− y) log(1− ŷ)). (4.1)

Minimizing the BCE loss trains the model to produce predicted probabilities that are
close to the true labels, resulting in improved classification performance as training
progresses.

4.3 Multi-Species Model

Our multi-species model is a mapping fθms : R4 7→ [0,1]S̄ : f (x̃) for S̄ = |S | and s ∈ S
species, which, for each input location x, predicts the probability of presence for all
species ŷ ∈ [0,1]S̄. In contrast to the single-species case, this is a multi-class problem.

To account for multiple species and with inspiration from Mac Aodha et al. [64], the
balanced sampler was adapted to ensure all species were equally represented over a
training epoch (iteration through the training set). We adapt the custom loss function
which pairs a randomly generated negative observation for a species with each presence:
when combined with the balance of species across an epoch, we note that our dataset is
fully balanced. For ground truth y and model output predictions ŷ, we have

L random(ŷ,y) =−S̄−1
S̄

∑
j=1

log(ŷ j)+ log(1− ŷ′j)

for randomly generated point ŷ
′
j = fθms(g(a)) where a ∼ Uniform(X) is a randomly

sampled point on the globe.

We also created a new model pipeline, incorporating residual connections [51] and a
learning rate scheduler [102] to account for greater model complexity introduced by
training on all species simultaneously. Residual connections increase information flow
across layers which facilitate the training of deeper networks [51]. A learning rate
scheduler decreases the learning rate at set intervals; ours was a polynomial scheduler
updated each epoch by the formula given in Equation 4.2.

learning rate = initial learning rate× epoch0.98 (4.2)

This architecture—potentially due to the greater batch size and therefore less variation
among training batches—did not require batch normalisation during initial testing,



Chapter 4. Methodology 19

[x1, x2, sp_id]0

[x1, x2, sp_id]n

Input 
coordinates

Sinusoidal Encoding

Residual 
Block

Input 
Layers

Output Layers

xh

Sigm
oid

Encode

Input Layer

H
idden Layer 1

C
lass Em

bedding

ReLU Dropout

{[0,1]s}0

{[0, 1]s}n

Balanced 
Sampler

H
idden Layer 2

+

Figure 4.2: One batch example of multi-species model architecture. ‘h’ is number of
residual blocks, which is set to 4 in our study. Output dimension is [N, S̄] for N input
points and S̄ species. Input layer projects from input to hidden dimensions, output layer
projects from hidden to output. Note lack of BN, as not required during training. ‘+’
indicates a residual connection, which allows information to flow between deeper layers
in complex models.

though we did still incorporate dropout to decrease model reliance on specific features
(e.g. presence of one very informative species).

To generate output predictions x̂, input locations x ∈ X were still sampled, scaled, and
encoded to get x̃ ∈ R4 as in Section 4.2. Data was then passed to a residual block
consisting of two hidden layers, each followed by a ReLU activation function with
dropout applied between. The skip connection was applied, and the block was repeated
h times, where here h was fixed at 4. After going through all residual blocks, model
outputs were projected back to number of species through a learned class embedding,
which allows models to relate hidden dimensional representations to discrete output (our
species IDs) [8]. The outputs are passed through a sigmoid activation as in the single-
species case and a prediction is made for each species for each location, ŷ ∈ [0,1]S̄.
During training, this output was passed to the loss function as described above. This
pipeline is shown in Figure 4.2. We train using Adam (Adaptive Moment Estimation)
Optimiser [59] with initial learning rate set to 0.001 and batch size 2040 for 10 epochs.

4.4 Sinusoidal Encoding

By artefact of projecting a sphere (the globe) onto a plane (map), two surfaces with
different Gaussian curvature, any coordinate base will have a line of discontinuity at
(0,2π), meaning points nearby in spherical space may be far apart in coordinate space—
points at either edge of a map. Motivated by this problem, we map input coordinates
x ∈ R2 to x̃ ∈ R4 by rescaling input coordinates to the interval [−1,1] and a sinusodial
mapping g : R2 7→ R4. This encoding, previously utilised in prior studies [27], ensures
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continuity in the input space.

To formally analyze this behavior we introduce the concept of continuity around a
boundary, a generalization of continuity relating to functions on closed domains. In
this context, we prove continuity around the interval [−1,1] for the function h(x) =
(sinπx,cosπx).

Proposition 1. Consider h : R→ R2 : h(x) = (sinπx,cosπx). Then h is continuous on
[−1,1] and further is continuous around the boundary x =−1 to x = 1.

Proof. We first observe that h1(x) = sinπx and h2(x) = cosπx are both globally contin-
uous functions since sin and cos are continuous on R. Therefore, h is continuous on the
closed interval [−1,1] as each component function is continuous on this interval.

Furthermore, h is continuous around x = −1 to x = 1 if limx→−1 h(x) = limx→1 h(x).
We calculate these limits as follows:

lim
x→−1

h(x) = lim
x→−1

(sinπx,cosπx)

= (sin(−π),cos(−π))

= (0,−1)
= (sinπ,cosπ)

= lim
x→1

h(x).

Thus, h is continuous around [−1,1].

For each input coordinate x = [x1,x2] ∈ R2 we then have, for i ∈ {1,2}, xi ∈ R. We
then define x̃i = h(xi) and thus

x̃ = [sinπx1,cosπx1,sinπx2,cosπx2] (4.3)

Through this encoding, our models fθss and fθms can better learn species distributions
without being negatively affected by map boundary effects.

4.5 Pseudo-Absence Sampling

As motivated in Section 2.3, presence-only datasets require pseudo-absence generation
to represent areas where a species is likely to be absent. This allows machine learning
models to learn “negative space” and prevent them from predicting true across the
entire region. We initially used random sampling to generate pseudo-absences—where
points are generated from an entire zone without bias—using which we generated initial
results. However, to explore the impact of pseudo-absence generation techniques on
model performance, we outline an alternative method, target-group sampling—where
absences are sampled from the presences of other species. A visual representation of
target-group and random sampling is shown in Figure 4.3
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Figure 4.3: Machine learning requires presence and absence data to train models,
and sometimes absence data is not available and must be generated. This may be
done through pseudo-absences, and different generation techniques exist to generate
these absences. Target-group points use presences of other species, and random
sampling selects random locations from within a region. Figure from Zbinden et al. [103].
Accessed 23/03/2024.

4.5.1 Pseudo Sampling Methods

Random Sampling

Our initial random sampling approach was a random point generation which generated
random points on a map between limits of latitude and longitude. However, this method
suffers from a bias towards the poles due to the convergence of lines of longitude at
those locations—one degree toward the pole represents a progressively smaller distance
as the line is traversed. To address this bias, we employed a different method, random-
sphere sampling. This method samples two uniformly distributed random variables
(α1,α2 ∼ Unif[0,1)) to generate points uniform across the sphere through Equations
4.4-4.7. This adaptation facilitates greater uniformity of samples across the surface of
the Earth, which assists models in learning negative space.

θ1 = 2πα1, (4.4)
θ2 = arccos(2α2 −1), (4.5)

x1 =
θ1

π
−1, (4.6)

x2 = 1− 2θ2

π
. (4.7)

Target-group Sampling

Target-group sampling required no additional point generation, as negative locations are
drawn from the presences of other species in the dataset. For fθss , the balanced sampler
was adapted by replacing random sampling by the presence of another random species
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presence. For fθms , the loss function was modified to select target-group points:

Ltarget-group(ŷ,y) =−S̄−1
S

∑
j=1

log(ŷ j)+ log(1− ŷ j′)

where j
′ ∼ Uniform({ jp ∈ {1, ..., S̄+ 1} : jp ̸= j, j ∈ N}) is a species index distinct

from j and S̄ = |S |.

Hybrid Approach

To determine optimal pseudo-absence sampling techniques, we also investigated the
effect of combining both target-group and background sampling approaches. For fθss ,
we merged the balanced samplers from target-group and random sampling, taking half
of each method in each batch. For fθms , a final loss function was utilised, adapted from
Cole et al. [27], which combined both approaches: the input point x ∈ X was applied as
negative to all but the input species (target-group) and a random point was sampled for
the input species. This loss function is given as

L both(ŷ,z) =−S̄−1
S

∑
j=1

(
log(1− ŷ j)+ log(1− ŷ′j)

)
+1[z j=1] log(1− ŷ j),

where ŷ
′
j = fθms(g(a)) for a ∼ Uniform(X) as in L random and z ∈ {0,1} represents

species presence (1) or absence (0) for indicator variable 1, which takes the value ‘1’ if
the condition (z j = 1) is true, and ‘0’ otherwise.

Additional Techniques

We considered additional negative sampling techniques such as sampling in spatially
distinct locations from training data [92, 53], though studies have shown that this does
not outperform random sampling when enough points are sampled [13] possibly due
to many presences overshadowing the same zone as the absences (especially when
oversampling). In fact, bias may be amplified due to reinforcing known zones and poor
generalisation to unknown ones. Thus we limit our investigation to target-group and
random samples.

4.6 Evaluation

Species may only be present or absent at a location, so single-species models are
binary classifiers, and multi-species models are multi-label classifiers. Locations where
the model and ground truth—true labels—align are true positives and true negatives;
where they do not are false positives (model predicts true when it should not) and false
negatives (vice versa).

A species will be absent at more locations where it is present, and our test dataset will
therefore be unbalanced. As such, accuracy (number correct over all points) is a poor
metric, as a trivial classifier which always predicts negative will achieve over 99%
accuracy for a species occupying less than 1% of its potential range.
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Precision =
t p

t p+ f p
(4.8)

Recall =
t p

t p+ f n
(4.9)

Average Precision = ∑
t
(Rt −Rt−1)Pt (4.10)

To address this challenge, we evaluate single-species models on Average Precision
(AP; Equation 4.10) and multi-species models on Mean Average Precision (MAP),
the average precision normalised over all species. In Equation 4.10, Rt is the recall
at threshold t, Pt the precision, where for Equations 4.8 and 4.9, ‘tp’ is true positives
and ‘fn’ is false negatives. AP is widely used in SDM [96, 27, 64, 24] as it emphasises
true positive predictions by considering both precision (ability to identify true positives;
Equation 4.8) and recall (proportion of actual positives identified; Equation 4.9). In
our implementation we used Scikit Learn’s AP method provided in the Python package
[70].

For comprehensive evaluation and to measure overfitting, we must combine metric
performance with visual map inspection in order to evaluate range maps which are
precise and generalised. Model may perform well on generalised metrics such as MAP,
but fail to meet key criteria required for ecological purposes. Models must be specific–
they must learn negative space well–and they must be able to interpolate between groups
of locations seen in training.



Chapter 5

Experiments

The accuracy of range maps, fundamental to SDM, is dependant on many factors. This
chapter investigates best practices for creating informative range maps through focusing
on two key questions:

1. Optimising Pseudo-Absence Generation: Given a presence-only dataset, how
can we generate the most informative pseudo-absences to train deep models to
effectively distinguish from presence and absence areas?

2. Fine-Tuning Single- and Multi-Species Models: How can we optimise model
performance for single- and multi-species models while avoiding overfitting?

We begin with a focus on our single-species model. We first introduce a representative
case study species for model tuning. Next, we investigate pseudo-absence generation
methods while maintaining a balanced dataset on single-species model. This is followed
by an optimal model depth investigation and an ablation study in order to understand
the impact of individual model components on performance.

Following this investigation, we shift to our multi-species model. Here, we examine the
effect of increasing the number of randomly generated pseudo-absences and additionally
explore the effectiveness of using target-group pseudo-absences instead of—and as well
as—random background points.

Finally, we analyse why some species perform better than others in our multi-species
model. By correlating average precision against several factors, we aim to identify
limitations in order to motivate future work to address these limitations.

5.1 Case Study: Cincloramphus Cruralis (Brown Songlark)

For initial model investigation, we selected the brown songlark (Cincloramphus Cru-
ralis) as a case study species. This medium-sized bird species offers an interesting study
due to its average-case distributional characteristics; with only 88 observations, it is in
the 21st percentile of all observations in our dataset (Figure 3.2) and is classified in the
‘least concern’ IUCN classification [7].

24
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The spatial distribution of the songlark’s observations poses a common challenge. While
ground truth places presence of the songlark over the entire continent, observations
are concentrated in two spatially distinct areas on either coastline. This allows us to
investigate a model’s ability to interpolate between observed locations, acting as a proxy
for gaps in observation data in rare locations where it may be valuable e.g., Amazon
Rainforest.

Ground Truth, Single-Species, and Multi-Species Predictions for Brown Songlark

(a) Ground Truth. (b) Observations. (c) Single-species model
predictions.

(d) Multi-species model
predictions.

Figure 5.1: IUCN Ground Truth, best single-species model, and best multi-species model
predictions for brown songlark.

Building on the ability to assess negative space learning through coastal observations,
the east coast’s proximity to the high-activity area of New Zealand (Figure 3.3) can
help investigate how target-group pseudo-absences influence model performance. If
this results in more specific range maps on the east coast compared to the west coast
(where no observations for any species are reported beyond Australia, see Figure 5.1b),
we may conclude that target-group pseudo-absences assist in learning negative space.
In addition to AP, visual inspection of maps to assess these factors will result in a
thorough investigation on the drawbacks and benefits of both techniques. Figure 5.1
shows songlark ground truth, observations, and both single- and multi-species model
performance on the species.

However, we earlier noted (Section 3.1) that birds are over-represented in our dataset.
It is possible that by tuning our models to this species, we bias our models towards
better performance on this, and similar, species. This is a common problem in SDM,
and emphasises the need to consider low-resource species when developing models, as
‘at risk’ species will often be the subject of ecological studies. We attempt to avoid this
pitfall by carefully measuring overfitting: we observe output range maps and validate
on other species at each stage of the process.

5.2 Single-Species Model

This section investigates the performance of our single-species model architecture,
introduced in Section 4.2. We train the model on one species at a time using a randomly
selected subset of species from our dataset (shown in Table 5.1). This approach allows
us to compare the effect of different pseudo-absence generation techniques (addressed
first) and later, to compare the single-species model with our multi-species model.
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5.2.1 Optimising Single-Species Pseudo-Absences

We focus on the performance of model SS BN4, which will be introduced in detail in
Section 5.2.3. The model, denoted fθss is trained on data pairs consisting of coordinates
(x ∈ X) and presence labels (y) for some N species. To assess the effectiveness of this
model, we consider several criteria: learning highly negative space (e.g., accurately
predicting absence over oceans), maintaining zone specificity (predicted zones should
not extend beyond known presence areas), and overall Average Precision (AP). For
baseline comparison, we also train a Random Forest (RF) model and present the results
in Table 5.1.

Species Random Target-group Both RF Num. Obs.
Brown 0.87 0.40 0.86 0.45 88

Songlark†

Rufous 0.29 0.16 0.26 0.42 1933
Woodpecker

Mexican Free– 0.41 0.10 0.26 0.54 1371
Tailed Bat

White-tailed 0.68 0.36 0.69 0.51 230
Mongoose
Rainforest 0.39 0.22 0.37 0.25 230

Rocket Frog
Hong Kong 0.54 0.36 0.45 0.01 508

Warty Newt*

Subset MAP 0.46 0.24 0.41 0.35 -

*Threatened Globally. † Not included in subset MAP.

Table 5.1: Average precision for single species models on randomly selected species with
varying pseudo-absence generation techniques. Random sampling samples uniformly
across the sphere, target-group samples from the presence of other species. Both is
a hybrid approach with half random and half target-group pseudo-absences. Brown
songlark (case study species) not included in MAP value. RF trained with random
background sampling. Bolded best results per species.

Table 5.1 shows that pseudo-absence point selection technique has a significant impact
on model performance. In our random subset, target-group sampling significantly under-
performed random sampling, with an MAP of 0.24 vs 0.46 for random sampling alone.
Furthermore, our hybrid method, which utilised both random and target-group sampling,
resulted in worse MAP compared to random sampling. The worse performance of
target-group samples implies that information was not gained from the inclusion of
target-group pseudo-sampling, even when combined with random sampling. The hybrid
approach resulted in similar MAP in most cases, and so we undertake a visual inspection
of range maps to determine if there were additional benefits to including target-group
points. The range map produced though each sampling technique is seen in Figure 5.2.

In this figure, we see that target-group sampling results in a ‘ballooned’ range map,
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where negative space is poorly learned over the ocean. As no presences are reported
there, it is not surprising that target-group sampling failed to learn this area. Random
and hybrid sampling resulted in similar range maps, though the hybrid approach did
generalise better to Indonesian regions; this is represented in MAP of 0.42 vs 0.29 for
random sampling.

Rufous Woodpecker SS BN4 Random, Target-Group, and Hybrid
Pseudo-Absence Generated Range Maps

(a) Random sampling (b) Target-group sampling (c) Hybrid sampling

Figure 5.2: Estimated range maps by SS BN4 for Rufous Woodpecker and each random
sampling technique. We note ‘ballooned’ range map for target species, and in general a
lack of specificity for all. This improved slightly in the multi-species case.

The RF model served as a strong baseline results, outperforming all deep models on
two occasions, and target-group in all but one occasion. This implies that the deep
approach is not always the best one, and suggests perhaps an ensembling modelling
approach—where model predictions are combined—can offer more consistent results.

We note that the Hong Kong Warty Newt is a ‘near threatened’ species [6], but still had
an acceptable AP value of 0.54 for SS BN4 with random sampling. This implies that
global rarity is not necessarily a barrier to accurate range map estimation using deep
learning. Other factors, such as habitat requirements of a species or quality of the data
available may influence model performance. Interestingly, the RF model performed
very poorly for this species (AP: 0.01), highlighting the potential advantage of deep
learning approaches for low-resource species.

5.2.2 How Good is Random Sampling?

Our best pseudo-sampling method from Section 5.2.1 was random sampling, and
we here investigate limitations and range maps produced for each species using this
approach.

Figure 5.3 provides visual analysis of models on each species when random sampling
was applied, with column (c) showcasing single-species model predictions. We see that
the model predicts poor negative space for the Mexican free-tailed bat, which exists
over the Indonesian region, and the white-tailed mongoose, which is present across
regions in both American continents. Additionally, the model failed to learn connection
across the American continents for the bat species, instead discretising predictions to a
zone on each continent. This is reflected in poor AP values in Table 5.1, highlighting
limitations of the single-species model.

The mongoose model produced an acceptable range map, with an MAP value of 0.69 in
the best case (both). Figure 5.3-2c shows that a negative spatial indentation was learned,
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and further the west coast of Africa was seen to be accurately bounded. The frog and
newt existed in smaller geographical locations compared to the other species, nearby
the ocean in both cases. While the model located these areas in both cases, the predicted
presence did over encompass the ground truth, an observation which was quantified in
the relatively poor performance for the rocket frog model.

Ground Truth, Observations, MLP-SS Predictions, and MLP-MS Predictions

(1)

(2)

(3)

(4)

(5) (a) (b) (c) (d)

Figure 5.3: (a) Ground truth, (b) species reported observations, (c) SS 4BN range
map predictions, (d) and MS 1.75k range map predictions for subset of species studied
in Section 5.2, (1) Rufous Woodpecker, (2) Mexican Free-tailed Bat, (3) White-tailed
Mongoose, (4) Rainforest Rocket Frog, and (5) Hong Kong Warty Newt.

5.2.3 Hidden Layers: Deep, but not too Deep

To investigate optimal range map production methods, we we investigated the effect of
model complexity on single-species model predictions. More complex models are more
intensive to train and infer from, so in order to make sure additional complexity results
in a performance boost, we here investigate the effect of increasing number of hidden
layers. Here and hence we notate a single-species with batch norm as SS BN and with
dropout SS DO,

Model complexity can be increased by increasing the depth of the model—more hidden
layers— or increasing the width—number of hidden units; both will increase the number
of parameters available to a model. We here elect to focus on the result of changing
model depth over width as we wish our model to capture underlying features, and by
focusing on depth, we can allow our model to abstractly capture trends in stages [89].
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Number of Hidden Layers Average Precision
2 0.909
3 0.919
4 0.938
5 0.930
6 0.924

Table 5.2: Single-Species Average Precision for Species Cincloramphus cruralis (ID:
116872) with Dropout and Batch Normalisation.

Model Configuration Average Precision
BN+Dropout 0.938
BN 0.949
Dropout 0.913
None 0.898

Table 5.3: Ablation Study for BN+4HL Model (Species of Interest: Cincloramphus
cruralis). BN = batch normalisation; dropout p = 0.1.

Table 5.2 reveals that our single-species model benefits from increased depth up to a
maximum of 4 hidden layers. Performance starts to decrease after this point, indicating
overfitting. This suggests a limit to the complexity that can be learned from the training
data: despite the challenges mentioned in our case study (Section 5.1), the songlark’s
88 observations contain only so much extractable information. Attempting to learn
beyond this capacity results in overfitting—decreased generalisation performance due
to learning particularities specific to training data. An average precision of 0.938, our
highest, is on the upper end of all model performance, and so it is likely that once data
has been learned well, additional layers—which can learn more complex trends—hinder
performance.

Table 5.3 investigates the performance of our model with and without batch normalisa-
tion and dropout. We see that implementing dropout and batch normalisation both help
improve generalisation performance over the baseline when applied independently and
together. Interestingly, BN improves performance more when applied without dropout,
potentially indicating that this model does not learn to rely too heavily on individual
features and therefore randomly dropping weights is not necessary.

Based on the above configuration, our best model configuration was 4 hidden layers
with batch normalisation, which we use in Section 5.1 below.

In general, with optimal tuning there is still only so much that we can draw from a
single-species result. Tuning for one species may result in worse performance on the
rest, so we note the choices made in this section could have been different had we
selected a different case study. Though, we note that we attempted to avoid overfitting
and looked to produce a generalisable model.
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5.3 Multi-Species Model

In this section, motivated by the importance of background points on model perfor-
mance, we first investigate varying the number of observations per species on model
performance. We then investigate the importance of the type of pseudo-absence meth-
ods, testing random sampling, where points are selected uniformly from the globe,
target-group, where presences of other species are used, and a combination of both. We
here denote MS obs as a multi-species model fθms as described in Chapter 4, where obs
denotes the number of samples taken per species with replacement.

5.3.1 Optimising Number of Multi-Species Pseudo-Absences

We expect varying the number of background points to have a twofold effect on our
model.

First, the number of presences considered for each species are increased. This has the
result of learning the positive space very well, but we anticipate overfitting when the
number of samples greatly exceeds the number of observations. This may result in
models failing to generalise and instead forming localised groups.

Second, our model balances positives and negative observations and so the number of
background points are increased: more negatives are considered. In the random case,
this has the effect of more comprehensively covering the surface of the globe, but also
the byproduct of more negatives impacting positive space. In the target group case,
negative locations are reinforced more strongly.

We experiment on the results of using different observations of 100 (baseline), 1k
(average case), 1.75k (below max observation oversampling threshold), 2.5k (required
oversampling), and 5k (high oversampling).

Average Precision
Obs. per species MAP Songlark Woodpecker Bat Mongoose Frog Newt
100 0.54 0.79 0.39 0.35 0.69 0.17 0.06
1k 0.59 0.90 0.41 0.40 0.85 0.25 0.05
1.75k 0.62 0.92 0.44 0.50 0.81 0.24 0.15
2.5k 0.63 0.89 0.49 0.54 0.78 0.15 0.19
5k 0.65 0.89 0.47 0.50 0.70 0.18 0.12
SS RAND N/A 0.87 0.29 0.41 0.68 0.39 0.54

Table 5.4: Multi-species MAP over all species (in contrast to 5 species subset in Section
5.2.1) and AP for select species with varying numbers of observations per species.

Table 5.4 shows that MAP increases with the number of background points up to a
maximum of 0.65 MAP for MS 5k observations per species. This is greater than any
MAP on the single-species subset, and in addition this value is indicative of the entire
training set, making it a more comprehensive measure than AP alone–which is per
species—or the subset MAP used in Section 5.2.1—which was an average over only 5
species.
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5.3.1.1 Qualitative Analysis

Despite MS 5k having a higher mean average precision (MAP) than others, visual
inspection of range maps produced by the model seen in Figure 5.4, suggests that our
5k model overfits on the training data and fails to learn negative space. MS 5k begins to
discretise observational groups on each coastline, while ground truth places the species
over the entire continent. It is due to this observed overfitting that we use MS 1.75k
for future experiments, which Figure 5.4 shows interpolates well over space unseen in
training, learns negative space well, and has high MAP.

Ground Truth, Single-Species, and Multi-Species Predictions for Brown Songlark

(a) 100 Observations per
Species.

(b) 1.75k Observations per
Species.

(c) 2.5k Observations per
Species.

(d) 5k Observations per
Species.

Figure 5.4: Range maps produced by MS obs for 100, 1.75k. 2.5k, and 5k sampled
observations per species.

Figure 5.5 exemplifies this observation, as we see AP values become more balanced
from Figures 5.4a-5.4c, pooling towards the right hand side of the histogram as number
of observations increases. This is another indication of overfitting between 1.75k-
2k sampled observations, as the MS model learns the training distribution very well,
resulting in outlier-specific gaps in range maps seen in Figure 5.4d.

5.3.1.2 Quantitative Analysis

We conducted an ANOVA [83] test on the distributions of average precision and found
differences to be statistically significant (p = 1.12× 10−18). Investigating pairwise
significance using Tukey’s HSD pairwise comparison test [94]—a post-hoc test invesi-
gating which groups are statistically significant—we found all changes in number of
points to have statistically significant differences except between our 2.5k and 5k num-
ber of observations models. For these, we hypothesise that the model begins to overfit
around 2.5k observations per species, and this is further reinforced for 5k observations.
Model-by-model comparisons can be seen in Table 5.5.

Table 5.5 shows that we reject the null hypothesis—that there is no difference between
the means of the groups— for all comparisons except between our 2.5k and 5k number
of observations models. This means there is evidence to suggest that the means of all
other groups are different—that changing the number of points of observation for our
groups results in better or worse performing models. This is reinforced in Table 5.4,
where the MAP increases as number of observations is increased.

Failing to reject the null hypothesis between MS 2.5k and MS 5k may be the result of
many factors, including the greater sample sizes when compared to other groups. The
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(a) 100 observations per species.
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(b) 1.75k observations per species.
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(c) 2.5k observations per species.
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(d) 5k observations per species.

Figure 5.5: Average precision of all species for multi-species models trained with both
random and target-group pseudo-absence sampling, with varying number of samples
per species (includes oversampling when relevant). 1k observations figure omitted
(Appendix 7.1).

maximium number of presence points in the training set was 2000, meaning MS 2.5k
and MS 5k are guaranteed to oversample (use the same observation more than once)
and as such may have lower variance between groups. This is not true of any other
of our models, and may be a factor in the absence of statistical difference of the two
results. In addition, as our number of observations increases, the true difference of the
mean of the AP values produced by models may decrease. This will render them harder
to detect statistically, which may result in failing to reject the null.

It is interesting that MS 1k is statistically similar to MS 1.75k but dissimilar to both
MS 2.5k and MS 5k, while MS 1.75k shows statistical significance with MS 2.5k and
MS 5k. However, statistical significance is not transitive1; this result could be due
to adjusted p-values (which account for multiple comparisons [18]), sample variabil-
ity (leading to overlapping confidence intervals), or simply a greater magnitude of
differences between MS 1k and MS 1.75k vs MS 1.75k and MS 2.5k.

Despite MS 5k having greater MAP than other models, visual inspection of range maps
produced by the model, seen in Figure 5.4d, imply that our 5k model overfits on training
data and fails to learn negative space. For our case study example, the brown songlark,
MS 5k discretises observational groups on either Australian coastline, while ground

1(A ⇒ B)∧ (B ⇒C) ̸⇒ A ⇒C, or, A implies B and B implies C does not imply A implies C
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Group 1 Group 2 Mean Diff. P-adj lower upper reject
100 1k 0.05 0.00 0.02 0.09 True
100 1.75k 0.08 0.00 0.12 0.04 True
100 2.5k 0.09 0.00 0.06 0.13 True
100 5k 0.11 0.00 0.07 0.15 True
1k 1.75k 0.03 0.23 0.06 0.01 False
1k 2.5k 0.04 0.01 0.01 0.08 True
1k 5k 0.06 0.00 0.02 0.10 True

1.75k 2.5k 0.01 0.86 -0.02 0.05 False
1.75k 5k 0.03 0.12 0.00 0.07 False
2.5k 5k 0.02 0.76 -0.02 0.05 False

Table 5.5: Tukey’s HSD pairwise comparisons. p = 1.12 × 10−18. P-adj = 0.00 if
< 1×10−3. All values rounded to 3 s.f.

truth places the species over the entire continent.

It is due to factors in our qualitative and quantitative assessments regarding measured and
observed overfitting that we use MS 1.75k for future experiments, which interpolates
well over space unseen in training, learns negative space well, and has high MAP.

5.3.2 Type of Pseudo-Absences: Multi-Species

In this section we train MS 1.75k, our best generalisation model from Section 5.3.1,
using both background and target group point generation independently and together
as discussed in Section 4.5. We attempt to investigate the balance of maximising
the ‘information’ content of a background point by investigating the effect of model
performance when considering target-group pseudo-absences, whose bias is aligned
with that of the species of interest, random pseudo-absences, which are drawn randomly,
and a balanced combination of both..

Pseudo-Absence Generation Technique MAP
Random 0.61
Target-group 0.39
Both 0.62

Table 5.6: MAP scores for different pseudo-absence generation techniques for MS 1.75k.

We find that, as in to Section 5.2.1, despite target group points sharing bias of our
presence input points, when training on target group points alone the model performs
worse than when training with random only or a combination of random and target.
In the multi-species case, MAP improves for the hybrid approach by 0.01 MAP, and
we perform another Tukey’s HSD pairwise comparison test to determine statistical
significance, the results of which are seen in Table 5.7.
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Group 1 Group 2 Mean Diff. p-adj lower upper reject
Both Random -0.01 0.73 -0.04 0.02 False
Both Target -0.23 0.00 -0.26 -0.20 True

Random Target -0.22 0.00 -0.25 -0.19 True

Table 5.7: Tukey’s HSD pairwise comparisons. p=5.5× 10−70. P-adj = 0.00 if (<
1×10−3). All values rounded to 3 s.f.

Table 5.7 states that we reject the null hypothesis between both combiations of random-
only pseudo-absences and our hybrid approach. Given that the differnces in the dis-
tribution is highly likely to appear by chance, we may conclude that the inclusion of
target-group points had negligible effect on model performance. The three methods are
plotted in Figure 5.6, which reinforces the weaknesses of target-group sampling in its
poor negative learned space over the ocean. Hybrid sampling does appear to increase
zone specificity on the west coastline, though this may be a stochastic effect and no
concrete conclusions may be drawn from this image alone. Thus, our best generalisable
multi-species model was MS 1.75k with a hybrid sampling method.

Brown Songlark MS 1.75k Random, Target-Group, and Hybrid Pseudo-Absence
Generated Range Maps

(a) Random sampling (b) Target-group sampling (c) Hybrid sampling

Figure 5.6: Estimated range maps by SS BN4 for Rufous Woodpecker and each random
sampling technique. We note ‘ballooned’ range map for target species, and in general a
lack of specificity for all. This improved slightly in the multi-species case.

5.4 Why are some species better than others?

Figure 5.7 shows that there was almost no correlation between number of observations
and average precision for MS 1k. This is surprising, as we typically expect a larger
number of observations to lead to better model performance. This finding suggests that
for multi-species model MS 1k, the quality and distribution of the observations might
be more important than the overall quantity.

Species in our dataset with fewer than 2000 observations imply that these are all
available observations of that species, whereas greater than 2000—given that this is our
observation cap—imply that these are a subset of all observations. As such, species with
2000 observations in our training set may have a more representative distribution across
our training set compared to those with fewer. Indeed, the correlation coefficient—a
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Figure 5.7: Number of Observations plotted against AP with line of correlation drawn
(red). R2 = 0.02, implying number of observations do not explain variation of AP about
the mean.

measurement of how much variation in the dependent variable (average precision) can
be explained by the independent variable (number of observations)— decreases from
0.2 to 0 when species with 2000 observations are removed, implying that number of
observations explain no variation in the average precision without this subset.

Our motivation behind producing a multi-species model was the inclusion of joint-
modelling, which provides latent information to a model which may increase its per-
formance. An implication of this assumption is that species with fewer observational
counts may be paired with and informed by those with greater, reducing potential effects
of low observation on model average precision. We see this effect here, showcasing that
many observations are not required in order to produce accurate range maps.

However, some species AP values were very low, and as such AP variance must be
attributable to other factors, such as geographic location.

5.5 Single- vs Multi-Species Models

We have shown that neither multi-species models and single-species each outperform
each other in all scenarios, and so we are left with the question “which one, and when?”
The answer is situation-dependent, and we discuss advantages and disadvantages of
both in this section.

Which is computationally easier?

Single species models are computationally more efficient to run. Running one inference
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at test time for SS B4 takes 0.82s on a standard computer2, while in the same situation
an MS iteration takes 2.29s.

Training a single-species model is also less resource-intensive. The time taken to
train SS B4 on the same computer was roughly eight times less (198s) compared to
MS 1.75k (1531s). This efficiency gap stems from the inherent complexity of multi-
species models, which may be a barrier on resource-constrained systems, especially if
training with other environmental covariates. This highlights a trade-off within SDM:
computationally efficient single-species models versus potentially more comprehensive
multi-species models which can capture inter-species interactions.

Which is more consistent?

We showed in Section 5.4 that multi-species models offer consistency and defence
against low observer count bias—when predictions for a species are overly influencedby
a limited number of observations. As they consider many species simultaneously,
multi-species models can utilise the collective strength of the data, comparable to an en-
sembling approach which combines predictions from multiple sources. In addition, our
experiments trained single- and multi-species models with the same number of hidden
dimensions, which may have limited the multi-species models from fully exploiting
their potential. Doubling the number of hidden units to 512 raises the number of model
parameters from 656k to 2.4 million, and with this extra capacity, it is likely that more
complex interactions can be learned—if overfitting is avoided.

On the other hand, we observe for certain species, some multi-species performance
is very poor. Most of our multi-species models, except MS 1.75k, produced a range
map with AP of less than 0.05 for Gran Canaria giant lizard. Despite our balanced
sampler ensuring equal representation of all species across a training epoch, the nature
of a multi-species model focusing on all species at once may cause it to lose focus on
individual species, more so if the loss function takes no measure of individual species
into account, only total deviation from the ground truth distribution.

Given the architecture of single-species models, this situation would be less likely to
occur. We see in Figure 5.2 that, although range maps produced by single species
models are less specific—additional negative space is considered where it is guaranteed
to be incorrect (over water)—in no observed cases was performance as poor as the
worst-case scenario for the multi-species model. It is possible that a species not located
by our experiments would have this result in the single-species case, but it is also
feasible that—by focusing on one species only—the lower bound of performance is
raised, at least for species with minimum 50 observations.

Interestingly, not all multi-species models had poor performance on Gallotia stehlini.
MS 1.75k had an AP value of 0.58 MAP for this species, indicating good knowledge
of the species’ spatial distribution. This effect could be contributed to stochasticicity
during training time, where the number of examples seen (particularly in early epochs)
influences final performance. Our exclusion of batch normalisation supports this
hypothesis, as despite not seeing the requirement for it during training, by not including
it we allowed possible internal covariate shift, meaning a specific species showing up

2Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 2304 Mhz, 4 Cores, 8 Logical Processors
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early in training could have a large impact on downstream performance. The MAP
value—which takes an average across all species—between each model in Section 5.3
implies that while performance varied per model, in general performances were within
range of each other and so could be that benefits in certain areas of the model necessarily
result in worse performance in others. Whether this could be improved by increasing
model capacity is left for future work, but it is clear that there is no one solution to this
problem, which is true in machine learning across the field.

Single-species vs. Multi-species: A nuanced choice

In summary, multi-species models demonstrate consistency and defense against low
observer count bias by utilising collective data strength, albeit with the potential risk
of poorer performance on individual species due to loss of focus. Increasing model
capacity may help mitigate this issue, but achieving balance between species-specific
performance and overall model efficacy remains a challenge, and choice of which model
to select depends on the task at hand. We summarise our results in Table 5.8.

Factor Single-Species Model Multi-Species Model
Computational Efficiency More efficient Less efficient

Consistency Less consistent More consistent
Focus on individual sp. More focused Less focused

Potential for bias More susceptible Less susceptible

Table 5.8: Summary of trade-offs between single- and multi-species models.
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Conclusions

This chapter reviews the aims of the project and describes how they were achieved. In
summary, this dissertation has detailed two deep learning model architecture designs,
implementations, and investigations into optimal pseudo-absence generation techniques
for optimal model performance.

The first aim of this project was to develop a single-species model architecture, which
could produce accurate range maps given presence-only observations. This aim was
achieved through a custom feedforward fully-connected multi-layer perceptron, which
generated absences and produced accurate and precise range maps.

The second aim was to develop this architecture into a multi-label scenario, where
instead of modelling for a single-species, a prediction was made for all species simulta-
neously. This aim was achieved by adapting the single-species architecture to handle the
increased complexity and dimensional by the multi-label case. By producing accurate
and precise maps for unseen data, we increased confidence in our model results, which
can be used to estimate future species spatial distributions for novel species.

The final aim was to investigate the effect of different pseudo-absence generation
techniques on both single- and multi-species model performance. By adapting absence
sampling or using a custom loss function, both architectures were developed to perform
supervised learning with random and target-group hybrid pseudo-absences, as well as a
combination of both. For each pseudo-absence generation technique, we performed a
thorough investigation into the effects on both model architectures, finding a balanced
dataset with random-only pseudo-absences to be the most effective technique for single-
species, and a hybrid approach for multi-species.

6.1 Related Work

Barbet-Massin et al. [13] explored background point generation techniques and their
affect on models, but utilised simulated species for the task—which may miss underlying
real-world complexities—and considered only ‘shallow’ models. In this study, we
explore similar generation techniques, but focus specifically on MLP models and

38
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compare between single-species and multi-species. We also consider adaptations to the
architecture which benefit model predictions (Section 4.5).

Cole et al. [27] investigate the effect of varying the number of pseudo-absences, but at
lower thresholds than we investigate in this study and without balancing the dataset.
This study addresses these limitations by examining a wider range of thresholds with a
balanced sampler. Few studies investigate combination techniques for pseudo-absence
generation methods, providing inspiration for the study of them in this paper. Other
work [64] investigates the effect of including other cofactors in the input dimension,
where we limit ourselves to coordinates to isolate the specific effect of pseudo-absence
generation techniques.

6.2 Limitations and Future Work

Species distribution modelling is intrinsically a low-resource problem, and machine
learning models’ fundamental data requirement is undeniably a barrier to producing
effective range maps for underrepresented or endangered species. Our minimum
presences count was 50, which neglects species whose observation count fall below
this threshold. Future work will explore methods to improve model performance for
low-resource species, which could involve incorporating known species presence areas
to generate additional data points. By creating more accurate range maps for these
species, they can be trusted as independent data sources to inform policy decisions.

Another limitation of our study lies in how we treated presence observations. We took
each observation to be equal as an assumption for training our model, when in reality,
some presence records might represent occurrences in suboptimal areas due to factors
like resource scarcity or forced movement. This could lead to our model overestimating
the suitability of certain areas or underestimating the potential for marginal areas. Future
work could explore incorporating weighted presence reports on habitat suitability.

Our models focus on a global scale, which can provide insightful and large-scale
distributional trends, but this may result in less accurate predictions on smaller scales,
which are often more relevant for conservation efforts. Policy decisions typically
occur at local or regional levels, and these may require information about specific
environmental variables or habitat features that might not be captured in a global model.
For example, incorporating data on local land-use patterns or specific prey availability
could improve model accuracy at a regional scale by increasing information given
to a model. Future work could explore techniques to bridge global and local scale
approaches, allowing models which provide both large-scale trends and fine-grained
detail.

Finally, Our models considered spatial distributions only. By disregarding temporal
aspect of SDM, we limit the effectiveness of our method in certain downstream tasks,
for example environmental policy decision or migration analysis.
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[21] Sérgio Branco, André G Ferreira, and Jorge Cabral. Machine learning in resource-
scarce embedded systems, fpgas, and end-devices: A survey. Electronics, 8(11):
1289, 2019.

[22] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[23] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[24] Philipp Brun, Thomas Kiørboe, Priscilla Licandro, and Mark R Payne. The
predictive skill of species distribution models for plankton in a changing climate.
Global change biology, 22(9):3170–3181, 2016.

[25] Anaı̈s Charbonnel, Patrick Lambert, Géraldine Lassalle, Eric Quinton, Antoine
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Methods for improving species distribution models in data-poor areas: example
of sub-antarctic benthic species on the kerguelen plateau. Marine Ecology
Progress Series, 594:149–164, 2018.

[47] Antoine Guisan, Reid Tingley, John B Baumgartner, Ilona Naujokaitis-Lewis,
Patricia R Sutcliffe, Ayesha IT Tulloch, Tracey J Regan, Lluis Brotons, Eve
McDonald-Madden, Chrystal Mantyka-Pringle, et al. Predicting species distribu-
tions for conservation decisions. Ecology letters, 16(12):1424–1435, 2013.

[48] Trevor Hastie and Robert Tibshirani. Generalized additive models: some ap-
plications. Journal of the American Statistical Association, 82(398):371–386,
1987.

[49] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
The elements of statistical learning: data mining, inference, and prediction,
volume 2. Springer, 2009.

https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14617
https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14617
https://www.nature.com/articles/s41598-020-79783-0
https://www.nature.com/articles/s41598-020-79783-0


Bibliography 44

[50] Douglas M Hawkins. The problem of overfitting. Journal of chemical information
and computer sciences, 44(1):1–12, 2004.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[52] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their appli-
cations, 13(4):18–28, 1998.

[53] Tomislav Hengl, Henk Sierdsema, Andreja Radović, and Arta Dilo. Spatial
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7.1 Omitted Graphs
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(c) 1.75k observations per species.
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(d) 2.5k observations per species.
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(e) 5k observations per species.

Figure 7.1: Average precision of all species with varying number of samples per species
(includes oversampling when relevant). Includes Figure excluded in main body.
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