Studying the effect of GPT-3 Technology
(Copilot) on User Trust

Nephele Aesopou

4th Year Project Report
Computer Science and Mathematics
School of Informatics
University of Edinburgh

2024

Abstract

Automatic code generation and facilitation of programming tasks has long been a
key focus for developers and researchers, seeking to streamline such processes and
increase productivity. Despite the growing adoption of Al-driven code generation tools,
the evaluation of such tools often overlooks the critical aspect of human-computer
interaction in educational settings. Specifically, users’ trust in Al coding assistants is
crucial for their effective adoption and integration into software development processes
and education.

This thesis addresses this gap by investigating how students adopt and use generative
Al tools for coding tasks. We conducted an extensive user study involving university
computer science students focusing on the trust they develop towards GitHub Copilot,
an Al code generation tool. The study measured trust quantitatively, through metrics like
the acceptance of Copilot’s suggestions, and qualitatively, via questionnaire responses.
Additionally, we examined the influence of students’ initial expectations, perceived
productivity, and task complexity on their trust towards Copilot, aiming to understand
how different factors affect reliance on the tool.

This study revealed two distinct interaction patterns among students, Collaborators and
Operators, highlighting the contrasting approaches to leveraging Al assistance. Further-
more, it provided insights into factors impacting user trust, such as met expectations
and perceived productivity, while underscoring the importance of responsible Al usage
in educational settings to avoid over-reliance.

Research Ethics Approval

This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 676940

Date when approval was obtained: 2023-12-08

The participants’ information sheet and a consent form are included in Appendix B.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Nephele Aesopou)

Acknowledgements

I would like to express my sincerest gratitude to my supervisor, Dr Kobi Gal, for his
invaluable guidance, constructive feedback, and continuous encouragement throughout
the project. Without him I would not have had the chance to explore the interesting
world of generative Al programming assistants, and learn the steps towards the creation
of an insightful user study.

I am indebted to Professor Fiona McNeill for generously allowing me to collaborate
with her course “Introduction to Object Oriented Programming”, use the class materials,
and for sharing my passion for effective and responsible use of Artificial Intelligence in
the educational setting.

I would also like to give many thanks to all participants of my user study, who dedicated
their time (and patience) to working with Copilot. Their contributions were invaluable
to this project.

Finally, I am grateful to my friends and family for their unwavering support, endless
motivation, and understanding throughout this challenging journey.

3

Table of Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Objectives and Research Questions 2
1.3 Methodology Overview 2
1.4 Key Findings and Contributions 2
1.5 Structureofthesiso 3
Related Literature 4
2.1 Large Language Models 4
2.2 GPT-3,Codex & Copilot 4

2.2.1 GPT-3 and Few-shot Learning 4
222 Codex 5
2.2.3 Al pair-programmer: Copilot 5
2.3 UserstudiesonCopilot 6
231 UserTrust. o 6
232 Security 7
2.33 Productivity 7
2.3.4 Usability and Correctness 8
User Study Design 10
3.1 Definitionof User Trust 10
3.1.1 The importance of Trust between users and AI 11
3.1.2 UserTrustinthisstudy 11
3.2 Programming scenariosdesign 12
32.1 InflBcourse 12
3.2.2 Task programming language 12
323 Taskduration 12
3.2.4 Programming Tasks 13
325 Tasktimelimit 13
326 A/BTesting 14
3.3 Participantpool 14
3.3.1 Greatest Challenge: Recruitment of participants 14
3.3.2 Study participants Lo 14
34 Ethics e 15
3.5 Methodology 15

4

3.5.1 Preparation and Execution of the User Study
3.5.2 Evaluation Criteria

Empirical Results

4.1 Programming Tasks
4.1.1 QueriestoCopilot,
4.1.2 Measure of acceptance
4.1.3 Prompt Categorisation
4.1.4 Repair Strategies

42 SurveyResponses e
4.2.1 Quantitative surveydata
4.2.2 Qualitative survey data

Evaluation and Discussion

5.1 Interaction Patterns: Collaborators vs. Operators
5.1.1 Collaborators
5.1.2 Operators
5.1.3 Comparison with other interaction styles
5.1.4 Programming experience vs. interaction patterns

5.2 Copilotand Education,

5.3 Acceptance e

5.4 Trustand Productivity L

5.5 Overreliance

Conclusions

6.1 Research Questions
6.2 Limitations and Future Work
6.3 Conclusion e

Bibliography

A

User Study Appendix

A.1 Study Instructions

A2 Survey Questions e
A2.1 Surveyl
A22 Survey2 ...
A23 Survey3 ...

A.3 Demographics

Participants’ information sheet and consent form

18
18
19
20
20
22
23
23
25

30
30
30
31
31
32
33
34
34
34

36
36
37
38

39

44
44
50
50
51
52
54

55

Chapter 1

Introduction

1.1 Background and Motivation

The programming landscape is undergoing a significant transformation with the emer-
gence of large pre-trained models designed to automate code generation [12, 11]. These
systems aim to increase programmer productivity, automate routine tasks, and facilitate
the process of acclimating users to other languages or novel codebases [24, 41, 11]. As
such tools become widely accessible and integral to software development, it is crucial
to examine their capabilities and impacts.

A prominent example of such technology is GitHub Copilot, an Artificial Intelligence
(AI) tool that significantly streamlines code development [2]. Copilot suggests lines
of code or entire functions by analysing context from code snippets and comments,
showcasing its proficiency in understanding both programming and natural languages.
This capability stems from its training on a vast corpus of publicly available source
code and documentation, highlighting its potential to transform programming practices
and educational methodologies alike [11].

While existing research primarily focuses on the accuracy, productivity, and security of
these Al systems, it overlooks the importance of trust in the human-AlI collaboration
and the way students interact with and perceive Al coding assistants [11, 17, 24, 25, 41].
This thesis extends the existing research by presenting the first study centering on
university students and their development of trust in Copilot through an extended period
of coding tasks, in contrast with previous one-off evaluations. The longitudinal approach
is motivated by the need to explore the dynamics of trust between students and Al tools
over time, investigating the conditions under which users trust Al-suggested code. The
development of trust in Al models is pivotal, influencing how much responsibility and
tasks humans are willing to delegate to these tools [35]. This aspect is especially critical
considering the future landscape of jobs like software and data engineering, which will
increasingly rely on strong Al capabilities. Furthermore, the impact on education is
profound, raising questions about how to effectively integrate Al coding assistants while
ensuring that students develop robust problem-solving skills.

Chapter 1. Introduction 2

1.2 Objectives and Research Questions

The overall goal of this thesis was to study the effect of Copilot on student trust and
generate useful insights from the interactions between the students and Al tool. This
project is centred around the following three research questions:

* RQ1: How do students specify queries to Copilot, and how do these queries
evolve over time? Additionally, how do users’ interactions with Copilot adapt in
response to its behavior?

* RQ2: How to define and measure user trust, as it may be reflected in students’
interactions with Copilot?

* RQ3: How do factors such as task complexity, students’ perceived productivity,
and their initial expectations of Copilot influence their trust in the tool?

1.3 Methodology Overview

To address the research questions, we designed and executed a user study with eight
university students in collaboration with an introductory Java university course (Inf1B).
This study comprised of four self-contained Java programming tasks from the Inf1B lab
and tutorial exercises, aimed at introducing students to basic Java concepts. Participants
were encouraged to code with the assistance of GitHub Copilot.

Moreover, participants completed three surveys: the first gathered their background
information and initial expectations of Copilot, while the remaining two focused on
their reflections after the interaction. The study spanned two weeks, with participants
completing one task during the first week and three tasks during the second. This
schedule allowed for an analysis on how interactions changed and how trust in the tool
evolved as participants became more familiar with both the programming language and
Copilot.

Participants were instructed to screen-record their coding sessions. These recordings
were later reviewed manually by the researcher. The analysis focused on several
criteria, including measurement of acceptance of Copilot’s suggestions, any subsequent
modifications or deletions of these suggestions, and the categorization and frequency of
user prompts and repair strategies. Additionally, a comprehensive analysis of survey
responses from all participants was performed. Further details on the user study
methodology are elaborated in Chapter 3.

1.4 Key Findings and Contributions

Our main finding is the identification of two distinct interaction patterns among students
when incorporating Al code-generation tools for solving programming tasks: the
Collaborators and the Operators. These coding styles relate to the type of prompting
strategy followed by users and the level of coding they perform. Collaborators have
a clear problem-solving approach and guide Copilot’s suggestions, while Operators
focus on writing natural language instructions to the Al through prompts and on editing

Chapter 1. Introduction 3

the given solution only when it provides errors. The study also revealed that unmet
initial expectations, such as Copilot’s code debugging abilities, significantly decreased
trust levels. Notably, we observed that perceived productivity remained strong, despite
instances of long debugging sessions.

This thesis presents the first empirical longitudinal user study analysing trust develop-
ment between undergraduate students and Al coding assistants like GitHub Copilot. A
key contribution is the identification of two contrasting interaction styles, which can
inform the design of Al tools and their adoption in educational settings, as well as the
need to avoid over-reliance. The quantitative and qualitative analysis of programming
interactions sheds light on factors influencing trust in Al tools. Furthermore, the prompt
categorisation observations and analysis offer insights into the prompting strategies
employed by students. Importantly, our findings highlight the necessity of guiding
students to leverage Al tools responsibly without excessive dependence, which could
hinder their problem-solving abilities.

1.5 Structure of thesis

This thesis comprises of six chapters:

Chapter 1: presents the background and motivation for the study and defines the project
objectives and research questions. It also gives an overview of the study’s methodology
and its key findings and contributions.

Chapter 2: delves into a quick summary of related literature, looking into Large
Language Models, GPT-3 technology, and relevant user studies. The examined papers
are divided into four categories depending on the topic of their research: user trust,
security, productivity, and usability and correctness.

Chapter 3: describes in detail the user study design and methodology. Specifically, it
defines user trust between Al and programmer, justifies the design of the programming
scenarios and the selection of participants, and thoroughly explains the evaluation
criteria.

Chapter 4: presents the empirical results of the user study, dividing them into program-
ming task results and survey responses. The analysis is done both quantitatively and
qualitatively.

Chapter 5: discusses the results of the analysis, highlighting two distinct participant
interaction patterns: Collaborators and Operators. Moreover, it elaborates on the results
of acceptance metrics, perceived productivity, over-reliance, and education.

Chapter 6: gives a summary of the thesis’ findings and the answers to the three research
questions. It concludes with the study’s limitations and suggestions for future work.

Chapter 2

Related Literature

This thesis relates to work in several areas, including Large Language Models (LLMs),
Generative Pre-trained Transformers (GPTs), and specifically focuses on studies relevant
to Al code-generation assistants and research on user trust. Each area is expounded
upon, discussing its connections to the three research questions.

2.1 Large Language Models

Generative Al has undergone remarkable advancements in recent years, leading to
a surge in its popularity and revolutionizing problem-solving and content creation
[28, 5]. Generative Al systems can generate a diverse range of outputs, including
text, images, speech, and code, that closely resemble human-generated content [18, 6].
LLMs are characterized by deep neural network architectures trained on vast textual data
comprising of billions of parameters [21]. By sequentially analysing data and tracking
relationships in their word corpora, LLMs can generate coherent and contextually
relevant text from small natural language prompts, demonstrating remarkable utility in
Natural Language Processing [28, 18, 5].

2.2 GPT-3, Codex & Copilot

OpenAl has significantly contributed to the development of LLMs by introducing ”Gen-
erative Pre-trained Transformers™ in 2018 [27]. Their subsequent GPT-3 [10] marked a
ground-breaking achievement in the domain of unsupervised neural networks in 2020
and formed the foundation for the Copilot GPT model. The following subsections
analyse the performance of GPT-3 and two of its extensions: Codex and Copilot.

2.2.1 GPT-3 and Few-shot Learning

Studies have evaluated GPT models’ performance, investigating how outputs can be
influenced by the choice of prompts and training data [38, 37, 40, 19]. Notably, Zhao
et al. [38] revealed that GPT-3’s accuracy was heavily susceptible to the prompt format,
the set of training examples, and their ordering. To overcome the biases, the authors

4

Chapter 2. Related Literature 5

proposed “Contextual Calibration”, a procedure to adjust the model’s output probabili-
ties and correct the contextual error. This result highlighted the importance of prompt
engineering for Al code generation tools like Copilot [37, 40, 19]. Nevertheless, in the
case of Copilot, an explicit prompt is not always necessary, as the tool can leverage
information from the coding context and provide implicit suggestions [39].

2.2.2 Codex

To explore GPTs’ language understanding capabilities, Chen et al. [11] fine-tuned the
pre-trained GPT-3 language model on millions of public software repositories hosted on
GitHub, creating Codex, a large-scale transformer model focused on program synthesis.
Codex was trained on 159GB of filtered public python code and can generate python
functions to solve problems given by natural language prompts [11]. Its performance
was evaluated on HumanEval, a dataset of 164 hand-written problems which assessed
language comprehension, reasoning, simple mathematics, and algorithms.

The authors discussed Codex’s limitations, which include sample inefficiency, over-
reliance, alignment failure, biased code due to the collection of human-generated
programs, cybercrime risks, and a huge environmental impact [11].

OpenAl has since granted selective public access to its models through tools like
ChatGPT and Copilot [2, 1]. ChatGPT for instance, serves as a user-friendly interface
that allows Al-driven conversations. In parallel, OpenAlI’s collaboration with Microsoft
GitHub led to the development and launch of Copilot in October 2021 [2].

2.2.3 Al pair-programmer: Copilot

Copilot, a model powered by Codex, is introduced as the “Al pair-programmer’v [2];
an Al tool designed to assist the programmer in real-time. Users can simply articulate
their coding intent by providing a natural language comment, docstring description, or
by specifying a function name and its associated arguments (see Figure 2.1). Copilot,
in response, instantaneously suggests relevant code.

The programmer can then accept the suggestion using the Tab key, request an alternative
with A1t +], or discard Copilot for this specific task by pressing Esc. Furthermore,
Copilot features a multi-lined suggestion pane that permits users to view and compare
diverse implementations of the same function and is able code in multiple programming
languages.

Finnie-Ansley et al. [17] evaluated Copilot’s accuracy by comparing its performance
on introductory computing exercises to students completing the same exercises in an
examination setting. Copilot was presented with 23 student exam questions and set to
solve them using the same examination software and grading scheme. Additionally, it
was presented the Rainfall problem [30] with wording variations, and its passing rate
was measured by testing each problem 50 times. Codex scored around 75% on the
exam exercises, placing it among the top quarter of the students’ scores. The different
Rainfall solutions generated by Copilot were examined by counting lines of code and
the algorithmic variation [17].

Chapter 2. Related Literature 6

@ def fibonacci(x): Untitled-1 1 | ¢ » Accept Accept Word

1 et fibonacci(: j:l

Figure 2.1: Interaction with GitHub Copilot, showing the user’'s code and Copilot’s
suggestion in gray.

While our user study also selected a set of coding tasks for novice programmers, we
expand the research by studying the interaction between the students and the Al tool,
and by discussing how this might affect education and learning practices.

2.3 User studies on Copilot

Despite its impressive accuracy, there exists limited research on Copilot, whether in term
of its capabilities other than accuracy, or from the user’s perspective. Specifically, one
must consider user trust [35], security [23, 25, 29], productivity [41, 24], and usability
[31, 8, 11].

2.3.1 User Trust

User trust is crucial for an automated code generation tool like Copilot [13]. This thesis
expands upon the limited existing research on user trust towards Al code-generation
tools, while drawing comparisons with important observations concerning the establish-
ment and maintenance of trust.

To measure user trust, different approaches have been explored, such as the work
by Perry et al. [25], where trust was correlated with survey responses, free-response
feedback, and the uptake of Al suggestions. They concluded an inverse relationship
between security concerns and trust in the Al assistant. Building upon these measures,
our study adapts them to an undergraduate programming environment. Moreover, in
order to analyse the users’ approach to learning how to trust Copilot, Perry et al. [25]
defined twelve prompt categories for prompts provided to the Al assistant. Users
appeared to “learn” the best strategy to address the Al and how to re-phrase their
prompts for the desired output. We adapt Perry et al. [25]’s analysis approach to the
observations from our study’s programming task screen recordings.

Contrary to other studies, Wang et al. [35] avoided the controlled task completion and
interviewed professional developers interacting with Al assistants in their real-time
jobs [35]. The two-stage analysis involved the interview stage and a design probe
investigation, whose goal was to interpret the design choices that contribute to trust.

Chapter 2. Related Literature 7

According to Wang et al. [35]’s results, what contributes most to the user’s trust is
the expectation of the AI’s capabilities, such as productivity, higher code quality,
knowledge of AI’s limits, and awareness of its potential risks. Furthermore, authors
identified the challenges in managing user expectations effectively (tiresome learning
process, few use-cases, biased towards other Al tools), and the difficulties in regulating
Copilot and evaluating its suggestion. Contrary to our analysis, Wang et al. [35]’s
study predominantly focused on the effect of the user interface design on the coding
experience. Finally, our user study also faces the limitations of gender and self-selection
bias, as participants who volunteered were interested or experienced with such Al tools
[35].

2.3.2 Security

A prominent 2022 user study implemented by researchers at Stanford University, mea-
sured the security risks that arose when writing code with an Al assistant [25]. Their
goal was to examine the relationship between Al usage, the rate of security mistakes,
and users’ different prompting strategies. The study consisted of a set of self-contained,
short tasks in multiple programming languages, that covered a wide range of potential
security mistake types. Using A/B Testing, participants were divided into an Experiment
group with access to the Al assistant (2:1 ratio) and a Control group without access.
The overall result showed that users with access to the Al wrote incorrect and insecure
code more often than the Control group, with strong statistical significant results for
half of the tasks and marginal significance for the rest.

Aligning with the focus of this thesis, Perry et al. [25]’s user study primarily enlisted
participants from the university student demographic (66% of participants). However,
the authors remarked that this demographic may not provide a very descriptive represen-
tation of the population that engages daily with such Al tools and security issues. Unlike
our work where interactions were done in an integrated development environment, the
study by Perry et al. [25] implemented a programming interface that required actively
prompting the Al model. Moreover, their analysis focused on the correlation between
trust and security risks, compared to our broader investigation of trust in a university
course setting.

2.3.3 Productivity

Using a similar approach, Peng et al. [24] assessed whether Copilot increased human
productivity [24]. Specifically, their controlled experiment recruited 95 professional
software engineers and asked them to write a toy HTTP server engine in JavaScript
as quickly as possible, using A/B testing. The results of the experiment showed an
55.8% productivity increase, which was measured as the average completion time of
participants using Copilot minus the average completion time of the participants without
assistance [24].

Interestingly, the study was conducted before the release of the Copilot tool, so partici-
pants were given an introductory tutorial before attempting the problem. All participants
had no experience with the Al tool and their expectations of Copilot were unbiased.

Chapter 2. Related Literature 8

Similar to our user study, results were affected by participants’ inexperience with Copi-
lot and by the time and effort they required to discover its capabilities and learn how to
use it. We resolve the issues of a one-off interaction by conducting a longer duration
study, spanning two weeks.

Since productivity was measured by task success and task completion time, factors
such as task experience, familiarity with HTTP, and participant dedication, might have
influenced the results. Investigating the demographics, the researchers suggested that
“less experienced developers, developers with heavy coding load, and older developers
benefit more from Copilot” [24].

2.3.4 Usability and Correctness

Questions like “How do users recognize errors in code generated by Copilot?”, “What
coping mechanisms do users employ when they find errors in code generated by Copi-
lot?”” and “What are the obstacles and limitations that can prevent adoption of Copilot?”
were investigated by Vaithilingam et al. [31] in 2022.

The study used Copilot to discover programmers’ expectations, coping strategies, and
needs regarding an Al code-generator assistant [31]. It recorded the performance of 24
participants completing three Python coding tasks of increasing difficulty, once using
Intellisense (default completion tool in VS Code [4]) and once using Copilot. The
tasks were considered failed if not completed withing the 20 minute time limit. The
researchers collected data on task completion time, failure rates, and survey response
metrics during and after the programming tasks.

A non-statistically significant but important result was that participants using Copilot
failed more tasks than when not, but successful tasks were completed faster with Copilot.
The authors highlight their observation that users underestimated the effort required to
fix errors in the suggested code, leading to a significant debugging time and task failure.

Unlike our user study involving undergraduate students (most of them new to Copilot),
Vaithilingam et al. [31] recruited participants with advanced programming experience,
with less than half being undergraduates.Their study generated very interesting observa-
tions regrading users’ coping strategies and obstacles, which we compare in this thesis
with our student population results.

Barke et al. [8] analysed Copilot’s usability and the interactions between programmers
and Al assistant based on Grounded Theory; a qualitative research technique that
iterates between data collection and theory hypotheses [8]. By asking the participants to
complete coding tasks across different programming languages, the authors concluded
two types of user interaction: “Acceleration mode”, where coders know their next steps
and interactions are fast and short, and “Experiment mode”, where the programmers
are unsure how to proceed and prompt the Al to get assistance and ideas [8].

The authors suggest that the programming assistant should identify the interaction mode
and adjust its suggestion type, frequency, and confidence level accordingly. We explore
if these interaction patterns apply to undergraduate students, since Barke et al. [8]
mostly recruited participants from academia. We extend the investigation of interaction

Chapter 2. Related Literature 9

patterns, by setting a longer study duration to allow users to familiarise themselves with
Copilot without the time pressure.

Focusing on usability, the user study by Prather et al. [26] explored the interaction
between university students and Copilot from a teaching and learning perspective rather
than user trust. Students were presented with a programming homework assignment
and allowed to use Copilot. Different to our user study, it was a one-off interaction in
an examination environment, potentially affecting students’ performance due to stress.
The paper never measures student trust towards Copilot. Prather et al. [26] identified
two distinct interaction types: “Shepherding”, where unsure students got distracted by
Copilot’s suggestions and tried to guide it towards the correct solution, and “Drifting”,
where students entered a debugging “rabbithole” and wasted a lot of time in trying to
understand suggestions. Both interaction patterns, common among novice programmers
and new Copilot users, were observable in our user study.

Chapter 3

User Study Design

The design and methodology of this project aligns with previously published research
on GitHub Copilot, adopting similar approaches for task selection, data collection
techniques, and analysis methods [25, 31, 8, 26]. Specifically, we designed a user study
that combines programming tasks with three surveys.

Programming tasks were performed by the study’s participants with the help of GitHub
Copilot and the screen-recording of each interaction was analysed manually by the
researcher using the evaluation criteria described in Subsection 3.5.2. Additionally, a
thorough analysis of survey responses was conducted to pinpoint recurring themes and
patterns in participants’ perceptions and comments. The focus of the analysis was on
the level of trust in Copilot, the factors that influence user trust, and the users’ behavior
during the interaction.

Due to the various definitions that the term trust can adopt and the multifarious possible
methods that such a user study could follow, in the following chapter we state and
justify the decisions made regarding the definition of trust, the programming tasks, the
participant pool, and the methodology.

3.1 Definition of User Trust

The most important task was to define frust between humans and Al. One possible
approach to defining trust is through the seven key requirements published by the Euro-
pean Commission in 2019, which outline the criteria for an Al system to be considered
trustworthy [13]. These requirements include human agency and oversight, technical
robustness and safety, privacy and data governance, transparency, diversity and non-
discrimination and fairness, societal and environmental well-being, and accountability.

Applying these criteria to GitHub Copilot, previous studies, such as the one by Pearce
et al. [23], have focused on the security and safety aspect of trust. Others, evaluate
Copilot’s transparency in explaining the rationale behind its actions and decisions, as
users require accountability and feedback [34]. Additionally, user experience plays a
vital role in developing trust, as a smoother and more positive experience can enhance
the tool’s trustworthiness, an aspect investigated by Wang et al. [35].

10

Chapter 3. User Study Design 11

It is evident that trust cannot be captured through a singular measure and is highly
situation-dependent. It is also characterized by its qualitative and dynamic nature, being
influenced by the outcomes of interactions with the Al. This study aims to analyse
the change in users’ attitude and trust towards the Al, acknowledging that trust entails
maintaining “positive expectations while accepting the perceived risks of undesirable
outcomes” [35].

3.1.1 The importance of Trust between users and Al

Why is trust in Al tools critical today? Firstly, it drives their adoption and frequent
use. The success of an Al tool depends on its users’ trust Wang et al. [35]. This trust
influences users’ willingness to utilize AI models in unfamiliar tasks. For instance, in
education, students are more likely to incorporate Al code-generating tools into their
daily programming tasks if they trust their capabilities. Secondly, trust is closely tied to
responsible Al usage. For example, when students trust the Al, they implicitly assume
responsible usage, contributing to the overall responsible deployment of Al.

In addition, it is crucial to be able to measure this trust due to the numerous risks
associated with blindly relying on an Al tool. Over-reliance on Al models can result
in numerous issues including security breaches, lack of diversity, violation of creator
rights, and impediment of educational progress [25, 11, 26]. We discuss the topic of
over-reliance in depth in Section 5.5. Conversely, completely distrusting the Al in
today’s context is simplistic, as Al holds potential benefits for the society and economy.
This project aims to show the importance of trust between the user and Al tool, and
investigate how it is established, maintained, or lost.

In the first survey of the study (refer to Appendix Section A.2), two questions addressed
the topic of trust by asking the participants to select the option with the greatest and least
impact on building trust between users and Al. Interestingly, all participants believed
that the most important factor is the accuracy of the Al tool. Regarding the factor
with the least impact on trust, there was a varying opinion: most participants chose
Ethical behavior of the Al tool (50%), while others voted for User experience (25%),
Consistency of suggestions (12.5%) and Data Privacy & Security (12.5%), as discussed
in Section 4.2.

3.1.2 User Trust in this study

In this thesis, we chose to determine trust in terms of measure of acceptance of Copilot’s
suggestions, and from the analysis of the programming interactions and free-response
questions. Specifically, we analysed the number of accepted Copilot suggestions, as
well as if they led to subsequent edits or deletions. Moreover, since trust is a theoretical
concept, we measured it through survey responses focusing on students’ perceptions
and expectations.

Chapter 3. User Study Design 12

3.2 Programming scenarios design

The second critical decision in planning the user study was designing the programming
scenarios. Decisions concerning the type of coding tasks, their difficulty, the study’s
duration, and the implementation of A/B testing, required careful consideration both
individually and collectively due to their interdependence.

3.2.1 Inf1B course

We chose to focus the user study on programmers that have different levels of experience
with Copilot and the chosen coding language. This decision was made to try and separate
the user’s experience with solving a certain task and the trust he has in Copilot. In
other words, if a user is very familiar with the coding task he is given, it will be easier
for him to understand and accept/edit Copilot’s suggestion, without that indicating his
high trust to the tool. On the other hand, novice and intermediate programmers that are
confronted with tasks they have not frequently seen before, are probably more likely
to trust Copilot and will show stronger adoption changes as they interact for longer.
Therefore, the study was done in collaboration with the instructor of the “Introduction
to Object Oriented Programming” (Inf1B) course, a foundational Java course at the
university. The recruitment of participants was targeted at first-year University of
Edinburgh computer science students. As a result, our study primarily centered on tasks
aligned with the introductory nature of the course, catering to the skill level of first-year
students.

3.2.2 Task programming language

The Java programming language was selected for two main reasons: firstly, the Inf1B
course presented the ideal environment for the programming tasks, and secondly, it
is currently one of the top three most commonly used languages in GitHub, hence
Copilot is very familiar with it. Our programming tasks were done in one programming
language, similar to other relevant studies [26, 24, 31]. We selected this approach
because we wanted to focus our investigation around trust that should not be affected by
the programming language. We believe that our results would be the same irrespective
of the coding language.

3.2.3 Task duration

The user study spanned two weeks, coinciding with Weeks 2 and 3 of the University
of Edinburgh’s second semester, a period during which students were still acclimating
to Java and motivated to participate in our study. Task 1 was assigned for completion
in Week 1, and Tasks 2 to 4 in Week 2. We believe that assessing user trust in an Al
tool based on a single interaction is insufficient, as trust may change across interactions
and tasks. By extending the study over two weeks, users had ample opportunities to
explore the AI’s capabilities and evaluate its trustworthiness. Furthermore, this extended
time-frame allowed us to examine how users adjusted their prompt format and refined
their expectations, while becoming more familiar with the Al tool and as the tasks grow
in complexity [25].

Chapter 3. User Study Design 13

3.2.4 Programming Tasks

Users were asked to complete four self-contained programming tasks, one during the
first week of the study and three during the second week. The tasks were exercises
taken from the tutorial and lab sessions of the Inf1B course, as they had the appropriate
difficulty level and did not create additional work for the students. All four tasks
could be completed in a short amount of time and were integral for mastering Java.
Participants could use the internet and any documents (such as course materials), as
they would have done normally when solving the class exercises.

We present below the four programming tasks assigned to the participants. Task
specifications are copied and shortened from the Inf1B tutorial and lab sheets. These
tasks primarily evaluated proficiency in basic Java functions, for-loops, and overall code
planning skills.

1. Task 1: Esrever (Reverse)

Given a string containing a sentence, how would you output the sentence with
the order of words in reverse? For example, given “I like ice cream” the output
should be “cream ice like I””.

2. Task 2: ArrayRotate

In this exercise, the goal is to write program called ArrayRotate that takes a series
of integers from the command-line, stores them in an array nums, then copies
them into a new array copy so that the values are rotated left by one.

3. Task 3: Mode

Write a program Mode to produce a table of the results, specifying the number
of instances of each value, followed by the corresponding number of dots, as a
simple visualisation. Finally, your program should print out the mode.

4. Task 4: Sieve of Eratosthenes

Write a program Sieve which finds all the prime numbers up to 20 using the Sieve
of Eratosthenes (checking that p < n rather than p < n?) and prints them to the
terminal on a single line.

Spanning from Week 1 to Week 2 exercises, the tasks progressively increased in
complexity. They served to reinforce comprehension of prior topics while facilitating
the expansion of participants’ knowledge.

3.2.5 Task time limit

We followed a different approach from other studies [26, 31, 25] and set no time limit
on the programming tasks to replicate as faithfully as we could the learning environment
of Inf1B class. As we highlighted to the students, their goal was to interact and explore
the capabilities of Copilot without the pressure of a time limit.

Chapter 3. User Study Design 14

3.2.6 A/B Testing

We opted against employing A/B testing for our user study to diverge from the methodol-
ogy used in [25, 24], believing it to be less effective for assessing trust in Copilot within
a university context. A/B testing would focus on making performance comparisons
between the two groups and it would limit the number of participants interacting with
Copilot. Consequently, we chose to have all participants engage with the same coding
tasks using Copilot, aiming for a more focused analysis of trust dynamics.

3.3 Participant pool

In order to satisfy the decisions taken regarding the programming tasks and their
difficulty, the user study was aimed at first year undergraduate computer science stu-
dents. There were no requirements to participate other than a keen interest in Al code
generation tools and in discovering Copilot’s capabilities.

3.3.1 Greatest Challenge: Recruitment of participants

One of the biggest challenges of the study was recruiting participants. Due to the
nature of this study and its length spanning two weeks, it was difficult to continuously
motivate the participants to submit their Copilot interactions. Moreover, for many novice
programmers, recording their screen while new to coding was a stressful environment,
even thought it was highlighted that the study was independent from the Inf1B course.
Finally, we were unable offer any benefits to the participants as compensation for their
time, as done by other user studies [31, 24, 25].

3.3.2 Study participants

Initially, 15 students signed up for the user study. However, not all of them continued
to participate and did not upload the recordings of their interactions with Copilot. In
order to recruit more participants, friends and university contacts of the researcher were
prompted to participate. This project was thus completed with 8 participants. The
detailed summary of the participant demographics is given in Table A.1 in Appendix
Section A.3. We believe that the number of participants enrolled in the user study was
adequate to conduct the research and gain insightful answers to our research questions.
Similar user studies had 10 - 24 recruited participants, due to the large amount of manual
work required to review the interactions between the participants and Al [31, 8, 35, 26].

We asked the participants of their overall programming experience (5 intermediate
and 3 advanced) as well as their Java programming experience (5 beginners and 3
intermediate) in the first survey (see Appendix Section A.2). We also set a question
about their familiarity with Copilot and how often they use it. From the eight participants,
seven had heard of Copilot before, while only one of them was using it daily. Hence,
for most of the participants this was their first interaction with Copilot, similar to
participants in Prather et al. [26]’s study.

Chapter 3. User Study Design 15

3.4 Ethics

This project obtained approval from the Informatics Research Ethics committee. The
only personal data collected was the participant student number to further communicate
the installation and task instructions on Copilot (see Appendix Section A.1), and to
create a protected folder to share the screen recordings. Afterwards, all data was
pseudonymised. We informed students that everything would stay anonymous and that
the correctness and efficiency of their code would not be associated to them or their
performance in the Inf1B course.

3.5 Methodology

In this section we present the methodology followed by the user study. Firstly, we
explain how this study was orchestrated and give the general timeline. Then, we define
and describe in detail the evaluation criteria we used to analyse the programming tasks
and the responses to the three surveys.

The analysis phase presented significant challenges, mainly due to the large volume
of data: 218 minutes of screen recordings that needed detailed review. Understanding
each participant’s programming style and defining precise evaluation metrics for the
coding tasks, added complexity to the analysis. This required meticulous and slow
measurement of the metrics for each screen recording to ensure accuracy and reliability
of our analysis.

3.5.1 Preparation and Execution of the User Study

Initial contact with participants occurred in the beginning of the second semester,
when the study was introduced during a lecture to motivate student participation. To
increase participation numbers, an email was sent to the Inf1B class cohort, detailing
the research’s significance, and promising to share study results with participants.

Participants were required to sign-up in the study by completing Survey 1 (see Appendix
Section A.2), which included the Participant Information Sheet and Consent Form
(see Appendix Section B) along with 14 background questions covering demographics,
programming experience, and views on user trust and Copilot. Participants then received
instructions via email for accessing GitHub Copilot through GitHub Education (free
access for students) and for installing Copilot on their preferred Integrated Development
Environment (see Appendix Section A.1). The instructions also provided a brief
introduction to Copilot, outlined the study tasks, and explained how to share screen
recordings with the researcher. Furthermore, they contained links to two concise surveys
(Surveys 2 and 3, see Appendix Section A.2) to be completed each week, featuring
questions like “Did you trust Copilot for your answer?”, “Did your trust for Copilot
change after this interaction?” and “Is there a feature you would add/remove from
Copilot?”.

Chapter 3. User Study Design 16

Metric Variable Description

Coding minutes timemin | Active programming minutes, rounded.

Coding seconds time_secs | Active programming seconds from
coding start to stop.

Suggestion acceptances accepts Times a Copilot suggestion was
accepted (Tab).

Suggestion deletions deletes Times a Copilot suggestion was deleted
post-acceptance.

Suggestion edits edits Times a Copilot suggestion was edited

post-acceptance (If user accepts only
next word/line of the suggestion it is
measured as an edit).

Suggestion rejects rejects_I | Times a Copilot suggestion was read and
rejected either by typing or by Esc key.
Queries to Copilot no_queries | Number of queries made to Copilot

through comments (e.g.
// Write a for-loop).

Alternative suggestions other User requested an alternative suggestion
from Copilot (A1t + 1)

Internet use internet User accessed the Internet.

Code correctness correct Final solution correctness.

Table 3.1: Task evaluation metrics.!

3.5.2 Evaluation Criteria

In order to proceed with the analysis, it was necessary to define several assessment
metrics, or criteria that we would use to evaluate each task. We split the evaluation
criteria into four main groups: overall programming task metrics, prompt categorisation
metrics, repair categorisation metrics, and survey evaluation criteria. We describe in
detail the metrics in each of these groups and we present the results in Chapter 4.

3.5.2.1 Overall programming task metrics

The overall task metrics included measurements of the correctness of the solution,
acceptances of Copilot’s suggestion and time completion of each task. We give a
detailed list of these metrics in Table 3.1.

3.5.2.2 Prompt Categorisation

Inspired by the prompt analysis conducted by Perry et al. [25], we used a similar
approach to categorize prompts provided to Copilot during the interactions. We investi-
gated how users specify queries to Copilot and if they change over time and how the
user’s choice of prompt type influences their trust in Copilot. We decided to distinguish
nine different prompt types that we explain in Table 3.2.

! All binary metrics are marked as 1 for “Yes” and 0 for “No”.

Chapter 3. User Study Design 17

Prompt Category Variable Description

Function Declaration prompt_fd Declares a function with parameters (e.g.
public main String
reverse (String input)).

Variable Declaration prompt_vd Declares a variable with its type and
name (e.g. int [] count).

Method Declaration prompt_md Declares method for next action (e.g.

Implicit Suggestion
Instructions

Short Instructions
Long Instructions

Text Close

Library

prompt_none
prompt_instruct

prompt_short

prompt_long

prompt_text

prompt_1lib

for, while, System.out.println ().
User skips to next line and gets an
implicit suggestion.

User instructs Copilot via a comment
(e.g.//Use while loop to check p<n).
Instructions less than 50 characters.
Instructions more than 50 characters.
Directly uses task instructions as the
prompt.

Import statement for libraries (e.g.,

import java.util.*;).

Table 3.2: User Prompt Categories

3.5.2.3 Repair Categorisation of programming tasks

We aimed to analyse how the participants’ prompts mature as they interact with the Al
pair-programmer. A query repair is “the gradual refinement of a prompt to optimise
for the system output” [25]. By investigating the users’ different repair strategies we
intended to find the most common repair strategy across the overall study. We define
the four repair types in Table 3.3.

Repair type Variable Description

Expand Scope repair_expand | Increase information or prompt size to
refine suggestions.

Reword repair_reword | Modify or reorder words without
changing prompt length.

Continue repair_cont | Continue typing to provide additional
information and elicit new suggestions.

Retry repair_retry | Retry the same prompt to receive a
different suggestion.

Table 3.3: User Repair strategies

3.5.2.4 AQuestionnaires analysis

We analyzed the participant questionnaires through both quantitative and qualitative
methods, linking their responses directly to the evaluation of their programming inter-
actions with Copilot. Additionally, an aggregate analysis was conducted to achieve a
comprehensive understanding of user trust in the GPT-3 tool.

Chapter 4

Empirical Results

This chapter presents the empirical results obtained from the programming tasks and sur-
vey responses of the user study. We divide our analysis into two sections: programming
task results and survey response analysis.

The programming task results section reports quantitative metrics, including the accep-
tance metrics of Copilot’s suggestions and the distribution of prompts across different
categories. Moreover, we discuss qualitative observations from these interactions. The
survey response analysis section examines participants’ responses to both structured
and open-ended questions, providing insights into their initial expectations, perception
of trust towards generative Al tools, and experience over the course of the study.

4.1 Programming Tasks

The eight participants successfully completed the four programming tasks and corre-
sponding questionnaires. As there was no time constraint, participants were given the
flexibility to take as much time as they needed to complete the exercises and produce
the correct outputs. All submitted code solutions were correct, except for two instances
where participants provided a simplified answer that did not accept command-line input
but were given a specific input in the code.

Students were permitted to use the internet and any relevant course material, replicat-
ing the environment when solving the Inf1B tasks. Six out of the eight participants
utilised the internet in at least one task, suggesting that Copilot is not always used as a
replacement for online resources or Stack Overflow [31]. Participants’ queries varied
depending on the student and addressed topics such as: “how to find the maximum in an
array”’, “how to find the index of a value in an array”, “reverse function java”, “convert
integer to string”. Most internet searches indicated that the users had a clear under-
standing of the desired functionality or had prior knowledge in another programming

language and were looking for the Java implementation.

The instructions mentioned that Copilot can provide multiple suggestions for a prompt
using the Alt +] keyboard shortcut. However, the screen recordings revealed that
Copilot rarely offered one or more alternative suggestions. Only three participants used

18

Chapter 4. Empirical Results 19

this feature, inspecting a total of four different suggestions. This was likely due to the
introductory quality of the Java tasks and their relatively straightforward solutions.

Furthermore, the screen recordings showed that the coding complexity of the tasks
increased over time. Specifically, the average number of minutes spent per task were
similar for Tasks 1 and 2 (4.4 and 4.8 minutes, respectively), moderate for Task 4 (6.8
minutes), and significantly higher for Task 3 (15.8 minutes). Task 3, which involved
calculating the mode of an array of numbers, proved to confuse many participants,
mostly due to their inability to distinguish the maximum entry to the entry with the
maximum index.

Task 4 was completed faster than the third task because Copilot recognised the solution
when given the name “Sieve of Eratosthenes” in the comments or class name, and
immediately suggested the complete solution. This task was deliberately selected to
inspect whether students would attempt to code the solution themselves and understand
it (also identifying the small changes necessary), or simply accept the suggested solution
and proceed to the next task.

4.1.1 AQueries to Copilot

In this thesis, a query to Copilot is defined as any direct communication or prompt
provided to Copilot. Students always issued queries through comments, where they
could “instruct” or prompt Copilot. For example, P6 queried: “create a new (array)
called copy that has the same numbers but shifted left once”. Queries are categorised as
Instruction type prompts based on the evaluation criteria outlined in Section 3.5.2. The
number of queries made to Copilot per participant and per task (denoted as no_queries
in Table 3.1) are counted and summarised in Table 4.1.

It is worth noting that not all students felt the need or desire to communicate with Copilot
through direct queries, and instead used their code as an indirect prompt. Specifically,
only P5, P6 and P7 provided queries to Copilot in every task, while P8 prompted Copilot
only once during Task 4.

Tl T2 T3 T4
P58 4 10 4
p6| 3 3 7 2
P72 2 5 8
P& 0O O O 1

Table 4.1: Queries to Copilot: Participant and Task Counts

There is no clear indication as to the type of participant background that is more likely
to make queries to Copilot. Participants P7 and P8 both have advanced programming
experience, while P5 and P6 are classified as intermediate-level programmers. However,
analysis of the screen recordings exposed two distinct interaction patterns based on the
query frequency, which are further analysed in Section 5.1.

Chapter 4. Empirical Results 20

4.1.2 Measure of acceptance

To quantitatively measure user trust in Copilot and to investigate the relationship be-
tween task complexity and acceptance of Copilot’s suggestions, we examined the
adaptation and acceptance of Copilot’s suggestions, a methodology employed in pre-
vious studies [41, 25]. Possible measurements included the number of times a user
accepted a suggestion from Copilot, as well as whether the accepted code was subse-
quently edited or deleted. In addition, we counted the instances where a user rejected a
Copilot suggestion.

Inspecting Table 4.2, we observe that, on average, there were 64 acceptances per task.
Moreover, for Task 3, there were nearly double the number of acceptances compared
to the other tasks. As discussed in 4.2, this can be attributed to Task 3 being the most
complex among all tasks, leading three students to engage in long debugging sessions.
Out of the total number of acceptances, approximately 8% resulted in their subsequent
deletion, and 19% of the accepted solutions were later edited by the programmer.

Task Accepts Deletes Edits Rejects
Tl 44 0 3 19
T2 55 5 14 12
T3 99 10 23 18
T4 58 6 9 11
Average 64 5 12 15
Total 256 21 49 60

Table 4.2: Copilot Interaction Summary by Task

4.1.3 Prompt Categorisation

To examine how students specify queries to Copilot and how these evolve over time,
a prompt categorisation analysis was performed. As shown in Table 4.3, the most
common prompt types were the Instruction prompt, Implicit prompt, and Variable
declaration prompt, accounting for 25%, 19%, and 16% of all prompts, respectively.
The Function declaration type is not as prevalent as reported in the analysis by Perry

Prompt Type Count Prompt % User %
Function declaration 14 4.9 62.5
Method declaration 40 13.9 87.5
Variable declaration 46 16.0 87.5
None 54 18.8 100
Instruction 71 24.7 50
Short 20 6.9 50
Long 27 94 37.5
Text close 15 5.2 37.5
Library 1 0.3 12.5

Table 4.3: Prompt Type Distribution and User Engagement

Chapter 4. Empirical Results 21

et al. [25], where it was identified as the type that led to stronger participant trust in
Copilot’s outputs and accounted for 27% of all prompts. This discrepancy likely arises
because the tasks in our user study could be solved using a single function without any
arguments. Additionally, we observe that long instruction prompts were used more often
than short (9% compared to 7%), but more participants preferred to provide shorter,
specific prompts to Copilot. Variable declarations were also quite popular as they
lead to quick acceptances and accurate predictions when used with a specific variable
name. Across all screen recordings, there is only one library prompt (java.util.*),
as the introductory Java tasks that did not require users to import any libraries. It is
important to note that a single prompt may belong to more than one prompt category
(e.g. categories Instruction and Long in Table 4.3.)

Interestingly, all participants often accepted suggestions that Copilot provided without
an explicit prompt (none category). This is due to Copilot’s ability to gather data from
the entire programming context and to produce suggestions without waiting for a request
like other language models. Barke et al. [8] addressed this fact as “unintentional prompt-
ing” and defined the respective mode of Copilot as an “Intelligent auto-completion”
tool. Nevertheless, sometimes these no-prompt suggestions confused the students and
shifted their focus to reading the suggested code instead of writing [31].

Prompt distribution per Participant

60 A Prompt Type
B prompt_fd

prompt_md
50 1 I prompt_vd

prompt_none
40 - prompt_instruct
prompt_short

c ‘ B prompt_long
8 30 BN prompt_text
(@) B prompt_lib
20 i |]
10 A

0————-F—-JF. —

PL P2 P3 P4 P5 P6 P7 P8
Participant

Figure 4.1: Prompt distribution per participant across different prompt types.

Analysing the distribution of prompt types across participants in Figure 4.1, an inter-
esting observation emerges that divides the participants into two categories. First, we
observe that P5, P6 and P7 had the highest total count of prompts over the user study,
and the most common prompt they used was the Instruction prompt. This contrasts with
the rest of the participants, who most often used Variable and Method declaration types.
This observation led to the creation of two distinct interaction patterns with Copilot:
Collaborator and Operator (refer to Section 5.1).

Task 3 had a significantly higher prompt count than any other task, as shown in Figure
4.2. This was due to the higher complexity of the task and the longer time spent

Chapter 4. Empirical Results 22

debugging the code. The rest of the tasks, however, had about the same total count and
distribution across prompt types.

Prompt distribution per Task

Prompt Type
100 ~ s prompt_fd
prompt_instruct
prompt_lib
80 A prompt_long
prompt_md
I prompt_none
€ 60 - B prompt_short
3 B prompt_text
o s prompt_vd
40 A
20 A
L =2 BT N 5
Tl T2 T3 T4
Task

Figure 4.2: Prompt distribution per task across different prompt types.

Therefore, it was not possible to derive a clear conclusion regarding what type of
prompts led to stronger acceptance of Copilot’s suggestions. The prompting style
appeared to depend mainly on the participant. However, through the analysis of screen
recordings, we observed that prompt types such as Variable, Method and Function
declaration led to faster task completion, as students were primarily guiding the Al tool
towards the solution. However, it was clear that Instruction prompts often did not lead
to the correct suggestion due to very little or too much detail provided in the instruction.

Additionally, no specific prompt type was identified that led to stronger trust towards
Copilot. Participants with advanced programming experience exhibited the lowest level
of trust in Copilot, despite having the same prompting style to other participants, such
as P3 and P4, who reported high levels of trust in Copilot.

4.1.4 Repair Strategies

The analysis of the screen recordings revealed a total of 10 instances of the continue
repair strategy, 17 instances of expand, 7 instances of reword and 3 instances of retry.
Supporting the findings in the study by Perry et al. [25], we found that participants most
often expanded the scope of their prompt to Copilot to provide it with more information
and improve the quality of suggestions.

However, expanding the prompt through comments proved to be tiresome for partici-
pants P5 and P6, as they had to delete the existing code under the prompt every time
they added new information and demanded a new suggestion. We also observed a few
instances where participants continued typing when they realised that Copilot had not
yet understood their approach. In other words, apart from attempting to explain the task

Chapter 4. Empirical Results 23

in more detail, some users did not adapt to Copilot’s behaviour, but continued with their
implementation hoping that Copilot would adapt to their coding approach.

4.2 Survey Responses

In this section we present the data collected from the students’ survey responses. Three
questions were posed after each task to compare the specific screen recording interaction
and the response to the question. These addressed topics related to trust, helpfulness
and correctness. The remaining questions, which were asked during the first week and
at the end of the study, focused on the topics of trust and perceived productivity.

4.2.1 Quantitative survey data

We initially analysed the structured questions in Surveys 2 and 3 where students were
able to select from a list of possible answers.

4.2.1.1 Per task questions

The first question asked of participants after completing each task was whether they
trusted Copilot for their answer. Figure 4.3 shows the distribution of responses for
each task. Four participants reported trusting the tool in every interaction. However,
three participants oscillated in their responses. The losses of trust occurred for several
reasons. Firstly, P1 was confused by a longer suggestion in Task 2, which led them to
delete it to avoid potential errors. P1 also did not trust the tool when it suggested an
approach to the task that differed from their own. Secondly, P4 only trusted Copilot
in the final task because, with a single prompt, they were able to obtain the complete
suggested method, which they accepted. Finally, P7 lost trust in Task 3 because Copilot
led them to a prolonged debugging session.

Consequently, trust to the Al code-generator is easily lost and highly dependent on
the correctness and completion time of the task at hand. Students, especially novice
programmers (in this case, due to the Java programming language), easily become
confused by the mistakes in the code and quickly question their trust towards Copilot.

Overall, at least 50% of the participants trusted Copilot in every task, with Copilot
being more trustworthy in Tasks 1 and 4 (Figure 4.3). This might be due to the fact
that Task 1 was the easiest, and Copilot provided correct and accurate answers to all
participants, while in Task 4, Copilot knew the answer to the “Sieve of Eratosthenes’
problem and could produce the whole function with a single prompt.

2

The second question posed after the completion of each programming task was to rate
the helpfulness of the suggested code by Copilot on a scale from 1 to 5, with 5 indicating
very helpful. The purpose of this question was to understand if perceived helpfulness
affected the students’ trust in Copilot during programming. While there were varying
distributions of answers for each question, a ranking of 4 or 5 was the most frequent per
task and the average helpfulness ranking per task was consistently 4.

Chapter 4. Empirical Results 24

Did you trust Copilot for your answer?

e 0.125

T2

Tasks

T3

Responses
IC% 0.125 == No
= Yes

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

Figure 4.3: Proportion of participants and their level of trust in Copilot per task.

4.2.1.2 Across study questions

We then studied how participants’ views of Copilot changed after two weeks of in-
teracting with the tool. We made interesting observations, as for seven out of eight
participants, this was their first interaction with Copilot, allowing us to compare results
with the paper by Prather et al. [26].

The surveys asked the students to reflect on their overall trust towards Copilot. At the
beginning of the study, 50% of the participants reported high trust in Copilot, and 12.5%
reported complete trust. After interacting with the tool for two weeks, 62.5% and 12.5%
of the students still had high or complete trust, respectively, towards Copilot. For six
of the participants there was no change in the overall trust level over the study period,
while for P7, the four tasks proved to increase their trust towards the AI. However, trust
in Copilot decreased from a moderate to a low trust level after the four tasks for P1.

Furthermore, the surveys asked the participants to state whether their trust in Copilot
changed after their weekly interactions. Five participants reported that their trust did
indeed change, and based on the high trust percentages reported above, this suggests
that the interaction positively affected their trust level. In contrast, two out of the
three programmers with advanced experience remained unaffected, reporting no change
across the study. Both of these participants had reported moderate or low overall trust
levels towards Copilot.

Finally, we posed three final questions shown in Table 4.4 and report their answers.
Analysing the responses, we aim to investigate which factors are important in altering
users’ trust in Copilot over time.

4.2.1.3 Privacy, plagiarism and Copilot

The surveys aimed to gauge how university students, especially undergraduates who
must learn proper code citation and referencing, consider code reuse and intellectual
property rights when using generative Al tools like Copilot. Copilot’s Al model
was trained on publicly available code and, in rare instances, its suggestions may

Chapter 4. Empirical Results 25

Question Response (minutes) Week 1 (%) Week 2 (%)

Estimate task comple- Same 0 0
tion time without Copilot. 1-3 25 25

5 25 12.5
10 37.5 0

> 10 12.5 62.5

Feel more confident Yes 62.5 62.5
coding with Copilot? Maybe 12.5 25

No 25 12.5

Would you trust Copilot Yes 25 12.5
for more complex tasks? Maybe 62.5 75

No 12.5 12.5

Table 4.4: Survey responses on Copilot use over two weeks

resemble copyrighted code, raising potential infringement concerns if used without
attribution. Copilot provides filters to suppress closely matching public code and a
“code referencing” feature to identify relevant open source licenses, although none of
the participants utilized these filters [3].

We asked students if they were concerned with plagiarism issues when coding with
Copilot during Week 1 and at the end of Week 2. In both instances, only one student
answered affirmatively, two students answered ‘“Maybe”, while the rest did not express
concern about the source of the suggested code.

4.2.2 Qualitative survey data

In this thesis, we highly valued open-ended feedback such as comments, ratings and
suggestions for feature improvements, to better understand the reasons behind the
actions and feelings of the students. Additionally, open-responses provided useful
insights that could not be detected through the programming tasks.

4.2.21 Trustin Al

Before solving programming tasks, we wanted to understand students’ perception of
trust in an Al tool. Hence, we asked them to provide us with keywords, examples or a
short explanation of what trust in the Al tool means to them. All participants included
the topic of accuracy in their response using keywords like “accurately” and*“correct
answer”. This was further confirmed when all participants responded that the accuracy
of the Al tool has the greatest impact on building trust between users and Al.

Moreover, half the participants mentioned that a trustworthy tool is able to predict the
user’s intentions and understand their thinking. Interestingly, P3 connected trust to
a “human approach” of the solution. Another common answer was that the Al tool
would be able to fix errors in the code and “not lead to any severe problems”. Figure
4.5 also confirmed that students expect such tools to find their mistakes, probably since
other LLM tools like ChatGPT can point out the errors [37]. However, as discussed in
Subsection 4.2.2 most users did not meet their expectation; a very probable reason as to

Chapter 4. Empirical Results 26

Least Impactful Features of Al Tool
4

Features
I Ethical Behavior of Al tool
Consistency of suggestions
" Data Privacy and security
% 2 User Experience
S 2 Accuracy of Al tool

Transparency and explanations
[
given to user

Figure 4.4: Features of the Al tool perceived as least impactful by participants.

why they did not trust Copilot [7].

Finally, one student said that in order to completely trust the Al tool, the user would
need to “understand its actions and why it did them”. That is an important observation,
as transparency is listed as one of the key requirements published by the European
Commission for a trustworthy system [13] and has been investigated recently by other
papers [34, 32, 14].

The analysis also considered the features of an Al tool that have the less impression
on developing trust. Students were given the options listed in Figure 4.4 and asked to
select the less impactful feature. Half of the students were least interested in the Ethical
behaviour of the Al tool, while two students selected User experience.

4.2.2.2 Initial Expectations from Copilot

The initial expectations of the students towards Copilot are of significant importance
to this thesis. By collectively and individually analysing the participants’ responses,
we investigated whether these expectations influenced their trust in Copilot. In Survey
1 (appendix), participants were asked to select at most three expectations out of nine
possible options (including the option “Other”), and their distribution is shown in Figure
4.5. The results indicated that if expectations were met, trust in Copilot increased,
whereas if expectations fell short, users’ trust was negatively affected.

We observe that all participants expected Copilot to increase their productivity and
save time when coding. This was further confirmed in Table 4.4, where all participants
predicted an increase in coding time without Copilot’s help. As shown in the study
by Peng et al. [24] across 95 professional programmers, Copilot met the participants’
expectation of increased productivity. For example, P4 commented: “From the tasks I
have done so far, I think it will save me a lot of time from defining tedious functions
and algorithms”.

It is also worth mentioning that the participants new to Copilot expressed an expectation
that the tool would find and correct mistakes in their code. However, this expectation
was not met, since Copilot is unable to point out the errors in the existing code and to

Chapter 4. Empirical Results 27

edit existing mistakes even when requested. Half of the participants mentioned this issue
in the open response questions, with P6 suggesting the need for a Copilot debugging
tool to address these errors. “Just tell me to correct runtime errors, like index errors,
before running” stated P3.

Initial Expectations of Al Tool

8
8 -
71 .
Expectations
6 I Complete all my code
Find the mistakes in my code
5 5 Save time when coding
- Bug-free code generation
% 4 Help with new programming languages
8 41 I Propose optimal algorithmic solutions
3 I Suggest helpful methods | didn't know yet
31 - It gradually learns and becomes customized
to my coding style and preferences
2
2 -
14 1 1
0 |

Figure 4.5: Initial expectations of Al tool capabilities from participants.

4.2.2.3 Participants’ Comments on interactions with Copilot

Two questions in Surveys 2 and 3 addressed the beneficial and hindering features of
Copilot. A thematic analysis was conducted on the responses, and the prevalent themes
were identified and aligned with findings from related studies [31, 8, 26].

The advantages of Copilot addressed by the eight students centered around efficiency and
automation, such as improved code quality, increased speed and supplementary learning
opportunities. Participants acknowledged Copilot’s ability to automate repetitive and
simple tasks and to generate boilerplate code. In other words, the Al tool was perceived
as highly efficient in suggesting and auto-completing clean code. Furthermore, users
highlighted Copilot’s adherence to good coding practices, as it suggested readable, well-
formatted, and syntactically correct code, accompanied by appropriate documentation
and comments. P3 described Copilot’s capabilities as “a complete game-changer in
my documentation and semi-colon game”. Finally, users noted Copilot’s strength in
introducing new, useful methods or code practices that broadened their knowledge.

Conversely, participants also identified several hindering factors associated with Copi-
lot’s usage. A recurring concern was Copilot’s tendency to overwhelm students, either
by generating large amounts of code or through its instantaneous suggestions. P2 wrote:
“The fact that it suggests immediately without any user input on what the code is meant
to do, may sometimes cause the suggestions to be unhelpful”, while P8 also added
that these large suggestions tend to assume too much of the problem. Likewise, P4
described that “there were also 1 or 2 times where I began to think about and write a
simple statement and Copilot overwhelmed and distracted me by suggesting a massive
algorithm”. While Copilot’s instantaneous suggestions were initially impressive, they

Chapter 4. Empirical Results 28

sometimes proved tiring and annoying. For instance, P7 said that Copilot “was filling in
my comments before I could type my thoughts”.

Some usability issues were also highlighted as frustrating. One student reported the
difficulty with the multi-key press required for instigating next suggestions, while
most users were hesitant or unsure of how to initially use the tool. Additionally, users
quickly recognised the need for specificity when creating variable or function names
to elicit more detailed suggestions from the Al. Students who relied on comments to
instruct Copilot expressed frustration with having to delete existing code suggestions
to re-request suggestions when expanding or modifying the scope of their instruction
prompt.

4.2.2.4 Common Themes: Task decomposition

A recurrent observation among students was that although Copilot’s suggestions were
impressive in terms of correctness and speed, they did not always align with the users’
intended actions. Hence, students had to guide Copilot towards the desired solution,
similar to the “Shepherding” mode described by Prather et al. [26]. P2 provided an
insightful explanation: “Copilot worked well when I broke down everything. The more
generic my comments, the more difficult it is (for Copilot) to understand what I am
asking”.

P6 and P2 also noted the necessity of being very specific with the function or variable
naming and the comments they provided Copilot. P5S commented that the Inf1B tasks
were relatively simple and broken down into easy-to-follow sub-tasks, which facilitated
Copilot’s understanding. However, for more complex tasks, P5 stated that while Copilot
could serve as good starting point, its capabilities were limited to the programmer’s
understanding. Expanding this point, P1 added that for more complicated tasks, Copilot
“requires input from the programmer, often having to override whatever Copilot thinks
is the best.”

Therefore, Copilot proved to be a useful starting point and a helpful auto-complete
tool for straightforward coding tasks. Nevertheless, for more complicated tasks, the
responsibility fell on the user to break down the task into smaller structures and guide
Copilot towards the correct solution.

4.2.2.5 Common themes: Debugging the suggestion

A prominent theme that emerged from both the screen-recordings and the survey
comments regarded the need for debugging Copilot’s solution. In numerous instances,
the user accepted the incorrect suggestions without initially identifying the errors. When
running the program later, users encountered difficulties in resolving the issue, as they
had not written and fully understood the suggested code. This was particularly prevalent
in Task 3, which required users to calculate the mode of a list of integers.

P7 commented that “In one task I followed Copilot’s suggestions because I was unsure
as to how to proceed”. However, upon realising that the suggestion was incorrect, “it
was then really difficult (...) to understand where in Copilot’s code was the mistake”.
P3 encountered a similar situation, stating that they “fell into a kind of panic rabbithole”

Chapter 4. Empirical Results 29

in Task 4 and had to consult online resources once they realised Copilot’s code was
incorrect. As P3 copied methods from the Internet that they did not fully comprehend,
“Copilot kind of multiplied the chaos and started to give me cues on the new code I have
introduced but actually don’t know™.

Copilot’s inability to find and point out errors in the suggested code can be attributed to
the nature of LLMs like itself, which are designed to generate text based on patterns in
their training data, but lack the ability to reason about the correctness or functionality
of the generated output [39]. Contrary to other LLMs like ChatGPT, Copilot cannot be
asked directly about errors or act as a conversational agent.

4.2.2.6 Suggesting Features

The two post-programming task surveys asked the users to indicate if there is a feature
they would add or remove from Copilot. This question was added in order to compare
our study’s responses to the results of Wang et al. [35] , where the researchers conducted
a design analysis for the Al tool. We identified three common features in the responses.
Firstly, users requested a setting that can reduce the scope of the suggested code and
buttons that can specifically ask the tool for a suggestion when needed. Secondly, four
participants would like Copilot to have debugging capabilities, as finding incorrect
code was a common problem for most users. Finally, P7 said that “sometimes I would
like to have an explanation on what the suggested code is doing and why it chose that
approach”, highlighting the comment by Vaithilingam et al. [31] that Copilot cannot
eliminate Internet search, since it cannot provide the explainability of its responses.

Chapter 5

Evaluation and Discussion

This chapter presents the evaluation and discussion of the quantitative and qualitative
results from our user study. Initially, the data was thoroughly explored from different
perspectives to gain familiarity. After examining the survey responses in conjunction
with the respective programming task recordings, common themes and interesting
comments were identified. The following sections analyse the students’ interaction
patterns, acceptance metrics and perceived productivity results, and address the issue of
over-reliance and the implications of using Copilot in educational settings.

5.1 Interaction Patterns: Collaborators vs. Operators

A principal finding of our study was the identification of two distinct interaction styles
exhibited by student programmers when using Copilot to solve their class exercises:
the Collaborators and the Operators types. Collaborators, akin to the “Acceleration
mode” defined by Barke et al. [8], possess a clear understanding of their goals and the
approach to solve the tasks, and thus collaborate with Copilot to solve the exercise. In
contrast, the Operators tend to put significantly less effort in programming and employ
Copilot as an operational tool. They provide natural language instructions and rely
on Copilot to suggest the appropriate code. These distinct interaction patterns were
identified through the prompt categorisation analysis detailed in Subsection 3.5.2 and
the screen recording data.

5.1.1 Collaborators

Five participants were identified as Collaborators in our user study (P1, P2, P3, P4
and P8). P1 and P8, the most assertive Collaborators, used Copilot as an “intelligent
auto-complete”, increasing their productivity [10]. They approached tasks with a
clear understanding and leveraged Copilot to verify their thinking and complete their
thought process. Additionally, they were the only students where Copilot saved them
1-3 minutes of coding (see Table 4.4). Notably, they were hesitant to accept large or
complicated code suggestions from Copilot when it “raced ahead”, as they did not want
to be distracted from their goal. Interestingly, both P1 and P8 relied on the Internet as

30

Chapter 5. Evaluation and Discussion 31

their main validation tool, with P8 searching online and copy-pasting a function that
returns the argmax of an array instead of trying to elicit it from Copilot.

P2, P3, and P4’s coding was not as dynamic, as they were less experienced in Java.
Nevertheless, they attempted to guide Copilot towards the desired answer and to test
their coding knowledge. They spent time validating and understanding the suggested
solutions before accepting them, unlike the Operators. Moreover, P2 and P4 run the
program immediately after accepting longer Copilot suggestions to identify potential
mistakes, a strategy they learned as the study progressed. We noted a shift towards
online resources when participants received an erroneous suggestion from Copilot,
indicating that trust can be easily lost.

During the Collaboration interaction, participants often edited Copilot’s suggestions
after accepting them or accepted them line-by-line, sometimes to increase speed, as
seen with P3 accepting a for-loop implementation and subsequently editing it for the
desired output.

5.1.2 Operators

Three participants (PS5, P6, and P7), adopted the Operator style of “communication”
with Copilot, providing instructions through code comments and writing very few lines
of code themselves. The Operators focused on operating Copilot by providing natural
language prompts, allowing the Al assistant to guide them towards the solution, define
the variable names, and determine the complexity of the approach.

P6 and P7 exemplified this pattern by breaking down the task instructions into short
comments for Copilot. For example, to reverse the words in a string, P6 first prompted
“break the string down based on the spaces” and then followed with “reverse the order
of all the words in the string.” Similarly, P7 dissected Task 4 into manageable sub-tasks,
such as “use a while loop to check that p < n” and “if not found, set p to n+1”.

However, the Operators struggled in identifying and understanding errors in Copilot’s
suggestions. P6 accepted Copilot’s suggestion without validation, proceeding to debug
only when the answer provided incorrect. A recurrent issue for the Operators arose when
they expanded or reworded their instructions, as re-eliciting a suggestion from Copilot
required deleting all subsequent code. Furthermore, some Operators provided complete
task instructions in a single, extensive comment before the Java class. Instructions such
as “I want this function to be called (...)” adopted a conversational style that may have
hindered Copilot’s ability to provide accurate suggestions, as it has not been trained on
similar natural language prompts in GitHub repositories.

5.1.3 Comparison with other interaction styles

Relevant user studies have identified interaction patterns similar to the Collaborator and
Operator types, albeit with different focus areas. Prather et al. [26] defined the “Shep-
herding” and “Drifting” interaction styles. The former involved adapting suggestions to
correct distracted workflows, and the latter described instances where large code blocks

Chapter 5. Evaluation and Discussion 32

led to time-consuming debugging. Our findings confirm the occurrence of “Drifting”,
since students were often overwhelmed by Copilot’s extensive code suggestions.

Vaithilingam et al. [31] reported that Copilot often served as a substitute for internet
search in their study. While this substitution was observed among our Operators, the
Collaborators maintained a higher level of trust in online sources. Furthermore, when
Copilot produced incorrect suggestions, not all Operators adopted the coping strategy
described in Vaithilingam et al. [31], where participants deleted the suggested code and
turned to online help. Instead, some attempted to patch the existing code with online
answers, inadvertently compounding the issues.

The “Acceleration mode” defined by Barke et al. [8] was evident in both interaction
patterns in our user study. Even passive Operators sometimes decomposed tasks and
provided Copilot with short yet descriptive instructions. Our findings also align with
the common acceptance of end-of-line suggestions during “Acceleration”, allowing for
faster programming. However, we did not frequently observe the smooth transition
between the modes described by Vaithilingam et al. [31], nor between Collaborators
and Operators.

5.1.4 Programming experience vs. interaction patterns

Collaborator and Operator interaction patterns prompted an analysis of the relationship
between programming experience, interaction pattern, and trust in Copilot. Figure 5.1
depicts the trust levels of the participants based on their programming experience during
the first and second week of the study (left and right plots respectively in Figure 5.1).

Programming experience vs. Trust in Copilot

Week 1 Week 2
44 7/ Overall Trust in Copilot
Complete trust
" High trust
= 3 i B Low trust
g B Moderate trust
S
o
©
o 5 i
G
@
QO
1S
21 .
0 T T T
Advanced Intermediate Advanced Intermediate
Programming Experience Programming Experience

Figure 5.1: Participants’ trust towards Copilot during Weeks 1 and 2, depending on their
programming experience level.

After completing Task 1, all advanced programmers exhibited moderate trust towards
Copilot, while the intermediate-level students either highly or completely trusted the Al

Chapter 5. Evaluation and Discussion 33

assistant. However, after the second week’s programming tasks, the overall trust levels
of the advanced programmers varied from high to moderate and low, whereas for the
other participants they remained unchanged.

The participants exhibiting lower levels of overall trust towards Copilot were identified
as two users who adopted the Collaborator style. Barke et al. [8] attribute this obser-
vation to the excitement and expectations that novice programmers have for Al tools,
leading to higher trust and inclination to let it handle the complete coding task.

5.2 Copilot and Education

Generative Al code generation tools like Copilot can have both positive and negative
impacts on programming education. This study’s findings highlight several potential
benefits, including improved code quality, better commenting practices, and exposure
to varying solutions, which can enhance problem-solving skills and broaden students’
experience [9, 17]. Additionally, the screen recordings revealed that many participants,
irrespective of their Java programming background, found Copilot relatively easy to use,
suggesting that it is a useful tool for novice programmers and learning new material
[11, 20]. As noted by Becker et al. [9], positive emotions stemming from successful
interactions with Copilot can directly benefit students who may be intimidated or
anxious to learn to program.

However, our analysis also identified concerns and potential shortcomings. The two
distinct interaction patterns observed (see Section 5.1), showed that students following
the Operator programming style, where they adopt a more passive approach to program-
ming and do not proofread the solutions, may hinder their learning [26]. Over-reliance
[15, 9], dependence on Copilot’s outputs, and high levels of trust and perceived produc-
tivity, as evident from our findings, can negatively affect students, especially novices in
programming or a specific programming language [15, 8, 26]. Furthermore, high trust
and dependence to Copilot may discourage students from attending tutorials, interacting
with peers, or seeking explanations from instructors, potentially discouraging their
university experience.

[16] Additionally, the use of generative Al tool raises concerns about plagiarism and
academic misconduct [9, 16, 26]. Through the survey responses detailed in Section
4.2, we observed that most students were not concerned about possible plagiarism
issues when using Copilot. It is crucial for educators and universities to highlight these
issues, provide clear guidelines and policies to ensure their ethical and responsible use.
Students must exercise due diligence, review applicable licenses, and provide proper
attribution when using Al generated code [22].

We consulted the professor and teaching assistants of the InflB course about the
instructions provided to students regarding the use of generative Al assistants. In
summary, InflB course allows and even encourages the use of generative Al as a
learning tool, but assessments are designed to prevent students from simply submitting
Al-generated content without understanding it. Therefore, educators may need to adapt
their assessment strategies to motivate students to use the Al tools effectively for their
learning.

Chapter 5. Evaluation and Discussion 34

5.3 Acceptance

We conducted an analysis to investigate whether a correlation exists between the
acceptance of Copilot’s suggestions and the participants’ trust level. However, the
acceptance counts in our study did not exhibit statistically significant results. Accurately
measuring acceptances through screen recordings proved to be an opaque task. While
some multi-line suggestions contained the complete code for a function, leading to a
single acceptance, others involved multiple shorter single-line acceptances. Despite
providing the same overall result, this variation made it challenging to assess trust
through acceptance cases and normalise the acceptance counts.

Our findings, however, indicated that the number of acceptances increased with task
complexity because students engaged in longer coding session and encountered more
debugging scenarios. Task 3 exhibited the highest number of acceptances, while Task 1
had the least. Moreover, we observed that students did not always validate or search
for errors in a suggestion before accepting it. For Operators, who followed a passive
programming style, suggestions were immediately accepted, and errors were identified
only when the code was tested.

5.4 Trust and Productivity

Analysis of the survey responses, as shown in Figure 4.5, indicated that all programmers
expected Copilot to help them to complete the tasks faster. This observation was
particularly significant during the second week of the study, were more than half the
participants reported that it would have taken them more than ten minutes to complete
the tasks without Copilot’s assistance.

The notion of “perceived productivity”, as thoroughly analysed by Ziegler et al. [41], is
an important topic for students. Our findings suggest that the productivity gains that
students experience when coding with Al tools have a significant effect on maintaining
their trust towards these tools. This change was exhibited when participants were
displeased with Copilot’s suggestions and spent time fixing an issue.

University students aim to learn as quickly as possible and need to be highly productive
to complete the required course assignments. As highlighted by relevant studies, trust in
Copilot is heavily affected by users’ expectations of the Al tool’s capabilities [35, 24].
Participants in our study demonstrated that even when Copilot produced incorrect
suggestions, their perception of increased productivity was enough to motivate them to
continue using it.

5.5 Over-reliance

A significant concern that emerged from our analysis is the potential for over-reliance
on Al coding assistants like Copilot, particularly among novice programmers. Previous
research has highlighted this issue, suggesting that inexperienced users may develop a
false sense of security, readily trusting the AI’s suggestions [25], or even allowing the
Al tool to divert them from their initial approaches [15, 8]. The study by Vasconcelos

Chapter 5. Evaluation and Discussion 35

et al. [32] also showed that AI explanations, such as Copilot’s comments, do not always
reduce over-reliance but they depend on specific conditions, such as task difficulty.

The high acceptance rates of Copilot’s suggestions coupled with relatively low rejection
rates suggest that students may have been too readily accepting Copilot’s outputs
without sufficient scrutiny or validation. Moreover, the increased reliance on Copilot
during the complex Task 3, shows that students resorted to accepting and modifying
Copilot’s suggestions, potentially hindering their problem-solving abilities. This aligns
with the report by Passi and Vorvoreanu [22], which states that as the Al tool performed
accurately during the initial easier tasks, users tended to over-rely on it for subsequent
tasks.

Furthermore, the prevalent use of the Implicit prompt category (18.8% of all prompts),
where participants accepted Copilot’s suggestions without providing any explicit prompt,
could signify over-dependence on the Al assistant’s unprompted outputs. Finally, the
observation that students had high expectations of Copilot and displayed high levels of
trust aligns with the findings by Vodrahalli et al. [33]. Their research concluded that
trust in Al systems depends on the perceived performance of the Al relative to humans,
with trust increasing when the Al is expected to outperform humans.

Chapter 6

Conclusions

This thesis aimed to investigate the interactions between computer science undergrad-
uate students and GitHub Copilot, and to gain insights into the factors influencing
user trust. In this chapter we answer the research questions based on our user study’s
findings, discuss the study’s limitations and outline directions for future work.

6.1 Research Questions

RQ1: How do students specify queries to Copilot, and how do these queries evolve
over time? Additionally, how do users’ interactions with Copilot adapt in response
to its behavior?

We identified two distinct interaction patterns with Copilot that depend on the prompting
strategy employed by the students. Five participants exhibited a Collaborator style,
where they did not specify natural language queries to Copilot through comments.
Instead, they had a clear understanding of their problem-solving approach and guided
Copilot’s suggestions through their coding practices, using the tool as an “intelligent
auto-complete” [10]. In contrast, three participants adopted an Operator style, following
a more passive approach towards coding and specifying natural language instructions to
Copilot through comments, similar to observations by Prather et al. [26]. We observe
that most Operators did not spend time validating Copilot’s suggestions before accepting
them and often encountered long debugging sessions.

Our analysis showed that the prompting style depended on the user’s interaction pattern.
Overall, Instruction type prompts were most prevalent, consistent with the ”Specifica-
tion” prompt type reported by Perry et al. [25], while Method and Variable declaration
types were used by the highest percentage of users (refer to 3.5.2.2). Notably, all partic-
ipants utilised the Implicit prompt type, highlighting Copilot’s capability to generate
suggestions based on the broader coding context. The most common repair strategy
(see 3.5.2.3) was expanding the Instruction prompt (refer to 3.5.2.3), thus providing
Copilot with more information [25].

Over the study’s duration, participants did not significantly change their prompting
strategies. However, we observe that when multiple Copilot suggestions were incorrect,

36

Chapter 6. Conclusions 37

participants became confused and resorted to seeking solutions online.

RQ2: How to define and measure user trust, as it may be reflected in students’
interactions with Copilot?

There is limited research on measuring the trust between humans and Al code genera-
tions tools due to trust’s dynamic and subjective nature [35, 25, 33]. In our study, all
students agreed that the Accuracy of the Al tool is the most important factor in building
user trust. We measured trust both quantitatively, using the number of acceptances,
edits and deletions of Copilot’s suggestions, and qualitatively, through structured survey
questions and open-response feedback (see Subsection 3.5.2).

We observe that users with advanced programming experience were reluctant to trust the
Al tool, and their trust level did not change significantly over time. In contrast, students
new to Copilot reported high or complete levels of trust initially, and each interaction
positively increased their trust. Barke et al. [8] attribute this potential over-reliance to
the excitement and high expectations of novice programmers.

Although the relationship between user trust and acceptance of Copilot suggestions
could not be conclusively determined due to small sample size and the need for nor-
malization of the metric, the analysis of programming screen-recordings showed an
increase in number of acceptances during the most complex tasks.

RQ3: How do factors such as task complexity, students’ perceived productivity,
and their initial expectations of Copilot influence their trust in the tool?

The higher acceptance counts and the analysis of students’ interactions indicated an
increased reliance on Copilot during complex tasks, with most students reporting high
trust levels towards the Al tool even when it suggested erroneous solutions. Moreover,
Collaborators broke down complex tasks into concise, specific sub-tasks, eliciting
optimal solutions more frequently [15].

A key observation was that perceived productivity was of utmost importance for the
students, as all participants expected Copilot to save them time when coding. Interest-
ingly, students continued to believe that Copilot increased their productivity even when
they entered long debugging sessions, as evidenced by survey responses. However, for
a few participants, if this expectation of increased productivity was unmet, their trust in
Copilot decreased.

Another initial expectation that negatively affected trust levels when unmet was Copilot’s
inability to generate bug-free code. In some instances, students entered frustrating
debugging sessions and expressed the need for a feature in Copilot to identify and
correct errors.

6.2 Limitations and Future Work

During the user study we encountered several limitations that impeded our work. Firstly,
we were only able to recruit a small number of participants due to the nature and time
commitment required for the study. Students had to dedicate time during their busy
university schedules, screen-record their interaction (a stressful task for novices), and

Chapter 6. Conclusions 38

without compensation. Additionally, we expected a voluntary bias in the participants,
as students interested in Al tools and eager to learn about Copilot were more likely to
participate.

Furthermore, we did not gain statistically significant insights from the correlation
between trust and acceptance metrics because they required normalisation, either using
measures like cyclomatic complexity [36], or code length and complexity of suggestions.
We also believe that having a second researcher cross-check the evaluation metrics from
the screen recordings could improve reliability.

There are many avenues for future work. For instance, we could investigate students’
interactions with Copilot over an extended period (like a university semester) to provide
insights into even longer-term results. Findings could examine potential learning curves
of Copilot, as some users may slowly adapt to using Copilot effectively [25]. Due to
the time constraint, we only considered GitHub Copilot as Al assistant. Extending the
study to include other generative Al tools, such as AlphaCode [20], could determine
whether similar conclusions hold across the different assistants. Moreover, it would
be possible to incorporate programming tasks with longer assignments or projects that
students are familiar with, replicating different types of assessment in the university
[35]. Finally, future work could consider recruiting students with varying levels of prior
experience with Copilot to verify whether the identified interaction patterns are still
applicable or if new patterns emerge.

6.3 Conclusion

This thesis presents a longitudinal comprehensive study on the trust development
between undergraduate students and generative Al coding assistants like GitHub Copilot.
The identification of two distinct interaction patterns, Collaborators and Operators,
provides valuable insights for designing Al tools and their adoption in educational
settings. The user study revealed factors influencing trust, such as met expectations of
perceived productivity and accuracy, task complexity and prior programming experience
levels. With Al coding tools becoming increasingly prevalent, understanding the human-
Al dynamics and prompting strategies will be essential for their effective integration
into computer science education.

[1]
(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

ChatGPT. URL https://openai.com/chatgpt.

Github copilot - your ai pair programmer, . URL https://github.com/
features/copilot.

Finding public code that matches github copilot suggestions, . URL https:
//docs.github.com/en/copilot/using-github-copilot/finding-
public-code-that-matches—-github-copilot-suggestions.

Intellisense in visual studio code. URL https://code.visualstudio.com/
docs/editor/intellisense.

Transformer (machine learning model), October 2023. URL https:
//en.wikipedia.org/w/index.php?title=Transformer_(machine_
learning_model) &01did=1179625108. Page Version ID: 1179625108.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Millicent Ochieng, Krithika Ramesh,
Prachi Jain, Akshay Nambi, Tanuja Ganu, Sameer Segal, Maxamed Axmed, Kalika
Bali, and Sunayana Sitaram. MEGA: Multilingual Evaluation of Generative Al,
October 2023. URL http://arxiv.org/abs/2303.12528. arXiv:2303.12528

[cs].

Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi,
Penny Collisson, Jina Suh, Shamsi Igbal, Paul N. Bennett, Kori Inkpen, Jaime
Teevan, Ruth Kikin-Gil, and Eric Horvitz. Guidelines for Human-AlI Interaction. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
CHI "19, pages 1-13, New York, NY, USA, May 2019. Association for Computing
Machinery. ISBN 978-1-4503-5970-2. doi: 10.1145/3290605.3300233. URL
https://dl.acm.org/doi/10.1145/3290605.3300233.

Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded Copilot:
How Programmers Interact with Code-Generating Models, October 2022. URL
http://arxiv.org/abs/2206.15000. arXiv:2206.15000 [cs].

Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. Programming Is Hard - Or at Least It Used to
Be: Educational Opportunities and Challenges of AI Code Generation. In Proceed-
ings of the 54th ACM Technical Symposium on Computer Science Education V. 1,
SIGCSE 2023, pages 500-506, New York, NY, USA, March 2023. Association

39

Bibliography 40

[10]

[11]

[12]

[13]

[14]

[15]

[16]

for Computing Machinery. ISBN 978-1-4503-9431-4. doi: 10.1145/3545945.
3569759. URL https://dl.acm.org/doi/10.1145/3545945.3569759.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July
2020. URL http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating Large Language Models Trained on Code, July 2021. URL
http://arxiv.org/abs/2107.03374. arXiv:2107.03374 [cs].

Colin B. Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and
Neel Sundaresan. PyMT5: multi-mode translation of natural language and Python
code with transformers, October 2020. URL http://arxiv.org/abs/2010.
03150. arXiv:2010.03150 [cs].

European Commission. Communication: Building Trust in Human
Centric Artificial Intelligence. COM(2019) 168, April 2019. URL
https://digital-strategy.ec.europa.eu/en/library/communication-
building-trust-human-centric-artificial-intelligence.

Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. Intelligent tutoring
systems for programming education: a systematic review. In Proceedings of the
20th Australasian Computing Education Conference, ACE *18, pages 53—62, New
York, NY, USA, January 2018. Association for Computing Machinery. ISBN
978-1-4503-6340-2. doi: 10.1145/3160489.3160492. URL https://dl.acm.
org/doi/10.1145/3160489.3160492.

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, Zhen Ming, and Jiang. GitHub Copilot Al pair programmer:
Asset or Liability?, April 2023. URL http://arxiv.org/abs/2206.15331.
arXiv:2206.15331 [cs].

Nassim Dehouche. Plagiarism in the age of massive Generative Pre-trained

Bibliography 41

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Transformers (GPT-3). Ethics in Science and Environmental Politics, 21:17-23,
March 2021. ISSN 1611-8014, 1863-5415. doi: 10.3354/esep00195. URL
https://www.int-res.com/abstracts/esep/v21/pl7-23/.

James Finnie-Ansley, Paul Denny, Brett Becker, Andrew Luxton-Reilly, and James
Prather. The Robots Are Coming: Exploring the Implications of OpenAl Codex on
Introductory Programming. pages 10-19, February 2022. doi: 10.1145/3511861.
3511863.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchédn. A survey of Gener-
ative Al Applications, June 2023. URL http://arxiv.org/abs/2306.02781.
arXiv:2306.02781 [cs].

Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. Discovering the Syntax and Strategies
of Natural Language Programming with Generative Language Models. CHI
’22, pages 1-19, New York, NY, USA, April 2022. Association for Computing
Machinery. ISBN 978-1-4503-9157-3. doi: 10.1145/3491102.3501870. URL
https://dl.acm.org/doi/10.1145/3491102.3501870.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’ Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level
Code Generation with AlphaCode. Science, 378(6624):1092—-1097, December
2022. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.abql158. URL http:
//arxiv.org/abs/2203.07814. arXiv:2203.07814 [cs].

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed An-
war, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A
Comprehensive Overview of Large Language Models, February 2024. URL
http://arxiv.org/abs/2307.06435. arXiv:2307.06435 [cs].

Samir Passi and Mihaela Vorvoreanu. Overreliance on Al Literature Review. 2022.
URL https://www.microsoft.com/en-us/research/uploads/prod/2022/
06/Aether-Overreliance-on-AI-Review-Final-6.21.22.pdf.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 754-768, May 2022. doi: 10.1109/SP46214.2022.9833571. URL
https://ieeexplore.ieee.org/document/9833571. ISSN: 2375-1207.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The Impact of
Al on Developer Productivity: Evidence from GitHub Copilot, February 2023.
URL http://arxiv.org/abs/2302.06590. arXiv:2302.06590 [cs].

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do Users Write

Bibliography 42

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

More Insecure Code with Al Assistants?, December 2022. URL http://arxiv.
org/abs/2211.03622. arXiv:2211.03622 [cs].

James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. “It’s Weird That it Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Transactions on Computer-Human
Interaction, 31(1):4:1-4:31, November 2023. ISSN 1073-0516. doi: 10.1145/
3617367. URL https://doi.org/10.1145/3617367.

Alec Radford and Karthik Narasimhan. Improving Language Understanding by
Generative Pre-Training. 2018. URL https://www.semanticscholar.org/
paper/Improving-Language-Understanding-by-Generative-Radford-
Narasimhan/cd18800a0fe0b668alccl19f2ec95b5003d0a5035.

Balagopal Ramdurai and Prasanna Adhithya. The impact, advancements and
applications of generative ai. International Journal of Computer Science and
Engineering, 10(6):1-8, June 2023.

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg,
and Brendan Dolan-Gavitt. Lost at C: A User Study on the Security Implications
of Large Language Model Code Assistants, February 2023. URL http://arxiv.
org/abs/2208.09727. arXiv:2208.09727 [cs].

E. Soloway. Learning to program = learning to construct mechanisms and explana-
tions. Communications of the ACM, 29(9):850-858, September 1986. ISSN 0001-
0782. doi: 10.1145/6592.6594. URL https://dl.acm.org/doi/10.1145/
6592.6594.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. Expectation vs. Ex-
perience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems, CHI EA 22, pages 1-7, New York, NY, USA,
April 2022. Association for Computing Machinery. ISBN 978-1-4503-9156-6.
doi: 10.1145/3491101.3519665. URL https://dl.acm.org/doi/10.1145/
3491101.3519665.

Helena Vasconcelos, Matthew Jorke, Madeleine Grunde-McLaughlin, Tobias
Gerstenberg, Michael Bernstein, and Ranjay Krishna. Explanations Can Reduce
Overreliance on Al Systems During Decision-Making, January 2023. URL http:
//arxiv.org/abs/2212.06823. arXiv:2212.06823 [cs] version: 2.

Kailas Vodrahalli, Roxana Daneshjou, Tobias Gerstenberg, and James Zou. Do
Humans Trust Advice More if it Comes from AI? An Analysis of Human-Al
Interactions. In Proceedings of the 2022 AAAI/ACM Conference on Al, Ethics, and
Society, AIES °22, pages 763-777, New York, NY, USA, July 2022. Association
for Computing Machinery. ISBN 978-1-4503-9247-1. doi: 10.1145/3514094.
3534150. URL https://dl.acm.org/doi/10.1145/3514094.3534150.

Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y. Lim. Designing Theory-
Driven User-Centric Explainable Al. In Proceedings of the 2019 CHI Conference

Bibliography 43

[35]

[36]

[37]

[38]

[39]

[40]

[41]

on Human Factors in Computing Systems, CHI *19, pages 1-15, New York, NY,
USA, May 2019. Association for Computing Machinery. ISBN 978-1-4503-5970-
2. doi: 10.1145/3290605.3300831. URL https://dl.acm.org/doi/10.1145/
3290605.3300831.

Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. Investi-
gating and Designing for Trust in Al-powered Code Generation Tools, May 2023.
URL http://arxiv.org/abs/2305.11248. arXiv:2305.11248 [cs].

Arthur Henry Watson, Dolores R. Wallace, and Thomas J. McCabe. Structured
Testing: A Testing Methodology Using the Cyclomatic Complexity Metric. U.S.
Department of Commerce, Technology Administration, National Institute of Stan-
dards and Technology, 1996. ISBN 978-0-16-053381-5. Google-Books-ID:
lysRzUZhc2QC.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A
Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT, February
2023. URL http://arxiv.org/abs/2302.11382. arXiv:2302.11382 [cs].

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate
Before Use: Improving Few-Shot Performance of Language Models, June 2021.
URL http://arxiv.org/abs/2102.09690. arXiv:2102.09690 [cs].

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng
Hou, Yingqgian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu
Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A Survey of Large
Language Models, November 2023. URL http://arxiv.org/abs/2303.18223.
arXiv:2303.18223 [cs].

Yongchao Zhou, Andrei loan Muresanu, Ziwen Han, Keiran Paster, Silviu
Pitis, Harris Chan, and Jimmy Ba. Large Language Models Are Human-Level
Prompt Engineers, March 2023. URL http://arxiv.org/abs/2211.01910.
arXiv:2211.01910 [cs].

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. Productivity
assessment of neural code completion. MAPS 2022, pages 21-29, New York, NY,
USA, June 2022. Association for Computing Machinery. ISBN 978-1-4503-9273-
0. doi: 10.1145/3520312.3534864. URL https://dl.acm.org/doi/10.1145/
3520312.3534864.

Appendix A

User Study Appendix

A.1 Study Instructions

44

Studying the effect of GPT-3 technology
(Copilot) on User Trust

Instructions on Copilot set-up for Java in
IntelliJ

Hey there! Thanks again for taking part in my dissertation user study!
I promise that it will be no hassle at all. Instead, you will gain experience with Copilot - a very

interesting and useful tool for your degree as a computer scientist.

Moreover, you will not spend any more time than you would normally spend for the INF1B
course. This study is designed using already-existing tutorial exercises for the course. The only
thing that we ask you for is to record your screen when you are completing the specified

exercises, so we can analyse your interaction with Copilot.

For example, we will analyse the acceptance rate of Copilot’s suggestions and prompt format.
We are not analysing how fast you code or using the recording to grade you. Everything will

be anonymised.

What is Copilot?

GitHub Copilot is an innovative programming tool developed by GitHub in collaboration with
OpenAl. It serves as an Al-powered code completion and suggestion system designed to
enhance the coding experience for developers. Copilot is built on OpenAI’s GPT (Generative
Pre-trained Transformer) technology, just like ChatGPT, and can generate code snippets based
on the context provided by the user. By analysing the patterns and structures in existing code,
Copilot can offer intelligent suggestions, significantly accelerating the coding process and

helping novice programmers tackle programming problems.

Here’s the official GitHub webpage: GitHub Copilot - Your Al pair-programmer

Getting GitHub Copilot

This file will help you with getting access to GitHub Copilot. The following three steps will take
max 10 minutes. You will need a picture of your student card.

If you already have access to Copilot installed in IntelliJ, great, you can skip these steps!

1. Apply to GitHub Global Campus as a student
2. Set-up Copilot in IntelliJ IDEA

3. Quick Copilot tutorial

1. Apply to GitHub Global Campus as a student (5
mins)

Please follow steps 1-8 in GitHub Global Campus.

(In Step 6 - Describe how you plan to use GitHub, you could mention the university courses

you are taking, projects or university group projects. A sentence should be enough).

If your application is approved, you’ll receive a confirmation email. Applications are
usually processed within a few days, but it may take longer during peak times, such as

during the start of a new semester.

Having access to GitHub Global Campus, apart from Copilot, offers you many additional

resources. Check them out in GitHub Student Developer Pack.

2. Set-up Copilot in IntelliJ IDEA (5 mins)

Once your application is approved, your task is to install Copilot in IntelliJ, the ODE you will

be using for the Java Tutorials and Labs.

Please follow steps 1-9 in Installing the GitHub Copilot plugin in your JetBrains IDE.

3. Quick Copilot tutorial

Copilot is super easy to use. When it is activated in your IDE (IntelliJ), it automatically
suggests code when you start typing. You can do many things with the generated suggestion.

The following table allows you to easily remember them.

Action Windows MacOS Linux
Accept suggestion Tab Tab Tab

See next Alt +] Option +] Alt +]
suggestion

See previous Alt + [Option + [Alt + [
suggestion

Reject all Esc Esc Esc
suggestions

Accept next word

Control + -

Command + -

Control + -

Accept next line Control + Alt + Command + Control Control + Alt +
- + - -

Open tab with Ctrl + Enter Command + Shift + Control + Enter

multiple and “Open GitHub A and “Open GitHub and “Open GitHub

suggestions Copilot” Copilot” Copilot”

Week 2 task - Tutorial01

During Week 2, your task is to complete Task 3 - esrever in the Exercises section of the
tutorial with the help of Copilot. Simply find the Copilot looking-like icon on the bottom right
of your IntelliJ screen and select Enable Completions. You can use the Internet, StackOverflow

or anything you would normally do to solve this task (hopefully not ChatGPT ;)).

Given a string containing a sentence, how would you output the sentence w
ith the order of words in reverse? For example, given ”I like ice cream”

the output should be *cream ice like I”.

It may help to consider the given string as a character array.

Don't use any methods that you don't know.

To start & stop screen-recording:

Windows MacOS Linux
Start/Stop Windows key + Shift + Command + 5 and Cntrl + Alt +
recording Alt + R select second to last icon Shift + R

Sharing the screen-recording:

You can easily find the video of the screen-recording if you look for the Videos folder in
Windows, while on Mac the default is the Desktop location. You can now Copy-Paste it in the
shared OneDrive folder, the notification of which you received in your university email (if you
completed the fist sign-up survey).

If you didn’t complete the sign-up survey, here is the link again:

https://forms.office.com/e/mgejoSpgvD

It’s very important to answer this quick questionnaire after your Copilot interaction: Copilot -

Week 2 Survey

Week 3 tasks - Lab03

You reached the final task, thank you for sticking with us! This week, the individual Lab

exercises present ground for more interesting results than the Tutorial. Hence, when

completing the Labs in your own time, we please ask you to use Copilot’s help in the following

exercises:

1. Lab Sheet Week 3 Q3 - ArrayRotate
Q3 - ArrayRotate

2. Lab Sheet Week 3 Q6 - Mode
Q6 - Mode

3. Lab Sheet Week 3 Q7 - Sieve of Eratosthenes

Q7 - Sieve

It’s very important to answer this quick questionnaire after your Copilot interaction: Copilot -

Week 3 Survey

Aaand that’s it! Thanks alot! We will share with you the results of the study once completed :)

Appendix A. User Study Appendix 50

A.2 Survey Questions

A.2.1 Survey 1
User Study: Studying the effect of GPT-3 technology (Copilot) on User Trust
Participant Information and Consent form, see Appendix A.1.

Thank you for agreeing to partake in this study! You are helping us understand more
about Al auto-generation tools and human-computer interaction. You will also gain
experience with Copilot, a very interesting and helpful tool for your degree!

This survey includes a few background questions. It’s important to emphasize that any
information provided for this study will remain confidential. Your student number is
solely used to send you via email the instructions on installing GitHub Copilot.

1. By choosing ”Yes”, you consent to take part in this user study and agree with the
above statements. (Yes, No)

What is your student number? (s1234567)
What is your gender? (Female, Male, Non-binary, Prefer not to say)

Is English your native language? (Yes, No)

A

What is your overall programming experience level? (Beginner, Intermediate,
Advanced)

6. What is your overall programming experience level with Java? (Beginner, Inter-
mediate, Advanced)

7. Have you heard of Copilot before? (Yes, No)
8. If Yes, how often do you use GitHub Copilot? (Daily, Weekly, Monthly, Never)

9. What does “trust in an Al tool” mean to you? Type a few keywords, examples or
a short explanation.

10. Would you say that you can trust Copilot?

11. In your opinion, what has the greatest impact on building trust between users and
Al?

(a) Accuracy of Al tool

(b) Transparency and explanations given to user
(c) Ethical Behavior of Al tool

(d) Consistency of suggestions

(e) Data Privacy and security

(f) User Experience

(g) Other

Appendix A. User Study Appendix 51

12. In your opinion, what has the least impact on building trust between users and
AI? (Same response options as Question 11)

13. What are your expectations of such an Al tool like Copilot? Select at most three.
(a) Complete all my code
(b) Find the mistakes in my code
(c) Save time when coding
(d) Bug-free code generation
(e) Help with new programming languages
(f) Propose optimal algorithmic solutions
(g) Suggest helpful methods I didn’t know yet

(h) It gradually learns and becomes customized to my coding style and prefer-
ences

(i) Other

A.2.2 Survey 2

Copilot - Week 2 Survey Please answer this questionnaire after completing the Tutorial
task with Copilot. Thank you for completing the week 2 task! You were probably
impressed with Copilot’s capabilities. Here’s a few quick questions on your experience.

1. What is your student number? (s1234567)
2. Did you trust Copilot for your answer? (Yes, No)
3. Rate the helpfulness of the suggested code by Copilot (1-5)
4. I think I solved this task correctly (Likert 1-5)
5. Ttrusted the Al to produce correct code (Likert 1-5)
6. What is your overall trust in Copilot?
(a) Complete trust
(b) High trust
(c) Moderate trust
(d) Low trust
(e) No trust
7. Did your trust for Copilot change after this interaction? (Yes, No, Maybe)

8. Estimate how much slower you would have completed the task without using
Copilot.

(a) Same time in both cases

Appendix A. User Study Appendix 52

9.
10.
11.
12.
13.

14.

15

(b) 1-3 minutes slower
(c) 5 minutes slower
(d) 10 minutes slower
(e) More than 10 minutes slower
What was annoying while interacting with Copilot?
What was helpful while interacting with Copilot?
Do you feel more confident when coding with Copilot? (Yes, No, Maybe)
Is there a feature you would add/remove from Copilot?

Do you worry about the source of the suggested code and any potential issues
related to plagiarism? (Yes, No, Maybe)

Would you trust Copilot for more complex tasks? (Yes, No, Maybe)

Comments?

A.2.3 Survey3

Copilot - Week 3 Survey Please answer this questionnaire after completing the Labs
tasks with Copilot. Thank you for completing the week 3 tasks! You were probably
impressed with Copilot’s capabilities. Here’s a few quick questions on your experience.

1.

A AT L R o T

»-u»-
—_ O

12.
13.
14.

What is your student number? (s1234567)

Q3 ArrayRotate: Did you trust Copilot for your answer? (Yes, No)

Q3 ArrayRotate: Rate the helpfulness of the suggested code by Copilot. (1-5)
Q3 ArrayRotate: I think I solved this task correctly (Likert 1-5)

Q3 ArrayRotate: I trusted the Al to produce correct code (Likert 1-5)

Q6 Mode: Did you trust Copilot for your answer? (Yes, No)

Q6 Mode: Rate the helpfulness of the suggested code by Copilot. (1-5)

Q6 Mode: I think I solved this task correctly (Likert 1-5)

Q6 Mode: I trusted the Al to produce correct code (Likert 1-5)

Q7 Sieve of Eratosthenes: Did you trust Copilot for your answer? (Yes, No)

. Q7 Sieve of Eratosthenes: Rate the helpfulness of the suggested code by Copilot.

(1-5)

Q7 Sieve of Eratosthenes: I think I solved this task correctly (Likert 1-5)

Q7 Sieve of Eratosthenes: I trusted the Al to produce correct code (Likert 1-5)
What is your overall trust in Copilot?

(a) Complete trust

Appendix A. User Study Appendix 53

15.
16.

17.
18.
19.
20.
21.

22.
23.

(b) High trust
(c) Moderate trust
(d) Low trust
(e) No trust
Did your trust for Copilot change after this interaction? (Yes, No, Maybe)

Estimate how much slower you would have completed the task without using
Copilot.

(a) Same time in both cases
(b) 1-3 minutes slower
(¢c) 5 minutes slower
(d) 10 minutes slower
(e) More than 10 minutes slower
What was annoying while interacting with Copilot?
What was helpful while interacting with Copilot?
Do you feel more confident when coding with Copilot? (Yes, No, Maybe)
Is there a feature you would add/remove from Copilot?

Do you worry about the source of the suggested code and any potential issues
related to plagiarism? (Yes, No, Maybe)

Would you trust Copilot for more complex tasks? (Yes, No, Maybe)

Comments?

Appendix A. User Study Appendix

A.3 Demographics

54

This table presents the demographics collected from the study’s participants during the

first survey.

Demographic Cohort Participants Total %
Gender Female 2 25
Male 6 75
Non-binary 0 0
Prefer not to say 0 0
Native language English 3 37.5
Other 5 62.5
Programming Beginner 0 0
proficiency Intermediate 5 62.5
Advanced 3 37.5
Java proficiency Beginner 5 62.5
Intermediate 3 37.5
Advanced 0 0
Copilot Awareness | Yes 7 87.5
No 1 12.5
Copilot usage Daily 1 12.5
frequency Weekly 0 0
Monthly 0 0
Never 7 87.5
Trust in Copilot Yes 1 12.5
No 0 0
Unsure 4 50
Depends 3 37.5

Table A.1: Participant demographics and cohort percentages.

Appendix B

Participants’ information sheet and
consent form

55

Page 1 of 4

Participant Information Sheet

Project title: Studying the effect of GPT-3 technology (Copilot)

on User Trust

Principal investigator: Dr Kobi Gal

Researcher collecting data: | Nephele Aesopou

This study was certified according to the Informatics Research Ethics Process,
reference number 676940. Please take time to read the following information

carefully. You should keep this page for your records.
Who are the researchers?

This is an UG4 dissertation project led by Nephele Aesopou, Computer Science and
Mathematics student at the University of Edinburgh. The project is supervised by Dr
Kobi Gal, Reader in Artificial Intelligence and Human-Machine Intelligence at the

University of Edinburgh.
What is the purpose of the study?

The purpose of the project is to study the effect of Copilot use on user adoption and
trust by investigating the interactions between programmers and Copilot and
analysing their perceptions on user trust. Specifically, the study will analyse the
format of prompts to Copilot, how users adapt to Copilot’s behaviour and ways to

measure user trust.
Why have | been asked to take part?

You have been asked to take part because you fall within the specific user segment
it seeks to analyse, University of Edinburgh students with an interest in Al code

generation tools and Copilot.

Do | have to take part?

No — participation in this study is entirely up to you. You can withdraw from the study
at any time, without giving a reason. Your rights will not be affected. If you wish to
withdraw, contact the PIl. We will stop using your data in any publications or

THE UNIVERSITY of EDINBURGH

informatics

Page 2 of 4

presentations submitted after you have withdrawn consent. However, we will keep

copies of your original consent, and of your withdrawal request.
What will happen if | decide to take part?

If you do decide to take part, you will be introduced to the very interesting OpenAl’'s
pair-programmer tool, Copilot. You will be asked to answer some questions in a
survey regarding your year of study, age, gender, experience with programming and
Copilot and your opinions on user trust in Al technology and Copilot. Then, you will
be asked to complete a few coding tasks in Java with the help of Copilot, that will
take maximum 20 minutes. You will be asked to record your screen so we can
investigate the interaction. You can complete the tasks at your own time, on your
personal computer, as long as it is done during the period specified. Do not worry,
the correctness or efficiency of your code will not be associated to you or your
performance at the university courses; it will immediately be anonymised. After each
interaction you will be prompted to answer a survey, with questions reflecting on your
interaction with Copilot. Contingent upon your consent, we will ask you to repeat this

process again for another tutorial.

Are there any risks associated with taking part?
There are no significant risks associated with participation.
Are there any benefits associated with taking part?

By taking part in the study, you will gain experience with Java and you will learn how
to code using Copilot effectively. Moreover, we will share with you the results of the

study.

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and
presentations. Quotes or key findings will be anonymized: We will remove any
information that could, in our assessment, allow anyone to identify you. With your
consent, information can also be used for future research. Your data may be

archived for a minimum of 2 year.

THE UNIVERSITY of EDINBURGH

informatics

Page 3 of 4

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information
collected about you will be kept strictly confidential. Your data will be referred to by a
unique participant number rather than by name. Your data will only be viewed by the

researcher/research team; Nephele Aesopou and Dr Kobi Gal.

All electronic data will be stored on a password-protected encrypted computer, on
the School of Informatics’ secure file servers, or on the University’s secure encrypted
cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records
will be stored in a locked filing cabinet in the PI’s office. Your consent information will

be kept separately from your responses in order to minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide. You
have the right to access information held about you. Your right of access can be
exercised in accordance Data Protection Law. You also have other rights including
rights of correction, erasure and objection. For more details, including the right to
lodge a complaint with the Information Commissioner’s Office, please visit

www.ico.org.uk. Questions, comments and requests about your personal data can

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.

For general information about how we use your data, go to: edin.ac/privacy-research

Who can | contact?
If you have any further questions about the study, please contact the lead
researcher, Nephele Aesopou, by email to s2056170@ed.ac.uk.

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.
If the research project changes in any way, an updated Participant Information Sheet
will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.

Consent

THE UNIVERSITY of EDINBURGH

informatics

Page 4 of 4

By proceeding with the study, | agree to all of the following statements:
e | have read and understood the above information.
e | understand that my participation is voluntary, and | can withdraw at any time.
e | consent to my anonymised data being used in academic publications and
presentations.
e | allow my data to be used in future ethically approved research.

[Button here named “| agree” or “take me to the survey”]

THE UNIVERSITY of EDINBURGH

informatics

