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Abstract
Tarski’s fixed point theorem implies the existence of fixpoints of monotone functions
on complete lattices, and can be used in a game-theoretic context where equilibria
in certain games manifest as fixpoints of monotone functions. This has motivated
the study of the computational complexity of finding so-called tarski fixed points in
recent years. In this dissertation I provide an exposition of the TARSKI problem, three
related problems in algorithmic game theory, and the state of the art in upper bounds
for the TARSKI problem. I also provide an implementation of the aforementioned
algorithms applied to the three problems and results from practical testing. The general
consensus from practical tests is that the complex, recently developed algorithms with
stronger asymptotic bounds perform worse in practice in the included cases than simpler
algorithms which have been known for much longer.
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Chapter 1

Introduction

1.1 Overview

Fixpoint theorems have proven to be fundamental in the study of equilibria in game
theory and economic theory more generally. One such theorem due to Alfred Tarski
in [22] proves the existence of fixpoints of monotone functions on complete lattices,
and many problems in algorithmic game theory reduce to computing such a fixpoint[9].
Recent years have seen a flurry of results in the computational complexity of tarski
fixed-point computation [6, 9, 10, 3], though many problems remain open.
In this dissertation I discuss a variant of tarki fixed-point computation I call the TARSKI

problem, three related problems in algorithmic game theory which reduce to TARSKI,
and the state of the art in upper bounds for TARSKI. The currently best-known algo-
rithms are also implemented and tested on random instances of the three described
problems, reaching the conclusion that the recent improvements in asymptotic upper
bounds do not translate to practical performance benefit in the cases tested here.

1.2 Contributions

The main contributions of this dissertation are as follows,

• an exposition of the theoretical development on upper bounds for the TARSKI

problem, and reduction from related problems is given with highlights including,
proofs of the main lemmas for the so-called inner algorithm in [10] are proven
in a simplified context in section 4.2, and a complete polynomial-time reduction
from the ARRIVAL problem to TARSKI is given in section 3.1,

• a minor error in [9, Proposition 6.1.] is pointed out, with suggested rectification
included in lemma 3.3.6,

• a novel implementation of the recently developed complex algorithms for the
TARSKI problem is tested on randomly generated instances of ARRIVAL, simple
stochastic games, and shapley’s stochastic games, giving evidence that the im-
proved asymptotic upper bounds do not result in a practical performance increase.

1
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Chapter 2

Background

2.1 Lattices, Monotone Functions, and Fixpoints

For the purposes of this dissertation, I’m primarily concerned with an order-theoretic
characterization of lattices. I begin with some definitions.

Definition 2.1.1 (Poset). A partially ordered set, or poset is a set S with a binary relation
≤ on S such that the following axioms hold,

• For all s ∈ S, s≤ s (reflexivity),

• for all s, t,u ∈ S, if s≤ t and t ≤ u then s≤ u (transitivity),

• for all s, t ∈ S, if s≤ t and t ≤ s then s = t (antisymmetry).

Definition 2.1.2 (Least/Greatest Upper/Lower Bounds). Let (S,≤) be a partially ordered
set and A ⊆ S. A greatest lower bound of A is a l ∈ S such that for all a ∈ A a ≥ l,
and whenever l′ ∈ S also satisfies for all a ∈ A a ≥ l′ I have l ≥ l′. When it exists it
is denoted l =

∧
A. A least upper bound of A is a u ∈ S such that for all a ∈ A a≤ u,

and whenever u′ ∈ S also satisfies for all a ∈ A a≤ u′ I have u≤ u′. When it exists it is
denoted u =

∨
A.

Remark 2.1.3. Least upper bounds and greatest lower bounds need not exist in general.
Take for example (Z,≤) which is claimed to be a partial ordering. Z is a subset of Z,
but clearly Z has no upper bounds. Boundedness is also in general not sufficient.

Lemma 2.1.4 (Least/Greatest Upper/Lower bounds are unique). Let L be a lattice,
A⊆ L and u,u′ least upper bounds of A. Then u = u′. If l, l′ are greatest lower bounds
of A then l = l′.

Proof. The second part of the definition on a least upper bound gives u≤ u′ and u′ ≤ u.
Then antisymmetry of a partial order gives u = u′. That l = l′ follows similarly. ■

Definition 2.1.5 (Complete Lattice). Let (L,≤) be a partially ordered set. (L,≤) is
a complete lattice if for all A⊆ L there is a least upper bound u =

∨
A and a greatest

lower bound l =
∧

A.

2



Chapter 2. Background 3

Definition 2.1.6 (Product Lattice). Given two complete lattices (L,≤) and (L′,≤′) the
product lattice (L× L,≤ × ≤′) is the cartesian product of the underlying sets with
(l, l′)≤×≤′ (m,m′) if and only if l ≤ m and l′ ≤ m′ for all l,m ∈ L and l′,m′ ∈ L′.

That a finite product of complete lattices is also a complete lattice is taken as fact. The
notion of a complete sublattice will in turn be useful as well.

Definition 2.1.7 (Sublattice). Let (L,≤) be a lattice. A complete sublattice (M,≤) is a
subset M ⊆ L such that for all N ⊆M I have

∨
N ∈M and

∧
N ∈M.

For the rest of the dissertation where the ordering is clear from context, I will denote a
lattice purely by it’s underlying set.

Notation 2.1.8. For N ∈ Z≥1 I use the notation [N] = {1, ...,N}.

It is clear that any finite totally ordered set is a complete lattice.

Corollary 2.1.9. For d ∈ Z≥1 let [N]d = ∏
d
i=1[N]. Then [N]d is a lattice. The ordering

is defined as (l1, ..., ld)≤ (l′1, ..., l
′
d) if and only if li ≤ l′i for each i ∈ {1, ...,d}.

At times I will also need continuous lattices. I take the result from elementary analysis
that all bounded subsets of the real numbers have a least upper bound and greatest lower
bound in the real numbers, and closedness, to find [a,b]⊆R is a complete lattice for all
a,b ∈ R under the usual ordering.

Corollary 2.1.10. For d ∈ Z≥1 let [0,1]d = ∏
d
i=1[0,1]. Then [0,1]d is a lattice. The

ordering is defined as (l1, ..., ld)≤ (l′1, ..., l
′
d) if and only if li ≤ l′i for each i ∈ {1, ...,d}.

The focus will be on finding so-called fixpoints of monotone functions on a lattice.

Definition 2.1.11 (Monotone Function). Let L be a lattice. Then a function f : L→ L
is monotone if whenever l, l′ ∈ L with l ≤ l′ I have f (l)≤ f (l′).

Definition 2.1.12 (Fixpoint). Let S be a set and f : S→ S. Then s ∈ S is a fixpoint of f
if f (s) = s.

The notion of a monotone point will also be useful.

Definition 2.1.13 (Monotone Point). Let L be a lattice and f : L→ L be monotone.
Then x ∈ L is a monotone point if either f (x) ≥ x or f (x) ≤ x. It is monotone up if
f (x)≥ x and monotone down if f (x)≤ x.

Notation 2.1.14. Let L be a complete lattice and a,b ∈ L. The notation [a,b] = {x ∈ L :
a ≤ x ≤ b} is sometimes used. The notations [a,∞) = {x ∈ L : a ≤ x} and (−∞,b] =
{x ∈ L : x ≤ b} are also used. The reader can verify that these all define complete
sublattices of L.

And now for Tarski.

Theorem 2.1.15 (Tarski’s Fixed Point Theorem [22]). Let L be a complete lattice and
f : L→ L a monotone function. Define Fix( f ) = {x ∈ L : f (x) = x}. Then Fix( f ) is a
complete lattice under the same ordering as L. In particular, Fix( f ) contains a least
fixpoint l =

∧
Fix( f ).
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2.2 Matrix Games

Basic theory of matrix games is required for section 3.3 so is included here. Some prior
knowledge on game theory is assumed.

Notation 2.2.1. Let k be a field and n,m ∈ Z>0. Mat(k,n×m) denotes the set of all
n×m matrices with entries in k.

Definition 2.2.2 (Matrix Game). A matrix game is a zero-sum game played by two
players called the maximizer and minimizer respectively with strategy sets [n] and [m]
respectively. Players choose an action i ∈ [n] and j ∈ [m], then receive payoff Ai, j and
−Ai, j respectively where A ∈Mat(Q,n×m). A mixed strategy for the maximizer is
a probability distribution on [n]. That is, a vector x ∈ Qn such that xi ≥ 0 for each
i ∈ [n] and ∑i xi = 1. The set of all mixed strategies for the maximizer is denoted X .
A mixed strategy for the minimizer is defined similarly as a probability distrubution
y ∈ Qn on [m]. The set of all mixed strategies for the minimizer is denoted Y . The
expected payoff of a matrix game A under mixed strategies x ∈ X and y ∈ Y is defined
to be U(x,y) = xT Ay which is easily seen to be the expected payoff the maximizer
receives when both players independently and simultaneously choose random strategies
according to probability distributions x and y.

They key result in the theory of matrix games is the so-called minimax theorem due to
Von Nuemann. A proof can be found in [4, Chapter 15].

Theorem 2.2.3 (Minimax, [4]). Let A ∈Mat(Q,n×m) be a matrix game, X and Y the
sets of mixed strategies for the maximizer and minimizer respectively. Then,

max
x∈X

min
y∈Y

xT Ay = min
y∈Y

max
x∈X

xT Ay.

This yields a notion of ’value’ of a matrix game.

Definition 2.2.4. Let A ∈Mat(Q,n×m) be a matrix game, X and Y the sets of mixed
for the maximizer and minimizer respectively. The value of A is defined val(A) =
maxx∈X miny∈Y xT Ay.

Fortunately computing the value of a matrix game is computationally not hard.

Proposition 2.2.5. Let A ∈Mat(Q,n×m) be a matrix game. Then val(A) can be
computed in time polynomial with the encoding size of A.

For details on this the reader is again referred to [4, Chapter 15] where it is shown that
the problem can be reduced to a sufficiently small linear programming problem, for
which polynomial time algorithms are known.

2.3 Basic Algorithms and Lower Bounds

Tarski’s fixed point theorem gives rise to a natural computational problem.

Definition 2.3.1 (TARSKI). The problem TARSKI(N,d) is, given oracle access to a
monotone function f : [N]d → [N]d , find a point x∗ ∈ [N]d such that f (x∗) = x∗.



Chapter 2. Background 5

And now for the first basic algorithm for solving TARSKI.

Notation 2.3.2. For k ∈ Z≥0 the notation k⃗ = (k, ...,k). It is assumed that the dimen-
sionality of this ’vector’ is clear from context.

Algorithm 1 Kleene Tarski Iteration. An iterative algorithm for finding fixpoints.

1: procedure KLEENETARSKI(monotone f : [N]d → [N]d)
2: x← 1⃗
3: while x ̸= f (x) do
4: x← f (x)

return x

Correctness of the algorithm if it terminates is clear, so all that is needed it a bound on
it’s runtime.

Lemma 2.3.3. KLEENETARSKI always terminates in time O(Nd).

Proof. By definition of the lattice, for all x ∈ [N]d I have 1⃗ ≤ x, and in particular
1⃗ ≤ f (⃗1). Then by induction for all i ∈ Z≥0, f i(⃗1) ≤ f i+1(⃗1), where the convention
that f 0(x) = x is used. So suppose for a contradiction for some j > Nd that for all
i ≤ j, f i(⃗1) < f i+1(⃗1). By integrality, ∥ f i+1(x)∥1 ≥ ∥ f i(x)∥1 + 1. It follows that
∥ f j(x)∥1 > Nd. But this implies that ∥ f j(x)∥1 > ∥N⃗∥1, which is a contradiction of the
definition of f . So for some j ≤ Nd, f j (⃗1) = f j+1(⃗1). ■

Theorem 2.3.4. The query complexity of TARSKI(N,d) is O(Nd).

The fixpoint returned by KLEENETARSKI isn’t just any old fixpoint.

Lemma 2.3.5. Let x be the fixpoint returned by KLEENETARSKI. Then x is the least-
fixpoint of f . That is, for all other fixpoints y ∈ [N]d , y≤ x.

Proof. Let ( f i(⃗1))i∈Z≥0 be the sequence of points generated in KLEENETARSKI. I will
show inductively that f i(⃗1)≤ y for all i ∈ Z≥0. For the base case, by construction of the
lattice f 0(⃗1) = 1⃗≤ y. Suppose f i−1(⃗1)≤ y. Then by monotonicity of f , f ( f i−1(⃗1)) =
f i(⃗1)≤ f (y). But y is a fixpoint so f (y) = y and f i(⃗1)≤ y. ■

It should be emphasized that this is algorithm does not run in time polynomial with the
encoding size of problem instances. For numbers of size 2n can be represented with n
bits of information. At the time of writing it is not known whether or not this problem is
solvable in polynomial time. Etessami et al. gave the current best known lower bound
on the query complexity of TARSKI, along with other complexity-theoretic results on
the problem.

Theorem 2.3.6 ([9]). The query complexity of TARSKI(N,d) is Ω(log2 N).

Dang, Qi, and Ye gave an algorithm for solving the TARSKI problem[6] using a variant
of the well known binary search algorithm. The details of their algorithm are instructive
to the workings on the improved algorithms detailed later, so they are given below.
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Notation 2.3.7. Given a tuple x=(x1, ...,xn) for i∈ [n] the notation x−i =(x1, ...,xi−1,xi+1, ...,xn).
That is, it drops the i-th coordinate of the tuple.

Definition 2.3.8 (Slice). Let (Si)i∈[d] be totally ordered sets, L = ∏i∈[d] Si be their
product lattice, and f : L→ L be monotone. Then a slice of f is a choice of coordinate
i ∈ [d], and a choice of value xi ∈ Si, defining a new function fs : L−i → L−i with
fs((l1, ..., ld−1)) = f ((l1, ..., li−1,xi, li, ..., ld−1))−i.

Lemma 2.3.9. Let f : [N]d → [N]d be monotone. Then for any i ∈ [d], xi ∈ [N] the slice
fs : [N]d−1→ [N]d−1 at i with value xi is monotone.

Proof. Suppose l, l′ ∈ [N]d−1 with l = (l1, ..., ld−1), l′ = (l′1, ..., l
′
d−1), and l ≤ l′. By

reflexivity, xi ≤ xi, so (l1, ...,xi, li, ..., ld−1) ≤ (l′1, ...,xi, l′i , ..., ld−1), and fs(l) ≤ fs(l′)
follows by monotonicity of f . ■

Lemma 2.3.10. Let f : [N]d → [N]d is monotone, and x ∈ [N]d be such that x≤ f (x).
Then f restricts to a monotone function f |[x,∞) : [x,∞)→ [x,∞). Similarly, if x≥ f (x)
then f restricts to a monotone function f |(−∞,x] : (−∞,x]→ (−∞,x].

Proof. I need to show that if x ≤ f (x) then for all y ∈ [x,∞), f (y) ∈ [x,∞). By con-
struction, y ≥ x, and by monotonicity f (y) ≥ f (x). But f (x) ≥ x, so f (y) ≥ x, and
f (y) ∈ [x,∞). The second part is similar. ■

Lemma 2.3.11. Let f : [N]→ [N] be monotone. Then a fixpoint of f can be found in
O(logN) queries of f .

Proof. Choose x = ⌊N
2 ⌋. [N] is totally ordered, so exactly one of the following hold; x <

f (x), x = f (x), x > f (x). If x = f (x) then I’m done. If x < f (x) then by lemma 2.3.10 f
restricts to a monotone function f |[x,∞), and a fixpoint of f |[x,∞) is clearly also a fixpoint
of f . Similarly, if x > f (x) then f restricts to f |(∞,x]. This enables a recursion on the
smaller sublattice. Finally, noting that a fixpoint can be found trivially in the one-point
set in a constant number of queries, since the search space is halved every recursive call
the algorithm terminates in O(logN) queries. ■

The algorithm of Dang, Qi, and Ye can be seen in algorithm 2.

Lemma 2.3.12. DANGQIYE returns a fixpoint of f if it terminates.

Proof. The algorithm only returns if it satisfies the condition on line 11. At this point,
x⃗s is a fixpoint of fs, so it follows that f (⃗x)i = x⃗i for i ∈ [d−1]. The condition ensures
that also x⃗d = f (⃗x)d , and x⃗ is a fixpoint of f . ■

Lemma 2.3.13. DANGQIYE terminates in at most O(logd N) queries to f .

Proof. By induction. The base case follows from lemma 2.3.11. Suppose DANGQIYE

uses at most O(logd−1 N) queries to solve the d−1 dimensional case. If the condition
on line 11 fails, note that x⃗ is a monotone point, so lemma 2.3.10 guarantees that the
function restricts to the smaller lattice bounded by lines 14 or 16. The d-th dimension is
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Algorithm 2 [6]. A binary-search-like algorithm for finding fixpoints.

1: procedure DANGQIYE(monotone f : [N]d → [N]d)
2: ⊥← 1⃗
3: ⊤← N⃗
4: return DANGQIYEREC( f , ⊥, ⊤)
5: procedure DANGQIYEREC(monotone f : [N]d → [N]d , ⊥, ⊤)
6: while true do
7: midd ← ⌊⊥d+⊤d

2 ⌋
8: fs← the slice of f at d with value midd
9: x⃗s← DANGQIYE( fs, ⊥−d , ⊤−d)

10: x⃗← ((x⃗s)1, ...,(x⃗s)d−1,midd)
11: if x⃗d = f (⃗x)d then
12: return x⃗
13: if midd < f (⃗x)d then
14: ⊥← x⃗
15: if midd > f (⃗x)d then
16: ⊤← x⃗

shrunk by a factor of 1
2 every iteration of the loop, so will require at most logN recursive

calls to the d− 1 dimensional algorithm. So the algorithm terminates using at most
O(logN) ·O(logd−1 N) = O(logd N) queries to f . ■

Theorem 2.3.14 ([6]). The query complexity of TARSKI(N,d) is O(logd N).

Simply combining algorithm 2, and theorem 2.3.6 gives a tight bound on the 2 dimen-
sional problem.

Corollary 2.3.15 ([9]). The query complexity of TARSKI(N,2) is Θ(log2 N).

Remark 2.3.16. The reader may notice that there are many other natural fixpoint
computation problems for lattices, and wonder what motivates the specific problem
detailed above. The problem of computing any fixpoint of a monotone function on a
general lattice is known to be intractable. In particular, it was shown in [1] that for
any randomized algorithm there are general lattices of N elements which require Ω(N)
queries with high probability to find a fixpoint. Focussing on a specific case such as
[N]d is therefore justified. Further, the case of computing least fixpoints of even one
dimensional functions f : [2n]→ [2n] is proven to be NP-hard in [9] which motivates the
problem only requiring an arbitrary fixpoint. As will also be demonstrated in chapter 3,
as well as through other examples in [9], the specific problem I detail still has useful
applications.



Chapter 3

Related Problems

In this chapter, I discuss three problems problems in algorithmic game theory which
are polynomial-time reducible to TARSKI; ARRIVAL, simple stochastic games, and
shapley’s stochastic games, with the goal of motivating study on the TARSKI problem.

3.1 The Arrival Problem

The arrival problem is, given a directed graph with a particular structure and designated
source and target vertex, decide whether or not a particular walk starting at the source
ever reaches the target. In [14] a sub-exponential time algorithm for arrival is developed
which reduces the problem to TARSKI of some form. It turns out that ARRIVAL is in
fact polynomial time reducible to TARSKI. While this is not explicity stated in [14],
essentially all of the theory for this reduction is included so credit goes to them. In
this section, I give the basic definitions of the ARRIVAL problem as well as a complete
proof of polynomial time reduction from ARRIVAL to TARSKI.

Definition 3.1.1 (Arrival Graph). An arrival graph is a set of vertices V , a pair of
vertices s, t ∈V , and a pair of maps s0,s1 : V →V .

Definition 3.1.2 (Arrival Walk). Let (V,s, t,s0,s1) be an arrival graph. The arrival
walk on this graph is a sequence of vertices (vi)i∈Z≥0 ∈V such that v0 = s, and vi+1 ={

s0(vi), ni even
s1(vi), ni odd,

where ni is the number of times vi has appeared previously in the

sequence.

A diagram of an example arrival graph is shown in in f ig. 3.1. It is clear that the arrival
walk for a particular arrival graph is entirely defined by the structure of the graph, which
is what lead it to be called a zero player graph game in [7].

Definition 3.1.3 (ARRIVAL). The ARRIVAL problem is, given an arrival graph (V,s, t,s0,s1),
decide whether or not the arrival walk ever reaches t.

There is an obvious algorithm to solve the ARRIVAL problem; just simulate the walk.
Cases of instances where t is not reachable pose a problem however - the walk must

8
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s v1 v2

v3 v4

v5

t
s0

s1 s0

s1

s0
s1

s0

s1

s0

s1

s0 s1

Figure 3.1: The goal of the arrival problem is to decide whether a partiular walk on a
directed graph with a particular structure reaches the target. On successive visits to a
particular vertex the outgoing edge taken alternates. In this example the walk begins
s→ v1→ v4→ s→ v3→ . . ..

cycle infinitely and never terminate! The following content demonstrates that this is a
non issue.

Definition 3.1.4 (Hopeful and Desperation). Let (V,s, t,s0,s1) be an instance of the
ARRIVAL problem. A vertex v ∈ V is hopeful if there is a path v→ t in the directed
graph defined with the vertex set V and edge set E ⊆V ×V with (u,v) ∈ E if and only
if either s0(u) = v or s1(u) = v. The desperation of a hopeful vertex v is the length of
the shortest path from v to t.

Lemma 3.1.5 ([7]). Let (V,s, t,s0,s1) be an instance of the ARRIVAL problem. If v ∈V
is hopeful, the arrival walk passes through v at most 2|V | times.

Proof. Begin by noting that if a vertex is hopeful, it’s desperation is at most |V |. I
perform an induction on the desperation of v. Suppose the desperation of v ∈ V is 1.
Then either s0(v) = t or s1(v) = t. If s0(v) = t, t will be reached after passing through v
once. If s1(v) = t and s0(v) ̸= t t will be reached after passing through v twice. In both
cases v is passed through at most 21 = 2 times.
Suppose that all hopeful vertices with desperation d− 1 are passed through at most
2d−1 times. Then if v ∈V is hopeful with desperation d, for some hopeful w ∈V with
desperation d−1 either s0(v) = w or s1(v) = w. So at least every second passing of v,
the walk will proceed to w. But the walk can pass through w at most 2d−1 times, so the
walk can pass through v at most 2 ·2d−1 = 2d times. ■

Corollary 3.1.6. Let (V,s, t,s0,s1) be an instance of the ARRIVAL problem. Then the
arrival walk either reaches t, or reaches a vertex which is not hopeful.

From corollary 3.1.6 it is clear that deciding an instance of the ARRIVAL problem is
equivalent to deciding whether or not the arrival walk reaches t or reaches a vertex
which is not hopeful.

Definition 3.1.7 (Processed Arrival). Let (V,s, t,s0,s1) be an instance of the arrival
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problem. It is without loss of generality to assume that the set of unhopeful vertices is
non-empty. Let ∼ be the equivalence relation on V generated by u∼ v if u and v are
both not hopeful. The processed arrival problem is a set of vertices V ′ = V/ ∼, the
canonical projections of s, t,s0,s1 into V ′, and a choice of representative t ∈V ′ of all
the non hopeful vertices in V .

s v1 v2

v3

v4

t

s0

s1 s1

s1

s0

s0

s0

s0 s1

s1

7→

s t

v3 t

s0

s1

s1
s0

Figure 3.2: Instances of the arrival problem can be preprocessed so that every non-target
vertex has a directed path to the target. An extra ’bad target’ t is added which represents
all the vertices with no directed path to the target t, and the problem becomes to decide
which of the two targets is reached. From corollary 3.1.6 the walk in the resultant graph
must be finite.

Noting that the set of non hopeful vertices can be easily computed in linear time with a
breadth first search from t, from this point on I will refer to instances of the ARRIVAL

problem exclusively as tuples (V,s, t, t,s0,s1) constructed as above.

Corollary 3.1.8 ([7]). The time complexity of the ARRIVAL problem is O(n ·2n).

Proof. I reason that the arrival walk on the processed instance (V,s, t, t,s0,s1) has it’s
walk length bounded by O(n · 2n). Every vertex v ∈ V with v ̸= t is hopeful with
desperation at most n, so by corollary 3.1.6 can be passed through at most 2n times. If
the walk reaches t or t it terminates, and there are at most n vertices w ∈V such that
w ̸∈ {t, t}, so the walk can take at most n ·2n steps. ■

There are in fact instances of the ARRIVAL problem with exponentially long walks - as
seen in fig. 3.3 - implying that the worst-case runtime of this algorithm is exponential.
Recently a sub-exponential1 upper bound for ARRIVAL was given in [14]. Interestingly,
their algorithm involves a reduction from ARRIVAL to TARSKI. I will not detail the
reduction used in the sub-exponential algorithm, but will spend the remainder of the
section demonstrating a similar, yet simpler reduction from ARRIVAL to TARSKI.

1Specifically an algorithm running in time O(2
√

n).
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s v1 v2 vn t. . .
s1 s1 s1

s0
s0

s0

s0

Figure 3.3: There are instances of the arrival problem with exponentially long walks. An
induction on the number of steps to get from s→ vi shows that walk on the above takes
at least Ω(2n) steps to reach t.

Definition 3.1.9 (Switching Flow). Let (V,s, t, t,s0,s1) be an arrival graph. A switching
flow is a pair of maps f0, f1 : V \{t, t}→ Z≥0 such that the following axioms hold. Let
fin(v) = ∑ w∈V

s0(w)=v
f0(w)+∑ w∈V

s1(w)=v
f1(w).

• For all v ∈V \{s, t, t}, fin(v) = f0(v)+ f1(v) (flow conservation),

• fin(s) = f0(s)+ f1(s)−1 (source flow conservation),

• For all v ∈V , f1(v)≤ f0(v)≤ f1(v)+1 (switching).

Notation 3.1.10. Throughout this section if a ∈ Zd
≥0 and ( f0, f1) is the flow correspond-

ing to a, the notation fin(v) = ∑ w∈V
s0(w)=v

f0(w)+∑ w∈V
s1(w)=v

f1(w) will be used.

It was observed in [7] that the walk on an arrival graph can be characterized by a
switching flow.

Lemma 3.1.11 ([7]). Let (V,s, t, t,s0,s1) be an instance of the ARRIVAL problem.
Define f0 : V \ {t, t} → Z≥0 by f0(v) = the number of times s0(v) is traversed in the
arrival walk, and define f1 similarly. Then ( f0, f1) is a switching flow.

Proof. Flow conservation and source flow conservation follow from the fact that the
walk must walk out of a vertex if it walks in, minus the initial step it takes from the
source. Switching follows from the nature of the walk taking the s0 edge on even passes,
and s1 edge on odd passes. ■

I next establish a correspondence from arrival instances to monotone functions.

Definition 3.1.12 (Arrival Monotone Function). Let (V,s, t, t,s0,s1) be an instance
of the arrival problem, d = |V \{t, t}| and (vi)i∈[d] be an enumeration of the vertices
in V \ {t, t}. The arrival monotone function is a function f : Zd

≥0 → Zd
≥0 defined

coordinatewise as,

f ((a1, ...,ad))i =


∑ j∈[d]

s0(v j)=vi

⌈a j
2

⌉
+∑ j∈[d]

s1(v j)=vi

⌊a j
2

⌋
vi ̸= s

1+∑ j∈[d]
s0(v j)=vi

⌈a j
2

⌉
+∑ j∈[d]

s1(v j)=vi

⌊a j
2

⌋
vi = s.

Lemma 3.1.13. The arrival monotone function is monotone.
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Proof. Clearly the sum of monotone functions is also monotone, ⌈·⌉ and ⌊·⌋ are
monotone, composition of monotone functions is monotone, linear functions with
non-negative coefficients are monotone, and constant functions are monotone. This
encompasses all components of the above function, which is therefore montone. ■

The monotone function was constructed precisely so that the following proposition
holds.

Proposition 3.1.14. Let f : Zd
≥0 → Zd

≥0 be an arrival monotone function, and a =

(a1, ...,ad) ∈ Zd
≥0. Define g0(vi) = ⌈ai

2 ⌉ and g1(vi) = ⌊ai
2 ⌋. If f (a) = a then (g0,g1) is

a switching flow.

Proof. For flow conservation, let vi ∈V \{s, t, t}. Then,

∑
j∈[d]

s0(v j)=vi

g0(v j)+ ∑
j∈[d]

s0(v j)=vi

g1(v j) = ∑
j∈[d]

s0(v j)=vi

⌈a j

2

⌉
+ ∑

j∈[d]
s0(v j)=vi

⌊a j

2

⌋
= f (a)i

= ai

=
⌈ai

2

⌉
+
⌊ai

2

⌋
= g0(vi)+g1(v1).

Source flow conservation follows similarly. Switching is clear from the definition of ⌊·⌋
and ⌈·⌉.

■

The next proposition draws useful connection between the arrival walk and monotone
function.

Proposition 3.1.15. Let (V,s, t, t,s0,s1) be an instance of the problem, and f be the
arrival monotone function. For a ∈ Zd

≥0 let g0(a) =
⌈a

2

⌉
and g1(a) =

⌊a
2

⌋
. For i ∈ {x ∈

Z≥0|x < n} where n number of steps to reach t or t, let (hi
0 : [d]→ Z≥0,h1ai : [d]→

Z≥0)i∈Z≥0 be a sequence defined by hi
0( j) = the number of times the s0 edge has been

taken from v j after i steps in the walk, and define hi
1( j) similarly for the s1 edge. Then

for each j ∈ [d] g0( f i(⃗0)) j = hi
0( j) and g1( f i(⃗0)) j = hi

1( j).

Proof. By induction. For the base case where i = 0 no edges have been crossed, so for
each j ∈ [d] hi

0( j) = hi
1( j) = 0 = f 0(⃗0)i

2 = 0.
So suppose for some i∈Z≥0 the statement is true for all j ∈ [i−1]. Let vk ∈V \{t, t} be
the vertex the walk is at after i−1 steps, and vl after i−2 steps. Then by the inductive
hypothesis f i−2(⃗0)l +1 = f i−1(⃗0)l and for each m ∈ [d]\{l}, f i−2(⃗0)m = f i−1(⃗0)m. It
follows that f i−1(⃗0)k+1 = f i(⃗0)k, and the switching property of the monotone function
guarantees that the extra unit appears on the correct edge. ■

All of that is really just to say that in the case of monotone functions from the arrival
problem, iteration from the bottom of the lattice as in algorithm 1 is the walk. This
connection gives me some useful corollaries.
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Corollary 3.1.16. Let f be an arrival monotone function, (g0,g1) be the switching
flow corresponding to an arrival walk as in lemma 3.1.11, and a ∈ Zd

≥0 be the fixpoint
corresponding to this switching flow as in proposition 3.1.14. Then a is the least fixpoint
of f .

Proof. Using a similar argument to lemma 2.3.5, iteration from the bottom of the lattice
gives the least fixpoint. But proposition 3.1.15 says that iteration from the bottom of
the lattice is the walk and will give the fixpoint corresponding to the switching flow of
the walk. ■

Lemma 3.1.17. Let f : Zd
≥0→ Zd

≥0 be an arrival monotone function. If a ∈ Zd
≥0 and

( f0, f1) the flow corresponding to a, then ∑i∈[d] f (a)i = 1+
(
∑i∈[d] ai

)
− fin(t)− fin(t).

Proof. Easily computed from the definitions. ■

Corollary 3.1.18. Let A be an instance of the arrival problem and (g0,g1) a switching
flow. Then either gin(t) = 1 and gin(t) = 0, or gin(t) = 0 and gin(t) = 1.

Proof. The walk only terminates when it reaches either t or t, so if ( f0, f1) is the
switching flow corresponding I must have exactly one of fin(t) = 1 and fin(t) = 0 or
fin(t) = 0 and fin(t) = 1. By corollary 3.1.16 the walk corresponds to the least fixpoint,
and for all other switching flows (g0,g1), at least one of gin(t)≥ 1 or gin(t)≥ 1. Suppose
for a contradiction that gin(t)+gin(t)≥ 2 and let a ∈ Zd

≥0 be the point corresponding to
(g0,g1). If f is the arrival monotone function corresponding to A then by lemma 3.1.17,
∑i∈[d] f (a)i = 1+

(
∑i∈[d] ai

)
−gin(t)−gin(t)≤∑i∈[d] ai−1. Which contradicts a being

a fixpoint and (g0,g1) being a switching flow. ■

Remarkably, this implies that any switching flow is certificate to the walk reaching
either t or t. Further, fixpoints are switching flows so deciding the ARRIVAL problem is
reducible to finding a fixpoint of a particular monotone function! I’m not quite finished
yet however; the monotone functions of arrival instances considered so far have been
on the infinite lattice Zd

≥0, but the TARSKI problem I defined is on the finite lattice [N]d .
This will turn out to not be an issue.

Notation 3.1.19. For N ∈ Z≥0 notation [N]0 represents [N]∪{0}.

Definition 3.1.20 (Bounded arrival monotone function). Let (V,s, t, t,s0,s1) be an
instance of the arrival problem and f be it’s corresponding arrival function. Let n = |V |
and N = 2n. The bounded arrival monotone function is a function F : [N]d0 → [N]d0
defined coordinatewise as F(a)i = min( f (a)i,N).

Lemma 3.1.21. Let F be a bounded arrival monotone function. Then F is monotone.

Proof. Similarly to the proof of lemma 3.1.13, min(·, N) is clearly monotone. Mono-
tonicity then follows monotonicity of the arrival monotone function, and monotonicity
being preserved under composition. ■
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Lemma 3.1.22 ([14]). Let (V,s, t, t,s0,s1) be an instance of the arrival problem, n = |V |,
N = 2n, d = |V \{t, t}|, f :Zd

≥0→Zd
≥0 be the arrival monotone function, and F : [N]d0→

[N]d0 be the bounded arrival monotone function. If a ∈ [N]d0 satisfies F(a) = a, then
f (a) = a.

Proof. Begin by noting that for all a ∈ [N]d0 , f (a) ≥ F(a). Suppose for a contra-
diction that f (a) ̸= F(a). Then F(a) > f (a). From lemma 3.1.17, ∑i∈[d] f (a)i ≤

1+∑i∈[d] ai. Since F(a) = a I find i ∈ [d], f (a) j =

{
a j +1 j = i
a j j ̸= i.

. By definition

F(a)i = min( f (a)i,N) so ai = N and f (a)i = N +1. For ∑i∈[d] f (a)i = 1+∑i∈[d] ai I
require that fin(t) = 0 and fin(t) = 0. But corollary 3.1.6 combined with ai = N = 2n

implies that the walk must have terminated. That is, either fin(t) > 0 or fin(t) > 0,
which is a contradiction. ■

Theorem 3.1.23. ARRIVAL is polynomial time reducible to TARSKI.

3.2 Simple Stochastic Games

Simple stochastic games, as defined in [5], are a class of zero-sum games played on
graphs with two players called the maximizer and minimizer respectively. For the
purposes of this dissertation I will consider only β-stopping simple stochastic games
which roughly speaking are simple stochastic games where at every stage the game
automatically halts with probability β. Condon shows in [5] that these games necessarily
have a rational value for rationally described instances of the problem, and further that
the value can be achieved in pure stationary strategies which is to say that players
can achieve optimal expected payoff by fixing a deterministic action for every one of
their vertices prior to play commencing. The relationship to TARSKI then comes from
[9], where Etessami et al. show that computing the exact value of (not necessarily
β-stopping) simple stochastic games as well as a pure stationary strategy profile to
achieve this value is polynomial-time reducible to TARSKI. This section will lay out
the required definitions, and describe the aforementioned reduction to TARSKI in the
special case of β-stopping simple stochastic games.

Definition 3.2.1 (β-stopping Simple Stochastic Game). A β-stopping simple stochastic
game is a directed graph G = (V,Vp,Vmax,Vmin,E,v0, t,β) with designated start vertex
v0 ∈ V , target vertex t ∈ V , β ∈ (0,1]∩Q, a partition of V \ {t} into three disjoint
subsets Vp,Vmin,Vmax, and a mapping p : Vp×V → [0,1]∩Q such that for all vp ∈Vp,
v ∈ V if (vp,v) ̸∈ E I have p(vp,v) = 0, for each vp ∈ Vp ∑v∈V p(vp,v) = 1, and for
every v ∈V \{t} there is necessarily an edge (v,w) ∈ E for some w ∈V . A play in a
simple stochastic game transpires as follows. A token is placed on the initial vertex
of the game v0. Let vi be the vertex on which the token currently lies. Then at each
step, the game halts with probability β. If it did not halt and vi ∈Vmax (Vmin) then the
maximizer (minimzer) chooses and edge (vi,vi+1) ∈ E for some vi+1 ∈ V . If vi ∈ Vp
then an edge (vi,w) ∈ E is chosen randomly with probability p(vi,w). If vi = t then the
game halts. When the game halts, the maximizer gets a payoff of 1 if the game reached
t, and 0 otherwise. The payoff of the minimizer is the negative of the maximizer’s.
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v0 v1

v2

v3

t

1
3

2
3

2
5

2
5

1
5

Chance

Maximizer

Minimizer

Figure 3.4: In β-stopping simple stochastic games, one of the two players aims to
maximize the probability of play reaching the target t, while the other aims to minimize it.

It is clear that since β > 0 the game eventually halts with probability 1.

Definition 3.2.2 (Pure Stationary Strategy). Let G = (V,Vp,Vmax,Vmin,E,v0, t) be a
simple stochastic game. A pure stationary strategy for the maximizer is a mapping
σ : Vmax→V with the requirement that for all v∈Vmax (v,σ(v))∈ E. The set of all such
pure stationary strategies for the maximizer is denoted S. A pure stationary strategy for
the minimizer is a map τ : Vmin→V such that for all v ∈Vmin (v,τ(v)) ∈ E. The set of
all such pure stationary strategies for the minimizer is denoted T . A pure stationary
strategy profile is a pair (σ,τ) ∈ S×T .

Once you fix a pure stationary strategy profile (σ,τ) in a simple stochastic game, the
resultant process is easily seen to be a discrete markov chain with two absorbing states
corresponding to the to the game reaching t or halting elsewhere. The probability of
reaching t from any particular vertex can then be computed by solving a system of linear
equations, leading to our definition of the expected value under a fixed pure stationary
strategy profile.

Definition 3.2.3 (Expected Value). Let G = (V,Vp,Vmax,Vmin,E,v0, t) be a simple
stochastic game. The expected value of a particular vertex i ∈V under the pure strategy
profile (σ,τ) written vσ,τ(i) is the probability of absorption at t in the resulting markov
chain after fixing actions according to σ and τ. The game expected value is the value of
the start vertex vσ,τ(v0).

The content of the following result is that simple stochastic games have a well defined
notion of value that, importantly, can be achieved in pure stationary strategies. This is
to say that both players can achieve optimal expected payoff in the game by fixing a
deterministic action at every node in the game prior to it starting.

Theorem 3.2.4 ([5], lemma 6). Let G = (V,Vp,Vmax,Vmin,E,v0, t) be a β-stopping
simple stochastic game and S,T the pure strategy stationary strategy sets for the
maxmimizer and minimizer respectively. Then for each i ∈V ,

max
σ∈S

min
τ∈T

vσ,τ(i) = min
τ∈T

max
σ∈S

vσ,τ(i).

Further if q∗i = maxσ∈S minτ∈T vσ,τ(i) then for each i ∈V , q∗i ∈Q.



Chapter 3. Related Problems 16

The trick is then to construct a monotone function F : [0,1]d→ [0,1]d such that F(x) = x
if and only if x = (q1, ...,qd).

Definition 3.2.5 (β-stopping Simple Stochastic Game Monotone Function). Let G =
(V,Vp,Vmax,Vmin,E,v0, t) be a β-stopping simple stochastic game, d = |V |, and (vi)i∈[d]
some enumeration of the vertices in V . The β-stopping simple stochastic game monotone
function is a function F : [0,1]d → [0,1]d defined coordinatewise as,

F((x1, ...,xd))i = (1−β) ·


1, vi = t
max{x j : (vi,v j) ∈ E}, vi ∈Vmax

min{x j : (vi,v j) ∈ E}, vi ∈Vmin

∑v j∈V p(vi,v j) · x j, vi ∈Vp.

It is shown in [5] that for all x,x′ ∈ [0,1]d , ∥F(x)−F(x′)∥∞ ≤ (1−β)∥x− x′∥∞, which
is to say F is a contraction map and has a unique fixpoint by the banach fixpoint theorem.
It is further shown in [5] that the unique fixpoint x∗ ∈ [0,1]d satisfies x∗ = (q1, ...,qd).
That is, x∗ is the vector of values of the game. The reader can easily verify that F is also
monotone in the usual coordinatewise ordering on [0,1]d . The last stage in reduction to
TARSKI is to discretize the function F : [0,1]d → [0,1]d to a function f : [N]d0 → [N]d0
such that a fixpoint of f can be converted to an approximate fixpoint of F . This is
proved using ideas from [8] and [9] in the following.

Lemma 3.2.6 (Discretized β-stopping Simple Stochastic Game Monotone Function).
Let G = (V,Vp,Vmax,Vmin,E,v0, t) be a β-stopping simple stochastic game, F : [0,1]d→
[0,1]d it’s corresponding monotone function, and ε ∈ R>0. Let M =

⌊
1
βε

⌋
and define

f : [M]d0 → [M]d0 coordinatewise with f (x)i =
⌊

F(βε · x)i · 1
βε

⌋
. If x∗ ∈ [0,1]d is the

unique fixpoint of F and x = f (x) then ∥βε · x− x∗∥∞ < ε. Further, f is monotone.

Proof. Let x ∈ [M]d0 , suppose x = f (x) and F(x∗) = x∗. From x = f (x) I have by
definition of ⌊·⌋ for each i ∈ [d],

1 > F(βε · x)i ·
1
βε
− xi ≥ 0.

This implies by definition of ∥ · ∥∞ and homogoneity of the norm that,

∥βε · x−F(βε · x)∥∞ < βε.

So I calculate,

∥βε · x− x∗∥∞ ≤ ∥βε · x−F(βε · x)∥∞ +∥F(βε · x)− x∗∥∞

= ∥βε · x−F(βε · x)∥∞ +∥F(βε · x)−F(x∗)∥∞

< βε+(1−β)∥βε · x− x∗∥∞.

Rearranging and dividing through by β gives the first part of the claim. That f is
monotone easily follows from monotonicity of F , and that ⌊·⌋ and multiplication by
non-negative constants preserve monotonicity. ■
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The culmination of this section is the following result.

Theorem 3.2.7. 2 Let G be a β-stopping simple stochastic game and q∗ ∈Q the value
of the game. For all ε ∈ R>0 finding a q ∈Q such that |q−q∗|< ε is polynomial time
reducible to TARSKI in the encoding size of G and ε.

Remark 3.2.8. The algorithm of kleene-tarski algorithm 1 applied to the monotone
function described above is analagous to a method often called value iteration, as
described in [2]. There is also a method for solving simple stochastic games often
called strategy improvement or policy iteration as described in [15] which, very broadly
speaking, works by iteratively fixing a strategy for the maximizer (or minimizer),
computing a best response for the minimizer in the residual markov decision process3

yielding values (q1, ...,qd). A new strategy for the first player chosen by myopically
selecting at each node vi ∈Vmax an edge (vi,v j) ∈ E which maximizes q j. The binary
search style algorithms from chapter 4 will be compared to value iteration in chapter 5,
and strategy improvement is not tested here.

3.3 Shapley’s Stochastic Games

Shapley’s stochastic games, or stopping stochastic games as described in [21] are a
class of zero-sum game played on a set of states with two players called the maximizer
and minimizer respectively. At each state the players concurrently choose an action, and
then receive a payoff which sums to zero based on the joint action of the two players.
The game then halts with some fixed probability. If it didn’t halt then a next state is
chosen randomly with probability distribution dependent on the joint action chosen. It
is shown in [21] that stochastic games necessarily have an optimal expected value, and
further that this value can be achieved in stationary strategies. Unlike simple stochastic
games however, the value need not be rational or the strategies achieving the value pure.
In [9] it is shown that the problem of finding a rational number ε close to the actual
value of the game is polynomial-time reducible to TARSKI which will be described in
this section.

Definition 3.3.1 (Stopping Stochastic Game). A stopping stochastic game G=(V,A,P,s,q)
is a set of states of n states V = (v1, ...,vn), for each state vi an ni×mi rational valued
matrix Ai ∈ A called the payoff matrix, for each state vi an ni×mi matrix Pi ∈ P called
the transition matrix who’s j,k-th entry is an n-vector Pi

j,k =
(
(Pi

j,k)1, ...,(Pi
j,k)n

)
such

that ∑l∈[n](Pi
j,k)l = 1 and for each l ∈ [n], (Pi

j,k)l ≥ 0. The starting state is a state
s ∈V and the stopping probability is a positive rational number q ∈Q>0. A play is as
follows. A token is placed on the initial state s = vi. The maximizer and minimizer
choose actions j ∈ [ni] and k ∈ [mi] respectively, and receive payoffs pmax = Ai

j,k and
pmin = −Ai

j,k respectively. The game then halts with probability q, and if it did not

2In [9] Etessami et al. show a stronger result; in a slightly more general model of simple stochastic
games that don’t necessarily have the β stopping property used above, the problem of finding the
exact value of the game q∗ is polynomial-time reducible to TARSKI. The simplified stopping game
approximation result is shown above instead to simplify exposition, as well as to simplify implementation
during the practical testing chapter of this dissertation.

3which can be done in polynomial time using linear programming
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Figure 3.5: An instance of shapley’s stochastic games is a set of states, and for each
state a pair of actions sets for the two players. Play starts at some state and each player
picks an action, and receives payoff equal to the entry in the payoff matrix (in the top half
of each circle) corresponding to the joint action. Then play transitions transitions to a
new state on a probability distribution according to the transition matrix (in the bottom of
each circle). In the stopping variant, after each step the games halts with some positive
probability q ∈ R>0.

transitions to state l ∈ [n] with probability (Pi
j,k)l . Play continues until it halts (which

happens with probability 1).

I require a more general notion of strategy to the pure strategies introduced in section 3.2
which are as follows.

Definition 3.3.2 (Mixed Stationary Strategy). Let G = (V,A,P,s,q) be a stopping
stochastic game. A mixed stationary strategy for the maximizer is a vector of real vec-
tors σ= ((σ1

1, ...,σ
n1
1 ), ...,((σ1

n, ...,σ
nn
n ))) such that for each i∈ [n], ∑ j∈[ni]σ

j
i = 1 and for

each j ∈ [ni], σ
j
i ≥ 0. The set of all mixed stationary strategies for the maximizer is de-

noted S. A mixed stationary strategy for the minimizer is τ=((τ1
1, ...,τ

m1
1 ), ...,(τ1

n, ...,τ
mn
n ))

such that for each i ∈ [n], ∑ j∈[mi] τ
j
i = 1 and for each j ∈ [mi], τ

j
i ≥ 0. The set of all

mixed stationary strategies for the minimizer is denoted T .

Once a stationary strategy profile is fixed, given a starting state, I can define a sequence
of random variables (Xt)t∈Z≥0 representing the payoff at the t-th step, allowing for the
convention that the game continues to ’play’ after halting, just giving both players
payoff 0 repeatedly. The value of the game then becomes the (necessarily convergent)
series v = ∑

∞
t=0E[Xt ]

4. Then the value of a state x ∈V under stationay strategy profile
(σ,τ) is denoted vσ,τ(x). The content of the following result from [21] is that stopping
stochastic games necessarily have a minimax value, and that value can be achieved in
stationary strategies.

Proposition 3.3.3 ([21]). Let G = (V,A,P,s,q) be a stopping stochastic game and S,
T be the mixed stationary strategy sets for the maximizer and minimizer respectively.

4That the expectation is well defined and the series convergent can be seen in [16, Chapter 2].
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Then for all x ∈V ,

max
σ∈S

min
τ∈T

vσ,τ(x) = min
τ∈T

max
σ∈S

vσ,τ(x).

The value of the game is then denoted v(s). The value of a particular state x ∈ V is
denoted v(x) and is the maximum expected value if the game were to start at x. Recall
the definition of val from definition 2.2.4.

Definition 3.3.4 (Stopping Stochastic Game Monotone Function). Let G = (V,A,P,s,q)
be a stopping stochastic game, d = |V | and M = maxi, j,k |Ai

j,k|. Then the stopping
stochastic game monotone function is a function F : [−M

q ,
M
q ]

d → [−M
q ,

M
q ]

d defined
coordinatewise as F(x)i = val

(
Ai +(1−q) ·T i) where T i is an ni×mi matrix defined

T i
j,k = ∑

n
l=1(P

i
j,k)l · xl .

I was perhaps hasty in writing the codomain of this function, but the following lemma
shows it to be correct.

Lemma 3.3.5. Let G = (V,A,P,s,q) be a stopping stochastic game and F as defined in
definition 3.3.4. Then for all x ∈ [−M

q ,
M
q ]

d , F(x) ∈ [−M
q ,

M
q ]

d . Further, F is monotone.

Proof. Note val(·) is monotone in the coordinatewise ordering for the corresponding
set of matrices. For if val(B) = k for some B ∈Mat(Q,n×m) then there is some
distribution x ∈ Qn such that for all distributions y ∈ Qm, xT By ≥ k. Then if B ≤
B′ ∈Mat(Q,n×m) then since x and y necessarily have all non-negative entries, k ≤
xT By≤ xT B′y. So val(B)≤ val(B′). It is then easily verified that F is monotone. Now if
N =max j,k |B j,k| then clearly−N ≤ val(B)≤N. By monotonicity, for all x∈ [−M

q ,
M
q ]

d ,

F(x)≤ F
(

M⃗
q

)
. I denote JkK to be the matrix with entries all equal to k with size inferred

from context. For each i ∈ [d],

F

(
M⃗
q

)
i

= val(Ai +(1−q) ·T i)

≤ val
(

JMK+(1−q)
s

M
q

{)
= val

(
JMK− JMK+

s
M
q

{)
=

M
q
.

Noting that in the case x = M⃗
q , T i can clearly be seen to be equal to

r
M
q

z
for each

i ∈ [d]. It can be shown using a similar argument that F(x)≥−M
q by observing again

by monotonicity that F(x)≥ F
(
−M

q

)
. ■

Shapley shows in [21] that for all x,x′ ∈ [−M
q ,

M
q ]

d that ∥F(x)−F(x)′∥∞ ≤ (1−q)∥x−
x′∥∞, which is to say F is a contraction map and has a unique fixpoint by the banach
fixpoint theorem. It is further shown in [21] the unique fixpoint gives precisely the
value of the game. That is, if x∗ = F(x∗) then for all i ∈ [d], v(vi) = x∗i . The last step
is a discretization to allow application of the discrete algorithms. I use the notation
⟨M⟩= {−M, ...,0, ...,M}.



Chapter 3. Related Problems 20

Lemma 3.3.6 (Stopping Stochastic Game Discretization). Let G = (V,A,P,s,q) be
a stopping stochastic game, F as in definition 3.3.4, and ε ∈ R>0. Then if M is
the maximum entry in the set of payoff matrices, let N = M

εq2 and define a function

f : ⟨N⟩ → ⟨N⟩ coordinatewise with f (x)i =
⌊

1
εqF(εq · x)i

⌋
. If f (x) = x and x∗ is the

unique fixpoint of F then ∥εq · x− x∗∥∞ < ε.

Proof. From f (x) = x I have by definition of ⌊·⌋ for each i ∈ [d], 1 > 1
εq ·F(εq · x)i−

xi ≥ 0, which is to say ∥ 1
εq ·F(εq · x)− x∥∞ < 1. Then by homogeneity of the norm,

∥F(εq · x)− x∥∞ < εq. I calculate,

∥εq · x− x∗∥∞ ≤ ∥εq · x−F(εq · x)∥∞ +∥F(εq · x)− x∗∥∞

= ∥εqx−F(εq · x)∥∞ +∥F(εq · x)−F(x∗)∥∞

< εq+(1−q)∥εq · x− x∗∥∞.

Rearranging and dividing through by q gives the claim. ■

It should be noted that in [9, Proposition 6.2.] a similar result to lemma 3.3.6 is proven.
There is however a mistake at the end of the proof in defining the discretized function,
which the above shows how to rectify. I leave out details on encoding sizes, but these
can be found in [9]. Putting it all together,

Theorem 3.3.7 ([9]). Let G be a stopping stochastic game and v ∈ R the value of the
game. Then for all ε∈Q>0 computing an x ∈Q such that |x−v|< ε is polynomial-time
reducible to TARSKI in the encoding size of ε and G.

3.4 Open Problems

The key open problems relating to this chapter are whether or not polynomial-time
algorithms exist for any of the described problems.

Open problem 3.4.1. Is ARRIVAL in P?

Open problem 3.4.2. Is computing the exact value of a simple stochastic game in P?

Open problem 3.4.3. Is approximating the value of shapley’s stochastic games to any
ε ∈ R>0 in P?

All of these problems have seen a significant amount of study in years gone by. That
answers have not been found, and they are all reducible to TARSKI places TARSKI in
an interesting position in the complexity landscape of algorithmic game theory, and
perhaps motivates further study on the problem.



Chapter 4

State of the art Algorithms

4.1 Overview

Recent developments have been made in upper bounds for the TARSKI problem. The
critical component to the algorithmic improvements is the surprising result from [10]
that TARSKI(N,3) can be solved in at most O(log2 N) queries. The idea is roughly as
follows; suppose I have a monotone function f : [N]3→ [N]3 and an algorithm which
given a coordinate i ∈ {1,2,3} and a value v ∈ [N] returns a monotone point x ∈ [N]3

with the guarantee that xi = v. If this algorithm takes q(N) queries in the worst case,
then a fixpoint of f can be found in O(logN ·q(N)) in the same fashion as algorithm 2.

Definition 4.1.1 (FINDMONOTONE). The problem FINDMONOTONE(N,d) is, given
oracle access to a monotone function f : [N]d → [N]d , a coordinate i ∈ {1, ...,d}, and
value v ∈ [N], find a monotone point x ∈ [N]d such that xi = v.

The breakthrough in [10] was in detailing a so-called inner-algorithm which leads to
the following result.

Theorem 4.1.2 ([10]). The query complexity of FINDMONOTONE(N,3) is O(logN).

Fearnley et al. also gave a method of decomposition, allowing for TARSKI in higher
dimensions to be decomposed into a product of sorts of lower dimensional problems
which I call fixpoint decomposition and will be detailed in section 4.3.

Theorem 4.1.3 (Fixpoint Decomposition, [10]). For positive integers a,b ∈ Z>0, given
an algorithm A which can solve TARSKI(N,a) in p(N,a) queries, and an algorithm B
which can solve TARSKI(N,b) in p(N,b) queries, the problem TARSKI(N,a+b) can
be solved in O(p(N,a) ·q(N,b)) queries.

Chen and Li take this one step further; instead of decomposing the TARSKI problem
they show that it is possible to make a decomposition on FINDMONOTONE using a
method I will call monotone decomposition which will be detailed in section 4.4¿

Theorem 4.1.4 (Monotone Decomposition, [3]). For positive integers a,b ∈ Z>0, given
an algorithm A which can solve FINDMONOTONE(N,a) in p(N,a) queries, and an

21
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algorithm B which an solve FINDMONOTONE(N,b) in q(N,b) queries, the problem
FINDMONOTONE(N,a+b) can be solved in O((b+1) · p(N,a) ·q(N,b)) queries.

The purpose of this chapter is to describe the state of the art algorithms so that the reader
can get a sense of possible directions for future study on the problem. In particular, I
believe it will be worthwhile from a theoretical perspective to work on generalizing the
inner algorithm from section 4.2 to higher dimensions.

4.2 The Inner Algorithm

In the interest of saving space, I will not detail the inner algorithm in it’s entirety.
Instead I will introduce the main invariant, proving lemmas showing how the inner
algorithm can make progress in the main cases.1 In contrast to algorithm 2 where two
opposing monotone points are maintained essentially defining the top and bottom of
a sublattice on which the monotone function naturally restricts (and hence contains a
fixpoint), the inner algorithm maintains an invariant so that only a monotone point is
guaranteed within the current search space.

Definition 4.2.1 (Witness, [10]). Let f : [N]3→ [N]3. A down set witness is a pair of
points (d,b) ∈ ([N]3)2 such that d3 = b3 and for some i, j ∈ {1,2} with i ̸= j,

• di = bi, b j ≤ d j, f (b) j ≤ b j, if b ̸= d then f (d) j ≥ d j, else f (b)i ≤ bi,

• f (d)3 ≥ d3 and f (b)3 ≥ b3.

An up set witness is a pair of points (a,u) ∈ ([N]3)2 such that a3 = u3 and for some
i, j ∈ {1,2} with i ̸= j,

• ai = ui, a j ≤ u j, f (a) j ≥ a j, if u ̸= a then f (u) j ≤ u j, else f (a)i ≥ ai,

• f (d)3 ≥ d3 and f (b)3 ≥ b3.

I use a notational convenience from [10].

Definition 4.2.2 (Up/Down Set). Let f : L→ L be a monotone function. Then the
up-set of f is defined Up( f ) = {x ∈ L : x ≤ f (x)} and the down-set of f is defined
Down( f ) = {x∈ L : x≥ f (x)}. At times an abuse of notation is used, where elements of
the lattice x ∈ [N]d are said to be in the up set or down set of the slice fs of a monotone
function f : [N]d → [N]d . The meaning is assumed to be clear from context.

Now for the main invariant of the inner algorithm.

Definition 4.2.3 (Inner algorithm invariant). Let f : [N]3→ [N]3 be a monotone function.
The inner algorithm invariant is an up set witness (d,b) and a down set witness (a,u)
such that u≤ d.

The reader is directed to fig. 4.1 to aid in digesting the witness and invariant definitions.
Throughout whenever the inner algorithm invariant is satisfied, I fix fs be the slice of f

1The key missing cases are when the current search space is ’narrow’, in that the width in some
dimension is ≤ 1. The reader is directed to [10] for these.
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at coordinate 3 with value b3 = a3 = d3 = u3 (where all of these equalities follow from
the witness definitions).

a = u

d = b

a u

bd

a

u

bd

a = u

b

d

Figure 4.1: There are many possible configurations of witnesses that satisfy the invariant.
All of the above are representations of witness pairs which satisfy the invariant using
the useful diagramming notation from [10] that should be read as follows; the outer
square represents some ’slice’ of the three dimensional cube in the third coordinate. An
arrow extending from a point x ∈ [N]3 in direction i ∈ {1,2,3} in the positive (negative)
direction should be read as f (x)i ≥ (≤)xi. For example in the rightmost square if 1 is
the horizontal direction and 2 is the vertical direction, and 3 is forwards dimension then
f (b)2 ≤ b2 and f (b)3 ≥ b3. Diagram source: [10]

Lemma 4.2.4. Let f : [N]3→ [N]3 be a monotone function with (a,u), (d,b) up and
down set witnesses respectively satisfying the inner algorithm invariant. Then there is a
point x ∈ [N]3 with a≤ x≤ b and x ∈ Up( f ) or x ∈ Down( f ).

Proof. If a = u and b = d then by the witness definition a ∈ Up( fs) and b ∈ Down( fs),
so lemma 2.3.10 guarantees fixpoint of fs in the range [a,b], which is then necessarily a
monotone point of f .
By the witnesses definition, there are j, j′ ∈ {1,2} such that d j = b j and a j′ = u j′ .
Then let i, i′ ∈ {1,2} with i ̸= j and i′ ̸= j′. If a ̸= u then lemma 2.3.10 gives a point
c ∈ [N]3 with a≤ c≤ u and f (c)i′ = ci′ . By monotonicity and c≤ u I have f (c)3 ≤ c3.
If f (c)1 ≤ c j′ then c ∈ Down( f ) and I’m done. If f (c) j′ ≥ c j′ then I consider b and
d. Using a similar argument there is a v ∈ [N]3 with d ≤ v ≤ b such that f (v)3 ≥ v3,
and f (v)i = vi. If f (v) j ≥ v j then v ∈ Up( f ), and if f (v) j ≤ v j then by the invariant,
v≥ d ≥ u≥ c gives v≥ c, and lemma 2.3.10 guarantees a fixpoint of fs in the range
[c,v], which is neccessarily a monotone point of f . ■

The key is then to half the current search space in a constant amount of time by finding
a new set of points satisfying the inner algorithm invariant. There are many distinct
cases to be handled here and I have not covered them all. In particular, special cases
are required for instances which are narrow (that is, for some i ∈ {1,2} bi− ai ≤ 1).
The reader is directed to [10] for these. The first case is under the assumption that u
and d are not past the midpoint of the line they are on. Throughout I set midi =

⌊
ai+bi

2

⌋
for each i ∈ {1,2,3}, and take fs to be the slice of f at the 3rd coordinate with value
a3 = b3.

Lemma 4.2.5 ([10]). Let f : [N]3 → [N]3 and suppose for each i ∈ {1,2} that ui ≤⌊
ai+bi

2

⌋
and di ≥

⌊
ai+bi

2

⌋
. Then either a pair of witnesses (a,u), (d,b) satisfying the

invariant such that for some j ∈ {1,2} b j − a j ≤
⌈

a j−b j
2

⌉
, or a point x ∈ Up( f )∪

Down( f ) can be found using a constant number of queries.



Chapter 4. State of the art Algorithms 24

Proof. Evaluate f (mid). If mid ∈ Up( f ) or mid ∈ Down( f ) then the inner algorithm
can return immediately. If mid ∈ Up( fs) and mid ̸∈ Up( f ) then f (mid)3 ≤ mid and
I can set a = u = mid. By assumption u ≥ mid ≥ d so the pair (a,u), (d,b) will do.
The case mid ∈ Down( fs) is similar. Suppose for some i, j ∈ {1,2} with i ̸= j that
f (mid)i ≤ midi and f (mid) j ≥ mid j. If f (mid)3 ≥ mid3 then put p j = b j, pi = midi
and p3 = mid3 and evaluate f (p). By monotonicity f (p)3 ≥ p3, so if f (p) j ≤ p j then
put u = mid and a = p and I’m done. If f (p) j > p j then by monotonicity and b j = p j
I have f (b) j > b j. It follows by definition of witnesses that if b ̸= d then bi ̸= di and
b j = d j. Then again by monotonicity and d ≤ p I have d j ≤ f (d) j, and by definition of
a witness di ≤ f (d)i and d3 ≤ f (d)3, so d ∈ Up( f ) and can be returned immediately.
The case f (mid)3 ≤ mid3 is similar except I consider pi = ai, p j = mid j, p3 = mid3
and find either (p,mid) is an up set witness, or u ∈ Down( f ). ■

mid p
d

a

b

If f (mid)3 ≥mid3 and
f (p) j > p j then d ∈ Up( f ).

mid p

a

b

If f (mid)3 ≥mid3 and f (p) j ≤ p j

then (mid,d) is a down-set witness.

Figure 4.2: In the main case where u≤mid, d ≥mid, and ai−bi ≥ 2 for i ∈ {1,2}, the
search space can be halved as in the proof of lemma 4.2.5. mid is queried, and the only
non-trivial case is when mid ̸∈ Up( fs)∪Down( fs). The diagrams show the case when
f (mid)3 ≥mid3. The case f (mid)3 ≤mid3 then is similar. The horizontal dimension is
taken to be dimension j from the proof, and vertical is i. Diagram source: [10]

.
I must now justify the assumption in lemma 4.2.5 that u≤mid and d ≥mid.

Lemma 4.2.6 ([10]). Suppose for some i ∈ {1,2} that ui ̸≤midi. Then a point p ∈ [N]3

can be found such that pi ≤ midi and (a, p) is a valid down-set witness, or (p,u) is
a valid down-set witness. If di ̸≥ mid then a point q ∈ [N]3 can be found such that
qi ≥mid and (q,b) is a valid up-set witness, or (d,q) is a valid up-set witness.

Proof. Suppose for some i ∈ {1,2} that ui > midi. Then by definition of a witness,
if j ∈ {1,2} and i ̸= j then u j = a j. Put p j = u j, pi = midi. Then since u ≥ p by
monotonicity and definition of a witness I have f (u)3 ≥ u3. If f (p)i ≤ pi then (a, p)
is a valid down set witness that satisfies pi ≤midi. If f (p)i ≥ pi then (p,u) is a valid
down-set witness.
The case with di < midi is similar; I take p j = d j, pi = midi and p3 = mid3 and find
either (p,b) is a down-set witness or (b, p) is a down-set witness. ■

Combining the previous two lemmas, a ’normal’ iteration of the inner algorithm is
as follows. Check if u < mid or d > mid. If so, using lemma 4.2.6 either find a new
set of witnesses with a search space that is half the size of the previous, or a new of
witnesses such that u≤mid and d ≥mid and continue to the next iteration. If u≥mid
and d ≤ mid then using lemma 4.2.5 find a new set of witnesses such that the new
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upa

b

If f (p)i ≤ pi then
(p,u) is an up-set witness

p ua

b

If f (p)i ≥ pi then
(a, p) is an up-set witness

Figure 4.3: The main case described in lemma 4.2.5 breaks down if u ̸≤mid or d ̸≥mid.
This can be rectified via lemma 4.2.6. The horizontal dimension is taken to be i from the
proof of lemma 4.2.6, and vertical j. Diagram source: [10]

search space is at most half the size of the previous. With the additional fact from
[10] that the search space can be halfed in a constant amount of queries when the
search space as a width of at most 1, this gives an O(logN) query algorithm for the
FINDMONOTONE(N,3) problem.

4.3 Fixpoint Decomposition

Throughout I will fix a,b ∈ Z>0, d = a+b, and f : [N]a× [N]b→ [N]a× [N]b. Suppose
I have an algorithm A which can solve TARSKI(N,a), and an algorithm B which
can solve TARSKI(N,b). A naive approach for finding a fixpoint of f would be to
define a function on the right hand side of the lattice fr : [N]b → [N]b where given
xr ∈ [N]b the value of fr(xr) is computed by defining the slice fl : [N]a→ [N]a such that
fl(xl) = f ((xl,xr))−r, finding a fixpoint x∗l ∈ [N]a of fl , then using f (x∗l ,xr)−l as the
result of fr(xr). The punchline is that if xr is a fixpoint of fr, and x∗l was the fixpoint
of fl associated with xr then the point (x∗l ,xr) is a fixpoint of f . This does not work
however - there is no guarantee that fr is monotone. That is, if points xr,x′r ∈ [N]b are
queried by algorithm B with xr ≤ x′r it is not necessarily the case that the associated
fixpoints of fl x∗l and x′∗l ∈ [N]a satisfy x∗l ≤ x′∗l , so monotonocity of f does not carry
over. The trick will thus be to find a way to guarantee that x∗l and x′∗l satisfy x∗l ≤ x′∗l
whenever xr ≤ x′r. Fortunately this is achieveable; in algorithm 3 the issue is solved by
carefully choosing bounds of the sublattice to search in based on previously computed
points. The correctness of which will be the concern of the remainder of this section.
An abuse of notation x−r or x−l is often used to denote the first a coordinates, or last b
coordinates of x respectively.

Lemma 4.3.1. If (pl, pr),(p′l, p′r) ∈ prev with pr ≤ p′r then pl ≤ p′l

Proof. Suppose without loss of generality that pr was queried by algorithm B before p′r.
Then when p′r is queried, pl is an element of {pl : (pl, pr) ∈ prev : pr ≤ p′r} whence
⊥l ≥ pl , so the fixpoint found by algorithm A satisfies x∗l ≥ pl . ■

Lemma 4.3.2. At line 7 of algorithm 3 ⊥l ≤⊤l .
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Algorithm 3 [10]. An algorithm for decomposing fixpoint computation problems.
1: procedure FIXPOINTDECOMPOSITION(

monotone f : [N]a× [N]b→ [N]a× [N]b,
algorithm A for solving TARSKI(N,a),
algorithm B for solving TARSKI(N,b) )

2: prev← /0

3: procedure fr(xr ∈ [N]b)
4: procedure fl(xl ∈ [N]a) return f ((xl,xr))−r.
5: ⊥l ←

∨
{pl : (pl, pr) ∈ prev, pr ≤ xr}

6: ⊤l ←
∧
{pl : (pl, pr) ∈ prev, pr ≥ xr}

7: x∗l ← A( fl) with bounds ⊥l , ⊤l
8: prev← prev∪{(x∗l ,xr)}
9: return f ((x∗l ,xr))−l .

10: x∗r ← B( fr)
11: return (x∗l ,x

∗
r ) where x∗l is the fixpoint of fl found when evaluating fr(x∗r ).

Proof. By lemma 4.3.1 I have for all pl ∈ {pl : (pl, pr) ∈ prev : pr ≤ xr} and p′l ∈ {pl :
(pl, pr) ∈ prev : pr ≥ xr} that pl ≤ p′l . Then by definition of ∧ and ∨ ⊥l ≤⊤l . ■

Lemma 4.3.3. At line 7 of algorithm 3 I have fl(⊥l)≥⊥l and fl(⊤l)≤⊤l .

Proof. I prove the first case and the second is similar. Suppose not. That is, for some
i ∈ [a] I have fl(⊥l)i < (⊥l)i. If L = {pl : (pl, pr) ∈ prev : pr ≤ xr} is empty then
∨L = 1⃗ and I contradict the definition of f . If L is non-empty then by definition of finite
joins, there is some (pl, pr) ∈ prev such that (pl)i = (⊥l)i and (pl, pr)≤ (xl,xr). But
f (((pl, pr))−r)i = (pl)i so I contradict monotinicity. ■

Lemma 4.3.4. At line 7 of algorithm 3 fl is a monotone function on the lattice [⊥l,⊤l].

Proof. That fl is monotone follows from an inductive application of lemma 2.3.9. Then
the rest follows from lemma 4.3.3 and lemma 2.3.10. ■

Proposition 4.3.5. The point (x∗l ,x
∗
r ) returned by algorithm 3 is a fixpoint of f .

Proof. lemma 4.3.1 guarantees that fr is monotone, and hence on line 10 a fixpoint x∗r
can be found. Then by construction (x∗l ,x

∗
r ) is clearly a fixpoint of f . ■

Proof of theorem 4.1.3. Suppose algorithm A takes at most p(N,a) queries and algo-
rithm B takes at most q(N,a) queries to find a fixpoint. Then every query of fr by
algorithm A makes at most q(N,b) queries to f to find a fixpoint of fl , so given algorithm
A makes a most p(N,a) queries, the entire algorithms makes at most p(N,a) ·q(N,b)
queries to f . ■
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4.4 Monotone Decomposition

The algorithm described in section 4.3 makes a decomposition of TARSKI by decom-
posing into smaller fixpoint computation problems, with the asymptotic improvement
coming from the fact that there is an algorithm to efficently solve the TARSKI(N,3)
problem. I can do better however; Chen and Li describe in [3] a method of decompos-
ing the FINDMONOTONE problem instead. To save space, this section will show the
algorithms used but for proofs of correcteness the reader is referred to [3]. It will be
simpler to give an overview after a definition of an auxiliary problem.

Definition 4.4.1 (TARKSI∗, [3]). The problem TARKSI∗(N,d) is given oracle access to
a function f : [N]d →{−1,0,1}d such that,

1. for each x ∈ [N]d and i ∈ [d], xi + f (x)i ∈ [N]d ,

2. for each x,y ∈ [N]d with x≤ y, (x,0)+ f (x)≤ (y,0)+ f (y),

find a point x ∈ [N]d such that f (x)≥ 0 or f (x)≤ 0.

This function f is designed to be an indicator of a monotone function F : [N]d → [N]d;

that is if I define f coordinatewise as f (x)i =


1, F(x)i > xi

0, F(x)i = xi

−1, F(x)i < xi

then f satisfies the

conditions in definition 4.4.1. The first condition is the requirement that the codomain of
F is correct, and the second is monotonicity. It is also clear that FINDMONOTONE(N,d)
trivially reduces to TARKSI∗(N,d). Chen and Li then wish to make decompositions
from TARKSI∗(N,a+b) into TARKSI∗(N,a) and TARKSI∗(N,b). The fixpoint decom-
position method algorithm 3 does not obviously apply here; it is not clear what to do
with the extra coordinate in the codomain, and further if I split into fl and fr similarly to
algorithm 3, if (xl,xr) ∈ [N]a× [N]b, are found as monotone points of fl and fr, xl can
be a monotone-down point, and xr a monotone up point so (xl,xr) is not necessarily a
monotone point of f . Chen and Li’s first step towards a solution is defining a refinement
of the TARKSI∗ problem.

Definition 4.4.2 (REFINEDTARSKI∗, [3]). Given a function f : [N]d → {−1,0,1}d+1

as in definition 4.4.1, find a pair of points ⊥,⊤∈ [N]d such that ⊥≤⊤, for each i ∈ [d],
f (⊥)i ≥ 0, f (⊤)i ≤ 0, and at least one of the following hold,

1. f (⊥)d+1 = 1,

2. f (⊤)d+1 =−1,

3. f (⊥) = f (⊤) = 0.

Interestingly, Chen and Li show that this problem is no harder than TARKSI∗ in the
sense that it can be solved in at most two queries to a TARKSI∗ orcacle. Their algorithm
for doing this is shown in algorithm 4.
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Algorithm 4 [3]. An auxiliary algorithm for monotone decomposition.
1: procedure REFINEDTARSKI∗(

f : [N]d →{−1,0,1}d+1 as in definition 4.4.1,
algorithm A for solving TARKSI∗(N,d) )

2: (⊥,⊤)← (⃗1, N⃗)

3: Let g+ : [N]d → [N]d+1 with g+(x)i =

{
1, i = d +1 and g(x)d+1 ≥ 0
g(x)i, otherwise

4: x← A(g+) with bounds ⊥, ⊤
5:
6: if g+(x) =−1 then ⊤← x and return (⊥,⊤)
7: ⊥← x

8: Let g− : [N]d → [N]d+1 with g+(x)i =

{
−1, i = d +1 and g(x)d+1 ≤ 0
g(x)i, otherwise

9: y← A(g−) with bounds ⊥, ⊤
10: if g−(y)d+1 = 1 then ⊥← y else ⊤← y
11: return (⊥,⊤)

Correctness is relatively simple to verify and is omitted for brevity. Note g+ and g− also
need to be verified to satisfy definition 4.4.1. Now for the main algorithm in algorithm 5.

Algorithm 5 [3]. An algorithm for decomposing monotone point computation problems.
1: procedure MONOTONEDECOMPOSITION(

f : [N]a+b→{−1,0,1}a+b+1 as in definition 4.4.1,
algorithm A for solving TARSKI(N,a),
algorithm B for solving TARSKI(N,b) )

2: prev← /0

3: procedure fr : [N]b→{−1,0,1}b+1(xr ∈ [N]b)
4: ⊥l ←

∨
{pl : (pl, pr) ∈ prev, pr ≤ xr}

5: ⊤l ←
∧
{pl : (pl, pr) ∈ prev, pr ≥ xr}

6: for j from a+1 to a+b+1 do
7: procedure f j

l : [N]a→{−1,0,1}a+1(xl ∈ [N]a)
8: y← f ((xl,xr))
9: return (y1, ...,ya,y j).

10: (⊥ j
l ,⊤

j
l )← REFINEDTARSKI∗( f j

l ,A) with bounds ⊥l , ⊤l

11: (⊥l,⊤l)← (⊥ j
l ,⊤

j
l )

12: prev← prev∪{(⊥l,xr)}
13: x← f ((⊥l,xr))
14: return f (xa+1, ...,xb+1).
15: x∗r ← B( fr)
16: let (⊥l,⊤l) be the bounds found when evaluating fr(x∗r )
17: if fr(x∗r )≥ 0 then return (⊥l,x∗r ) else return (⊤l,x∗r )

Lemma 4.4.3. algorithm 5 gives a correct solution to TARKSI∗.
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Proof sketch. The proof that all intermediate functions restrict to the transient bounds
(⊥l,⊤l) is similar to the proof of correctness of algorithm 3 with a few extra cases.
The crux of the proof for algorithm 5 is [3, Lemma 6] where it is shown that at line
16, for each i ∈ {a+1, ...,b+1}, and every p, p′ ∈ [⊥l,⊤l], f ((p,x∗r ))i = f ((p′,x∗r ))i.
This is because inductively from the loop on line 6 I find ⊥l ≥ ⊥i

l and ⊤l ≤ ⊤i
l , so

if f ((⊥l,x∗r ))i = 1, then since (⊥i
l,⊤

i
l) was a solution to REFINEDTARSKI∗( f i

l ,A) I
find f ((p,x∗r ))≥ f ((⊥l,x∗r ))i ≥ f i

l (⊥
i
l)i = 1. The cases with f ((⊥l,x∗r ))i ∈ {−1,0} are

similar.
When the algorithm returns on line 17, (⊥l,⊤l) was a solution to REFINEDTARSKI∗ in
the slice at x∗r , so for each i∈ [a], f ((⊥l,x∗r ))i ≥ 0 and f ((⊤l,x∗r ))i ≤ 0, so the condition
on line 17 ensures that the returned point is a solution to TARKSI∗. ■

For complete proof of correctness of algorithm 5 see [3]. It is clear that algorithm 5
gives the asymptotic bound in theorem 4.1.4.

4.5 Open Problems

Many problems on the algorithmic complexity of TARSKI remain open. The most
impressive upper bound on query complexity would be the following.

Open problem 4.5.1. Is the query complexity of TARSKI(N,d) O(poly(logN)·poly(d))?

The implications of a result in the positive for open problem 4.5.1 would be significant.
It would imply a polynomial-time algorithm for computing the exact value of simple
stochastic games as described in section 3.2, which has remained an open problem since
1992 when studied by Condon in [5]. It would also imply a polynomial-time algorithm
for the ARRIVAL problem as described in section 3.1, the complexity of which has
seen a significant amount of study in recent years [14, 13, 7, 18]. It therefore seems
reasonable to consider weaker conjectures.

Open problem 4.5.2. Is the query complexity of TARSKI(N,d) O(log2 N) for fixed d?
That is, is TARSKI fixed-parameter tractable?

Recent results such as theorem 4.1.2 from [10] make this seem plausible. Perhaps the
notion of a ’witness’ as in definition 4.2.1 can be generalized to higher dimensions,
and the search-space halved as in lemma 4.2.5 in a potentially exponential number of
queries? A useful intermediate result towards this problem could be the following.

Open problem 4.5.3. Is the query complexity of TARSKI(N,4) O(log2 N)?

Improved lower bounds for the TARSKI problem would also be an interesting result. A
first step could be the following.

Open problem 4.5.4. For some d ∈ Z>2 is the query complexity of TARSKI(N,d)
ω(log2 N)?

Although in [9] inclusion of TARSKI in PPAD∩PLS is shown, it remains an open
problem if there are any natural complexity classes for which TARSKI is complete.

Open problem 4.5.5. Is TARSKI complete for any natural complexity classes?



Chapter 5

Testing the Algorithms

5.1 Overview

While the algorithms of previous sections are of great theoretical interest, questions re-
main on their practicality. To address this, I have implemented the algorithms and tested
their performance on randomly generated instances of ARRIVAL, simple stochastic
games, and shapley’s stochastic games. The notable conclusions are roughly speaking
as follows,

• the most basic algorithms of value iteration, and simulating the ARRIVAL walk
outperform all of the binary search style algorithms in almost all cases in terms
of query count and time,

• algorithm 3 of Fearnley, Pálvölgyi, and Savani tends to be the most performant of
the binary search style algorithms on the problems tested here,

• the fixpoint decomposition method described in section 4.3 performs better
than the asymptotically superior monotone decomposition method described in
section 4.4.

5.2 Method

5.2.1 Algorithm Implementation Detail

5.2.1.1 Implementation

I implemented these algorithms in the progamming language C++. Complete source
code can be found here including all algorithms in chapter 4, and solvers for all prob-
lems in chapter 3 using TARSKI algorithms. Compilation and linking was done with
clang version 14.0.3 with the C++20 standard and -03 optimization settings. The tests
were on my laptop with a 10-core Apple M2 CPU and 16GB of memory. Soplex[11]
was used as a dependency to solve linear programs as part of the shapley’s stochastic
games solver. The shapley’s stochastic game solver uses multithreading so performance
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may differ if run on CPUs with less cores.

5.2.1.2 Performance Improvements

There are some performance optimizations that could be made. For simplicity of
implementation1, std::vectors are shuffled and appended to unnecessarily, and I
believe performance could be gained by changing this. std::function is the main
abstraction for passing the monotone functions around the system and are shown to be
particularly innefficient in [20], so I believe performance can be gained by changing this
to something like the function_view described in [20]. In running in the profiler, I
found soplex was a bottleneck in solving shapley’s stochastic games. Perhaps soplex
is not optimized for solving a large number of very small LPs and a better alternative
could be found. There is also perhaps scope for using sensitivity analysis as described
in [23] to reuse values from previous function queries to improve solver performance;
although this could be incredibly complex and not worth the effort.

5.2.2 Random Problem Generation

Instances of all three problems were generated randomly to facilitate testing. The
method of randomization used for each instance is detailed in this subsection. Through-
out random numbers were generated using the mersenne-twister[19] 19937 PRNG
found in the <random> header in the C++ standard library.

5.2.2.1 ARRIVAL

Recall from section 3.1 that an instance of the arrival problem consists of a directed
graph with a designated target vertex such that every vertex has exactly two labelled
outgoing edges. This leads to a natural notion of a random arrival instance on n vertices
v1, ...,vn. Simply choose for each vertex vi the successors s0(vi) and s1(vi) uniformly at
random from the set of vertices, and note that it is without loss of generality to fix the
target to be vn. Random instances for various fixed sizes of the ARRIVAL problem were
generated thusly for testing.

5.2.2.2 Simple Stochastic Games

Simple stochastic games do not have as natural a notion of random problem instances
as ARRIVAL for the following reasons,

• vertices can be one of three types,

• vertices can have different numbers of successors,

• chance vertices can have arbitrary probability distributions on their successors.

For simplicity, I generate a random simple stochastic game on n vertices v1, ...,vn as
follows,

1particularly in implementing slices of functions as described in definition 2.3.8
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• the type of each vertex is chosen uniformly at random from the three possibilities,

• all vertices have exactly two successors,

• the probability distribution on the two successors of a chance node is chosen by
partitioning the interval [0,1] with a number chosen uniformly at random from
the range [0,1].

• vn is fixed to be the target for the maximizer.

5.2.2.3 Shapley’s Stochastic Games

The degrees of freedom for defining an instance of shapley’s stochastic games are as
follows,

• action sets can have arbitrary size at each state,

• for each joint action at each state, an arbitrary probability distribution on the all
the states in the game can be chosen,

• payoffs for each joint action for each state can be chosen arbitrarily.

In order, these are addressed as follows,

• both players have three actions at every state,

• payoff and successor matrices are all 3×3 (which follows from the above item),

• every entry in every successor matrix is a probability distribution on exactly
two vertices. That is to say that at every state when a joint action is chosen the
transition is chosen to be one of two states,

• every probability distribution in the successor matrix is chosen as a u.a.r. partition
of [0,1] as in the simple stochastic game case,

• all entries of the payoff matrices are chosen to be u.a.r. integers in the range
[−10,10].

5.2.2.4 Limitations

Testing with random instances in this fashion is necessarily limited; the results shown
later give evidence that random generation in this fashion does not tend to generate
’hard’ instances. For instance, as will be shown in fig. 5.2, the length of the walk in a
random instance of the ARRIVAL problem as described above seems to scale linearly
with the size of the problem despite the fact that in the worst case the walk can have an
exponential length.

5.2.3 Testing Protocol

Separate tests were carried out for the three problems detailed in chapter 3 as follows.
For all problems, all of the algorithms were tested with varying instance sizes. For
ARRIVAL all algorithms were also tested on instance with the longest possible walk as in
fig. 3.3. For simple stochastic games and shapley’s stochastic games all the algorithms
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were also tested with a fixed problem size and varying approximation constant ε. In
all tests, the number of queries to the monotone function is measured, and the time to
run the algorithm is measured. The measured time is precisely the time between the
function to run the algorithm is called, and the function returning with a fixpoint, so
preprocessing and other miscellaneous actions do not have an effect. All tests were
repated 20 times with the mean values recorded. Different sizes were used for different
algorithms in the same test to ensure tests terminated in a reasonable amount of time.
The Kleene, Tarski algorithm 1 was not tested directly on any of the monotone functions.
Instead, for shapley’s and simple stochastic games, the continuous function is iterated
on directly, and for ARRIVAL the walk is simulated directly. All of these are essentially
the same as algorithm 1 but are slightly more performant due to bypassing unnecessary
scaling in stochastic games, and not storing the number of times each node has been
passed through in ARRIVAL.
From here on I will denote the Fearnley, Pálvölgyi, Savani algorithm described in
algorithm 3 as FPS, the Dang, Qi, and Ye algorithm descbribed in algorithm 2 as DQY,
Chen and Li described in section 4.4 as CL, and Kleene, Tarski described in algorithm 1
as KT.

5.3 Results

Figure 5.1: The binary search style algorithms take an approximately exponential time
and amount of queries on random arrival instances in practice. FPS is the fastest.

Figure 5.2: Time and number of steps taken to simulate the arrival walk scales roughly
linearly with the size of the problem in practice. Simulating the walk is vastly more
performant than binary search style algorithms for random arrival instances.
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Figure 5.3: On the arrival instance with the longest possible walk as in fig. 3.3, FPS
achieves similar performance to just simulating the walk.

Figure 5.4: The binary search style algorithms take an approximately exponential amount
of time and queries in the number of nodes to solve random simple stochastic games
with fixed stopping probability and approximation constant.

Figure 5.5: Value iteration takes approximately linear time and oddly downward scaling
queries in the number of nodes to solve random simple stochastic games with fixed
stopping probabilities and approximation constant. It is drastically more performant than
the binary search style algorithms.
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Figure 5.6: Value iteration easily outperforms the binary search style algorithms in
solving simple stochastic games with a fixed number of nodes and varying approximation
constant. Of the binary search algorithms, FPS is the most performant.

Figure 5.7: The binary search style algorithms take an approximately exponential time in
solving random shapley’s stochastic games. FPS and CL see similar performance for
the sizes tested.

Figure 5.8: Value iteration takes approximately linear time and a close to constant
number of queries to solve shapley’s stochastic games on the sizes tested. It is much
more performant than the binary search style algorithms. The constant factor involved in
computing the monotone function is significant and results in longer solves than ARRIVAL

and simple stochastic games.
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Figure 5.9: Value iteration outperforms the binary search style algorithms in solving
shapley’s stochastic games with fixed size and varying approximation constant.

All data used in these plots can be found here.

5.4 Discussion

On the whole, value iteration and simulating the ARRIVAL walk tend to be the most
performant algorithms. Interestingly, FPS tends to be the most performant of the binary
search style algorithms, beating out the asymptotically superior CL in almost all cases.
More detailed discussion is given for individual cases below.

5.4.1 ARRIVAL

It can clearly be seen in fig. 5.1 and fig. 5.2 that simulating the arrival walk vastly
outperforms the binary-search based algorithms on randomly generated instances of the
arrival problem. The distinction is less clear when testing with the worst case instance for
the walk as seen in fig. 5.3; FPS outperforms the walk in terms of query count for more
than 15 vertices, and in terms of time for more than 20. This is somewhat unexpected
as the number of steps in the walk on the worst case instance is Θ(2n), while the upper
bound we get from FPS when applied to the walk is O(log⌈(n+2)/3⌉(2n))=O(n⌈(n+2)/3⌉),
which is clearly a weaker bound than O(2n). I believe the cause of this is that the
recursive binary search algorithms work particularly well on this specific long walk
instance; the fixpoint for this specific instance will be something like x⃗=(2n,2n−1, ...,1),
and the binary search algorithms always start by querying midpoints which happen to
be powers of two so coincide exactly with the actual fixpoint. This perhaps motivates
further testing- are there other instances for which FPS outperforms the walk?
In comparing the binary search style algorithms, it can be seen that FPS performs
best in all cases, and in particular performs better than the asymptotically superior CL
algorithm. The difference between CL and DQY is less clear however; for random
instances CL performs better as seen in fig. 5.1, but DQY performs better on the long
walk instance as seen in fig. 5.3.

https://github.com/angusjoshi/tarski/blob/main/src/analysis/makePlots.py
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5.4.2 Simple Stochastic Games

Similarly to ARRIVAL, value iteration is the most performant algorithm for solving
random simple stochastic games - it even seems to be the case that the number of queries
goes down as the number of vertices goes up for the walk as seen in fig. 5.5. I believe
that this is a limitation of the method of random instance generation which perhaps
motivates further investigation into methods for generating ’hard’ simple stochastic
games. It could also be the case that testing with a fixed approximiation factor ε and
stopping probability β causes this behaviour.
In comparing the binary search based algorithms, it can be seen in fig. 5.4 that FPS is
again the most performant, and DQY is the least performant. The difference between
FPS and CL is small in this case however.
In the test with varying approximation factor as seen in fig. 5.6, value iteration is
again the most performant, with FPS the best of the binary search algorithms. DQY
is again the slowest, with CL in the middle. Varying the approximation factor for the
simple stochastic game problem has the effect of changing the height of the lattice
that is searched; if β is the stopping probability, and ε is the approximation factor, the

associated discretized function is defined on
[⌊

1
βε

⌋]d
. Since KT runs in worst case

complexity O(Nd) where N is the height of the lattice, and FPS in O(log⌈
2n+2

3 ⌉N), one
might expect that for very small approximation factors that FPS is more performant.
This is not shown in the results however, so perhaps more investigation should be done
into finding instances of simple stochastic games which are ’hard’ for value iteration.

5.4.3 Shapley’s Stochastic Games

Testing on shapley’s stochastic games was much more limited than the other two
problems as the associated monotone function took a lot longer to compute. It could
be the case the the LP solver that I used (soplex[11]) is not optimized for solving
many thousands of small LPs, or that solving LPs in this fashion will necessarily take
significantly more time than the functions for ARRIVAL and simple stochastic games.
In comparing the algorithms running on random instances, it can be seen in fig. 5.7 and
fig. 5.8 that again value iteration is the most performant. DQY is the least performant on
random instances, and the difference between CL and FPS is small. Interestingly, there
seems to be some association between the parity of the dimension and the performance
of CL and FPS. I believe this is because of the ⌈·⌉ in the exponent of their complexities
caused by subproblems with dimension less than 3 during decomposition, and the
only reason this is not seen in other plots is because measurements are taken with less
granularity on size. Perhaps this motivates testing with more datapoints on the other
problems as well.
The test with varying approximation factor as seen in fig. 5.9 shows again that value
iteration is the most performant, and FPS is the most performant of the binary search
algorithms. There is not much difference between CL and DQY in this case. Similarly
to simple stochastic games, one would expect that for very small approximation factors
that the binary search algorithms perform better than value iteration - but again this
is not seen in the results for these tests. This is again perhaps motivation for more
investigation in finding ’hard’ stochastic games for the value iteration algorithm.
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In shapley’s stochastic games, many parameters were also unchanged through all tests.
The maximum value in the payoff matrix for shapley’s could be varied, the stopping
probabilities for both, the number of actions at each state in shapley’s, and the number
of successors for all states in both problems could all be varied.

5.5 Further Work

The main shortcoming of the testing I have carried out is the random instance generation
described in section 5.2.2. In all problems, the results such as fig. 5.2 give strong
evidence that for the most basic algorithms like simulating the walk and value iteration,
my scheme for random problem generation does not generate ’hard’ problems so
investigation into this could be carried out. Another extension could be to implement
strategy improvement and quadratic programming to solve simple stochastic games and
further compare.
In [17] both of these issues are somewhat addressed when testing value iteration,
strategy improvement, and quadratic programming on simple stochatic games. The
authors build a library of extremal problems that are difficult for particular algorithms,
as well as a more sophisticated method of generating random problems than I have done
here. Perhaps transitive comparisons can be made to results in [17] given I have both
tested value iteration, although the difference in how I generate problems makes this
tenuous. Quadratic programming and strategy improvement based solvers could also be
implemented and tested for simple stochastic games against all algorithms here.
Time could be spent on on optimizing the monotone function for shapley’s stochastic
games, as tests have been limited to small sizes so an increase in performance could
yield more interesting data.
The asymptotic advantage the binary-search style algorithms achieve over the iterative
algorithms is dependent on the ratio between the height of the lattice and it’s dimension.
In particular the asymptotic bound for FPS is stronger than KT if d ∈ o( logN

log logN ). In
simple and shapley’s stochastic games, solving to higher precision ε causes an increase
in the height of the searched lattice so testing with very high precision approximation
constraints along with finding ’hard’ instances of these problems could demonstrate a
practical advantage to FPS over value iteration. This would require additional support
in my implementation for high precision numerical types such as GMP[12], and I
believe finding an LP solver for shapley’s stochastic games with strong support for high
precision types will also be difficult.



Chapter 6

Conclusions

6.1 Testing the Algorithms

The main conclusions drawn from the practical section of this project are the following,

• the simplest iterative algorithms of value iteration and simulating the ARRIVAL

walk perform better in almost all cases on the model of random instances of
ARRIVAL, simple stochastic games, and shapley’s stochastic games described in
section 5.2.2,

• the asymptotically superior monotone decomposition algorithm 5 tends to require
more queries and time than the simpler fixpoint decomposition algorithm 3,

• the inner algorithm combined with the fixpoint decomposition algorithm 3 tends
to be the most performant of all of the binary search algorithms.

• one case where the fixpoint decomposition 3 performs better than simulating the
ARRIVAL walk was found in fig. 5.3, although I believe this to be anomalous due
to the nature of the specific problem being particularly easy for the binary-search
style algorithms.

The main limitation of testing was the methods of generating problems for testing;
randomly generated instances of the ARRIVAL problem proved to be relatively easy in
comparison to the worst case, with similar findings for simple stochastic games and
shapley’s stochastic games. The solver for shapley’s stochastic games was particularly
slow so testing was restricted to lower dimensional versions of the problem.

6.2 State of the Art Algorithms

The key takeaway is the many theoretical questions relating to the TARSKI problem
remain open. These include,

• open problem 4.5.2. Is TARSKI fixed-parameter tractable? The inner algorithm
from [10] described in section 4.2 makes this seem somewhat plausible. Is there
notion of a ’witness’ in higher than 3 dimensions?

39
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• open problem 4.5.4. Is there an improved lower bound for the TARSKI problem in
some dimension larger than 3? Perhaps the methods in proving the lower bound
for the 2 dimensional variant in [9] have an analogue in some dimension larger
than 3.

• open problem 4.5.5. Is TARSKI complete for some natural complexity class?
Although in [9] inclusion of TARSKI in PPAD∩PLS is shown, there is no non-
trivial complexity class for which TARSKI is known to be complete. Such a result
could be useful on giving evidence on the hardness of TARSKI.

6.3 Future Work

With regard to the practical testing of the TARSKI algorithms, some ideas for future
improvements are as follows,

• can problem generation for all three problems be improved?

– is there a method of generating random ARRIVAL instances which have a
comparable walk-length to the worst-case instance?

– are there ’long’ ARRIVAL instances other than the worst-case described in
fig. 3.3 for which the fixpoint decomposition still outperforms simulating
the walk as in fig. 5.3?

– does randomizing other parameters like number of successors, stopping
probability, and payoff matrix entry size, of simple stochastic games and
shapley’s stochastic games have any effect on the relative performance of
all of the algorithms?

• can the performance of the implementation of solving shapley’s stochastic games
using TARSKI algorithms be improved? The slowness of solving many linear
programs for the monotone function for shapley’s stochastic games resulted in
the experiment for this problem being limited in size.

For future work on the theoretical aspects of TARSKI and related problems, I propose
the following problems as being worth some thought,

• open problem 4.5.3. Is there an algorithm for solving the four dimensional
TARSKI(N,4) problem in O(log2 N) queries? Generalizing the inner algorithm
to arbitrary dimensions is potentially a very difficult problem, and working on the
TARSKI(N,4) problem would seem to be a reasonable intermediate step. A result
in the positive could perhaps also be illuminating to higher dimensions.

• is there anything to be gleaned from studying the TARSKI problem in the context
of monotone functions from instances of the ARRIVAL problem? ARRIVAL

problem instances have a very simple combinatorial structure and there are
already interesting connections between the ARRIVAL and TARSKI through the
reduction given in section 3.1. Is there an interpretation of any of the features in
the state of the art algorithms in the context of ARRIVAL? And do they provide
any insight on how to make progress with the general problem?
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