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Abstract
Air pollution poses a serious threat to human health, especially for people with respi-
ratory diseases like asthma. Inhaling these airborne pollutants can exacerbate asthma
symptoms and induce changes in respiratory flow by causing conditions like dysp-
nea. Although existing studies have associated air pollution with changes in certain
components of respiratory flow, they have not established definitive causal relations
between them. This is because they were unable to control for confounding factors when
analysing these relations and also because no metric currently exists to measure the
regularity of respiratory flow. This study addresses this gap by investigating and quanti-
fying the causal relations between PM2.5 and respiratory flow in asthmatic adolescents
while accounting for temperature, humidity, activity level and sleep. It uses respiratory,
physical activity and environmental datasets from the DAPHNE project and, for the
first time, develops a medically-informed metric for approximating the regularity of
respiratory flow. The findings reveal, for the first time, significant causal links between
PM2.5 and respiratory flow in most of the asthmatics adolescents studied. They also
show that the effect of PM2.5 on respiratory flow is significant when contrasted with
physical activity level, temperature, humidity and previous respiratory flow, and exhibits
considerable variation in both direction and magnitude across patients, time lags and
months.
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Chapter 1

Introduction

1.1 Motivation

A study conducted in 2017 highlighted the uptrend in respiratory disease morbidity,
demonstrating a 39.8% increase since 1990 to 544.9 million affected individuals in 2017
[75]. The study also identified chronic respiratory diseases to be responsible for 7% of
all global mortalities in 2017, marking an 18% increase since 1990 [75]. These findings
raise a pivotal question: despite the advancements in technology and healthcare, why
does the burden of respiratory conditions continue to grow? Although answering this
question is not the objective of this investigation, researching these conditions and their
underlying causes helps us better understand them and mitigate their burden on society.

Dysfunctional breathing, characterized by episodes of irregular respiratory flow, is
observed in 9.5% of healthy adults and is more than twice as prevalent in asthma patients
[83]. It has a significant comorbidity with high BMI and poor physical condition in
children, and is linked to breathlessness that can result in functional impairment and
increased anxiety [3, 42]. In asthma patients, irregular breathing patterns during sleep
have been linked to increased nocturnal asthmatic symptoms [11]. This highlights the
relationship between irregular respiratory flow and asthma severity. Yet, despite its
significant impact on health, abnormal breathing continues to be poorly understood and
has no gold standard for its diagnosis [83, 3]. It is also often misdiagnosed by healthcare
professionals, leading to frequent sub-optimal treatment [83]. Investigating the causes
of irregular respiratory flow can therefore help doctors diagnose and manage abnormal
breathing, leading to more targeted and effective treatment of respiratory diseases.

Meanwhile, rising air pollution levels [70] have increasingly shown a growing link
to symptoms of respiratory distress [57, 5], such as coughing [74]. Investigating the
relationship between PM2.5 and irregular respiratory flow can therefore help medical
professionals better understand these respiratory conditions. It can also help predict
periods of abnormal breathing, which would not only facilitate preventive treatment but
also aid in reducing the incidence and severity of respiratory diseases.
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Chapter 1. Introduction 2

1.2 Project Aims and Contributions

This study aims to analyze datasets on air pollution, respiratory and physical activities
collected in the DAPHNE project by the Centre for Speckled Computing at the Univer-
sity of Edinburgh. The goal of this is to investigate the health effects of air pollution
on respiratory functions. This study in particular investigates the causal relationship
between PM2.5 exposure and the regularity of respiratory flow in asthmatic adoles-
cents using the PCMCI+ causal discovery algorithm [66]. It then quantifies this causal
exposure-response relationship using causal effect estimation [68].

The study introduces the following contributions for the first time:

• Developed a medically-informed metric that measures the regularity of respiratory
flow in a non-invasive manner.

• Examined the causal relationship between PM2.5 and respiratory flow in asthmatic
patients across different time lags over 1-hour and 8-hour periods after exposure.

• Accounted for the impact of sleeping on the cause-response relationship of PM2.5
and respiratory flow.

• Quantified the direct and indirect causal effects of PM2.5 on the regularity of
respiratory flow.

To make the above contributions, multiple conceptual problems were solved throughout
the investigation. Firstly, with no gold standard method existing to measure respiratory
flow or even the abnormality of breathing episodes [3], developing a metric for approxi-
mating the regularity of respiratory flow was particularly challenging. It required an
integration of domain-specific knowledge to ensure the metric’s accuracy and frequent
refinements in consultation with a medical professional. Additionally, accurately identi-
fying breaths, approximating their tidal volume, and extracting their features to be used
by this metric posed significant conceptual difficulties. Finally, incorporating sleep as a
variable in the causal discovery stage was challenging. Controlling for sleep is critical
to isolating the effects of PM2.5 exposure on respiration and ensuring accurate results,
however, its absence in related studies made it difficult to model.

1.3 Report Outline

This report covers the analysis outlined in Section 1.2 and is structured as follows.
Chapter 2 provides the relevant background knowledge and examines related research,
using their limitations to clarify the research goals. Chapter 3 explores the methodology
used to accurately identify breaths, extract their features, and integrate the resultant
respiratory dataset with the environmental data. Chapter 4 outlines and justifies the
metric developed to measure the regularity of respiratory flow. Chapter 5 establishes
and examines the causal relations between PM2.5 and the regularity of respiratory
flow. Chapter 6 then estimates and analyses the effect strengths of the causal relations
established in Chapter 5. Finally, the main conclusions are critically analyzed in
Chapter 7 alongside a discussion of limitations and future work.



Chapter 2

Background

2.1 DAPHNE Project

The Delhi Air Pollution: Health and Effects (DAPHNE) project is a collaboration
between nine institutions across the UK and India [25]. The project collected respiratory,
physical activity and environmental datasets from asthmatic adolescents, aged 10 to 18,
in Delhi India across 2018-2020 [25]. The data was collected using two non-invasive
miniature wearable sensors that were worn by the patients: the RESpeck and AIRSpeck
sensors. Both sensors were developed by the Centre for Speckled Computing at the
University of Edinburgh.

The RESpeck is a 45x38x13 mm device that contains tri-axial accelerometer and gyro-
scope sensors [18]. The sensor is worn by each patient on the lower rib cage using a
piece of tape to keep the sensor position and orientation fixed. The tri-axial accelerome-
ter measurements are continually transmitted to the patient’s local device for storage
using Bluetooth LE technology [18]. These readings are then automatically processed
to compute the values outlined in Table 3.1 that are then used in this investigation.
The RESpeck’s most important for this study measurement is the breathing signal (see
Figure 3.1 for an example). It is a physiological signal representing the respiratory
activity of the patient and is analogous to a flow rate waveform [9]. It is the core
component used in this investigation to analyse respiratory flow. The signal is computed
by aggregating the smoothed angle changes of the tri-axial measurements relative to
gravity [9]. This makes use of the fact that during respiration, the chest wall on which
the RESpeck is located expands and changes shape. This in turn causes the angle of the
device to change relative to gravity [9], thereby tracking the respiratory activity.

The AIRSpeck is a personal clip-on device that is worn on clothing [25]. It is part of
the AirSpeck family of personal and static sensors [6] that measure airborne pollution
particles. The AIRSpeck uses an Optical Particle Counter sensor to collect data on the
concentrations of particulate matter (PM) in the air [6]. Particulate matter is a collection
of different chemical pollutants. It consists of microscopic solids or liquid droplets like
dust, dirt and smoke that become hazardous when inhaled [24]. PM is usually grouped
by cumulative particle diameter size. A popular grouping is PM2.5 that refers to the fine
inhalable particles with diameters of 2.5 micrometers and smaller [24]. The AIRSpeck
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Chapter 2. Background 4

measures PM concentrations for 16 bins corresponding to separate particle diameters
in the range of 0.38µm to 17µm [6]. It uses this to then compute the aggregated PM2.5
concentrations that are used in this study. The AIRSpeck device also uses a Sensirion
SHT21 sensor to measure the ambient temperature and humidity [6].

2.2 Related Work

2.2.1 Air Pollution and Respiration

The consequences of air pollution on general human health have been widely researched
in recent years. Air pollution caused by human activity accounts for the death of
approximately 9 million people yearly [58]. This is a key motivating factor for research
into better understanding and mitigating the effects that air pollution may have on
health. Although air pollution has been most prominently associated with respiratory
conditions, it was also shown to impact other organs and systems. A study showed that
air pollution can cause neuronal cell damage that leads to permanent brain damage and
neurological diseases like Alzheimers [29, 47].

However, the most common consequence of air pollution is its short-term and long-term
impact on respiratory functions [30]. Several studies have investigated the association
between air pollution and respiratory conditions in the general population. Tran et
al. linked increased air pollution with respiratory inflammation, oxidative stress and
impairment of the lung’s immune system functionality [81]. They emphasized that the
association is particularly prevalent in vulnerable populations like children and older
adults [81]. They warned that the inevitable climate change resulting from economic
growth is bound to amplify air pollution levels [81] and urged for further research into
the health effects of air pollution. Meanwhile, Glick et al. associated outdoor PM2.5
and O3 levels with pediatric pneumonia hospitalization and mortality in children across
2007-2008 [33].

In 2019 a study by Xie et al. directly compared the economic and health effects of
PM2.5 and ozone pollution in China. They discovered that PM2.5 is associated with
substantially more severe health effects, especially respiratory. However, they also found
that PM2.5 has a much more profound economic impact than ozone pollution. They
predicted that without control policies, PM2.5 could lead to a 2% loss in gross domestic
product in China by 2030 [89]. They thereby argued that research and economic policies
should focus on better understanding and mitigating the effects of PM2.5 in particular
[89].

Increasingly, research has been focusing on analysing the impact of air pollution on
respiration in people with respiratory diseases. Several studies have demonstrated that
people with respiratory diseases like asthma and chronic obstructive pulmonary disease
(COPD) are more vulnerable to the effects of air pollution than the general population
[89, 52]. There is therefore a more profound need to research and understand the effects
of air pollution on health in these groups of people. Jiang et al. found that air pollution is
associated with onset of asthma and increased respiratory disease morbidity and related
mortality [44]. They also showed that the effect of air pollution on health in asthma
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patients varies greatly by season, time and country [44]. Tiotiu et al. found that exposure
to outdoor air pollutants, including PM2.5, can lead to increased asthma symptoms and
also decreased lung function in asthmatic children [80]. Meanwhile, Ng et al. associated
a 2.64µg/m3 increase in traffic-sourced PM2.5 with a 0.33% decrease in peak expiratory
flow in severe asthmatic patients in Nagasaki, Japan [61]. The peak expiratory flow
measures the maximal flow rate that can be achieved during expiration. It is therefore
a component of respiratory flow and a method of checking lung function [7]. It is
also often indicative of impending asthma attacks or underlying respiratory conditions
[7]. The study therefore directly correlated increased PM2.5 exposure with decreased
lung function in asthmatic adults. These findings were further supported in a study by
Edginton et al. that used random effect models to associate a 10µg/m3 increase in PM2.5
with a 1.02L/min decrease in peak expiratory flow among non-smoking asthmatics
[20].

Clearly, a lot of research has already associated air pollution with adverse respiratory
outcomes, particularly decreased lung function, in both asthmatic and non-asthmatic
people. However, these studies have limitations. Firstly, they predominantly focus
on lung function, often approximated using peak expiratory flow. This is a limitation
because peak expiratory flow only measures the maximal speed of expiration. There-
fore, these lung function measures fail to account for various key components of the
respiratory cycle like how quickly and deeply an individual breathes. Moreover, Eid
et al. showed that peak expiratory flow is often an inaccurate measure of respiratory
function in asthmatic patients, where air trapping may cause the peak expiratory flow to
give misleading reassurance of normal function [21]. Secondly, these studies between
air pollution and respiratory function only discover correlatory associations between
the two. They do not establish causal relationships between air pollution and respiratory
outcomes let alone quantify them. Moreover, they do not account for confounding
factors when associating air pollution with adverse health effects. Several confounding
factors have been shown to exacerbate respiratory function (see Section 2.2.2). Ac-
counting for these factors while investigating the associations between air pollution and
respiratory outcomes would offer more accurate insights into the impact of air pollution
on respiration. This makes the existing studies limited in the insights they offer.

That being said, a small number of studies have established significant causal relations
between PM2.5 and respiratory outcomes in asthmatics [57, 5, 74] while accounting
for confounding factors. However, they too are limited. They focus on respiratory rate
and coughing outcomes rather than general respiratory dynamics like respiratory flow.
There is therefore a clear research gap on the effects of air pollution on more complete
measures of respiratory dynamics in asthmatics, particularly through causal inference.

This study addresses this gap by focusing on the relation between air pollution and
respiratory flow, an area previously unexplored in existing literature. Respiratory flow
refers to the dynamics behind respiration, encompassing the rate, volume, and speed of
air movement in and out of the lungs during breathing. It is therefore a more complete
measure of respiratory function and dynamics than just peak expiratory flow, which
is, in fact, also a component of respiratory flow itself. This study also further fills the
research gap by focusing on the causal relations between air pollution and respiratory
flow in asthmatics, while accounting for key confounding factors. It thereby addresses
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the identified lack of causal inference and control for confounding factors in related
work, by employing a robust causal analysis. Nonetheless, the related work motivates
the specifics of this study. It has identified asthmatics as substantially more vulnerable to
the adverse health effects of air pollution than healthy people [52]. It also demonstrated
PM2.5 to have more severe health and economic impacts than other pollutants [89].
Subsequently, this study focuses on investigating the causal relations between PM2.5
and respiratory flow in asthmatics, while controlling for several confounding factors.

2.2.2 Confounding Factors and Respiration

Related work has found increasingly more confounding factors that influence the respi-
ratory activities of asthmatics. To accurately identify the causal relations between PM2.5
and respiratory flow in this study, it is important to account for these confounding factors
to ensure the results are valid. In this subsection, related studies that identify these
confounding factors are overviewed and discussed in the context of this investigation.

Environmental factors have been demonstrated to impact respiration in asthmatic pa-
tients. Li et al. found that ambient temperature was negatively correlated with both peak
expiratory flow rate and forced expiratory volume in asthmatic children [53]. They used
this to associate an increase in ambient temperature with a decrease in lung function
among asthmatic children [53]. Similarly, Chen et al. showed a U-shaped trend between
ambient temperature and asthma related hospitalizations [13]. They demonstrated that
both very warm and very cold temperatures generally increase asthma symptom severity.
Several other studies have identified causal relations between temperature and changes
in respiratory rate or coughing [57, 5, 74]. Hayes et al. found that breathing hot humid
air triggered bronchoconstriction (narrowing of lung airways often resulting in shortness
of breath) in asthmatic patients [39]. They also found that asthmatic patients have a
lower forced expiratory volume when respiring humid air at room temperature [39].
Humidity is also generally correlated with ambient temperature and weather conditions,
and has been shown to affect asthma symptoms in patients [56]. In summary, studies
have demonstrated that temperature and humidity impact respiration and lung function
[39, 74, 5, 53]. Humidity and temperature are therefore accounted for in this study to
ensure the effects of PM2.5 on respiratory flow are accurately isolated and appropriately
analysed.

There are also other environmental factors that have been shown to impact respiration.
Osborne et al. associated pollen exposure with asthma symptom exacerbations leading
to hospitalizations [62]. Liu et al. found that various allergens, including dust and
pollen, impact respiration [54]. Exposure to these allergens typically decreases lung
function (measured as peak expiratory flow or forced expiratory volume) in asthmatics
[54]. That being said, these allergens were not included in the study. This is because
their highly variable nature makes them difficult to measure accurately and they were
also not collected as part of the DAPHNE project.

There are also many non-environmental factors that impact respiration. Physical activi-
ties, particularly those of high intensity, directly impact respiration in both asthmatic
and non-asthmatic people [73]. However, even smaller activity changes like changing
lying or sitting position can impact the respiratory flow of asthmatics. Admirabilis et al.
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showed that changing position to the supine sleep position reduces asthma symptoms
during the night [2]. Interestingly, sleep itself has also been demonstrated to have an
impact on asthma symptoms and respiration. A study by Bohadana et al. described the
tendency of asthma to get worse at night, often due to nocturnal increase in airway in-
flammation and bronchial responsiveness [1]. Therefore, both physical activity intensity
(level) and sleeping are accounted for in this study.

In summary, there are several environmental and non-environmental factors that have
been associated with changes in respiration and lung function. These include temper-
ature, humidity and activity level, which are accounted for in this study to ensure the
relation between PM2.5 and respiratory flow is accurately evaluated. Sleep is another
factor that should be accounted for in these studies to ensure valid results. However,
existing research typically overlooks accounting for sleep when investigating the causal
relation between PM2.5 and respiratory outcomes [57, 5, 74]. This study overcomes this
limitation by running a parallel causal analysis on the impact of PM2.5 on respiratory
flow with an additional sleep variable.

2.2.3 Respiratory Flow

There is a big gap in literature where no work has attempted to measure respiratory
flow let alone approximate its regularity. Doing so can offer more comprehensive
insights into respiratory function and quality of breathing, that directly relate to asthma
symptoms and underlying conditions. Related work has however attempted to quantify
certain components of respiratory flow like tidal volume.

To measure tidal volume, most studies use expert equipment like a spirometer or plethys-
mograph that is not easily accessible and is not user-friendly [38, 34, 65]. Nitrogen
washout and gas dilution have also been used for this task [85], but again also require
expert equipment that is not user-friendly. Other studies place strict requirements on
data collection to ensure their method of computing tidal volume is applicable. A study
by Wang et al. used nocturnal respiratory sounds including snoring to measure tidal
volume. However, this approach only worked during sleep. A limited number of studies
have attempted less restrictive approaches that utilize more accessible equipment. Lujan
et al. used the area under the flow waveform curve to approximate the tidal volume [55]
while Miller et al. used the forced expiratory volume [59]. Although these techniques
have shown to be effective and user-friendly approximations of tidal volume, they still
fall short of accurately capturing the complex dynamics of respiratory flow that extend
beyond just tidal volume.

It is therefore evident that there is still a gap on measuring respiratory flow dynamics in
literature. This study addresses this gap by developing the first medically-informed met-
ric that approximates the regularity of respiratory flow, leveraging data from miniature
wearable sensors.



Chapter 3

Data Pre-Processing

3.1 Overview

The data used in this investigation comprises of 220 AIRSpeck and RESpeck recordings
from 137 asthmatic adolescents. The RESpeck was used to continuously compute
values overviewed in Table 3.1 using the established methods in [9] as outlined in
Section 2.1. Meanwhile, the AIRSpeck device continuously collected the ambient
temperature, humidity and PM2.5 readings (among other fields) in each patient’s direct
vicinity.

Field Description
Timestamp Exact time and date of recording
Breathing Signal Physiological signal analogous to the flow rate waveform
Respiratory Rate Number of breaths taken per minute
Activity Level Intensity of the patient’s activity
Activity Type The category of the activity the patient is carrying out

Table 3.1: Data collected by RESpeck device adapted from [5]

Approximately 37% of the RESpeck data is missing [5]. This accounts for episodes
when the patient is non-stationary (walking, running and other movements) or the device
is not worn. These episodes are picked up by the activity level being above 0.3 and
below 0.013 respectively [5]. The data for non-stationary activities is excluded because
the breathing signal becomes inaccurate and unreliable during high-intensity activities.

3.2 Breath Capturing

To accurately analyze respiratory flow patterns, it is crucial to first process the raw
RESpeck data and compute features for each breath. These features are then combined
with AIRSpeck data in Section 3.4 for a comprehensive causal analysis in Chapter
5. The key challenge in this process is designing an algorithm capable of accurately
detecting individual breaths from the breathing signal in the RESpeck data. This task

8



Chapter 3. Data Pre-Processing 9

is complicated because of sensor noise and occasional signal offsets that are present
in the recorded breathing signals. Initially a naive approach was used to treat any
zero-crossing in the breathing signal as a transition between exhalation and inhalation.
This approach considered a breath to begin at the first zero-crossing and end at the third.
However, breath visualisations exemplified in Appendix A.1 showed that this method
was susceptible to misinterpreting sensor noise and signal offsets as spurious breaths.
It resulted in frequent occurrences of marginal zero-crossings being misidentified as
several breaths and prolonged periods of signal offsets being misinterpreted as a single
long breath.

Subsequently, the ”gold standard” method established and implemented in [26] was
adapted to this task to overcome these issues. This method was tested in [26] against
a nasal cannula to ensure its reliability and accuracy in capturing breaths. It employs
a sliding window technique on the breathing signal to provide a constantly updated
positive and negative threshold based on the root mean square of the signal’s waveform
amplitude within the window [26]. The breathing signal must cross this threshold to be
recognized as either a new exhalation or inhalation. The threshold is also bounded by a
minimum value that ensures it never reaches zero. To further optimize this approach,
experiments were run with different hyper-parameters. For each experiment random
samples of breaths for each patient were visualised to ensure they are not obscured by
sensor noise and signal offsets. Ultimately, a 30s window size and 0.001 minimum
threshold were selected as they captured the least noisy breaths among those sampled.
A sample breathing signal decomposition into breaths with this method is shown in
Figure 3.1. Meanwhile, Appendix A.2 shows breaths captured from Patient DAP134’s
breathing signal, where this ”gold-standard” method correctly handles sensor noise.

Figure 3.1: Example Decomposition of Breathing Signal Into Breaths For Patient
DAP102(1)

3.3 Breath Feature Extraction

Quantifying respiratory flow is a complex task. Literature often uses respiratory rates
when investigating the impact of a cause on breathing [57, 5]. Respiratory rate is also
useful in identifying respiratory symptoms like tachypnea (abnormally high respiratory
rate) [63]. Therefore, the first breath feature was the respiratory rate averaged across the
30-second window around each breath. This averaging process helped mitigate potential
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errors and inaccuracies that sometimes occur in the RESpeck’s outputs. However,
respiratory rate alone is not sufficient to represent respiratory flow. It overly focuses on
the breath frequency and offers little information about the quality of the breath itself.
To address this, further features were computed to approximate the tidal volume of a
breath. This included the area under the breathing signal curve and peak respiratory
flow. The area under the curve was computed using the trapezoidal rule for numerical
integration shown in Formula 3.1. Alternatives to this method like the Simpson rule
were considered. However, the breathing signal curve is composed of a finite number
of data points, connected by linear segments. This structure made the trapezoidal rule
a more directly suitable choice for integration, due to its inherent suitability for linear
segments [82]. Meanwhile, the peak respiratory flow was measured as the maximum
absolute value of the breathing signal in the breath.

Area≈
n

∑
i=2

1
2
( fi + fi−1)(ti− ti−1) (3.1)

where:

• n is the number of samples captured in the breath,
• f = ( f1, f2, . . . , fn) is the breathing signal,
• t = (t1, t2, . . . , tn) is the timestamp.

Tidal volume is a key determinant of healthy respiration [38] and may be used to
identify irregular, labored breathing [32]. Therefore approximating tidal volume is
essential for accurately quantifying the regularity of respiratory flow. There is a strong
correlation between peak respiratory flow, area under the breathing signal curve and
true tidal volume [87, 23]. In fact, area under the breathing signal curve has been used
to approximate tidal volume in related tasks of extracting respiratory parameters from
speech recordings [60]. It is therefore an apt approximation of tidal volume to use in this
investigation. These are the reasons why each breath’s area, peak respiratory flow and
localized mean respiratory rate were used to approximate the regularity of respiratory
flow in Chapter 4. Other features were experimented with, including counting the
number of local minima and maxima in each breath’s signal curve. The hypothesis was
that more irregular breaths will have more local extrema. However, this approach was
too sensitive to sensor noise and was therefore excluded from the derived feature-set.

3.4 Data Fusion

Having processed the RESpeck recordings to identify breaths and compute their corre-
sponding features, the next step was to fuse the AIRSpeck and RESpeck data together.
This was done on a per-breath basis using Algorithm 1, where the breath data-point
was merged with the closest AIRSpeck data-point, at a cut-off of 30 seconds. The
mean time delay between consecutive AIRSpeck entries across patients is less than 52
seconds in the dataset. Therefore a 30-second buffer in both directions in Algorithm 1
is adequate to locate the closest AIRSpeck point, if available. However, beyond this
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threshold, the accuracy of temperature, humidity, and PM2.5 values for a given breath
cannot be ensured. The alternative of using the closest n AIRSpeck points for a given
breath was attempted. However, due to the high variability of PM2.5 concentrations
that can occur within just a few minutes, this was a less accurate approach. Table 3.2
outlines the final fields in the fused AIRSpeck and processed RESpeck datasets.

Algorithm 1 Fusing AIRSpeck and RESpeck Data
1: Input: RESpeck breaths dataset, AIRSpeck environmental data
2: Output: Fused dataset
3: fusedDataset← new Dataset()
4: for each breath in RESpeck dataset do
5: timestamp← (breath.startTimestamp + breath.endTimestamp) / 2
6: closestEntry← closest AIRSpeck data point to timestamp by time
7: if |(closestEntry.timestamp - timestamp).total seconds()| ≤ 30 seconds then
8: fusedEntry← breath + closestEntry
9: else

10: fusedEntry← breath + NaNs
11: end if
12: fusedDataset.add(fusedEntry)
13: end for

Field Description
patient Patient ID and recording number
startTimestamp Exact time and date of breath begin
endTimestamp Exact time and date of breath end
timestamp Exact time and date of breath midpoint
peakRespiratoryFlow Maximum absolute breathing signal in breath
area Area under breathing signal curve
meanBreathingRate Mean respiratory rate in 30sec window around breath
meanActivityLevel Mean intensity of patient’s activity during breath
modeActivityType Most frequent category of activity the patient is performing
temperature AIRSpeck ambient temperature
humidity AIRSpeck ambient humidity
PM2 5 AIRSpeck ambient PM2.5 concentration
Sleeping Features Features to estimate probability of sleeping (section 5.6)

Table 3.2: Fused Data from RESpeck and AIRSpeck

3.5 Outlier Removal

As is common when working with sensor data, sensor noise and sensor malfunction
create outliers that must be removed. However, in this case detecting outliers is tricky.
When dealing with tidal volume features it is important to distinguish between outliers
and highly irregular breaths. The line between the two is often blurry. Therefore as little
breath related outliers were filtered as possible. By visualising the results of Section



Chapter 3. Data Pre-Processing 12

3.4, Algorithm 2 was used to handle outliers on a per-patient basis. It removes breaths
with duration beyond 5 seconds or with feature values that are negative or outside the
upper threshold established using the 1.5xIQR rule.

Algorithm 2 RESpeck Breath Filtering Algorithm
1: Input: Dataset of breath features
2: Let Q3(var) be the 3rd quartile value of variable var.
3: Let IQR(var) be the inter-quartile range of variable var.
4: Let PRF be the peak respiratory flow of a breath.
5: Calculate Q3 and IQR for peak respiratory flow and area
6: for each breath in dataset do
7: if breath.duration > 5 seconds then
8: Remove breath from dataset
9: end if

10: if breath.area ≤ 0 or breath.PRF ≤ 0 then
11: Remove breath from dataset
12: end if
13: if breath.PRF >Q3(PRF)+1.5×IQR(PRF) or breath.area >Q3(area)+1.5×

IQR(area) then
14: Remove breath from dataset
15: end if
16: end for

Typical inhalations last 1-1.5 seconds and exhalations 1.5-2 seconds [40]. Therefore it
is safe to exclude breaths longer than 5 seconds. Although the 1.5xIQR outlier removal
rule is used to remove upper outliers, breaths with features less than Q1− 1.5IQR
(first quartile minus 1.5 times the inter-quartile range) were not excluded. This is
because such breaths are possible, often arising in episodes of dyspnea (condition of
breathlessness and ”air hunger” [83]), which is prevalent among asthmatic patients
[91]. Meanwhile, outliers from AIRSpeck recordings that exceeded the lower and upper
cutoff thresholds in Table 3.3 were replaced by NaNs.

Finally, two patient recordings were entirely excluded from the study. Patient DAP029’s
only recording contained PM2.5 readings in the range 0 to 0.087469, with 65.44% of
the data having a PM2.5 concentration of 0. Similarly, the first recording for Patient
DAP002 contains temperature entries that are all recorded as 0. With both of these
variables being essential components of the causal analysis, the study could not be
conducted on those recordings. Subsequently the analysis in Chapter 5 was run on 136
patients with 218 total recordings.

Field Lower Bound Upper Bound
Temperature 1.0 50.0
Humidity 1.0 100.0
PM2.5 0.1 1500.0

Table 3.3: Thresholds for outlier removal on AIRSpeck data
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3.6 Missing Data Imputation

Sensor malfunction and outlier detection resulted in a lot of missing data in temperature,
humidity and PM2.5 readings. On average, 12.33% of a patient’s RESpeck data lacks
corresponding AIRSpeck data due to periods when the AIRSpeck was off while the
RESpeck was recording alone. However, these sensor inaccuracies and outliers can
be imputed accurately [5]. Previous research with the same dataset has conducted this
imputation using linear interpolation with a window size of 5 in both directions [5].
This approach is limited by its assumption of a linear trend in PM2.5 concentration
through time. Recent studies have demonstrated the non-linear relationship of PM2.5
with other correlated variables [79, 14]; therefore, this assumption cannot be made.

Instead, Multiple Imputation with Chained Equations (MICE) is used [8]. This approach
takes the mean imputed value across multiple iterations, ensuring a more accurate result
[8]. To avoid making assumptions about the trend of the imputed fields, Scikit-learn’s
RandomForestRegressor [64] is used. This approach allows for flexibility in capturing
both linear and non-linear relationships among PM2.5, temperature, and humidity over
time. The imputation of temperature is done using the previous 5 and next 5 temperature
entries, current humidity and hour of the day variables. Similarly, the humidity is
imputed using the previous 5 and next 5 humidity entries, current temperature and hour
of the day variables. Meanwhile, PM2.5 is imputed using the previous 5 and next 5
PM2.5 entries and the hour of the day variable. With weather and air pollution changing
throughout the day as sun intensity varies [76], hour of the day is an important variable
for imputing these fields. Importantly, if the imputation window for a variable consists
entirely of NaNs, that variable remains unimputed to preserve accuracy. This ensures
that the imputation process does not introduce artificial values based on insufficient
data, especially during extended periods where the AIRSpeck was not recording.

To ensure the accuracy of the imputation, experiments were run with different hyper-
parameters to select the MICE configuration with the best performance. Each experi-
ment was run on the same sample of 20 randomly selected patients. For each patient,
a random sample of 500 data points with non-missing entries for PM2.5, temperature
and humidity was selected. Their values were temporarily set to NaNs and imputed
using the relevant MICE setup. The mean absolute percentage error (MAPE) of the
imputation was then reported as an average across the selected patients. Table 3.4 shows
the results of the best performing hyper-parameter combinations. It justifies selecting
imputation with 10 iterations of 4 estimator random forests with max depth of 10.

Iterations Estimators Max Depth Temperature
MAPE (%)

Humidity
MAPE (%)

PM2.5
MAPE (%)

10 4 10 0.01 0.06 2.13
20 4 10 0.02 0.07 2.13
10 4 8 0.02 0.09 2.74

Table 3.4: MICE Imputation Experiment Results

Importantly, breath features were not imputed. It is difficult to do so reliably and it may
artificially create episodes of irregular respiration that cause inaccurate results.



Chapter 4

Approximating Respiratory Flow

To examine the impact of PM2.5 on respiratory flow, a metric must be established to
quantify the regularity of respiratory flow within any given breathing episode. Measur-
ing respiratory flow alone is not enough because every breath has a distinct flow, which
does not necessarily imply a change in respiratory dynamics. Instead the regularity
of these flows must be assessed. However, with no literature having done this before,
this is conceptually a difficult task. To address this, Dr Gordon Drummond, a medical
professional, was consulted throughout the metrics development to ensure its accuracy.

The starting point for the metric was to focus on approximating rapid-shallow breathing
(see Appendix B.1 to understand pictorially) as more irregular. Rapid-shallow breathing
can occur in episodes of dyspnea and tachypnea [63]. Both these conditions are
recognized as dysfunctional and abnormal breathing [83]. Therefore it makes sense to
characterise irregular respiratory flow as episodes of rapid-shallow breathing.

With this in mind, the respiratory features from Section 3.3 were used to quantify the
regularity of each breath on a per-patient basis. Quantifying the regularity at breath-level,
rather than analyzing aggregated respiratory flow across multiple breaths, provided
more fine-grained insights into the variability of the respiratory cycles. It also allowed
better fine-tuning of the regularity metric to match the rapid-shallow specification. The
study still investigates the impact of PM2.5 on respiratory flow across respiratory periods
by resampling the computed regularity metric to 1 minute and 15 minute resolutions in
Chapter 5.

To identify rapid-shallow breaths, the area and peak respiratory flow features were used.
In consultation with Dr Gordon Drummond, it was determined that rapid breaths exhibit
a large peak respiratory flow [7] and shallow breaths have a smaller area [51]. These
features were therefore used in unsupervised learning to distinguish the regularity of
breaths. Initial approximations were established with the following three methodologies:

• K-Means clustering: 3 and 5 clusters were tried, for each setup the clusters were
ranked on their rapid-shallow nature by considering the mean area and peak
respiratory flow of the breaths in each cluster [49].

• Anomaly detection with isolation forests [90]: breaths on average in more shallow

14
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branches of decision trees are considered more irregular.

• Anomaly detection by distance to the feature distribution: breaths with a larger
Mahalanobis distance (see Appendix B.4) are considered more irregular in accor-
dance with [46].

These methodologies proved highly effective in identifying breaths with smaller area
and larger peak respiratory flow as more irregular. However, they often identified
breaths with small peak respiratory flow and small area as equally irregular. Generally,
they struggled to distinguish rapid-shallow breaths from just shallow breaths. Therefore
in further consultation with Dr Gordon Drummond, the mean respiratory rate described
in Section 3.3 was added to the feature set and a hand-crafted domain-informed metric
was developed (instead of generic unsupervised learning techniques). By introducing
the frequency domain, the final metric described in Algorithm 3 was able to isolate
rapid breaths and match the provided specifications.

Algorithm 3 Final Algorithm to Calculate Regularity of Respiratory Flow
Input: Dataset of breath features d f
Output: Metric score for the regularity of respiratory flow for each breath in d f

1: procedure GETREGULARITY(d f )
2: Let PCi(vars) be the i’th principal component of PCA ran on variables vars
3: Let PRF be the abbreviation for the peak respiratory flow variable set
4: d f ← Normalize(d f ) ▷ Normalize into range [0,1]
5: d0← ∥d f − (d f ·PC1(area,PRF))⊗PC1(area,PRF)∥2
6: d1←∥d f − (d f ·PC1(area,PRF,BR mean))⊗PC1(area,PRF,BR mean)∥2
7: d2←∥d f − (d f ·PC2(area,PRF,BR mean))⊗PC2(area,PRF,BR mean)∥2
8: d3←∥d f − (d f ·PC3(area,PRF,BR mean))⊗PC3(area,PRF,BR mean)∥2
9: dtotal← d2−d0−d1−d3 ▷ Consider each di an element of this metric

10: return Normalize(dtotal) ▷ Normalize into range [0,1]
11: end procedure

Algorithm 3 describes the final methodology used to approximate the regularity of
each breath’s respiratory flow. It is a combination of four elements, each calculated as
the L2-norm of the difference between the data and its projection onto the respective
principal components, derived from subsets of breath features. Principal Component
Analysis (PCA) from Scikit-Learn [64] was used to do this. PCA reveals the underlying
structure of the breath feature space, making its components key for differentiating
regular from irregular breaths. To justify the four elements used in the metric, Figure
4.1 and Figure 4.2 show the effects of including each element for Patient DAP083(1).
In these visualizations, data points marked with a lower proximity score1, represented
by a darker color shade, are indicative of more irregular breathing patterns. Conversely,
points with a higher proximity score, denoted by a lighter color, are associated with
more regular breathing patterns. Taking this into account, Figure 4.1 and Figure 4.2
show that:

1The proximity score is essentially the distance measured with L2-norm. However, since Algorithm 3
uses 1−distance for some elements, proximity score is a more appropriate term.
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• The proximity score to the first principal component of the distribution of area,
peak respiratory flow and respiratory rate in Figure 4.1a effectively characterises
breaths with high respiratory rate as irregular.

• The proximity score to the second principal component of the distribution of area,
peak respiratory flow and respiratory rate in Figure 4.1b effectively characterises
breaths with small area as irregular.

• The proximity score to the third principal component of the distribution of area,
peak respiratory flow and respiratory rate in Figure 4.1c effectively characterises
breaths with large peak respiratory flow as irregular.

• Although the proximity scores in Figure 4.1a associate high respiratory rate with
irregular breaths, a lot of these irregular breaths also have small peak respiratory
flow. Similarly, although the proximity scores in Figure 4.1c associate high peak
respiratory flow with irregular breaths, a lot of these irregular breaths also have
large area. This is also reflected in Figure 4.2b where some of the more irregular
breaths have large respiratory rates and small area but also small peak respiratory
flow. To address this, the proximity score to the first principal component of
the distribution of area and peak respiratory flow in Figure 4.2a is used. It
effectively characterises breaths with small area and high peak respiratory flow
as irregular. Adding this element helps the algorithm converge on characterising
truly rapid-shallow and high frequency breaths as irregular.

Figure 4.1: Individual Metric Component Contributions for patient DAP083(1)

With these arguments in mind, each element in Algorithm 3 was meticulously chosen
to align with the clinical definitions and, when aggregated, categorise breaths that are
rapid-shallow and frequently occurring as irregular. Figure 4.3 confirms this approach.
It visualises the distribution of area, peak respiratory flow and respiratory rate for patient
DAP083(1) across different bins of regularity ranging from 0 (irregular) to 1 (regular).
Breaths with lower values of respiratory flow regularity are observed to have smaller
area, larger peak respiratory flow and higher breathing rate. This is also the case for
other patients with further plots in Appendix B.3. Once again, this matches the medical
expectations shared by Dr Gordon Drummond.

To justify generalising this metric to other patients, it is important to note that the patients
have very similar distributions of breath features (see Appendix B.2). Therefore, the
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Figure 4.2: Further and Aggregated Metric Components for patient DAP083(1)

results in Figure 4.1 and Figure 4.2 were consistent across patients2 and algorithm 3
yielded consistent and expected approximations for all patients.

Figure 4.3: Distribution of breath features across different regularity bins for patient
DAP083(1)

Finally, to better understand this metric, patterns between respiratory flow regularity
and activity types are overviewed in Appendix B.5. Generally, there were no consistent
trends between respiratory flow regularity and activity type across patients. This is
because respiratory patterns across activity types varied substantially between patients.

2This was inferred when analysing the distributions of breath features before and after applying PCA
for the patients. To showcase this, further patients’ breath distributions and their principal components
are showcased in Appendix B.2



Chapter 5

Causal Analysis

5.1 Regression Basis

Having processed the data and quantified the regularity of every breath’s respiratory
flow, the relationship between PM2.5 and respiratory flow is investigated. However to
warrant a causal investigation, the relationship between these two factors must first
be established. This is done using Linear regression from Scikit-Learn [64], with and
without PM2.5, to predict the regularity of respiratory periods’ flows. While polynomial
regression and ensemble techniques like decision tree regressors were also attempted,
they proved generally a much worse fit for this task.

Consequently, two regression models were established for each patient. The models
were fitted on minute-averaged data for comparability to Section 5.3 and because of
interest in irregular breathing episodes rather than individual breaths themselves. Each
model aimed to predict the regularity of respiratory flow at time t using minute-average
temperature, humidity and activity level up to time lag t−60 minutes. Additionally,
the model with PM2.5 had an extra set of minute-averaged PM2.5 entries up to time lag
t−60 minutes as well. The regressions were performed on a per-patient basis, with the
mean adjusted R2 values displayed in Figure 5.1. Adjusted R2 was chosen over R2 as it
compensates for the addition of the PM2.5 independent variables, preventing artificial
goodness-of-fit inflation.

Figure 5.1 shows that adding PM2.5 variables to the Linear regression model improves
the mean adjusted R2 score from 0.65 to 0.78. This implies that PM2.5 is a significant
variable that contributes to the explanation of the variance in the regularity of respiratory
flow in patients. Therefore a relationship between PM2.5 and the regularity of respiratory
flow can be inferred. However, as with regressions, this relationship indicates correlation
rather than causation. To establish a causal relationship between these variables, further
analysis is needed using causal algorithms. Causal analysis, like in Chapter 5 and 6, is
not only able to identify causal links, but also quantify them and determine the time lag
at which these links occur. This is something that cannot be established from regression
alone, therefore warranting a separate causal investigation.

18
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Figure 5.1: Adjusted R2 of regressing respiratory flow regularity with and without PM2.5
lags

5.2 Causal Algorithm

Having characterised the regularity of respiratory flow in Chapter 4, its causal relation
with PM2.5 was investigated next. To perform this analysis, a causal discovery algorithm
must be used. The PCMCI+ algorithm [66] was used to do this. PCMCI+ discovers
causal links in time-series data by testing for conditional independence between the
variables in lagged (past to future) and contemporaneous (same-time) connections.
It progressively removes links between variables that are conditionally independent
given a conditioning set that it iteratively optimises. It is explained in more detail in
Algorithm 4. PCMCI+ improves on the standard PCMCI algorithm by optimising the
selection of conditioning sets in the conditional independence tests [66]. It is also more
robust to the effects of auto-correlation, ensuring the detection of true causal links.
While alternative causal discovery methods exist including PC [50], they often struggle
with auto-correlation and thus suffer from inflated false positives [66]. Consequently,
PCMCI+ is the most accurate algorithm for discovering contemporaneous (zero time
lag) and lagged (time lag greater than zero) causal relations in time-series data.

To account for potential confounding factors and ensure a thorough analysis of the
causal relationship between PM2.5 and respiratory flow regularity, PCMCI+ was run
with additional time-series of temperature, humidity and mean activity level for each
patient. The algorithm was run twice on each patient, once for each study, using the
Tigramite package [67]. The first study looked at the causal relations in the dataset
at 1-minute resolution across a one-hour period (τmax = 60). Meanwhile, the second
study used 15-minute resolution across an eight-hour period (τmax = 32). To achieve
these resolutions, the dataset was resampled, taking the mean of each variable for the
resolution period. Two studies were conducted to enable the analysis of both short-term
and longer-term effects of exposure to PM2.5 on the regularity of respiratory flow. This
ensured a more complete study of the impact of PM2.5 on respiratory flow.
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Algorithm 4 High-Level PCMCI+ Algorithm with ParCorrWLS Conditional Test

Input: Time series dataset X = (X1, . . . ,XN), maximum time lag τmax, significance
threshold αPC, conditional independence test ParCorrWLS(·, ·|·).

1: function PCMCI+(X,τmax,αPC)
2: Let P(A) be a power set of an arbitrary set A
3: Let G be the time series graph with lagged and contemporaneous variables
4: Let B−t (X

j
t ) be lagged parent links of X j

t for 0≤ τ≤ τmax

5: Initialize G with all lagged links from B−t (X
j

t ) for all X j
t ∈ X

6: Initialize contemporaneous links in G: Add X j
t ◦−◦X i

t for all X j
t ̸= X i

t ∈ X
7: Let Ã(X j

t ) := {X i
t ̸= X j

t ∈ X} be the contemporaneous adjacencies of X j
t

8: Let p = 0.
9: for each adjacent pair {(X i

t−τ,X
j

t ) ∈ G : |Ã(X j
t )\{X i

t−τ}| ≥ p,0≤ τ≤ τmax} do
10: for each S ∈ {Y ∈ P(Ã(X j

t )\{X i
t−τ}) : |Y |= p} do

11: Set Z := (S,B−t (X
j

t )\{X i
t−τ},B−t−τ(X

i
t−τ)).

12: Let (p-value, I) = ParCorrWLS(X i
t−τ,X

j
t |Z)

13: if p-value > αPC then ▷ Can’t reject conditional independence given Z
14: Delete link X i

t−τ→ X j
t from G. ▷ Therefore no direct causal link

15: break and continue to next adjacent pair
16: end if
17: end for
18: Let p = p+1.
19: Re-compute Ã(X j

t ) from G ▷ Then often sorted by minimum I value
20: end for
21: return G.
22: end function

For each run of PCMCI+ a consistent set of variables was used. The significance
threshold was set to αPC = 0.02. This is a common p-value threshold that is also used
in related work in [57, 74]. Therefore, using this p-value also enabled the comparison
of our results to results from related work with other respiratory outcomes in Section
5.5. The conditional independence (CI) test used was Partial Correlation Weighted
Least Squares (ParCorrWLS). ParCorrWLS effectively deals with non-constant error
variances by re-weighting data points based on their error variance [37]. It thereby
offers better control over false positives, making it more accurate than other CI tests
including ParCorr [37]. More specifically, it is designed to handle heteroskedasticity in
time-series data, making it the suitable CI test choice for this analysis [37].

With this in mind, the PCMCI+ algorithm was then initialized and setup for this task
(see Appendix C.1). It successfully ran on all 136 patients in the one hour study and
104 patients in the eight hour study, failing on patients where the data was too sparse.
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5.3 Identifying Causal Links

Figure 5.2 illustrates the statistical significance of causal links from PM2.5 to respiratory
flow over 0 to 60 minute lag lengths at 1-minute resolution. At a p-value threshold
of 0.02, 52.59% of the asthmatic patients exhibit a change in the regularity of their
respiratory flow caused by exposure to PM2.5. Among the patients whose respiratory
flow is causally impacted by PM2.5, there is an average of 1.549 significant causal links
per patient. This value drops to an average of 0.815 causal links per patient from PM2.5
to respiratory flow, when considering all the asthmatic patients. Meanwhile, at a still
statistically significant p-value threshold of 0.05, 88.8% of patients have at least one
causal link from PM2.5 to respiratory flow, with a patient exhibiting on average 2.55
causal responses to PM2.5 in their respiratory flow. These results show that PM2.5 has a
significant causal impact on respiratory flow over 1-minute periods, already within the
first hour after exposure, in a majority of asthmatic patients.

Figure 5.2: Causal Links of PM2.5→ Respiratory Flow Over 1-Hour Period

Having shown the prevalence of causal links from PM2.5 to respiratory flow already
within the first hour after exposure in Figure 5.2, Figure 5.3 extends this analysis to a
longer time period. It shows the statistical significance of causal links from PM2.5 to
respiratory flow over 15-minute periods within the first 8 hours after exposure. At a p-
value threshold of 0.02, 31.07% of patients have causal links from PM2.5 to respiratory
flow. Patients that exhibit causal links, are on average causally impacted at 1.469 time
lags. With an increased p-value significant threshold of 0.05, 69.90% of patients have
at least one causal link, with an average of 1.874 causal links per patient. The results
therefore show that PM2.5 still has a significant causal impact on respiratory flow over
15-minute periods, even up to eight hours after exposure, for many patients.

Comparing these results, there are significantly more patients with causal links between
PM2.5 and respiratory flow in the first hour after exposure (at 1-minute resolution), than
at 15-minute resolution up to eight hours after exposure. This was also observed in the
results of PM2.5 links to respiratory rate and coughing in literature [69], and is likely
attributed to two factors. Firstly, the impact of PM2.5 likely diminishes over time as
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Figure 5.3: Causal Links of PM2.5→ Respiratory Flow Over 8-Hour Period

the body’s natural defense mechanism mitigates the effect of PM2.5 inhalation. In fact,
the respiratory system’s immediate physiological response to the inflammation [12]
resulting from PM2.5 inhalation [84] is likely more pronounced within the first hour
after exposure. Secondly, respiratory flow’s causal response to PM2.5 exposure might
be more subtle and continuously varying than expected. Unlike 1-minute respiratory
flow periods, 15-minute periods may not capture these fine-grained, dynamic changes
effectively. These factors could explain this disparity in causal link results between the
1-hour and 8-hour lag periods. However, further research would be needed to confirm
these explanations. This might include investigating the changes of PM2.5 concentration
in the body with time and the subsequent reactions of the immune system.

5.4 Temporal Causal Link Analysis

The distribution of the number of causal links (NCL) between PM2.5 and respiratory
flow across time lags for both the 1-hour and 8-hour studies is displayed in Figure 5.4.
It shows that the number of causal links is distributed quite uniformly with occasional
peaks. In the 8-hour study, time lags 1.75 hours to 2.25 hours form a small cluster
where more causal links are observed relative to the other time lags around them. This
suggests that these lags are a period where the responses to PM2.5 exposure are more
consistently observed across patients.

Overall though, there are no clear dominating time lags at which significantly more
patients have causal links. In the 1-hour study, the maximum number of causal links is
6 in time lag 52-minutes. In the 8-hour study it is 4 links at time lags 2.25 hours and
6.5 hours. Interpreting the results, this relatively uniform spread of causal links across
the time lags makes sense. Everybody’s immune system and physiological response
mechanism is different [12]. In fact, this quite uniform distribution of links across lags
was also observed in causal links between PM2.5 and respiratory rate and coughing in
[74, 5, 57, 69]. Therefore patients having causal links at different time lags matches
expectations and highlights this disparity in every person’s respiratory response to
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PM2.5 exposure.

Figure 5.4: Number of PM2.5→ Respiratory Flow Causal Links Across Time Lags

Although Figure 5.4 is able to capture general temporal patterns in causal links, it does
not offer insights into the trends of duration until patients exhibit their first causal link.
To do this, survival analysis is performed using the Kaplan-Meier estimate [48]. It
investigates the time lags at which a patient first exhibits a causal link. Figure 5.5 shows
these results as the probability of a patient not exhibiting a causal link from PM2.5 to
respiratory flow across time lags for both the 1-hour and 8-hour studies separately.

Figure 5.5: Survival Analysis: Probability of Patients Not Being Causally Impacted by
PM2.5 at 1-hour vs. 8-hour Max Lags With 95% Confidence Interval

Both studies show a steadily decreasing probability estimate curve for the majority of
time lags. That being said, in the latter time lags, both curves show a diminishing rate
of probability decline. The minute-level incidence rate of a patient exhibiting their
first causal link after 45-60 minutes is much smaller than in the first 30 minutes after
exposure. This is despite there still being a significant amount of patients with no causal
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links yet. To be precise, this diminished rate of probability decline is most visible in
lags 35-60 minutes. This means that although the number of causal links is relatively
uniformly distributed in Figure 5.4, the causal links in the later time lags often belong
to patients that already exhibited causal links previously. As such, it may be concluded
that a patient is more likely to experience their first respiratory flow reaction to PM2.5
within the first 35 minutes of exposure than afterwards. Finally, a similar trend can be
seen in the 8-hour study. Patients are again more likely to have their first respiratory
flow reaction, at 15-minute resolution, to PM2.5 in the 0 to 2 hour lags than in the 6 to 8
hour lags.

Figure 5.6: Survival Analysis: Probability of Patients Not Being Causally Impacted by
PM2.5 With Combined 1-hour and 8-hour Studies With 95% Confidence Interval

For a more complete visualisation, the individual survival analysis results in Figure 5.5
are combined into a single probability estimate curve. The 1-hour study results populate
the first 60 minutes of the probability estimate curve with the remaining 7 hours coming
from the 8-hour study. This combined curve is visualised in Figure 5.6. Firstly, it shows
that 62.96% of all patients exhibit at least one causal link in either the 1-hour or 8-hour
studies. It also further supports the observations from Figure 5.5. The incidence rate of
patients exhibiting their first respiratory flow reaction to PM2.5 exposure again clearly
diminishes with time.

Figure 5.6 also shows several prolonged periods after the first hour, during which no
patients exhibit their first causal reaction. Such periods are not visible in Figure 5.5.
This means that a lot of patients that have causal links in the period between 1 hour to 7
hours after exposure also exhibit more fine-grained causal links in the first 60-minutes
after exposure. In fact, 50% of patients with causal links in the 8-hour study, also have
causal links in the 1-hour study.

To conclude this section, Figure 5.7 depicts the number of patients with PM2.5 to
respiratory flow causal links in each month, normalized by the number of patients with
data in that month. Importantly, no data was collected in May as the patients were on
school holiday. Otherwise, at least four patients had data collected in each of the other
months. In the 1-hour study, the majority of patients with data in December and July
have causal links. Meanwhile, in March, June and October, the 8-hour study has the
highest ratio of patients with causal links to the number of patients with data in those
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Figure 5.7: Number of Patients PM2.5→ Causal Links Across Months

months at 0.43. This could suggest that patients are more sensitive to PM2.5 in those
months and hence more frequently affected. However, it could also just be an artefact of
patient heterogeneity, where the patients in those months were simply more susceptible
to having a respiratory reaction to PM2.5. Interestingly, out of all the months, December
has the highest ratio of patients with causal links in the 1-hour study but the lowest
ratio of patients with links in the 8-hour study. This shows that in December the asthma
patients have much quicker and more fine-grained respiratory flow responses to PM2.5
exposure, where just 9% of them have longer-term links from the 8-hour study while
68% of them have short-term links from the 1-hour study.

5.5 Comparison of Respiratory Outcome Results

Having established the causal relations between PM2.5 and respiratory flow in Section
5.3, the results are compared to related DAPHNE studies on the causal impact of PM2.5
on different respiratory outcomes in [69].

Figure 5.8: Comparison of Number of Causal Links (NCL) PM2.5→ Respiratory Effects.
Coughing and Respiratory Rate Results Taken From [69]
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Figure 5.8 compares the number of causal links, aggregated across both studies, from
PM2.5 to respiratory flow versus respiratory rate and coughing for each patient. An
interesting observation can be made between the respiratory rate and respiratory flow
results. All patients with a high number of causal links (three or more) to respiratory
rate have zero causal links to respiratory flow. However, this is not a consistent pattern.
Patients that have one causal link to respiratory flow also have similar variability in
causal links to respiratory rate as patients with more than one causal link to respiratory
flow. Therefore this negative correlation cannot be generalised across the dataset.
Similarly, comparing the results of respiratory flow and coughing in Figure 5.8, it is
even more evident that there is no consistent trend among the patients and the respiratory
outcomes. This suggests that the respiratory outcomes of coughing or respiratory rate,
and changes in the regularity of respiratory flow are sufficiently distinct to not be highly
correlated. This also shows that the different respiratory outcomes are influenced by
different physiological mechanisms. While rapid-shallow breathing is typically caused
by stimulation of the Juxtacapillary-receptors in the aveolar walls [86], coughing and
changes in respiratory rate are commonly induced by stimulation of the rapidly-adapting-
receptors in the airway epithelium [10]. PM2.5 therefore likely irritates a variety of
receptors across patients in distinct ways, explaining this lack of a clear trend.

5.6 Sleep Covariate

Breathing patterns are more rapid and shallow for healthy patients during sleep stages
than when awake [17]. Asthmatic patients also experience nocturnal asthmatic symp-
toms at different intensity and frequency than during the day due to normal physiologic
change occurring at night [19]. Even hormonal changes at night may induce more
severe asthmatic symptoms [27]. Therefore, to ensure the validity of this study and
isolate the causal effect of PM2.5 on the regularity of respiratory flow, sleep must be
controlled for. Importantly, the activity level does not account for sleep episodes, and
therefore a distinct variable had to be established for this.

However, this is conceptually a difficult task. Related research, including that on the
impact of PM2.5 on respiratory rate do not control for this variable [5]. Instead, the
feature-set for sleep-wake classification developed in [78] was used. It consisted of
generating the features in Table 5.1 from the raw RESpeck data, adding them to the
fusion output in Table 3.2 and using them to predict the probability of sleeping.

The respiratory rate variability (RRV) is a frequency-domain feature that distinguishes
linear, stationary and periodic breathing signals when asleep from those awake [78].
It is computed by taking the Fast Fourier Transform (FFT) of the breathing signal in
expiration and applying Equation 5.1 from [36].

RRV = (1− H1
DC

)×100% (5.1)

where:

• H1 is the averaged amplitude of first harmonic peak over a 30-second window,
• DC is the averaged zero frequency amplitude over a 30-second window.
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Field Description
BR md Median breathing rate in 30 second window around breath
BR mean Mean breathing rate in 30 second window around breath
BR std Standard deviation of breathing rate in 30 second window
BR coef Coefficient of BR std / BR mean for 30 second window
AL md Median activity level in 30 second window around breath
AL mean Mean activity level in 30 second window around breath
AL std Standard deviation of activity level in 30 second window

around breath
RRV Respiratory rate variability
RRV3MA Average of 3 RRV nearest neighbours

Table 5.1: Additional Sleeping Features Computed From Raw RESpeck Data

Having this feature set, transfer learning was attempted using the model in [78] trained
on labeled data. Unsupervised learning with PCA and clustering was also tried. How-
ever, these methods proved ineffective. The dataset used in this investigation was vastly
different from that in [78] and the model was unable to generalise. Meanwhile the
unsupervised learning failed to converge to reasonable estimates of sleep probabilities.
It predicted wakefulness throughout the night and sleep during the early hours of the
day. To combat this, semi-supervised learning on a per-patient basis was done using the
features in Table 5.1. The patients were assumed to be asleep between 2am and 6am
and awake between 8am and 12pm. Noting that the patients were adolescents, these are
reasonable assumptions given school hours. Subsequently, Scikit-learn’s RandomForest
[64] with 100 estimators was trained for each patient on those hours, and applied to the
remaining hours’ data. Its predicted probability of sleep was then combined into the
PCMCI+ investigation setup, explained in Section 5.2, under the following assumptions:

• May have a contemporaneous and lagged link with activity level and flow regu-
larity as the cause.

• Can be caused by a lag of itself, temperature, humidity, as evidenced in [41]

The PCMCI+ algorithm was then run on the expanded variable set with the results
summarized in Figure 5.9 for the 1-hour study and Figure 5.10 for the 8-hour study.
Both figures show the changes in causal links exhibited by patients when adding the
sleeping parameter. The raw results illustrating the statistical significance of PM2.5 to
respiratory flow causal links across different time lags for each patient with the sleep
parameter are depicted in Appendix C.3.1. The remaining PCMCI+ results are then
outlined in Appendix C.3.

Figure 5.9 shows that despite adding the sleeping parameter to the 1-hour study, patients
predominantly uphold their causal relationships between PM2.5 and respiratory flow.
85.93% of patients with no causal links between PM2.5 and respiratory flow before
adding the sleep parameter, still had no causal links after its addition. Similarly, 74.67%
of patients that had at least one causal link from PM2.5 to respiratory flow before adding
the sleep parameter, maintained at least one such link after its addition. These findings
suggest that the influence of PM2.5 on respiratory flow, where present, appears relatively
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Figure 5.9: Distribution of PM2.5 → Respiratory Flow Causal Links With and Without
Sleep Control For the 1H Study - Measured As The Number Of Patients

unaffected by sleep patterns for the majority of asthmatic patients. Consequently, for
most patients demonstrating this causal relationship, the impact of PM2.5 on respiratory
flow persists across states of sleep and wakefulness. This matches expectations from
[71], which associated PM2.5 exposure with sleep-disordered breathing, showing its
impact on respiratory functions even when asleep.

However, Figure 5.9 also shows that 18 patients who initially showed a causal link
between PM2.5 and respiratory flow no longer exhibited this relation after sleep was
accounted for. Furthermore, adding the sleep parameter led to 9 new instances of a
causal relationship being established. These findings demonstrate that while the impact
of PM2.5 on respiratory flow persists across states of sleep and wakefulness for the
majority of patients, this is not applicable to all asthma patients. It thereby again
highlights the heterogeneity in the patients’ respiratory functions and their distinct
respiratory responses to PM2.5 exposure.

Figure 5.10: Distribution of PM2.5→ Respiratory Flow Causal Links With and Without
Sleep Control For the 8H Study - Measured As The Number Of Patients

Figure 5.10 further supports the results and conclusions from the 1-hour study, in the
8-hour study. 95.77% of patients with no causal links between PM2.5 and respiratory
flow before adding the sleep parameter, still had no causal links after its addition.
Similarly, 75.0% of patients that had at least one causal relation between PM2.5 and
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respiratory flow before adding the sleep parameter, maintained at least one such link
after its addition. In fact, 85.43% of patients had the same number of causal links
from PM2.5 to respiratory flow after adding the sleep parameter as before. This further
supports the conclusion that the causal relationship between PM2.5 and respiratory flow
is largely unaffected by sleep in most asthmatic patients.

While the sleep detection approach used in this section worked well, it is not optimal.
Further work should be done to better classify episodes of sleep. Statistical models have
shown to be effective in this regard [28], and more tuning can be done in this domain
to optimize the results. Therefore, noting that the method used for sleep classification
here cannot be guaranteed to be accurate because of the assumptions it makes to label
training data, the remaining results in this report use the original PCMCI+ results
without the sleep parameter. This ensures that the conclusions made are accurate.

5.7 Causal Results For Other Factors

Several factors beyond just PM2.5 can impact the respiratory activities of asthmatic
patients. Many of these are controlled for in the PCMCI+ algorithm in Section 5.2. To
ensure a comprehensive analysis, the causal impact of other stimuli on respiratory flow
is analysed in this section and contrasted to PM2.5. The raw results showing the causal
links from each cause to respiratory flow are presented in Appendix C.2, with selected
insights presented in this section.

Figure 5.11: Number of Causal Links Respiratory Flow→ Respiratory Flow By Time
Lag In 1-hour (top) and 8-hour (bottom) Studies

Intuitively, it makes sense that our current respiration impacts the way we breathe in the
nearest future. However, there is no clear understanding of how long current breathing
will influence future respiration. Figure 5.11 shows the distribution of causal links
from previous respiratory flow to current respiratory flow across time lags for both
studies. In both studies, the number of causal links decays rather exponentially with time
lag. This exponential decay of links was also found in the respiratory rate results from
[57, 69]. This means that the frequency at which current breathing patterns impact future
respiration diminishes exponentially over time. A similar analysis of temperature’s,
humidity’s and activity level’s causal links across time lags is in Appendix C.2.2.
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Figure 5.12: Proportion of Total Causal Links To Respiratory Flow By Cause In 1-hour
Study (Left) and 8-hour Study (Right)

Meanwhile, Figure 5.12 shows the aggregated proportion of total causal links to respira-
tory flow by cause. As expected respiratory flow to respiratory flow has the most causal
links. Meanwhile, activity level has the second most causal links, with the environmen-
tal stimuli having the least. In the 1-hour study, PM2.5 has the least causal links, while
in the 8-hour study it has marginally more than temperature only. Overall, temperature,
humidity and PM2.5 have comparable numbers of causal links. It is interesting that
the environmental stimuli have substantially less causal links to respiratory flow than
activity level and previous respiratory flow, in both studies. Appendix C.2.1 looks into
this in more detail, and provides a comparison of the effects of environmental stimuli
on respiratory flow.

Figure 5.13: Proportion of Total Causal Links To Respiratory Rate By Cause In 1-hour
Study (Left) and 8-hour Study (Right). Raw Results Taken From [57] Through [69]

Figure 5.13 uses results from [69, 57] to contrast the findings in Figure 5.12 against
related work on the impact of PM2.5 on respiratory rate. It shows the proportion of total
causal links to respiratory rate by cause. In both the respiratory flow and respiratory
rate projects, it is observed that previous respiratory activity has the most causal links
to current respiratory activity. However, PM2.5 exhibits a much greater proportion of
links to respiratory rate compared to its proportion of links to respiratory flow (in both
the 1-hour and 8-hour studies). Furthermore, unlike in the respiratory flow results,
PM2.5 has the second largest proportion of links to respiratory rate, greater than activity
level even. There are also generally more links and patients with links from PM2.5 to
respiratory rate than from PM2.5 to respiratory flow, in both studies. This suggests that
respiratory rate is more sensitive than respiratory flow to PM2.5.
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Causal Effects

6.1 Causal Effect Estimation

In Chapter 5 we have identified causal links between factors like PM2.5 and changes in
the regularity of respiratory flow. To better understand these causal relations, the causal
effect estimation algorithm from Runge et al. [68] is used to compute the strengths of
the causal links. Doing this is crucial to understand how PM2.5 impacts respiratory flow.

The effect estimation algorithm uses the PCMCI+ results to construct a causal network
graph. This graph has nodes for each variable and time lag. These nodes are connected
by edges representing the established causal links from PCMCI+. It then applies linear
regression on the corresponding time series data to compute the coefficients of the causal
links (edges). This is known as the direct causal effect. It then back propagates across
the causal graph to estimate the indirect causal effects. This is explained in more detail
in Algorithm 5. The implemented algorithm itself is taken and adapted from [57]. In rare
cases, the instability of linear regression [22] in Algorithm 5 resulted in unreasonably
large causal effect strengths. These were controlled for by setting the maximum absolute
effect strength to 1 and capping the rare larger values. Importantly, this infrequent
adjustment ensured consistency in the analysis and facilitated the interpretation of the
results without altering the overall trends.

Although alternative methodologies to causal effect estimation exist [4] like the Auto-
G-Computation algorithm [77], they are less compatible with this task. They often have
parametric assumptions that require homoscedasticity in the data. These assumptions
cannot be made in this task, where sensor data is used that varies greatly across patients,
particularly in respiratory observations. Therefore, Algorithm 5 from [68] is used,
which is tailored to observational time-series data and does not make those assumptions.

6.2 Causal Effect Comparison

The causal effect estimation from algorithm 5 returns two types of effects: direct and
indirect effects. The direct effect of one variable on another is the influence it exerts on
the other variable without mediation by other variables. Meanwhile an indirect effect is

31
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Algorithm 5 Causal Effect Estimation with Linear Regression Weights
Input: Time series data X, Maximum lag τmax, Significance threshold αPC
Output: Causal Effects CE, Directed Causal Effects DCE

1: function CALCULATECAUSALEFFECTS(X,τmax,αPC)
2: G← PCMCI+(X, τmax, αPC)
3: Initialize W matrix for edge weights
4: for each variable X j in X do
5: Let M be a Linear Regression Model
6: Let D← {X i

t−τ for all X i ∈ G for all 0≤ τ≤ τmax : (X i
t−τ, X j

t ) ∈ G}
7: Fit M to predict X j

t from D

8: for each edge (X i
t−τ,X

j
t ) in G do

9: w← standardized regression coefficient of X i
t−τ in M

10: W(X i
t−τ,X

j
t )← w

11: end for
12: end for
13: Modify edges in G to have corresponding value in W
14: Initialize CE and DCE matrices
15: for each variable X j in X do
16: Define target as X j

0
17: Compute causal effects for X j

0 using backpropagation in G

18: Compute direct causal effects for X j
0 from direct edges to X j

0 in G

19: Store results in CE and DCE
20: end for
21: return CE,DCE
22: end function

mediated through one or more additional variables. This accounts for situations where,
for example, PM2.5 effects temperature which then effects respiratory flow. Typically,
there are more indirect than direct effects. This is because they accumulate through
chained links across multiple time lags. This indeed is reflected in the results in Figure
6.1 and Figure 6.2.

Figures 6.1 and 6.2 show the number of direct and indirect causal effects to respiratory
flow by cause for each study. The causal effects are split into positive and negative
effects. A positive effect means that an increase in the cause variable induces a more
regular respiratory flow pattern in the patient. Otherwise, a negative effect means that
an increase in the cause variable prompts a more irregular respiratory flow in the patient.
Overall, the trends in number of causal effects are consistent across both studies. This
consistency is promising and expected, as it suggests a reliable pattern in how different
variables influence respiratory flow across different time-frames.

A general observation is that, for all causes, the number of causal effects in Figures 6.1
and 6.2 is less than the number of causal links established in Chapter 5. This is because
certain statistically significant links in the causal discovery model may translate into
statistically insignificant causal effects when considering their magnitude and direction
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Figure 6.1: Number of Causal Effects To Respiratory Flow, Across All Patients, By Cause
In 1-hour Study

of influence. There are also more effects for each cause in the 1-hour study than the
8-hour study. Initially, this might suggest that the selected variables impact respiratory
flow more frequently within the first hour time-frame. Yet this is not necessarily the
case. For each patient, each variable can have up to 60 effects in the 1-hour study, but
only up to 32 effects in the 8-hour study. The 8-hour study also ran on less patients than
the 1-hour study. These differences in the upper bound of causal effects may therefore
explain this observation.

In both studies, preceding regularity of respiratory flow has the most direct and indirect
causal effects on the current regularity of respiratory flow. This is especially visible in
the 1-hour study where preceding respiratory flow influences the current respiratory
flow with 4.13 times the number of direct effects compared to the cause with the second
highest amount of effects. These results makes sense given breathing is a continuous
process where the way a person currently breathes impacts their subsequent breaths.
In both studies, activity level has the second most direct and indirect causal effects to
current respiratory flow. This too matches expectations given the almost immediate
respiratory responses humans have to changes in physical activity intensity [45].

Figure 6.2: Number of Causal Effects To Respiratory Flow, Across All Patients, By Cause
In 8-hour Study

Further analysing the results, PM2.5 has the least direct and indirect causal effects to
respiratory flow in both the 1-hour and 8-hour studies. This means that PM2.5 impacts
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respiratory flow less frequently than the other factors of temperature, humidity, previous
respiratory flow and activity level. PM2.5 also has a comparable split between positive
and negative effects on respiratory flow in both the studies. This can be seen in both the
direct and indirect effects in Figures 6.1 and 6.2. This result once again underscores the
variability in every patient’s respiratory response to environmental factors.

Although a positive effect may seem counter-intuitive, as it implies exposure to increased
PM2.5 elicits a more regular respiratory flow: this result is not unreasonable. While
studies have shown warmer ambient temperature to decrease lung function in the general
population [15], higher temperatures were also found to decrease asthma severity and
symptoms in certain patients [16]. The field of asthmatic responses to environmental
stimuli is greatly different to that of healthy patients and remains largely unexplored.
Therefore, with this in mind and in consultation with Dr Gordon Drummond on these
findings, such results are plausible.

Figure 6.3: Mean Absolute Causal Effect Strength To Respiratory Flow In 1-hour Study

Figures 6.3 and 6.4 show the mean absolute effect strength from each cause to respiratory
flow in the 1-hour and 8-hour studies respectively. The trends observed in these figures
are again consistent across both studies. Temperature and humidity have the largest
direct and indirect effect strengths. They are followed by PM2.5, which has a mean
absolute effect strength greater than previous respiratory flow and activity level. These
results show that although environmental factors (PM2.5, temperature, humidity) have
significantly less causal effects to respiratory flow than activity level and previous
respiratory flow (Figures 6.1 and 6.2), on average their causal effects are much stronger.
Therefore, when patients’ respiratory flow is influenced by PM2.5, they experience
more pronounced changes in respiration compared to impacts stemming from non-
environmental factors. Initially, it may seem surprising that activity level has a relatively
small impact on respiratory flow. However, the data for this investigation is only
collected during stationary activities. These activities are typically of low intensity and
therefore it makes sense that they induce a relatively small causal effect on respiratory
flow.

The Figures also show that the mean direct effects on respiratory flow are significantly
larger in the 8-hour study compared to the 1-hour study for all causes. Therefore,
although fewer patients exhibit causal links from PM2.5 to respiratory flow at 15-minute
resolution over 8 hours, the induced effects are notably stronger than those affecting
1-minute respiratory flow periods within the first hour after exposure. This highlights
the delayed, yet intensified, impact that PM2.5 can have on respiration.
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Figure 6.4: Mean Absolute Causal Effect Strength To Respiratory Flow In 8-hour Study

6.3 Temporal Causal Effect Analysis

The results in Section 6.2 offer valuable insights into the varying causal effects produced
by different variables. Those insights, however, are aggregated across time, overlooking
potential variations in causal effects over different time lags or months. This section
therefore focuses on investigating the patterns in causal effects across time.

Figure 6.5 shows the mean and range of the strength of PM2.5 effects on respiratory flow
across time lags in the 1-hour study. The direct effect strengths are observed to be highly
variable across the sixty minutes with sporadic peaks and no consistent pattern. The
strength directions change from positive to negative rapidly and have no clear pattern in
magnitude. This is likely a side-effect of aggregating the distinct causal responses of
each patient together. Each patient has responses of different magnitude and direction
that are spread across the time lags. This likely explains the high variability in strengths
across lags. A similar trend can also be seen in the distribution of direct effect strengths
across the 8-hour lags in Figure 6.6. These strengths are observed to be even more
volatile than those in the 1-hour study.

Figure 6.5: Distribution of PM2.5 → Respiratory Flow Causal Effect Strength Across
Time Lags in 1-hour Study

In turn, the indirect effect strengths consistently have zero-like means in both studies
for all time lags, with occasional deviations. It is also observed in both Figures 6.5 and
6.6, that the variance in the distribution of indirect effect strengths increases with the
time lags. This is explained by the cumulative nature of indirect effects in algorithm
5. For larger time lags, the algorithm must back-propagate through growing chains of
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direct causal effects. This therefore results in the observed divergent nature of indirect
effects in both figures and is depicted by the quickly intensifying positive and negative
indirect effect strengths.

Figure 6.6: Distribution of PM2.5 → Respiratory Flow Causal Effect Strength Across
Time Lags in 8-hour Study

The next step of this analysis is to look at how effect strength varies across explicit time
periods throughout the year. Recent studies demonstrated that PM2.5 concentrations
exhibit monthly and seasonal patterns [35, 43]. A hypothesis therefore exists that
the causal effect of PM2.5 on respiratory flow changes across seasons or months. To
investigate this we look at the distributions of direct effects across months, noting that
the indirect effects are too unstable to analyse. Figure 6.7 depicts the mean and the
range of the direct effect strengths from PM2.5 to respiratory flow in each month of the
year in the 1-hour study. It is observed that the direct effects typically vary greatly in
direction and magnitude within the same month and that there are no significant outlier
months. The months of March, April and July have causal effects of predominantly
negative direction. The remaining months have a larger range of causal effect strengths,
spanning both positive and negative values. Meanwhile, the months of March, June and
July have the narrowest range in effect strength magnitude, having substantially smaller
causal effect strength magnitudes than the effects in other months. September and April
generally have the strongest effect strength magnitudes. Interestingly, October has no
direct causal effects in the 1-hour study despite having causal links in Figure 5.7. This
suggests that the short-term causal relations in October are not strong enough to have a
significant impact on respiratory flow. Meanwhile, May has no causal effects because
no data was collected in that month.

Nonetheless, an interesting trend is that the months near summer, particularly June
and July but also March and August, typically have the least variable effect strengths
and have predominantly smaller magnitudes compared to the other months. A study
by Singh et al. showed that the PM2.5 concentrations in Delhi, India are typically
substantially smaller in those months than in other months like those of winter [72].
This could suggest a correlation between higher PM2.5 concentrations and more variable,
often stronger, short-term causal effects from PM2.5 to respiratory flow. Although April
is an outlier to this trend having both a strong mean effect and a large effect range, it is
skewed by a single patient having one strong effect, while all other patients in April
conform to the trend. This patient could very likely just be an outlier to this observed
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Figure 6.7: Range and Mean of Direct PM2.5→ Respiratory Flow Causal Effect Strength
Across Months in 1-hour Study

pattern. Nonetheless, further research, with more data distributed equally across the
months of the year would be needed to decisively conclude this association.

Figure 6.8: Range and Mean of Direct PM2.5→ Respiratory Flow Causal Effect Strength
Across Months in 8-hour Study

Figure 6.8 shows the mean and the range of the direct effect strengths from PM2.5 to
respiratory flow in each month of the year for the 8-hour study. In this study, the effect
strengths vary significantly less intra-month than in the 1-hour study. However, this
could just be a reflection of the much smaller number of causal effects in the 8-hour study.
Nonetheless, March and July again, but also August and October, have predominantly
negative, but also some of the strongest, causal effects. This demonstrates that increased
PM2.5 typically makes respiratory flow significantly more irregular in those months.
Finally, Appendix D.1 shows the mean and the range of the direct effect strengths
from PM2.5 to respiratory rate across months using results from [69]. Contrasting these
results against respiratory flow, PM2.5 typically induces a more variable in magnitude
and direction effect on respiratory rate than respiratory flow. However, this could be
because there are generally more causal effects from PM2.5 to respiratory rate than
respiratory flow. An interesting observation though is that in the 8-hour studies, in
October, PM2.5 induces strong negative-only causal effects on both respiratory rate and
flow.
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Conclusions

7.1 Discussion

In this investigation, a comprehensive analysis of the impact of PM2.5 on respiratory
flow in asthmatic adolescents was performed. For this, RESpeck respiratory and
physical activity data and AIRSpeck environmental data collected on 137 patients in
the DAPHNE study was used. The raw sensor data was firstly processed to accurately
capture breaths from the breathing signal. This was done using the ”gold standard”
method that employs sliding windows of signal thresholds to accurately handle sensor
noise. Next, the localized mean respiratory rate and tidal volume approximations were
extracted as features for each breath. These tidal volume approximations were derived
by calculating both the peak respiratory flow and the area under the breathing signal
curve. Then, the computed breath data and AIRSpeck data were fused together, with
outliers carefully identified and removed. To overcome the assumptions made by linear
interpolation in related research, multivariate imputation by chained equations was
applied and tested on missing environmental data to enhance the dataset’s completeness.

Using the features computed for each breath, a medically-informed metric was then
developed in consultation with a medical professional. It measured the regularity of
respiratory flow of each breath. This metric employed principal component analysis
to evaluate the deviation of each breath’s features from the principal components. It
thereby successfully identified breaths that are more rapid-shallow and have higher
frequency as more irregular. It is non-invasive in nature and is the first metric ever
designed to measure the quality of respiratory flow.

Next, a causal analysis between PM2.5 and respiratory flow was performed. To motivate
the analysis, PM2.5 variables were first shown to improve the mean adjusted R2 of
regression models predicting the regularity of respiratory flow. Then, PCMCI+ was used
to examine the causal relations between PM2.5 and respiratory flow, while accounting
for temperature, humidity and activity level. PCMCI+ is a method for discovering
lagged and contemporaneous causal links in time series data, making it suitable for
this task. To analyse both short-term and longer-term causal relations, the method was
applied with max lag of 1-hour on 1-minute resolution data and also with max lag of
8-hours on 15-minute resolution data.

38
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The results showed that at a p-value threshold of 0.02, 52.29% of patients exhibit causal
links from PM2.5 to respiratory flow in the 1-hour study and 31.07% of patients in
the 8-hour study. In the 1-hour study, patients that exhibit causal links are on average
causally impacted at 1.549 time lags while in the 8-hour study this value decreases
to 1.469. These findings indicate that PM2.5 has a significant causal relation with
respiratory flow that is prevalent in a majority of asthmatic patients. Next, a survival
analysis showed that although the causal links in both studies are distributed rather
uniformly across the time lags, the incidence rate of a patient having their first causal
link diminishes with time. In the 1-hour study patients are substantially more likely to
have a causal link from PM2.5 to respiratory flow in the first 35-minutes than in minutes
35-60. The same is observed in the 8-hour study where the incidence rate is significantly
higher in the time lags of the first 2 hours than hours 6 to 8. This lets us conclude
that patients are more likely to have their first respiratory flow response to PM2.5 in
the earlier phases of exposure. Finally, the incidence of causal links in each patient
is compared between respiratory flow and other respiratory conditions. The results
showed that there are no consistent trends in number of causal links. This indicates that
the PM2.5 induced changes in coughing or respiratory rate are distinct and influenced
by different physiological mechanisms than those in respiratory flow.

Next, to truly isolate the causal links between PM2.5 and respiratory flow, the causal
analysis was repeated with an additional variable of sleep probability. This was mo-
tivated by the fact that breathing patterns and asthma symptoms vary between sleep
and wakefulness states. The sleeping probability was predicted using semi-supervised
learning on a set of features derived from the breathing rates and activity levels. In the
1-hour study, 85.93% of patients without causal links and 74.67% with links before
adding sleep probability maintained their link status afterward. In the 8-hour study,
these values were 95.77% and 75.0%, respectively, with 85.43% of patients retaining
the exact same number of links. These results show that sleep has a minimal impact
on the relationship between PM2.5 and respiratory flow, with the majority of asthmatic
patients’ responses to PM2.5 being consistent across states of sleep and wakefulness.

Finally, the established causal relations between PM2.5 and respiratory flow were quan-
tified. This was achieved using a causal effect estimation algorithm, which constructed
a causal network using the PCMCI+ results. It then employed linear regression on time
series data to compute the causal effects. The results showed that although PM2.5 had
the least causal effects to respiratory flow among the factors, they were on average
substantially stronger than the effects of activity level and previous respiratory flow but
weaker than the effects of temperature and humidity. This was consistent for both direct
and indirect effects in both the 1-hour and 8-hour studies. Therefore, it is concluded
that PM2.5 has a strong causal effect on the regularity of respiratory flow and induces
substantial changes in the way asthmatics breath. Overall, the less frequent, longer-term
effects in the 8-hour study were stronger than those in the 1-hour study. The results also
showed that the causal effects of PM2.5 on respiratory flow fluctuated in both magni-
tude and sign across different time lags. This demonstrated that there is no uniform
respiratory flow response to PM2.5 exposure across patients. The results also hinted a
monthly association between higher PM2.5 concentrations and more variable, stronger,
effect strengths. However, further research is needed to conclude this decisively.
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7.2 Limitations and Future Work

One limitation of the developed metric to quantify the regularity of respiratory flow
is that it is not very generalisable. It makes use of the distributions of breath features
to identify rapid-shallow and high frequency breaths. However, different methods of
capturing breaths or computing the breathing signal will likely have different distribu-
tions of breath features for which the metric might not work as well. Future work can
therefore build on this metric and utilise alternative unsupervised learning techniques to
make it usable on any respiratory dataset and method of capturing breaths.

Another limitation of the existing approach is that the metric currently quantifies the
regularity of respiratory flow for each breath. These are then averaged to obtain a
score for the regularity of respiratory flow for 1-minute and 15-minute respiratory
periods. This averaging process ensures that outlier breaths do not skew the regularity
of respiratory flow assigned to these time periods. However, perhaps a more accurate
approach would be to directly measure the regularity of respiratory flow for the entire
interval rather than for each breath. This would allow the metric to consider how
respiratory flow changes across successive breaths when determining the regularity
score. Another way future work can do this, is by defining a custom scoring function
that considers successive breaths and the rate of respiratory flow change. This function
could then replace the mean function when aggregating regularity scores from individual
breaths into these intervals.

Future work can also focus on improving the sleep episode classification. The approach
used in this study is limited because it assumes that patients are awake at certain times
and asleep in others to generate a training set for semi-supervised learning. Although
these assumptions were kept at a minimum to ensure the results were accurate, further
work can be done to improve this. Unsupervised learning techniques can be further
experimented with to obtain better estimates of wakefulness and sleep episodes. In fact,
instead of predicting the probability of sleep, future work could look into additionally
identifying the stage of sleep a patient is in. Different sleep stages have been shown to
affect respiration differently [88]. Doing this would therefore help better understand the
impact of sleeping on respiratory flow and more accurately isolate the causal effects of
PM2.5 on respiratory flow from other confounding factors.

Moreover, future work can look into accounting for more potential confounding factors
that may impact respiratory flow. These were outlined in Chapter 2 and while accounting
for temperature, humidity and activity level is a good start, further research could
expand these to better isolate the causal effects of PM2.5 on respiratory flow from other
confounding factors. Further work can also be done to understand the causal relation
between other air pollutants and respiratory flow. These may include particular matter
of broader or narrower diameter dimensions and different air pollutants like PM10, PM1
and nitrogen dioxide. All of these have been found to be correlated with exasperated
respiratory conditions [74, 57, 31] and would therefore be worthwhile to investigate
in the context of respiratory flow responses. Finally, more data can be collected and
analysed to investigate possible seasonal associations between PM2.5 concentration
distributions and causal effect strength of PM2.5 on respiratory flow.
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Jürgen Kurths. Identifying causal gateways and mediators in complex spatio-
temporal systems. Nature Communications, 6(1), Oct 2015.

[69] Julia Schonthaler. Exploring asthmatic patients’ sensitivity to airborne particulates
through causal analysis: Investigating various causes and effects. Honours year
thesis, School of Informatics, University of Edinburgh, 2024.

[70] G. Shaddick, Matthew Thomas, P. Mudu, G. Ruggeri, and S. Gumy. Half the
world’s population are exposed to increasing air pollution. npj Climate and
Atmospheric Science, 3:23, 06 2020.

[71] Yen-Ling Shen, Wen-Te Liu, Kang-Yun Lee, Hsiao-Chi Chuang, Hua-Wei Chen,
and Kai-Jen Chuang. Association of pm2.5 with sleep-disordered breathing from
a population-based study in northern taiwan urban areas. Environmental Pollution,
233:109–113, 2018.

[72] Bhupendra Pratap Singh, Deepak Singh, Krishan Kumar, and Vinod Kumar Jain.
Study of seasonal variation of pm2.5 concentration associated with meteorological
parameters at residential sites in delhi, india. Journal of Atmospheric Chemistry,
78(3):161–176, Apr 2021.

[73] European Respiratory Society. Your lungs and exercise. Breathe, 12(1):97–100,
2016.

[74] Huacheng Song. The impact of factors - size fractions of airborne particles,
temperature, relative humidity and activity - on coughing episodes in asthmatic
adolescents. Master’s thesis, School of Informatics, University of Edinburgh,
2023.

[75] Joan B Soriano, Parkes J Kendrick, Katherine R Paulson, Vinay Gupta, Elissa M
Abrams, Rufus Adesoji Adedoyin, Tara Ballav Adhikari, Shailesh M Advani,
Anurag Agrawal, Elham Ahmadian, and et al. Prevalence and attributable health
burden of chronic respiratory diseases, 1990–2017: A systematic analysis for
the global burden of disease study 2017. The Lancet Respiratory Medicine,
8(6):585–596, Jun 2020.

[76] Marta Szemraj, Dimal Luta, Szymon Lason, and Jurgen van Leeuwen. Why is air
quality worse at night? Airly, 2020.

[77] Eric J. Tchetgen Tchetgen, Isabel R. Fulcher, and Ilya Shpitser. Auto-G-
Computation of Causal Effects on a Network. Journal of the American Statistical
Association, 116(534):833–844, April 2021.



Bibliography 47

[78] Zac Teo Zi Cheng. Classification of sleep periods and positions using the respeck
monitor. Master’s thesis, School of Informatics, University of Edinburgh, 2018.

[79] Philippe Thunis, Alain Clappier, Matthias Beekmann, Jean Philippe Putaud, Cor-
nelis Cuvelier, Jessie Madrazo, and Alexander de Meij. Non-linear response of
pm2.5 to changes in nox and nh3 emissions in the po basin (italy): consequences
for air quality plans. Atmospheric Chemistry and Physics, 21(12):9309–9327, Jun
2021.

[80] Angelica I. Tiotiu, Plamena Novakova, Denislava Nedeva, Herberto Jose Chong-
Neto, Silviya Novakova, Paschalis Steiropoulos, and Krzysztof Kowal. Impact
of air pollution on asthma outcomes. International Journal of Environmental
Research and Public Health, 17(17), 2020.

[81] Huan Minh Tran, Feng-Jen Tsai, Yueh-Lun Lee, Jer-Hwa Chang, Li-Te Chang,
Ta-Yuan Chang, Kian Fan Chung, Han-Pin Kuo, Kang-Yun Lee, Kai-Jen Chuang,
and Hsiao-Chi Chuang. The impact of air pollution on respiratory diseases in an
era of climate change: A review of the current evidence. Science of The Total
Environment, 898:166340, 2023.

[82] Lloyd N. Trefethen and J. A. C. Weideman. The exponentially convergent trape-
zoidal rule. SIAM Review, 56(3):385–458, 2014.

[83] Laı́s Silva Vidotto, Celso Ricardo Carvalho, Alex Harvey, and Mandy Jones.
Dysfunctional breathing: What do we know? Jornal Brasileiro de Pneumologia,
45(1), 2019.

[84] Hetong Wang, Laiyu Song, Wenhui Ju, Xuguang Wang, Lu Dong, Yining Zhang,
Ping Ya, Chun Yang, and Fasheng Li. The acute airway inflammation induced
by pm2.5 exposure and the treatment of essential oils in balb/c mice. Scientific
Reports, 7(1), Mar 2017.

[85] J. Wanger, J. L. Clausen, A. Coates, O. F. Pedersen, V. Brusasco, F. Burgos,
R. Casaburi, R. Crapo, P. Enright, C. P. M. van der Grinten, P. Gustafsson, J. Han-
kinson, R. Jensen, D. Johnson, N. MacIntyre, R. McKay, M. R. Miller, D. Navajas,
R. Pellegrino, and G. Viegi. Standardisation of the measurement of lung volumes.
European Respiratory Journal, 26(3):511–522, 2005.

[86] Kathleen Williams, Marina Hinojosa-Kurtzberg, and Sairam Parthasarathy. Con-
trol of breathing during mechanical ventilation: Who is the boss? Respiratory
Care, 56(2):127–139, 2011.

[87] Hong Lei Wu, Wei Zhang Xiao, Xu Juan Xu, Yan Hong Gu, Feng Ying Lu, and
Jia Hai Shi. Relationship of tidal volume to peak flow, breath rate, i:e and plateau
time: Mock study. The American Journal of the Medical Sciences, 349(4):312–315,
Apr 2015.

[88] Ailiang Xie. Effect of sleep on breathing - why recurrent apneas are only seen.
Journal of Thoracic Disease, 4(2), 2011.

[89] Yang Xie, Hancheng Dai, Yanxu Zhang, Yazhen Wu, Tatsuya Hanaoka, and



Bibliography 48

Toshihiko Masui. Comparison of health and economic impacts of pm2.5 and
ozone pollution in china. Environment International, 130:104881, 2019.

[90] Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isola-
tion forest for anomaly detection. IEEE Transactions on Knowledge and Data
Engineering, 35(12):12591–12604, Jun 2023.

[91] Janelle Yorke, Anne-Marie Russell, Jeff Swigris, Caroline Shuldham, Carol Haigh,
Nikki Rochnia, Jennifer Hoyle, and Paul W. Jones. Assessment of dyspnea in
asthma: Validation of the dyspnea-12. Journal of Asthma, 48(6):602–608, Jun
2011.



Appendix A

Breath Visualizations

A.1 Naive Breath Capture Method

Figure A.1 shows noisy breathing signals where a single data point beyond the zero-
crossing is identified as an entire exhalation or inhalation. This was a problem with the
old, naive, breath capturing technique. Such situations must be accounted for by the
breath capture method, to ensure exhalations and inhalations are appropriately identified
and respiratory flow can be accurately approximated. The ”gold standard” method does
not treat these as separate inhalations or exhalations.

Figure A.1: Individual breathing signal data points revealing misidentified exhalation and
inhalation
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A.2 Gold Standard Breath Capture Method

Figure A.2 shows two breaths captured from Patient DAP134’s breathing signal. In
both breaths, sensor noise creates marginal zero-crossings. In the naive approach, these
would result in misidentified breaths like in Appendix A.1. However, the ”gold-standard”
method prevents this and treats them as part of the original breath. It therefore handles
sensor noise and offsets more accurately than the naive method.

Figure A.2: Breaths Captured From Patient DAP134’s Breathing Signal



Appendix B

Respiratory Flow Methodology

B.1 Rapid-Shallow Breathing

Figure B.1 shows an episode of regular respiratory flow in an asthmatic patient. The
breathing signal is consistent and periodic, having uniform patterns across breaths. The
breaths have consistent inspirations and expirations, indicating a stable rhythm and
depth of breathing. The breaths themselves are controlled and non-rapid.

Figure B.1: Minute of Regular Respiratory Flow in Asthmatic Patient

In contrast, Figure B.2 shows an episode of irregular respiratory flow in a patient. The
breathing signal is very inconsistent across breaths, changing rapidly in depth and
rhythm. Many breaths are rapid, often having very short and shallow (small area)
inhalations or exhalations. These breaths show ”air hunger” and the state of gasping for
air, commonly known as rapid-shallow breathing. Overall, the respiratory flow is very
irregular and abnormal.

B.2 Distribution of Breath Features and PCA Results

This Section shows the effects of including each element in Algorithm 3 for further
patients DAP063(1) in Figures B.3, B.4 and DAP061(1) in Figures B.5, B.6. In these
visualizations, data points marked with a lower proximity score, represented by a darker
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Figure B.2: Minute of Irregular Respiratory Flow in Asthmatic Patient

color shade, are indicative of more irregular breathing patterns. Conversely, points
with a higher proximity score, denoted by a lighter color, are associated with more
regular breathing patterns. The plots show that the results used to justify the elements
of Algorithm 3 are generally observed across all patients. Therefore, the algorithm
generalises well to all patients, producing expected results.

Figure B.3: Individual Metric Components For Patient DAP063(1)

B.3 Distribution of Regularity of Respiratory Flow

Figures B.7 and B.8 show the distribution of area, peak respiratory flow and respiratory
rate for different bins of respiratory flow regularity. The same general trends can be
observed across patients in the dataset. These are, as noted in Chapter 4, decreasing area,
increasing respiratory rate and increasing peak respiratory flow as a breaths become
more irregular. This conforms to the rapid-shallow expectations of irregular respiratory
periods.

B.4 Mahalanobis Distance

The Mahalanobis distance is a multivariate metric that measures the distance between a
data-point and a distribution. It is commonly used for anomaly detection for data-points
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Figure B.4: Further and Aggregated Metric Components For Patient DAP063(1)

Figure B.5: Individual Metric Components for patient DAP061(1)

Figure B.6: Further and Aggregated Metric Components for patient DAP061(1)
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Figure B.7: Distribution of breath features across different respiratory flow regularity bins
for patient DAP007(2)

Figure B.8: Distribution of breath features across different respiratory flow regularity bins
for patient DAP063(1)
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that are outliers to the general distribution of the dataset. It is more accurate than
Euclidean distance between the data-point and the centroid of the distribution because
it takes into account the correlations of the dataset’s variables. In the case of correlated
dataset variables, the Euclidian distance yields misleading results. With this in mind,
the Mahalanobis Distance is defined in Equation B.1.

DM(p⃗,⃗µ;Q) =
√

(p⃗− µ⃗)T S−1(p⃗− µ⃗) (B.1)

Where:

• DM is the Mahalanobis distance

• Q is the distribution of the data-points

• p⃗ is the vector point for which the distance is measured

• µ⃗ is the mean vector of the distribution Q

• S is the covariance matrix of the distribution

B.5 Respiratory Flow and Activities

To better understand the regularity of respiratory flow, an investigation was done into
its trends across activity types. Importantly, these activities were stationary, as the
breathing signal is unreliable for high intensity activities. The findings showed that
the activity type itself did not impact the regularity of respiratory flow in a consistent
manner across patients. Figures B.9 and B.10 show the mean regularity of respiratory
flow during different activities for Patients DAP007(2) and DAP083(1) respectively.

For many patients, all activity types had similar mean regularity of respiratory flow.
However, many patients observed deviations for certain activity types that led to pre-
dominantly more regular respiratory patterns. For example, Patient DAP007 had a
more regular mean respiratory flow regularity when lying down on their back and on
their right side. Meanwhile, Patient DAP083(2) respired marginally more regularly on
average when lying down on their left side.

That being said, these trends were not consistent across patients. Certain activities were
associated with the most regular respiratory flow for some patients and then the most
irregular respiratory flow for others. This lack of clear trend is however expected. Not
only are all of these activities stationary and of low intensity, but also every person
breathes differently. It therefore makes sense that certain positions might be marginally
more comfortable for some patients but more uncomfortable for others.

Similar visualisations were made to investigate how the regularity of respiratory flow
varies with time after a patient changes their activity. This is exemplified in Figure
B.11, which shows how the mean respiratory flow regularity changes when Patient
DAP098(2) begins to lie on their stomach. The mean respiratory flow regularity is
initially consistent before marginally becoming more irregular.

However, again the findings were not consistent across patients. While many patients
did not show significant deviations in their respiratory flow regularity after beginning



Appendix B. Respiratory Flow Methodology 56

Figure B.9: Mean Regularity of Respiratory Flow During Different Activity Types For
Patient DAP007(2)

Figure B.10: Mean Regularity of Respiratory Flow During Different Activity Types For
Patient DAP083(1)
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certain new activities, others began to breathe substantially more regularly or irregularly.
This once again highlights the differences in how every patient breathes.

Figure B.11: Mean Regularity of Respiratory Flow When Lying On Stomach For Patient
DAP098(2)

This lack of consistent trends in respiratory flow across activities was the reason
this investigation was not included in the main results sections of this dissertation.
Nonetheless, it may be helpful in understanding the metric and how it works.
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Causal Discovery

C.1 PCMCI+ Setup

The PCMCI+ algorithm uses a causal graph that must be initialized with the possible
causal links to test for. The setup in Figure C.1 is used for this. The edges show the
potential causal relations to test for, labelled by the time lag of each adjacency. A time
lag of zero is a contemporaneous link and those greater than zero are lagged links.

Figure C.1: PCMCI+ Initial Link Assumptions For Causal Graph Setup in Algorithm 4
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C.2 Further PCMCI+ Result Analysis

C.2.1 Environmental Stimuli Causal Link Correlation Analysis

Figure C.2 shows the number of patients with each combination of causal links from
the environmental stimuli to respiratory flow. Importantly, it treats the causal links as a
binary variable, where a patient either has causal links or does not. Both temperature
and humidity have a lot of causal effects on PM2.5 in the PCMCI+ results of Chapter 5.
The two factors are also highly related. It could therefore be hypothesized that patients
that have a respiratory flow response to changes in temperature or humidity are more
inclined to have a respiratory flow response to PM2.5 as well.

However, Figure C.2 shows that the distribution of patients across the combinations
of causal links from the environmental stimuli is relatively uniform with no particular
trends. In the 1-hour study, exactly half of the patients with causal links from humidity
to respiratory flow have causal links from PM2.5 to respiratory flow whereas the other
half does not. Similar observations can be made about patients that have causal links
from temperature to respiratory flow, and also patients with no causal links to humidity
and/or temperature. Therefore, these results show that there is no significant correlation
between patients having respiratory flow response to PM2.5 exposure, and patients
having respiratory flow reactions to temperature or humidity.

Figure C.2: Number of Patients By Causal Link Combinations from Environmental
Factors To Respiratory Flow in 1-hour Study (Top) and 8-hour Study (Bottom)

C.2.2 Causal Links Across Time Lags

Figure C.3 shows the distribution of causal links from activity level to respiratory flow
across time lags, for both studies. It shows that the causal links are distributed relatively
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evenly across the time lags in both studies. There is a peak of 8 causal links at time lag
52. Interestingly, PM2.5 also has a peak in causal links to respiratory flow at that time
lag. That being said, there are no clear correlations between causal links from PM2.5
and activity level to respiratory flow. An interesting observation can also be made in
the 8-hour study. It seems as though the number of causal links is higher for the later
lag lengths. Between 5-8 hours there are generally more links from activity level to
respiratory flow than during the first three hours. This suggests a higher prevalence
of delayed causal responses that a change in position or activity intensity induces on
respiration in asthmatic patients.

Figure C.3: Number of Causal Links Activity Level→ Respiratory Flow By Time Lag In
1-hour (top) and 8-hour (bottom) Studies

Figure C.4 shows the distribution of causal links from temperature to respiratory flow
across time lags, for both studies. Again, the causal links are distributed quite uniformly
across the time lags with no consistent patterns across studies. There are significantly
more causal links in the 1-hour study than in the 8-hour study. In fact, several time
lags in the 8-hour study have no links at all. This suggests that the causal impact of
temperature on respiratory flow is much more short term than that of PM2.5.

Figure C.5 shows the distribution of causal links from humidity to respiratory flow
across time lags, for both studies. Again, the causal links are distributed quite uniformly
across the time lags with no consistent patterns across studies. There are also again
significantly more causal links in the 1-hour study than in the 8-hour study.

C.2.3 Causal Link Significance By Cause

C.2.3.1 Temperature Results

Figure C.6 shows the statistical significance of causal links from temperature to respira-
tory flow over 0 to 60 minute lag lengths at 1-minute resolution. Temperature is shown
to have several significant causal links to the regularity of respiratory flow for many
patients. There are generally more causal links from temperature to respiratory flow
than from PM2.5 to respiratory flow, however they are also scattered across patients and
lags. Overall, just over half the patients have at least one causal link from temperature
to respiratory flow at a p-value threshold of 0.02.
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Figure C.4: Number of Causal Links Temperature→ Respiratory Flow By Time Lag In
1-hour (top) and 8-hour (bottom) Studies

Figure C.5: Number of Causal Links Humidity → Respiratory Flow By Time Lag In
1-hour (top) and 8-hour (bottom) Studies
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Figure C.6: Causal Links of Temperature→ Respiratory Flow Over 1-Hour Period

Figure C.7 shows the statistical significance of causal links from temperature to respira-
tory flow over 0 to 8 hour lag lengths at 15-minute resolution. Temperature is shown
to have several significant causal links to the regularity of respiratory flow for many
patients. Similar to the results of PM2.5 and respiratory flow, there are significantly
less causal links from temperature to respiratory flow in the 8-hour study at 15-minute
resolution. This suggests the changes in respiration are much more fine-grained and/or
short term. They are therefore identified more frequently at 1-minute resolution in
minute-level lags in the first hour than at 15-minute resolution in the 8-hours.

Figure C.7: Causal Links of Temperature→ Respiratory Flow Over 8-Hour Period

C.2.3.2 Humidity Results

Figure C.8 shows the statistical significance of causal links from humidity to respiratory
flow over 0 to 60 minute lag lengths at 1-minute resolution. Humidity is shown to have
several significant causal links to the regularity of respiratory flow for many patients.
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Again, the causal links are scattered across lags and patients. There appear to be
marginally more patients with links from humidity to respiratory flow than from PM2.5
to respiratory flow or temperature to respiratory flow. A majority of patients once again
have causal links, showing that humidity induces causal responses in respiratory flow
for many asthmatics.

Figure C.8: Causal Links of Humidity→ Respiratory Flow Over 1-Hour Period

Figure C.9 shows the statistical significance of causal links from humidity to respiratory
flow over 0 to 8 hour lag lengths at 15-minute resolution. Humidity is shown to
have several significant causal links to the regularity of respiratory flow for many
patients. Although less patients have causal links in the 8-hour study than in the 1-hour
study (similar to the other factors), there are generally substantially more links and
patients with links from humidity to respiratory flow, than from temperature or PM2.5
to respiratory flow, in the 8-hour study. This shows that the effects of humidity on
respiration may be longer lasting or less fine-grained than those of PM2.5 or temperature,
meaning they are picked up in the 15-minute respiratory windows.
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Figure C.9: Causal Links of Humidity→ Respiratory Flow Over 8-Hour Period

C.2.3.3 Activity Results

Figure C.10 shows the statistical significance of causal links from activity level to
respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution. Activity level
is shown to have several significant causal links to the regularity of respiratory flow
for many patients. While the causal links seem to be scattered across patients and lags,
it is observed that all patients have a causal link at time lag 0. This is because of the
PCMCI+ setup, where a patient must have a contemporaneous link between activity
level and respiratory flow. Doing this in the setup helps ensure the results are valid and
match existing literature on the impact of physical activity on respiration. Nonetheless,
a majority of patients still have lagged links from activity level to respiratory flow.
This is interesting given the activities here are static (lying down, sitting and standing),
showing that even variations in these activities can induce changes in respiratory flow
in asthmatic patients.

Figure C.10: Causal Links of Activity Level→ Respiratory Flow Over 1-Hour Period
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Figure C.11 shows the statistical significance of causal links from activity level to
respiratory flow over 0 to 8 hour lag lengths at 15-minute resolution. Activity level is
shown to have several significant causal links to the regularity of respiratory flow for
many patients. Again, all patients have a contemporaneous link from activity level to
respiratory flow by the setup of PCMCI+ to conform to existing literature. What is
interesting however is that there are substantially more causal links in the later time
lags. This is supported in Figure C.3. It can also be observed that there are more causal
links, and patients with causal links, between activity level and respiratory flow than
PM2.5 and respiratory flow, in this 8-hour study. This shows that activity level induces
effects more frequently than PM2.5 at 15-minute resolution. However, this could also
be influenced by the lower variability of PM2.5 during the day, while activity level (e.g.
the physical position we are in) changes very frequently throughout the day.

Figure C.11: Causal Links of Activity Level→ Respiratory Flow Over 8-Hour Period

C.2.3.4 Respiratory Flow Results

Figure C.12 shows the statistical significance of causal links from previous respiratory
flow to respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution. Previous
respiratory flow is shown to have several significant causal links to the regularity of
respiratory flow for many patients. The setup of PCMCI+ enforces a causal link from
respiratory flow to respiratory flow at lag of 1. This ensures accurate results and
accurate control when determining the causal links for other factors given how we
breathe currently will impact how we breathe immediately after. Nonetheless, it is
observed that there are more links at the lower time lags. This further evidences the
near exponential decay in number of causal links from respiratory flow to respiratory
flow that is observed in both studies.
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Figure C.12: Causal Links of Respiratory Flow→ Respiratory Flow Over 1-Hour Period

Figure C.13 shows the statistical significance of causal links from previous respiratory
flow to respiratory flow over 0 to 8 hour lag lengths at 15-minute resolution. Previous
respiratory flow is shown to have several significant causal links to the regularity of
respiratory flow for many patients. Again, there is a near exponential decay of number
of causal links as time lag increases. This further shows that how we breathe has a
decreasingly prevalent impact on how we breathe as time goes on. Intuitively, this
makes sense.

Figure C.13: Causal Links of Respiratory Flow→ Respiratory Flow Over 8-Hour Period

C.3 Remaining PCMCI+ Results With Sleep Parameter

C.3.1 PM2.5 Results

Figure C.14 shows the statistical significance of causal links from PM2.5 to respiratory
flow over 0 to 60 minute lag lengths at 1-minute resolution, with the addition of the
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sleep variable to the PCMCI+ algorithm. PM2.5 remains a significant cause of change in
the regularity of respiratory flow for many patients at this resolution and max lag. That
being said, there are marginally less patients with causal links from PM2.5 to respiratory
flow than in the study without the sleeping parameter.

Figure C.14: Causal Links of PM2.5 → Respiratory Flow In 1-Hour Study With Sleep
Parameter

Figure C.15 shows the statistical significance of causal links from PM2.5 to respiratory
flow over 0 to 8 hour lag lengths at 15-minute resolution, with the addition of the sleep
variable to the PCMCI+ algorithm. PM2.5 again remains a significant cause of change
in the regularity of respiratory flow for many patients at this resolution and max lag.
Interestingly, the high number of causal links of patients DAP012 and DAP071, among
others, are sustained in both studies with and without the sleeping parameter.

Figure C.15: Causal Links of PM2.5 → Respiratory Flow In 8-Hour Study With Sleep
Parameter



Appendix C. Causal Discovery 68

C.3.2 Temperature Results

Figure C.16 shows the statistical significance of causal links from temperature to
respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution, with the
addition of the sleep variable to the PCMCI+ algorithm. Temperature is shown to be a
significant cause of change in the regularity of respiratory flow for many patients. The
same general trends can be seen as in the study without the sleeping parameter. One
difference however is that there are less causal links and patients with causal links from
temperature to respiratory flow when controlling for sleep than without. This suggests
that certain causal links may have been partly explained by the patient sleeping.

Figure C.16: Causal Links of Temperature→ Respiratory Flow In 1-Hour Study With
Sleep Parameter

Figure C.17 shows the statistical significance of causal links from temperature to
respiratory flow over 0 to 8 hour lag lengths at 15-minute resolution, with the addition
of the sleep variable to the PCMCI+ algorithm. Temperature again is a significant
cause of change in the regularity of respiratory flow for many patients. Similarly as in
the other results, the general trends are the same as in the study without the sleeping
parameter. However, again, there are generally less links and patients with links from
temperature to respiratory flow when controlling for sleep.
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Figure C.17: Causal Links of Temperature→ Respiratory Flow In 8-Hour Study With
Sleep Parameter

C.3.3 Humidity Results

Figure C.18 shows the statistical significance of causal links from humidity to respiratory
flow over 0 to 60 minute lag lengths at 1-minute resolution, with the addition of the
sleep variable to the PCMCI+ algorithm. Humidity is shown to be a significant cause
of change in the regularity of respiratory flow for many patients. Most patients uphold
their causal links from the study without the sleeping parameter in this study too.

Figure C.18: Causal Links of Humidity→ Respiratory Flow In 1-Hour Study With Sleep
Parameter

Figure C.19 shows the statistical significance of causal links from Humidity to respi-
ratory flow over 0 to 8 hour lag lengths at 15-minute resolution, with the addition of
the sleep variable to the PCMCI+ algorithm. Similarly as before, humidity remains a
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significant cause of causal responses in respiratory flow, with many patients having the
exact same causal links as in the study without the sleep parameter.

Figure C.19: Causal Links of Humidity→ Respiratory Flow In 8-Hour Study With Sleep
Parameter

C.3.4 Respiratory Flow Results

Figure C.20 shows the statistical significance of causal links from respiratory flow to
respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution, with the addition
of the sleep variable to the PCMCI+ algorithm. Meanwhile, Figure C.21 shows the
statistical significance of causal links from respiratory flow to respiratory flow over 0 to
8 hour lag lengths at 15-minute resolution, with the addition of the sleep variable to the
PCMCI+ algorithm. A similar trend is seen in these studies as in the studies without the
sleep parameter. In both the 1-hour and 8-hour studies there is a near exponential decay
in the number of causal links as time lag increases after exposure. Moreover, almost
all patients have at least two causal links between prior respiratory flow and current
respiratory flow. This again shows that breathing is not just a 1-lag relationship, but
instead current breathing can impact breathing across various time lags in the future.
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Figure C.20: Causal Links of Respiratory Flow→ Respiratory Flow In 1-Hour Study
With Sleep Parameter

Figure C.21: Causal Links of Respiratory Flow→ Respiratory Flow In 8-Hour Study
With Sleep Parameter

C.3.5 Activity Level Results

Figure C.22 shows the statistical significance of causal links from activity level to
respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution, with the addition
of the sleep variable to the PCMCI+ algorithm. Figure C.23 shows the statistical
significance of causal links from activity level to respiratory flow over 0 to 8 hour lag
lengths at 15-minute resolution, with the addition of the sleep variable to the PCMCI+
algorithm. In both studies, there appear to be substantially more causal links from
activity level to respiratory flow than from the environmental factors to respiratory
flow. This is analogous to the results without controlling for sleeping. In fact, a lot of
patients uphold same causal link trends in both the study with the sleep parameter and
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the study without. This hints at the fact that during sleep just like during wakefulness,
changing activity level by changing resting position can induce changes in the regularity
of respiratory flow.

Figure C.22: Causal Links of Activity Level→ Respiratory Flow In 1-Hour Study With
Sleep Parameter

Figure C.23: Causal Links of Activity Level→ Respiratory Flow In 8-Hour Study With
Sleep Parameter

C.3.6 Sleep Parameter Results

Figure C.24 shows the statistical significance of causal links from the sleeping parameter
to respiratory flow over 0 to 60 minute lag lengths at 1-minute resolution, with the
addition of the sleep variable to the PCMCI+ algorithm. Figure C.25 shows the statistical
significance of causal links from the sleeping parameter to respiratory flow over 0 to 8
hour lag lengths at 15-minute resolution, with the addition of the sleep variable to the
PCMCI+ algorithm.
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An interesting observation is that majority of patients in the 1-hour study have a
contemporaneous link between the sleep parameter and respiratory flow. This shows
that whether we are in a state of wakefulness or sleep can immediately impact our
respiratory activities. Overall, a majority of patients have causal links in the 1-hour
study and several patients have causal links in the 8-hour study. This shows that whether
sleeping has a significant causal impact on respiratory flow and changes the respiratory
dynamics in asthmatic patients.

Figure C.24: Causal Links of Sleep Parameter→ Respiratory Flow In 1-Hour Study

Figure C.25: Causal Links of Sleep Parameter→ Respiratory Flow In 8-Hour Study
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Further Causal Effect Results

D.1 Monthly Comparison To Respiratory Rate

Figure D.1 shows the mean and the range of the direct causal effect strengths from
PM2.5 to respiratory rate across months for the 1-hour study. Similarly, Figure D.2
shows the mean and the range of the direct causal effect strengths from PM2.5 to
respiratory rate across months for the 8-hour study. The causal effect estimation results
are computed in [69] using the same methodology as in Chapter 6. The only difference
is that the absolute direct effect strength was not capped at 1. This is because, unlike in
the respiratory flow effect estimations, a lot of effect strengths exceeded this threshold.
Not capping the magnitude therefore ensured a more complete understanding and
comparison between the two respiratory outcomes. While the general trends between
these plots and Figures 6.7 and 6.8 can be compared, the strengths themselves cannot.
This is because the respiratory flow is a continuous measure of regularity between 0-1,
while respiratory rate is typically between 10 and 25 breaths per minute. Therefore, the
scales of the respiratory outcomes are not comparable, making the raw effect strengths
themselves not directly comparable either.

Figure D.1: Range and Mean of Direct PM2.5→ Respiratory Rate Causal Effect Strength
Across Months in 1-hour Study. Raw Results Taken From [69]
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Figure D.2: Range and Mean of Direct PM2.5→ Respiratory Rate Causal Effect Strength
Across Months in 8-hour Study. Raw Results Taken From [69]
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