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Abstract
With different notions of fairness and corresponding algorithms designed to achieve
them, the next phase to continue the research is the implementation and testing of such
algorithms.

In this study, we focus on Envy-Freeness (EF1, EFR, EFX) and Max Nash Welfare
(MNW) concerning indivisible goods, for which we have identified relevant algorithms
and their respective fairness notions guarantees.

These algorithms are implemented in Python with the intention of making them publicly
available. Throughout the implementation phase, we encountered instances where
certain algorithms lacked critical components in their descriptions, while others provided
no information whatsoever. By addressing these limitations and devising efficient
solutions, we have produced a collection of algorithms, many of which had not been
implemented before. Notably, we encountered significant implementation feasibility
challenges with 0.73-EFR, as well as a potential flaw in the current state-of-the-art
1.45-MNW.

Subsequently, our implementations underwent strategic testing utilising both real-life
(Spliddit) data and synthetic cases with varying numbers of goods and agents under
different types of valuations (Random, Identical, Ordered, Binary, and Bivalued). In
our testing suite, we examined the execution time of these algorithms as well as their
fairness characteristics. Through our results, we make informed recommendations
for future researchers, to assist in appropriate algorithm selection based on fairness
requirements while also accounting for execution time. Furthermore, our investigations
yielded new fairness observations from some algorithms that if theoretically proven,
could lead to the formulation of new theorems as to the fairness guarantees of the
algorithms.

As a concluding remark, we also outline key considerations for future algorithm design-
ers and encourage the research community to perform further analysis using targeted
test instances for possible further insights.

We summarise our key findings in Tables 5.1 and 5.2.
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Chapter 1

Introduction

Fair division (or fair allocation) is defined as allocating resources among several people
who have an entitlement to them so that each person receives their due share. As
straightforward as it might sound, fair division has been a problem in mathematical eco-
nomics for a long time and is now receiving attention from computer scientists (Walsh,
2020). It has numerous applications ranging from border settlement in international
disputes to reduction of greenhouse gas emissions while in the era of the Internet, it also
appears regularly in distributed resource allocation and cost-sharing in communication
networks (Caragiannis et al., 2012).

The first attempt for mathematical solutions dates back to 1948 with Steinhaus in-
troducing the concept of what is now being called “fair cake-cutting”, a method of
ensuring fair allocation of infinitely divisible heterogeneous goods (Steinhaus, 1949;
Stromquist, 1980). Although the study of fair divisible allocations is still active, it
is better understood compared to fair allocation of indivisible goods, with indivisible
goods becoming a very active area of research in computer science.

What is considered fair could sometimes be ambiguous or impossible to achieve. There-
fore many notions of fairness were introduced with the two predominant ones being
proportionality (PROP) (Steinhaus, 1949) and Envy-freeness (EF) (Gamow and Stern,
1958; Varian, 1974). Proportionality focuses more on agents receiving goods such that
their allocation is valued equally or more to the total valuation of all goods if it were to
be divided by the total number of agents. Envy-freeness on the other hand, revolves
around the concept of envy, by requiring that an agent does not envy another agent’s
allocation.

There are other significant and interesting notions of fairness that we will not focus on
here, as they fall outside of the scope of this research.

In our study, we will focus on indivisible goods paired with the notions of Envy-freeness
and Maximum Nash Welfare by diving deeper into their core definitions, achievability,
relaxations, and implementations. For interested readers wishing to examine a more
thorough overview of the field, we direct them to the most recent survey of the current
state of the field of fair allocation of indivisible goods by Amanatidis et al. (2023).
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Chapter 1. Introduction 2

1.1 Project description, motivation and key findings
overview

In this study, we will start by developing a common language that we will use throughout
this report which is also coherent with most of the already established research. Based
on that, we will formally define a set of notions of fairness (revolving around Envy-
Freeness and Maximum Nash Welfare) and we will then look at the current state of the
field by focusing on a selection of proposed algorithms that achieve those notions of
fairness. With our goal of implementing those algorithms and testing them, an overview
of similar projects will be provided, showcasing the lack of similar projects, especially
for our selection of notions of fairness.

Once we understand the current field of study, we will delve into the algorithms in
much greater detail. Despite the broad description of implementing and analysing the
algorithms, it is crucial to note that most of them have never been implemented or put
into practice before. This presented new challenges as only some provided high-level
pseudocode on how to implement them. We found out that others had key components
missing from their provided pseudocodes while others did not include any details at
all as to how to implement them. This meant that novel solutions had to be created
to enable the algorithms’ implementations, focusing both on feasibility and efficiency.
Through our implementation phase, we identified key challenges and points of focus for
future researchers to aid in the development of feasible algorithms. We also uncovered
potential flaws in some of them, leading to further questions about the possible validity
of some published papers. Our implementations will also be publicly available for
anyone to use with the future goal of disseminating them as a Python library.

Motivated by the lack of analysis of the algorithms with real or synthetic data, it
remained unknown as to the algorithms’ behaviours and resulting guarantees. Following
our implementations, we will therefore put them into practice with real-life and synthetic
data to examine their running times across different scenarios while also looking into
their fairness guarantees. Interesting correlations or combinations of these algorithms
could arise. Are their performance guarantees achievable? Do they achieve better
results than promised? Maybe only for specific types of data? Which algorithm should
I choose to use if I expect a certain performance characteristic? Through our study,
we aim to answer these and many other similar questions, contributing both to future
research but also to the current need of implementations of these algorithms.

We will then conclude by revisiting our work to identify potential limitations and areas
of improvement. A concise summary of our findings has been compiled to guide
researchers make decisions as to which algorithm to use depending on their desired
characteristics and running time requirements. In addition, through our experiments,
we have identified new, unexpected results and interesting behaviours that could lead to
new theorems. Our summarised key findings can be found in Table 5.1 and Table 5.2.



Chapter 2

Preliminaries and Previous Work

2.1 Instance model

We define a model formulation for our problem to aid in our understanding of the
following concepts, by establishing a common language that is coherent with any
relevant papers.

We start by defining a set of agents N and a set of goods M such that each good can
be given (allocated) to only one agent. We formally define this notion of allocation by
having a set named A, such that Ai is the set of goods allocated to agent i. We sometimes
refer to a list of unallocated goods. These are all the goods that have not been allocated
to any agent.

Each agent can express their valuation for each good through their valuation array V .
This means that an agent i will have a valuation array Vi which contains a numerical
valuation for each good. In addition, we also allow to extract the valuation that a specific
agent (i) has for a specific good ( j) by writing Vi, j. We then exploit this notation to allow
us to showcase the total value of an agent’s allocation by writing Vi(Ai) = ∑ j∈Ai Vi, j
meaning that we have the total (sum) worth of agent i′s allocation according to agent i′s
valuations. Throughout this paper we will only be dealing with such valuations, also
referred to as additive valuations however, it is important to note that some algorithms
also work for non-additive valuations. Any such occurrences will be noted.

2.2 Fairness Notions

Definition 1.1. Envy-Freeness (EF) can be formally expressed as Vi(Ai)≥Vi(A j) for
all i, j ∈ N. Meaning that according to agent i, i’s bundle is worth more the agent j’s
and hence agent i does not envy agent j.

Envy-free allocations of divisible goods had remained an open field of study for a long
time with a major breakthrough in 1995 where Brams and Taylor (1996) showed an
envy-free protocol for any number of agents. Although the protocol is guaranteed to
terminate in finite time, the running time, number of queries and number of cuts, are
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Chapter 2. Preliminaries and Previous Work 4

unbounded even for four agents. Aziz and Mackenzie (2017) showed that an envy-free
allocation of divisible resources can always be found in a finite number of steps with
high complexity. However, the same cannot be said for cases with indivisible goods.

Our focus, however, falls under the umbrella of indivisible goods for which, achieving
Envy-Free allocations is not as simple as one might expect. Consider the case where
there are more agents than goods. There is no possible way of allocating the goods
without having at least one agent envying another (as there will be at least one agent
who receives no goods) assuming that all goods are positively valued by all agents. It is
clear that fair allocation of indivisible goods poses to be a greater challenge.

Due to these limitations, Lipton et al. (2004) introduced a relaxation of EF called
Envy-Freeness up to one good (EF1) which was then formally defined by Budish
(2011).

Definition 1.2. Envy-Freeness up to one good (EF1) is defined as Vi(Ai)≥ α×Vi(A j \
{g}) for some g ∈ A j and for all pairs of agents i, j ∈ N when α = 1. Meaning that if
agent i envies agent j then there is an item in agent j’s bundle that if removed, would
remove then envy that agent i has towards agent j. Approximations of EF1 (α-EF1)
exist when 1 > α > 0.

As we will see, EF1 is easy to achieve. However, EF1 can be a fairly weak fairness
notion. Imagine the case where the good removed from an agent is a very highly-valued
good. This new allocation would therefore be considered as fair even though a large
portion of its value has been lost.

To overcome such cases, the idea of EFX was introduced, firstly by Gourvès et al.
(2014) under the name near envy-freeness, which was later re-introduced in 2016 by
Caragiannis et al. (2019) as EFX. EFX is a stricter version of EF1 as it requires that any
item removed from agent j’s bundle will remove the envy of agent i towards agent j.

Definition 1.3. EFX is defined as Vi(Ai)≥ α×Vi(A j \{g}) for any g ∈ A j and for all
pairs of agents i, j ∈ N when α = 1. This means that if agent i envies agent j then if
any-one good from agent j’s bundle was removed, it would eliminate the envy that agent
i has towards agent j. Approximations of EFX (α−EFX) exist when 1 > α > 0.

Although EFX is more strict than EF1, the existence of EFX allocations is still an open
problem (Amanatidis et al., 2023). Farhadi et al. (2021) therefore introduced EFR,
envy-freeness up to a random good, which is weaker than EFX, yet stronger than EF1.

Definition 1.4. Envy-freeness up to a random good (EFR), is defined as Vi(Ai) ≥
α×Eg∈D jVi(A j \ {g}) where D j is a uniform distribution over the items of A j that
selects each good with probability 1/|A j| for all pairs of agents i, j ∈ N when α = 1.
Approximations of EFR (α−EFR) exist when 1 > α > 0.

Definition 1.5. Maximum Nash Welfare (MNW) is an allocation that results in the
maximum possible product of the agents’ allocations (Suksompong and Teh, 2022;
Caragiannis et al., 2019). In other words, ensuring that an allocation results in
the largest possible value of ∏iVi(Ai). It is also important to note that every MNW
allocation is also EF1 (Caragiannis et al., 2019). Approximations of MNW (α−MNW)
exist when α > 1 such that Approximation MNW = α×True MNW.
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2.3 Achieving the Fairness Notions; Implementations,
approximations and special cases

We begin by briefly introducing algorithms that can achieve various fairness notions,
their approximations or specific special cases. We dive into their details in Chapter 3.

Envy-Freeness up to one good - EF1

RoundRobin.
RoundRobin is the simplest polynomial time algorithm which allocates the goods to the
agents in multiple rounds.

Envy-Cycle elimination (ECE).
Introduced by Lipton et al. (2004) is proven to run in polynomial time and does not rely
on a prefixed sequence for agents. Instead, it uses envy-graphs to choose an agent to
allocate goods to.

Improved ECE.
Introduced by Chan et al. (2019a) (under no specific name, we use the ”Improved ECE”
name in this paper to help distinguish between the two) shares a lot of similarities with
ECE. Despite those similarities, it offers further fairness guarantees compared to ECE
such as 1/2-EFX.

Envy-Freeness up to any good - EFX

• Identical valuations.
Plaut and Roughgarden (2020) showed that when all the agents have the same
valuations, a variation of leximin can be used to create EFX allocations even then
the common valuation function is not additive. This modified version of leximin
was named leximin++. However, both leximin and leximin++ are not polynomial
time algorithms.

• Ordered (and Identical) valuations.
This case occurs when all agents have the same ordering in their evaluations (but
can have different numerical values for each good as long as their ordering of
most to least desired good is the same). Plaut and Roughgarden (2020) showed
that using Envy-Cycle Elimination for such cases, results in EFX allocations.

• Two and three agents.
Plaut and Roughgarden (2020) have shown that an EFX allocation is always
possible when dealing with 2 agents. This is achieved by pretending that both
agents have the same valuation function and by running the Envy-Cycle Elimina-
tion algorithm for additive functions, and leximin++ for non-additive functions.
However, Goldberg et al. (2023) showed that when the valuation function used is
sub-modular then the problem turns from efficient to PLS-complete.

Akrami et al. (2023) introduced a procedure to compute an EFX allocation in
pseudo-polynomial time when the instance involves three agents.
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• Bi-valued valuations.
Amanatidis et al. (2021) showed that EFX allocations exist and can be efficiently
computed for any number of agents in polynomial time using Match&Freeze.
In addition, if the valuations are binary, they show that MNW achieves an MMS
(Maximin Share Fairness, a different fairness notion to EF) allocation. Later,
Garg and Murhekar (2021) showed that this is possible even in conjunction with
Pareto Optimality.

• Approximation α-EFX.

– Plaut and Roughgarden (2020) perused this to show that 1
2 -EFX allocations

always exist, with Chan et al. (2019b) showing that Improved-ECE can be
used to compute an 1/2-EFX allocation.

– Amanatidis et al. (2020) further improved this result by finding an α ≈
0.618 by combining Round-Robin and Envy-Cycle Elimination with some
appropriate pre-processing (additive). We call this algorithm 0.618-EFX.

Envy-freeness up to a random good - EFR

0.73-EFR.
Currently, it is still unknown whether there is a polynomial time algorithm that can be
used to achieve EFR. However, Farhadi et al. (2021) have introduced a polynomial time
algorithm that achieves 0.73-EFR.

Maximum Nash Welfare - MNW

Finding an MNW allocation is NP-Hard (Garg et al., 2022). Therefore a series of
methodologies were developed to try and achieve the best approximation possible.

1.45-MNW.
The current state-of-the-art MNW approximation algorithm guarantees 1.45-MNW in
polynomial time. This algorithm introduced by Barman et al. (2018) utilises Fisher
Markets together with their Hierarchy Structure to continuously adjust allocations based
on the market’s prices.

2.4 Related Work

While plenty of previous research has been concentrated on the theoretical performance
and efficiency of the algorithms, there has been limited attention directed towards their
implementation and testing using real-life or synthetic data.

Hosseini et al. (2023) performed an interesting study where participants were presented
with EF1 and other variations of EF allocations, to see which were the most fair by
measuring the number of swapped goods by the participants. Their results show that
allocations under the HEF-k treatment are perceived to be fairer than under the sEF1 and
EF1 treatments, even when controlling for the size of instances, balance of allocations,
and questions in which it is optimal to swap.



Chapter 2. Preliminaries and Previous Work 7

Kurokawa et al. (2018) used automated experiments to try and find a counterexam-
ple for the existence of MMS allocations. No counter-example was found from the
experiments but they aided in the design of manual counterexamples which required
precise construction. Despite this, no further information was provided on how these
experiments were performed.

SPLIDDIT (Goldman and Procaccia, 2015), represents a real-life application of such
research. Spliddit is a non-profit website that allows its users to employ fair division
algorithms for everyday problems. It offers functionality to split rent, share credit, and
even divisible or indivisible goods allocation. Focusing on the allocation of goods, the
system aims at trying to find the highest feasible level of fairness. If envy-freeness and
proportionality are infeasible, the algorithm computes the maximum α > 0 such that
each player can achieve an α fraction of their MMS guarantee. Secondly, the algorithm
maximizes social welfare (ΣiVi(Ai)) subject to the fairness constraint found in the first
phase.

(Conitzer et al., 2019) performed experiments using SPLIDDIT and synthetic data to
examine in practice the performance of locally Nash-optimal allocations in groups of
players. They conclude that the local search algorithm converges quickly, and is likely
to output an efficient allocation. In the same year, Farhadi et al. (2019) explored a
different notion of fairness, WMMS, showing that the best approximation possible
would be 1/n-WMMS using a somewhat round-robin procedure and EBAY bidding
data.

Some of the more relevant research for our topic include the paper by Nagi and Elgrabli
(2022) where the authors created an open-source Python package comprising of multiple
implementations of algorithms for fair division of divisible and indivisible goods as
well as courses. The research mainly focuses on the experimentation of 3/4-MMS, Max
sum allocation, leximin, and PROPm using experiments with SPLIDDIT data. Their
results conclude that 3/4-MMS returns similar results with PROPm. While these are
very interesting results, PROPm and MMS fall outside of the scope our research. In
an equally important paper by Freeman et al. (2020), the authors experimented with
both synthetic data and data from SPLIDDIT for allocating chores. The experiments
involved the following four algorithms: (1) The greedy algorithm from Proposition
3 in Freeman et al. (2020) (EQX), (2) the Leximin solution, (3) the market-based
algorithm Alg-eq1+po, and (4) an algorithm currently deployed on the SPLIDDIT
website for dividing chores. Through their research, they introduced an interesting
metric of comparing the percentage of instances produced by each of the algorithms that
conformed to a collection of different fairness notions. Through their experiments, they
identified that out of the algorithms in test, Leximin emerges as the algorithm of choice
in terms of simultaneously achieving approximate fairness and economic efficiency.

Despite these studies, it is evident that there is a lack of implementations for algorithms
that guarantee any approximation to Envy-Freeness or Max Nash Welfare. Moreover, no
experiments have been conducted to ascertain the extent to which these algorithms fulfil
fairness guarantees beyond their established theoretical ones. Such inquiries hold the
potential to yield discoveries that could reshape the field by inspiring the development
of new algorithms or uncovering additional fairness guarantees for existing algorithms.



Chapter 3

Algorithms and their implementations

There is a diverse array of different algorithms that achieve different fairness criteria.
In order to facilitate a more comprehensive examination, we opted to concentrate on
algorithms that guarantee different Envy-Freeness fairness criteria (such as EFX, EF1,
EFR). To aid us provide a more generalised view, we have also investigated the state-of-
the-art MNW approximation algorithm to enable further discussion as to the effect that
it might have on EF allocations and vice versa.

3.1 RoundRobin

Guarantees: EF1

Description

All agents are ordered in an arbitrary but fixed order. During each round, one agent
(chosen based on the ordering) chooses their most valuable good from the set of
unallocated goods. In the next round, the following agent according to the ordering gets
to choose a good. The ordering of the agents is maintained throughout the rounds and
this process ends when all goods have been allocated. Pseudocode of RoundRobin is
available in Algorithm 1.

3.1.1 Implementation details description

The implementation of the algorithm is fairly straightforward and no complex operations
were needed.

3.2 Envy-Cycle Elimination ECE (Lipton et al., 2004)

Guarantees: EF1, EFX with only two agents, EFX on Identical and Ordered (All
agents have the same ordering in preference in their valuation arrays with possibly
different numerical values) instances.

8
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3.2.1 Description

Contrary to RoundRobin, ECE does not rely on a prefixed sequence for agents. It
instead, selects an agent that is in a disadvantage compared to other agents (not envied
by other agents) and allocates to them their most valuable good from the unallocated
ones. The decision to select the most valuable good is a variant of the traditional
envy-cycle elimination algorithm (EF1 is guaranteed by allocating any good within an
iteration). Envy is represented with a graph where vertices represent each agent and
directional edges between vertices indicate envy of one agent towards another (based on
each agent’s valuation of the goods). For example, if agent i envies agent j it means that
agent i values agent j’s bundle more than their own. This is represented in the graph
with a directed edge from vertex i to vertex j.

As aforementioned, at each iteration an unenvied agent gets to choose their most desired
good. If no such unenvied agent exists, then the envy graph must contain a directed
cycle which can be eliminated by re-distributing the goods among the agents involved in
the cycle such that each agent gets the bundle they envy. Assuming that agents i, j, and
z are in a directed cycle and each agent envies the agent ahead of them (i→ j→ z→ i,
where x→ y represents envy of x towards y) then the bundle of agent j is given to
agent i, the bundle of agent z is given to j and the bundle of agent i it given to agent z.
Repeating this process leads to at least one agent who is not being envied. The algorithm
terminates once all goods have been allocated. Envy-Cycle Elimination pseudocode
can be found in Algorithm 2.

3.2.2 Implementation details

We have introduced our own graph representation through our Graph class. Although
this was not strictly necessary as NetworkX (Hagberg, 2023) (a Python library for
graphs and networks) has all the features we needed, we followed our path to enable
future flexibility and modifications. We will use our graph implementation to represent
the Envy-graph.

Through the Graph class we have operations such as nodes without incoming edges()
which returns the list of nodes with no incoming edges (unenvied agents) as well as
identify cycle() (a wrapper of Algorithm 3) which performs a DFS traversal of the graph
until a cycle is found and returns the nodes in the order they appear in the cycle. Graph
also includes other functions such as topologicalSort() which returns a topological sort
of the graph, which is later used in other algorithms.

During initialisation and after re-allocation of goods given a cycle, we use check envy()
to recalculate the entire envy-graph by checking all pairs of agents as any re-allocation
of goods could have resulted in different envies between agents (this is a potential
point of improvement, as there are some comparisons with small cycles that can be
avoided). However, when we simply need to assign a good to an unenvied agent we
use check envy towards agent() so that we only need to check for envy between all
the agents and the agent that we have just allocated a good to. This helps decrease
complexity from O(N2M) to O(NM) and hence aids in the overall efficiency of the
implementation.
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Re-allocation of goods is handled by our reallocate goods() method that takes as a pa-
rameter a cycle that was returned by identify cycle(). In addition to the aforementioned,
we have also enabled through the use of a different public function (run ece partial()),
the ability to run ECE, given an already provided allocation and set of unallocated
goods. This functionality is again used in a different algorithm.

3.3 Improved ECE (Chan et al., 2019b)

Guarantees: EF1, 1/2-EFX

3.3.1 Description

Improved ECE shares a lot of similarities with ECE. It starts by computing a maximum
weight matching between the unenvied agents and the available goods in a bipartite
graph. The weights are defined by Vi(Ai∪{ j})−Vi(Ai) for agent i and good j. If all
edges have weight 0 then a maximum cardinality matching is computed instead. For
every edge in the maximum weight matching, each good in the matching is allocated to
its associated agent and it is removed from the list of available goods. We then eliminate
all envy cycles from the envy graph before repeating the procedure again until all goods
have been allocated. Pseudocode for Improved-ECE can be found in Algorithm 4.

3.3.2 Implementation details

Construction of the bipartite graph is implemented using NetworkX with goods rep-
resented in the format ”g Good-index” to differentiate from agents. Then using Net-
workX’s max weight matching(graph, maxcardinality=True) we compute the max
weight matching from the graph.

Using ECE’s check envy() and identify cycle() we are then able to build the envy-graph
and identify cycles. Each cycle is resolved by appropriately reallocating goods to the
agents involved in the cycle (using ECE’S reallocate goods()).

3.4 0.618-EFX (Amanatidis et al., 2020)

Guarantees: EF1, 0.618-EFX

3.4.1 Description

The algorithm starts with a pre-processing step where it reorders the agents so that the
first few agents are quite happy with their pick in the first round of the RoundRobin.
For the remaining agents (not the first few), they get allocated a second good again
through RoundRobin but this time in reverse order. The resulting partial allocation,
where each agent receives one or two goods, achieves 0.618-EFX with respect to the
currently allocated goods. The remaining unallocated goods are allocated to the agents
through ECE which the authors have proven to maintain the 0.618-EFX characteristic.
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3.4.2 Implementation details

A variation of the RoundRobin was used (not the original one aforementioned before)
as this algorithm only allocates goods to a certain number of agents and with a specified
order. Once the two rounds of RoundRobin have finished, ECE takes over using
run ece partial() method from ECE that we have introduced before. The algorithm
although it performs a moderately tricky pre-processing step, does not contain any
critical parts of the implementation that deserve any special explanation.

3.5 0.73-EFR (Farhadi et al., 2021)

Guarantees: EF1, 0.73-EFR

3.5.1 Description

The algorithm starts by allocating one good to each agent such that the Nash Welfare
is maximised. Based on those allocations an envy-ratio graph (a generalisation of
the envy-graph, introduced by Lipton et al. (2004)) is created by forming a fully
connected graph of agents (represented as nodes) and setting the weights of each edge
to be wi, j = Vi(A j)/Vi(Ai). We then define the envy-rank of each agent as ri where
ri = max j0, j1,..., jk ∏

k
z=1 w jz, jz−1 and j0 = i.

Agents are then split into three categories (G1,G2,G3) based on their envy-ratio. Agent i
belongs to G1 if ri > θ, to G2 if 2 < ri ≤ θ, and to G3 if ri ≤ 2, where θ =

√
3+1. The

agents in each category are then sorted based on a topological sort of the envy-graph.
Each agent in G3 chooses their most valued good, then again agents in G3 choose their
most valued good out of the available ones followed by agents in G2. If not all goods
have been allocated the Improved ECE algorithm is used to allocate the rest of the
goods. For further details and pseudocode, we direct the reader to the original paper as
it includes more detailed descriptions and explanations.

3.5.2 Implementation details and challenges

Despite the straightforward description of the algorithm, implementing and experiment-
ing with real data was proven to be a great challenge.

Starting from the first step, the authors have provided (although in only some versions
of their paper), a polynomial time algorithm for allocating one good to each agent such
that Nash Welfare is maximised (we will call this allocation, NSW). This is achieved
by forming a bipartite graph using NetworkX where one set of the nodes is the agents
and the other set is the goods, encoded similarly to Improved-ECE as ”g GoodIndex”.
The weights of each edge going from an agent to a good is the logarithm of the agent’s
valuation for each good. The use of logarithms allows us to exploit the behaviour
of logarithms when they are being added as it is equivalent to multiplying the raw
valuations. To find an NSW allocation a maximum weight matching is computed (using
NetworkX) which is then translated to be our initial allocation.
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A formidable obstacle was lurking in the corner unfortunately for the very next part.
Recalling the calculation for the envy-rank for each agent ri =max j0, j1,..., jk ∏

k
z=1 w jz, jz−1 ,

it can be translated as the longest possible path leading to node i when the weights
are multiplied. Through the authors’ Observation 7, we know that the path will be
simple. The authors recommend a similar approach to our solution for NSW allocation,
to take the logarithm of each weight and make it negative. That way we can use the
Bellman-Ford algorithm to find the shortest possible path, which given our negative log
transformation directly corresponds to our goal.

Assume that we have two agents with identical valuations. One agent was allocated a
good with value 10 and the other agent a good with value 11. We therefore know that
the non-transformed weights will be 10/11 and 11/10. If we transform them we have,
− log10 11/10 and − log10 10/11 which when added result − log10(10/11×11/10) =
− log10 1 = 0 (not a negative cycle). When implementing this however, we have
− log10 10/11 = 0.0953101798043249 and − log10 11/10 =−0.09531017980432493.
It is evident that the last two decimal places differ and when adding these two together
results in −4.163336342344337e− 17, which is a negative cycle and would cause
Bellman-Ford to fail (this behaviour is not consistent and took an instrumental amount
of time to pinpoint). Our first attempt at solving this was to use the Decimal Python
library (Decimal, 2024) to allow for exact decimal representation (also avoids cases like
1.1 + 2.2 = 3.3000000000000003 which can happen with Python’s float).

Using Python’s Decimal, however, introduced another problem. It sometimes rounds
the very last decimal place resulting again in cases where negative cycles were created
even though they should not exist. As a last resort, we decided to increase the Decimal’s
precision to 50 decimal places and then truncate them to 40 decimal places to hopefully
avoid those rounding errors. However, this again would not work. Figure 3.1 showcases
two sub-graphs of the envy-ratio graph. The graph on the left uses decimal precision
of three decimal places while the one on the right uses a truncated version with two
decimal places precision. As can be seen, the graph on the left has no negative cycles
while the one on the right has a negative cycle (when adding the weights).

1

2

3

-0.770

0.341

0.429

1

2

3

-0.77

0.34

0.42

Figure 3.1: Left: part of the envy-ratio graph with weight precision set to three decimal
places. Right: part of the envy-ratio graph with weights truncated to two decimal places.

Therefore, we concluded that it would be impossible to handle all such possible cases
and therefore this strategy would not work in the implementation. Whilst this shows
that there are concerns with regards to the feasibility of implementing this algorithm,
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something that will be crucial to anyone who needs to use this algorithm in practice,
we decided to make a compromise and take a different route. Our solution was to
produce all possible simple paths leading to each node (agent) and then choose the
longest one (based on the addition of their transformed, positive logarithmic, weights).
This drastically increased running time but, provided a consistent solution that worked.
As you will see in our analysis later on, we have used this path enumeration method
to analyse the fairness guarantees of the algorithm and the Bellman-Ford algorithm,
whenever possible, for the experiments involving running time. We acknowledge that
this is far from an ideal solution, and given the time constraints of this project this
seemed like the only solution possible at the time.

Despite this setback in terms of running time, this observation of ours merits some focus
from the research community. Such precision problems occurred in other algorithms
as well, and it is therefore evident that such real-life limitations should be taken into
account when designing such algorithms.

We employed NetworkX’s graph representation to use ready-made path enumeration
functions for the envy-ratio graph but then used our aforementioned Graph representa-
tion to take advantage of our ECE functions for running the ECE part of the algorithm.

3.6 Match&Freeze (Amanatidis et al., 2021)

Guarantees: EFX [Binary & Bi-valued]

3.6.1 Description

The algorithm guarantees EFX for binary and bi-valued instances with the compromise
that it only works with binary and bi-valued valuations. At the beginning, an ordering
of agents is established that remains constant throughout all rounds. In each round of
the algorithm, a bipartite graph is created with one category being agents in list L (all
agents are originally in L) and the other being unallocated goods. An edge connects an
agent and a good only if the agent values the good as α (the highest valuation of the
two possible values). A maximum matching is then created from the graph, and based
on the matching, we allocate goods to their corresponding agents. For agents which
have not been allocated goods in this round, we order them according to our predefined
ordering and allocate to them one arbitrary good.

We now construct a set of frozen agents. Included are all the agents that some other
agent (named j) believes were allocated a good of value α while agent j was allocated a
good that was not valued as α according to j. We then also add any other agents which
someone else believes that they were allocated a good of value α.

These agents are then removed from L for the next ⌊α/b−1⌋ rounds, where b is the
second possible value for a valuation (not α). Once these agents are no longer frozen,
they are added back at the end of the list L.

This process is repeated for each round until all goods have been allocated. Pseudocode
of Match&Freeze can be found in Algorithm 5.
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3.6.2 Implementation details and challenges

Implementing Match&Freeze did not pose any major challenges. The bipartite graph
was implemented using NetworkX again for its convenience. Although it does provide
functionality for finding maximum matching, it does not work when the graph has
disconnected components. This meant that an additional step had to do be implemented
in order to find all the connected components and then find the maximum matching on
each. This was again handled with NetworkX functionality.

Handling the list of frozen agents was something that was not specified in the algorithm
and it makes sense as it could be handled in different ways depending on the language
being used to implement the solution, if multi-threading is used any many other factors.
For our implementation, we keep track of how many rounds we have done and maintain
a dictionary where the key is the value that the round counter should have for the agents
to be unfrozen and the value is a list of the agents. This simple approach was chosen
for its simplicity and low runtime complexity.

3.7 Leximin++ (Plaut and Roughgarden, 2020)

Guarantees: EFX [Ordered]

3.7.1 Description

Whilst this algorithm does not execute in polynomial time, we decided to include it as
a showcase that EFX allocations exist in instances where the valuations of all agents
have the same order. The complexity of discovering a leximin allocation is known to be
NP-hard (Plaut and Roughgarden, 2020). Consequently, it is highly probable that the
task of finding a leximin++ allocation also falls within the realm of NP-hardness.

Leximin++ is a variation of leximin that can be used to create EFX allocations even
when the common valuation function is not additive. This modified version of leximin
was named leximin++ and works as follows:

• Identify the maximum minimum bundle valuation (single agent’s allocation) that
can occur in all possible allocations. In other words, find the minimum valuation
of each allocation’s total bundle value (from all allocations find the minimum
valued bundle that any agent has received). Then find the maximum value that this
minimum can have based on all the allocations and disregard all the allocations
that have a bundle with a value less than this identified maximum minimum.
Essentially we are maximising the minimum bundle value that an agent can have.

• Instead of repeating the above with the remaining allocations (the steps for the
original leximin), we aim to maximise the minimum size of bundles. In other
words, maximise the minimum bundle size. Out of those minimums find the
maximum and disregard all allocations which contain a bundle with a size less
than our identified minimum.

• Repeat the steps above.
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3.7.2 Implementation details and challenges

Firstly we needed to generate all possible allocations. The original authors, however,
did not provide a systematic method for achieving that. This was solved by utilising a
backtracking process to continuously allocate each good to each agent. Once all items
have been allocated, we backtrack and start assigning the backtracked goods to the next
agent.

To help aid in the optimisation of generating all the possible allocations we have
employed a branch-pruning technique. At each step of the recursion, our implementation
assigns the current good to each agent and calculates the utility of each of the bundles
(agent’s allocation) in the current allocation configuration. We also keep track of the
minimum utility encountered (min utility) among all possible allocations encountered
so far. Before exploring a potential allocation further, the algorithm checks whether the
minimum utility of the current allocation is greater than or equal to the overall minimum
utility encountered so far (min utility). If it is not, we prune that branch of the search
tree, by removing the most recently allocated good and allocate it to the next agent.
Imagine the case when we have three agents and three goods. We know that allocating
the three goods to the first agent will result in the second agent receiving no goods. So
there is no need to allocate the third good to the first agent. We can prune that branch
and try to allocate that good to the next agent. This solution of ours helps not only
decrease the time needed for generating all the possible allocations but also decreases
the search space of the first phase of the algorithm (as there will be fewer allocations
to try and maximise the minimum bundle value). Pseudocode on how allocations are
generated and pruned can be found in Algorithm 6.

Once we have all the allocations generated, we pre-process them so that each bundle
contains three key details, the valuation of the bundle, its size and a key signifying
which allocation it is part of. This pre-processing allows us to have all the calculations
that we will ever need to do, ready from the beginning, eliminating the need to repeat
the same calculations for the same allocations at each iteration of the algorithm.

We then process the pre-processed allocations according to Leximin++ by selecting a
base allocation and the next allocation and comparing them using the Leximin++Cmp
function described in the original paper. If we find that the next allocation is preferred
compared to the base allocation, it then becomes the new base allocation.

To help provide context as to the optimisation of our implementation, our optimised
implementation tested with 5 agents and 10 goods executes in 36.9 seconds compared
to 109 seconds without any branch pruning.

3.8 1.45-MNW (Barman et al., 2018)

Guarantees: 1.45-MNW

3.8.1 Description

1.45-MNW is currently the state-of-the-art approach for the best MNW approximation.
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The algorithm utilises Fisher Markets to establish common prices for all goods and
adjusts them accordingly. Goods are allocated to agents according to a Hierarchy
which is computed based on the current allocations and if an agent can ”purchase” a
good by spending their maximum bang per buck. Due to the large complexity of the
algorithm, we encourage the reader to have a read through the algorithm and supporting
explanations in the original paper. In the following sections, we go through some of
the parts of the algorithm through an example. However, due to the structure of the
algorithm and the example chosen, we do not go through phase 3 of the algorithm.

3.8.2 Implementation details and challenges

Despite the detailed explanations provided in the paper, there were numerous mod-
ifications and new methods that needed to be implemented to be able to make the
pseudo-code provided, functional.

Starting with the execution flow, it was evident that the pseudo-code uses goto func-
tionality. Since such functionality is not offered directly by Python, we restructured the
code to avoid this need. This was achieved by having a general method which itself
calls another method that performs phases 2 and 3. In the method that performs phases
2 and 3, if phase 2 needs to be repeated, it returns the key ”2” as well as any other
necessary parameters needed to be able to re-run phases 2 and 3 to the main method.
If on the other hand, the method needed to terminate, it would return the key ”0” to
signify to the main method that the algorithm has finished executing.

Finding Max bang per buck goods
To calculate the maximum bang per buck of an agent we define bang per buck to be
ai, j = vi, j/p j for each agent i and each good j. We define the maximum bang per buck
for each agent as αi. Using this αi we then identify which goods achieve this maximum.
However, as previously mentioned with the decimal precision problems in 0.73-EFR,
Python’s float division can lead to unexpected behaviours. We therefore again employed
the Decimal library and increased the decimal precision to 50 decimal places. This
again would not completely solve the issue as Decimal sometimes rounds up the last
decimal place. To combat this, we have introduced a tolerance that if a bang per buck
is within 1×10−40 of αi then, we will consider the two to be equal. Although this is
not a robust solution as with very small valuations, some cases might incorrectly fall
within the tolerance, it was the only solution that would enable us to implement the
algorithm as the randomness of when Decimal would round up the final decimal place
was unpredictable. Other solutions like choosing the goods with the highest bang per
buck per agent would again need tolerance as even if the valuation and price were the
same between them, the calculated bang per buck might differ even by a small amount
(there would be no systematic method of verifying if that difference is meant to be
there or was caused due to Python, requiring tolerance again). Even Python’s Fractions
library (Python, 2024), cannot, be used with floats as numerators or denominators.

Building the Hierarchy
Only in the most recent version of the paper, the authors have included the BuildHierar-
chy method which executes as expected. However, during phase 2 of the algorithm, we
also require the path we followed to reach each agent in the hierarchy. A method for
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finding these paths was not included in the paper.

In our solution, we first start by building the augmented graph using NetworkX, with
goods being preceded with ”g” so that they differentiate from the agents and then add
all the edges with appropriate types (”MBB” and ”allocation”).

Using the augmented graph created, we perform a BFS-like traversal of the graph with
some modifications to achieve the requirement for the path to be an alternating path of
MBB and allocation edges. In each BFS iteration, we first find all the neighbouring
goods we can reach through MBB edges and then from those goods we check from
each, which agents we can reach through allocation edges. Once we find those agents,
we add them to the BFS queue as the agents to be then explored by BFS and mark them
as visited so that we do not add them to the queue again. We then store in a dictionary,
using the levels as keys, and as values, a list of tuples, the tuple being the reachable
agent and the path followed. Our implementation for creating the hierarchy has been
included as Algorithm 8. Plenty of additional helper functions were also necessary
totalling over 400 lines of code for implementing 1.45-MNW.

All other parts did not require any specialised implementations that were more challeng-
ing or complicated than expected.

3.8.3 Counter-example not achieving 1.45-MNW

Trying to debug such a complicated algorithm with multiple iterations and prices that
are floats requiring multiple decimal places to reflect the price increases, was no easy
task. This was a major challenge in our project as keeping track of all the parameters,
constructing graphs at each iteration and handling all the mathematical precision when
verifying by hand, as a last resort, was extremely time-consuming.

From the countless hours spent trying to identify potential issues, we prioritised on
finding simple to-execute examples that would result in unexpected results. Through
this process, we were able to identify some simple counter-examples that to our surprise
did not achieve the 1.45-MNW guarantee. As a disclaimer, we would like to inform the
reader that the following analysis is based on our understanding of the algorithm. The
following counter-example and analysis will also be sent to the authors of the paper.

In this section, we run through one of the simplest instances we could find, to showcase
how the algorithm does not achieve 1.45-MNW and also try to pinpoint possible roots
for this abnormal behaviour.

Counter-example.
We begin by setting ε = 0.01. In our example, we will have two agents with three goods.
We therefore generate some random valuations that are power-of-(1+ ε) as required:

V = [[1.01480,1.01118,1.01138], [1.01340,1.0111,1.0178]]

The algorithm starts by allocating each good to the agent that values it the most (we use
0-index for both agents and goods). In this case, agent 0 gets all the goods as they value
all of them the most:

A = [[0,1,2], []]
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We then set the price for each good to be the value that the agent who was allocated the
good has for it:

P = [1.01480,1.01118,1.01138]

We now need to check if the current allocation is 3ε-pEF1. 3ε-pEF1 is defined as follows:
for every pair of agents i,k ∈ N there exists a good g ∈ Ak such that (1+ ε)P(Ai) ≥
P(Ak \ {g}) (you can assume that P would behave in the same way V i would by
providing the total value by adding the prices of all the goods in the allocation provided).
From this, we know that when i = 1 and k = 0, the allocation is 3ε-pEF1 as k has an
allocation of value 0. When i = 0 and k = 1 we know that the left-hand side of the
equation will always be 0 so, the allocation is not 3ε-pEF1.

Now we are ready to begin Phase 2. Our next step is to identify the agent that is the
least spender. This would be agent 1 as their allocation is valued at 0 compared to
agent 0’s (1.01480+1.01118+1.01138). Using the least spender we can start to build the
Hierarchy, but as a pre-requisite, we need to find the maximum bang per buck of each
agent and the goods that achieve this maximum bang per buck. To follow the paper’s,
notation we define maximum bang per buck (αi, j =Vi, j/Pj) of agent i as αi = max j αi, j
for all j ∈ M. We then define the goods that maximise this ratio for each agent as
MBB i = { j ∈M : Vi, j/Pj = αi}.

α0 = 1,MBB0 = {0,1,2}

α1 = 1.0178/1.01138,MBB1 = {2}
Based on these and the current allocation, we can construct the augmented MBB graph:

0

1

g0

g1

g2

Figure 3.2: The augmented MBB graph of our counter-example during the first iteration.
Edges going from agents to goods are MBB edges and edges going from goods to
agents are allocation edges (good allocated to agent).

From this graph, we can build the hierarchy. For convenience, the Hierarchy will be
formatted in the following format: H={level of agents : [ {agent, path to reach agent},
{another agent, path to reach another agent} ]}. The level of an agent is defined as
half the length (number of edges) needed to reach that agent from the starting point. The
starting point has level 0 and any unreachable agents have level N (although unreachable
agents are not added to the hierarchy). In brief terms, an agent is reachable if from the
starting point, we can follow a series of alternating MBB and allocation edges such that
there is a simple path leading to that agent. It is important to note that this description is
a simplification and we direct the reader to the original paper for the full definition. In
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our example, we begin our search for reachable agents from node 1 (the least spender).
We know we can reach the least spender with level 0 (no path) and agent 0 by visiting
g2 (in total 2 edges so agent 0 has level 1):

H1 = {0 : [{1,UNDEFINED}],1 : [{0,1→ g2→ 0}]}

We know that the current allocation and prices are not 3ε-pEF1 as the allocations and
prices are the same as before. Starting from level 1, we need to check for each agent at
that level if the agents are path violators. An ε-path-violator is an agent with respect
to the alternating path Path = (i, j1, i2, j2, ..., il−1, jl,k) if P(Ak \{ jl})> (1+ ε)P(Ai).
From our path for agent 0, 1→ g2→ 0, we have (1.01480+1.01118)> (1+ε)0 meaning
that agent 0, is an ε-path-violator. We therefore need to adjust the allocations by giving
g2 to agent 1. Our updated allocation is as follows:

A = [[0,1], [2]]

We now start phase 2 again. Our least spender is still agent 1 as P(g2)< P(g0+g1).
Since the prices have not changed, MBBs remain the same and we can start to construct
our new augmented MBB graph based on the updated allocation.
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Figure 3.3: Updated augmented MBB graph of our counter-example during the second
iteration. Edges going from agents to goods are MBB edges and edges going from
goods to agents are allocation edges (good allocated to agent).

As we can see from the graph we cannot reach any other agent other than our starting
agent (agent 1, as they are still the least spender). The updated Hierarchy only includes
agent 1:

H1 = {0 : [{1,UNDEFINED}]}
Since our Hierarchy is empty we proceed to the next step which is to check if the
allocation is 3ε-pEF1. We have the following three checks that we need to perform:

For i=0 and k=1 (by removing g2 from agent 1):

(1+ ε)(1.01480 +1.01118)≥ 0

For i=1 and k=0 (by removing g1 from agent 0):

(1+ ε)1.01138 ≥ 1.01480

Or with i=1 and k=0 (by removing g0 from agent 0)

(1+ ε)1.01138 ≥ 1.01118
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Since there is at least one good for each agent that if removed satisfies the requirement,
we know that the allocation is infarct 3ε-pEF1 and the algorithm terminates.

We can now calculate the Nash Welfare of the current allocation:

NW algorithm = (1.01480 +1.01118)×1.0178 = 1.01558 +1.01196

We also know that the allocation that maximises the Nash Welfare is the following:

A = [[0], [1,2]]

NW optimal = 1.01480× (1.0111 +1.0178) = 1.01491 +1.01558

To find the α-MNW we need to divide the optimal MNW by the MNW of the algorithm’s
allocation:

NW optimal
NW algorithm

=
1.01491 +1.01558

1.01558 +1.01196 ≈ 1.4732

As you can see this exceeds the guarantee of 1.45.

Possible source of the problem.
We would like to draw the reader’s attention to Lemma 1 of the original paper. We
repeat this lemma in this report for the reader’s convenience.

Lemma 1. Given a fair division instance with identical and additive valuations, any
ε-EF1 allocation provides a e(1+ε)/e-approximation to Nash Social Welfare.

ε-EF1 is defined by the authors as the following: given any ε > 0, an allocation A is said
to be ε-approximately envy-free up to one good if for every pair of agents i,k ∈ N,∃ a
good j ∈ Ak, such that (1+ ε)Vi(Ai)≥Vi(Ak \{ j}). For the reader’s convenience, we
provide a counter-example for this lemma again with two agents and three goods:

V = [[1000,100,99], [1000,100,99]]

We can now construct an ε-EF1 allocation:

A = [[0,2], [1]]

We can set ε = 0.01 so that e(1+ε)/e ≈ 1.4499. Using our decision for the value of ε, we
can verify that our allocation is ε-EF1 as when k=1 and i=0, the RHS of the equation
has value 0 and is therefore true and when k=0, i=1, we know that if we remove the
most expensive good allocated to agent 0, the equation will be (1+ ε)100≥ 99 which
is again true.

However, we know that the MNW-optimal allocation is:

A = [[0], [1,2]]

To calculate the MNW approximation we use the same formula as before:

NW optimal
NW allocation

=
1000× (100+99)
(1000+99)×100

=
1990
1099

≈ 1.81

We have therefore shown that even if an ε-EF1 allocation with identical and additive
valuations is found, it is not guaranteed to be e(1+ε)/e-approximate to Nash Social
Welfare. Lemma 1, is a very strong claim especially since there is no correlation
between ε and the valuations.
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Experiments

1.45-MNW was removed from our test suite due to the inconsistencies identified before.
If our understanding of the algorithm is incorrect then so will all our results. If the
algorithm turns out to need some modifications then any results that would have been
published here would have been invalid and could cause confusion for future readers.

4.1 Execution time experiments

4.1.1 Methodology

To perform timing experiments and properly evaluate how different properties affect
the running time of each algorithm, we split the possible valuations into five different
categories that arose from the literature; Random, Ordered, Binary, Bivalued, and
Identical valuations.

Valuations generation
Random and Identical valuations were generated with uniform distribution over the
range 0-1000 inclusive. Binary and Bivalued instances used normal distribution with
Bivalued again ranging from 0 to 1000. Ordered valuations were a bit trickier as we
wanted to maintain properties such as when two goods have the same valuation, this
should be reflected in all agents’ valuations.

To start generating Ordered instances, we first randomly generated with random distribu-
tion a valuation array for a single agent and then ordered it in ascending order. To create
a new valuation arrays for the following agents we follow the following procedure:

1. Find a valuation for the least valued good as a random number in the range 0
to smallest valuation f rom f irst agent + 99. We added 99 to the first agent’s
valuation to allow for some variation between the agents’ valuations. Using a
larger value would have resulted in possibly more unbiased results but could
cause the valuations for the following goods to have extreme values.

2. We then check if the following good has the same value as our current good in
the first agent’s valuations. If that is the case, then from the valuation that we are
currently building, we re-use the same value that we have used for the last added

21



Chapter 4. Experiments 22

good. This means that if good2 and good3 have the same valuation in agent 1’s
valuation, then good2 and good3 will also have the same valuation in agent x’s
valuation.

3. If they do not need to have the same valuation then we can take the valuation of
our previously added good and generate a value for the next one with a range
prev val +1 to prev val +99. This again ensures that our new valuation will be
larger than our previous one. In addition, due to the way that the first value (of
the very first good) is initialised, it is possible that the current good’s valuation
might have a lower value than our original agent (helping to ensure randomness).
Combining this with the addition of +99 cascades the variation as we move on to
the next good allowing for possibly much greater variation.

4. We start again from step 2 for the next good.

Experiment plan
To enable meaningful results, only one variable had to be free in each experiment.
That meant splitting the experiments into two sections, one assessing how the number
of goods affects the execution time and one on how the number of agents affects the
execution time.

For the first case, the number of agents was fixed to 20 and then one instance would
be generated per number of goods ranging from 50 to 990 with increments of 20. This
ensured that the test set consisted of both, instances where the number of goods was a
multiple of the number of agents, and instances where they were not.

For the second case, the number of goods was fixed to 500 (to hopefully still enable
challenging scenarios by requiring to allocate possibly more than one good to an agent)
and set the number of agents to range from 2 to 50 with increments of 1.

Experiment restrictions
Due to the complexity of large instances and the lack of similar research work, expected
running times were unknown. This led to some instances taking very long to execute.
Hence, some experiments unfortunately had to be cut short. As a fixed restriction, any
experiment taking longer than 400 seconds was terminated (with one exception, as seen
in our results).

It is also important to note that Leximin++ is not included in any of the execution time
experiments. The algorithm has exponential running time and can therefore only be
tested with extremely small instances. Based on these details, the decision was made
not to include it.

Experiments test-bench
All execution time experiments were carried out on a DELL XPS 15 9500 with an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical
Processor(s), 16GB of RAM and an NVIDIA 1650Ti.
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4.1.2 Results: fixed number of agents, varying number of goods

Figure 4.1: Running time experiment results with 20 agents and an increasing number
of goods, per valuation type.

As expected, RoundRobin, being the simplest and least complex algorithm, has consis-
tently low runtime and is barely affected both by the number of goods and the types
of valuations as seen in Figure 4.1. ECE and 0.618 EFX have shown a small increase
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in running time as the number of goods increases but they also remain unaffected by
the different valuation types. Given that 0.618-EFX uses both RoundRobin and ECE,
a comparatively small increase in running time compared to RoundRobin is expected.
Match&Freeze has almost double the running time of ECE and 0.618-EFX consistently,
but, interestingly remains one of the fastest algorithms. Especially when the number of
goods is less than 190, Match&Freeze is incredibly fast (still slower than 0.618-EFX)
meaning that it might be favoured over 0.618-EFX due to the better EFX performance.

0.73-EFR on the other hand, has a much greater running time compared to all the
aforementioned and with Random, Bivalued and Binary instances, it remains unaffected
given the differences in valuation types. Since EFR is a weaker notion compared to
EFX and stronger than EF1, we can assume that having 0.73-EFR could also possibly
result in the best case to 0.73-EFX, which is not far from 0.618-EFX especially when
the running time of 0.73-EFR is also approximately six-times more than 0.618-EFX.
Overall, a large running time of 0.73-EFR is expected, as computing the NSW allocation
at the beginning and then finding the shortest paths in a complete graph, have very high
time complexities.

Improved-ECE has very high running times and is most always the slowest out of
our collection (we cannot make precise comparative conclusions as we do not have
results for all valuation types for 0.73-EFR). This can easily be explained as finding a
maximum weight matching and resolving all possible cycles in each iteration take a
substantial amount of time. Interestingly, the main promise of Improved-ECE is that
it guarantees 1/2-EFX but, it consistently takes more time to execute than 0.618-EFX
which is also a better approximation. Therefore, we can conclude that if achieving
a high EFX approximation is the goal then 0.618-EFX would not only yield a better
approximation but it will also execute much faster.

Another interesting trend of Improved-ECE is that the running time differs a lot based
on the type of valuations being used. Binary and bivalued, result in comparatively low
running times, barely exceeding Match&Freeze whilst Ordered, Random and especially
Identical instances take much longer (not even comparable to 0.618-EFX). One other
interesting observation is that as the number of goods increases in the Identical case,
the running for Improved-ECE also decreases when compared to the average trend of
smaller number of goods. This is a very interesting behaviour that requires further
investigation.

4.1.3 Results: fixed number of goods, varying number of agents

Based on the results as seen in Figure 4.2 and Figure A.6, RoundRobin remains again
unaffected by all varying factors (both the number of agents and valuation types) and can
therefore be concluded that it is the fastest EF1 algorithm. ECE still has almost a similar
trend as with 0.618-EFX by having an overall very small execution time. However, this
trend is not followed with Ordered instances, where there is a noticeable increase in
execution time when we use 39 agents or more. We can therefore conclude that ECE is
only limited by the number of agents, which is expected as the main component of the
algorithm is the envy-graph which is comprised of agents as vertices, with that limit
being 43 agents. The same conclusions can be drawn for 0.618-EFX with the only
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difference being that in the Ordered case, it exceeds our maximum execution time limit
at 39 agents with only a single other spike when the number of agents is 32. Overall, it
can be concluded that ECE and 0.618-EFX execute in a very little amount of time when
the number of agents is less than 39 with some very rare spikes in between.

Figure 4.2: Running time experiment results with 500 goods and an increasing number
of agents, per valuation type. For readers interested more in the behaviour of Identical
instances without Improved-ECE, we have included a zoomed-in version in Figure A.6.
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0.73-EFR again has some of the highest running times in all tested cases. Similarly
to our last experiments, the rate of increase is consistent throughout all three types of
valuations being tested.

Match&Freeze seems to have extremely consistent timings when the number of agents
is more than 7. Interestingly, the execution time peaks when we only have 2 agents and
slowly decreases as agents decrease with the most significant decrease happening in
the agent range 2 to 7. Overall, it performs slightly worse than ECE and 0.618-EFX by
always remaining under 1s when there are more than 3 agents. Given our results from
both experiments, we can conclude that if EFX with Binary/Bivalued instances is the
desired characteristic then Match&Freeze is an overall fast algorithm.

Improved ECE, has very varying performance based on the types of valuations used.
Binary and Bivalued instances have the overall best performance as it never exceeds
1s and takes less time than Match&Freeze when the number of agents is less than 5.
Once we surpass 5 agents, it performs slightly worse than Match&Freeze meaning
that if we wish to prioritise EFX (and hence EF1 and EFR), for bivalued instances,
no matter the number of goods or agents, Match&Freeze not only guarantees EFX
but also achieves it faster than Improved-ECE (which only guarantees 1/2-EFX). On
the other hand, when dealing with Random instances, we see that Improved-ECE is
always extremely slower than 0.618-EFX so again, 0.618-EFX is the better choice for
any number of agents and goods. When looking at the Ordered or Identical instances,
Improved-ECE seems to be performing relatively well when the number of agents
is less than 19 with the running time never exceeding 10 seconds. Once we surpass
that threshold we notice a very aggressive, almost exponential, increase in execution
time exceeding the 300-second range when there are more than 28 agents in Ordered
instances, and 26 agents in Identical instances.

4.2 Fairness Criteria conformity experiments

4.2.1 Methodology

Test instances
To enable thorough testing of the algorithms, the testing dataset was comprised of two
parts; one containing real-life instances and one containing synthetic data that cover
the 5 types of valuations (Random, Ordered, Identical, Binary, Bivalued). Given that
no one else had performed similar experiments, the behaviour of these algorithms was
unknown. Therefore, splitting our test set into different categories provided a great
starting point to help shine some light on the behaviours of each algorithm per specific
type.

For real-life data, we were provided with all the instances that were submitted to Spliddit.
That collection contains 2309 instances with varying numbers of goods and agents. One
important characteristic of Spliddit instances is that each agent was given a ”budget”
of 1000 to formulate their valuations. This means that the total sum of each agent’s
valuations should equal 1000. Due to the nature of our algorithms (such as 0.73-EFR
requiring an MNW allocation with one good per agent) and our goal of comparing
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MNW approximations, we filtered out instances where it was not possible to allocate
one good to each agent so that they do not have a total value of 0. This requirement
decreased the number of applicable instances to 2066 which is still a high number of
instances.

Synthetic instances were generated for the 5 aforementioned types but for Binary
and Bivalued instances, we generated instances for both using uniform and normal
distributions (increasing our types to 7). This decision was taken after we examined
the results with the uniform distribution as they portrayed somewhat misleading results,
even though the results are correct and valid. In total, with the inclusion of Spliddit
data, we have 8 types.

The methodology for generating these instances remains the same as with the execution
time experiments. We generated 400 instances for each type, with the number of agents
ranging from 2 to 40 (chosen randomly with uniform distribution), the number of goods
ranging from num of agents to 300 (again with uniform distribution) and the valuation
of each good per agent ranged from 0 to 1000 (uniformly chosen). 400 instances were
generated to provide a comprehensively large dataset that was also appropriately sized
for a reasonable testing duration. As we have seen from the timing experiments, the
larger the number of goods, the more the execution time for most of the algorithms,
so, a compromise was made hence the 300 goods limitation. Similar reasoning was
used for the number of agents leading to limiting the maximum number of agents to 40.
However, as we already know some algorithms take an exceptionally long time with a
high number of goods and agents (mainly with Ordered and Identical instances) so for
some algorithms we had to filter out some of those larger instances. For all the other
algorithms, all the instances were used and algorithms that used the restricted instances
will be marked. We could have generated smaller instances for all algorithms but on the
other hand, we would have intentionally limited our test set to relatively small instances.
As with the Spliddit data, it was made sure that with each instance, it was possible to
have an MNW allocation where each agent received a single good and no agent had a
value of 0.

Assessment criteria
For each algorithm we recorded the following Key Performance Indicators (KPIs) for
all 8 types of valuations (whenever possible):

Percentage of instances achieving EF1, EFX, EFR, MNW, 1.45-MNW, Approximation
of α-EF1, α-EFX, α-EFR, α-MNW.

Finding a Maximum Nash Welfare allocation (MNW) is an NP-Hard problem so one
might question how we calculated all the KPIs that involve MNW. Our approach
was to formulate the problem in Integer Linear Programming (ILP) and use a solver,
more specifically Gurobi (Gurobi, 2023) to find such optimal allocations. Maximising a
product, however, is not formally a feature of ILP, so all agent valuations were converted
to logarithms allowing us to exploit the behaviour of logarithms when they are being
added as it is equivalent to multiplying the raw valuations. More formally, in our
Gurobi environment, we had to define variables for allocations, valuations, constraints
to convert the valuations to logarithms, variables to store the logarithmic valuations and
one other final constraint to ensure that each good is only allocated to a single agent. In
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addition, we have set Gurobi to use that maximum level of MIPFocus (3) and set the
MIPGap to 0 to ensure that we only get the optimal solution. In addition, Gurobi’s time
limit was set to 30 seconds to find the optimal solution. Any instances where Gurobi
was not able to find the optimal allocation within the time limit were removed from
the KPIs that involve MNW. This restriction was necessary as even with the 30-second
limit, Gurobi could take up to 47 hours to find an optimal allocation for all our instances.
Understandably, this is not ideal, however, limited by computational resources and time
allocation for this project, such a compromise had to be made. The formulation of the
problem in ILP together with Gurobi’s settings can be found in Algorithm 7.

KPIs that involve approximation (excluding MNW) were also time-consuming and
challenging to calculate. To compensate, a binary search approach was implemented
with a tolerance of 0.001, therefore the reader can assume that the true α approximation
is within 0.001 of the reported approximation.

Availability of raw results and methods
All raw results were recorded, together with an instance ID, the resulting allocation,
optimal MNW allocation according to Gurobi, a flag to signify if Gurobi reaches the
time limit, execution time1, and all the KPIs mentioned above. All raw data will be
made publicly available for any researcher to use.

In addition, our fairness checkers (functions used to generate the KPIs) as well as our
functions that can be used to generate instances based on desired parameters will also
be made publicly available.

4.2.2 RoundRobin

Figure 4.3: RoundRobin percentage of instances achieving specific fairness notions for
each type of valuations.

Unsurprisingly, RoundRobin achieves EF1 (Figure 4.3), with almost all binary and
bivalued instances also achieving EFX. To validate this observation we tested all possible
binary valuations with two agents and six goods and found that 95% of instances achieve
EFX. This is still a very promising result revealing a very interesting behaviour of

1Experiments were executed on the University of Edinburgh’s Informatics Student Compute server.
Resources might have been dynamically allocated and therefore, running times might not be consistent.
For more information visit https://computing.help.inf.ed.ac.uk/compute-servers.
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RoundRobin that we did not know. Unfortunately, no obvious pattern could be found
for the cases that do not achieve EFX that could help lead to new theorems.

Figure 4.4: Approximations of EF1, EFX and EFR1 for Ordered and Identical instances
using RoundRobin.

More surprisingly, it is also evident that with Identical and Ordered valuations RoundRobin
struggles a lot to find EFX and even EFR allocations. Looking at the approximations
for EFX and EFR for Ordered and Identical (Figure 4.4), it can be seen that there is a
large variation and therefore no substantial conclusions can be drawn.

Figure 4.5: MNW approximations using RoundRobin, with and without outliers.

As for MNW approximations, when outliers are removed, Figure 4.5 shows that we
have a maximum approximation of 4, however, this is not truly representative. When
outliers are included, the maximum approximation increases to 10000. Unfortunately,
again, no meaningful conclusions can be drawn as although we might display them as
outliers, it is possible that a dataset could be comprised of solely similar cases.

4.2.3 Improved ECE

Ordered instances were limited to up to 20 agents and up to 200 goods (total 126
instances) and Identical instances to up to 25 agents and 300 goods (total 170 instances).
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Figure 4.6: Improved-ECE percentage of instances achieving specific fairness notions
for each type of valuations.

Improved-ECE overall performs extremely well as almost all instances achieve full
EFX (and therefore EFR) and a large number of instances also achieve 1.45-MNW
(Figure 4.6). Looking at the EFX approximations of Spliddit and Random instances
(Figure 4.7), it is evident that the algorithm does achieve 1/2-EFX and surpasses that
boundary for all of our test instances. This finding could mean that overall, one should
expect on average better than 1/2-EFX approximation and possibly 1/2 for only some
very specific cases.

Figure 4.7: Approximations of EF1, EFX and EFR for Spliddit and Random instances
using Improved-ECE.

MNW approximations are considerably better than RoundRobin (Figure 4.8), as the
highest approximation was 4. However, some Spliddit instances resulted in at least
one agent receiving an allocation valued at 0 (we wish to remind the reader that all
instances tested can result in allocation where all agents receive a value more than 0).
A 0 approximation in this graph indicates a 0 MNW and therefore the reader can treat
this value as an infinity approximation. So, Improved-ECE generates overall extremely
good MNW approximations with the exception of only a small number of cases where
the approximation was infinity.
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Figure 4.8: MNW approximations using Improved-ECE, with and without outliers. A 0
approximation indicates an infinity approximation.

One very crucial observation is that Improved-ECE has the best MNW approximations
for all types of Binary and Bivalued instances compared to all our algorithms.

As a follow-up investigation, a modification of Improved-ECE was made to use ECE’s
cycle resolution (resolve cycles until an unenvied agent is found, rather than resolving
all cycles) in an attempt to investigate if some time could be saved by not having
to resolve all cycles. The results can be seen in Figure 4.9, which overall shows a
decrease in performance mainly for MNW allocations with Identical instances and EFX
allocations with Ordered/Identical instances. In addition, this modification has also lost
the 1/2-EFX guarantee.

Figure 4.9: Improved-ECE (with ECE cycle resolution) percentage of instances achieving
specific fairness notions for each type of valuations.

4.2.4 Envy-Cycle Elimination (ECE)

Ordered instances were limited to up to 20 agents and up to 200 goods (total 186
instances).

As expected, ECE achieves EF1 and EFX for Identical and Ordered instances (Figure
4.10). Based on the results from Figure 4.11, very promising MNW approximations can
be seen for Bivalued instances and near-perfect approximations for Identical instances.
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Figure 4.10: ECE percentage of instances achieving specific fairness notions for each
type of valuations.

Figure 4.11: MNW approximations using ECE, with and without outliers.

It seems that ECE behaves extremely well with Bivalued instances but not with Binary
instances (a specialisation of Bivalued).

EF1, EFR, and EFX approximations have not resulted in any note-worthy results and
their graphs are included in Figure A.3. Based on the positive findings from Improved-
ECE, it was investigated whether eliminating all cycles at each iteration or at the very
end of the algorithm would result in better allocations. These results are again included
in Figures A.1 and A.2, without any significant results.

4.2.5 0.618-EFX

Ordered instances were limited to up to 20 agents and up to 200 goods (total 186
instances).

From Figure 4.12, it is obvious that a promised, 0.618-EFX achieves EF1. One other
observation is that it also achieves EFR for Identical and ordered instances. Despite
knowing that this is an ECE property (which is part of the algorithm), it shows that the
pre-processing and the two rounds of RoundRobin do not influence this property. As
for MNW, we see slightly better results compared to ECE (Figure 4.13).

From Figure 4.17, it can be seen that 0.618-EFX achieves its promised EFX approxima-
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Figure 4.12: 0.618-EFX percentage of instances achieving specific fairness notions for
each type of valuations.

Figure 4.13: MNW approximations using 0.618-EFX, with and without outliers.

tion and possibly ensures a higher EFR approximation (greater than 0.73).

In addition to the aforementioned, a further experiment was carried out where the
ECE component of 0.618-EFX was replaced with Improved-ECE. This change caused
overall better results than the original 0.618-EFX but, worse results than the plain
Improved-ECE (Figures A.4 and A.5).

4.2.6 0.73-EFR

Ordered and Identical instances were limited to up to 20 agents and up to 200 goods
(total of 186 instances for each type).

0.73-EFR achieves EF1 as seen in Figure 4.14, but also seems to follow the trend of
achieving full EFR for Identical and Ordered valuations as most of the other algorithms.
Interestingly, 0.73-EFR has the best overall MNW approximation reaching only a
maximum of 8. It might not have the most instances achieving MNW but it has the
smallest MNW approximation so far (Figure 4.15).

From Figure 4.18 it can also be verified that it achieves its promised 0.73-EFR approxi-
mation.
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Figure 4.14: 0.73-EFR percentage of instances achieving specific fairness notions for
each type of valuations.

Figure 4.15: MNW approximations using 0.73-EFR, with and without outliers.

4.2.7 Match&Freeze

Figure 4.16: Match&Freeze percentage of instances achieving specific fairness notions
for each type of valuations.

Match&Freeze performs as expected by achieving EFX (Figure 4.16), and also has the
second best MNW approximations for binary and bivalued instances (Figure 4.19).
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Figure 4.17: 0.618-EFX EF1, EFR and EFX approximations.
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Figure 4.18: 0.73-EFR EF1, EFR and EFX approximations.
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4.2.8 Leximin++

Due to the exponential running time of Leximin++, smaller instances were generated
only for this algorithm. Therefore, no comparison will be made with the other algorithms
to ensure fair treatment.

As expected, Leximin++ achieves EFX for Ordered Instances (Figure 4.20) but, also
achieves very good MNW approximations at the same time (Figure 4.21).

Figure 4.19: MNW approximations using Match&Freeze, with outliers.

Figure 4.20: Leximin++ percentage of instances achieving specific fairness notions for
each type of valuations.

Figure 4.21: MNW approximations using Leximin++, with outliers.
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Conclusions

In the course of this research, an array of algorithms was implemented, encountering
many challenges regarding the feasibility of their implementation, key missing compo-
nents and possible flaws which all required an instrumental amount of time to detect
and solve. Through strategic testing, a guide for future researchers has been produced.
Furthermore, several key findings suggest the emergence of novel theorems, whose
formal validation could lead to new performance guarantees for some algorithms.

5.1 Key findings & Future work

Concentrating on the implementation phase, this project identified a crucial attribute
that seems to be overlooked by algorithm designers; the feasibility of implementing the
algorithm. Through our description of 0.73-EFR, we have showcased how precision
errors, due to the nature of programming languages, can cause significant and unsolvable
problems making the algorithms infeasible to use with a computer. While we detail our
mitigation strategies in Section 3.5.2, further investigation is warranted to provide a less
computationally expensive solution.

One of our most significant findings was the identification of potential problems (as well
as algorithmic omissions) with the current state-of-the-art algorithm for achieving an
MNW approximation (1.45-MNW). Counter-examples were identified, and an analysis
of potential causes of this abnormal behaviour was provided which will be sent to the
authors of the paper.

Utilising our efficient implementations, we now have a comprehensive collection of
implemented algorithms, a majority of which had not been implemented before, avail-
able for anyone to use (in the future as a Python library). It became evident that some
algorithms lacked essential implementation details which although we overcame, serves
as a reminder for future algorithm designers to not only establish polynomial time
guarantees but also, to elucidate practical implementation recommendations. Compli-
menting our collection of algorithms, we also provide fairness checkers to check if an
allocation achieves EF1, EFX, EFR and their approximations as well as MNW (and its
approximation) which was implemented through our ILP implementation using Gurobi.

38
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From our experimental results, we have devised a guide (Table 5.2) to assist researchers
in selecting the best algorithm tailored to their requirements. The guide is influenced
both by the algorithms’ fairness observations as well as their execution time. Further
findings include valuation restrictions that could influence running time, as well as how
the number of goods or agents influences the decision as to which algorithm to choose.

Finally, three key findings from our experiments have unveiled previously unknown be-
haviour with certain algorithms, which could lead to new theorems as to the algorithms’
guarantees. This constitutes a promising avenue for future research. Overall, we have
demonstrated the potential impact of conducting experiments on such algorithms and
we encourage future researchers to explore targeted instances for further insights.

Our experimental results can be found in Table 5.2, whilst in Table 5.1 we briefly
summarise our observations on the key implementation details of 0.73-EFR, 1.45-MNW
and Leximin++.

5.2 Limitations

Reflecting upon the work outlined in this project, it is evident that a lot of compromises
needed to be made in certain sections.

Starting with algorithm selection, this aspect was constrained secondary to the com-
plexity and challenges identified when implementing some of those algorithms which
required more time than initially anticipated. However, we are confident that we have
included the most prominent algorithms as identified in the literature, nonetheless, we
appreciate that a larger selection could have provided broader insight.

In the implementation phase, we have identified limitations with regard to precision
errors, specifically in 0.73-EFR and 1.45-MNW. Although we have attempted to address
them, the best solutions we could and have provided, often come with increased running
time or limitations on valuation values.

Although our test set covers a broad selection of valuation types and contains numerous
instances, including real-life data (totalling 5594 instances), it lacks targeted instances
aimed at challenging the algorithms further. Our approach was to split possible valua-
tions into certain types and then generate (at random) a large collection of instances for
each. Given that this is the first time that such experiments with these algorithms were
conducted, there were no initial indications as to what to expect. Therefore, focusing
on targeted instances first, seemed like a step ahead of what is currently known.

It is also understandable that limiting the instances for some valuation types and only
for some algorithms could make it more challenging to draw conclusions but, limited
by computational resources, this decision, unfortunately, had to be made.

Owing to time constraints, previously cited delays, and extensive testing duration,
particularly evident in large instances, further exhaustive testing was precluded. Our
focus was directed towards elucidating potential high-level correlations among the
algorithms, notably examining distinct methodologies for cycle resolution in ECE and
their consequential impact on ECE itself and other algorithms reliant on this component.
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A final limitation was the execution time results for 0.73-EFR (for some valuation types)
which we identified that it was impossible to implement, as well as, any results for
1.45-MNW which we decided to remove in order to maintain an unbiased report.

New Discovery Remarks
0.73-EFR cannot be imple-
mented with the original
algorithm in Python

Due to decimal precision challenges, running Bellman-Ford is not
always possible. A solution was identified but at the cost of extra
execution time.

A potential flaw with 1.45-
MNW

1.45-MNW suffers from decimal precision challenges, lacks key
implementation details and, most importantly, seems to miss its
MNW approximation guarantee. We have provided a counter-
example and identified a possible source of the problem. Our
investigation will be sent to the authors of the paper.

Our leximin++ implemen-
tation is more efficient in
comparison to generating
all possible allocations

Given that the authors did not provide any guidance as to how to
generate all possible allocations, based on preliminary testing, our
branch pruning implementation performs extremely well (com-
pared to naive generation).

Table 5.1: Discoveries through implementations of algorithms and future work.

Requirement/Discovery Recommendation/Remark
High probability EFX Bivalued/Binary RoundRobin (faster than Match&Freeze which guar-

antees EFX)
High probability EFX Improved-ECE
Good on average MNW approximations Improved-ECE
1.5-MNW for Binary, Bivalued Match&Freeze (faster) or Improved-ECE (also for

Identical)
Near-perfect MNW with Identical ECE/0.618-EFX (faster) or Leximin++ or 0.73-EFR
Full EFR for Identical or Ordered 0.618-EFX or ECE (both faster) or 0.73-EFR 0.618-

EFX and 0.73-EFR require formal proof
≥0.73-EFR approximation 0.618-EFX (faster, Requires formal proof) or 0.73-

EFR
High EFX approximation for all types 0.618-EFX (Faster than Improved ECE)
Improved-ECE gets faster as the num-
ber of goods increase (Identical val.)

Needs further investigation

Match&Freeze unaffected by the num-
ber of agents (Contrary to the number of
goods) and faster than Improved-ECE
0.618-EFX and ECE execution time un-
der 400s with ordered instances

Limit number of agents to 39 and 43 respectively

Improved-ECE with Ordered/Identical
valuations

Exponential-like running time when more than 26
agents

Binary/Bivalued instances that require
approximate-EFX allocations

Use Match&Freeze when the number of goods<190
to get full EFX as it has almost the same running
time as 0.618-EFX

EF1 allocations of any size and type Use RoundRobin (always the fastest)

Table 5.2: Key discoveries from experiment observations and future work.
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Appendix A

Additional results

Figure A.1: ECE with all cycles being eliminated at each iteration.

Figure A.2: ECE with all cycles being eliminated at the very end of the algorithm.
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Figure A.3: ECE EF1, EFR and EFX approximations.



Appendix A. Additional results 47

Figure A.4: 0.618-EFX with ECE component replaced with Improved-ECE.

Figure A.5: 0.618-EFX EF1, EFX, AND EFR approximations with ECE component
replaced with Improved-ECE

Figure A.6: Running time experiment results with 500 goods and increasing number of
agents, per valuation type. Experiment on Identical instances without Improved-ECE.



Appendix B

Pseudocodes

Algorithm 1 Round-Robin

1: Input: A fair allocation instance I = (N,M,V ) with n agents and m goods.
2: Output: Allocation A = (A1, . . . ,An).
3: for i = 1 to n do
4: Ai← /0

5: end for
6: for l = 1 to m do
7: Let i = l mod n
8: Let g∗ = argmaxg∈M Vi(g)
9: Ai← Ai∪{g∗}

10: M←M \{g∗}
11: end for
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Algorithm 2 Envy-Cycle Elimination

1: Input: A fair allocation instance I = (N,M,V ) with n agents and m goods.
2: Output: Allocation A = (A1, ...,An).
3: for each agent i ∈ N do
4: Ai← /0;
5: end for
6: for l = 1, ...,m do
7: while there does not exist an unenvied agent do
8: Find an envy-cycle C = (i1, ..., id) and resolve the cycle as follows:

AC
i j
=

{
Ai j+1, for all 1≤ j < d−1

Ai1, for j = d

9: Ai← AC
i for all i in C

10: end while
11: Let i be an unenvied agent
12: Let g∗ ∈ argmaxg∈M{Vi(g)}
13: Ai← Ai∪{g∗}
14: M←M \{g∗}
15: end for
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Algorithm 3 Find Cycles
1: function FINDCYCLES

2: procedure DFS(node,start,visited,path,max depth)
3: if length of path > max depth then
4: return None ▷ Indicate no cycle found within max depth
5: end if
6: visited.add(node)
7: path.append(node)
8: for neighbor in graph[node] do
9: if neighbor == start then

10: return path + [start] ▷ Return cycle found (including starting point)
11: else if neighbor not in visited then
12: cycle← DFS(neighbor,start,visited,path,max depth)
13: if cycle ̸= None then
14: return cycle ▷ Cycle found, stop further exploration
15: end if
16: end if
17: end for
18: path.pop() ▷ Revert path
19: visited.remove(node) ▷ Revert visited
20: return None ▷ Indicate no cycle found
21: end procedure
22:
23: max depth← length of graph ▷ Maximum depth for DFS (number of agents)
24: for node in graph do
25: visited← empty set
26: cycle← DFS(node,node,visited, [],max depth)
27: if cycle then
28: return cycle
29: end if
30: end for
31: return None ▷ No cycle found
32: end function
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Algorithm 4 Improved-ECE
1: Initiate L = N and R = M.
2: Initiate Ai = /0 for all i ∈ N.
3: while R ̸= /0 do
4: Compute a maximum weight matching M between L and R, where the weight

of edge between i ∈ L and j ∈ R is given by υi(Ai,∪{ j})−Vi(Ai). If all edges have
weight 0, then we compute a maximum cardinality matching M instead.

5: For every edge (i, j) ∈M, allocate j to i: Ai = Ai,∪{ j} and exclude j from R: R
= R \{j}.

6: As long as there is an envy-cycle with respect to A = (Ai)i∈N , invoke procedure
P (Procedure P is similar to ECE by finding each cycle and resolving it by re-
allocating goods as with ECE).

7: Update A = (Ai)i ∈ N to be the allocations after P.
8: Update the set of agents not envied by any other agents: L= {i ∈ N : ∀ j ∈

N,v j(A j)≥Vj(Ai)}.
9: end while

Algorithm 5 MATCH&FREEZE(N,M,(Vi)i∈N)

1: Input: a 2-value instance using the values a,b(a > b≥ 0)
2: L← N ▷ set of active agents
3: R←M ▷ set of unallocated goods
4: ℓ= (1,2, ...,n) ▷ ordered list of agents
5: while R ̸= Ø do ▷ every iteration is a round
6: Construct the bipartite graph G = (L∪R,E).
7: Compute a maximum matching on G.
8: for each matched pair (i,g) do
9: Allocate good g to agent i.

10: Remove g from R.
11: end for
12: for each unmatched active agent i w.r.t ℓ do
13: Allocate one arbitrary unallocated good g to i.
14: Remove g from R.
15: end for
16: Construct the set F of agents that need to freeze.
17: Remove agents of F from L for the next ⌊α/b−1⌋.
18: Put agent of F to the end of ℓ.
19: end while
20: return allocation A.
21: procedure CONSTRUCT-FROZEN

22: Construct F := {i ∈ L|∃ j ∈ L : Vj(gi) = a,Vj(gi) = b}. ▷ gi denotes the good
allocated to agent i in the current round.

23: while there exists i ∈ L\F such that α ∈ [Vj(gi)| j ∈ F ] do
24: Add i to F .
25: end while
26: return the set of agents F that will freeze.
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Algorithm 6 GenerateSplits
1: function GENERATESPLITS(M,N,V)
2: min utility← 0
3: splits← /0

4: current split← [ /0 for N]
5: procedure BACKTRACK(start,current split)
6: nonlocal min utility
7: if start > items then ▷ base case of having considered all items
8: if len(current split) == N then ▷ If current split contains all agents
9: splits.append([element[:] for element in current split]) ▷

Append a copy of current split to splits
10: end if
11: return
12: end if
13: for i ∈ N do ▷ Assign current item to each agent and recursively explore
14: current split[i].append(start)
15: if start < items then
16: BACKTRACK(start+1,current split)
17: end if
18: current split utilities← /0

19: for bucket in current split do
20: current split utilities.append(∑g∈bucket V i[g-1]) ▷ g-1 as goods

here are 1-based while V is 0-based
21: end for
22: current split min utility←min(current split utilities)
23: if min utility≤ current split min utility then ▷ Pruning
24: min utility← current split min utility
25: BACKTRACK(start+1,current split)
26: current split[i].pop()
27: else
28: current split[i].pop()
29: end if
30: end for
31: end procedure
32: BACKTRACK(1, current split)
33: return splits
34: end function=0
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Algorithm 7 MNW Using Gurobi

def run(num_agents, num_goods, varrays):

with gp.Env(empty=True) as env:
env.setParam(’OutputFlag’, 0)
env.start()
with gp.Model(env=env) as m:

m.setParam(’TimeLimit’, 30)
m.setParam(’MIPFocus’, 3)
m.setParam(’MIPGap’, 0)

# Add binary decision variables indicating whether a good is allocated to an agent
allocation = m.addVars(num_agents, num_goods, vtype=GRB.BINARY, name="x")

# Add auxiliary variables for each agent’s utility sum
agent_utilities = m.addVars(num_agents, vtype=GRB.CONTINUOUS, name="agent_utilities")

# Add constraints to compute each agent’s utility sum
for i in range(num_agents):

m.addConstr(
agent_utilities[i] == gp.quicksum(allocation[i, j] * varrays[i][j] for j

in range(num_goods)),
f"agent_utility_{i}")

# Add auxiliary variables for the logarithm of each agent’s utility sum
log_utilities = m.addVars(num_agents, vtype=GRB.CONTINUOUS, name="log_utilities")

# Add constraints to compute the log of each agent’s utility sum
for i in range(num_agents):

m.addGenConstrLog(agent_utilities[i], log_utilities[i], name=f"log_constraint_{i}")

# Add Max Nash Welfare objective function (sum of log_utilities)
m.setObjective(gp.quicksum(log_utilities[i] for i in range(num_agents)), GRB.MAXIMIZE)

# ----- MNW Constraints -----

# Add constraints to ensure each good is allocated to at most one agent
for j in range(num_goods):

m.addConstr(gp.quicksum(allocation[i, j] for i in range(num_agents)) <= 1,
f"good_{j}_allocation")

# Optimize the model
m.optimize()

# ----- Output -----
output_alloc = [[] for i in range(num_agents)]
# Print the optimal solution
if m.status == GRB.OPTIMAL:

for i in range(num_agents):
for j in range(num_goods):

if allocation[i, j].x > 0.5:
output_alloc[i].append(j)

elif m.status == GRB.TIME_LIMIT:
return None

return output_alloc
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Algorithm 8 build hierarchy
1: function BUILD HIERARCHY NEW(agents,goods,x,MBBi, i)
2: graph← build augmented graph new(agents,goods,MBBi,x)
3: Hi←{} ▷ Initialize the hierarchy dictionary
4: agents levels← [None]∗ agents
5: agents paths← [[] for in range(agents)]
6: visited agents←{} ▷ Use a set to store visited agents
7: queue← deque([(i, [i])]) ▷ Initialize the queue with the starting agent and its path
8: visited agents.add(i)
9: agents levels[i]← 0

10: agents paths[i]← [i]
11: while queue is not empty do
12: current agent,current path← queue.pop left()
13: neighbouring goods← neighbors by edge type(graph,current agent,”mbb”)
14: for neighbour in neighbouring goods do
15: reachable agents from goods← neighbors by edge type(graph,neighbour,”allocation”)
16: for reachable agent in reachable agents from goods do
17: if reachable agent not in visited agents then
18: visited agents.add(reachable agent)
19: new path← current path+[neighbour, reachable agent]
20: queue.append((reachable agent,new path))
21: level← len(new path)//2
22: agents levels[reachable agent]← level
23: agents paths[reachable agent]← new path
24: end if
25: end for
26: end for
27: end while
28: for agent in range(agents) do
29: level← agents levels[agent]
30: if level is not None and level is not −1 then
31: if level not in Hi then
32: Hi[level]← []
33: end if
34: Hi[level].append((agent,agents paths[agent]))
35: end if
36: end for
37: Hi[0]← [(i,agents paths[i])] ▷ Include the initial agent i at level 0
38: return Hi
39: end function


	Introduction
	Project description, motivation and key findings overview

	Preliminaries and Previous Work
	Instance model
	Fairness Notions
	Achieving the Fairness Notions; Implementations, approximations and special cases
	Related Work

	Algorithms and their implementations
	RoundRobin
	Implementation details description

	Envy-Cycle Elimination ECE lipton2004
	Description
	Implementation details 

	Improved ECE chan2019
	Description
	Implementation details 

	0.618-EFX AMANATIDIS2020
	Description
	Implementation details 

	0.73-EFR EFR
	Description
	Implementation details and challenges

	Match&Freeze amanatidis2021a
	Description
	Implementation details and challenges

	Leximin++ plautroughgarden2020
	Description
	Implementation details and challenges

	1.45-MNW barman18
	Description
	Implementation details and challenges
	Counter-example not achieving 1.45-MNW


	Experiments
	Execution time experiments
	Methodology
	Results: fixed number of agents, varying number of goods
	Results: fixed number of goods, varying number of agents

	Fairness Criteria conformity experiments
	Methodology
	RoundRobin
	Improved ECE
	Envy-Cycle Elimination (ECE)
	0.618-EFX
	0.73-EFR
	Match&Freeze
	Leximin++


	Conclusions
	Key findings & Future work
	Limitations

	Bibliography
	Additional results
	Pseudocodes

