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Abstract
This thesis presents an investigation into the robustness of perception systems for
autonomous vehicles (AVs), focusing on the impact of environmental corruptions
on model performance. Leveraging synthetic data generation and advanced object
detection frameworks, this study examines how different types of corruptions—such as
fog, rain, snow, and motion blur—affect the accuracy of 2D object detection models.
The YOLOv8 model serves as the baseline for evaluating performance across corrupted
and clean datasets, with a particular emphasis on identifying the conditions under which
model performance significantly declines.

The research methodology encompasses the generation of synthetic data to minimises
the influence of real-world corruptions associated with the training and testing of
the YOLOv8 model under these conditions. The findings reveal that environmental
corruptions adversely affect model accuracy, with varying degrees of impact across
different corruption types. The study contributes to the field by demonstrating the
importance of incorporating synthetic data in training procedure to enhance model
robustness and by providing insights into the limitations of current perception systems
in AV applications. This work not only benchmarks the resilience of AV perception
models against environmental corruptions but also sets the stage for future research
aimed at developing more adaptive and reliable AV systems.
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Chapter 1

Introduction

1.1 Motivation

The development of autonomous vehicles (AVs) stands as a representative example of
how perception systems can revolutionise human-machine interaction. AVs, engineered
to navigate through complex environments without human intervention rely heavily on
a integration of sensors and algorithms to interpret and respond to their surrounding
environments[31]. Thus, the rigorous evaluation of such systems before their deploy-
ment becomes imperative. Traditional testing methods, such as extensive real-world
trials, present considerable challenges, including impracticality and substantial risks.
Furthermore, the unpredictability of real-world conditions, such as extreme weather,
can corrupt sensor data, adding to the challenges of evaluating artificial intelligence
(AI) and machine learning (ML)-based AV systems. These systems’ complex nature,
combined with the diverse scenarios they encounter, makes providing analytical assur-
ances complicated. In this context, metrics that assess the reliability of AV perception
systems, such as Perception Error Models (PEMs) [25] emerge as a vital tool.

Building on the foundation laid by perception model evaluation metrics such as PEMs,
this thesis delves into two critical areas of investigation to further our understanding
and assessment of AV perception systems. The first area focuses on the generation of
synthetic data according to corruption types - a process to explore different methods for
creating synthetic data according to corruption types; and evaluate 2D object detection
models using corrupted data - a critical analysis on existing 2D object detectors to
evaluate their performance in extreme conditions.

1.1.1 Synthetic Data Generation

In the rapidly advancing field of AI/ML technology, the development of high-precision
object detection and segmentation models is of great importance. These models serve
as the foundation for AV’s perception systems, enabling them to interpret and navigate
complex real-world environments. However, the journey toward achieving exceptional
model accuracy entails not only enhancing the precision of these models but also ensur-
ing their robustness and reliability under diverse conditions. This necessity becomes
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Chapter 1. Introduction 2

particularly evident when considering the challenges posed by real-world scenarios,
which often include adverse weather conditions such as heavy fog, rain, and snow, that
can severely impact sensor performance.

Traditional training datasets, such as KITTI [9] and nuScenes [3], have played a crucial
role in the development of perception models for autonomous driving. However, these
datasets typically present sanitized and idealized conditions that do not fully encapsulate
the complexities and imperfections encountered in real-world environments. This gap
raises a critical question: Can models trained exclusively on such clean data reliably
perform in the real world, where conditions are far from ideal? This question is not
simply academic but has direct implications for the safety and reliability of autonomous
vehicles.

Addressing this challenge requires a paradigm shift in how we prepare our models for
the unpredictability of real-world operations. One promising approach is the generation
of synthetic data[8] that introduces corrupted or noisy elements into training datasets.
This technique simulates the data imperfections and extreme conditions, such as heavy
fog and snow, that autonomous vehicles must navigate. By integrating this synthetic
data into the training process, we aim to develop perception models that are not only
accurate but also resilient and adaptable to the diverse scenarios they will encounter in
real life.

Synthetic data generation serves two purposes. Firstly, it enhances the model’s ability
to cope with data imperfections, thereby improving its performance in real-world
conditions where sensor accuracy is crucial. Adverse weather conditions, for example,
can obscure visual cues and affect the readings of LiDAR intensity and depth values,
leading to decreased prediction accuracy. Incorporating synthetic data that minimises
these conditions during the training phase allows models to better anticipate and adjust
to such challenges[34]. Secondly, synthetic data generation offers a practical and
cost-effective alternative to extensive real-world testing. While physical world testing
provides high-fidelity results, it is often unachievable due to its cost, time consumption,
and associated risks. Virtual environment testing[24], on the other hand, although
computationally demanding, enables the simulation of complex scenarios with a level
of precision and scale that is unattainable in physical tests.

In summary, the introduction of synthetic data generation into the training of AV’s
perception models represents a critical step towards bridging the gap between idealised
datasets and the intricate realities of the real world. By preparing models to effectively
handle data imperfections and extreme conditions, we can significantly enhance their
robustness, reliability, and, ultimately, their safety in autonomous driving applications.

1.1.2 Model Evaluation on Corrupted Datasets

The integration of synthetic data into AV perception model training is a crucial step
towards making these systems more robust and reliable, even in challenging environ-
mental conditions. To effectively measure how well these models perform, especially
for 2D object detection, it’s essential to test them against datasets that mimic real-world
imperfections, like blurring, noise, or bad weather. This process not only tests the mod-
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els’ resilience but also helps pinpoint areas needing improvement. 2D object detection
is vital for AVs since it helps them identify and place objects correctly, a key factor
in making safe navigational decisions. By evaluating these detection systems under
a range of distorted conditions, we aim to ensure they can handle the kind of visual
challenges sensors face in the real world, thereby offering a thorough check on their
performance.

Evaluating the performance of 2D object detectors on corrupted datasets utilises key
metrics such as accuracy, recall, and precision. These metrics offer a quantitative
measure of how well models can identify and localise objects, detect all relevant objects
within a scene, maintain correct predictions, and consistently perform across different
levels of data corruption. Initial evaluations indicate a wide range of outcomes, with
some models showing a significant decline in detecting certain objects (sitting human
e.g.) under extreme conditions like motion blur or extreme weather, which raises
concerns about their applicability in real-world adverse conditions.

This critical analysis of 2D object detectors on corrupted datasets offers invaluable
insights for future model development. It underscores the importance of including a
diverse range of synthetic data conditions during training to enhance model robustness
and highlights the benefits of integrating adaptive algorithms and advanced sensory
processing techniques to reduce the impact of data corruption. As we move forward,
developing 2D object detection models must focus on refining accuracy and precision in
ideal conditions while also enhancing resilience against the unpredictable variances of
real-world scenarios. This approach will be crucial in advancing the safety, reliability,
and overall effectiveness of AV perception systems as they navigate the complexities of
the real world.

1.2 Research Hypothesis and Objectives

The idea is based on the hypothesis that real-world corruptions can have an impact on
the performance of perception models trained on clean datasets. This is because models
trained on clean datasets usually do not generalise well to corruptions.

In this paper, we first explore different methods for creating synthetic data according to
corruption types and then design 4 types of common corruptions in 2D object detection
for camera sensors to comprehensively and rigorously evaluate the corruption robustness
of current 2D object detectors.
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Background

2.1 Related Works

2.1.1 Perception Error Model

Sensors facilitate the interaction between devices and their environment, converting
physical phenomena into quantifiable data. In automation, sensors provide real-time data
essential for decision-making. Therefore, it is important to know how the sensor and
the corresponding perception model perform in different situations. Wrong perception
results may lead to serious accidents.

A typical challenge for sensor accuracy and sensing models is adverse weather con-
ditions. Heavy fog, rain, and snow can obscure visual elements, affecting the light
detection and ranging (lidar) intensity and, consequently, the depth value readings.
These issues will affect the prediction accuracy of models trained on clean data sets and
are frequently encountered in real-world scenarios. To evaluate sensor performance
under such conditions, physical world testing is one approach. Although these tests
offer high fidelity results, they can be costly, time consuming, and risky. An alterna-
tive is virtual environment testing, which is automatic but also demands significant
computational resources for high-precision simulation.

To tackle these challenges in error analysis and perception system performance, Andrea
Piazzoni et al. introduced the Perception Error Model (PEM)[9] – a virtual simulation
tool for assessing the impact of perception errors on autonomous vehicle safety.

PEM works by taking a ground truth representation of the world and generating a
perceived version of it, mimicking the combined function of sensing and perception
subsystems in a virtual space. It is sensor-agnostic, meaning it is not tied to specific
sensor models, allowing for flexible integration into simulation pipelines. PEM analyzes
a collection of surrounding objects, both obstacles and road users, as perceived by the
sensing and perception system. It can model the entire system, including sensors and AI
processing of sensor data, without being restricted to specific sensors or AI algorithms.
PEMs are useful for evaluating the performance of perception software independently.
Perception errors are categorized into detections, misclassification, object parameters,

4



Chapter 2. Background 5

and dynamics. By contrasting ground truth with the perception algorithm’s output, the
magnitude of these errors can be quantified into a single metric.

2.1.2 Corrupted Data reviewed

In the realm of computer vision, data corruption includes a variety of distortions or
perturbations that can significantly impair the effectiveness of machine learning models.
These corruptions arise from a range of factors, including weather conditions, sensor
inaccuracies, motion blur, occlusions, and scene rotations. The generation of corrupted
data is a critical area of study, aimed at revealing the vulnerabilities of image recognition
models to common distortions.

One prominent method for generating corrupted data is through algorithmically applied
perturbations on real images, as demonstrated by the Two Dimensional Common
Corruptions (2DCC)[11] initiative. This approach led to the creation of the IMAGENET-
P dataset, designed to assess classifiers’ resilience against typical perturbations. In
contrast, other efforts, such as ObjectNet[1], focus on capturing corruptions within
real-world settings. While this method offers realistic scenarios, it is limited by its
substantial manual labor requirements, lack of scalability, and limited control over
rotation, background, and viewpoint parameters.

An alternative strategy involves utilizing computer graphics-based 3D simulators, as
proposed by 3DB[18] , to generate corrupted data. Additionally, open-source libraries
like imgaug enable the transformation of a collection of images into a significantly
larger set of slightly modified versions. The Three Dimensional Common Corruptions
(3DCC) [17]approach generates corruptions with adjustable parameters, considering
scene geometry and requiring RGB and depth images, and occasionally 3D meshes.
This method ensures a more realistic depth of field in the corrupted images.

Corrupted data serves a pivotal role in evaluating the robustness of machine learning
models, particularly through benchmarking exercises on corrupted datasets. Yinpeng
Dong and colleagues present a thorough examination of the resilience of 3D object
detection models used in autonomous driving against data corruption[6]. By categoriz-
ing corruptions into five levels and identifying 27 distinct types, the authors establish
benchmarks on the KITTI[9], nuScenes[3], and Waymo[33] datasets. Their large-scale
experiments reveal varying performances of state-of-the-art 3D detectors under differ-
ent corruption types, highlighting the benchmarks’ effectiveness in assessing detector
robustness.

Furthermore, incorporating corrupted data into the training process can enhance model
performance. By adding a corresponding set of corrupted training data to the original
dataset, models can improve their accuracy and robustness, an essential consideration
for applications like autonomous driving where reliability under diverse conditions is
paramount.

In the realm of autonomous driving, the reliability and accuracy of sensor data are
paramount. As vehicles navigate through ever-changing environments, they encounter
various conditions that can corrupt the data collected by onboard sensors, such as
cameras and LiDAR[29]. Understanding these corruptions is crucial for developing



Chapter 2. Background 6

robust autonomous driving systems capable of performing safely under diverse circum-
stances. This article categorizes these corruptions into four primary types, considering
their source and impact on sensor data: weather-level, sensor-level, motion-level, and
object-level corruptions.

Weather-level Corruptions. Weather-level corruptions significantly affect the perfor-
mance of sensor systems, especially in autonomous vehicles that must navigate through
diverse atmospheric conditions. In addition to snow, rain, fog, and strong sunlight[38],
other elements like hail, dust storms, and varying degrees of cloud cover also have
critical impacts. For example, hail can cause physical damage to sensors, affecting
their accuracy, while dust storms can severely limit visibility and sensor range. Cloud
cover variations can lead to inconsistent lighting conditions, making it challenging for
cameras to maintain consistent visibility and for LiDAR to accurately gauge distances.
Adaptive algorithms that can adjust to these varying conditions are essential for ensuring
consistent performance, necessitating advanced machine learning techniques that can
predict and compensate for environmental impacts.

Sensor-level Corruptions. Sensor-level corruptions include issues beyond Gaussian,
uniform, and impulse noise, such as sensor aging, calibration drift, and temperature-
induced malfunctions[28]. Over time, sensors can degrade, leading to a gradual decrease
in data quality, a phenomenon that is challenging to detect and correct. Calibration drift
refers to the gradual misalignment of sensor parameters, requiring regular recalibration
to ensure accuracy. Temperature fluctuations can also affect sensor performance, with
extreme cold or heat impacting sensor sensitivity and signal processing capabilities.
Sophisticated diagnostics and self-healing mechanisms that can detect anomalies and
initiate corrective actions without human intervention are required to address these
issues.

Motion-level Corruptions. Motion-level corruptions also include vibration-induced
distortions and the effects of sudden accelerations or decelerations, in addition to
motion compensation, moving objects, and motion blur. High-frequency vibrations,
common in rough terrain or due to engine operation, can blur images and scatter LiDAR
points[37], obscuring critical details. Sudden changes in vehicle speed can lead to
discrepancies between sensor readings, complicating the task of object tracking and
prediction. Advanced stabilization techniques and algorithms that can dynamically
adjust to these conditions are vital for maintaining data integrity and ensuring accurate
environmental modeling.

Object-level Corruptions. Object-level corruptions involve challenges related to shape,
material, and orientation and also include issues like occlusion, reflectivity variations,
and object clustering[7]. Occlusions, where objects are partially hidden by others,
can significantly hinder accurate detection and identification. Reflectivity variations,
especially in materials that absorb or reflect light differently, can confuse sensors
and lead to inaccurate readings. Object clustering, where multiple objects are close
together, poses a challenge for systems trying to distinguish between them, requiring
sophisticated segmentation algorithms.
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Table 2.1: Comparison existing autonomous driving datasets

Dataset (*)Frames rain fog snow bler
A2D2[10] 41K ✗ ✗ ✗ ✗

ApolloScape [36] 150K ✓ ✗ ✗ ✗

CityScapes[4] 25K ✗ ✗ ✗ ✗

KITTI[9] 41K ✗ ✗ ✗ ✗

nuScenes[3] 1.4M ✓ ✗ ✗ ✗

Waymo Open[33] 37K ✓ ✗ ✗ ✗

Foggy Cityscapes[30] 20k ✗ ✓ ✗ ✗

2.1.3 Datasets for Autonomous Driving reviewed

Autonomous driving datasets such as A2D2, CityScapes, KITTI, nuScenes, Waymo
Open, and Foggy Cityscapes are foundational for developing vehicle perception systems.
However, these datasets often lack in capturing comprehensive real-world corruptions
like adverse weather and blurriness showen in Table 2.1, crucial for training robust
detection models. This deficiency, mainly due to the high cost of collecting real-
world corruption data, presents a significant challenge. The A2D2 dataset, with its
extensive repository of 41,000 frames, and similarly CityScapes and KITTI, fail to
include critical conditions such as rain, fog, snow, and blurriness, essential for ensuring
vehicular performance reliability across diverse environmental landscapes. Conversely,
ApolloScape steps forward by incorporating rainy conditions into its 150,000 frames
but does not cover fog, snow, and blurriness. nuScenes and Waymo Open acknowledge
rain in their respective datasets but still miss fog and snow data, while Foggy Cityscapes
fills a part of this gap by featuring fog in its 20,000 frames but lacks rain, snow, and
blurriness coverage.

Efforts to address these gaps include the assembly of specialized datasets like See-
ing Through Fog (STF)[2], Ithaca365[5], and Canadian Adverse Driving Conditions
(CADC)[26], which focus on adverse weather conditions, alongside collections that
highlight road anomalies from 2D images. These efforts are aimed at enhancing model
resilience by providing more comprehensive environmental representations. Despite the
value of these datasets, they are often limited by the costs and logistics of gathering rare,
real-world data and are primarily used for model evaluation rather than training, exhibit-
ing a notable domain gap from larger-scale training datasets. This gap is exacerbated by
the varied conditions under which these datasets are collected, such as different cities,
vehicles, and sensor setups, complicating the isolation of specific factors influencing
model robustness.

In response to these challenges, there is a growing trend towards synthetic augmentation
of clean datasets with real-world corruption simulations to benchmark model resilience.
This approach, pioneered by ImageNet-C[11]in the image classification domain with 15
types of corruptions, including noise, blur, and a range of weather to digital disruptions,
has been extended to other areas such as 3D object detection and point cloud recognition.
Such synthetic corruption proves valuable in robustness evaluation across different
facets of autonomous driving technologies, demonstrating the potential to bridge the



Chapter 2. Background 8

domain gap and improve the reliability of perception systems under diverse operating
conditions.

2.2 YOLOv8 - The Baseline Model reviewed

In the landscape of contemporary research within the realm of object detection, this
project has designated the YOLO (You Only Look Once) [15] algorithm as the baseline
model, a decision underscored by its real-time performance and suitability for object
detection tasks. The YOLO algorithm, celebrated for bridging the gap between speed
and accuracy, emerges as the cornerstone for our exploration due to its unparalleled real-
time processing abilities. This attribute is particularly pivotal in applications where the
immediacy of object detection is critical for prompt decision-making and action-taking.

In detail, this work uses the YOLOv8 [14]released in January 2023 by Ultralytics;
since, at the time of this writing, contributors still working on the YOLOv8 paper and
aiming to share it with the community as soon as it’s ready. Following the current trend,
YOLOv8 is anchor-free, reducing the number of box predictions and speeding up the
Non-maximum impression (NMS). YOLOv8 provided five scaled versions: YOLOv8n
(nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large) and YOLOv8x (ex-
tra large). The small, medium, and large models have (11151080, 25879480, 43660680)
parameters and (225,295, 365) layers respectively

YOLOv8 is the latest version of the YOLO object detection model[35]. This latest
version has the same architecture as its predecessors but it introduces numerous im-
provements compared to the earlier versions of YOLO such as a new neural network
architecture that utilizes both Feature Pyramid Network (FPN)[19] and Path Aggrega-
tion Network (PAN)[20] as shown in Figure 2.1.The FPN works by gradually reducing
the spatial resolution of the input image while increasing the number of feature chan-
nels. This results in the creation of feature maps that are capable of detecting objects at
different scales and resolutions. The PAN architecture, on the other hand, aggregates
features from different levels of the network through skip connections. By doing so,
the network can better capture features at multiple scales and resolutions, which is
crucial for accurately detecting objects of different sizes and shapes.The backbone of
YOLOv8, CSPDarknet53, is a refined version of the Darknet architecture[27], enriched
with Cross Stage Partial networks to boost feature extraction efficiency. This backbone
is instrumental in processing the complex visual information presented in input images.
The novel neck architecture that employs FPN and PAN facilitates effective feature
fusion, bridging the backbone and the YOLO head. The YOLO head, a consistent
feature across the series, utilizes these processed features to predict bounding box
coordinates, objectness scores, and class probabilities, enabling the model to efficiently
identify various objects.

Intersection Over Union. In YOLO based object detection algorithms, the term
Intersection Over Union (IoU) stands for the metric used to quantify the accuracy of an
object detector on a particular dataset. It measures the overlap between the predicted
bounding box and the ground truth bounding box for each detected object. Specifically,
IoU is calculated by dividing the area of overlap between the predicted bounding box
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Figure 2.1: YOLOv8 Architecture [32]

and the ground truth bounding box by the area of union of these two boxes. The IoU
score ranges from 0 to 1, where 1 indicates a perfect match between the predicted and
the ground truth bounding boxes, and 0 indicates no overlap. In the training process of
YOLO based models, a higher IOU indicates that higher

2.3 Machine Learning Basis

2.3.1 Mathemathical Basis

Accuracy. Accuracy is one of the most common metrics used, and it represents the
proportion of true results (both true positives and true negatives) among the total number
of cases examined.

ACC =
T P+T N

T P+T N +FP+FN
(2.1)

However, accuracy may be misleading in datasets with imbalanced classes. In our case,
since the dataset is curated to be relatively balanced (33:30), accuracy can serve as a
meaningful evaluation on model performance.

Precision. Precision, also known as positive predictive value, measures the proportion
of correctly predicted positive observations to the total predicted positives. It mono-
tonically decreases when the FP rate increases, and thus can inform us with the FP
rate.

Precision =
T P

T P+FP
(2.2)

Recall. Recall, also known as sensitivity or true positive rate, measures the proportion
of actual positives that are correctly identified by the model. It is a crucial metric
in situations where the cost of missing a positive case (a false negative) is high. In
essence, it focuses on the model’s ability to capture all relevant cases by minimizing
false negatives.

Recall =
T P

T P+FN
(2.3)

F1-score. The F-score or F1 Score is the harmonic mean of precision and recall
(sensitivity). It provides a balance between precision and recall in one number, capturing
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the trade-off between the two. The F1 Score is useful as it reflects a balance between
Recall and Precision; it is high only when both recall and precision are high.

F-score =
2

1
Precision +

1
Recall

=
2×Precision×Recall

Precision+Recall
(2.4)

2.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are essential in visual data analysis, distin-
guished by their capacity to learn spatial hierarchies of features from images. This
learning process is facilitated through convolutional layers that apply filters to input
data, capturing critical attributes like edges and textures. The architecture of CNNs,
which includes convolutional, pooling, and fully connected layers, enables them to
efficiently extract and process meaningful patterns from the visual input.

The application of CNNs is notably exemplified in object detection tasks, such as
those performed by the You Only Look Once (YOLO) series. The latest iteration,
YOLOv8 [14], represents a significant advancement in this domain. It employs an
anchor-free approach and a sophisticated neural network architecture that integrates
Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) for superior
object detection across various scales.

YOLOv8’s architecture is anchored by the CSPDarknet53 [27] backbone, optimized
with Cross Stage Partial networks for enhanced feature extraction. This backbone
processes complex visual information efficiently, while the novel neck architecture
leveraging FPN and PAN ensures effective feature fusion. The YOLO head then uses
these features to predict bounding boxes, objectness scores, and class probabilities with
high accuracy. This streamlined approach underscores the power of CNNs in advancing
object detection, highlighting their role in the ongoing evolution of computer vision
technologies.

2.3.3 Feature Pyramid Network (FPN)

The Feature Pyramid Network (FPN) [19] is a pivotal architecture designed to enhance
the capacity of convolutional neural networks (CNNs) for detecting objects across
different scales. FPN effectively addresses the challenge of scale variability among
objects by constructing a pyramid of features where each level represents features at
a different scale. This multi-scale representation enables the model to detect objects
ranging from very small to large within the same framework.

At the core of FPN’s design is its top-down architecture with lateral connections. The
network takes high-level semantic features from deeper, coarser layers of the network
and enriches them with finer details from earlier layers through lateral connections. This
process results in feature maps of varying resolutions, each carrying strong semantic
information, making it possible to detect objects at different scales with high accu-
racy. FPN has been widely adopted in various object detection frameworks, including
YOLOv8 [14], where it significantly improves detection performance by providing a
robust method for handling scale variations within images.
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2.3.4 Path Aggregation Network (PAN)

The Path Aggregation Network (PAN) [21] further refines the concept of feature fusion
in convolutional neural networks, aiming to enhance the flow of information across
different scales. PAN builds upon the foundation laid by FPN by adding an additional
bottom-up pathway, which augments the flow of low-level detail to the topmost layers
of the network. This enhancement ensures that even the highest-level feature maps
retain fine-grained details, crucial for accurate object detection, especially for small
objects.

PAN’s architecture is characterized by its efficient aggregation of features at multiple
levels, improving the feature hierarchy within the network. This is achieved by creating
a more effective pathway for information from the initial layers of the network, which
capture rich detail and texture information, to reach the output layers directly. Such an
architecture not only bolsters the detection capabilities of models like YOLOv8 [14]
but also contributes to the overall robustness and precision of the detection process
across varying object sizes and complexities. By ensuring a seamless integration of
both high-level semantic and low-level detail features, PAN plays a crucial role in
the evolution of CNN architectures towards more sophisticated and nuanced object
detection methodologies.
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Data Preparation

The main objective of this part of the work is to generate corrupted datasets as a virtual
environmental dataset used for benchmarking model robustness by artificially adding
corruptions to the existing clean dataset. The KITTI 2D object detection dataset was
selected as the base dataset for generating the corrupted dataset for the experiments.
The KITTI 2D object detection dataset consists of 7481 training images and 7518 test
images, comprising a total of 80256 labelled objects.

Four common types of corruption are selected for the experiments: fog, rain, snow, and
Motion Blur. Fog, rain, and snow are the weather that can easily affect the camera-based
object detection model, and motion corruption is the corruption type that has the greatest
impact on camera-based object detection models[6].

Table 3.1: Comparison existing corruption methods

Method depth include AI based weather condition include
3DCC[17] ✓ ✓ ✓

2DCC[11] ✗ ✓ ✓

ObjectNet[1] ✗ ✓ ✗

3DB[18] ✗ ✗ ✗

Imageaug[16] ✗ ✓ ✓

Imagecorruptions[22] ✗ ✗ ✓

Augmix[12] ✗ ✓ ✗

In our work, We studied and compared the methods in the Table 3.1 and selected two
methods to generate corruption.

3.1 3DCC

First, I chose 3DCC for adding corruption to the dataset. The work on 3D Common
Corruptions (3DCC) presents a novel framework for evaluating and enhancing the
robustness of computer vision models by incorporating realistic, geometry-aware image
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corruptions. Unlike previous benchmarks that apply uniform 2D modifications, 3DCC
leverages scene depth information to simulate corruptions that are more representative
of real-world scenarios, such as motion blur that varies with object distance or lighting
changes affecting different parts of a scene differently.

3DCC has significant advantages for developing more robust AI systems. Firstly,
it introduces a more challenging and comprehensive set of corruptions that models
may encounter in real-world applications, thereby providing a more accurate measure
of their performance and resilience. Secondly, by considering the 3D geometry of
scenes, it helps in identifying and addressing the specific vulnerabilities of models to
spatially varying perturbations, leading to improvements in model design and training
methodologies.

Utilizing 3DCC can be particularly beneficial in applications where models are deployed
in dynamic and visually complex environments, such as autonomous driving, medical
imaging, and augmented reality. By training and testing models against 3DCC’s suite of
corruptions, developers can better ensure that their models are not only accurate under
ideal conditions but also reliable when faced with the unpredictable nature of real-world
visual data.

Moreover, the framework’s extendability and efficiency in generating corruptions make
it a versatile tool for the community. Researchers and practitioners can adapt 3DCC
to their specific needs, applying it to various datasets and using it to explore new
dimensions of robustness research. The ongoing development and use of 3DCC have
the potential to significantly advance our understanding of AI robustness, pushing
the field towards the creation of models that truly understand and can navigate the
complexity of the 3D world.

These features of 3DCC make it by far the best method of generating corruption for this
experiment.

In order to successfully generate a corrupted image using 3dcc, 3dcc requires the
following inputs:

Table 3.2: Comparison of existing corruption methods

Input Detail

RGB Image
The base RGB image serves as the foundation for corruption generation.
This image captures the visual content of the scene and serves as the
canvas upon which corruptions will be applied.

Depth Map

The depth map provides crucial spatial information about the scene,
allowing 3DCC to understand the three-dimensional layout of objects.
Depth maps are typically obtained using depth-sensing technologies
such as LiDAR or stereo vision.

Corruption
Parameters

3DCC offers a range of parameters that allow users to customize the type
and severity of corruption applied to the image. These parameters may
include variables such as fog density, rain intensity, motion blur strength,
and lighting variations.
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Despite its innovative approach, 3DCC is not without challenges. The reliance on
accurate depth information can limit its applicability, particularly in scenarios where
such data is unavailable or of low quality. Furthermore, the current set of corruptions,
while extensive, may not cover the full gamut of real-world anomalies, suggesting room
for expansion and refinement.

However, difficulties were encountered when implementing the 3dcc method, as the
3dcc method requires a depth map to generate the corrupted type with depth of field
information, and it requires a dense depth map, which creates a great challenge for
applying the 3dcc method to the KITTI dataset. Since the sensor used in KITTIdataset
to collect depth information is a Velodyne laser scanner, the depth data in the dataset is
only a sparse point cloud with a density of about 30%, which is completely unable to
be used as an input for 3dcc.

3.1.1 Depth Completion Methods reviewed

Depth completion methods[13] are critical for enhancing sparse depth information,
a common challenge in computer vision tasks like autonomous navigation and 3D
mapping. These methods aim to fill in missing or unreliable depth data to create
comprehensive depth maps essential for accurate scene understanding. Two principal
strategies for depth completion include:

• Point Cloud Approach: This technique transforms sparse depth inputs into point
clouds, which are then densified through various interpolation methods. It might
leverage geometric algorithms or deep learning models to infer the missing depth
information based on the spatial distribution of known points. This approach is
particularly useful in LiDAR-based depth acquisition, where depth data might be
inherently sparse but highly accurate.

• Monocular Camera Depth Estimation: This method utilizes convolutional neu-
ral networks (CNNs) to predict depth from 2D images. Trained on large datasets
with depth annotations, these models learn to identify visual cues associated with
depth, such as object size, perspective, and shading, to estimate a dense depth
map from monocular cues alone.

In an attempt to derive a dense depth map for this project, both depth-completion
and monocular depth estimation techniques were explored. Unfortunately, the efforts
faced setbacks when the generated images did not align with expectations, leading to
unsatisfactory outcomes. Consequently, the implementation of the 3dcc method, aimed
at integrating these depth completion strategies, was put on hold. This decision reflects
the challenges and complexities inherent in depth completion, highlighting the need for
further research and experimentation to refine these methods for practical applications.
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Figure 3.1: Original image

Figure 3.2: Generated depth map

Figure 3.3: Corrupted image from 3DCC
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3.2 Imgaug

As an alternative to 3dcc this experiment ended up using the imageaug library(cite) as
the final method of adding corruptions to the dataset.

The imgaug library stands out in the field of machine learning for its comprehensive
suite of image augmentation capabilities, designed to significantly enhance dataset
diversity and robustness. This Python library supports a wide range of augmentation
techniques for images, and it extends its functionality to keypoints/landmarks, bounding
boxes, heatmaps, and segmentation maps. Its design focuses on efficiency, operating
effectively across multiple CPU cores, and offers a stochastic interface that simplifies the
creation of complex augmentation pipelines. This flexibility and power make imgaug an
invaluable tool for preparing datasets in tasks requiring high levels of visual recognition
and analysis accuracy, such as autonomous driving and medical image processing.

Fog: The project use imgaug library to implement it, and use the predefined severities
level 3 from 1, 2, 3, 4, 5 to simulate fog environment. Rain: The project set the
parameter of rainfall density as 0.10 from 0.01, 0.06, 0.10, 0.15, 0.20 in RainLayer
in imgaug library to simulate rain environment. Besides, the project also add a 30%-
opacity gray mask layer, and reduce the brightness by 30%.Snow: The project use the
imgaug library[16] to implement it, and use the pre-defined severitie level 2 from 1,
2, 3, 4, 5 to simulate snow environment, also add a 30%-opacity gray mask layer, and
reduce the brightness by 30%. Blur: The project use imgaug library to implement it,
and use the predefined zoom factor 2 from 1, 2, 3, 4, 5 to simulate blur condition.

The KITTI 2D objection detection dataset contains 7481 training and 7518 test samples.
As we do not have access to labels to the test set, Our corrupted KITTI dataset is con-
structed upon the training set. Therefore our dataset will contain 4 types of corruption,
each containing 7481 images that have been added with the corresponding corruption
type.

Figure 3.4: Clean image
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Figure 3.5: Image with fog

Figure 3.6: Image with rain

Figure 3.7: Image with snow

Figure 3.8: Image with blur
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Evaluations

4.1 Experiment Setup

To evaluate the robustness of YOLOv8 against the common corruptions mentioned
above, experiments were conducted by training and testing the YOLOv8 object detec-
tion model on the SemanticKITTI dataset. This included both a clean dataset and a
synthetically corrupted dataset, respectively. Additionally, testing was performed on
models trained with the clean dataset but tested on the corrupted dataset to provide a
reference set. To ensure the consistency of results, all experiments were performed with
the same number of images in the training and testing sets, with 5984 images and 1497
images respectively. The Intersection over Union (IoU) threshold was set to 0.7, the
training epochs to 10, and the batch size to 16. All experiments were conducted on an
NVIDIA RTX 4090 Laptop GPU [23].

4.2 Experiment Results

From the confusion matrices below, we can see that when the models are both trained
and tested on the clean data, or both on the same corrupted data, their performances are
significantly better than when they are trained on different groups of data. This suggests
that adding corruption would significantly affect the data distribution and thus YOLO’s
performance.

4.2.1 Accurcy

The detailed results of the average accuracy of each model are shown in Table 4.1.
Training and testing the YOLOv8m model on clean data sets a benchmark, yielding an
accuracy of 72.14%. This performance serves as a baseline for evaluating the impact of
various corruptions on model accuracy. Training and validating on foggy conditions
resulted in an accuracy drop to 65.00%. This decrease highlights the model’s struggles
with obscured visibility, a common issue in foggy environments where the distinction
between objects and the background can be significantly diminished. Similar to fog, rain
introduced visual noise and dynamic changes, with the model achieving a slightly higher

18
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accuracy of 67.10%. The uniform whiteness and potential for occlusion and alteration
of object contours in snow significantly hamper the model’s detection capabilities. The
model faced its most significant challenge with snow, with accuracy plummeting to
61.13%. Representing a general reduction in image clarity, blur led to an accuracy
of 61.25%, closely mirroring the difficulties observed with snow. This underlines the
model’s difficulties in handling images where details are smeared or obscured, affecting
its ability to discern and classify objects accurately.

The first row of the table, revealing how the YOLOv8m model trained on clean data
falters when faced with environmental corruptions such as fog, rain, snow, and blur,
starkly highlights the model’s limitations in adapting to varied visual disturbances. The
accuracy drops from a baseline of 72.14% in clean conditions to 41.50% with fog,
descending further to 34.25% with rain, plummeting to 16.88% under snow conditions,
and reaching its nadir at 13.50% when confronted with blur. This descending trend in ac-
curacy underscores a critical vulnerability of the model: its performance is significantly
compromised as the visual clarity of its input deteriorates. Among these, the challenges
posed by blur—which effaces fine details critical for object identification—and by
snow—which alters object appearances and the environment drastically—prove particu-
larly debilitating. Conversely, fog and rain, despite reducing visibility and introducing
dynamic visual noise, result in less dramatic declines.

The marked decline in model accuracy, when transitioning from clean to corrupted
conditions or vice versa, points to a significant generalization gap. For instance, when
the model trained on clean data is tested on corrupted datasets (fog, rain, snow, blur),
there’s a stark performance drop. It suggests that the model heavily relies on the
pristine conditions of the training dataset, which lacks the complexity and variability of
real-world scenarios.

Table 4.1: Results in Accuracy(%)

Model clean fog rain snow blur
Clean KITTI model 72.14 41.50 34.25 16.88 13.50
Fog model - 65.00 - - -
Rain model - - 67.1 - -
Snow model - - - 61.13 -
Blur model - - - - 61.25

4.2.2 Confusion Matrix

The thorough analysis of the YOLOv8m model, examining its performance trained
on clean data and tested across various corruptions, reveals key trends and gaps in its
detection capabilities. The confusion matrices in Figure 4.1 show that under conditions
like blur, the model’s accuracy significantly drops. This visual interference results in an
increase in both false positives and false negatives across several classes. For example,
vehicles such as ’Cars’ and ’Vans,’ which the model usually distinguishes well in clear
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conditions, are often mixed up when blurred, leading the model to confuse one for the
other or to miss them altogether.

In conditions like fog, the confusion matrix displays a similar, but less severe, pattern
compared to blur. This may be because fog, while it hides details, doesn’t alter the
shapes of objects as much as blur does. The model manages to hold onto the basic
shapes, resulting in slightly better performance in fog than in blur, but still makes many
mistakes, especially with less distinct object categories.

The problem becomes worse with rain and snow, both of which add dynamic and static
visual noise, respectively. In snow, the uniform visual input results in a higher rate of
object misclassification, with the confusion matrices showing a notable rise in false
negatives. This suggests that objects covered or surrounded by snow often blend into the
background. Rain, while also challenging, doesn’t impact the model as much, possibly
because the visual distortions caused by rain are more temporary and less overwhelming
than the blanket effect of snow.

When looking at the model’s performance on matched conditions, where it is trained and
tested on the same type of corruption, the matrices reflect greater expertise, suggesting
that the model has learned to recognize and predict patterns specific to each corruption
type. However, this skill does not generalize well across conditions, which is critical
for real-world applications where variability is common.

A closer examination of the matrices for each condition shows the model’s varying
response to different classes under corruption. For ’Car’ and ’Van’ categories, despite
some confusion, the model still achieves a moderate true positive rate. However, for
categories like ’Cyclist,’ ’Truck,’ and ’Misc,’ the true positive rates are significantly
lower across all corruption types. This inconsistency in performance could be due to the
different levels of visual complexity and representation in the training data, particularly
for categories like ’Tram’ and ’Person sitting,’ where the model’s performance is
particularly poor in corrupted conditions.

Notably, the ’Cyclist’ class shows a dramatic drop in detection in corrupted conditions,
which is concerning for safety in autonomous driving scenarios. Similarly, the ’Truck’
class, likely because of its larger size and unique shape, faces high misclassification rates,
especially in snow conditions where it might be mistaken for part of the environment.

The main trend across all corrupted conditions is the model’s significant difficulty in
accurately detecting less common and smaller objects, suggesting a potential overfitting
to more common features in the training data. This indicates a need to improve the
model’s training approach, using a broader and more balanced dataset that includes
adequate representation of all object classes under various conditions.

4.2.3 F1 score

Looking at the F1-confidence in Figure 4.2curves alongside the confusion matrix offers
a comprehensive view of the YOLOv8m model’s operational strength under different
environmental conditions. The curves, which show the trade-off between precision and
recall at different confidence levels, reveal the model’s certainty in its predictions and
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the balance between detecting as many true positives as possible while minimizing false
positives.

In clear conditions, the F1 curves for classes like ’Cars’ and ’Trucks’ reach high levels,
showing strong model performance with high certainty in its predictions. This high
confidence is supported by high true positive rates and low false positive rates in the
confusion matrix, showing the model’s skill in identifying these categories in clear
settings, likely due to their well-defined and distinct features in the training data.

When conditions change, like in images affected by blurring, there’s a noticeable drop
in the F1 score for almost all classes. The curves go down, showing a decrease in both
precision and recall. This indicates a significant drop in the model’s confidence in its
predictions when faced with obscured or softened object edges. The confusion matrix
supports this, showing increased confusion between similar classes like ’Cars’ and
’Vans’ and an overall rise in mistakes, highlighting the model’s struggle to use detailed
features from visually altered input.

Under foggy conditions, the gradual decrease in the F1 curves suggests a better preserva-
tion of shape recognition, as fog tends to maintain the outer contours of objects to some
extent. However, the confusion matrix shows an increased difficulty in distinguishing
between objects with similar shapes, like ’Trucks’ and ’Vans,’ which can blend into the
foggy background.

With rain and snow, the F1 curves show significant variation for different classes. For
example, the ’Cyclist’ curve drops sharply, especially in snow, emphasizing the model’s
challenge with smaller, less contrasted figures against a chaotic background. This is
concerning, given the safety implications in real-world autonomous navigation. The
confusion matrix reflects these concerns, indicating a rise in false negatives where ’Cy-
clists’ and potentially dangerous objects like ’Person sitting’ are frequently overlooked
or mistaken for harmless elements.

The consistency of the model under matched conditions—such as being trained and
tested in fog—shows a resilient F1 curve, maintaining higher scores across the board.
Yet, the true challenge lies in cross-condition robustness, where the model shows notable
weakness, as seen in the steep drop of the F1 scores when, for instance, a model trained
in clear conditions is tested on snowy images.

4.2.4 Perception-Recall curve

In ideal, clear conditions, the Precision-Recall (PR) curves Figure 4.3 for several
classes such as ’Car’ and ’Truck’ rise towards high precision levels, reflecting the
model’s accuracy in predicting these object classes with fewer mistakes—a key feature
in autonomous systems. These results align with the high mean Average Precision
(mAP) scores, suggesting strong detection capability for classes that are commonly
encountered and have distinct features in the training set.

However, the model’s precision noticeably declines in the PR curves when faced
with blur-corrupted environments. Such conditions significantly reduce the model’s
effectiveness, particularly for ’Cyclist’ and ’Person sitting’ classes, which show a steep
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drop in precision. This highlights the model’s sensitivity to loss of edge information—a
critical issue when the clarity of contours is essential for class differentiation. This
decline is consistent with the analysis of the F1-confidence curve, where a lower
confidence level leads to a decreased F1 score due to more mistakes and missed
detections.

Fog has a less noticeable but still significant effect on precision. Classes with unique
shapes like ’Tram’ manage to keep relatively high precision, as their distinct silhouettes
remain visible. However, for others, such as ’Pedestrian’ and ’Cyclist,’ the curves
indicate an increasing challenge, with precision decreasing more quickly as recall
increases. This matches the trends seen in the confusion matrix and F1 curves, where
the model’s difficulty in distinguishing fine details under foggy conditions becomes
apparent.

Rain and snow have varied impacts across the classes. While ’Truck’ and ’Tram’
keep some level of high precision, showing the model’s ability to recognize larger
objects despite visual challenges, ’Cyclist’ and ’Person sitting’ classes face significant
difficulties. The curves suggest that dynamic elements like rain and static disruptions
like snow greatly affect the model’s ability to maintain a high true positive rate without
increasing the number of false positives, as shown by the PR curve’s steeper descent.

A detailed look at PR curves under matched corruption conditions (e.g., trained and
tested in rain) shows an increased mAP, indicating the model’s specialized adaptation to
specific disturbances. Yet, the significant drop in precision across untrained conditions
reveals a crucial flaw in the model’s ability to generalize—a problem that could hinder
real-world deployment where environmental consistency is not assured.

4.3 Measure the model confidence

4.3.1 Confidence Definition

To evaluate the confidence of the model, we need to introduce a confidence function to
measure the confidence of the model’s predictions.

Given the predicted bounding box of a plot, let Ct be the center pixel of the ground-truth
bounding box, and Cp be the center pixel of the predicted bounding box. We measure
the correctness of the prediction and the ground truth as the negative exponential of the
Euclidean distance between the predicted and ground-truth center pixels:

correctness(Ct ,Cp) = exp[−w.||Ct −Cp||2] (4.1)

where || · ||2 represents the L2 distance, and w ∈R is some regularization constant. Here
we use the exponential function because we want to use the property that the exponential
function reduces monotonically as the distance ||Ct −Cp||2 grows. Moreover, it has
the desirable property that when x ≥ 0, exp[x] ∈ (0,1], which can be directly used to
represent probability.

The reason that we selected this exponential function as a measure of correctness is to
punish very bad predictions. In practice, if the predicted bounding box is too far away



Chapter 4. Evaluations 23

Figure 4.1: Confusion Matrixs (a)blur blur,(b)clean blur,(c)clean clean,(d)clean rain,
(e)clean snow,(f)fog fog,(h)rain rain,(i)snow snow

Figure 4.2: F1-curves (a)blur blur,(b)clean blur,(c)clean clean,(d)clean rain,
(e)clean snow,(f)fog fog,(h)rain rain,(i)snow snow
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Figure 4.3: PR-curves (a)blur blur,(b)clean blur,(c)clean clean,(d)clean rain,
(e)clean snow,(f)fog fog,(h)rain rain,(i)snow snow

from the ground truth one, it is better to consider it a false positive, instead of one that
has a relatively small accuracy. So, ideally, we want the confidence function to be very
small when the distance is big. Thus, the exponential function is just right for this job.

Then, assuming the input features are with distribution D , with ground-truth-bounding
box centers Y , where each y∈Y is a pixel on the image, formally y∈{1, ...,W}x{1, ...,L},
where W and D represents the image width and length, respectively. Given a model
f : D → Y , we define the confidence of f to be:

con f idence( f ) = Vx∼D [correctness( f (x),yx)] (4.2)

where yx is the ground-truth bounding box’s center of x. In intuitively, this metric
measures the overall distances to which the predicted bounding boxes are different from
the ground truth bounding boxes.

In practice, to estimate confidence on a sample test S , we define the empirical confidence
as follows,

con f idence( f ) =
1
S ∑

x∈S
[correctness( f (x),yx)− correctness( f (x),yx)]

2 (4.3)

where correctness( f (x),yx) is the sample mean of the correctness,

correctness( f (x),yx) =
1
S ∑

x∈S
[correctness( f (x),yx)] (4.4)
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4.3.2 Results

We applied the above definition of correctness and confidence on our trained models
and calculated them on the trained datasets. The distribution of the correctness is given
in Figure 4.4 According to the confidence metric larger values indicate that the centroid

Figure 4.4: Distribution of bonding box predicted on fog model

of the detected bonding box is closer to the GT. The confidence result of the model
should be close to normal distribution, Figure 4.4 reflects this well.
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Discussions

5.1 Limitations and Future Works

Despite the fact that this work included common corruptions in autonomous driving,
only a single experiment for each type of corruption is conducted, whereas real-world
environments often contain a mixture of several types of corruption at the same time.
Potential improvements could be made focus on:

1. Expand the Range of Corruption Types. Investigate a broader spectrum of
corruption scenarios, including those not covered in the current study, to gain a
more comprehensive understanding of AV perception system vulnerabilities.

2. Explore Mixed Corruption Scenarios Design experiments that simulate real-
world environments where multiple corruption types occur simultaneously, to
assess the compound effects on AV system performance.

3. Diversify Models and Datasets. Utilize a variety of models and datasets in
future experiments to ensure the findings are robust and broadly applicable across
different AV technologies.

4. Study Long-Term Adaptation Strategies. Investigate long-term model adapta-
tion strategies that allow AV systems to dynamically adjust to new and evolving
corruption types without notable overfitting.

Future Research Directions Considering these limitations, future research should aim
to:

1. Expand the Range of Corruption Types/ Investigate a broader spectrum of
corruption scenarios, including those not covered in the current study, to gain a
more comprehensive understanding of AV perception system vulnerabilities.

2. Explore Mixed Corruption Scenarios. Design experiments that simulate real-
world environments where multiple corruption types occur simultaneously, to
assess the compound effects on AV system performance.

3. Diversify Models and Datasets. Utilize a variety of models and datasets in
future experiments to ensure the findings are robust and broadly applicable across
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different AV technologies.

4. Study Long-Term Adaptation Strategies. Investigate long-term model adapta-
tion strategies that allow AV systems to dynamically adjust to new and evolving
corruption types without significant overfitting.

5.2 Conclusions

To enhance the robustness of perception systems for autonomous vehicle (AV), a
thorough investigation is taken including synthetic data generation and its influence on
model resilience in corrupted environments. This evolution from focusing primarily
on Perception Error Metrics (PEM) to a wider analysis of synthetic corruption and its
effects on the durability of perception systems signifies a pivotal shift in the direction of
this research.

Synthetic Data Generation. The creation of synthetic data, includes an array of
corruption conditions from weather-induced alterations to sensor-specific distortions,
has become the fundamentals of this thesis. Through detailed experimentation, we
found that integrating such synthetically corrupted datasets into the training process
significantly improves model resilience. This finding supports the research assumption
that training models on a wide spectrum of potential real-world inaccuracies is crucial
for achieving robustness.

Evaluating Model Robustness. A detailed evaluation of model performance under
various corrupted conditions has revealed significant variability in the resilience of
perception systems. The variation in performance across different types of corruption
highlights the complexity of ’robustness,’ indicating that it cannot be universally mea-
sured but is dependent on the specific nature of the encountered corruption. As such,
the development of AV perception systems should emphasize adaptability, preparing
models not only for diverse conditions but also for unseen environmental shifts.

This research emphasizes the critical role of synthetic data in narrowing the gap between
controlled laboratory settings and the unpredictable real-world conditions. The insights
from assessing model robustness against diverse corrupted datasets stress the importance
of adopting a comprehensive approach to training, which prioritizes not just accuracy in
optimal conditions but also resilience to corruption.

Moving forward, this thesis sets the stage for further studies into advanced synthetic
data generation methods, the incorporation of adaptive algorithms in perception systems,
and the enhancement of benchmarking protocols to more accurately measure robustness
in AV applications.
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