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Abstract
Deepfakes are increasingly used to perform malicious activities. Machine Learning
based deepfake detectors try to counter these by distinguishing real content from
deepfakes. Due to the need for large datasets when training these detectors, the web is
often scraped for data which leaves an opportunity for an adversary to inject harmless
looking data, that actually has been engineered to poison a detector trained on it, called
a poison attack. We investigate the robustness of deepfake detectors against a family
of poison attacks called feature collision attacks. For our experiments we choose the
feature collision attack Poison Frogs, which we choose due to its performance being a
good indicator of the effectiveness of the whole family of feature collision attacks. We
use the FaceForensics++ dataset, due to the large variety of original data and deepfake
techniques it contains, and evaluate on three different models in order to generalize
our results to deepfake detection as a whole. We perform three different versions of
the attack in which we aim to make a detector misclassify a target deepfake as real,
with the first investigating the vulnerability in relation to number of poisons, then in
relation to the distance between poisons and target used and lastly the vulnerability
of networks when finetuning only the last layer of the network, instead of training all
layers. For each experiment we compare target classification before and after poisoning.
We conclude that the networks we poisoned are robust when training all layers of the
network, with no significant change in the target classification caused by the number or
distance of poisons, but are potentially vulnerable when just finetuning the last layer,
making this the first work to discover the vulnerability of finetuned deepfake detectors
against feature collision attacks. We compare the results we get to the existing literature
on data poisoning against deepfake detectors, as well data poisoning in general. To the
best of our knowledge this is the first published clean-label data poisoning attack, as
well as the first published feature collision attack, performed on deepfake detectors.
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Chapter 1

Introduction

In this dissertation, we investigate the vulnerability of deepfake detection neural net-
works to feature collision poisoning attacks. We perform these attacks in various settings
on three different deepfake detectors to comprehensively evaluate their susceptibility
to such attacks. Poison attacks have the ability to manipulate machine learning sys-
tems by creating carefully crafted poison data which makes it important to research
the vulnerability of systems that need high trust, such as deepfake detectors. This
introduction provides a brief overview of deepfakes, deepfake detection, security of
machine learning and data poisoning. We outline our research goals, contributions and
dissertation structure.

1.1 Deepfakes and Deepfake Detection

Deepfakes are artificially generated images, videos or audio, that are used for imperson-
ation or changing the meaning of what a person originally said [48]. They are generated
using a variety of machine learning techniques and have become more common with
a growing availability of computational resources. This proliferation of deepfakes on
the internet and social media can lead to a variety of harmful effects on society and
individuals in the form of misinformation, financial fraud or faked sexual content [48]
[13]. In Section 2.3 we discuss deepfakes in more detail.

Deepfake detection is the practice of detecting deepfake content, which can be used to
counter the spread of misinformation and impersonation of people online. Especially
since humans overestimate their ability to detect whether content is a deepfake, it is
important to try tackling their spread [45]. State-of-the-art deepfake detection is done
with machine learning based models, especially convolutional neural networks [48],
of which we use three different ones in our experiments. In Section 2.3 we explain
deepfake detection in detail. We use the FaceForensics++ [63] dataset for training
because it contains multiple deepfake generation methods applied to a wide variety of
real data, which we explain more in Section 3.1.
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Chapter 1. Introduction 2

1.2 Security of Machine Learning

Security of machine learning has become important with the proliferation of AI systems,
especially relating to bias and fairness in AI, as well as the potential dangers of artificial
general intelligence (AGI) [79] [77]. Governments, including the US and EU, have
created legislation related to the safety of AI, highlighting the need for safe AI [58]
[20].

In addition to problems such as bias, fairness and the control of AGI, there are types of
adversarial attacks that can be performed by adversaries aiming to maliciously exploit
machine learning systems. These attacks are similar to classical computer security
attacks where the attacker exploits a vulnerability to achieve a specific goal. The
attacker can target different parts of the ML pipeline, such as data collection, training
or inference [56]. These attacks have been shown to be successful on commercial ML
systems such as self driving cars, showing their practicality and potential dangers [26].
We discuss adversarial attacks in detail in Section 2.4.

1.3 Data Poisoning on Deepfake Detectors

Deepfake detectors can also be victims of adversarial attacks and there has been some
published work on the robustness of detectors [62] [37]. The adversarial attack we
perform is data poisoning, where a dataset is injected with poison data, in an attempt to
decrease classifier performance, either overall or on specific targets, when trained on
the poisoned dataset [28]. Most data poisoning techniques have only been done on tasks
such as general image recognition and have been shown to be effective on a large range
of models, datasets and attack settings within image recognition [28] [72] [66] [4] [80]
[27] [75]. One of the most popular data poisoning techniques uses feature collisions,
which create poisons in relation to the representation of inputs in feature space as we
explain in Section 3.3. We use a targeted feature collision attack called Poison Frogs
[66] in our experiments, which is the first published feature collision attack and has
been shown to give a good indication of the effectiveness of other feature collision
attacks [65]. In our experiments we aim to poison a network such that it misclassifies a
randomly chosen deepfake as real, while keeping overall network accuracy unchanged.

1.4 Research Goals

The main aim of this dissertation is to evaluate the robustness of deepfake detectors
against feature collision data poisoning attacks. We want to evaluate whether detectors
are vulnerable in the finetuning setting (where only one layer is trained) and in the
end-to-end setting (where all layers of the network are trained). In addition to that,
we want to identify what effect the number of poisons used, and the distance between
poisons and the target in feature space, has on the attack. Lastly, we want to identify
what network access an adversary might need for a successful attack.

We measure the effectiveness of attacks, by comparing the probability of the deepfake
target being classified as real before and after poisoning, with a large increase in the
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probability being a successful attack and no change being an unsuccessful attack. We
also monitor the change in overall network accuracy, which should stay the same, as we
only target one specific image.

To gain a general understanding on the vulnerability of deepfake detectors against
feature collision attacks we choose Poison Frogs [66] which gives a good indication of
the effectiveness of feature collision attacks as a whole [65]. We choose three different
models to evaluate on and perform attacks in both finetuning and end-to-end scenarios,
training them on FaceForensics++, which contains data created from a wide distribution
of real images and multiple deepfake generators. This setup gives us the ability to
generalise our results and answer our research goals.

To the best of our knowledge, there is only one published work on data poisoning
against deepfake detectors, by Russell [62], which uses a simpler attack without ”clean
labels”. There also is one other type of adversarial attack done by Hussain et al. [37],
which isn’t a data poisoning attack. We want to add to this literature on robustness of
deepfake detectors, as well as use their results to draw stronger conclusions for our own
work.

1.5 Contributions

We make the following contributions in this dissertation:

• To the best of our knowledge we conduct the first published feature collision
poison attack on deepfake detectors, which we perform on three different models
in various settings. It also is the first attack on deepfake detectors which does not
assume access to the data labelling function.

• We show that deepfake detectors can be vulnerable against feature collision attacks
in finetuning scenarios, while being more robust during end-to-end training. In
addition to that we show that number of poisons and their distance from the target
do not have a significant impact on our experiment’s effectiveness and provide
explanations for why this could be.

• We create the latest overview of the current landscape around data poisoning on
deepfake detectors by combining our research with previously published work.

• We develop custom code to extract and process a 1.7TB dataset, train three
models and run the poison attack on the Eddie cluster, implementing various
optimizations to speed up experiments by about 10x from other code found online.

1.6 Dissertation Structure

In Chapter 2 we provide an overview of the background knowledge that is required to
understand the dissertation, starting with an introduction to machine learning methods,
moving on to deepfake generation and detection, and lastly, adversarial attacks in
machine learning with a focus on data poisoning, as well as defenses against them.
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We present our methodology in Chapter 3, starting with in depth comparisons of
deepfake detection datasets and an overview of the FaceForensics++ dataset that we
will be using. We explain the Xception-Full, Xception-Face and Meso-Face models that
we attack, including training regimes and results. Finally, we present data poisoning
techniques, with a focus on feature collisions and the Poison Frogs attack that we are
using.

In Chapter 4 we describe each experiment we perform in detail. In total we perform
attacks on three different classifiers in end-to-end and finetuning settings as well as an
investigation of the amount and closeness of poisons.

In Chapter 5 we discuss the results of all our experiments, which show that the networks
are robust in an end-to-end setting but more vulnerable when finetuning, and compare
these results to already existing work.

Chapter 6 is the conclusion of the dissertation with key takeaways and suggestions for
potential future work.



Chapter 2

Background

This chapter provides the necessary background that is needed for the later parts of
this dissertation. We give a brief overview of machine learning, neural networks and
convolutional neural networks before stepping into the realm of deepfake generation
and detection. Finally, we give an overview of adversarial attacks and data poisoning
methods used today as well as defenses against them.

2.1 Machine Learning and Neural Networks

Machine learning (ML) is the process of a computer program learning from some given
data, such that it improves its performance on some specific task. There are a variety of
ML techniques such as support vector machines, decision trees, k-nearest neighbors
and neural networks. In this dissertation we focus on neural networks.

Neural networks transform their inputs by applying a sequence of affine transformations
under a non-linearity [49]. These affine transformations are specified by weight and
bias matrices, which are learned by minimizing an error or loss function measuring how
well the network is performing. One can minimize the loss by using algorithms such as
Stochastic Gradient Descent which calculates the gradients of the loss in respect to the
weights and changes the weights in the direction of decreasing loss [49].

Figure 2.1: A fully connected neural network with 3 input nodes, 2 hidden layers with 5
nodes and 2 output nodes.

5
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In Figure 2.1 we can see a neural network with 3 input nodes, 2 hidden layers with 5
nodes, and one output layer with 2 nodes. The lines in-between layers represent the
weights which can be stored in matrices. The nodes apply a non-linear transformation
to their inputs.

y = f3

(
W(3) f2

(
W(2) f1

(
W(1)x

)))
(2.1)

L( f ,(X,y)) =
1
M

M

∑
m=1

(y(m)− f (x(m)))2 (2.2)

W(l)
t+1 = W(l)

t −η
∂L

∂W(l)
t

(2.3)

In Equation 2.1 we can see the matrix multiplications behind the neural network. W(i)

are the weights of the ith layer and fi are the ith non-linear transformations applied to
the input of the layer. The input given to the network is x and it returns the output y.

In Equation 2.2 we can see an example of mean square error loss, which we want to
minimize. f is the network we are calculating the error for, where X is the matrix
containing all M input vectors x(m) and y is the vector containing their corresponding
labels y(m).

In Equation 2.3 we see the formula for gradient descent, with which we minimize the
loss L by changing the weights W(i) in the direction of decreasing loss, where η is the
learning rate which can be tuned in a hyperparameter search.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network, often used for
image classification or signal processing. CNNs use convolutional layers to detect
spatial relationships in data, such as edges or textures. Convolutional layers have filters,
which are grids of learnable weights on which we can backpropagate. Those filters learn
features such as edge or texture detection, as well as more abstract ones. A window of a
specified size then travels across the input, moving by a chosen stride each time. CNNs
also often consist of pooling layers in between convolutional layers, which reduce
the dimensions of the convolutional layer’s output and provide a degree of translation
invariance. In most CNN architectures, multiple convolutional and pooling layers are
then applied in sequence. For classification tasks, the output of the last convolutional
layer is then flattened and passed to fully connected layers, similar to the neural network
described in the previous section [49].

2.3 Deepfake Generation

Deepfakes are synthetic images, videos or audio [48]. Often, they are used for harmless
purposes, but they can also be utilised to spread misinformation, impersonate people
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and change original the original intentions of people’s media content in a harmful way.
For this dissertation we focus on image and video deepfakes, though audio deepfakes
are an interesting topic with potential for future research 1.

State of the art deepfake generation is mostly done with deep learning models such as
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) [48]
[40]. Using datasets of faces, they can learn to generate new faces, or overlay certain
faces or facial expressions onto a target. In Appendix A.1 we provide some more detail
on GANs and VAEs, though they are not required to understand this dissertation.

In literature there are five commonly defined types of video/image deepfakes: face-swap,
lip-syncing, facial reenactment, facial attribute manipulation and face synthesis [48]
[40]. They differ in that some of them overlay a face onto another person (face-swap),
while others manipulate certain parts of a target face (lip-syncing, facial reenactment,
facial attribute manipulation), or synthesize an entirely new image (face synthesis). We
show examples of face-swap, facial reenactment, facial attribute manipulation and face
synthesis in the Appendix.

2.3.1 Deepfake Detection

The process of differentiating genuine media from deepfakes is called deepfake detec-
tion. Deepfake detection can be used to mitigate the spread of deepfakes and help verify
whether videos or images are real. There are different methods used for deepfake de-
tection including machine learning, statistical measurements, and blockchain methods,
of which nowadays machine learning is the most common and effective [53]. Nearly
all machine learning based detectors use CNNs and often achieve over 95% accuracy
on deepfake detection datasets [60][48]. In this dissertation we will exclusively be
targeting CNNs which seem to be the most likely models to be used in a production
setting.

2.4 Adversarial Attacks in Machine Learning

An adversarial attack in the context of ML can target various stages of the ML pipeline,
such as data collection, the training process or inference done by a trained model [56].
According to Vassilev et al. [73] adversarial attacks can have three main objectives:
availability breakdown (make the model unavailable), integrity violations (make the
model mispredict) or privacy compromise (gain information about training data). In this
dissertation we examine a data poisoning attack that falls under the integrity violation
category and targets the data collection and training process of the ML pipeline.

Integrity violation attacks can target all stages of the ML pipeline [56]. We can differ-
entiate between inference phase and training phase attacks [56] [73]. Inference phase
attacks tamper with the data that the model infers on after being trained. An example
is putting specially crafted noise on stop signs to classify them as speed limits [26].

1OpenAI announced their Voice Engine a few days before submission of this dissertation, capable of
mimicking the voice of a person with just 15 seconds of audio [55].
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Training phase attacks focus on the data the model receives while it is training, which is
what we focus on in this dissertation and expand on in Section 2.5.

We also differentiate between white-box and black-box attacks [73] [56]. In white-box
attacks the adversary has some knowledge of the training data or the model, such as
architecture, hyperparameters or weights. In black-box attacks the attacker does not
have access to specific information about the target ML pipeline. The adversary may
have knowledge about common model architectures found in the domain or can craft
inputs for the model and gain information by observing its outputs [56] [73].

2.5 Data Poisoning

Data poisoning is a type of adversarial attack that takes advantage of the training data
of a model. Data created by the adversary is inserted into the training set, which, when
trained on, makes the model misclassify [72].

We can distinguish between targeted and untargeted poison attacks [72]. Untargeted
poison attacks aim to degrade the overall performance of a model. Conversely, targeted
poison attacks aim to change classification for just a target input while leaving overall
performance unchanged.

We can also differentiate between clean-label and non-clean-label attacks. Clean-label
attacks have no access to the labelling function in the ML pipeline, which means that
poison data is assigned a label that a human would normally assign. Non-clean-label
attacks do have access, and can thus decide on the poison’s labels, no matter what it
looks like to a human [72].

In the next chapter we go into an in-depth explanation of different techniques used in
data poisoning and explain the feature collision poisoning attack that we will be using
in this dissertation.

2.6 Defenses against Data Poisoning

There are a variety of techniques to defend against data poisoning and, according to
Goldblum et al. [28], can be categorized into 5 different types of defense: Identifying
Poisoned Data, Identifying Poisoned Models, Repairing Poisoned Models after Training,
Preventing Poisoning during Training and Defenses for Federated Learning. ”Iden-
tifying Poisoned Data” aims to detect poisons before training on them, with popular
techniques being outlier detection on either the raw data or latent space of models
[28]. ”Identifying Poisoned Models” is a type of defense that tries to detect whether a
model already is poisoned, with some defenses trying to reconstruct backdoor triggers
in order to find out whether they are poisoned. ”Repairing Poisoned Models” aims to
repair poisoned networks, by removing backdoor triggers for example. Some of those
defenses rely on already knowing which triggers are built into the model, while some do
not have that requirement. ”Preventing Poisoning” focuses on the training process and
employs training strategies that are robust to poisoning. Lastly, ”Defenses for Federated
Learning” is a class of defense for federated learning systems. Federated learning is the
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process of training a model with many different clients, of which some can potentially
be malicious. This is a setting which requires specially crafted defenses, as there are
no guarantees on data, training methods, or weight updates from any of the clients. In
Table 2.1 we list a few common defense methods for each type of defense (adapted
from Goldblum et al. [28]).

Defense Type Defense Method

Identifiying Poisoned Data Outliers in Input Space [23]
Identifiying Poisoned Data Latent Space Signatures [12]
Identifiying Poisoned Data Predictions Signatures [18]

Identifiying Poisoned Models Trigger Reconstruction [14]
Identifiying Poisoned Models Trigger-agnostic Detection [14]

Repairing Poisoned Models Patching Known Triggers [59]
Repairing Poisoned Models Trigger-agnostic Backdoor Removal [16]

Preventing Poisoning Randomized Smoothing [61]
Preventing Poisoning Majority Voting [38]
Preventing Poisoning Differential Privacy [34]
Preventing Poisoning Input Pre-processing [10]

Defenses for Fed. Learning Robust Federated Aggregation [9]
Defenses for Fed. Learning Robust Federated Training [7]
Defenses for Fed. Learning Post-Training Defenses [74]

Table 2.1: A list of different defense methods, adapted from Goldblum et al. [28]

Some techniques require full access to any data which is a trade-off with privacy
concerns, while other techniques sacrifice accuracy for the sake of security. Especially
in Federated Learning, defenses rely on full access to weight updates which is a concern
for data privacy [28]. There also is the issue of the computational resources required for
some defense methods. Defenses proposed by Huang et al. [35] or Xu et al. [76] require
the training of multiple poisoned and clean networks, which is massively resource-
intensive and only feasible to implement for strong defenders. The defense proposed
by Guo et al. [32] requires a dataset that is guaranteed to be clean from poisons,
which might not be possible in many scenarios. Thus, current defenses have numerous
weaknesses and vulnerabilities, still needing to be addressed.



Chapter 3

Datasets, Models and Attacks

In this chapter we first describe the datasets used for deepfake detection, followed by a
detailed overview of the one we use for our experiments. We then provide an overview
of networks commonly used in deepfake detection and describe the networks we use
for our experiments. Finally, we present popular poison attacks as well as the Poison
Frogs [66] attack that we are using.

3.1 Datasets

In this section we first give an overview of the general datasets commonly used for
deepfake detection tasks. We then provide a detailed overview of the FaceForensics++
(FF++) [63] dataset that we use in our experiments.

3.1.1 Datasets for Deepfake Detection

There exist a variety of different datasets for deepfake generation and detection [48]
[60] [40] [53] [5]. We distinguish between real datasets, with no deepfake methods
applied to the content, and fake datasets, with deepfake methods applied to the content.
There also are datasets containing both real and fake data where the real data often is
the source of the fake data.

Table 3.1 summarizes popular datasets used in deepfake detection. There is variation in
the size of the datasets, the way data is stored (image or video), the number of different
people (identities) in the dataset and in the case of fake datasets, the number of deepfake
methods applied to the dataset.

There are some important factors to consider when deciding on a dataset. Since we want
to generalise the results of our poison attacks as much as possible, we want to maximize
the amount and diversity of the data, the number of identities (number of unique people)
in the dataset, as well as the number of deepfake methods applied. In addition to that,
using a dataset that has been used in the context of adversarial attacks on deepfake
detection before, would help us combine knowledge gained from our results with those
of others.

10
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Dataset Type Size Identities Methods

CASIA-WebFace [78] Real 494,414 images 10,575 /
CelebA [47] Real 202,599 images 10,177 /
VGGFace [57] Real 2.6 million images 2,622 /
MegaFace [42] Real 1 million images 690,000 /
Microsoft Celeb [33] Real 10 million images 750 /
VGGFace2 [11] Real 3.31 million images 9000 /
Flickr-Faces-HQ [41] Real 70,000 images / /

DeepFake-TIMIT [43] Both 640 videos 43 2
DeeperForensics1.0 [39] Both 60,000 videos 1000 1
Celeb-DF [46] Both 5,229 videos 59 1
DFFD [21] Fake 300,000 images / 1
iFakeFaceDB [52] Fake 87,000 images / 1
DFDC [24] Both 124,000 videos 960 4
Vox-DeepFake [25] Both 2.2 million videos 4000 3
FaceForensics++ [63] Both 5000 videos 1000 2

Table 3.1: A list of datasets used in deepfake detection. Type: Real, Fake or Both. Size:
number of images/videos in dataset. Identities: number of unique identities in the dataset.
Methods: number of deepfake methods used to create data (face-swap, lip-syncing,
puppet-master/facial reenactment, face synthesis and facial attribute manipulation).
Different algorithms that belong to the same method are counted as only one method.

3.1.2 FaceForensics++

From Table 3.1 we can deduce that FF++ is the best dataset for our use case. It is 1.7TB
large, just under the 2TB limit we have on the cluster we are using. It also has 1000
unique identities, making for a diverse set of people to train on. Not mentioned in Table
3.1, but also speaking for FF++, is that the resolution of the videos is high, with videos
having a resolution from 640x480 up to 1920x1080. This makes it a more realistic
dataset as most media circulated on the internet is of similar quality. In addition to that,
it was used by the only other published poisoning attack [62] and the only published
inference time adversarial attack [37] performed against deepfake detectors, to our
knowledge.

FF++ contains 1000 original videos on which four different deepfake generation al-
gorithms have been applied, resulting in 4000 deepfake videos. The original videos
are all videos where a face is clear and unobstructed, though there can be multiple
faces. They are taken from YouTube and contain news reports, home videos and vlogs,
meaning there is a variety of different content. The deepfake generation algorithms
applied are Deepfakes [1], Face2Face [71], FaceSwap [44] and NeuralTextures [70]
(see Appendix for examples). The first three are different types of face-swap generation
methods, which means they overlay a source person’s face or expression onto a target
person. NeuralTextures is a facial reenactment generation method, which changes the
facial expressions of a target person to those of a source person. The target and source
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identities are all from the real videos in the dataset. Having three different face-swap
algorithms and one facial reenactment algorithm improves the diversity of our data
and ability to generalise with the FF++ dataset even more. The videos come in three
different qualities: raw, high and low. Due to storage and computing constraints we
choose to go with high, which gets slightly lower classification accuracies on average
than raw (99.26% vs 95.73%) but a lot higher than low (81.00%). The low accuracy
for compressed videos comes from the fact that artifacts are introduced that make it
harder to distinguish from real videos and deepfakes [63]. We extracted all frames
from the videos, resulting in a total of 1,830,531 fake images with 509,128, 509,128,
406,138 and 406,137 images for Deepfakes, Face2Face, FaceSwap and NeuralTextures
respectively. We also have 509,128 real images. Due to details in the FaceSwap and
NeuralTextures algorithms we do not have a corresponding fake image for each real
image.

We use the train-val-test splits provided with the FF++ dataset. Since the deepfakes
are generated from the original data, we do not want a deepfake in a different split
than the real video it was generated from, to prevent information about the test/val set
from leaking to the training set. For example, having a real video in the train set and
its corresponding fake in the test set might make the model classify the deepfake as
real, since it will look similar to the real video in the train set. The FF++ given splits
account for this and there is no ”cross contamination”. 720 of the real videos and all
their corresponding fake videos are in the train split while validation and test both have
140 real videos and their corresponding fakes.

We used existing scripts for image extraction which we then modified to run extraction
in parallel, which sped up extraction from taking multiple days to only a few hours.
Because of the sheer size of the dataset we sometimes create corrupted images during
extraction with the FFmpeg library. We created tests that are run after extraction, to
automatically detect corrupted images and re-extract them. We also want to point out
that we have accessed and used the dataset in line with the FaceForensics Terms of Use
[2].

3.1.3 Limitations of FaceForensics++

While FF++ does contain two different deepfake generation methods (face-swap and
facial reenactment) and four different generation algorithms, there are no lip-syncing,
face synthesis or facial attribute manipulation deepfakes in the dataset. It also is
limited to videos from YouTube, which might introduce compression artifacts or other
properties specific to the YouTube platform. Lastly, it was released in 2019, meaning
that there are some newer deepfake generation methods that have been released since,
which might generate more realistic deepfakes, more likely to be used in the wild.

3.2 Models

In this section we first provide an overview of deepfake detection in relation to FF++.
We then give detailed descriptions of the Xception [66] and Meso [3] models that we
use for the remainder of the dissertation. We train the networks and provide the exact
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training regime and results. These are necessary since we need to verify our training
regimes are correct in order to correctly train on the poisoned datasets.

3.2.1 Deepfake Detectors on FF++

There have been a lot of CNN based deepfake detectors trained on the FF++ dataset [6]
[64] [3] [53]. They all are able to achieve over 90% accuracy, with Meso [3] achieving
over 95% accuracy. Rössler et al. [63] also train an Xception [17] model on the FF++
dataset, which is able to get over 99% accuracy on the raw FF++ data. In addition to that,
Meso and Xception have both been the target of Russell [62] in their poisoning attack
and Hussain et al. [37] in their inference time attack on deepfake detectors. Because of
this we will be using Meso and Xception in our poisoning attacks.

3.2.2 Xception and Meso

Rössler et al. [63] trained two Xception networks [17] on their own FF++ dataset:
Xception-Full, trained on full images, and Xception-Face, trained on face crops.
Xception-Face achieves over 99% on the raw FF++ data and over 95% accuracy on the
high-resolution data that we will be using. The original Xception proposed by Chollet
[17] was trained on ImageNet [22] and thus we will be using those weights to initialise
our network. The Xception network trained on ImageNet is called a feature extractor
in this case, since we take advantage of the features that Xception has learned when
training on ImageNet. Using a feature extractor is a common practice and decreases the
amount of data needed and improves model performance [49]. We then proceed with
a combination of finetuning and end-to-end training of this pre-trained Xception (our
feature extractor).

MesoInception4, or Meso, originally proposed by Afchar et al. [3], is another CNN that
achieves over 95% accuracy on the raw FF++ dataset and 98% on face-swap videos
that Afchar et al. [3] generated themselves. For this dissertation we will only train it
on FF++ data and no additional data created by Afchar et al. [3]. Meso is only trained
on face-crops and we will not evaluate on a version trained on full images. Meso uses
inception modules [69], which stack the output of several convolutional layers, with
the aim of increasing the function space in which the network is optimized. It is a lot
shallower than Xception at only 21 layers deep compared to 71.

Since there is no publicly available code to train Xception, we had to create training,
image processing and data loading code from scratch. Because of the large size of the
dataset, we faced a lot of problems with speed, memory management and dataloading.
We improved the inference code published by Rössler et al. [63] which results in 10x
speed ups in inference time and we updated it to work with PyTorch 2.2 from the
original code using PyTorch 1.0.1. We plan on releasing a separate repository with our
updated Xception code in order to let people use up-to-date libraries and ease further
research.

We also create code to train Meso on FF++ from scratch. The original Meso implemen-
tation was made with TensorFlow, thus we created a PyTorch 2.2 compatible version
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and implemented training and inference code for Meso on FF++, which we also plan to
release for others to access.

3.2.3 Training of Xception-Full

We first train Xception-Full, which uses the full images as input, without a face crop.
We resize images to 299x299 and z-score normalize them. We use the same parameters
and training regime as Rössler et al. [63] do, which is as follows: We start off with the
original Xception [17], pre-trained on ImageNet [22]. We then proceed by replacing the
output layer with a layer that has two outputs, one for real and one for fake. The training
process can be separated into a finetuning part and an end-to-end training part. We start
off training by freezing the weights of all layers except the last fully connected layer.
We train for three epochs, after which we unfreeze all weights and train for another six
epochs. Rössler et al. [63] do not explain why they only train the last fully connected
layer and then move on to train the whole network. We theorize that it might lead to
the fully connected layer stabilizing, leading to faster convergence when training on all
layers.

For the whole training process we use a batch size of 32, learning rate of 0.0002,
cross entropy loss (a weight of 4 for real images and 1 for fake images) and an Adam
optimizer with default parameters (β1 = 0.9, β2 = 0.999, ε = 10−8).

(a) Accuracy of Xception-Full (b) F1 of Xception-Full

Figure 3.1

We select the model that performs best on the validation set, using accuracy and F1 as
evaluation metrics. This is at epoch 4 of training, where it has high accuracy and also
a high F1 score on the validation set as shown in Figure 3.1b. We observe overfitting
after epoch 4, also making us choose the weights from epoch 4. It is important to use
F1 score, since FF++ is very unbalanced, with four times as many fake images than real
ones.
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Predicted/Actual Real Fake

Real 24228 15317
Fake 11214 118125

Accuracy 68.36% 88.52%

Table 3.2: Xception-Full test set confusion matrix

Evaluating Xception-Full on the test set and writing down the results in a confusion
matrix (see Table 3.2) shows that a large proportion of fake images are correctly
classified compared to a smaller proportion of real images. The overall accuracy we get
on the test set is 84.29% which is in line with what Rössler et al. [63] get.

3.2.4 Training of Xception-Face

We train Xception-Face with the same regime as Xception-Full. The only change that
we make is to train only on a cropped face in the image, for which we use the same face
detection library as Shafahi et al. [66].

We again select the model that has the highest accuracy and high F1, which we can see
in Figure 3.2 is at epoch 4. By checking the confusion matrix in Table 3.3 we can see
that both real and fake images get classified correctly most of the time, with a better
performance for fake images. The test set accuracy of Xception-Face is 94.53%, which
is in line with what Rössler et al. [63] get.

(a) Accuracy of Xception-Face (b) F1 of Xception-Face

Figure 3.2
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Predicted/Actual Real Fake

Real 31187 4981
Fake 4255 128461

Accuracy 87.99% 96.27%

Table 3.3: Xception-Face test set confusion matrix

The improved performance in comparison to Xception-Full can be attributed to focusing
on the face region, which is the main region affected during deepfake generation. This
means the data given to Xception-Face is a lot more useful than the full images used by
Xception-Full which contain a lot of irrelevant information.

3.2.5 Training of Meso-Face

The third model we train is Meso-Face, which is trained on the same face crops as
Xception-Face with the only difference being that they are scaled to 256x256. We
use the same training regime as Afchar et al. [3] and Shafahi et al. [66]. We train the
network all layers unfrozen for the whole duration. We train for a total of 8 epochs using
a batch size of 76. The learning rate starts off at 0.001 and every 1000 iterations we
divide it by 10 until it reaches a value of 10−6. We use cross entropy loss (a weight of 4
for real images and 1 for fake images) and an Adam optimizer with default parameters
(β1 = 0.9, β2 = 0.999, ε = 10−8).

We again select the model with high accuracy and high F1 on the validation set, which
is at epoch 6. We do note, that there only is very slight improvement on the validation
set and high improvement on the training set after epoch 2, which is a sign of overfitting.
In Table 3.4 we see that just like the other models, Meso classifies fake images more
accurately than real ones. The test set accuracy of Meso-Face is 84.92%, which is in
line with what Rössler et al. [63] report.

(a) Accuracy of Meso-Face (b) F1 of Meso-Face

Figure 3.3
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Predicted/Actual Real Fake

Real 23866 13884
Fake 11576 119558

Accuracy 67.34% 89.60%

Table 3.4: Meso-Face test set confusion matrix

3.2.6 Limitations of our models

There are limitations to the models we are using. First, not all of them perform very
well on the FF++ dataset, with Xception-Full especially only getting 85% accuracy. All
our models also have a slight bias to classifying fake images more accurately than real
ones. In our case this means that it probably is harder to fool a detector into believing a
fake image is actually real, but nevertheless it should be mentioned. We also only use
deep models that are CNNs. While CNNs are state of the art and the most common,
there are other techniques such as Recurrent Neural Networks or Generative Adversarial
Networks used to detect deepfakes which might differ in their robustness against feature
collision data poisoning [48].

3.3 Data Poisoning Attacks

As explained in Section 2.5, data poisoning attacks create poison data, that when inserted
into a network’s training set, cause it to misclassify either a target input or all inputs.
There are different methods used in data poisoning attacks, with the most prominent
ones being label flipping, backdoor triggers, feature collisions and bilevel optimization
[28]. Current state of the art attacks use feature collisions, bilevel optimization or
backdoor triggers [19]. All three methods of attack create new poison instances that
need to be trained on, although backdoor triggers also require modification of input
instances at inference. In Table 3.5 we show some of the most popular attacks, with a
summary of whether they are clean-label, targeted and which settings they work for.

3.3.1 Label Flipping

Label flipping is the simplest method used in data poisoning attacks. Label flipping
attacks change labels of training instances, while leaving the actual training instances
unchanged [28]. Since they require access to the labelling function, label flipping attacks
are not clean-label. An advantage of label flipping is that no artifacts are introduced
into training data, which may happen with other data poisoning methods. Label flipping
attacks can be targeted or untargeted. Often, they require a large amount of training
data to be poisoned in order to be successful. Russell [62] use label flipping in their
data poisoning attack on deepfake detectors.
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Attack Type Targeted Clean-label Black/White-box Type

Label Flipping [75] Both No White-box LF

BadNet [30] Yes No White-box BD
Chen et al. [15] Yes No Black-box BD

Poison Frogs [66] Yes Yes Both FC
Convex Polytope [80] Yes Yes Both FC
Bullseye Polytope [4] Yes Yes Both FC
String Ray [68] Yes Yes Both FC
Black Card [31] Yes Yes Both FC

Witches’ Brew [27] Yes Yes Both BO
Meta Poison [36] Yes Yes Black-box BO
Biggio et al. [8] No No White-box BO
Muñoz-González et al. [51] No No Both BO

Table 3.5: Capabilities of different data poisoning attacks. Targeted: Only misclassify a
chosen input. Clean-label: Whether it needs access to the labelling function. Black/White-
box: Whether it needs full access to the network weights or architecture. There isn’t a
specific definition of when something is white-box, but we explain in detail which access
is needed for the attack we will perform. Type: LF - Label Flipping, BD: Backdoor Trigger,
FC - Feature Collisions, BO - Bilevel Optimization

3.3.2 Backdoor Triggers

Backdoor trigger attacks insert poisons into the training set, such that at inference,
any inputs containing a certain type of trigger are classified in some chosen way [28].
Backdoor trigger attacks are a combination of data poisoning and inference time attacks,
since embedding a trigger requires access to instances at inference time. In the case of
deepfake detection for example, any fake image could be classified as real if it contains
a certain trigger e.g. in the form of a watermark.

3.3.3 Bilevel Optimization

Bilevel optimization attacks consider two functions that need to be optimized, where
one function sets a constraint on another. Data poisoning in general can be described
as a bilevel optimization problem, but only some attacks try optimizing this problem
directly. In Equation 3.1 and 3.2 we can see the general formulation of the bilevel
optimization problem for data poisoning, with notation by Goldblum et al. [28].

min(xp,yp)∈CL(F(xt ,θ′),yadv) (3.1)

subject to θ
′ = argminθL(F({xp}∪Xc,θ),{yp}∪Yc) (3.2)

Equation 3.1 shows that we want to find the poison xp with its corresponding label yp
which is in the allowable set of poisons C, that minimizes the loss between the target
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instance xt and the label we want it to be classified as, yadv by the poisoned classifier
defined by the weights θ′. In Equation 3.2 we show that we want the poisoned weights
θ′ to be the weights that minimize the loss between the clean train set Xc combined with
the poison xp and their labels Yc and yp. This equation can be easily adapted for the case
of multiple poisons. The set C is defined depending on the specific bilevel optimization
attack that is being used.

A less formal explanation of this is that we want to find a poison, such that after training
on the poison and the clean data, our target instance xt will be classified as the chosen
label yadv. This equation can easily be adapted to the case of multiple poisons instead
of one.

There are a lot of different attacks that fall into the bilevel optimization category [27]
[36] [8] [51]. They have been shown to be very effective in transfer learning and
end-to-end training scenarios. A drawback of them is that they are very computationally
expensive [28].

3.3.4 Feature Collision Attacks

Feature collision attacks take advantage of the feature space of a trained neural network
or a feature extractor, by creating poison instances that are similar to the target instance
in feature space. Feature space can be the representation of the input at any layer
of the neural network, though in most feature collision attacks it is defined as the
penultimate layer [66] [80] [4]. The reasoning behind creating poisons that are close
to the target in feature space, is that even if they look differently to the human eye, a
neural network would think of them as similar. This way we can have the same effect as
flipping labels of instances very close to the target, without actually having to falsify any
labels. Especially in the case of transfer learning, one often just finetunes the last fully
connected layer of a network. Thus, if one creates poisons that are close to the target
image in the penultimate layer of the network, the input of the layer being finetuned will
always receive poisons that are close to the target, changing the classification boundaries
around this target.

Formally we can define feature collision as follows (for consistency purposes we will
adapt notation from Goldblum et al. [28]):

xp
i = argminxi

|| f (xi)− f (xt)||22 +β||xi −bi||22 (3.3)

In Equation 3.3 xp
i refers to the ith poison being created. f is the feature space transfor-

mation and bi is the ith base. β is a parameter to regulate how close the poison should
be to the base instance. In other words, we want to find a poison that is close to the
target in feature space, while being close to the base instance (so that the assigned label
will be that of the base instance).

A drawback of feature collision attacks is that they do not work as well as bilevel
optimization attacks in the case of attacking an unknown model architecture or when
end-to-end training a model [28]. Nevertheless, they are a lot more computationally
efficient and thus easier for adversaries to use.
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3.4 Poison Frogs

Poison Frogs is the first published feature collision attack, originally presented by
Shafahi et al. [66]. The exact poisoning pipeline used by Poison Frogs is illustrated
in Figure 3.4 It creates poisons by adding perturbation to base instances that cause
the perturbed base instances to be close to the target instance in feature space. This
feature space is taken from either a feature extractor, in the case of finetuning, or from
an already trained model in the case of end-to-end training. Shafahi et al. [66] perform
attacks in a transfer learning scenario, where training consists of finetuning a pre-trained
model and an end-to-end training scenario. Extensions of Shafahi et al. [66]’s Poison
Frogs attack are the Convex Polytope [80] and Bullseye Polytope [4] attacks. They
create perturbed base instances, that additionally to being close to the target in feature
space, also form a convex polytope surrounding the target, leading to an increased
success rate.

Figure 3.4: The poisoning pipeline for Poison Frogs. We start with a clean dataset and
model, with which we create poisons. We then insert the poisons into the clean training
data. Training on the poisoned data results in a poisoned model.

In the case of end-to-end training a network (meaning all layers are trained during
training), we choose to take the feature space from a clean trained network, while in the
case of finetuning a network (only last fully connected layer is trained), we choose to
take the feature space from the pre-trained network, also called feature extractor. In this
dissertation the feature space is the layer before the fully connected layer of the network.
Shafahi et al. [66] use this layer because it is the input of the layer that will be finetuned
in the finetuning case, since an input will have the same feature space representation
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before and after finetuning. They do the same for end-to-end training, thus we will keep
their setup and also use the layer before the fully connected layer of the network.

3.4.1 Why Poison Frogs?

We choose Poison Frogs as our attack for a variety of reasons. First of all, other feature
collision attacks such as Convex Polytope [80] and Bullseye Polytope [4] require a
lot of compute to create poisons, taking multiple days for large networks [4]. Bilevel
optimization attacks, while very effective, also take multiple days for even the fastest
attacks to generate poisons [28]. When finetuning networks based on pre-trained models,
Poison Frogs just needs access to the pre-trained model, making it a realistic attack
setting, especially compared to the label flipping attack by Russell [62]. Because other
feature collision attacks are based on Poison Frogs, an effective Poison Frogs attack
would imply that all feature collision attacks would also be effective, making our attack
a good lower bound on the effectiveness of feature collision attacks. Schwarzschild et al.
[65] evaluated different poisoning attacks, including feature collision attacks, in various
settings. Their study showed that nearly all cases where Poison Frogs wasn’t effective,
other feature collision attacks weren’t effective either, which means that we can at least
give an indication of whether other feature collision attacks would be effective. For all
these reasons, we choose Poison Frogs as the attack we will be using.

3.4.2 Inner Workings of Poison Frogs

The Poison Frogs attack starts off by choosing our target instance t. We then select n
base instances b1, ...,bn, which are images from the test set and in the base class. For
each of these base instances we find poisons xp

1 , ...,x
p
n by optimizing Equation 3.3 which

consists of two different parts. First, we want as small as possible distance between
the feature space representation of the poison and the target, since we want to change
decision boundaries near the target. Secondly, we want as small distance between the
poison and the original base instance, since we want to add very little perturbation as to
not raise suspicion. A successful attack is when the target xt will be classified as the
base class after retraining the classifier with the poisons. In our case we will focus on
choosing targets from the fake class and base instances from the real class.

Algorithm 1 Poison Creation
Inputs: target xt , base b, learning rate λ

Define L(x) = || f (x)− f (xt)||22
for i < maxIters do

Forward-Step: x̂i = xi−1 −λ∇xL(xi−1)
Backward-Step: xi = (x̂i +λβb)/(1+βλ)

end for

Algorithm 1 shows how Poison Frogs optimizes Equation 3.3. It applies a forward-
backward splitting algorithm [29] to optimize it. A forward-backward splitting al-
gorithm is used when trying to minimize a function which consists of two separate
components. In our case it is the distance of poison and target in feature space, and the
distance between poison and base. The forward step of the algorithm moves the poison
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image closer to the target image in feature space. It does this by applying gradient
descent to minimize the distance of poison and target in feature space. The backward
step then adjusts for the poison to be closer to the base image. This is done by adding a
very transparent version of the base image to the poison. By repeating this procedure,
the poison ends up close to the target in feature space, while also being close to the base
image to the human eye. In Figure 3.5 we illustrate how poisons move in feature space
and their normal representation space during the attack.

Just as Shafahi et al. [66], we use the Frobenius Norm (default PyTorch matrix norm)
to measure distance between images and Euclidean Norm when measuring distance in
feature space, since the feature space will be represented by a vector (see appendix for
Euclidean and Frobenius Norm).

Figure 3.5: This figure illustrates how poisons move in space, compared to their base
instance, with the left side showing feature space and the right side showing the normal
pixel representation of an image. We can see that the poisons move far away from their
bases in feature space, close to the target. However, their pixel representation doesn’t
move much and poisons are near their bases.

3.4.3 Limitations of Poison Frogs

There are limitations that come with using Poison Frogs as the attack used in our exper-
iments. First of all, limiting ourselves to one attack limits the amount of generalization
we can do about the effectiveness of other poisoning attacks, especially ones that do
not use feature collisions. Secondly, Poison Frogs is weaker in the end-to-end training
setting compared to other feature collision attacks like Bullseye Polytope [4] and bilevel
optimization attacks [65]. This is because the feature space changes a lot when training
all layers of a network and we do not have any guarantees of the poisoned network’s
feature space being similar to the clean network’s with which we created the poisons.
Thus, we can only create lower bounds on how effective poison attacks are in the
end-to-end training setting.
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Experiments

In this chapter we present the experiments that we perform with the goal of determining
the robustness of deepfake detectors against feature collision poison attacks. In all
experiments we choose a fake image as the target, which we want the poisoned network
to classify as real (real being the base class that we create the poisons from). We
perform three experiments on up to three different networks as outlined in Table 4.1. We
evaluate the performance of the attacks by comparing the probability of the poisoned
classifier and the unpoisoned classifier from Chapter 3, assigning the real class to the
target. In order to gain confidence in our results we repeat each experiment eight times,
as this is the most we can do since each repeat requires training a whole network. There
is a big range in how often poison attacks are repeated in literature with Russell [62]
only doing 7 repeats, but Shafahi et al. [66] doing 1099.

Model Poisons Iterations Max Distance Setting

Xception-Full 20 2000 / End-to-end
Xception-Full 50 2000 / End-to-end

Xception-Full 50 8000 100 End-to-end
Xception-Face 50 8000 600 End-to-end

Meso-Face 50 8000 50 End-to-end

Xception-Full 50 8000 100 Finetuning
Xception-Face 50 8000 600 Finetuning

Table 4.1: Summary of all experiments. Poisons: Number of poisons generated. Itera-
tions: Number of iterations done to create poison. Max Distance: Maximum distance
a poison can be from the target, in feature space. Setting: End-to-end: Same training
as Chapter 3. All layers unfrozen for at least some epochs. Finetuning: Only last fully
connected layer is trained with poisoned dataset, others are frozen.

The first attack will be on Xception-Full where we create 20 and 50 poisons with 2000
iterations per poison, using the feature space from the trained Xception-Full in Chapter
3 to create the poisons. We train the whole network on the clean + poisoned data, with
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the same training regime as in Chapter 3. Since this means all layers will be trained,
this setting is called end-to-end as noted by Shafahi et al. [66]. We choose to investigate
the number of poisons, since they have a big effect in previously performed feature
collision attacks as well as other poisoning attacks [66] [62], which makes us want to
investigate the specific effect of more poisons when attacking deepfake detectors.

We then move on to performing an attack in the same end-to-end setting on Xception-
Full, Xception-Face and Meso-Face. For this attack we use 8000 iterations and set a
maximum distance that the poison images can be from the target image in feature space.
We explain the details behind this in Section 4.2. We choose to investigate the distance
between poisons and target because it has been shown to influence the effectiveness of
attacks, as close poisons have a stronger effect on classification boundaries near the
target [4]. There even are extensions of Poison Frogs such as Bullseye Polytope [4] or
Convex Polytope [80] which try positioning poisons in the most ideal position which
partially consists of being near the target.

Finally, we perform an attack in a finetuning setting on Xception-Full and Xception-
Face, where we only train the last fully connected layer (with all other layers frozen)
instead of the whole network. We create poisons on the feature extractor that Xception-
Full and Xception-Face are trained on, leaving all other parameters the same as for
the previous experiment. This attack is more effective due to the feature space not
being able to change during training, which we explain in depth in Section 4.3 [66] [65].
Because of this effectiveness, we choose to experiment in a finetuning setting to find
out how vulnerable deepfake detectors are in this worst-case setting.

4.1 Baseline Attack

In our baseline attack we target Xception-Full with Poison Frogs in an end-to-end
setting. We perform the attack with 20 poisons and 50 poisons, repeating them 8 times
each, since this is the most we can reasonable do (even with our optimized training
code, which took training from weeks down to a day). Having few repeats limits how
sure we can be of the effectiveness of our attack, but we include standard errors in our
results to reflect our uncertainty.

4.1.1 Attack Description

We attack the Xception-Full network trained in Section 3.2 with the assumption that the
attacker can either access the weights of a trained Xception-Full or replicate the training
process. In this attack we want to find out the effect of changing the number of poisons.
Thus, we choose 20 and 50 poisons, as Shafahi et al. [66] use between 10-70 poisons in
their end-to-end attacks. We select one fake image from the test set as our target and
real images from the test set as our bases. We make sure to only select target images
that are classified as fake with 99% probability by the network trained in Section 3.2, to
make sure we aren’t targeting easily misclassifiable images. We choose different ones
for each repeat of the experiment. The goal of the attack is to classify the target image
as real after retraining the network with the poisoned + clean data.
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We use the default parameters used by Shafahi et al. [66] for the number of iterations
and β: 2000 iterations per poison and aβ of 0.1 · 20482/(299 · 299)2 (feature space
dimension = 2048, base dimension = 299 x 299). We choose 2000 iterations because
this is in the range of iterations used by Shafahi et al. [66] (1000-12,000) and because
through inspection of poisons (see Figure 4.4) we can see that poisons don’t change a lot
after 2000 iterations. We choose a learning rate of 0.0001 by running a hyperparameter
search on values that are common in literature and settling on the value that results in
low distance to target and base. Shafahi et al. [66] do not mention why they choose this
formula to select beta, and we notice that the beta value is extremely small but manual
inspection of poisons reveals that no obvious perturbations are visible (see Figure 4.3).
In addition to that, changing the beta value in preliminary experiments did not seem to
significantly impact the perturbations or poison distances for us.

The feature space function used to create the poisons is the output of the layer imme-
diately preceding the final fully connected layer of the Xception-Full network trained
in Section 3.2. This choice of feature space is motivated by a similar reasoning to
that of Shafahi et al. [66]. The goal is to generate poisons that end up near the target
instance in the feature space of the trained network. This allows the poisons to influence
the decision boundaries around the target, causing the trained network’s predictions to
change.

We opt to use the feature space from the network trained in Section 3.2 because we
are retraining all layers, rather than just fine-tuning the final layer using a pre-trained
network. Since the feature space will evolve during the full training process, we want
the poisons to be positioned near the final feature space, not just the initial one. Both
Shafahi et al. [66] and Aghakhani et al. [4] also leverage the feature space of the fully
trained network when performing end-to-end training attacks.

Once we created our poison images, we add them to the training set. We train Xception-
Full from the pre-trained network on ImageNet, in exactly the same manner as we did in
Section 3.2. We select the epoch with the highest accuracy to evaluate the effectiveness
of the poison attack.

4.1.2 Attack results

For 20 poisons the average classification of the target image by the unpoisoned classifier
assigns a 0.00052 probability to the real class. The average of the poisoned classifiers
assigns a 0.00621 probability to the real class, with a standard error of 0.00565. Even
though the average probability of the real class being assigned after poisoning increased
slightly, this isn’t a significant increase.

For the 50 poisons the average classification of the target image by the unpoisoned
classifier assigns a 0.00019 probability to the real class. The average of the poisoned
classifiers assigns a 0.00043 probability to the real class, with a standard error of
0.00035. As with the 20 poisons, even though we do have a small increase in the
probability of the real class being assigned after poisoning, this isn’t a meaningful
increase and thus both attacks seem to be ineffective.
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Figure 4.1: Probability that the target is classified as real, at each epoch of training the
clean + poisoned data. Left: Xception-Full 20 poisons, Right: Xception-Full 50 poisons

In Figure 4.1 we can see that during the finetuning stage the target is classified as
real by a significant amount. This drops immediately when all layers are unfrozen at
epoch 4. The misclassification in the first 3 epochs doesn’t happen due to the poisoning
attack, since Figure 4.2 shows that the network is only about 50% accurate during the
finetuning stage, and thus misclassification is to be expected. After epoch 3 the accuracy
increases and the target isn’t being misclassified anymore.

For the 50 poison case we see similar behaviour, with a big spike at epoch 5 for one
target. This might just be random behaviour, since the network isn’t always accurate.
It is also interesting to note that the targets seem to be tighter together during the
finetuning period, all between 0.3 and 0.5 probability of being real.

Figure 4.2: Overall validation accuracy per epoch of networks during poisoning. Left:
Xception-Full 20 poisons, Right: Xception-Full 50 poisons

In Figure 4.3 we show a sample base image and its corresponding poison. It shows that
there is a small amount of adversarial noise around the face of the person. This poison
was selected for illustrative purposes with most other poisons showing nearly no noise
at all. The distance between the poison and target in feature space is 170.26, compared
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to the distance between the base and target in feature space is 1750.5, which is about
10 times more. The distance between poison and base image is just 2.0434, a bit more
than the average for all poisons of 1.4664.

Figure 4.3: Xception-Full baseline sample base (left) and poison (right). The poison has
slight perturbation as can be seen in the lower pictures, which are crops of the upper
pictures.

Figure 4.4: Distances of poison from target instance in feature space (green). Distances
of poison from base instance (blue).

In Figure 4.4, for five randomly selected poisons, we can see the distance of the target
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from the poison in feature space and the distance of the base from the poison instance,
as we create our poisons. In all five of the poisons we show, we can see that the distance
between target and poison in feature space decreases a lot, while the distance between
base and target only increases very slightly. This means that the poison attack is creating
poisons in the correct way, as described by Shafahi et al. [66].

Since the baseline attack seems to be ineffective, we skip evaluation on Xception-Face
and Meso-Face. Due to time and compute constraints, we think it will be more insightful
to directly move on towards a stronger attack.

4.2 Closer poisons

We saw in the previous section that more poisons generated with the same parameters
didn’t have a significant impact in the effectiveness of the poisoning attack. We now
investigate the effect of poisons that are closer to the target in feature space.

4.2.1 Attack setup

We use a similar approach as in the previous section but make a few changes to create
closer poison images. We select 50 poisons instead of 20, since the previous results were
inconclusive and literature suggests that attacks with more poisons are more effective
[66] [62]. We decide on a maximum distance that poisons can have to the target in
feature space. The maximum distance gives us control over only selecting the closest
poisons for the final poisoning and discarding poisons that are too far from the target.
Since a poison with a small distance from the target in feature space will have a greater
chance of changing the decision boundary near the target location in feature space, we
want to minimise this distance.

For Xception-Full we decide on a maximum distance of 100, for Xception-Face of 600
and Meso-Face of 50. We choose the max distance values by inspecting the distances
to the target from the previous experiment and run some preliminary experiments on
Xception-Face and Meso-Face, from which we select the distance that about the top
10% of closest poisons fall under. We notice that the distance between poisons and
target in feature space is a lot higher in Xception-Face than Xception-Full (600 vs 100
max distance). This is a sign of Xception-Face being able to distinguish the real class
from the fake class better, which is reflected in Xception-Face’s higher accuracy. Due
to Meso-Face’s different architecture we select a lower max distance of 50, since the
feature space is a smaller vector in the Meso network compared to Xception. Since a
lot of poisons only reach the maximum distance after a considerably higher number
of iterations, we increase the number of iterations from 2000 to 8000 iterations. To
accommodate the higher number of iterations we halve the poison learning rate every
1000 iterations, similar to learning rate scheduling when training a network. All other
parameters are left the same as in the previous attack.

Shafahi et al. [66] or Aghakhani et al. [4] do broadly mention that nearer poisons should
be more effective but to the best of our knowledge this is a novel modification and
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there aren’t any other feature collision attacks that have a maximum distance for poison
selection.

4.2.2 Attack results

For Xception-Full the average probability of the real class being assigned to the target
before poisoning is 0.00461. After poisoning the average probability of the real class
being assigned is 2.49292e-5 with a standard error of 1.24040e-5.

For Xception-Face the average probability of the real class being assigned to the target
before poisoning is 0.00046. After poisoning the average probability of the real class
being assigned is 0.00149 with a standard error of 0.00137.

For Meso-Face the average probability of the real class being assigned to the target
before poisoning is 0.00496. After poisoning the average probability of the real class
being assigned is 0.00603 with a standard error of 0.00515.

Figure 4.5: Probability that the target is classified as real, at each epoch of training
the clean + poisoned data. Top left: Xception-Full, top right: Xception Face, Bottom:
Meso-Face

Compared to our first attack, the closer poisons did not significantly improve the
performance of our attack. For all 3 networks the poison attack didn’t significantly
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change the classification of the target class. Similarly to the previous experiment, we
can see in Figure 4.5 that Xception-Full and Xception-Face both assign the real class to
the targets at around 0.5 probability for the first 3 epochs while accuracy is low, but then
drop off sharply once all layers of network are trained and accuracy increases (see Figure
4.6). Meso-Face assigns the real class with a very high probability to a lot of targets after
the first epoch, but also a very low probability for a few targets. After the first epoch
nearly all targets are classified as fake, except one that oscillates between being assigned
as real and fake. Again, this can be explained by the accuracy increasing after 2 epochs,
and Meso-Face never having 100% accuracy on the data. The oscillating behaviour is
different from the spikes we’ve seen in the Xception networks, but it is inconclusive
whether this is caused due to poisoning or general network misclassification.

Figure 4.6: Overall validation accuracy per epoch of networks during poisoning. Top Left:
Xception-Full, Top Right: Xception-Face, Bottom: Meso-Face

In Figure 4.7 we can see how the poison distances from the target in feature space
and the distances from the bases changes during creation. We can see that Meso-Face
is closer to the target in feature space in addition to also creating fewer adversarial
perturbations in the image than Xception-Full. This is probably caused due to the
area of the cropped face image that Meso-Face can add perturbations to being a lot
smaller than for the full image that Xception-Full can add perturbations to. The average
distances between poison and base are 8.6260, 21.9381 and 3.9869 for Xception-Full,
Xception-Face and Meso-Face, meaning that they all are quite subtle.
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Figure 4.7: Distance of poison from target in feature space (green). Distance of poison
from base (blue). Left: Meso-Face. Right: Xception-Full.

4.3 Attacks in a finetuning setting

From the previous attack we learned that Poison Frogs isn’t effective in the end-to-end
training setting. Since Xception-Full and Xception-Face both use a pre-trained network
as a feature extractor, we perform an attack on them to show how effective the attack is
in a finetuning setting, where we freeze all layers except the last one. Following Shafahi
et al. [66], we select the output of this feature extractor as our feature space.

We choose to train a new Xception-Full for 5 epochs and a new Xception-Face for 3
epochs, because we observe that the networks do not seem to improve in accuracy after
that, when just finetuning the last layer. We use these two clean finetuned network as our
baseline to evaluate the difference in classification compared to the poisoned networks.
The clean finetuned networks have lower accuracy, with the finetuned Xception-Full
having an accuracy of 53.78% and the finetuned Xception-Face having an accuracy of
72.68%. This is to be expected, as there are fewer weights that the network can adjust,
compared to training end-to-end.

In this scenario, the adversary is not required to know the training regime for how we
finetune the detector. The only requirement is to know which feature extractor we use
for finetuning, making it a powerful attack since a lot of publicly available and common
networks are employed as pre-trained feature extractors.

Since we create poisons that are near the target in feature space, we should expect
better results in a finetuning setting, where previous layers cannot change the feature
space representation of our target and poisons over time. Conversely, leaving all layers
trainable, as in the previous experiments, will change the feature space representation of
our inputs, as weights in the network change with each backpropagation. Shafahi et al.
[66] also get better results on finetuned networks than end-to-end trained networks.

4.3.1 Attack Results

For the clean Xception-Full the average probability of the real class being assigned to
the target before poisoning is 0.50967. After poisoning, the average probability of the
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real class being assigned is 0.53568 with a standard error of 0.07408.

For Xception-Face, the average probability of the real class being assigned to the target
before poisoning is 0.31205. After poisoning, the average probability of the real class
being assigned is 0.37471 with a standard error of 0.00389.

Figure 4.8: Probability that the target is classified as real, at each epoch of training the
clean + poisoned data. Left: Xception-Full, Right: Xception-Face. Red dotted line = 0.5.

As we can see in Figure 4.8, during the whole finetuning process the targets are classified
as a mix of real and fake, for both Xception-Full and Xception-Face. Figure 4.9 shows
that Xception-Full doesn’t improve much when finetuning over more epochs, with an
accuracy of around 0.5. Xception-Face starts off with an accuracy of around 0.7 at
epoch 1 and doesn’t improve by a significant amount during finetuning.

Figure 4.9: Overall validation accuracy per epoch of networks during poisoning. Left:
Xception-Full, Right: Xception-Face

In Figure 4.10 we can see the distance of poisons from the target in feature space and the
distance between poisons and the base images. For both Xception-Full and Xception-
Face, the distance between poison and target in feature space drops considerably, with
Xception-Face even having distances of below 50, which is a lot less than when using
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the end-to-end trained network’s feature space which had average distances of about
600. This is because the feature extractor isn’t trained to differentiate between fake and
real images, thus not keeping them apart in feature space.

Figure 4.10: Distance of poison from target in feature space (green). Distance of poison
from base (blue). Left: Xception-Full. Right: Xception-Face.

We can see in Figure 4.11 that the poisons created for Xception-Face still are subtle
and not noticeable to the human eye, even as the distance from the bases is over 30 for
some of them. This means that the clean-label property still holds even in the finetuning
setting.

Figure 4.11: Faces of poisons created for Xception-Face in a finetuning setting.
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Evaluation, Limitations and
Comparison to Existing Work

In this chapter we evaluate the experiments that we have performed in the previous
chapter and compare them to each other. In addition to that we compare our findings to
previous work done in the fields of data poisoning and also data poisoning on deepfake
detectors specifically.

5.1 Evaluation of experiments

We first performed a baseline attack on Xception-Full in an end-to-end training setting,
with 20 and 50 poisons. We then moved on to the next attack, which we performed on
Xception-Full, Xception-Face and Meso-Face, with poisons closer to the target. Our
last attack was on Xception-Full and Xception-Face in a finetuning setting where we
left all layers frozen during training except the last fully connected layer.

Experiment Before After Increase Err

Xception-Full Baseline 20 0.00052 0.00621 0.00569 0.00538
Xception-Full Baseline 50 0.00019 0.00043 0.00023 0.00039

Xception-Full Closer Poisons 0.00461 2.49292e-5 -0.00458 0.00431
Xception-Face Closer Poisons 0.00046 0.00149 0.00103 0.00094

Meso-Face Closer Poisons 0.00496 0.00603 0.00106 0.00088

Xception-Full Finetuning 0.50967 0.53568 0.02601 0.02985
Xception-Face Finetuning 0.31205 0.37471 0.06266 0.03274

Table 5.1: Summary of all experiments. Before: Average probability of target image
being classified as real on clean classifier. After: Average probability of target image
being classified as real on poisoned classifier. Increase: Average increase in target
being predicted as real after poisoning. Err: Standard error of mean of increase.
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Figure 5.1: A boxplot showing the differences of classification before and after poisoning
from 8 repeats of each experiment. XFuB20: Xception-Full Baseline 20 poisons, XFuB50:
Xception-Full Baseline 50 Poisons, XFuS: Xception-Full Closer Poisons, XFaS: Xception-
Face Closer Poisons, MFuS: Meso-Face Closer Poisons, XFuF: Xception-Full Finetune,
XFaF: Xception-Face Finetune

5.1.1 Baseline Attack

Firstly, we performed a baseline attack on Xception-Full in an end-to-end setting,
with 20 and 50 poisons, where the classifier was first finetuned on just the last fully
connected layer for 3 epochs and then trained on all layers for the remaining 7 epochs.
We concluded that this attack was not effective, as there was no significant increase in
the probability of the target deepfake being classified as real. The average increase in
the probability of the target being classified as real for 8 repeats of the experiment was
just 0.00569.

We have three explanations for this attack not being effective. First of all, the feature
space used to generate poisons is from a trained network. The networks we poison are
not guaranteed to converge to the same exact feature space, thus rendering our attack
less effective. Second of all, we have an extremely large training set, compared to
previous work done using the Poison Frogs attack. This makes the number of poisons
we need to create extremely high, which is computationally intensive. Lastly, having
only two classes, also means that there are a large number of instances for each class,
exacerbating the need of a lot of poison instances to cause noticeable changes in the
network’s decision boundaries.

5.1.2 Closer Poisons

We then moved on to the next experiment, which we performed on Xception-Full,
Xception-Face and Meso-Face. The modification we made in this attack was to only
allow poisons if they were under a selected distance from the target in feature space.
We also selected 50 poisons, even though for us the effect of increasing the number of
poisons was inconclusive, since literature suggests that more poisons strengthen attacks
[66]. We concluded that this experiment also was not very effective, since the average
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increases in the probability of the target being assigned the real class were -0.00458,
0.00103, 0.00106 for Xception-Full, Xception-Face and Meso-Face respectively.

We have a few explanations for why this attack wasn’t effective. The simplest one is
that the feature space of the poisoned network is very different from the one that we
created the poisons from, thus not changing the decision boundaries near our target.
A less likely explanation, but interesting to explore in future work, is that the closer
poisons created a tighter polytope and thus smaller space for the decision boundaries to
be changed, making it less likely for the target to end up in the real class. Aghakhani
et al. [4] explain that centering the target in between all poisons at an equal distance
makes attacks more effective, since it increases the space spanned by the poisons where
the base class is assigned, as shown by their Bullseye Polytope attack.

5.1.3 Finetuning

The last attack was performed on Xception-Full and Xception-Face. The key difference
to the previous attack was that we created our poisons based on the feature extractor
that Xception-Full and Xception-Face are initially trained from and that we exclusively
finetuned the last layer for all epochs, leaving all other layers frozen. As depicted in
Figure 5.1 the finetuning attack was the most effective one out of all that we performed,
with the attack being more effective on Xception-Face than Xception-Full. For Xception-
Full the standard error on the increase in classification is too high to draw conclusion
on whether it is a significant increase. For Xception-Face we have an average increase
of 0.06266 with a standard error of 0.03274, which likely makes this attack effective,
although more experiments are needed to increase the certainty of the effectiveness.

The main reason for this attack not being as effective on Xception-Full is that the
classification accuracy of the finetuned Xception-Full is about 50%, making it equivalent
to guessing between the two classes. Since it cannot train fit its clean data, it is not
able to train on the poisons effectively either, and thus there is no significant change in
decision boundaries around the target, which are mostly randomly assigned. Conversely,
Xception-Face reaches an accuracy of about 72% when finetuned, which still isn’t as
good as Xception-Face trained in its normal training regime, but better than Xception-
Full, and thus can fit the poison data better.

The attack is more effective in a finetuned setting than the end-to-end setting, because
the feature space used to create the poisons is the same as the feature space during
training, both being the Xception trained on ImageNet. This allowed the poisons to
stay close to the target during the whole training process and change the classification
boundaries near the target to match that of the poisons, in this case the real class.

5.2 Limitations of our work

There are a few limitations to our work. First, the number of experiments we performed
often was not large enough to get an exact bound on how effective the attacks were. We
were limited by the amount of compute, since it requires training a whole network for
each experiment. Ideally, we would repeat each experiment more than 8 times.
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We also only performed attacks with up to 50 poisons. Considering how large the
dataset is, the fraction of poisons we used compared to the dataset size is very small.
Doing attacks with a few hundred poisons might very well be more effective than 50,
especially when attacking the finetuned Xception-Face network. In works by Shafahi
et al. [66] or Russell [62] more poisons are used than in our case. Often poison attacks
poison between 0.1% up to 30% of the whole training set, which would be tens of
thousands of poisons for FF++ [19].

We only performed one feature collision attack, namely Poison Frogs. Even though this
does deliver a good lower bound on the effectiveness of other feature collision attacks
and is a good indication for which networks are vulnerable and which ones are not, it
is worth using other attacks such as Convex Polytope [80] or Bullseye Polytope [4],
especially since they generally perform better when training all layers of a network like
we did in our first two experiments.

Using multiple datasets and more classifiers would also generalize the results more.
Especially using a classifier that has only been finetuned on the last layer, but still
achieves high accuracy, since the attacks in a finetuning setting seemed to be the most
promising, but limited by network accuracy.

5.3 Comparison to previous work

The only other published data poisoning attack done on deepfake detectors was per-
formed by Russell [62]. They also used the FF++ dataset in their experiments and
attacked Xception-Face and Meso-Face. Unlike our clean-label Poison Frogs attack,
they performed a label flipping attack, which needs access to the labelling function.
They also didn’t attack Xception-Full, which seemed the most robust to poison attacks
in our experiments.

Previous work done by Russell [62] has shown that deepfake detectors are vulnerable
to label flipping attacks, with between 50 - 250 poison instances. There are a few key
differences between our approach and theirs. First of all, they train networks only on
one type of deepfake at once. Since there are four different generation algorithms in
FF++, they poison four versions of Xception-Face and Meso-Face. Their label flipping
algorithm also specifically takes advantage of the fact that the deepfakes in FF++ have
a source face and a target person, where the source face is transferred onto the target
person. They create poisons by flipping the labels of deepfakes where the source face is
equal to the target image that we are trying to classify as real.

Overall, our attack is more realistic for an adversary to perform, since the poisons
generated would be labelled by a human. We also generated poisons based on feature
space, which for the finetuning case is a publicly available pre-trained network. Because
our poisons are engineered to be close to the target in feature space, we would have
fewer poisons required than Russell [62], where the label flipping method often chooses
images to flip which aren’t very similar to the target in the network.

Hussain et al. [37] performed an inference time attack, that added perturbations to
specific target deepfakes which then got classified as real. Our attack differs in that it
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doesn’t require any modification to the target image. In addition to that, their attack
required access to the exact weights of the trained network that is used for inference,
which we don’t need. They also targeted Xception-Face and Meso-Face, but didn’t
target Xception-Full, which seems to be more robust since it can’t fit data as well as the
networks using face crops. It would be of interest to show whether Xception-Full also
is more robust against inference time attacks, like it is against feature collision poison
attacks.



Chapter 6

Conclusion

In this section we will summarise our findings from the previous chapters, as well as
suggest future work to be undertaken.

6.1 Summary of our findings

We performed the feature collision attack, Poison Frogs [66], on three different deepfake
detectors in end-to-end and finetuning settings. To the best of our knowledge, they
were the first published feature collision poisoning attacks performed against deepfake
detectors. In addition to that, it was the first poison attack performed against deepfake
detectors, which did not assume access to the labelling function, and thus is the most
realistic attack performed to date.

The main research question we had, was to find out how robust deepfake detectors
are against feature collision data poisoning attacks. We conclude, that especially for
finetuned deepfake detectors, using publicly available pre-trained models as feature
extractors, there is a high risk and they definitely are vulnerable against feature collision
attacks, as seen from our experiments in the finetuning setting. Especially models that
are able to fit their data very well are of high risk, since they will fit poisons easily, as
we saw when we compared Xception-Full with Xception-Face.

Deepfake detectors trained in an end-to-end setting are more robust to feature collision
data poisoning attacks, with neither of our attacks set in an end-to-end setting being
effective on any of the three models. Nevertheless, there is a need for performing
experiments with more poisons, as previous work done by Russell [62] suggests that
multiple hundred poisons can poison deepfake detectors with a label flipping attack,
thus potentially working with a feature collision attack as well. In addition to that, there
are feature collision attacks such as Bullseye Polytope by Aghakhani et al. [4], which
are designed for the end-to-end setting and can potentially poison deepfake detectors.

In summary, deepfake detectors are vulnerable against feature collision data poisoning
attacks, but end-to-end training or finetuning on non-publicly available pre-trained
models increase the robustness of deepfake detectors.

39
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6.2 Future work and ideas

There are a few interesting things to be explored in future work. First of all, since the
finetuning attacks seemed to be the most promising, targeting fully finetuned detectors
which can achieve high accuracy without training all layers is something to be explored.
These attacks should be more effective since the detector will be able to fit the data,
including the poisons, a lot better than the Xception networks we attacked.

Modifying Poison Frogs to work better in the end-to-end setting also is worth looking
into. Either by implementing watermarks in the poisons as suggested by Shafahi et al.
[66] or by using multiple feature spaces from different fully trained networks. Zhu
et al. [80] show that this increases the effectiveness of poison attacks in the end-to-end
setting, by reducing the impact of the changing feature space during training.

Increasing the number of poisons used in attacks should be looked into as well. Since
we were limited by compute, we only used up to 50 poisons. Other attacks often poison
between 0.1% up to 30% of the whole training set, which would be tens of thousands
of poisons for FF++ [19]. Russell [62] poisons a few hundred samples in their label
flipping attacks against deepfake detectors. This might mean that feature collision
attacks also would work with a few hundred poisons.

Another thing to consider is to improve poisons in a different way than we did, when we
made them closer to the target in feature space. Souri et al. [67] for example generate
base instances using diffusion methods, from which they then create the poisons. This
has been shown to drastically reduce the number of poisons required for a successful
attack, compared to the normal Poison Frogs attack.

In addition to that, other feature collision poisoning attacks like Bullseye Polytope [4] or
Black Card [31] should be tried on deepfake detectors, as they have better performance
in end-to-end training settings, where Poison Frogs wasn’t effective. Aghakhani et al.
[4] also uses poisons using the feature space of multiple trained networks, improving
performance in the end-to-end setting, which might improve performance against
deepfake detectors. Other types of poison attacks like bilevel optimization attacks
should also be tried against deepfake detectors, since they use a different method
entirely for poisoning the network, potentially being a lot more effective than feature
collisions.

It is also worth noting that defenses against feature collision attacks should be explored
in the deepfake detection setting. We presented different defenses in Chapter 2 which
can be explored in the future.

Overall, there are a lot of areas that are worth exploring in the future. Data poisoning
against deepfake detection is an important issue, and thus it is critical to expand the
existing literature on it.



Bibliography

[1] Deepfakes github. https://github.com/deepfakes/faceswap.

[2] Faceforensics, faceforensics++, and deepfakes detection dataset terms of use.
https://kaldir.vc.in.tum.de/faceforensics_tos.pdf.

[3] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. Mesonet:
a compact facial video forgery detection network. In 2018 IEEE International
Workshop on Information Forensics and Security (WIFS). IEEE, dec 2018. doi:
10.1109/wifs.2018.8630761. URL http://dx.doi.org/10.1109/WIFS.2018.
8630761.

[4] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and
Giovanni Vigna. Bullseye polytope: A scalable clean-label poisoning attack with
improved transferability, 2021.

[5] Zahid Akhtar. Deepfakes generation and detection: A short survey. Journal of
Imaging, 9(1), 2023. ISSN 2313-433X. doi: 10.3390/jimaging9010018. URL
https://www.mdpi.com/2313-433X/9/1/18.

[6] Irene Amerini, Leonardo Galteri, Roberto Caldelli, and Alberto Del Bimbo. Deep-
fake video detection through optical flow based cnn. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision Workshop (ICCVW), pages 1205–1207,
2019. doi: 10.1109/ICCVW.2019.00152.

[7] Sebastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and Ghassan
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[19] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon,
Werner Zellinger, Bernhard A. Moser, Alina Oprea, Battista Biggio, Marcello
Pelillo, and Fabio Roli. Wild patterns reloaded: A survey of machine learning
security against training data poisoning. ACM Computing Surveys, 55(13s):1–39,
jul 2023. ISSN 1557-7341. doi: 10.1145/3585385. URL http://dx.doi.org/
10.1145/3585385.

[20] European Commission. Ai act. 2024. URL https://digital-strategy.ec.
europa.eu/en/policies/regulatory-framework-ai.

[21] Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and Anil Jain. On the
detection of digital face manipulation, 2020.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.
5206848.

[23] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt,
and Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization,
2019.

https://doi.org/10.24963/ijcai.2019/647
http://dx.doi.org/10.1145/3433210.3453079
http://dx.doi.org/10.1145/3433210.3453079
http://dx.doi.org/10.1145/3585385
http://dx.doi.org/10.1145/3585385
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai


Bibliography 43

[24] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin
Wang, and Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset.
2020.

[25] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Dong
Chen, Fang Wen, and Baining Guo. Identity-driven deepfake detection, 2020.

[26] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning visual classification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2018.

[27] Jonas Geiping, Liam Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor,
Michael Moeller, and Tom Goldstein. Witches’ brew: Industrial scale data poison-
ing via gradient matching, 2021.

[28] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild,
Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security
for machine learning: Data poisoning, backdoor attacks, and defenses. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(2):1563–1580,
2023. doi: 10.1109/TPAMI.2022.3162397.

[29] Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-
backward splitting with a fasta implementation, 2016.

[30] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying
vulnerabilities in the machine learning model supply chain, 2019.

[31] Junfeng Guo and Cong Liu. Practical Poisoning Attacks on Neural Net-
works, pages 142–158. 11 2020. ISBN 978-3-030-58582-2. doi: 10.1007/
978-3-030-58583-9\ 9.

[32] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai systems, 2019.

[33] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jian-
feng Gao. Ms-celeb-1m: A dataset and benchmark for large-
scale face recognition. In ECCV 2016, August 2016. URL
https://www.microsoft.com/en-us/research/publication/
ms-celeb-1m-dataset-benchmark-large-scale-face-recognition-2/.

[34] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and
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Appendix A

Deepfake Generation

A.1 Generative Adversarial Networks and Variational
Autoencoders

A.1.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are networks used to create new data that
is similar to a given dataset. A GAN consists of a generator and a discriminator. The
generator takes random noise as an input and trains with the aim to generate data that is
similar to the one found in the given dataset. The discriminator tries to differentiate the
data from the generator and the data from the given dataset. The feedback loop from the
generator trying to fool the discriminator and the discriminator trying to differentiate
between generated images improves the performance of both [50].

A.1.2 Variational Autoencoders

Variational Autoencoders (VAEs) consist of two components, the encoder and the
decoder. The encoder takes an input and maps it into a lower-dimensional latent space,
typically defined by a mean and variance. This context vector is then passed to the
decoder, which aims to reconstruct the input given to the encoder. During training the
VAE has the goal to minimize the difference between the input and output while also
keeping the latent space similar to a unit Gaussian distribution, though a regularization
term called the Kullback-Leibler divergence.

48
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A.2 Deepfake Examples

Figure A.1: Face-Swap: Source image, target face, deepfake [48]

Figure A.2: Facial reenactment: Source image, target face, deepfake [48]

Figure A.3: Facial attribute manipulation [48]
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Figure A.4: Synthetically generated faces [54]



Appendix B

Norms

B.0.1 Euclidean Norm

The Euclidean Norm for the vector x is:

∥x∥2
2 =

√
xT x (B.1)

B.0.2 Frobenius Norm

The Frobenius Norm of matrix A is:

∥A∥F =
√

tr(AAH) (B.2)

where AH is the conjugate transpose of A. If A is a real matrix, this is just equal to AT .
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Appendix C

Xception-Full, Xception-Face and
Meso-Face

C.1 Training Loss of Xception-Full, Xception-Face and
Meso-Face

(a) Loss of Xception-Full (b) Loss of Xception-Face

(c) Loss of Meso-Face
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Appendix D

FaceForensics++

D.1 Sample Poisons

Figure D.1: Samples from FF++. Top to bottom: Real, Deepfakes, Face2Face, FaceSwap,
NeuralTextures
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