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Abstract
We study algorithms to compute clearing payments in financial networks interconnected
by financial contracts in different settings: When there are only direct debt between
financial institutions; When bankruptcy costs are also present; and finally with the
inclusion of Credit Default Swap contracts.

Our implementations of the algorithms for the different settings provide interesting
insights into how efficient some of the algorithms are in a meaningful context, where
we try to reproduce somewhat realistic financial networks based on research.

We find the Linear Programming Algorithm we implement has the best runtime per-
formance in the meaningful networks we generate, despite not having a polynomial
worst-case runtime, due to the nature of these networks being hyper-sparse. Optimisa-
tions for the Linear Programming Algorithm for hyper-sparse networks make it more
efficient than the bounded Fictitious Default Algorithm for example.
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Chapter 1

Introduction

Every firm owed money to every other firm. But ... you couldn’t tell whether
they were bankrupt or not, because that depended on whether they got paid
money that was owed to them by other firms who might or might not be
in default, depending on whether the firms that owed them money went
bankrupt [28].

A Financial Network is a way of modelling financial institutions that are interconnected
by financial contracts between them. When one or more of the institutions in the network
defaults1, some of the institutions may no longer be able to pay their obligations to
the other institutions. In turn, this may have a ripple effect in the network, and the
institutions that do not receive their expected payment fully may also not be able to
fulfill their debt2 obligations, and hence also default.

The quote above by Nobel laureate Joseph Stiglitz describes an example situation where
this occurred. During the East Asia crisis (1997-1998), where 70% of firms in Indonesia
went into default, more than 50% in Korea, and almost 50% in Thailand, it was hard to
establish the value of any firm - as they depended on whether they got payed money
that was owed to them by other firms.

This problem motivates the question tackled in this thesis: when there is financial
distress, and some institutions in a financial network may default, what has to be payed
between institutions to clear the financial network?

Our task is to find the clearing payments for a given financial network, which represent
the total payment each institution has to make to clear the network. We consider
payments to be clearing if they are in accordance to standard conditions imposed by
bankruptcy law, that is - they satisfy the conditions of proportional repayments of
liabilities3 in default, limited liability of equity4, and absolute priority of debt over
equity [7].

1Default: to fail to do something, such as pay a debt, that you legally have to do.
2Debt: something, especially money, that is owed to someone else, or the state of owing something
3Liability: the fact that someone is legally responsible for something.
4Equity: The money value of a property or business after debts have been subtracted.
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Chapter 1. Introduction 2

As in [7], throughout this thesis we assume that all payments are made at the same time.
In practice, this is far from the truth, as it is virtually impossible to get institutions to pay
exactly at the same time, and values of contracts and debts vary constantly. Clearing
payments for such cases, namely dynamic financial networks, have also been studied by
[2], [5].

Since the landscape of research in this field is vast, with financial networks represented
with many different types of contracts between them, and in different contexts, we have
to restrict the settings of the networks we consider in this thesis. We constructively
change the setting of the financial networks considered, making the task of finding
clearing payments harder. For each of the settings considered, we implement and
experiment with algorithms to compute said payments.

First, in Chapter 2 we provide the formal definitions of the settings of the networks
considered in this thesis. For each of the settings, we provide background information
on the research done on algorithms to compute clearing payments for said settings.

Chapter 3 then considers the most simple setting, as studied by [7], where financial
networks only have debt contracts between them. We implement three algorithms for
computing clearing payments for this setting, namely: the Iterative Solver, the Fictitious
Default Solver, and the Linear Solver. We then introduce a small variation to the setting,
with the addition of bankruptcy costs into the network, as done by [24]. This slightly
changes the task of computing the clearing payments, as when institutions default, they
lose part of their value to account for the costs associated with bankruptcy. For this
setting, we implement the Greatest Clearing Vector Solver, provided by [24], which
we can compare to the other algorithms in this chapter by setting no bankruptcy costs.
We provide theoretical worst time complexities for our implementations, and perform
experiments on the performances of algorithms, with both randomly generated networks,
and meaningful networks.

In both of the settings above, the existence of a clearing payment is guaranteed, and
we provide algorithms to compute the clearing payments in polynomial time. With the
addition of Credit Default Swap5 (CDS) contracts into the network, these guarantees no
longer hold. [25] show that computing an approximate solution to the clearing problem
with sufficient small constant error is PPAD-complete. This reveals that computational
complexity can become a concern regarding the stability of financial networks. This
is the setting we study in Chapter 4, where we add CDS contracts into the network
of debt and bankruptcy costs. We consider the restrictions to the network provided in
[26], which allow for computing clearing payments for this setting in polynomial time,
implement algorithms to compute said payments, and perform experiments with them.

Lastly, in Chapter 5 we provide our conclusions to the thesis, in regards to the practical
relevance of our study, the limitations, and the possible extensions.

5CDS are a form of financial derivative that depend on three institutions: a creditor, a debtor and a
reference institution. The debtor agrees to pay the creditor a certain amount if the reference institution
defaults.



Chapter 2

Background and Definitions

In this section, we provide the formal definitions of the different types of financial
networks we study in this thesis. We restrict this thesis to three types of networks:
networks with debt contracts only; networks with debts contracts and default costs; and
networks with debt contracts, default costs, and credit default swaps. We summarise
and evaluate the available papers with respect to finding algorithms for computing
clearing payments in these kind of networks, to then provide implementations for said
algorithms in chapter [3] and [4].

2.1 Financial Networks with Debt Contracts Only

In their paper, which can be considered as a base in the literature of this topic, upon
which further investigation has stemmed in many directions, [7] introduce a network
of financial institutions which are interconnected only by debt obligations between
them. They prove that in this setting, clearing payments always exist, that under
mild regulatory conditions, the clearing payment vector is unique, and they provide
an algorithm to compute the clearing payment vector, namely the Fictitious Default
Algorithm.

2.1.1 Framework

We now introduce the framework provided by [7], adjusting notation where suitable to
fit the thesis, allowing for the extensions we provide in the later sections.

The financial network is built of a set of N financial institutions. Each of these institu-
tions i ∈ N may have liabilities towards other institutions within the network, which are
represented by an N x N nominal liabilities matrix L. The nominal liabilities matrix L is
defined as a non-negative N x N matrix for which Li j represents the nominal liability of
node i to node j. They define an external cash flow vector e which represents the cash
infusion to the node from sources outside the financial system. The external cash flow
vector e is an N-dimensional vector for which ei ≥ 0 represents the cash flow for node i.

They let p be the total payment vector, for which each pi represents the total payment

3



Chapter 2. Background and Definitions 4

of node i to other nodes in the network. They define the total obligations vector p as an
N dimensional vector for which pi represents the total obligations of node i to all other
nodes:

pi =
n

∑
j=1

Li j

They let Π be the relative liabilities matrix, which for each node represents the fraction
of the node’s total obligations it has towards another node.

Πi j =

{Li j
pi

if pi > 0

0 otherwise

Under this framework, the value of equity of node i is given by the total cash flow minus
the payments to creditors:

n

∑
j=1

Π
T
i j p j + ei− pi

Definition 1. Debt Only Financial Network

(a) A Debt Only Financial Network is defined as a tuple (N, L, e) where N is a set of
banks, L is a nominal liabilities matrix, and e is an external cash flow vector.

(b) Equivalently, a Debt Only Financial Network is defined as a tuple (N, Π, p, e)
where N is a set of banks, Π is a relative liabilities matrix, p is a total obligations
vector and e is an external cash flow vector.

2.1.2 Clearing Payment Vectors

Intuitively, a clearing payment vector should represent the payments made by each of
the nodes in the financial system. In their paper, [7] consider that these payments must
be consistent with legal rules allocating value among nodes and holders of debt and
equity. These are:

(1) Limited liability: Total payments of a node must not exceed the cash flow
available to the node.

(2) Priority of debt claims: Stockholders in the node receive no value until node is
able to pay off all of it’s liabilities.

(3) Proportionality: If default occurs, claimant nodes are paid by the defaulting
node in proportion to the size of their nominal claim on firm assets.

Under this desiderata, a clearing payment vector p∗, has to be consistent with the
following properties:

(1) Limited Liability: ∀i ∈ {1, ...,N},

p∗i ≤
n

∑
j=1

Π
T
i j p
∗
j + ei



Chapter 2. Background and Definitions 5

(2) Absolute Priority ∀i ∈ N either obligations are paid in full (p∗i = pi), or all value
is paid to creditors:

p∗i =
n

∑
j=1

Π
T
i j p
∗
j + ei.

Definition 2. Debt Only Clearing Payment Vector

A Debt Only Clearing Payment Vector for a Debt Only Financial Network (N, Π, p, e)
is a vector p∗ ∈ [0, p] that is a fixed point of the function φ, that is φ(p∗) = p∗. Where
φ : [0, p]N → [0, p]N is defined by:

φi(p)≡

{
pi if pi ≤ ∑

n
j=1 ΠT

i j p j + ei

ei +∑
n
j=1 ΠT

i j p j otherwise.

From the above, we see that a clearing payment vector is one where every node pays
the minimum of what it has and what it owes.

From a fixed point argument, since the function φ is linear, and monotone on the
complete lattice, it has a lattice of fixed points, a greatest and a least fixed point,
implying that a clearing payment vector always exists [16]. Next, [7] prove that under
mild regularity conditions for the network, the clearing payment vector is unique (we
omit this condition, as the proof is lengthy, and in practice, networks almost always meet
the condition, refer to [7] for the explanation). We are interested in finding maximum
clearing payment vectors, As these maximise the value of equity of all the nodes in the
network.

They provide an algorithm, namely the Fictitious Default Algorithm to compute the
clearing payment vector in financial networks where there exists a unique clearing
payment vector. This algorithm produces a sequence of vectors starting at p0 = p,
and reduces to the clearing payment vector p∗ in at most N iterations. We provide an
implementation of such algorithm and compare it to other algorithms that also solve
this problem in section (3.1).

2.2 Financial Networks with Debt Contracts and Bankruptcy
Costs

As an extension to [7], [24] provide a financial network where they include a bankruptcy
cost as a fraction of the equity available to the financial institution at the time of default.
This arguably sets a more realistic scenario, as financial institutions have to incur
bankruptcy costs when they file bankruptcy. These costs include direct costs of paying
lawyers and accountants, and indirect costs for fire sales or lost profits [31]. [21] study
the default costs as actual functions and not just constant factors, arguably making
the setting more realistic as it gives room for more precise interpretations of default
costs. In this thesis, we focus on [24], as it is then extensible to the Credit Default Swap
setting in section (2.3).
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They prove the existence of clearing payment vectors in such networks, and provide
a variation of the Fictitious Default Algorithm to not only find the clearing payment
vector under the mild regularity conditions, but for any financial network of this kind.

2.2.1 Framework

Building from the financial system of (2.1), [24] introduce two constants, α,β ∈ (0,1]
where α is the the fraction of the face value of net assets realized on liquidation, and β

is the fraction of the face value of inter-bank assets realized on liquidation. This means,
upon bankruptcy, a financial institution will pay the fraction α of their external cash
flow, and the fraction β of the payments they receive from other banks as the clearing
payment. The outstanding amount is assumed to be the cost associated to bankruptcy of
that institution. That is, the bankruptcy cost for a node i in default is:

(1−β)
n

∑
j=1

Π
T
i j p
∗
j +(1−α)ei.

Definition 3. Debt and Bankruptcy Costs Financial Network

A Debt and Bankruptcy Costs Financial Network is defined as a tuple (N,Π, p,e,α,β)
where N is the set of banks, Π is the Relative Liabilities Matrix, p is the total obligations
vector,e is the external cash flow vector, and α,β ∈ (0,1] the fraction of their external
assets, and the fraction of the payments they receive from other banks associated with
bankruptcy costs upon defaulting, respectively.

2.2.2 Clearing Payment Vectors

Under the same desiderata as those in [2.1] (limited liability, priority of debt claims, and
proportionality), and with the introduction of bankruptcy costs, the clearing payment
vector can be defined as follows:

Definition 4. Debt and Bankruptcy Costs Clearing Payment Vector

A Debt and Bankruptcy Costs Clearing Payment Vector for a Debt and Bankruptcy
Costs Financial Network (N,Π, p,e,α,β) is a vector p∗ ∈ [0, p] such that p∗ = φ(p∗)
(a fixed point), where φ is the function defined by:

φi(p)≡

{
pi if pi ≤ ∑

n
j=1 ΠT

i j p j + ei

αei +β∑
n
j=1 ΠT

i j p j otherwise.

In this setting, they show that the function φ is monotone and increasing, as well as
bounded above by p. This is enough to show that the clearing payment vector always
exists, and is a fixed point of the φ function.

In their papers, both [24] and [21] extend their research to bailout costs. By looking at
which nodes default at certain points in the network, they provide insights into these
types of payments, which essentially consist in "rescuing" banks in the network by
acquiring their debt. This itself is another topic within the clearing payment problem,
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which we don’t go into in this thesis, but leave as a possible extension if we had more
time.

Interestingly, [24] provide an algorithm to find the maximum clearing payment vector
in at most N iterations in any financial network of this kind (in contrast to [7] who’s
algorithm works under mild regulatory conditions). We implement this algorithm,
namely the Greatest Clearing Vector Algorithm in section (3.2.2).

2.3 Financial Networks with Credit Default Swaps

With the introduction of Credit Default Swaps (CDS) in a financial network, the problem
of finding a clearing payment vector becomes non-trivial. In the two network cases
looked at above, (2.1, 2.2), algorithms are devised to compute clearing payments
efficiently (in polynomial runtime). [25] prove that when introducing CDS into the
network, finding an approximate solution for a clearing payment vectors is PPAD-
Complete. This implies that the problem does not have a polynomial time approximation
scheme (PTAS) unless P=PPAD and thus needs to be considered computationally
intractable. [20] build on this paper to actually prove that finding a strongly approximate
solution is FIXP-Complete1. Furthermore, [26] show that in the unbounded CDS case,
with bankruptcy costs, there can also be no solution to the clearing problem, or the
solution can be ambiguous, meaning that there are multiple conflicting solutions, none
of which maximise the equity of the network, making it impossible to pick a solution
that will make all the financial institutions "happy".

Building on [24], [26] introduce the concept of credit default swaps into the financial
network, and devise sufficient restrictions for the existence of solutions to the clearing
payment problem in this setting, as well as providing algorithms to find them. By
constructively applying less restrictions, they provide solutions to different scenarios
where it is possible to find a clearing payment vector, trying to approximate to the
unbounded case as much as possible. This is done through the Colored Dependency
Graph framework, which models a directed graph of long and short positions of the
CDS network.

2.3.1 Framework

The CDS framework devised by [26] builds on [7] and [24], adding the CDS contracts
into the network. To make it more understandable, we first explain the concept of a
CDS and then show how these contracts are modeled in the network.

2.3.1.1 Credit Default Swaps

CDS contracts involve three parties: a debtor, a creditor, and a reference entity. The
creditor and debtor agree on a notional value for the contract. Upon default of the

1Input: algebraic circuit (straight-line program) over basis +, , , /, max, min with rational constants,
having n input variables and n outputs, such that the circuit represents a continuous function F : [0,1]n =⇒
[0,1]n (The domain can be much more general than [0,1]n) Output: Compute a (ε-near approximate)
fixed point of F. [11]
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reference entity, the debtor has to pay the creditor depending on the recovery rate of
the reference entity. That is, the proportion of the liabilities it is able to pay back.
The amount the debtor pays to the creditor is the notional of the contract times the
proportion of the liabilities the reference entity is not able to pay.

To model the CDS contracts in the network, fist recall Definition 3, for a Debt and
Bankruptcy Costs Network. This is a tuple (N,Π, p,e,α,β), which can be represented
equivalently by the tuple (N,L,e,α,β). We now introduce a three dimensional matrix c,
the CDS matrix, which is an N x N x N matrix for which ck

i, j represents the value of the
CDS contract where i is the debtor, j is the creditor, and k the reference entity.

Definition 5. CDS Network A CDS Network is defined as a tuple (N,L,c,e,α,β)
where N is the set of banks, L is the Nominal Liabilities Matrix (debt contracts), c is the
CDS matrix, e is the external cash flow vector, and α,β ∈ (0,1] the constants associated
with bankruptcy costs.

Now, it is important to define the recovery rate vector r, for which ri = 1 if bank i is not
in default and ri < 1 if bank i is in default.

Figure 2.1: Example graph of a CDS contract, where i is the debtor, j is the creditor, and
k is the reference entity. Upon default of k, i will pay j: (1− rk) · ck

i j for this contract.

The liabilities of bank i to bank j under recovery rate vector r can be defined as the
direct debt plus the value of the credit default swaps of i to j:

li j(r) = Li j +
N

∑
k=1

(1− rk) · ck
i, j.

Which follows that the total liabilities of a bank i are the sum of the liabilities to all
other banks:

li(r) =
N

∑
j=1

li j.

However, the actual payment pi j(r) a bank makes can be lower than the liability li j(r)
if bank i is in default under r. Due to this, following the proportionality condition
discussed in 2.1.2, the payments have to be proportional to the total liability of the bank:

pi j(r) = ri · li j.
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The total assets ai of a bank under a recovery rate vector r consist of the external cash
flow and the incoming payments, which are:

ai(r) = ei +
N

∑
j=1

p ji(r).

If bank i is in default, their assets after default costs a′i(r) are:

a′i(r) = α · ei +β ·
N

∑
j=1

p ji(r).

2.3.2 Clearing Recovery Rate Vector

Following the above, we are able to define a clearing recovery rate vector. We take the
legal rules from (2.1.2) as conditions, and devise the following:

Definition 6. CDS Clearing Recovery Rate Vector

A CDS Clearing Recovery Rate Vector for a CDS Network(N,L,c,e,α,β) is a vector
r∗ ∈ [0,1] such that r∗ = φ(r∗) (a fixed point) where φ : [0,1]N → [0,1]N is defined by:

φi(r) =

{
1 if ai ≥ li
a′i(r)
li(r)

otherwise

In essence, the recovery rate vector is 1 if i is not in default, and the assets after the
default costs are incurred over the total liabilities otherwise. From this definition, we
can obtain a clearing payment vector p∗, for which the entries of the vector would be:
p∗i = ∑

N
j=1 pi j(r∗)

In this setting, the liabilities depend on the recovery rate vector r, and the assets have
terms of the form ck

i j · r j · (1− rk), meaning that the update function φi(r) depends on
r in a way that is nonlinear and non-monotonic: an increase in some recovery rate rh
could lead to an higher or lower φi(r) for another bank i [26]. These properties make
computing a fixed point in this setting hard, and impossible in some cases.



Chapter 3

Algorithms for Debt Only, and Debt and
Bankruptcy Cost Networks

In this chapter, we look at how to compute clearing payments for financial networks with
debt contracts only, and financial networks with debt contracts and bankruptcy costs.
We group these two types of networks into one chapter due the ability to represent both
networks with the same kind of liabilities matrix, which makes testing and comparing
algorithms possible. This becomes apparent in the explanation of section (3.4).

For each of the types of networks, we explain the available algorithms to compute
clearing payments, provide our implementation details, and finally a runtime analysis
of each of these. We then look at comparing the effectiveness of each of the algorithms
in differently generated networks: completely random, and meaningful networks.

3.1 Debt Only

We first look at algorithms for computing clearing payments in financial networks with
debt contracts only. All the algorithms implemented in this section come from the paper
on Systemic Risk in Financial Systems provided by [7]. They provide a description
of the Fictitious Default Algorithm, which we implement, and provide a programming
characterization of the problem of finding a clearing payment vector, for which we
implement a Linear Programming Solver. Finally, we implement an algorithm that
simply iterates the function φ until it converges to a solution.

3.1.1 Linear Programming Solver

We now look at one of the ways of computing clearing payments in Debt Only Financial
Networks: Linear Programming. This is a mathematical modelling technique used to
maximize or minimize a linear function subject to various constraints [3].

In their paper, [7] provide a linear programming characterisation for Debt Only Financial
Networks. This is based on maximising the payments by all nodes in the system subject
to the limited liability condition. They prove that any function f : [0, p] 7→ R that is

10



Chapter 3. Algorithms for Debt Only, and Debt and Bankruptcy Cost Networks 11

strictly increasing under the linear programming characterization will produce a clearing
payment vector. The linear programming problem then has the following form:

Max f (p) s.t. p≤Π
T p+ e and 0≤ p≤ p

To solve this using Python, we use Scipy’s linprog function from the optimize library
[30]. They provide interfaces to the linear programming solvers HiGHS simplex and
HiGHS interior-point. The function picks between the two, depending on the problem.
HiGHS is a linear programming software, and the methods employed come from [18].

The LINPROG function only minimizes an objective function, so we have to adapt our
problem to fit it. The function optimizes problems of the form:

Min cT x s.t. Ax≤ b and l ≤ x≤ u

To adapt our problem to this format, we set c to be a vector with values -1. This
essentially means we minimise the negative values of x, effectively maximising them.
Rearranging the equation then gives us

Min − p s.t. IN−Π
T p≤ e and 0≤ p≤ p

The output p is the clearing payment vector.

3.1.2 Iterative Algorithm

Recall the definition of a Clearing Payment Vector p∗ for a Debt Only Financial
Network, a fixed point of the function φ, defined by:

φ(pi)≡

{
pi if pi ≤ ∑

n
j=1 ΠT

i j p j + ei

ei +∑
n
j=1 ΠT

i j p j otherwise.

One way to compute the clearing payment vector is to start by setting p = p, and simply
iterating φ. This would produce a sequence of vectors where p(n+1) = φ(p(n)). We can
observe two important properties in φ:

(1) φ is bounded above by p: for any p, φ(p)≤ p;

(2) φ is monotone: if p̂≤ p, then φ(p̂)≤ φ(p).

[7] provide a proof of the above. With these two properties, since p(1) ≤ p(0) = p, for
all n:

p(n+1) < p(n).

Since p(n) are all non-negative, it follows that there is a monotone limit

p
′
:=↓ lim

n→∞
p(n).

Also, notice that the set An := {i : p(n)i < pi} is non decreasing in n, and eventually
constant. The set An is a set for each iteration n consisting of the indices of the vector
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p(n) for which the value p(n)i ≤ pi. The set is non-decreasing because p(n+1) ≤ p(n),
meaning that the indices in the set can only increase or stay constant. Hence, p

′
satisfies

p
′
= φ(p

′
) (a fixed point), showing that p

′
is a clearing payment vector. This proof is

inspired on that provided in [24].

Our implementation for this algorithm is straight forward: start at p = p, and work
out newP by the following: newP = φ(p). The algorithm runs in a while loop until
p = newP, at which point we have come to a fixed point.

Algorithm 1 Iterative Solver
function ITERATIVESOLVER(financialNetwork)

p← f inancialNetwork.p_bar
newP← GETNEWP(p, f inancialNetwork)
while p ̸= newP do

p← newP
newP← GETNEWP(p, f inancialNetwork)

end while
end function

3.1.3 Fictitious Default Algorithm

Following the Linear Programming solver, we implement the algorithm explicitly
provided by [7]: The Fictitious Default Algorithm.

The idea behind this algorithm is to sequentially identify the banks that default, by
assuming that at the start of each round, the banks that haven’t yet defaulted are not in
default and pay fully. When the algorithm gets to a round where no new banks default,
the algorithm terminates and the clearing payment vector is obtained. Refer to algorithm
(2)

Algorithm 2 Fictitious Default Solver
function FICITITIOUSDEFAULT(financialNetwork, p, defaultMatrix)

newDe f aultMatrix← GETDEFAULTMATRIX(p, f inancialNetwork)
newP← GETNEWP(newDe f aultMatrix, p, f inancialNetwork)
if oldDe f aultMatrix = newDe f aultMatrix then

return p
else

return FICITITIOUSDEFAULT(financialNetwork, newP, newDefaultMatrix)
end if

end function

For this algorithm, [7] introduce the concept of the default matrix ∆(p). This is defined
as a diagonal N-dimensional matrix for which the diagonal entries are 1 if the node is in
default, and 0 otherwise.

∆(p)i j =

{
1 i = j and i is in default
0 otherwise
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We implement a function GETDEFAULTMATRIX which loops through all the nodes,
and for each node calculates if it is in default by working out if their cash flow and
incoming payments are greater than pi. To find the new payment vector under the new
default matrix, we implement a function GETNEWP which sets pi to p if the node is
not in default, and to the total value of the node otherwise. The algebra for this is taken
from [7]:

newP = ∆(p)(ΠT (∆(p)p+(I−∆(p))p)+ e)+(I−∆(p))(p).

To run the algorithm, we start with a default matrix of all 0s, and set p = p. The
algorithm will recursively identify the defaulting nodes and arrive to the clearing
payment vector in at most N iterations.

3.2 Bankruptcy Costs

After looking at the algorithms implemented for Debt Only Financial Networks, we now
introduce the default costs from [24]. Recall the definition of a Debt and Bankruptcy
Costs Financial Network as a tuple (N,Π, p,e,α,β).

3.2.1 Discontinuity does not allow for linear programming solver

Recall from the previous section that when introducing bankruptcy costs, the total
payment bank will be p if the bank has enough money available, and will pay a
discounted amount from their total value if it does not have enough.

pi =

{
pi if pi ≤ ∑

n
j=1 ΠT

i j p j + ei

αei +β∑
n
j=1 ΠT

i j p j otherwise

If we look at what happens at the exact point when pi = pi, we see that a discontinuity
occurs. if we decrease pi by 1 cent, pi will jump from being ∑

n
j=1 ΠT

i j p j + ei to
αei +β∑

n
j=1 ΠT

i j p j, in other words, there is a jump of (1−β)∑
n
j=1 ΠT

i j p j +(1−α)ei.
This discontinuity makes the use of linear programming impossible: we can no longer
have the constraint that p≤ΠT p+e because in that interval, there will be a discontinuity
if a bank defaults, nor can we claim that p ≤ βΠT p+αe, because this avoids banks
that can pay in full to do so.

3.2.2 Greatest Clearing Vector Algorithm

As a way of solving the issue caused by this discontinuity, which does not allow for the
linear programming characterization, as compared to the Debt Only Financial Network
case, [24] provide the Greatest Clearing Vector Algorithm. This algorithm builds from
the idea of the Fictitious Default Algorithm discussed in section 3.1.3. In essence, the
idea behind it is the same, where in each iteration, you calculate the set of defaulting
banks, until this set does not change, coming to a solution in at most N iterations.
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However, the discontinuity in the function does not allow for us to calculate newP in
such a straight forward manner. At each iteration, we calculate a default set, and fix the
payments of the banks not in default in that iteration to pi. For the banks in default, we
solve a system of linear equations where we consider the bankruptcy factors α and β.

We now provide the steps for the algorithm, adapting those provided by [24] to suit our
notation.

(1) Set p = p, defaultSet = /0

(2) Under p, calculate for all nodes i ∈ N the nodes that are in default, that is, i is in
default if

N

∑
j=1

p j ·Π ji + ei− pi < 0

If this is the case, add index i to newDefaultSet (the default set of this iteration)

(3) Define the nonDefaultSet as a set of the indices of the banks that are not in default,
i.e. nonDefaultSet := {i | i ∈ {1,2, . . . ,N}∩ i /∈ defaultSet}

(4) If the default set doesn’t change (newDefaultSet = defaultSet), terminate the
algorithm and return p.

(5) Otherwise, set the payments of banks that are not in default to p

newPi = pi ∀i ∈ nonDe f aultSet

And determine the remaining values for newP by solving the system of linear
equations that takes into consideration the default costs, as these banks are in
default. Let nonD = nonDefaultSet, and newD = newDefaultSet (For presentation
purposes below)

newPj = αe j +β[ ∑
j∈nonD

p jΠ ji + ∑
j∈newD

newPjΠ ji] ∀ j ∈ newD

(6) set p← newP and defaultSet← newDefaultSet and go back to step 2.

To implement this in Python, most of the steps are straight forward, however we need
to adapt the format of the equations to be able to solve the system of linear equations
of step 5. We now provide the overview of our recursive implementation, a brief
discussion on implementation decisions, and then explain how we solve the system of
linear equations.

For this implementation, we use python sets to represent the defaultSet, newDefaultSet
and nonDefaultSet. Since at each iteration we need to loop through the defaulting and
non defaulting nodes, we use sets to iterate through them, rather than lists, because we
can access exactly the items that we need, which will take O(Number of items in set). In
a list, we would need to iterate through the whole list every time, meaning O(N) every
time we want to loop through one of the sets. In the worst case, where one set contains
all items, it will also take O(N), and that is the overlaying time complexity, but in the
general case it will perform slightly better.
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Algorithm 3 Greatest Clearing Vector Solver
function GREATESTCLEARING(network, p, defaultSet)

newDe f aultSet← GETDEFAULTSET(p,network)
if de f aultSet == newDe f aultSet then

return p
end if
nonDe f aultSet← all i /∈ newDe f aultSet
newP← p
for i in nonDefaultSet do

newP[i]← network.p[i]
end for
newP← LINEARSOLVE(nonDe f aultSet,de f aultSet,network)
return GREATESTCLEARING(network, newP, newDefaultSet)

end function

3.2.2.1 Solving the Set of Linear Equations

To solve the set of linear equations in algorithm 3, we implement a function LIN-
EARSOLVE, which leverages numpy’s LINALG.SOLVE function to solve the system of
equations.

3.3 Theoretical Worst Case Time Complexities of Algo-
rithms

In this section, we provide the theoretical worst case time complexities of the algorithms
implemented in this chapter. Their practical performance is then evaluated in the
following section.

We use N: the number of banks in the input as the variable to perform our analyses.
Interestingly, we find that the theoretical time complexities of the fictitious default
algorithm and the greatest clearing vector algorithm are equal, when we expected that
the greatest clearing vector algorithm may have had a greater time complexity due to
solving a system of linear equations at each iteration.

This makes the practical analysis in 3.4 interesting, as we see how algorithms with the
same theoretical time complexity behave in different settings.

3.3.1 Linear Programming Solver

The overlaying time complexity of this algorithm is determined by the SCIPY.OPTIMIZE.LINPROG

function provided by SciPy[30]. The work done before, as explained is section (?? is
purely rearranging the equation into a form that is understood by said function. The
operation with the most significant time complexity in the rearranging is the subtrac-
tion of Π from the identity matrix. Since Π is of size N x N, the operation of matrix
subtraction is in the order of O(N2).
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Determining a worst case time complexity for linear programming algorithms is com-
plex, and is a field that is evolving and being studied at present. For the sake of not
diverting the content of this thesis, we will not perform a deep study of this or how they
work, and rather provide brief ideas of what the complexities could look like. We base
our ideas from the textbook on Understanding and Using Linear Programming [22],
which you can refer to for substantial information on this topic.

The methods SCIPY.OPTIMIZE.LINPROG use are simplex and interior-point. The simplex
method has no known polynomial upper bound to the worst-case runtime at the date
of writing this thesis. The best known bound for this method is O(2n) where n is
the number of the variables for the linear program. In our case that would be O(2N).
Some of the interior-point methods are known to be (weakly) polynomial, with a time
complexity bounded by O(n3L) where n is the number of variables in the input and L is
the maximum bit size of coefficients in the linear program [22]. This would be O(N3L)
in our case.

However, [22] explain that seeing worst-case behaviours in linear programming methods
rarely occurs, so seeing instances as bad as those described above is expected to be rare.
Rather, the usual runtimes are bounded by constants or O(log(n)). We therefore focus
on looking at how often these behaviours occur, as well as how well these methods
perform through an empirical analysis in section 3.4.

3.3.2 Iterative Algorithm

Recall from 3.1.2 that this algorithm has an indefinite number of iterations to get to the
clearing payment vector. Our proof shows that the clearing payment vector is achieved
as n (the iteration) tends to infinity: limn→∞ p(n).

From the above, we cannot devise an asymptotic worst time for the algorithm, as the
steps it will take to the clearing payment vector are indefinite. Our analysis can just
look at the time complexity of finding a new p at each iteration, which is O(N2) since
we loop through the matrix Π of size N x N.

An empirical analysis is more interesting here, to see the behaviour of this algorithm in
practice, and the usual number of steps it takes to come to a clearing payment vector.
This is done in section (3.4).

3.3.3 Fictitious Default Algorithm

Recall from (3.1.3), that the algorithm comes to a clearing payment vector in at most N
iterations. To find the time complexity, we look at our implementation in algorithm 2.

We see that this algorithm works in a recursive manner, and we know that in the worst
case, the algorithm will be called O(N) times. Now we look at the work that is done
inside of each of the algorithm calls.

Fist, we call GETDEFAULTMATRIX. The time complexity of the function is O(N2),
determined by looping through the complete 2d-matrix Π of size N x N. for each of the
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elements we loop through, the operations done are of constant time, and hence we can
ignore them (integer addition, multiplication, inequality checks).

Then, we call GETNEWP. This function in essence performs a large matrix vector
multiplication. Since we are multiplying vectors such as p of size N by matrices like Π,
of size N x N, the overlaying time complexity of this function is of O(N3)

The final operation done is to check for matrix equality with two N x N matrices. This
is simply done in O(N2) time.

Finally, the overall time complexity of the algorithm is O(N) ·O(N2 +N3 +N2) =
O(N) ·O(N3) = O(N4).

3.3.4 Greatest Clearing Vector Algorithm

We follow a similar procedure as above. Recall that this algorithm is also recursive,
and arrives at the clearing payment vector in at most O(N) calls. We now look at the
operations done at each of the calls to find the complexity of the algorithm. Refer to
algorithm 3 for this explanation.

First, we call GETDEFAULTSET, which loops through the matrix Π, meaning once
again O(N2) complexity for this operation.

We then compare the default set matrices of size N x N, resulting in O(N2) complexity.

Creating the nonDefaultSet, and newP are both done in O(N) time each. Similarly,
the following for loop also has a time complexity of O(N) as it loops through the
nonDefaultSet, of size of at most N−1 (Not all nodes can default in a system).

The last operation is calling LINEARSOLVE, to solve the system of linear equations
remaining. To rearrange the values into a format for the function NP.LINALG.SOLVE,
O(N2) time is required.

The NP.LINALG.SOLVE function itself, provided by NumPy, uses the LAPACK (Linear
Algebra Package, a library for linear algebra) gesv routine to calculate the solutions[17].
As shown in the LAPACK Benchmarks, solving an n-by-n system of linear equations
with 1 right hand side, has a time complexity of O(n3). In our case, the size of the input
matrix will be of at most size N (if no nodes are in default), meaning that we can expect
a worst case runtime of O(N3).

Overall, the time complexity of the algorithm is: O(N) ·O(N2+N2+3N+N2+N3) =
ON ·O(3N +3N2 +N3) = O(N4)

3.4 Experiments: Network Generation and Effects on
Performance

In this section, we perform an empirical study of the performance on the algorithms
implemented. We first generate completely random networks, varying the number of
banks in the networks and having liabilities and equities take values between 1 to 10000.
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We then generate more meaningful networks, by looking at studies of what usual debt
network structures look like, and see the effect this has on the different algorithms.

Keeping the machine constant to run these tests is fundamental, as the central processing
unit (CPU)’s power has a direct impact on the runtime of algorithms. For this thesis, we
use the laptop model name: ROG Zephyrus G15, CPU: AMD Ryzen 9 5900HS with
Radeon Graphics 3.30 GHz, and RAM: 32.0GB.

3.4.1 Randomly Generated Networks

To generate random networks, we use NumPy’s random module[17], which contains a
function RANDINT that allows the generation of pseudorandom integers for a range of
values, and the dimensions required. We create an N x N liabilities matrix of random
integers with this function, as well as the N dimensional cash flow vector. Finally, we
use NumPy’s FILL_DIAGONAL function to fill the diagonal entries of the liabilities
matrix with zeros (banks do not have liabilities towards themselves).

Since both Debt Only Networks and Debt and Bankruptcy Cost Networks have the same
kind of liabilities matrix L, and cash flow vector e, we can generate these in common
for both networks. Recall that Debt and Bankruptcy Cost Networks have two constants
α and β as their factors of discount for bankruptcy. If we set both of these factors
to 1: α = β = 1, we effectively create a Debt Only Network, as there is no discount
upon bankruptcy. This is interesting because it allows us to compare how the Greatest
Clearing Vector Algorithm performs against the three other algorithms implemented
for Debt Only Networks when there are no bankruptcy costs. We also look at how
the Greatest Clearing Vector Algorithm performs with changing α and β for common
liabilities matrix L and common e against algorithms for Debt Only Networks.

3.4.1.1 Rounding Errors

The first thing we wanted to look at was the correctness of our implementations. Even
though in our theoretical discussion we always arrive at an exact clearing payment
vector, in practice this does not occur. This is due to the representation of rational
numbers in computers. Our algorithms use NumPy’s DOUBLE data type. This is a 64-bit
double-precision floating point number, preferred over FLOAT as this is only 32-bit, and
not precise enough, and over LONGDOUBLE which is 128-bit, due to the time it would
take for the algorithms to perform operations on the data[17].

We ran two experiments to see what affects the rounding errors the most. First, we fix
the values that liabilities and cash flows can take to be an integer from 1 to 10000, and
look at the effect of the network size on rounding errors. For the second experiment we
fix the number of nodes to 100, and look at the effect of increasing the possible values
cash flows and liabilities can take.

The rounding errors we found present themselves in the clearing payments not being
exact, and leaving some of the nodes in the network with negative equity after the
clearing payment is applied (this would imply that they would need to pay more money
than they have. In theory this should not happen, and banks that default should have
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an equity of 0 after the clearing payment, as they should pay out all their values to
creditors.

To analyse the significance of these errors, we work out the average percentage error.
To define the aforementioned, we need to recall the definition of the value of equity of
nodes in Debt Only Financial Networks from 2.1.1 as

n

∑
j=1

Π
T
i j p j + ei− pi

We call the value of equity of nodes after applying the clearing payment vector p∗

produced by the algorithms the equity after clearing e∗. For each index i in p∗, the
percentage error is 0 if e∗i >= 0, and |e

∗
i |

p∗i
otherwise. The average of these values is the

average percentage error. This value gives us a rough idea of how significant the errors
in the clearing payments are.

Figure (3.1) shows that the fictitious default algorithm has significant rounding errors
(almost 1%), particularly for networks of small size. Taking an average percentage error
of 1% would imply, that on average, every node in the network would have to pay an
extra 1% over the clearing payment vector found. This becomes a problem particularly
for banks in default: if a bank defaults, it pays out all it’s value to creditors, so how are
they supposed to pay an extra 1% if all their value has been payed out? We may think
that sharing this outstanding debt through the nodes in the network would perhaps be
a way of tackling this problem, but then banks that are not in default would ask: why
would I have to pay a percentage outstanding from a rounding error in an algorithm?
The main problem is such a high magnitude of percentage error. When dealing with
large amounts of capital, such as millions of dollars, a 1% is simply not justifiable for
an algorithm error.

When looking at Figure (3.1) (b), we see that the linear solver has somewhat random,
but very small percentage errors (in the magnitude of 10−7). This can perhaps be
justified, since it is so small, and payed out by nodes in the network by sharing this
outstanding amount. We see however, that the Greatest Clearing Vector Solver, and
the Iterative Solver yield percentage errors of 0% for any N ∈ {2, ...,100}. This makes
them superior algorithms in the context of correctness. We suggest that further research
is done, with more nodes in the network, to see if that affects how the algorithms behave
for larger networks. We also suggest investigating other possible implementations of
the vector matrix multiplications performed for the Fictitious Default Solver, which
may lead to lower percentage errors, and make the algorithm practical.

3.4.1.2 Performances

To calculate the performances of our implementations, we use Python’s time package
[13]. The function TIME.TIME() returns the epoch (the epoch is the point where the
time starts, it is January 1, 1970, 00:00:00 (UTC) on all platforms[13]) time in seconds
as a float value. For each of the algorithms, we store the startTime as TIME.TIME() just
before running the algorithm, and then store endTime as TIME.TIME() straight after
running the algorithm. We then get the runTime = endTime− startTime, which gives
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(a) Figure shows average percentage error over 100 iterations of
the Fictitious Default Solver for N from 2 to 100.

(b) Figure shows average percentage error over 100 iterations of
the three other algorithms for N from 2 to 100.

Figure 3.1: (a) and (b) are plotted separately due to the magnitudes of the percentage
errors for the Fictitious Default Solver being more than 106 more significant than those
for the algorithms in (b). In (a), we see that as the number of nodes increases, the
percentage error of the Fictitious Default Algorithm decreases in what looks to be an
exponential decay. In (b), we see that the Greatest Clearing Vector Solver, and the
Iterative Solver yield 0% average percentage error for all N, while the Linear Solver has
very small errors that seem to appear in a somewhat random manner.
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us the execution time for the algorithm in seconds. By repeating iterations of algorithms,
and finding average runTimes, we get the results for this subsection.

We first look at our results for the experiments where we have constant range of values
for cash flows and range of values for liabilities, and we vary the number of nodes N
in the network in figure (3.2). We see that due to the unbounded nature of both the
Linear Solver and the Iterative Solver, their performance is significantly worse than the
Fictitious Default Solver, and the Greatest Clearing Vector Solver. What is perhaps more
surprising, is that in figure (3.2) (b), we see that the Greatest Clearing Vector Algorithm
has an edge on the Fictitious Default Solver. This is surprising because even though the
Greatest Clearing Vector Algorithm was designed to solve Debt and Bankruptcy Cost
Networks, and also provides extra guarantees that it will always compute the maximum
clearing payment vector for any network of this kind, as opposed to the Fictitious
Default Algorithm, which needs regularity conditions, the Greatest Clearing Vector
Algorithm has a better runtime.

We hypothesize this is due to how the Fictitious Default Algorithm calculates newP
in each iteration (refer back to Algorithm (2)). This calculation requires four matrix
vector multiplications, for matrices of size N x N and vectors of size N. This implies
a worst case time complexity of O(4N3), which simplifies to O(N3), but in practice is
slower than solving the system of linear equations required in every step for the Greatest
Clearing Vector Solver. Experimenting with the time function to see if this is actually
true, and diving deeper into each algorithm is required to confirm this relation, which
we leave as a possible extension as future work. We point to research on Optimizing the
Performance of Sparse Matrix-Vector Multiplication by [19], whose implementations
are 3.1 times faster for a single vector and 6.2 times faster for multiple vectors. As we
see in the following section, meaningful networks are very sparse, and can benefit from
said optimisations.

3.4.2 Generating Meaningful Networks

Generally speaking, getting information on debts institutions have towards others is
a hard task, as this type of information is usually private. The most meaningful data
we could find about real world debt contracts between institutions is that provided in a
publicly available study of global market for inter-bank syndicated loans[4]. Syndicated
loans are loans offered by a group of loaners[27]. This study takes the data for syndicated
loans from 1980-2007 provided in [14]. Given the composition of the syndicate, they
create bank-to-bank links (simulating direct debt relationships) between participating
banks. To construct the network, each bank-to-bank link in a deal is replicated as many
times as there are lenders in the syndicate, and equal loan amounts are assigned to each
participating lender in the deal[4].

The finding we are interested in for the time frame between 1980-2007 is the average
degree of nodes (3.34), and the number of nodes in the network (4806). The average
degree of nodes here refers to the average number of edges nodes have in the graph
(average in-degree and average out-degree have to be the same). In the previous
subsection (3.4.1), our liability matrices are very dense (edges between most of the
nodes), since the entries are modeled as a random number, meaning very little entries
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(a) Figure shows average runtimes over 100 iterations of the four
algorithms (Fictitious Default Solver, Iterative Solver, Linear Solver,
Greatest Clearing Vector Solver) for N from 2 to 200.

(b) Figure shows average runtimes over 100 iterations of the three
algorithms (Fictitious Default Solver, Linear Solver, Greatest Clear-
ing Vector Solver) for N from 2 to 300

Figure 3.2: (a) shows that the Iterative Solver becomes highly inefficient in comparison to
the other three algorithms as N increases, due to the unbounded nature of the algorithm
(No bounded number of iterations to come to a solution). In (b), we focus on the other
three algorithms, and see that the Linear Solver has a similar behaviour as the Iterative
Solver in (a). We also see that the Greatest Clearing Vector Solver performs slightly
better than the Fictitious Default Solver, even though their theoretical worst case time
complexities are the same O(N4).
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will actually be 0. With the found data, we provide a new approach to creating more
meaningful liability matrices.

To create liability matrices of dimensions N x N, we create a function GENERATE_MEANINGFUL(N).
This function generates liability matrices with nodes having an average degree based
on [4]. The findings from the study suggest that the usual average degree of nodes is
≃ 3.4, despite there being less nodes in the network (From 1995-2007, 2861 nodes,
Avg.degree of 3.43; From 2001–2007, 1486 nodes, Avg. Degree 3.72), the average
degree does not seem to decrease. To mimic this behaviour, we define a function f (i, j)
that defines the value of an edge from i→ j. GENERATE_MEANINGFUL(N) loops
through each (i, j) ∈ N2 pair where i ̸= j, and sets the value of Li j = f (i, j), where
f (i, j) is the function defined by:

f (i, j) =

{
0 with probability (1− 3.4

N )

V with probability 3.4
N

Where V is a randomly generated number such that V ∈ {1, . . . ,M}, and M is the
maximum possible value of an edge for the network.

To implement f (i, j), we first generate a random number with NP.RANDOM.RANDOM(),
which generates a float between 0 and 1. We check if this random number is less than
3.4
N , and if it is, we set the value of the edge Li j =V , and to 0 otherwise. This mimics

the idea of the probability of there being an edge being 3.4
N . The last step is to check that

every node has at least one outgoing or incoming edge, since if it does not, it would not
be a part of the network. We are generating networks where existence of edges is not
guaranteed due to the nature of the generation being random, and therefore this check is
vital. To do so, we loop through each i ∈ N, and for each j ∈ N, we check if there is
an incoming or outgoing edge between (i, j). We add an edge from i to a random edge
k ∈ N, where i ̸= k, with a random value V when the following holds:

N

∑
j=1

Li j +L ji = 0.

For networks with N < 3, the above function does not make sense, as it will generate
fully connected networks every time, leading to the random case we had in the previous
subsection. We also do not study networks of less than 100 nodes in our experiments
for this subsection, because extrapolating the value of average degree of 3.4 from [4]
would be unrealistic, as the minimum number of nodes in their study is 1486.

3.4.2.1 Performances

When testing the four algorithms for the runtimes in meaningful networks, we find that
some networks make the iterative Solver have extremely slow runtimes of over 3000
seconds for less than 200 nodes, refer to figure (3.3). We therefore plot the other three
algorithms, in figure (3.4).

The results obtained are very interesting, as we see the Linear Programming Solver
outperforms both the Fictitious Default Solver and the Greatest Clearing Vector Solver,
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Figure 3.3: Meaningful Network showing a Iterative Solver can find instances that take
unreasonable amounts of time (over 3000s for less than 200 nodes)

Figure 3.4: The figure shows how the Linear Solver has significantly better average
runtimes over the 100 iterations for each N, than both the Fictitious Default Solver and
the Linear Solver for Meaningful Networks of size N ∈ {100, ...,400}

as compared to the previous section, where we saw the Linear Solver had much worse
performance for N > 200 in figure (3.2).

The results obtained are justified by the nature of the networks we are testing. Our
so called meaningful networks are very sparse (contain many 0 entries), as we make
them have an average degree of around 3.4. When we compare this to the randomly
generated networks in section (3.4.1), we see that meaningful networks are much more
sparse than randomly generated networks. Such good performance of the Linear Solver
for these networks is due to the implementation of the Linear Programming algorithms
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by HiGHS being optimized for large sparse networks [18].

We now provide a brief explanation based on [18], but suggest referring to the paper for
more detail. When the density of the coefficient matrix (average number of non-zero
entries per column) is less than 10%, we can consider a matrix being hyper-sparse
[15]. The liability matrices we deal with in our meaningful networks have on average
3.4 non-zero entries per column, meaning that for meaningful networks where N > 34,
we can consider the liabilities matrix to be hyper-sparse. [15] analyse the revised
simplex method, and show how when the hyper-sparsity property is present, it is highly
inefficient. They provide techniques to exploit this property, proving an average increase
in speed of 5.61 times when hyper-sparsity is present. These techniques are used in the
HiGHS linear programming solvers, showing why our implementation of the Linear
Solver is so effective for meaningful networks.

We now look at how having default costs affects the runtime of the Greatest Clearing
Vector Solver. For our results here we run the Greatest Clearing Vector Solver with no
default costs (α = β = 1), with random default costs (α,β ∈ [0,1]), and fixed default
costs (α = β = 0.99), for the same networks. The values of 0.99 are taken to represent
somewhat "realistic" bankruptcy costs, as [31] show that bankruptcy costs are on average
around 1% of the value of the firm prior to bankruptcy. We realise these factors of α

and β do not fully encompass this, as they may not be exactly represent a bankruptcy
cost of 1%, but we leave this as a possible extension for future work, where α and β

can be made functions of the value of the bank.

Figure 3.5: Figure shows how the average runtime over 100 iterations for each N
of the Greatest Clearing Vector Solver with different bankruptcy costs performs for
N ∈ [35, ...,200]

As can be seen in figure (3.5), the averge runtime for the Greatest Clearing Vector Solver
with no bankruptcy costs, and realistic bankruptcy costs performs almost the same,
with little deviations. The random bankruptcy costs however have a worse performance
overall. We hypothesize this might be because when there are higher bankruptcy costs
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(smaller α and β), nodes that default pay out less value, which may cause a larger
cascade of defaults of other nodes compared to when the bankruptcy cost is smaller.
This relationship is confirmed in figure (3.6), where we run the Greatest Clearing
Vector Solver with α = β ∈ [0.1,0.2, ...,1], and see how the runtimes for lower α and β

generally show slower performances, proving our hypothesis above.

Figure 3.6: Figure shows how the average runtime over 100 iterations for each N
of the Greatest Clearing Vector Solver with different bankruptcy costs performs for
N ∈ [35, ...,200]. We see how the lower the bankruptcy cost factors, the worse the
performance.



Chapter 4

Algorithms for Networks with Debt,
Bankruptcy Costs and Credit Default

Swaps

We now look at networks with CDS contracts in them. Recall definition (5) of a CDS
Network as a tuple (N,L,c,e,α,β). Building from the previous chapter, the variation
here is the addition of the CDS contracts through the three-dimensional CDS matrix. It
is important to also recall that when working with this type of network, we look for a
recovery rate vector, and can devise a clearing payment vector from it.

We implement and explain the Colored Dependency Graph framework devised by [26],
a way of constructing a directed graph from a CDS Network of the different types of
Credit Default Swaps: Covered and Naked.

The Colored Dependency Graph is used to find if certain restrictions are true for the
network. [26] provide three restrictions to the Colored Dependency Graph that allow
for computing clearing payment vectors for the respective CDS Networks efficiently:
Acyclic Colored Dependency Graph; Green Core Colored Dependency Graph; No Red-
Containing Cycle Colored Dependency Graph. Due to time constraints, we consider the
first two restrictions in this thesis. We implement algorithms to find if these restrictions
are met, and implement algorithms to compute the clearing payment vectors when the
restrictions are met. We provide implementation and design decisions at every step, and
finally analyse the worst case runtime complexities of our implementations.

If we had more time, we would provide experimentation with generation of CDS
Networks and their effect on the performance of our implemented algorithms. We
realise that to do a thorough experimentation, similar to that in the previous chapter
in section (3.4), more time is needed. Generating meaningful CDS Networks is a
much more complex task, because in each CDS contract, three parties are involved.
Generating fully random networks here would not make sense, as our algorithm depend
on certain restrictions to be met.

27
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4.1 Colored Dependency Graph

In this section, we explain the Colored Dependency Graph framework from [26]. We
first introduce the concept of covered and naked CDS, which are the core of building
this graph. We then explain how the graph is built, and provide our implementation
decisions and details. Following this, we implement algorithms to find if the colored
dependency graphs meet any of the three conditions provided by [26] for the possibility
to compute a clearing payment efficiently. We do not focus on the proofs that these
conditions make the computation possible, as they are all provided by them in [26], and
rather the practical implementations of finding if networks meet these conditions in the
most effective way possible.

4.1.1 Covered and Naked CDS

To introduce the concept of covered and naked CDS, we first explain the terms long and
short positions. Informally, an entity i is said to be long towards another entity j if i
would not benefit from a bad financial situation of entity j. Conversely, an entity i is
short towards another entity j if i would benefit from a bad financial situation of j.

A covered CDS is one in which the creditor is long towards the reference entity. This
implies that the sum of the notional values of the CDS contracts with that creditor and
that reference entity are less than the direct debt the reference entity has towards the
creditor. The creditor is long on the reference entity because it would not benefit from
a bad financial situation of the reference entity. If the reference entity defaults, the
creditor will get payed the notional of the CDS contracts, which are less than or equal to
the value of the direct debt the reference entity had towards it. Otherwise, the creditor
is short on the reference entity, and the CDS contract is considered naked [26].

Definition 7. Covered and Naked CDS For a CDS Network (N,L,c,e,α,β), a bank j
has a covered CDS position towards another bank k if

N

∑
i=1

ck
i j ≤ Lk j.

Otherwise, j has a naked position towards k, that is

N

∑
i=1

ck
i j > Lk j.

In the following graphs, direct debt contracts are represented as blue arrows between
nodes, and CDS contracts as orange arrows between nodes, from which a dotted orange
line points to the reference entity for that contract.

4.1.2 Green and Red Edges from CDS Network

In essence, a Colored Dependency Graph is a directed graph of green and red edges,
for which a green edge represents a long position, and a red edge represents a short
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position. An important remark is that the arrow points in the opposite direction than
one would expect. If j is long on i, then there is a green edge from i to j.

By looking at the types of contracts available (direct debt, covered CDS, and naked
CDS) and how they translate into a Colored Dependency Graph makes this more
apparent. We take the ideas from [25] to build figure 4.1, which helps understand how
these graphs are built. We now proceed to explain each of the sub-figures.

(a) Direct debt contract: Intuitively, if i has direct debt towards j, then j is long on
i. There is therefore a green edge from i to j

(b) Naked CDS contract: Similar to above, if j is the creditor for a CDS contract,
and i the debtor, then j is long on i. i is long on k because if k is in a worse
economic situation and defaults, i has to pay for the CDS contract with reference
entity k. j is short on k because it would benefit from a bad economic situation
of k, as this could activate the CDS contract where j is the creditor and k the
reference entity.

(c) Covered CDS contract: In this sub-figure, we represent two nodes that have a
CDS contract with creditor j and reference entity k to illustrate the importance of
considering all CDS contracts with the same reference and creditor to determine
if the creditor is long or short on the reference.

In this case, the creditor j is long on the reference entity k because the sum of
the CDS contracts where j is the creditor and k the reference entity (a+ b) is
less than or equal to the direct debt k has towards j (y≥ a+b). The other long
positions between nodes follow from explanations provided above.

(a) Direct debt contract (b) Naked CDS Contract (c) Covered CDS Contracts

Figure 4.1: Figure showing how the different types of contract are translated into a
Colored Dependency Graph.
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4.1.3 Initialising a Colored Dependency Graph from a CDS Network

To implement Colored Dependency Graphs, we create a class ColoredDepndencyGraph
which contains the red edges and green edges.

4.1.3.1 Representations of Green and Red Edges

We represent red edges and green edges as two separate dictionaries, where the keys are
the indexes of the node where the edge is coming from, and the values are the set of
nodes that have an incoming edge from that node. This could be of the form:
greenEdges = {0: set(1, 4, 5), 1: set(3, 2)}. We use the defaultdict class from the
collections library in Python, which allows for adding elements to a key which may not
yet exist in the dictionary (creates it automatically), which avoids the work in checking
for existence. We choose to implement the dictionaries this way to improve the runtimes
of the algorithms we implement in the following sections. Since we are not interested
in any kind of ordering, storing the nodes in this way rather than in a 2d array avoids us
doing O(N2) work every time we want to find the edges of the graph (it will be O(N2)
time complexity, but in the general case the number of edges will be much smaller
than N2, and therefore the dictionaries will perform better, as we can access only the
elements they contain).

4.1.3.2 Implementation of Creating Colored Dependency Graph from CDS Net-
work

We now implement the algorithm to create a Colored Dependency Graph from a
CDSNetwork. [26] provide a definition of the Colored Dependency Graph CD(X) from
a CDS Network X :

Definition 8. Colored Dependency Graph Let X be a CDS Network, the Colored
Dependency Graph CD(X) is a graph with N nodes, and green and red edges constructed
as follows:

A. For each i, j ∈ N, if Li j > 0 or ck
i j for any k ∈ N, add a green edge from i→ j

B. For each i,k ∈ N if ck
i, j > 0 for any j ∈ N, add a green edge from k→ j

C. For each j,k ∈ N, if j has a naked CDS position toward k, then add a red edge
k→ j

Performing each of the steps separately would be highly inefficient, as it would require
O(N3) work for each of the separate steps, making it O(3N3), which simplifies to
O(N3), but in practice is generally worse. Instead, in the alogrithm we implement, we
follow the provided rules, but initialise the full graph in just one loop through i, j,k, still
providing a worst case run time complexity of O(N3), but being faster in practice.

In theory, the first two steps in initialising the graph create no issues doing it in one pass,
as we can just check for existence of CDS contracts and direct debt in the same iteration,
and add green edges for reference entities to creditors and from debtors to creditors. The
problem arises when for each j,k ∈ N we have to check if j has a naked CDS position
towards k. Recall j has a naked CDS position towards k if ∑

N
i=1 ck

i j > Lk j. For each
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k, j ∈ N, we store the direct debt Lk j, and then loop through all i ∈ N, summing the total
value of CDS contracts ∑

N
i=1 ck

i j, while simultaneously adding green edges according
to the first two rules. We finally compare the values of direct debt Lk j and total CDS
contracts , ∑

N
i=1 ck

i j, to determine if we need to add a red edge or not. We provide
pseudo-code for this algorithm in 4. We join the sets of redEdges and greenEdges
with Python’s set union function for each of the keys of the dictionaries, to form one
dictionary of allEdges which is used in other algorithms.

Algorithm 4 Colored Dependency From CDS Network
function GETCOLOREDDEPENDENCYFROMCDS(network)

c← network.c
L← network.L
N← network.N
redEdges← de f aultdict(set())
greenEdges← de f aultdict(set())
for k in range(N) do

for j in range(N) do
debt_k_ j← L[k][ j]
if debt_k_ j > 0 then

greenEdges[k].add( j)
end if
CDS_all_ j_k← 0
for i in range(N) do

CDS_i_ j_k← c[i][ j][k]
if CDS_i_j_k > 0 then

CDS_all_ j_k+=CDS_i_ j_k
greenEdges[i].add( j)
greenEdges[k].add(i)

end if
end for
if debt_k_ j <CDS_all_ j_k then

redEdges[k].add( j)
end if

end for
end for

end function

4.2 Restricting Colored Dependency Graphs to find Clear-
ing Payments

In this section, we study the restrictions for Colored Dependency Graphs provided
in [25]. The different restrictions provide different guarantees for the ability to com-
pute clearing payments for the CDS Networks, which we explain under each of the
subsections.
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For each of the restrictions, we provide our algorithm implementation to check if the
restriction holds for the specific CDS Network. We then provide our implementation
of the algorithm to compute the Clearing Recovery Rate Vector when that restriction
is proven to hold for the network. Recall that transforming a Clearing Recovery Rate
Vector r∗ into a Clearing Payment Vector p∗ can be done simply by: p∗i = ∑

N
j=1 pi j(r∗)

4.2.1 Condition I: Acyclic Graph

The first condition provided is that the Colored Dependency Graph is acyclic. In this
context, acyclic refers to the non-existence of a directed cycle formed by edges of any
colour (any mixture of red and green edges) in the Colored Dependency Graph. [26]
prove that if this is the case, the CDS Networks has a unique clearing recovery rate, and
therefore this is maximal.

Figure 4.2: Example of CDS Network (to the left, ignoring cash flows), for which the
Colored Dependency Graph (to the right) is acyclic. Notice how there is a red edge, as
C is short on A, yet the acyclic property ensures that there is a unique maximal solution
to the clearing payment.

4.2.1.1 Implementation to check for Acyclic Colored Dependency Graph

To check if the graph is acyclic, we implement an algorithm ISCYCLIC, seen in algo-
rithm (5). The algorithm works with a simple recursive DFS (Depth First Search), which
has a worst time complexity of O(V +E), where V = N, and E = length(allEdges).
ISCYCLIC stores a set of seen nodes, and performs a DFS on all of the nodes that have
not yet been added to the set. This DFS fist checks if the node has already been visited
(is in the seen set), which would imply there is a cycle, at which point it would return
True. If the node is not in seen, it is added to the set, and the DFS function is recursively
called on all the neighbours of that node from the allEdges dictionary.

4.2.1.2 Computing Clearing Payments for Networks with Acyclic Colored Depen-
dency Graphs

Once we have identified that for a CDS Network X , CD(X) is acyclic, we can compute a
clearing payment that is maximal and unique. [26] provide a proof for this, and we adapt
this proof to represent the steps our algorithm takes in solving the clearing problem.
The steps to find the recovery rate vector r are the following:

A. Create a set topologicalSet of the indices of the banks in X sorted topologically
based on CD(X). When there is an edge i→ j in CD(X), i≤ j. This is possible
because there is no cycle in CD(X).
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Algorithm 5 IsCyclic
function ISCYCLIC(N, ColoredDependencyGraph)

seen← /0

for node in range (N) do
if node not in seen then

if DFS(node) = True then
return True

end if
end if

end for
return False

end function

B. Intuitively, if the network is acyclic, then the first node in the topological sort
has no incoming edges. We can therefore calculate the recovery rate vector r1 by
setting it to the constant function

r1 = φ1 =

{
1 if a1 ≥ l1
a′1
l1

otherwise.

C. Iterate over the elements in topologicalSet in order. At each step, set ri :=
φi(r1, ...,ri−1), where r1, ...,ri−1 have already been computed.

We implement an algorithm ACYCLICCDSSOLVER that performs the above, shown in
algorithm (6). We use Graphlib’s TOPOLOGICALSORTER [12] to topologically sort the
nodes from the Colored Dependency Graph based on the dictionary allEdges. The func-
tion GETPHIIFORR performs the calculation for φi(r). We provide our implementation
in algorithm (7).

Algorithm 6 AcyclicCDSSolver
function ACYCLICCDSSOLVER(CDSNetwork, ColoredDependencyGraph)

sortedNodes← TOPOLOGICALSORT(ColoredDependencyGraph.allEdges)
r← [1, ...,1]
for i in range length(sortedNodes) do

r[i]← GETPHIIFORR(r[0 : i])
end for
return r

end function

4.2.2 Condition II: Green Core Systems

The next condition provided by [26] is that the Colored Dependency Graph is a Green
Core System.

Definition 9. Green Core System A CDS network X is called a Green Core System if
in CD(X), all banks with an incoming red edge have no outgoing edge. The set of these
banks is called the leaf set, and the set of all other banks not in the leaf set, the core set.
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Algorithm 7 GetPhiIForR
function GETPHIIFORR(i, r, CDSNetwork)

assets_i←CDSNetwork.e[i]
liabilities_i← 0
for j in range CDSNetwork.N do

liabilities_i← liabilities_i+CDSNetwork.L[i][ j]
assets_i← assets_i+ r[ j] ·CDSNetwork.L[ j][i]
for k in range CDSNetwork.N do

liabilities_i← liabilities_i+(1− rk) ·CDSNetwork.c[i][ j][k]
assets_i← assets_i+ r[ j] · ((1− rk) ·CDSNetwork.c[ j][i][k])

end for
end for
if assets_i≥ liabilites_i then

return 1
else

discounted_assets_i ← CDSNetwork.β · (assets_i − CDSNetwork.e[i]) +
CDSNetwork.α ·CDSNetwork.e[i]

return discounted_assets_i
liabilities_i

end if
end function

This condition is enough to ensure that a solution always exists that is best for the
banks at the core, as proven in [26]. This property implies that CDS Networks with no
naked CDS will always have a solution that is maximal for all the banks in the network.
This is because in the absence of naked CDS, there are no red edges in the Colored
Dependency Graph, implying that the graph is a Green Core System, and since no node
has an incoming red edge, all nodes are in the core set.

Figure 4.3: Example of a Green Core System Colored Dependency Graph. Inside the
circle delimitted by the green dotted line are the nodes in the core set, and outside, the
nodes in the leaf set. Note that nodes in the leaf set can have incoming green edges
too, but no outgoing edge of any kind.
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4.2.2.1 Implementation to check for Green Core Systems

We implement an algorithm ISGREENCORE to efficiently find if a Colored Dependency
Graph is a Green Core System. The algorithm loops through the values (referring to
values in key:values for the dictionary) in the redEdge dictionary, and checks if each
value is a key for the allEdges dictionary. If it is the case, it means that the nodes
has outgoing edges and therefore the Colored Dependency Graph is not a Green Core
System, so we terminate the algorithm. Otherwise, we add this node to the leaf set. If
the algorithm does not find a node with an incoming red edge and outgoing edges, it
creates a core set made up of all the nodes that are not part of the leaf set.

Algorithm 8 IsGreenCore
function ISGREENCORE(N, ColoredDependencyGraph)

redEdges←ColoredDependencyGraph.redEdges
allEdges←ColoredDependenctGraph.allEdges
incomingRedEdges← SUM(redEdges.values())
for node in incomingRedEdges do

if node in allEdges then
return False

end if
end for
return True

end function

4.2.2.2 Computing Clearing Payments for Networks with Green Core System
Colored Dependency Graphs

The algorithm used to compute clearing payments in these type of restricted networks
is an iterative algorithm, similar to those described in (??), with the function φ for CDS
networks.

Recall the definition of a clearing recovery rate vector r∗ for CDS Networks as a fixed
point of the function φ defined by:

φi(r) =

{
1 if ai(r)≥ li(r)
a′i(r)
li(r)

otherwise.

The idea behind the algorithm is simple: construct a sequence of vectors (rn) defined
by r0 = {1, ...,1}, and rn+1 = φ(rn). We recursively apply the function on the previous
output, until we find that the values are the same, at which point rn = rn+1 = r∗.

The proof that this recovery rate vector is maximal for the nodes in the core of the
green core system, and that the iteration sequence converges to the clearing recovery
rate vector is provided in [26]. We now provide an implementation of the ITERATIVEG-
REENCORESOLVER as seen in algorithm (9). This algorithm finds the clearing recovery
rate vector as discussed above, and is used when we find that a CDS Network, X has a
Colored Dependency Graph, CD(X) which is a Green Core System, checked with the
ISGREENCORE algorithm.
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Algorithm 9 IterativeGreenCoreSolver
function ITERATIVEGREENCORESOLVER(CDSNetwork)

r← [1, ...,1]
for i in range CDSNetwork.N do

newR← GETPHIFORR(i,r,CDSNetwork)
end for
while r ̸= newR do

r← newR
for i in range CDSNetwork.N do

newR← GETPHIFORR(i,r,CDSNetwork)
end for

end while
return r

end function

4.3 Theoretical Worst Case Time Complexities of Imple-
mentations

In this section we look at the theoretical worst case time complexities of our imple-
mentations for each of the restricted network types. For each of them, we look at the
time complexity of of checking if the restriction of the network is in place, and then
solving for the recovery rate vector. We ignore generating the Colored Dependency
Graph with the GETCOLOREDDEPENDENCYFROMCDS function, as it is common for
both restrictions, and has a worst case time complexity of O(N3) in both cases.

If we had more time, it would be interesting to experiment to see if GETCOLOREDDE-
PENDENCYFROMCDS performs better when one of the restrictions is in place.

4.3.1 Condition I: Acyclic Graph

We first look at the algorithm IsCyclic, which checks if the restriction is in place for the
network. This algorithm performs a simple DFS in O(N +E), where E is the number
of values in the allEdges dictionary.

Once we check that the restriction is met, we look at ACYCLICCDSSOLVER. The
first thing the algorithm does is run a topological sort on the allEdges dictionary.
Topological sorts themselves can be built via depth first searches or breadth first searches
[23], making the complexity of this operation O(N +E). The algorithm then loops
through the topologically sorted nodes for i ∈ N. At each iteration, the algorithm calls
GETPHIIFORR, passing in a vector r of dimensions i. GETPHIIFORR has a runtime of
O(N2), as it loops through all ( j,k) ∈ N2. This means that the overall time complexity
of identifying the restriction, and solving for the clearing recovery rate vector would be:
O(N +E)+O(N) ·O(N2) = O(N3 +E)
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4.3.2 Condition II: Green Core System

For Green Core Systems, we first look at ISGREENCORE, to check if the restriction
is met. The algorithm loops through all the nodes with an incoming red edge. Let R
be the total number of nodes in the values of the redEdges dictionary. Then, for each
iteration, it checks if the node is in the allEdges dictionary. This is done in O(1) time.
So the overall time complexity for this algorithm is O(R) ·O(1) = O(R).

ITERATIVEGREENCORESOLVER, the first loop goes through i ∈ N, and runs GET-
PHIIFORR for each i. As explained for condition I, this implies a time complexity of
O(N3). Then, the algorithm has a while loop, and runs GETPHIIFORR for each i, at
each iteration, until r ̸= newR. Similar to the discussion of the Iterative Solver for Debt
Only Financial Networks in section (3.3.2), this is an unbounded algorithm, and we
cannot provide an asymptotic worst case complexity for it.

The experimentation, which we leave as future work is more interesting here, especially
after observing that for Debt Only Financial Networks, the performance of the Iterative
Solver is the least optimal by a large margin. We think experimenting with the ITER-
ATIVEGREENCORESOLVER to see if the performance resembles that of the Iterative
Solver is interesting, as if this is the only possible algorithm for computing clearing
payments in this type of restricted networks, when the number of nodes N gets large,
computation can become highly inefficient.
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Conclusions

Throughout this thesis, we have provided explanations of different types of financial
networks, and the algorithms to compute clearing payments for said networks, based on
available research. We found understanding the problem within the different contexts
of financial networks was a very challenging task, let alone adapting the notations and
explaining them in a constructive way, to facilitate understanding. Of course, due to the
landscape of this topic, we did not expect to develop a novel algorithm or discover a new
way to compute clearing payment vectors for networks where it is seen computationally
unfeasible to do so.

We have however successfully implemented algorithms to compute clearing payments
in the three settings we sought out to for this thesis. Even though the theory behind
the algorithms was provided, efficiently implementing subroutines for each of the
algorithms through the choice of data structures and implementation details has proven
to be interesting.

Furthermore, through our experimentation of algorithms for Debt Only Financial
Networks, in meaningful networks, we have identified that the Linear Solver is the
superior algorithm in terms of runtime, despite having a worst time complexity that is
theoretically not polynomial. To our knowledge, we are the first paper to identify the
superiority of this algorithm in the context of this problem as opposed to the bounded
algorithms such as the Fictitious Default Solver or the Greatest Clearing Vector Solver.

5.0.1 Practical Relevance

We now would like to have a word on the practical relevance of our thesis. We have
provided implementations for which we have tried to optimise the subroutines as much
as possible, yet we realise this is far from perfect. Our implementations can be used to
understand the algorithms, yet in practice if a clearing entity were to use any of these
types of algorithms as part of a clearing process, they would need to be implemented in
a much more efficient programming language, such as C.

We are aware that similar tools to some of the algorithms implemented, such as the
Linear Solver have been used to clear financial networks, such as in Kuwait’s al-Manakh

38
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stock market crash in August 1982 [8]. They modelled the financial networks similar
to Debt Only Financial Networks, and implemented linear programming algorithms to
clear the network.

For CDS Networks, the tools implemented in this thesis have become, and will continue
to become more relevant. [29] explain how the unregulated use of CDS contracts in a
speculative manner was a big factor in the 2008 financial crisis. The speculative way of
using them was through naked CDS contracts, essentially betting on the reference entity
defaulting. Since then, in Europe for example, since 2011, there has been a ban of naked
CDS contracts [1]. With our implementation of ITERATIVEGREENCORESOLVER, we
are effectively able to solve any CDS Network without naked CDS contracts, as they
are intuitively Green Core Systems (no naked CDS imply no red edges in the Colored
Dependency Graph).

5.0.2 Limitations and Future Work

Due to the nature of the research in this paper, we have provided algorithms for a
breadth of networks, making it hard to fine-tune the efficiency of each algorithm to
perfection. Furthermore, there are many possible extensions to the models we consider
that are very interesting to study, and extend the model to implement algorithms for.

5.0.2.1 Extensions to Models

There are many way our models in this thesis can be extended. The first and most clear
one would be to implement algorithms to identify the final and least restrictive constraint
from [26] for CDS Networks, and compute clearing payments for those networks. The
constraint is that the Colored Dependency Graph contains no cycles with a red edge
between nodes. To tackle the issue of implementing this, we suggest using Tarjan’s
algorithm for finding strongly connected components in O(V +E) worst-case time
complexity [10], and then performing a DFS which checks if a red edge leads to the
same strongly connected component, in which case a cycle containing a red edge would
be present.

We would also suggest changing the way of modelling bankruptcy costs from the current
factors α and β, as suggested by [24], into modelling bankruptcy costs as functions, as
seen in [24]. These can be functions of the value of the banks previous to bankruptcy,
and can be made to maintain the linearity properties that allow to compute the clearing
payment vectors, making it a somewhat straight forward extension to our models. This
could be done to better encompass fixed costs associated with bankruptcy, and the value
of the bank that is lost upon bankruptcy.

Lastly, we suggest expanding the setting of the networks to allow for banks to have
equity in other banks in the network. This setting has been studied by [9] with regards to
the effects of cascading of failures in the network. We suggest implementing algorithms
to compute clearing payments with the setting provided by them, where banks can have
cross-holdings of others, and perhaps extending such model to include CDS contracts
in a restricted manner if possible.
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5.0.2.2 Experimentation

The first thing we suggest is a thorough experimentation with the algorithms imple-
mented for CDS Networks. With more time, this would be the first priority for us.
Generating meaningful CDS networks is a hard task, due to the three way relations in
contracts. [6] study CDS transaction data, and suggest that CDS Networks are highly
interconnected. This is a good starting point into attempting to simulate CDS Networks,
yet extensive research is required to produce something that may even resemble a real
network. We suggest that for each restriction provided by [26], networks are generated
that satisfy it, and the algorithms are run to see performances, based on number of
nodes, or interconnectedness of the network to name a few possible experiments.

For Debt Only Networks, and Debt and Bankruptcy Cost Networks, we have restricted
our experimentation to solely looking at the performance of algorithms by changing the
size of the networks N. Firstly, we only experiment with small number of nodes, up to
N = 400. Even though we find the Linear Solver seems to be superior in meaningful
networks up until that number of nodes, it can be interesting to see what happens
for large N. With more time, and a more powerful machine, we would like to see
if even for meaningful networks, the Linear Solver struggles more than the Greatest
Clearing Vector Solver or the Fictitious Default Solver for very large values of N due
to the unbounded nature of the algorithm. Also, changing other variables such as the
magnitudes of liabilities and equities, and seeing their effect can also be an interesting
extension.

Lastly, we suggest experimentation with dependant variables other than runtimes of
algorithms. We realise that this is not the only important consideration, and other
variables such as memory usage may be interesting to investigate, and take into account
when implementing the algorithms.
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