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Abstract
Concurrent games are a formalism used in game semantics, a branch of denotational
semantics. This project concerns an Agda mechanisation of concurrent games and
strategies based the constructions provided by Games and Strategies as Event Structures
(Castellan, Clairambault, Rideau & Winskel, 2016), as well as the implementation of an
Agda library for event structures, a formalism used in concurrency theory to describe
computational processes.
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Chapter 1

Introduction

Games are formal structures that model computational processes in terms of a dialogue
between two agents. When applied to formal semantics, games have provided a wealth
of important results. There are a number of approaches when it comes to expressing
games as formal structures, and the approach this dissertation is concerned with is
concurrent games — games modelled with event structures.

This chapter provides some background on game semantics, a short survey of any
efforts towards mechanising semantic games through proof assistants like Agda, and an
overview of this project.

1.1 Background

A game, as studied in game semantics, is an interaction abiding by the following
structure (Abramsky and McCusker [1999], Hyland [1997]):

• There are two players, O (Opponent) and P (Player), who make moves on strictly
alternating turns.

• O always moves first, and P-moves are made according to a predetermined
strategy in response to O-moves.

• The game may or may not terminate, and depending on the type of game being
played, there may not be any notion of “winning”(Clairambault et al. [2012]).

While this definition may seem informal, this really is all there is to games at the highest
level of abstraction. The more formal definition that will be introduced in a later chapter
is an event structure designed to exhibit the behaviour described above.

Outside of formal semantics, games find applications in logic as a technique for deter-
mining the truth-value of a sentence in first-order logic (Hintikka and Sandu [1997]),
as well as concurrency theory and logic for the determination of structural equivalence
(Ehrenfeucht [1961]). To avoid confusion, it may also help to clarify that these games
bear little to no relation with the games studied in game theory.
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1.1.1 Game semantics

Game semantics is a semantic theory for programming languages that interprets the
behaviour of programs in terms of games, where Player P corresponds to the observable
behaviour of a program, and Player O represents the computational environment in
which the program is executed (Hyland [1997]).

We will now adopt a few examples from Murawski and Tzevelekos [2016] to illustrate
how games can be used to describe the behaviour of some simple programs.

Consider a program that returns a constant:

⊢ 42: int

This program can be interpreted as a brief dialogue between O and P, as follows:

O What is the result?
P 42.

In this very simple game, there are two things worth noting: firstly, the P-move of
responding with ’42’ is a strategy predetermined by the nature of the program. Secondly,
this strategy is shared by any closed program of the shape ⊢ M: int that evaluates to
42, regardless of what M is. This is because the environment of a program does not get
to look under the hood of a program, only having access to the program’s outputs.

For a more interesting game, consider the following program that evaluates the successor
of an input with type int:

⊢ λxint . x+1: int→ int

The environment can now call the function repeatedly by supplying it with arguments,
which corresponds to call-by-value evaluation. A possible dialogue for this term may
look like the following:

O What is the result?
P It is a function.
O What is the result if the argument is 0?
P 1.
O What is the result if the argument is 42?
P 43.

Again, it is important to note that the body of the function in the program, x+1, does
not appear explicitly in the play.

At this point one may have noticed that in both of the previous examples, O is always
the player asking questions while P is always the player providing answers. This is
because neither of the two examples above contain free variables, corresponding to
behaviours undefined in the program. When a free variable shows up, it is up to the
environment to provide the program with information about it. For example, we might
have the following program:
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f : int→ int ⊢ f ( f (0))+1

Here, f is undefined in the body of the program, so it is the environment’s job to supply
the results of calling f . For example:

O What is the result?
P What is f (0)?
O 3.
P What is f (3)?
O 4.
P 5.

It should be possible to extrapolate from the above that more complicated games can be
devised for more complicated programs.

Now, denotational semantics is the practice of interpreting the semantic meaning of
programs in terms of compositional mathematical objects. Games semantics is a type
of denotational semantics because games can be understood as one such compositional
mathematical object: all we need is a mathematical model of games that permits the
composition of two games into a bigger game.

The traditional choice for this mathematical model is trees, where consecutive nodes of
a tree are used to represent moves and assigned alternating polarities in correspondence
to the player they belong to. Trees are then equipped with justification pointers to
indicate the enabling of an answer-move by a corresponding question-move, and useful
concepts such as arenas, visibility, or innocent strategies can be subsequently defined.
The full abstraction result for PCF (Programming Computable Functions) was achieved
simultaneously through two different approaches using trees: One due to Abramsky
and McCusker [1999] and the other due to Hyland and Ong [2000].

A new alternative to the tree-based approach uses event structures as the underlying for-
mal model for games (Rideau and Winskel [2011]). Broadly speaking, event structures
express computational processes as event occurrences with causal relations (Winskel
[1987]), and the rest of this dissertation will examine the construction of games as event
structures in close formal detail.

A crucial difference between tree-based approaches and the event structure-based
approach is that the latter can model true concurrency, while the former are limited to
interleaving concurrency due to the sequential nature of tree-nodes (Rideau and Winskel
[2011]). Therefore, event structure-based games are also called concurrent games or
distributed games (the names are used interchangeably in the literature).

Concurrent games have generated a wealth of results in recent years, including a
replication of the full abstraction result for PCF (Castellan et al. [2015]), full abstraction
for the quantum lambda calculus (Clairambault and de Visme [2019]), as well as the
establishment of winning conditions (Clairambault et al. [2012]) and payoffs in semantic
games (Clairambault and Winskel [2013]) with the goal of bringing them closer to the
games studied in game theory.
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1.2 Project summary

Stated briefly, the aim of this project is to develop a library for concurrent games in Agda,
an interactive proof assistant. This entail a partial mechanisation of the constructions
developed by [Castellan et al., 2017], up to their definition of concurrent strategies. As
all definitions used in this project are sourced from [Castellan et al., 2017], we will refer
to it as CCRW from this point onwards.

1.2.1 Motivation

The construction of machine-checked proofs through the use of a proof assistant like
Agda provide a guarantee of correctness for the constructions employed by CCRW. To
this end, an Agda library containing the definitions related to concurrent games must be
implemented. It is our goal to complete this library as a foundation for more ambitious
future projects like the mechanisation of concurrent game semantics for a programming
language.

Mechanised proofs generally demand a higher level of rigour than pen-and-paper
proofs. For example, this project includes a number of proofs on properties such as the
associativity of the parallel composition of event structures, while this was entirely left
to the intuition of the reader in CCRW. By establishing this additional level of rigor, we
improve confidence in CCRW.

Additionally, mechanisation is an open problem in game semantics. The only published
piece of work including a mechanisation of semantic games is for Hyland-Ong games
(Churchill and Laird [2010]) rather than concurrent games. Therefore, our work is novel
in targeting the newer approach of concurrent games.

1.2.2 Scope

This project mechanises the constructions necessary for expressing the notion of a
concurrent strategy in Agda, where strategies are sequences of moves on the semantic
games described above. More specifically, mechanisations were developed for:

• Event structures, and operations on event structures including parallel composi-
tion, interaction, and mappings.

• Concurrent games (or, event structures with polarities).

• Concurrent pre-strategies and operations on them, including interactions and
compositions.

• The copycat pre-strategy, the identity morphism in CG , the (bi)category of games.

• And finally, strategies on concurrent games that act as morphisms on CG .

While the previous section situates concurrent games in the study of game semantics
because they were originally developed for this purpose, this project does not actually
use the games and strategies developed as denotations for a programming language
due to the immensity of this undertaking — for reference, the development of Innocent
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game models of untyped λ-calculus (Ker et al. [2002]) was enough to fill a PhD thesis
that does not contain any mechanisation work.

Here we acknowledge that in its current state, the project is incomplete for two reasons:
we leave some lemmas unproved through open holes in the Agda code, and we employ
a postulate in place of implementing a full Agda library for finite sets. We leave the
unfinished proofs as future work as we are confident that they can be completed given
more time.

The scope of this project also reflects Agda’s limited capacity towards the mechanisation
of mathematics. The exact nature of these limitations will be addressed in future sections
of this report in accordance with aspects of the implementation work from which they
arise, as well as the Evaluation chapter.

1.2.3 Contributions

This project makes two primary contributions:

1. A library for event structures in Agda: To our knowledge, there is only one
existing piece of mechanisation work on event structures and it is completed
using the theorem prover formerly known as Coq (V. P. Gladstein [2021]), rather
than Agda.

2. A library for concurrent games in Agda: As stated previously, the only existing
mechanisation of the games used in game semantics also uses Agda, targeting
Hyland-Ong games (Churchill and Laird [2010]) rather than concurrent games.

1.2.4 The structure of this report

The bulk of this report is dedicated towards explaining the formal constructions leading
up to concurrent strategies in the order they were listed by subsection 1.2.2. Each
new definition will be immediately accompanied by its corresponding mechanisation
in Agda. After the expositions for concurrent strategies and our mechanisations are
complete, there will be a concluding chapter covering the critical evaluation and future
directions of our work.

In the interest of space and relevance, a number of supporting lemmas required by our
implementation will be omitted from this report. A notable example is the library of
operations on finite sets we implement because Agda does not have an existing library
for them. The reader is invited to access the Agda source code associated with this
project to verify the existence of the omitted proofs.

1.3 A primer on Agda

Agda is a dependently-typed functional language and interactive theorem prover based
on Martin-Löf type theory (Norell [2009]) (Martin-Löf and Sambin [1984]). In Agda,
programs correspond to proofs: properties of values are encoded as types, such that the
inhabitants of the type are proofs testifying to the truth of these properties. Programs in
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Agda must be total for the resulting logic to be consistent: programs that crash or fail to
terminate are do not constitute valid proofs (Norell [2009]).

Agda is the language of choice for this project because of its suitability towards proofs
concerning formal semantics (see Wadler et al. [2022] for a notable example), as well
as the author’s familiarity with it.

Before beginning our exposition of the project, we provide a brief overview of Agda’s
language constructs and some of the techniques we employ.

1.3.1 Records

Records are types that offer a convenient way for grouping values together. They
are a generalisation of product types with additional features including named fields,
constructors, and locally-defined functions.

Most of the mechanised definitions in our implementation make use of records, because
formalisms that must satisfy multiple properties can be expressed as records with
multiple fields.

1.3.2 Sets

In Agda, the Set keyword refers to the type of small types (Norell [2009]). Due to
Russell’s paradox Agda implements a universe of type hierarchies, e.g. Set itself has
type Set1, Set1 has type Set2, etc. It is important to note that these are types rather
than set-theoretic sets.

Relatedly, the absence of of a library for finite sets in Agda prompted us to implement
our own, where we define finite sets and operations on them through Agda’s built-in
lists. Details of this library and the complications resulting from our approach will be
covered in the rest of this report.

1.3.3 Predicates

We express predicates as types that take a set of parameters and return Set, a commonly
used technique in proof mechanisation with Agda. For example, we can define a
predicate Odd : Nat → Set as an (inductive) indexed datatype like so:

data Odd : Nat → Set where
odd : Odd (suc (zero))
odd-plus2 : {n : Nat} → Odd n → Odd (suc (suc n))

This code snippet requires all inhabitants of the type Odd to satisfy the properties
declared in one of its two constructors, in so ensuring that ∀ x : Nat for which Odd x
holds, x’s Odd-ness is provably true by construction.
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1.3.4 Postulates

The postulate keyword permits the declaration of a theorem without a proof. The use
of postulates is dangerous because one can easily postulate something that is false (e.g.
an element of the empty type ⊥).

A postulate is used with extreme caution in this project because of Agda’s lack of a
library for finite sets. We will provide additional justifications for its use in section
3.3.3.

1.3.5 Miscellaneous language constructs

Presuming some familiarity with Haskell-like concrete syntax, we address some features
of Agda’s syntax and libraries that will make it easier to read the code snippets in this
report.

1. Implicit arguments: In the following type signature, we put curly brackets {}
around A : Set:

example : ∀ {A : Set} → List A → List A

Curly brackets indicate an argument is implicit — given an explicit argument of
type List A, Agda is able to infer the value of the implicit argument, offering a
useful way of de-cluttering our proofs.

2. Named fields in records: Given a record called R that contains a field a, we
project the value of a from the record by writing a R.

3. Infix operators: An infix operator can be written in prefix form. This sometimes
becomes confusing if a record field name is also involved. Suppose an infix
operation _≤_ is defined within a record R. In Agda, the application of _≤_ to
some a and b outside of R is written:

(R ≤ a) b

This is equivalent to writing (_≤_ R a b) and expresses “a is less than or equal
to b”, not the other way around.



Chapter 2

Event Structures

The following chapter introduces event structures, accompanied by an overview of our
corresponding mechanisations in Agda.

2.1 Definition

Event structures model computational processes as event occurrences with causal
relations.

Definition 2.1.1 (CCRW). (Event structures). An event structure is a triple {E,Con,≤}
where E is a set of events partially ordered by the causal dependency relation ≤. The
partial order ≤ is finitary, such that:

{e′|e′ ≤ e} is finite for all e ∈ E

Con is a nonempty consistency relation consisting of finite subsets of E, satisfying the
following properties:

• {e} ∈Con for all e ∈ E.

• Y ⊆ X ∈Con implies Y ∈Con.

• X ∈Con and e ≤ e′ ∈ X implies X ∪{e} ∈Con.

The configurations of E, written C (E), represent the states of an event structure as finite
subsets x ⊆ E satisfying:

• Consistent: X ⊆ x and X is finite implies X ∈Con.

• Down-closed: e′ ≤ e ∈ x implies e′ ∈ x.

Two events e, e′ are concurrent if the set {e,e′} is in Con, and neither e, e′ are causally
dependent on the other.

8
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2.2 Event structures in Agda

Implementing a library for event structures in Agda entails formalising each segment of
the definition provided above:

1. Events,

2. The finite partial order ≤, and

3. The consistency relation Con, and

4. Event structures themselves and their configurations.

We note that event structures are not finite posets, because despite being endowed with
a finite partial order, the set of events belonging to an event structure can be infinite.

2.2.1 Finite partial orders

The causal dependency relation ≤ describes the causal relation between the events of
an event structure, i.e. for events a,b ∈ E, a ≤ b if b can happen because a happened.
The causal dependency relation is a finite partial order, which we implement in Agda
because they are not provided in Agda’s existing poset library.

Definition 2.2.1. (Finite partial orders). A partial order on a set E is a binary relation
satisfying:

• Reflexivity (∀e ∈ E, e ≤ e),

• Anti-symmetry (∀e,e′ ∈ E, if e ≤ e′ and e′ ≤ e then e = e′),

• Transitivity (∀m,n, p ∈ E, if m ≤ n and n ≤ p then m ≤ p).

A finite partial order is a partial order satisfying:

• {e′ | e′ ≤ e} is finite for all e ∈ E. We call this set the downclosure of e.

The ordering can be represented as the downclosure function. In our implementation,
we represent finite sets in Agda through lists where the order of list items and repeating
items are ignored. Then, a finite partial order can be mechanised as a function

≤-f : E → List E

upon which the ≤ relation can be defined through list membership, i.e.

e′ ∈ ≤-f e iff e′ ≤ e

Armed with the observations above, we can define a finite partial order over a set E as a
record like so:

record FinitePartialOrder (E : Set) : Set where
field
≤-f : E → List E
≤-f-refl : ∀ {e : E} → e ∈ (≤-f e)
≤-f-antisym : ∀ {e e′ : E} → e ∈ (≤-f e′) → e′ ∈ (≤-f e) → e′ ≡ e
≤-f-trans : ∀ {m n p : E} → m ∈ (≤-f n) → n ∈ (≤-f p) → m ∈ (≤-f p)
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≤ : E → E → Set
e′ ≤ e = Any (e′ ≡ ) (≤-f e)

open FinitePartialOrder

The finiteness of ≤-f is ensured by its codomain being a list, and it must be a partial
order because we require any candidate for ≤-f to satisfy reflexivity, anti-symmetry,
and transistivity via the other fields of the record. Finally, we define an infix operator ≤
as syntactic sugar so that we can avoid explicitly referring to the list operations that we
are using as set operations.

2.2.2 Consistency relation

The consistency relation on event structures specifies finite sets of events in E that
can happen concurrently. An equivalent definition can be given in terms of conflicting
events, but we stick to consistent events here for simplicity.

We mechanise the consistency relation for a given finite partial order as a predicate
Con : E → Set that satisfies the three properties of Con in Definition 2.1.1, plus an
additional requirement stating the empty set is consistent. We note our continued use of
lists as representations of finite sets.

record Consistency {E : Set} (con-fpo : FinitePartialOrder E) : Set1 where
field

con-f : List E → Set
con-1 : ∀ { e : E } → con-f [ e ]
con-2 : ∀ { xs ys : List E } → con-f xs → ys ⊆ xs → con-f ys
con-3 : ∀ { e e′ : E } → (es : List E)
→ con-f es → e ∈ es → (con-fpo ≤ e) e′ → con-f (e′ es)
con-empty : con-f []

open Consistency

DownClosed : {E : Set}(fpo : FinitePartialOrder E) → List E → Set
DownClosed {E} fpo es = (∀ (e e′ : E) → e ∈ es → (fpo ≤ e) e′ → e′ ∈ es)

2.2.3 Event structures

Event structures and their configurations can now be defined using our implementation
of finite partial orders as the causality relation, plus a consistency relation.

record EventStructure (E : Set) : Set1 where
field

fpo : FinitePartialOrder E
Con : Consistency fpo

config : List E → Set
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config es = con-f Con es × DownClosed fpo es

open EventStructure

E, the type of events within an event structure, is a parameter of the record. As
configurations are also specific finite sets of events, we define them in a similar manner
to the consistency relation through the use of a predicate config that states whether a
given list of events represents a valid configuration.

2.3 Simple parallel composition

As mentioned in the introduction chapter, the main appeal of using event structures
as the underlying structure of a game is that event structures are able to express true
concurrency. This is accomplished through the simple parallel composition (or just
parallel composition) of two event structures.

2.3.1 Definition

Definition 2.3.1 (CCRW). (Simple parallel composition of event structures). The
parallel composition of two event structures E and F, written E ∥ F, is the event
structure with:

• Events: The disjoint union of the events in E and F, or {0}×E ∪{1}×F where
0 and 1 are tags.

• Causality (≤): Events originally belonging to E are subject to the causality
relation of E and unaffected by the causality relation of F. The reverse holds for
events originally belonging to F. More formally,

(i,c)≤E∥F ( j,c′) when i = j = 0 and c ≤E c′, or i = j = 1 and c ≤F c′

• Consistency: A set of events in E ∥ F is consistent if those events are consistent
in either E or F. There is no conflict between the events of E and F.

X ∈ConE∥F iff {a|(0,a) ∈ X} ∈ConE and {b|(1,b) ∈ X} ∈ConF

• Configurations: There is a canonical order-isomorphism between the configura-
tions of E ∥ F, and the product of the configurations of E and F. Namely,

C (E ∥ F)∼= C (E)×C (F)

The above amounts to a very verbose way of stating that the parallel composition of
two event structures entails juxtaposing them side-by-side without conflict or causality.

2.3.2 Composing finite partial orders

To implement parallel composition in Agda, a function f : E → F → E ∥ F where E, F ,
and E ∥ F are event structures must be defined in terms of the event structure record
we already have. This requires defining parallel composition for finite partial orders
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and consistency relations, as well as proving these compositions are themselves finite
partial orders and consistency relations.

Agda’s built-in sum type allows us to express the disjoint union of two events, but
our use of lists as representations of finite sets require some additional definitions
to fully formalise the disjoint union of two sets. Therefore, we adopt the following
implementation where the function ≤-f : E → List E is instantiated with the type
parameter (E ⊎ F) and defined by map -ing list items belonging to E and F to E ⊎F
with Agda’s built-in constructors for sum types.

fpo-comp : ∀ {E F : Set}
→ FinitePartialOrder E → FinitePartialOrder F → FinitePartialOrder (E ⊎ F)
fpo-comp {E}{F} a b = record

{ ≤-f = ≤-f-def
; ≤-f-refl = λ { {inj1 x} → ∈-map+ inj1 (≤-f-refl a)

; {inj2 y} → ∈-map+ inj2 (≤-f-refl b)
}

; ≤-f-antisym = antisym-helper
; ≤-f-trans = λ { }{ }{p} → trans-helper p
}

The proofs for reflexivity, anti-symmetry, and transitivity are omitted because they
mostly involved proving properties about lists that are not very conceptually relevant to
the objective of this project. They can be found in the source code submitted alongside
this project.

2.3.3 Composing consistency relations

The composition of two consistency relations from two different event structures is a
function of type:

con-comp : ∀ {E F : Set}
{fpo-e : FinitePartialOrder E}{fpo-f : FinitePartialOrder F}
→ Consistency fpo-e → Consistency fpo-f
→ Consistency (fpo-comp fpo-e fpo-f )

A Consistency (E ∪ F) record can be constructed similarly to the one for composing
finite partial orders as detailed in section 2.3.2, where proofs of each defining property
of consistency relations must be established.

These proofs, along with the predicate determining whether a given finite set is consis-
tent, require a number of new operations on lists of E ∪F for which we implement a
small library in Filter-Operations. The following is the predicate Con on lists of
events of type E ⊎ F, where filter-e and filter-s are destructors for List (E ∪
F) that return List E and List F respectively.

con-f-def : List (E ⊎ F) → Set
con-f-def xs = con-f a (filter-e xs) × con-f b (filter-f xs)
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The rest of the property-related proofs will be omitted again because they are long and
not particularly interesting.

2.3.4 Composing event structures

Given the compositions of the causality relation and consistency relation implemented
above, we can now construct the parallel composition of two event structures. As stated
in section 2.3.1, this composition itself should also be an event structure whose events
are the disjoint union of events in E and F , giving rise to the following implementation:

∥e : ∀ {E F : Set}
→ EventStructure E → EventStructure F → EventStructure (E ⊎ F)
∥e {E}{F} a b = record

{ fpo = fpo-comp (fpo a) (fpo b)
; Con = con-comp (Con a) (Con b)
}

2.4 Event structures with polarities (games)

Definition 2.4.1 (CCRW). (Event structures with polarities). An event structure with
polarities (ESP), is an event structure with a polarity relation that maps each event
e ∈ E of the event structure onto a polarity like so:

polE = E →{+,−}

This definition can be directly translated into Agda, where polarities are defined as a
datatype with two constructors corresponding to + and -, and ESPs are records that take
an event structure and a polarity relation as fields.

data Pol : Set where
+ - : Pol

flip : Pol → Pol
flip + = -
flip - = +

record ESP (E : Set) : Set1 where
constructor mkESP
field

polarity : E → Pol
event-structure : EventStructure E

open ESP

A game is an ESP that specifies the interface at which two players interact, such that
game-moves are the events e ∈ E, where e+ events are Player-moves and e− events are
Opponent-moves.
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We recall from Chapter 1 that in semantic games, players make moves in strictly
alternating turns. CCRW assumes this is the case for any ESP representing a game and
does not place any additional requirements on the definition of ESPs to enforce the
alternation of polarities. We follow their approach and use our ESP record directly as
games in the remaining implementation work of this project.

2.4.1 Dual

Definition 2.4.2 (CCRW). (The dual of an ESP). The dual of a game A, written A⊥, is
the ESP comprising of a copy of A’s underlying event structure, and a polarity relation
that reverses the polarities of the events in A.

This is easily definable in Agda as a function that takes an ESP as input and returns its
dual, another ESP.

Dual : ∀ {E : Set} → ESP E → ESP E
Dual A = record
{ polarity = λ x → flip (polarity A x)
; event-structure = event-structure A
}

2.4.2 Simple parallel composition

Definition 2.4.3 (CCRW). (Simple parallel composition of ESPs). We define parallel
composition on two games A and B, written as A ∥ B, through the existing parallel
composition operation on event structures and making each event eA∥B ∈ A ∥ B inherit
the polarity from its corresponding event eA ∈ A or eB ∈ B, e.g.

polA∥B(0,a) = polA(a)

polA∥B(1,b) = polB(b)

Referring back to the ∥e operation defined on EventStructure and continuing our use
of Agda’s sum types in place of the labelling events with {0,1}, we implement parallel
composition on games like so:

∥ : ∀ {E F : Set} → ESP E → ESP F → ESP (E ⊎ F)
A ∥ B = record
{ polarity = λ { (inj1 e) → polarity A e

; (inj2 f ) → polarity B f
}

; event-structure = event-structure A ∥e event-structure B
}

It is worth noting that parallel composition commutes with the duality operation, i.e.
(A ∥ B)⊥ = A⊥ ∥ B⊥.



Chapter 3

Pre-strategies

With a definition for concurrent games and their underlying event structures at hand, we
now turn to the task of mechanising strategies on these games.

Strategies are labellings of the possible moves made by a player throughout the duration
of the game, and these labellings can be represented as another ESP. Therefore, strategies
are mappings from one ESP to another that obey a set of properties to ensure they
represent the interface of the game. To this end we consider pre-strategies, upon which
additional constraints can be placed to obtain a definition for strategies in the chapter
following this one.

3.1 Definition

Definition 3.1.1 (CCRW). (Pre-strategies). A pre-strategy on a game A is a function
σ : S → A, where S is another ESP that labels A. Pre-strategies must satisfy:

1. Preservation of configurations (obeying the rules of the game):

∀x ∈ C (A), σx ∈ C (A)

2. Local injectivity (the play is linear):

∀s,s′ ∈ x ∈ C (A), σs = σs′ ⇒ s = s′

3. Preservation of polarities:

∀s ∈ S, polA(σs) = polS(s)

We note that σ does not have to preserve the ordering of events, and that σ only needs
to be locally injective rather than injective because inconsistent events in S can map to
the same event in A.

We also define total maps between two event structures.

Definition 3.1.2 (CCRW). (Total maps of event structures). A total map between two
event structures is a function on events f : E → F. Total maps between event structures

15
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satisfy properties (1) and (2) for pre-strategies, omitting property (3) because unlike
ESPs, event structures do not have polarities.

To mechanise these definitions in Agda, we observe that pre-strategies can be defined in
terms of total maps of event structures, where these event structures are lifted to ESPs
and the mapping is equipped with property (3).

Definition 3.1.2 may be directly translated into Agda like so, where σ-map is the
mapping itself and the other two fields enforce properties (1) and (2):

record 7→ {S A : Set} (ESS : EventStructure S) (ESA : EventStructure A) : Set
where
field

σ-map : S → A
pre-1 : ∀ x → config ESS x → config ESA (map σ-map x)
pre-2 : ∀ {e e′ : S} {es : List S} → e ∈ es → e′ ∈ es
→ config ESS es → σ-map e ≡ σ-map e′ → e ≡ e′

Pre-strategies are mechanised in terms of 7→ , along with the requirement that
polarities are preserved:

record pre-strat {Ss As : Set} (S : ESP Ss) (A : ESP As) : Set1 where
field

σ : (event-structure S) 7→ (event-structure A)
pre-3 : ∀ {e : Ss} → polarity S e ≡ polarity A (σ-map σ e)

open pre-strat

3.2 Categories of event structures and ESPs

We briefly cover some category-theoretic concepts to motivate the construction of
interaction between pre-strategies in CCRW.

3.2.1 Categories

Definition 3.2.1 (Leinster [2016]). (Categories). A category A consists of:

• A collection of objects ob(A),

• For each A,B ∈ ob(A), a collection A(A,B) of morphisms from A to B,

• For each A,B,C ∈ ob(A) there is a function

A(B,C) × A(A,B) → A(A,C)
(g, f ) 7→ g◦ f ,

called composition,

• For each A ∈ ob(A), an element 1A of A(A,A) called the identity on A,

satisfying the axioms:
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• Associativity: For each f ∈ A(A,B),g ∈ A(B,C),h ∈ A(C,D) we have:

(h◦g)◦ f = h◦ (g◦ f )

• Identity laws: For each f ∈ A(A,B), we have f ◦1A = f = 1B ◦ f .

The identity function on an event structure E is a total map that is stable under composi-
tion. Therefore, event structures and maps form a category E (CCRW). Similarly, ESPs
and pre-strategies (which are really polarity-preserving maps between ESPs) form a
category EP . We do not directly mechanise E and EP as categories because we do not
make use of their category-theoretic properties in this project. Pen-and-paper proofs
that E and EP are indeed categories can be found in CCRW.

3.2.2 Pullbacks

Definition 3.2.2 (Leinster [2016]). (Pullbacks). Let A be a category with objects and
maps:

A pullback of this diagram is an object P ∈ A together with maps: p1 : P → X and
p2 : P → Y such that

commutes, and with the property that for any commutative square

in A, there is a unique map f : A → P such that
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commutes.

3.3 Prelude to interactions of pre-strategies

Defining and mechanising the interaction of two pre-strategies is the most complex part
of this project. We therefore dedicate this section to its pre-requisites.

3.3.1 The interaction pullback

Definition 3.3.1 (CCRW). (Interaction of pre-strategies). The interaction of two pre-
strategies σ : S 7→ A and τ : T 7→ A⊥ playing on the same game A, where τ is the counter
pre-strategy (a pre-strategy for Opponent on A) to σ (a pre-strategy for Player on A), is
built from the following map between event structures:

σ∧ τ = S∧T → Ae

Here, S∧T is an event structure describing the causal structure of events that σ and τ

agree upon, and Ae is A stripped of its polarity relation. The removal of polarities is a
consequence of the fact that σ and τ have opposite expectations for the polarities of
events in A. Polarities will become relevant again when the composition of pre-strategies
is introduced in Section 3.5.

While we do not make use of this information in our implementation, we note that
interaction corresponds to a pullback in E where S∧T is the pullback object, i.e. the
following diagram commutes:

In the diagram above, Π1 and Π2 are set-theoretic projections. A proof that this is
indeed a pullback can be found in CCRW.

We note the ∧ symbol is overloaded: when its arguments are pre-strategies, it refers
to the pre-strategy resulting from their interaction, and when the arguments are event
structures it refers the pullback object illustrated above.

Given this definition, it is imperative for us to construct the event structure S∧T . This
is more complicated than expected, because we cannot simply take the events of S∧T
to be those that are synchronised between S and T , although we define them anyway
because they will come in handy in a moment:

Definition 3.3.2 (CCRW). (Synchronised events). The synchronised events of two event
structures S and T are the pairs (s, t) ∈ S×T such that σ s = τ t.
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The synchronised events of S and T are not simply the events of S∧T , because maps like
σ and τ are locally injective rather than injective. For example, consider the interaction
between the following two event structures:

where σ contains the events b and two conflicting copies of the same event a ∈ A, with
no causal relation between the three. Meanwhile, τ can only play b after playing a. We
can see that there are three possible synchronised pairs of events in this interaction:
(a,a), (a′,a), and (a,b).

However, since σ can play a in two different ways, there are actually two possible
causal histories for b: b can be played after (a,a) ∈ S×T , or (a′,a) ∈ S×T . Events
in event structures are distinguished by causal histories, so there should be four events
in S∧T rather than the three events identified by taking synchronised pairs. This is
illustrated in the following diagram of the interaction between σ and τ:

It turns out that directly defining the events in S∧T is quite difficult. Therefore, we
construct S∧T indirectly by specifying the set of configurations it should have as prime
secure bijections between the configurations of S∧ T and the configurations of the
synchronised events of S and T .

3.3.2 Prime secure bijections

Referring back to the diagrams above, we note there is a one-to-one correspondence
between the desired configurations of S∧T and the configurations of the synchronised
events. Writing synchronised configurations as pairs:

(x,y) ∈ C (S)×C (T ) where σx = τy,

We observe that by local injectivity, σ and τ induce a bijection φ : x ≃ σx = τy ≃ y,
whose graph is the set of synchronised pairs of events as described above (CCRW).

We use a set of secured bijections φ as the set of configurations of S∧T with the caveat
that φ itself is not ordered like a configuration of an event structure should be, so we
must define this ordering. Our desired ordering should be inherited from the orderings
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in S and T , but it is not simply their transitive closure. Consider the following situation
where a deadlock occurs:

A prospective PhD student who is only able to obtain a position upon being funded
(σ) patiently waits for a scholarship to materialise, while a university (τ) only offers
funding to students who have already secured PhD positions. There is no event the two
agree upon, and so their interaction only contains the empty configuration. Given this
state of affairs, the student will never obtain the PhD position and no funding will ever
be distributed.

The reason why the preorder induced by S and T on the bijection

{(PhD position, PhD position),(funding,funding)}

is not an order is that there is a loop. These loops can be eliminated by introducing the
notion of secured bijections.

Definition 3.3.3 (CCRW). (Secure bijections). A bijection φ : q ≃ q′ between two
finite orders (q,≤q) and (q′,≤q′) is secured if the reflexive and transitive closure of the
following relation on the graph of φ is an order:

(a,b) ◁ (a′,b′) if a <q a′ or b <q′ b′

This order is reflexive and transitive by definition. It is also anti-symmetric, which
eliminates the possibility of deadlock loops.

To construct a mechanised definition for secure bijections, we begin with the observation
that a bijection is a set of pairs (s, t) where each s and t are in one-to-one correspondence.
Since we are only concerned with bijections between finite orders, it follows that we
should mechanise bijections through our existing implementation of finite sets — that
is, through a list of pairs. We then enforce that the bijection is secure through additional
properties it must satisfy.

The arguments φ, q and q′ of the following module correspond to φ, q and q′ in Definition
3.3.4.

module {Q Q′ : Set}
{Qe : EventStructure Q}{Qe

′ : EventStructure Q′}
(φ : List (Q × Q′))(q : List Q) (q′ : List Q′) where
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open FinitePartialOrder
data ◁∗ : (Q × Q′) → (Q × Q′) → Set where

reflexive : ∀{p} → p ◁∗ p
transitive : ∀{p q r} → p ◁∗ q → q ◁∗ r → p ◁∗ r
step1 : ∀{a}{b}{a′}{b′}
→ (a , b) ∈ φ

→ (a′ , b′) ∈ φ

→ ≤ (fpo Qe) a a′

→ (a , b) ◁∗ (a′ , b′)
step2 : ∀{a}{b}{a′}{b′}
→ (a , b) ∈ φ

→ (a′ , b′) ∈ φ

→ ≤ (fpo Qe
′) b b′

→ (a , b) ◁∗ (a′ , b′)

Each constructor for the ◁∗ datatype corresponds to a property listed in the definition:
step1 and step2 are a direct translation of the relation described in Definition 3.3.4,
while reflexive and transitive ensure the datatype is a reflexive transitive closure.

We also construct a record ≃ that ensures the ◁∗ relation is indeed a (secure) bijection,
and that it only takes configurations of event structures Qe and Q′

e as arguments:

record : ≃ : Set where
field

config-left : config Qe q
config-right : config Qe

′ q′

coverage-left : filter-e-× φ ≡s q
coverage-right : filter-f-× φ ≡s q′

bijection-left : ∀{a}{b c} → (a , b) ∈ φ → (a , c) ∈ φ → b ≡ c
bijection-right : ∀{a b}{c} → (a , c) ∈ φ → (b , c) ∈ φ → a ≡ b
secured : ∀{a a′}{b b′} → (a , b) ◁∗ (a′ , b′)

→ (a′ , b′) ◁∗ (a , b) → (a , b) ≡ (a′ , b′)

The definitions for ◁∗ and ≃ are grouped in the same module to ensure that both sets of
requirements apply to the same two event structures Qe and Q′

e. The helper functions
filter-e-× and filter-f-× are deconstruct List E × F into List E and List F
respectively.

We now use secured bijections between σ and τ to describe the set Bsec
στ , the configura-

tions of S∧T (CCRW):

Bsec
στ = {φ | φ : x

σ≃ σx = τy
τ≃ y is secured, with x ∈ C (S), y ∈ C (y)}

This definition translates nicely into Agda, where we divide φ into three components: the
bijections (x,σx), (τy,y), and the equality σx = τy. We then combine these components
as a product type (i.e. conjunction) to construct a predicate that determines if a given
set of pairs is the Bsec

στ set for some σ and τ.

Bsec : ∀ {Ss Ts As : Set}
{S : EventStructure Ss} {T : EventStructure Ts} {A : EventStructure As}
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→ (σ : S 7→ A) → (τ : T 7→ A) → List (Ss × Ts) → Set
Bsec {S = S}{T}{A} σ τ φ =

: ≃ (map (λ (p , ) → ( p , σ-map σ p )) φ)
(filter-e-× φ) (map (σ-map σ) (filter-e-× φ))

× : ≃ (map (λ ( , q) → ( q , σ-map τ q )) φ)
(filter-f-× φ) (map (σ-map τ) (filter-f-× φ))

× All (λ ( x , y) → σ-map σ x ≡ σ-map τ y) φ

The order (Bsec
στ ,⊆) gives the order of configurations for the event structure S∧ T .

Through this, we can identify the set of events belonging to S∧T as those that are prime
secure bijections.

Definition 3.3.4 (CCRW). (Prime secure bijections). Prime secure bijections are secure
bijections with a top event, i.e. a greatest synchronised pair (s, t).

The absence of a top event in the causal history of a synchronised pair indicates a loop
or deadlock. By taking the subset of (Bsec

στ ,⊆) that are prime secure bijections to be
the configurations of S∧T , we eliminate the problem previously illustrated with the
example involving the PhD applicant’s unfortunate funding situation.

The mechanisation of prime secure bijections is by far the most challenging part of
our implementation work, and the only place we employ a postulate. We dedicate the
following section towards it.

3.3.3 Postulate: Canonically-ordered lists

Three postulates are required as an extension to our implementation of finite sets through
lists. In the previous parts of our implementation, we have gotten away with defining
finite set equality via list inclusion like the following:

⊆ : ∀ {A : Set} → List A → List A → Set
a ⊆ b = All ( ∈ b) a

≡s : ∀ {A : Set} → List A → List A → Set
a ≡s b = (a ⊆ b) × (b ⊆ a)

Here, ≡s is an equivalence relation on lists that ignores duplicate items and the order
items appear within the list, which provides the set equality operation we need.

The definitions above are inadequate for mechanising prime secure bijections because
it is different from propositional equivalence. Propositional equality, also called the
identity type, is the proposition that captures intensional equality between two terms in
type theory. In Agda, it is denoted by the ≡ symbol.

The problem with our definition of set equality arises later in Definition 3.4.1, where we
will define the event structure S∧T ’s events to be the elements of Bsec

στ that have a top
event. We recall that Bsec

στ is a set of secured bijections, and that we implement secured
bijections as lists of products, e.g. List (S × T). Meanwhile, in the EventStructure
record we encode the anti-symmetry property of finite partial orders using propositional
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equality. Propositional equality on List (S× T) is list equality rather than our custom-
defined set equality. We have no real way of telling Agda that we want it to use ≡s
in this specific instance but stick to propositional equality in others, without a major
overhaul of our definition for event structures that is infeasible given the time constraint
on this project.

Therefore, we circumvent the problem described above by employing three postulated
theorems stating that the lists we are using as finite sets have a canonical order.

postulate
canonical : {A : Set} → List A → List A
canonical-s : ∀{A}{ls : List A} → ls ≡s canonical ls
canonical-t : ∀{A}{ls1 ls2 : List A}
→ ls1 ≡s ls2 → canonical ls1 ≡ canonical ls2

Here,

• canonical takes a list and returns its canonical form,

• canonical-s states that a given list is equal to its canonical form by our custom
definition of set equality, and

• canonical-t states that given two lists equivalent by set equality, their canonical
forms are equal by propositional equality.

Combined, the three postulated theorems mean all lists in canonical form represent
finite sets that can be equated through propositional equality. Since some Sets are
not ordered and therefore cannot have a canonical ordering, these theorems must be
postulated rather than proved. Overall, we do not believe these postulates are a big
problem for our project because we know they can be eliminated given more time and
effort, and their necessity reflects Agda’s lack of an existing library for finite sets.

3.3.4 Back to prime secure bijections

With the canonicity postulates out of the way, we return to our mechanisation of prime
secure bijections by constructing a record S∧T-config to wrap our previously-defined
predicate Bsec together with the canonical postulate. This ensures propositional
equality on S∧T-config is set equality, not list equality.

record S∧T-config {Ss Ts As : Set} {S : EventStructure Ss}
{T : EventStructure Ts} {A : EventStructure As}
(σ : S 7→ A) (τ : T 7→ A) : Set where
constructor mk-config
field

Φ : List (Ss × Ts)
.bsec : Bsec σ τ Φ

is-c : Φ ≡ canonical Φ

open S∧T-config
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Now, we must specify those members of S∧T-config that have a top event. We begin
by defining the notion of a top element as a predicate on pairs of events in Bsec with
respect to two arbitrary event structures.

IsTop : {Ss Ts As : Set} {S : EventStructure Ss}
{T : EventStructure Ts} {A : EventStructure As}
{σ : S 7→ A} {τ : T 7→ A}
(event : S∧T-config σ τ) → (Ss × Ts) → Set

IsTop {Ss}{Ts}{As}{S}{T}{A} event (s , t) = All (λ { (s′ , t′)
→ ((fpo S) ≤ s′) s × ((fpo T) ≤ t′) t}) (Φ event)

The predicate only IsTop holds for pairs of events (Ss × Ts) where both components
are the greatest element in their respective causality orderings. Now, we encode prime
secure bijections as the elements of pre-S∧T-config satisfying IsTop:

record PrimeSecBij {Ss Ts As : Set} {S : EventStructure Ss}
{T : EventStructure Ts} {A : EventStructure As}
(σ : S 7→ A) (τ : T 7→ A) : Set where

constructor mk-psb
field

event : S∧T-config σ τ

top : Ss × Ts
.prf : IsTop event top

open PrimeSecBij

3.4 The interaction of pre-strategies

As promised, we are now ready to construct S∧T . We first re-iterate the interaction
between two maps of event structures σ : S → A and τ : T → A given in Definition 3.1.1:

σ∧ τ = S∧T → Ae

Definition 3.4.1 (CCRW). (Interaction of pre-strategies). We construct the event
structure S∧T as the following:

• Events: the elements of Bsec
στ that have a top event,

• Causality: graph inclusion,

• Consistency: A finite set of secure bijections is consistent when their union is also
a secure bijection in Bsec

στ .

This is where things get very, very hairy for our implementation because constructing
an EventStructure record entails proving that its associated causality and consistency
relations satisfy the properties encoded in FinitePartialOrder and Consistency.
This has not been a problem for the previous sections of the project because the proofs
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required were of a manageable length. In our definition for the S∧T event structure,
these proofs explode in complexity and the number of supporting lemmas they require.

Therefore, from this point onwards we adopt the streamlined approach of only filling
in those parts of the record directly corresponding to the formal definitions provided
in CCRW. We leave proofs of the associated properties as future work because it is
infeasible to complete them within the given timeframe, and we do not believe their
absence compromises the consistency of the project.

With the above said, we define a function S∧T that takes two suitable event structure
mappings as arguments and returns the event structure S∧T :

S∧T : {Ss Ts As : Set} {S : EventStructure Ss} {T : EventStructure Ts}
{A : EventStructure As} (σ : S 7→ A) (τ : T 7→ A)
→ EventStructure (PrimeSecBij σ τ)

S∧T {Ss}{Ts}{As}{S}{T}{A} σ τ = record
{ fpo = record

{ ≤-f = λ x → fpo-≤-f x
; ≤-f-refl = refl-help
; ≤-f-antisym = antisym-help
; ≤-f-trans = λ {m}{n}{p} q r → trans-help {p}{z = m} r q
}

; Con = record
{ con-f = λ x → Bsec σ τ

(concat (map (λ y → Φ (event y)) x))

; con-1 = {!!}
; con-2 = {!!}
; con-3 = {!!}
; con-empty = {!!}
}
}

While the construction above is incomplete, each feature of S∧T given in Definition
3.4.1 is addressed:

• Events: the events of S∧T have type TopSet σ τ, which is our encoding of those
elements of Bsec

στ with a top event.

• Consistency: The con-f field contains the consistency relation of S∧T. Since
Bsec ensures the lists in TopSet are canonical, list concatenation on elements
of TopSet is equivalent to set union. Therefore, con-f can be read as a predicate
stating whether the set union of a finite number of values with type TopSet σ τ

are in Bsec.

• Causality: The causality relation ≤-f is outsourced to a helper function
fpo-≤-f x, defined as the following:

fpo-≤-f : TopSet σ τ → List (TopSet σ τ)
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fpo-≤-f x = mapMaybe toTopSet (mapMaybe toConfig’
(map canonicalise (powerset (Φ (event x)))))

To understand what this function does, we re-iterate that TopSet is a wrapper for
a list of pairs, and so fpo-≤-f returns a list of lists of pairs. We are interested
in defining graph inclusion on the elements of this list of lists, which we note
is equivalent to set inclusion in our implementation. Therefore, we implement
graph inclusion as a function that maps a given value of type TopSet σ τ to a
list comprising of members of its powerset (or, sub-lists) that have a top event.

We omit explanations of the other helper functions used in this definition because
their names should be fairly self-explanatory.

3.5 Composition of pre-strategies

Given we have a working definition for the interaction of two pre-strategies (Definition
4.2.1 along with the construction of S∧T ), we are now ready to define what it means
for pre-strategies to be composed. This composition operation is vital to the primary
goal of this project, that being the mechanisation of composable strategies.

It matters that strategies are composable because we ultimately want games to be
composable, such that they can be useful in the context of denotational semantics.
For this purpose, the interaction described in Definition 4.2.1 must be expanded from
pre-strategies playing on the same game A to pre-strategies playing from a game A to
another game B.

More formally, what we currently have are interactions between two pre-strategies
σA : S → A and τa : T → A, where S, T , and A are ESPs. We would now like to
specify this definition to the interaction between pre-strategies σ : S → A⊥ ∥ B and
τ : T → B⊥ ∥ C on the composite game A⊥ ∥ C. This is accomplished through two
steps: defining the interaction of our new versions of σ and τ, then performing a hiding
operation on the resulting pre-strategy.

3.5.1 Interaction of pre-strategies on a composite game

Definition 3.5.1 (CCRW). (Interaction). We temporarily forget about the polarity
relations on σ and τ since they can be easily recovered. Then, σ and τ are respectively
mappings between event structures S → A ∥ B and T → B ∥C. Since pre-strategies can
only interact if they play on the same game (e.g. map to ESPs with the same underlying
event structure), we pad σ and τ with identity maps so that they both map to A ∥ B ∥C:

σ ∥ idC : S ∥C → A ∥ B ∥C

idA ∥ τ : A ∥ T → A ∥ B ∥C

The interaction of these padded pre-strategies is:

(σ ∥ idC)∧ (idA ∥ τ) : (S ∥C)∧ (A ∥ T )→ A ∥ B ∥C

We introduce an interaction operator ⊛ to simplify the notation of the above to:
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τ⊛σ : T ⊛S → A ∥ B ∥C

The positions of σ and τ are reversed when the ⊛ operator is used, reflecting the standard
notation for composition. CCRW overloads the ⊛ notation in a similar way to the ∧
notation introduced in the previous section: it refers to the event structure mapping
resulting from the interaction of σ and τ when its arguments are pre-strategies, and
otherwise refers to the relevant event structure.

We mechanise ⊛ as a function taking maps of event structures τ and σ as arguments, to
return the mapping τ⊛σ given in Definition 3.5.1:

⊛ : ∀ {Ss Ts As Bs Cs : Set} {S : EventStructure Ss}
{T : EventStructure Ts} {A : EventStructure As}
{B : EventStructure Bs} {C : EventStructure Cs}
→ (σ : (S ∥e C) 7→ ((A ∥e B) ∥e C))
→ (τ : (A ∥e T) 7→ ((A ∥e B) ∥e C))
→ (S∧T σ τ 7→ ((A ∥e B) ∥e C) )

τ ⊛ σ = record
{ σ-map = λ { (mk-topset event1 (s , t) prf ) → σ-map σ t}
; pre-1 = {!!}
; pre-2 = {!!}
}

The σ-map field in the resulting _7→_ record contains a function of type
S∧T σ τ → ((A ∥e B) ∥e C), which we simply define to be identical as the σ-map
field in σ. It does not matter whether we use the mapping contained in σ or τ here,
because the events of S∧T are products where both members of the pair are mapped
onto the same value by σ and τ.

Then, pre-1 enforces the preservation of configurations and pre-2 ensures σ-map is
a bijection. The proofs that our encoding of τ⊛σ satisfy pre-1 and pre-2 are left
incomplete because they are dependent on the incomplete proofs in S∧T, without which
we cannot proceed.

3.5.2 Hiding

Definition 3.5.1 gives the interaction of two event structure mappings on A ∥ B ∥ C,
which isn’t yet the pre-strategy on A⊥ ∥ C we want. We now introduce a hiding
operation that projects τ⊛σ to a map to A ∥ C, and reinstate polarities to obtain the
desired pre-strategy.

Definition 3.5.2 (CCRW). (Hiding). Events p ∈ T ⊛S mapped to events in A or C are
visible, and invisible otherwise. We write the hiding of invisible events in T ⊛ S as
(T ⊛S) ↓V , where V is the set of visible events in T ⊛S.

Our mechanisation and proofs for the hiding operation are complete because they are
independent from the mechanisation of S∧T we left unfinished. We first introduce a
datatype representing the ↓ operation that filters for all inhabitants of a Set satisfying a
given predicate f.
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data ↓ (A : Set) (f : A → Bool) : Set where
filtered : (x : A) → (T (f x)) → A ↓ f

Then, we define a function inj1or3 that determines whether a given input of type
A∪B∪C is inhabited by a value of type A or C, such that we can combine it with the ↓
datatype to discard those of type B.

inj1or3 : {A B C : Set} → (A ⊎ B) ⊎ C → Bool
inj1or3 (inj1 (inj1 x)) = true
inj1or3 (inj1 (inj2 y)) = false
inj1or3 (inj2 y) = true

We note that both inj1or3 and the predicate f in the ↓ datatype are implemented as
functions with type A→ Bool rather than A→ Set. This is because we only ever use
↓ on inj1or3, a function with only has two possible outputs, so we don’t need the
additional structure that comes with the Set-based approach.

Equipped with the above, we can now define a function that performs the hiding
operation on σ, a mapping between event structures. We omit the body of the function
from this report because it is very long.

hide-e : ∀ {Xs As Bs Cs : Set}
{X : EventStructure Xs} {A : EventStructure As}
{B : EventStructure Bs} {C : EventStructure Cs}
→ (σ : X 7→ ((A ∥e B) ∥e C)) → (EX : EventStructure Xs)
→ EventStructure (Xs ↓ λ x → inj1or3 (σ-map σ x))

The event structure resulting from applying hide-e to σ : X 7→ ((A ∥e B) ∥e C)) is
X where all events mapping to B are removed. Through this, we can now write

(hide-e σ X) 7→ (A ∥e C)

as the projection of σ to its subset that only includes the mappings to (A ∥e C).

3.5.3 Composition

Equipped with the interaction and hiding operations on pre-strategies, we can now
define their composition.

Definition 3.5.3 (CCRW). (Composition of pre-strategies). The composition of two
pre-strategies σ : S → A⊥ ∥ B and τ : T → B⊥ ∥C is:

τ⊙σ : T ⊙S → A⊥ ∥C

where

T ⊙S = (T ⊛S) ↓V

The polarity relation on T ⊙S is directly inherited from the polarity relation of A⊥ ∥C.

We remark the ⊙ operator is once again overloaded in the same manner as ⊛ and ∧.
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Our mechanisation of the composition of pre-strategies is partial because it is dependent
on the incomplete implementations of S∧T and ⊛. Therefore, we continue the previous
approach of only mechanising definitions and forgoing proofs for the properties they
satisfy.

We begin by constructing the event structure mapping T ⊙S → A ∥C, where we apply
our hide-e operation on T ⊛S to obtain the subset of T ⊛S that maps to A ∥C.

⊙-map : ∀ {Ss Ts As Bs Cs : Set} {S : EventStructure Ss}
{T : EventStructure Ts} {A : EventStructure As}
{B : EventStructure Bs} {C : EventStructure Cs}
→ (σ : (S ∥e C) 7→ ((A ∥e B) ∥e C))
→ (τ : (A ∥e T) 7→ ((A ∥e B) ∥e C))
→ hide-e ( ⊛ σ τ) (S∧T σ τ) 7→ (A ∥e C)

Since function names cannot be overloaded in Agda, we name this function ⊙e rather
than just ⊙. We omit the body of this function because the implementation is long and
incomplete.

We would now like to construct a pre-strategy from this mapping by reinstating polar-
ities on T ⊙S, which we recall should be identical to the polarity relation of A⊥ ∥C.
Therefore, we define a function that constructs an ESP from the domain of an event
structure mapping, whose polarity relation is taken from

Polarise : ∀ {As Bs : Set} → (Ae : EventStructure As) → (B : ESP Bs)
→ (m : Ae 7→ (event-structure B)) → ESP As

Polarise Ae B m = (mkESP (λ x → polarity B (σ-map m x)) Ae)

Then, we use Polarise to define a second function polarise with a lower-case p,
which directly constructs a pre-strategy from a given mapping of event structures,
provided we already have access to the polarities of the ESP containing the event
structure being mapped onto.

polarise : ∀ {As Bs : Set} {Ae : EventStructure As} {B : ESP Bs}
→ (m : Ae 7→ (event-structure B)) → pre-strat (Polarise Ae B m) B

polarise m = record
{ σ = m
; pre-3 = refl
}

Now, we are ready to define τ⊙σ. To make the code more readable, we decompose the
definition into ⊙ itself, and a separate construction for the ESP that is the polarisation
of T ⊙S. The construction of an ESP with T ⊙S as the underlying event structure is
accomplished through the following function:

T⊙S : ∀ {Ss Ts As Bs Cs Ds : Set} {S : ESP Ss} {T : ESP Ts}
{A : ESP As} {B : ESP Bs} {C : ESP Cs}
→ (a : pre-strat T ((Dual B) ∥ C))
→ (b : pre-strat S ((Dual A) ∥ B))
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→ ESP {!TopSet (σ a) (σ b)!}
T⊙S {S = S} {T} {A}{B}{C} τ σ =

Polarise (hide-e ( ⊛ (mapping-σ σ τ)
(τ-assoc (mapping-τ σ τ)))
(S∧T (mapping-σ σ τ) (τ-assoc (mapping-τ σ τ))))
((Dual A) ∥ C)

{!((mapping-σ σ τ) ⊙-map (τ-assoc (mapping-τ σ τ)))!}

Here, mapping-τ and mapping-σ are τ and σ padded with identity maps, as described
in Definition 3.5.1. We omit the details of their Agda mechanisations from this report
in the interest of space.

The other helper function used here is τ-assoc, which re-associates

(A ∥e T) 7→ (A ∥e (B ∥e C))
to

(A ∥e T) 7→ ((A ∥e B) ∥e C).

The associativity of the parallel composition of event structures is one of the many
lemmas left implicit in CCRW that need to be explicitly proven in Agda. Now, we can
use this ESP to mechanise the ⊙ operation:

⊙ : ∀ {Ss Ts As Bs Cs : Set} {S : ESP Ss} {T : ESP Ts}
{A : ESP As} {B : ESP Bs} {C : ESP Cs}
→ (τ : pre-strat T ((Dual B) ∥ C))
→ (σ : pre-strat S ((Dual A) ∥ B))
→ pre-strat (T⊙S τ σ) ((Dual A) ∥ C)
⊙ σ τ = polarise

{!((mapping-σ σ τ) ⊙-map (τ-assoc (mapping-τ σ τ)))!}

The body of the _⊙_ function composes the previously-defined _⊙-map_ with polarise
to yield the desired pre-strategy τ⊙σ.

One final thing we note about the two mechanisations above is that all calls to
((mapping-σ σ τ) ⊙-map (τ-assoc (mapping-τ σ τ))) appear between brack-
ets of the form {! !}. This is because we are leaving them as open holes in our proofs
so that our code compiles without actually typechecking their contents. We adopt this
approach because these calls appear to trigger a pathological case in Agda’s unification
engine as it solves constraints to check that our code is well-typed: either it does not
terminate, or it performs too poorly for us to know if it terminates within a reasonable
timeframe. While we were not able to circumvent the problem, we typechecked the
hole submissions in part and are confident they are the correct definitions. In future
work, we hope to derive a minimal working example and report this case to the Agda
development team.
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Strategies

In this chapter we describe our mechanisation of the copycat pre-strategy, isomorphisms
between pre-strategies, and strategies themselves.

To motivate the copycat pre-strategy, we once again recall the underlying mathematical
objects of denotational semantics are compositional, so compositionality is the guiding
principle to the way in which strategies are defined in this chapter.

Now that compositionality has already been obtained for pre-strategies, we require
an identity on them. This identity is the copycat (pre)-strategy, which acts as an
asynchronous forwarder between pre-strategies. Then, strategies can be defined as
those pre-strategies that are invariant under composition with copycat.

4.1 The copycat pre-strategy

The copycat pre-strategy plays on the composite game A⊥ ∥ A, with the role of Player
in one subgame and Opponent in the other. For every Opponent-move made in A⊥,
copycat plays the exact same move on A, waits for the next Player-move made in A, then
plays this Player-move on A⊥. In doing so, the copycat is really playing the Opponent
in A⊥ against the Player in A, such that the addition of the copycat has no effect on the
moves being played in A except they are now being split across two games. This should
motivate the use of the copycat pre-strategy as the identity on pre-strategies, for which
we now provide a formal definition.

Definition 4.1.1 (CCRW). (The copycat event structure). The copycat event structure
on a game A, written CA

e , has:

• Events: the events of A⊥ ∥ A,

• Causality: the transitive closure of:

≤A⊥∥A ∪ {(c,c) | c ∈ A⊥ ∥ A and polA⊥∥A(c) = +}

where c denotes the copy of an event c ∈ A⊥ with the opposite polarity, in the
component of the composition that c itself does not belong to.
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• Consistency: A set of events X ∈ CA
e is consistent iff its down-closure, i.e.

{a ∈ CA
e | ∃b ∈ X . a ≤CA

e
b}

is consistent in A⊥ ∥ A.

Definition 4.1.2 (CCRW). (The copycat pre-strategy). By adding the polarity relation
from A⊥ ∥ A to CA

e , the copycat event structure on a game A, we obtain an ESP CA.
Then, the following identity map is the copy-cat pre-strategy on A:

cA : CA → A⊥ ∥ A

Compared to the difficulty of mechanising the interaction and composition of pre-
strategies in Agda, the copycat pre-strategy lends itself well to mechanisation using the
machinery we have developed for event structures, ESPs, and pre-strategies over the
past two chapters.

In the following code snippet, the copycat ESP CA takes the definition for the copycat
event structure CA

e as a field because there is no need to define CA
e as an independent

record.

copycat-esp : ∀ {As : Set} → (A : ESP As) → ESP (As ⊎ As)
copycat-esp {As} game = record
{ polarity = polarity (Dual game ∥ game)
; event-structure = record
{ fpo = record
{ ≤-f = ≤-f-def
; ≤-f-refl = λ{ {x} → ≤-refl-help x }
; ≤-f-antisym = λ x x1 →≤-antisym-help x x1
; ≤-f-trans = λ { {p = p} x x1 →≤-trans-help {p = p} x x1}
}

; Con = record
{ con-f = con-f (Con ((event-structure game ∥e event-structure game)))
; con-1 = λ { {e} → con-1

((Con
((event-structure game ∥e event-structure game)))) {e}}

; con-2 = con-2 (Con ((event-structure game ∥e event-structure game)))

; con-3 = λ es x x1 x2 → {!!}
; con-empty = con-empty

(Con ((event-structure game ∥e event-structure game)))
}

}

The events of CA and CA
e are two copies of the events of A, expressed as the sum type

A∪A in Agda. As advertised in Definition 5.1.2, CA inherits its polarity and consistency
relations from A⊥ ∥ A, and the causality relation ≤−f is the only part of the record that
requires a new definition. This is reflected by the fact that all fields of the consistency
relation Con that do not make use of the ≤− f relation are identical to their definitions
in A⊥ ∥ A.
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The causality relation ≤−f is outsourced to a helper function ≤−f-def because of
its complexity. We recall from Definition 5.1.1 that ≤−f-def should be the transitive
closure of the union of the causality relation of A⊥ ∥ A and all pairs of events (c,c)
where c has positive polarity in A⊥ ∥ A. Making use of our implementation of finite sets
as lists again, ≤−f-def may be defined as:

≤-f-def : As ⊎ As → List (As ⊎ As)
≤-f-def (inj1 x) with (polarity (Dual game ∥ game)) (inj1 x)
... — + = (≤-f (fpo (event-structure (Dual game ∥ game))) (inj1 x))

++ (≤-f (fpo (event-structure (Dual game ∥ game))) (inj2 x))
... — - = (≤-f (fpo (event-structure (Dual game ∥ game)))) (inj1 x)
≤-f-def (inj2 y) with (polarity (Dual game ∥ game)) (inj2 y)
... — + = ((≤-f (fpo (event-structure (Dual game ∥ game)))) (inj2 y))

++ (≤-f (fpo (event-structure (Dual game ∥ game))) (inj1 y))
... — - = (≤-f (fpo (event-structure (Dual game ∥ game)))) (inj2 y)

Here we use Agda’s pattern-matching in two different ways: Firstly, we distinguish
between events with positive and negative polarities in A⊥ ∥ A through the use of a
with-abstraction. For a given event c ∈ A⊥ ∥ A, the finite set of events X = {x | x ≤ c}
is unchanged if c has negative polarity. If c has positive polarity, we must append
the causal dependencies of c to X as well as c’s own dependencies from A⊥ ∥ A. To
implement this, we identify c (the copy of c in the component of A⊥ ∥ A that c does not
appear in) by case-matching on whether c has type in j1 x or in j2 x (the two constructors
for sum types), because c must be x wrapped by the opposite constructor.

Secondly, we take the union of c and c’s causal dependencies in A⊥ ∥ A as the causal
dependency for c in CA

e . In the code snippet above this is accomplished through list
concatenation, owing to our implementation of finite sets as lists.

Agda proofs that CA
e obeys our existing interface for event structures are omitted from

this report because they are more than 200 lines long and mostly concern proofs of list
properties.

Now, we define an event structure mapping from CA to the game A⊥ ∥ A.

copycat-map : ∀ {As : Set} → (A : ESP As)
→ event-structure (copycat-esp A) 7→ event-structure (Dual A ∥ A)

copycat-map {As} a = record
{ σ-map = λ x → x
; pre-1 = λ { x ((con-f-a1 , con-f-a2) , f )

→ (pre-1-help-e {x} con-f-a1 , pre-1-help-f {x} con-f-a2),
λ e e′ e∈xs e′∈exs → map-∈-eq {e}{e′}
(f e e′ (∈-map-eq {e′}{e} e∈xs)

(pre-1-help {e}{e′} e′∈exs)) }
; pre-2 = λ { refl → refl}
}

Here, the field σ-map is the identity function because CA and Dual A ∥ A have the
exact same set of events. We then use this mapping to construct the copycat pre-strategy
itself:
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copycat-strat : ∀ {As : Set} → (A : ESP As)
→ pre-strat (copycat-esp A) (Dual A ∥ A)

copycat-strat a = record
{ σ = copycat-map a
; pre-3 = refl
}

The pre-3 field, corresponding to the preservation of polarities, is discharged with the
refl constructor for propositional equality as we have already instructed Agda that
copycat-esp has the exact same polarity relation as Dual A ∥ A.

4.2 Isomorphism of pre-strategies

Before arriving at our goal of defining concurrent strategies, we define and mechanise
isomorphisms between pre-strategies.

Definition 4.2.1 (CCRW). (Isomorphism of pre-strategies). Let σ : S → A and τ : T → A
be two pre-strategies playing on the same game A. σ and τ are isomorphic if there is an
isomorphism φ between the event structures S and T , i.e. φ : S ∼= T , commuting with the
actions σ and τ on the game like so:

The isomophism between σ and τ is written as σ ∼= τ.

Below, our mechanisation is based on the Agda definition of isomorphisms given in
Programming Language Foundations in Agda (Wadler et al. [2022]), where to and
from are mappings between E and F, while from◦to and to◦from assert from is the
left-inverse of to and vice versa.

We begin with mechanising φ : S ∼= T , the isomorphism of event structures:

record ∼=e {Es Fs : Set} (E : EventStructure Es)
(F : EventStructure Fs) : Set where

field
to : E 7→ F
from : F 7→ E
from◦to : ∀ {x : Es} → σ-map from (σ-map to x) ≡ x
to◦from : ∀ {x : Fs} → σ-map to (σ-map from x) ≡ x

Here, from and to are defined using the total maps between event structures given in
Definition 3.1.2, and σ-map is the name of the field containing the mapping itself in the
7→ record.
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We then wrap _∼=e_ around another record _∼=_ to encode isomorphism between pre-
strategies σ and τ:

record ∼= {Ss Ts As : Set} {S : ESP Ss} {T : ESP Ts} {A : ESP As}
(s : pre-strat S A) (t : pre-strat T A) : Set where

field
es-∼= : (event-structure S) ∼=e (event-structure T)

4.3 Strategies

As stated previously, the guiding principle employed by CCRW in their construction of
concurrent strategies is that strategies should act as morphisms in a (bi)category where
the objects are games. Therefore, strategies are pre-strategies that are

1. Compositional, and

2. The copycat pre-strategy acts as the compositional identity.

For clarity, we illustrate how strategies are built from the constructions in CCRW
through the following dependency graph.

Figure 1: Dependency graph for the construction of strategies.

We have established compositionality for pre-strategies mapping onto the same game,
a definition for the copycat pre-strategy, and isomorphism on pre-strategies. All that
remains is to combine these three ingredients.
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Definition 4.3.1 (CCRW). (Strategies). A strategy on a game A is a pre-strategy
σ : S → A satisfying:

CA ⊙ σ ∼= σ

We are one step away from mechanising Definition 4.3.1. We refer back to our mecha-
nisation of ⊙, which has type:

⊙ : ∀ {Ss Ts As Bs Cs : Set} {S : ESP Ss} {T : ESP Ts}
{A : ESP As} {B : ESP Bs} {C : ESP Cs}
→ (τ : pre-strat T ((Dual B) ∥ C))
→ (σ : pre-strat S ((Dual A) ∥ B))
→ pre-strat (T⊙S τ σ) ((Dual A) ∥ C)
⊙ σ τ = polarise

{!((mapping-σ σ τ) ⊙-map (τ-assoc (mapping-τ σ τ)))!}

To write CA ⊙ σ in Agda, σ must satisfy this interface where it has type
pre-strat S ((Dual A) ∥ B)), such that it maps onto an ESP that is the composi-
tion of two smaller ESPs. However, we would like to define strategies on the more
general class of pre-strategies that have type pre-strat S A.

This problem can be resolved by defining an empty event structure and corresponding
ESP, with no effect on the ESP it is composed with except for making our mechanisation
of strategies typecheck. To this end, we define an empty datatype with no consturctors
to use as the events of this ESP:

data Empty : Set where

We can then construct an event structure and an associated ESP, each with no events:

es- /0 : EventStructure Empty
es- /0 = record

{ fpo = fpo- /0

; Con = con- /0

}

esp- /0 : ESP Empty
esp- /0 = mkESP (λ x → +) es- /0

We assign an arbitrary polarity relation to esp- /0 because the relation will never be used,
as there are no events to apply it to.

Now, we mechanise strategies through the following record:

record Strategy {As Ss : Set}
(A : ESP As)
(S : ESP Ss) : Set1 where

field
σ : pre-strat S (esp- /0 ∥ A)
σ-req : (copycat-strat A ⊙ σ) ∼= σ
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A Strategy is constructed from two ESPs S and A, corresponding to the arguments to
the pre-strategy σ in Definition 4.3.1. The σ field contains a pre-strategy from S to A
where A is padded with the empty event structure. Then, the σ-req field enforces σ to
be invariant under composition with the copycat pre-strategy on A.

Because our mechanisation of the ⊙ operation at the end of Chapter 3 has an incom-
plete type signature, Agda is unable to typecheck σ-req. The source code submitted
alongside this project employs the following placeholder for ⊙:

⊙2 : ∀ {Ss Ts As Bs Cs Ds : Set} {S : ESP Ss} {T : ESP Ts}
{A : ESP As} {B : ESP Bs} {C : ESP Cs} {D : ESP Ds}
→ (τ : pre-strat T ((Dual B) ∥ C))
→ (σ : pre-strat S ((Dual A) ∥ B))
→ pre-strat D ((Dual A) ∥ C)

⊙2 = {!!}

The domain of ⊙2 is an arbitrary ESP D, while the domain of ⊙ is the set of ESPs satisfy-
ing T ⊙S. Since ⊙2 is more general version of ⊙ and Agda is able to typecheck σ-req
with ⊙2, we are confident it will typecheck for ⊙ if its type signature is completed.

We now have a mostly complete mechanisation of the constructions needed for express-
ing a concurrent strategy in Agda.
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Conclusions

5.1 Summary

To summarise, this project provides a partial mechanisation for concurrent games and
strategies as constructed in CCRW, which involved developing libraries for finite sets,
event structures, and pre-strategies in Agda. This report provides an abridged version
of the theory introduced in CCRW, and explains the design choices we made in our
implementation work.

5.2 Limitations

We now address the limitations of our project:

• Incomplete proofs: The most glaring limitation of our project is the fact that
several proofs are left incomplete, as a trade-off for reaching the construction for
strategies within the time constraint of this project. We made this decision because
the omitted proofs mostly pertain to properties of lists, and are generally irrelevant
to the primary aim of this project. However, we recognise that a mechanisation
project is only complete when there is nothing left unproven, and we are confident
all of the incomplete proofs can be done given additional time.

• Postulates: As addressed in subsection 3.3.3, we employed a postulate in place of
implementing a library for finite sets that is not based on lists. The postulate will
be eliminated once we implement this library.

• Agda code compilation: As addressed at the end of Chapter 3, we encountered
a problematic case for Agda’s unification engine and were forced leave some
definitions incomplete. We plan to report this case to the Agda development team.

5.3 Future work

Now, we consider the ways in which our work in this project can be expanded upon in
the future.
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The most obvious task is to complete the unfinished proofs in the existing parts of this
project. There is little to remark about this except that we expect these proofs to be very
long and time-consuming. This will also involve implementing a better library for finite
sets that either enforces elements to be equatable by Agda’s propositional equality, or
modifying our implementation of event structures and its associated proofs to use a
different equality relation altogether.

Upon completion of the mechanisation work described in this report, additional mecha-
nisations of the categories E , EP , and the bi-category of games through Agda’s existing
category theory library will provide a fuller mechanisation of CCRW, and improve
confidence in the correctness of the constructions in CCRW.

Another promising direction for the project is additional mechanisations for strategies
characterised through receptivity and courtesy (CCRW), and a proof showing this
characterisation is equivalent to Definition 4.3.1., which is the main result of Rideau
and Winskel [2011].
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