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Abstract
This thesis introduces the Spatial and Range Aware K Nearest Neighbor (SR-KNN), a
fixed-radius exact K Nearest Neighbor Search (KNN) algorithm optimized for 2D-Mesh
spatial accelerators, addressing the growing demands for computing power, model
complexity, and data volume in machine learning applications. SR-KNN utilizes
the distinct advantages of 2D-Mesh accelerators, including a fully distributed system
between cores and asynchronous data exchange. The algorithm makes three significant
contributions to the field: (i) the utilization of 2D-Mesh accelerators’ structure for data
partitioning and radius-based search optimization, enabling more efficient processing
of sparse data; (ii) efficient SIMD on-chip computation for rapid distance calculations,
reducing the computational load and enhancing performance; and (iii) a merge-sort
algorithm for pairwise collective K selection, significantly improving the speed of the
K Selection and reducing the memory consumption. By addressing key challenges such
as the lack of spatial awareness in traditional CPUs and GPUs and the inefficiencies in
handling sparse point datasets, SR-KNN demonstrates a potential improvement in exact
KNN search throughput by 2 to 3 times compared to existing methods. We are in the
process of adapting SR-KNN to the Tenstorrent, a real 2D-Mesh accelerator.
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Chapter 1

Introduction

The K nearest neighbor (KNN) search is widely used in various domains such as
machine learning and information retrieval, with applications that include graph network
simulators [Kumar and Vantassel, 2023], textual semantic retrieval [Cer et al., 2018],
anomaly detection [Gu et al., 2019], recommendation systems [Zhao et al., 2019], image
search across borders [Jia et al., 2021], and financial fraud detection [Alammar et al.,
2022]. The goal of KNN is to locate the K most similar data points to a given query
within a database containing a finite set of datapoints in a vector space. The primary
challenge in developing an effective KNN algorithm lies in achieving accurate KNN
results while maintaining computational efficiency.

1.1 Fixed-Radius K Nearest Neighbor Search

The core principle of KNN algorithm is to identify the neighbors surrounding the
query point, meaning that only those points in close physical proximity are worthwhile
of being calculated distances. Many other calculations beyond this are proven to be
unnecessary, as points that are physically distant from the query are irrelevant. This
highlights the importance of a fixed-radius K nearest-neighbor search, also known
as a radius query, focusing on locating all data points situated within a specified
distance from a query point. This method is detailed in Bentley’s historical overview
[Bentley, 1975]. For fixed-radius KNN search, within each specified range, the simplest
approach to identifying nearest neighbors is still conducting a linear search across the
entire database, a method often stated as exhaustive or Brute-Force search. Although
considered unwise, it is still widely used; in addition, with the help of AI accelerators,
the calculation and search speed can be greatly enhanced.

1.2 KNN with AI Accelerators

AI accelerator chips have revolutionized the application of machine learning in various
industries. As the demand for computing power, model complexity, and data volume
accelerates at an extraordinary rate, there is an increasing requirement for solutions that
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Chapter 1. Introduction 2

offer both high performance and enhanced efficiency. Today, the landscape of high-
performance computing hardware has developed significantly, encompassing advanced
accelerators such as NVIDIA Graphics Processing Units (GPUs) and Google Tensor
Processing Units (TPUs). These groundbreaking computing platforms have emerged
to meet the growing demand for accelerated computational capabilities, catering to
both industrial-scale projects and individual demands. K nearest neighbor search, an
important tool widely used in machine learning tasks, is also further accelerated by
these platforms. Recent researches, including studies on GPU-based KNN [Garcia et al.,
2008, Johnson et al., 2021], TPU-based KNN [Chern et al., 2022], CPU-optimized
KNN [Chen and Güttel, 2024, Pedregosa et al., 2011], and CPU-GPU hybrid KNN
[Muhr and Affenzeller, 2022] have emerged to enhance KNN performance through
considerable reductions in latency.

1.2.1 Problems with Fixed-Radius KNN

However, research has not been carried out extensively on exact fixed-radius KNN. We
find the following challenges:

(1) GPUs and CPUs lack spatial awareness as their memories are centrally managed,
making it challenging to define a specific range or radius for searching.

(2) Current sparse point datasets provide merely coordinates of each point without
including information about the closeness between points so that it becomes difficult to
determine which points fall within the range, although the search radius is given.

(3) Fixed-Radius KNN is also based on massive distance computations with GEMM
and GEMV operations like common KNN, which provides a heavy workload.

1.2.2 Spatial Accelerators Solution

To overcome these challenges, the spatial accelerators are developed. These accelerators
have numerous cores, also called Processing Elements (PEs), designed to boost MM
and MV operations, and the PEs are connected through 2D-Mesh-like network-on-chips,
providing massive on-chip memory bandwidth. Notable examples include Tenstorrent,
Tesla Dojo, TPUv5, and Cerebras. Due to the structure of 2D-Mesh accelerators, sparse
data can be partitioned among specific cores for independent processing. Moreover, the
radius also becomes realistic in these accelerators because cores are placed like a 2D
plane, and only the cores located within the radius are required to execute computations.

In this thesis, we will introduce SR-KNN, a novel exact KNN specifically designed to
capitalize on the capabilities of 2D-Mesh accelerators. At its core, SR-KNN employs
an efficient SIMD on-chip computation and a fast merge-sort algorithm for distance
calculation and K selection, which are proven to have processing times close to O(MN)
and O(K) respectively. We are in the process of adapting it for Tenstorrent. Early
theoretical experiments have shown that SR-KNN can improve exact KNN search
throughput by 2 to 3 times compared to existing exact KNN methods on CPU and GPU.
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1.3 Open Questions and Main Contributions

To enable and optimize fixed-radius KNN on a 2D-Mesh accelerator, several key
challenges must be addressed:

• How to determine an effective strategy for partitioning data across the cores of
the 2D-Mesh accelerator without prior knowledge of data closeness.

• How to identify which cores are within the radius of each query.

• How to dispatch the query efficiently from the starting core to the target cores.

• How to perform efficient computation on each core.

• How to select the K values efficiently with minimum memory consumption.

In order to address above, we make the following contributions to SR-KNN:

Space-Conscious Data Partition: It is a strategy for data partitioning that allocates
data points to their respective cores based on their coordinates, allowing for autonomous
processing by each core in a distributed manner.

Range-Aware Route Planning: The routing method is introduced to enable communi-
cation between cores within a specific range defined by the radius setting.

Broadcasting and Core Communication: SR-KNN utilizes the asynchronous routers
of the 2D-Mesh chip to broadcast the query from the starting core to the target cores.

SIMD On-Chip Computation: It is a fast distance calculation and K selection algo-
rithm, utilizing the SIMD capabilities which allow for more than one operation per
instruction cycle.

Back Transferring and Reduce: They are techniques designed by an efficient merge-
sort algorithm for cores’ pairwise collective K selection and aggregating for determining
the final K values from the contributions of all associated cores.

Gather and Final K Selection: SR-KNN guarantees the correctness of the final K
nearest neighbors by implementing atomic K selection at the starting core, with the
results received from neighbor cores.



Chapter 2

Background

2.1 Current Exact KNN Strategies

Currently, exact KNN search methods such as Brute-Force, KD-Tree [Bentley, 1975],
and Ball-Tree [Omohundro, 2009] are commonly employed to fulfil search requirements.
Libraries like scikit-learn have effectively implemented these three KNN search methods
for CPUs. Additionally, Faiss offers a Flat algorithm that achieves efficient Brute-
Force search on GPUs. When compared to Brute-Force KNN searches, both KD-Tree
and Ball-Tree show superior performance due to their efficient indexing mechanisms,
which employ unique indices for each point to minimize unnecessary searches and
computations. We will detailedly discuss them in the following sections.

2.1.1 KD-Tree

A KD-Tree is a space-partitioning data structure used for organizing points in a k-
dimensional space. It is constructed by recursively partitioning the k-dimensional space
into two halves while one dimension at a time is chosen. Each node in the tree is a
hyperrectangle in the space, with the root node covering the entire space. When the
number of points becomes less than a particular threshold or when the best depth is
reached, the process of partitioning has to stop.

KD-Tree Construction: The KD-Tree search consists of two main phases: construction
and searching. A KD-Tree is a hierarchal structure built by partitioning the data
recursively along the dimension of maximum variance [VLFea, 2007]. To illustrate, the
process of selecting the root node in this algorithm involves calculating the variances
of each dimension and choosing the dimension with the highest variance. The point
along that dimension’s axis that equals the median value of the dimension’s values is
then selected as the root node. In Figure 2.1, the x dimension shows a larger variance.
Consequently, the point with an x-coordinate equal to the median of the values on the
x-axis (either 5 or 7) is chosen as the root node. In this case, (7, 2) is selected as the root
node. Subsequently, the x-axis is divided into two halves. For each half, the points with
the median value of y coordinates are selected as child nodes. In the provided figure, to
the left of the root node (7, 2), the point (5, 4) has the median y-coordinate. Therefore,

4
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(5, 4) is chosen as the left child of the root node. Similarly, on the right side of the root
node, (9, 6) with the median y-coordinate is selected as the right child. This process
continues with switching dimensions until the termination condition is met.
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Figure 2.1: Construction of the KD-Tree based on the maximum variance

KD-Tree Search: After constructing the KD-Tree, the search is involved. There are
several steps to show how the search works:

(1) Starting from the root, the algorithm moves down the tree to find the leaf node that
the query point would belong to. This step is efficient because it involves comparing
the query point to the values at each node, determining whether to move left or right in
the tree without any distance calculation.

(2) Once the leaf node is reached, the algorithm backtracks up the tree, checking the
sibling nodes and potentially further up to ensure that no closer neighbors are missed.
This step is necessary because the nearest neighbors of a query point are not always in
the same leaf node.
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Figure 2.2: Nearest Neighbor Search with KD-Tree

(3) On the way, the distances from the query point to the points in the nodes visited are
calculated. The K closest points during the search are kept.

(4) One of the key optimizations throughout the search is branch pruning. If the distance
between the query point and the boundary of the hyperrectangle is greater than the
distance from the query point to the Kth nearest neighbor found up to the present time,
searching in this node of the tree and its subtrees can be safely stopped. Because of
this pruning strategy, KD-Tree can largely reduce the number of distance calculations.
It both maintains the accuracy of the search algorithm (still exact KNN search) and
descends the searching latency.

Figure 2.2 shows an example of the Nearest Neighbour Search with KD-Tree. Starting
from the root node, since the x-coordinate of the query point S is less than the x-
coordinate of the root node, access the left child node. Since the y-coordinate of S is
greater than the y-coordinate of the current node, access the right child node. Upon
reaching a leaf node, stop and draw a circle centered at the current leaf node with the
distance to S as the radius. Then, start to backtrack to its parent node, checking if the
circle intersects with the space of the other branch. The method to check is to determine
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Figure 2.3: KD-Tree Searching Time vs. Constuction Time

if the difference between the y-coordinate of S and the y-coordinate of the parent node
is less than the radius of the circle. If it is less than the radius, there is an intersection.
Since there is an intersection, check the nodes in the other child space of the parent
node to see if any are closer to S than the current nearest neighbor. As the point (2, 3) is
closer to S, update the nearest neighbor to (2, 3). Afterwards, backtrack to the parent
node (5, 4), and calculate the distance between the parent node and S. Since the distance
is greater, the nearest neighbor remains unchanged. Finally, backtrack to the previous
level’s parent node, which is the root node (7, 2). Determine if the root node’s other
child hyperplane intersects with the circle. Since there is no intersection, do not visit
the child nodes of the other branch and the search terminates with the nearest neighbour
(2, 3).

For the KNN search, a max-heap is utilized to store and order the current K points
based on their distance from the query point. If the heap contains fewer than K points,
continue visiting nodes to find potential neighbors until the heap contains K points.

KD-Tree Challenges: However, the time to construct a KD tree is much longer
than the search time. As shown in Figure 2.3, the building process is almost 400
times slower than the search. Thus, when processing moving data, this tree must be
rebuilt every time new data come in, leading to a rapid degradation of performance; in
addition, constructing indices for points that are significantly distant from the query is
unnecessary, since their chances of being the nearest neighbors are negligible. Moreover,
KD-Tree is inefficient on high-dimension data due to the curse of high dimensionality
[Vishwakarma, 2023].

2.1.2 Ball-Tree

Ball-Tree is a variation of KD-Tree that performs well on high-dimension data where
KD-Tree is not efficient. The structure of a Ball-Tree is similar to that of a KD-Tree,
with both being binary trees, but they differ in some details.

Ball-Tree Construction: The root node is selected as the central point that minimizes
the distance to all points, and then, with the distance from this point to the farthest point,
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draw a hypersphere. To select the children, the approach is as follows: (1) Select the
point farthest from the center within the current hypersphere as the left child node. (2)
Choose the point that is farthest from the left child node as the right child node. (3) For
the remaining points, calculate the L2 distance to the points corresponding to the left
and right child nodes, and assign them to the closer one’s hypersphere. (4) Apply the
same operation to all child nodes.

Ball-Tree Search: The search in Ball-Trees is similar to that in KD-Tree, but Ball-Tree
includes an additional search radius R. This means that the nearest neighbor must be
within a hypersphere of radius R generated around the query point. In a KD-Tree, the
search process includes determining the intersection between a circle, representing the
search radius around the query point, and the hyperrectangle that defines the boundaries
of the current node. However, in a Ball-Tree, the search is based on the intersection
between two hyperspheres: one that encloses the points within the current node of the
Ball-Tree and another formed by the query point. The other searching processes are the
same. Ball-Tree search can fit more closely around a cluster of data points because it
bounds data in all directions equally using the hypersphere. This fitting tends to enclose
points closely, reducing the chance that regions assigned to different nodes overlap
each other. Unlike KD-Tree, which partitions the space at median points along axes,
Ball-Tree does not partition the space evenly, but rather based on the distribution of
data within the space. This can lead to more balanced partitions, especially in unevenly
distributed datasets.

Ball-Tree Challenges: The Ball-Tree algorithm requires a significant number of dis-
tance computations for both constructing the tree and conducting searches, which proves
to be inefficient for data with low dimensions. Additionally, similar to the KD-Tree, it
suffers from too long index construction time, which is not suitable for dynamic data
tasks.

2.2 Current KNN on CPU

The advantage of CPU-based KNN is its flexibility and efficiency for datasets of small
or moderate size and dimensionality. CPU-based implementations utilize complex data
structures like KD-Tree or Ball-Tree to facilitate efficient nearest neighbor searches
by partitioning the dataset into subsets and reducing the search space. This approach
decreases the computation requirement compared to the Brute-Force method where
the query point needs to calculate distances with all data points. Moreover, CPUs are
well-suited for algorithms that require sequential processing and can benefit from the
accurate branch prediction and out-of-order execution capabilities of modern CPUs
[Majkowski, 2021]. Libraries such as scikit-learn [Pedregosa et al., 2011] provide
highly optimized, user-friendly interfaces for KNN on CPUs with both Brute-Force
and tree-based algorithms. These implementations also utilize multi-core processors to
make computations in parallel.
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2.3 Current KNN on GPU

Implementing KNN on GPUs makes massive parallelism realistic, largely speeding
up computations for large datasets and high-dimensional data. GPUs are experts in
handling data-parallel tasks, allowing for the simultaneous calculation of distances
between a query point and multiple points in the dataset. It is particularly beneficial for
the Brute-Force approach, where each GPU thread can compute the distance to a data
point in parallel, which reduces the overall latency. Furthermore, GPUs can employ Ap-
proximate Nearest Neighbor (ANN) Search algorithms, which offer a trade-off between
accuracy and speed, returning most of the correct nearest neighbours, enabling real-time
search capabilities in extremely large datasets. Libraries like Faiss [Johnson et al., 2021]
specialize in GPU-accelerated similarity search, providing optimized implementations
that take full advantage of GPU architecture, including efficient memory usage and
parallel sorting algorithms to identify the K nearest neighbors. The main advantage of
GPU-based KNN lies in its ability to handle very large datasets and perform computa-
tions faster than CPUs. Faiss introduces Flat algorithm for exact KNN search, we will
introduce it in the next subsection.

2.3.1 Faiss Flat

Faiss (Facebook AI Similarity Search) [Johnson et al., 2021] is a library developed
specifically to search for similarities in large datasets of vectors. Examples of areas
where Faiss would be beneficial include artificial intelligence and machine learning
tasks, as this type of operation is a cornerstone of many tasks, often in the context of
a nearest neighbor search in very high-dimensional spaces. Facebook AI Research
(now Meta AI Research) created Faiss to be highly efficient in the first place: (1) It
scales to handle an extensive number of vectors. (2) It maintains high search speed and
acceptable accuracy for billions of vectors and more. The core features of Faiss include:

Speed & Efficiency: Faiss is highly optimized for any hardware, including CPUs and
GPUs, and fully utilizes the potential of hardware to query vectors. For even large sets
of data, Faiss is tested faster compared to the naive implementation of KNN searching.

Versatility: Faiss supports several types of the selected metric, such as L1, IN-
NER PRODUCT and L2, and is applicable in various problems specific to similarity
selection or clustering.

Resilience: Faiss consistently works at peak performance levels regardless of the
volume of the dataset used due to its efficient K-selection strategies.

For the exact KNN search, Faiss offers a method called Flat that provides a Brute-
Force index search on all vectors. The vectors are saved in their original format, and no
compression or transformation is maintained. At search time, the flat index measures
the distance between the query vector and all vectors in the database to determine the
K-nearest neighbors.

Acceleration of Faiss Flat: Although Flat operates as a Brute-Force approach, it still
gains acceleration from the easy implementation of parallelism and the high SIMD
capabilities of GPUs, which can exceed the corresponding CPU performance by 10X to
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100X. Furthermore, Faiss implemented In-register sorting, a variation of the Bitonic
sorting network [Batcher, 1968], which is in a position of speeding up sorting arrays
and K-selection in a parallel manner; in addition, GPU WrapSelect, a method of K-
selection designed to accelerate the K-selection algorithm by maintaining state entirely
in registers and avoiding cross-warp synchronization on GPUs. Each GPU warp (a group
of threads that execute in lockstep) is dedicated to K-selection for one of the n arrays,
and large arrays per warp are handled through recursive decomposition, assuming that
the array lengths are known in advance. These two techniques enable significantly faster
performance in KNN search tasks by utilizing the parallel computing capabilities of
GPUs more effectively than previous methods.

Faiss Flat Challenges: Similar to other Brute-Force searching methods, Faiss Flat
performance degrades considerably as the dataset size and data point dimensionality
ascend. As a result, it is not suited for extensive datasets in which the exact K nearest
neighbor search is required.

2.4 Problems with Current CPU and GPU KNN

For exact KNN algorithms, both CPU and GPU are still facing several challenges:

Intensive Computation: For Brute-Force, obtaining an exact KNN search requires
calculating the distances between the query point to the entire database, which can be
compute-intensive and infeasible on many platforms, especially with large databases
and complex search domains. For KD-Tree and Ball-Tree methods, constructing the
trees requires considerable time with the tree-building phase potentially taking up to
400X longer than the search phase. The intensive computation also causes large energy
consumption by CPU or GPU, as a result of the high utilization rates of these chips.

Redundant Computation: Points far away from the query physically are meaningless
in KNN and calculating distances with them or building tree indices for them are
redundant. However, because point datasets are usually sparse and do not provide
closeness information among points, figuring out which points are near each other
is difficult. Several studies have attempted to conduct fixed-radius KNN searches on
individual points [Chen and Güttel, 2024]. However, these approaches quickly lose
efficiency as the volume of queries grows. Due to the centralized management of
memory in CPUs and GPUs, implementing concepts like a search radius or conducting
calculations in a distributed manner, where each point operates within its unique range
of the GPU memory, poses a challenge.

ANN Cannot Replace KNN: Numerous studies advocate the use of highly optimized
Approximate Nearest Neighbor (ANN) Search [Groh et al., 2023, Chern et al., 2022,
Guo et al., 2020, Malkov and Yashunin, 2018], over exact KNN search, arguing that
identifying the majority of nearest neighbors is enough for large databases. Nevertheless,
in domains such as AI-driven Particle Dynamics Simulation, where the attributes
of neighboring particles are crucial, an wrongly identified neighbor could result in
unsuccessful simulations. Similarly, in the banking and finance industry, high-precision
detection of fraudulent transactions is essential to avoid financial losses. Utilizing
exact KNN search is critical for accurately identifying transactions that derail from
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a customer’s normal behavior, as even slight errors could lead to significant financial
losses. Therefore, an efficient exact KNN search is still of importance.

2.5 KNN on 2D-Mesh Accelerator

Implementing KNN on 2D-Mesh accelerators holds the potential to overcome these
challenges. These accelerators are equipped with plenty of cores that are designed to
enhance matrix operations. These cores are interconnected through the networks-on-
chip which forms a 2D-Mesh layout, offering massive on-chip memory bandwidth. We
will introduce the 2D-Mesh accelerators in the next session.

2.5.1 2D-Mesh Accelerators

Spatial accelerators are an integrated circuit architecture that provides a well-defined
structured and scalable framework to integrate communication and computation. They
are widely employed in Machine Learning tasks like Autonomous Driving [Moha-
narangam and Shetty, 2022], Large Language Model Training [Thangarasa et al., 2024,
Kosson et al., 2021, Thangarasa et al., 2023], Brain Tumor Segmentation [Pendse et al.,
2021] and AI-driven Molecular Simulation [Brace et al., 2021]. A 2D-Mesh accelerator
contains cores, also called processing elements, which are arranged like a grid to create
a two-dimensional mesh network. These cores can autonomously perform tasks and
are linked by a communication network called Network-on-Chip (NoC) [Serpanos and
Wolf, 2011]. Each core has its own SRAM for instant data storage and fast execution.

Distributed & Scalable: A key advantage of the 2D-Mesh accelerator is its regular and
predictable communication. Each core is attached directly to its four neighboring cores
by NoC. Data can flow directly and in position between these cores, and data can be sent
to different directions simultaneously called multi-cast [Lan and Chen, 1994], which
is essential for parallel algorithms and applications that require parallel processing and
data movement. Each core operates independently, equipped with its own resources,
ensuring a fully distributed execution without synchronization overhead. Users have the
flexibility to choose a core and define customized routes to configure communications
with other cores. The 2D-Mesh accelerators also allow for scalability [Jain et al., 2019].
Assuming that the accelerator is planned to increase, the mesh network can be expanded.
Hence, more cores can be added to the enlarged mesh. As a result, the computational
power and capacity of the system will increase. 2D-Mesh accelerators are thus ideal
for various applications, ranging from small-scale embedded systems to large-scale
supercomputing systems.

Figure 2.4 shows the structure of a 2D-Mesh accelerator. Initially, users distribute data
to each core according to their configuration, and subsequently, data movement occurs
as needed. Data is transferred through a Network-on-Chip that is connected to the router
(R) of each core. The network interface of the core communicates with the router. If
data is required for this core, the data will be passed into the core for task execution.
Otherwise, the data will be transferred to the next core determined by the router and
through the NoC.
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Figure 2.4: 2D-Mesh Accelerator Architecture

Fast Core Communication & Flexible Message Passing: The communication design
of the 2D-Mesh accelerator makes the data can almost instantly be made available for
neighboring cores due to direct transferring through NoC without any complex strategy,
which is beneficial for the applications with frequent data exchange between cores.
For message passing, the 2D-Mesh structure of the accelerator can support both syn-
chronous and asynchronous models because the router is designed to be asynchronous
[Guan et al., 2010], which means that the cores could coordinate operations at specific
synchronization points or exchange data independently. This ensures maximum flexibil-
ity and performance of parallel algorithms due to lower synchronization overhead and
greater efficiency. A core communication example is described in Section 3.4.2.

2.5.2 Tenstorrent

There are plenty of 2D-Mesh structured accelerators. In this thesis, we refer to the
datasheet of Tenstorrent GrayskullT M e150 [Tenstorrent, 2024]. The cores in this accel-
erator are known as Tensix, and they are placed and connected using two torus-shaped
NoC [Adiga et al., 2005], which enables bidirectional communication between neigh-
boring cores. Additionally, the torus-shaped NoC allows cores situated on the head and
tail of the same row or column to communicate with each other, further enhancing the
connectivity and communication capabilities of the system. Each Tensix core contains a
high-density tensor math unit (FPU) which performs most of the heavy lifting, a SIMD
engine (SFPU), five Risc-V CPU cores, and a large local memory storage (SRAM).
There is also a package manager on each Tensix core for handling data transfers, storage,
and manipulation.

Figure 2.5 shows the construction of the Tensix core package manager. The Data
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Figure 2.5: Tensix core’s Package Manager

Manipulator is positioned in line between the memory and the compute engine, allowing
it to preprocess data and communicate with SRAM and DRAM. The Data Transfer
Engine works with the run-time software, triggering computation when data is ready.
The router in the Package Manager is deadlock-free, ordering-guaranteed, and able to
handle multiple data in parallel.

2.5.3 Benefits of 2D-Mesh KNN

The 2D-Mesh design of these accelerators allows for sparse data to be distributed among
specific cores for independent processing which reduces the computational workload
on individual cores, ensures parallel processing, and allows each core to operate at its
maximum capacity. Furthermore, the concept of a radius is applicable in this setup,
as the cores are arranged in a 2D plane. When utilizing a 2D-Mesh accelerator for
KNN, it’s only necessary to send the query to cores lying within a specified radius,
enabling each core to independently execute KNN calculations in a distributed manner.
Additionally, cores not involved in computation remain inactive, thereby not contributing
to energy consumption. This not only ensures efficient processing but also reduces
energy wastage in performing KNN tasks.



Chapter 3

Methodology

SR-KNN is driven by several design goals aimed at improving its performance and
efficiency. These goals include:

• Integration of spatial closeness properties: We incorporate insights into the spatial
closeness properties of the data into the KNN algorithm and partition them
accordingly.

• Communication strategy and data reduction: To avoid heavy traffic and band-
width bottlenecks on a single channel, we design a communication strategy that
optimizes data transfer in the system. Additionally, we incorporate a Reduce
technique that reduces the amount of data transmitted back to the start, thereby
enhancing the overall throughput of the system.

• Efficient on-chip computation: We design an on-chip computation method that
can minimize the time required for processing distance computation and improve
the algorithm’s overall efficiency.

• Fast and correct K-selection: We employ the Reduce function and perform it
atomically at the starting core to aggregate and select the K nearest neighbors in
order to maintain corretness.

• Feasibility and effectiveness: To facilitate the evaluation and theoretical per-
formance analysis of the SR-KNN algorithm, we implement a simulator. This
simulator emulates the operations of a real 2D-Mesh device. It allows us to
assess the feasibility and effectiveness of SR-KNN to be implemented on a real
2D-Mesh accelerator.

To achieve these objectives, we have structured our algorithm to operate under the
following workflow.

14
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Figure 3.1: SR-KNN Design

3.1 Workflow

Figure 3.1 illustrates the workflow of our SR-KNN. Initially, on the host side, data is
organized using a Space-Conscious Data Partition, which maps the closeness of each
data point. Following this, Range-Aware Route Planning is implemented, utilizing the
established closeness and a predefined radius to identify specific cores on the 2D-Mesh
accelerator that are required to compute this particular query. Subsequently, the data
and query are allocated on the device according to the partition layout. On the device
side, the starting core (the core initially containing the query) broadcasts its query to all
target cores using asynchronous core communication (indicated by thick black arrows).
Upon receiving the query, each target core conducts On-Chip computation to determine
its local K nearest neighbors. These local neighbors are then sent back to the starting
core. During this return journey, a merge-sort operation occurs at each passing core
to combine the incoming local neighbors with its own, thereby updating the K nearest
neighbors, called Reduce. Upon reaching the starting core, it merges with the starting
core’s local TopK in a secure, atomic (locked) manner, called Gather, requiring others
to wait until its completion. Finally, the process concludes with the last aggregation of
neighbors from one of the neighboring cores, resulting in the final K nearest neighbors.
We will introduce each part of the workflow detailedly in the following sections.
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3.2 Space-Conscious Data Partition

In recent times, point datasets are sparse and commonly presented as collections of data
points. These points are organized in a format denoted as (N,D), where N indicates
the total number of points, and D specifies the dimensionality of each point. (In this
thesis, we focus solely on datasets where the dimensionality, D = 2) This architecture
enables the depiction of every data point across D dimensions, concentrating on the
features or attributes of the points instead of their physical or spatial locations. In other
words, it does not provide information about the closeness of the points within the space.
However, 2D-Mesh accelerators are designed with cores interconnected on a 2D plane,
allowing each chip to process points that fall within its range. Therefore, we introduce
a method to organize the dataset into blocks to form a shape (R,C), where R indicates
the number of rows in the 2D-Mesh layout and C indicates the number of columns
of the 2D-Mesh layout. Each point will be placed to the corresponding block based
on its transformed coordinate. This approach enables the categorization of data points
into a structured 2D plain format, facilitating the analysis and processing of spatial
relationships and closeness of points.

Figure 3.2 explains the details of our data separation strategy, and its detailed code is
shown in Appendix A.3. It begins by transforming all points such that the point with
the minimum x and y coordinates moves to the origin (0, 0). This transform is achieved
by subtracting the minimum x and y values from all points. After transforming, the
maximum of the x-axis divided by the layout size R on the x-axis, and the maximum of
the y-axis divided by the layout size C on the y-axis, yields block size x and block size y.
Then each point’s x and y coordinates are divided by the block size x and block size y
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Figure 3.2: An explanation of the approach for spatial data partition. It first con-
verts the original points to all non-negatives (starting at (0, 0)), and then uses
max x//layout size x and max y//layout size y to determine the block sizes on x and
y, respectively. Lastly, it inserts these points into the block of which the point is inside its
range based on the absolute coordinates of these points.
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respectively to determine which block the point belongs to. The division here uses
floor division (”//” in Python), ensuring that the result is an integer that represents the
block index rather than a floating-point number. This process effectively groups the
points into discrete blocks based on their location, with each block identified by a pair
of indices (block x, block y). Finally, the function combines these block indices for all
points into a single array for compatibility with array indexing or further processing
that requires them.

Moreover, this method is also employed to partition point queries, i.e. those awaiting
K-nearest neighbor calculations. This means that data points that are near a given query
point are prioritized for calculation. This method improves the efficiency of query
processing by first allocating computational resources to data points near the query
point. It utilizes spatial locality in 2D-Mesh accelerators, allowing cores to process their
corresponding points in a distributed manner.

3.3 Range-Aware Route Planning

For fixed-radius KNN, each query is processed by a number of cores within a specified
range, determined by the dataset or user-defined settings. Setting the query point at
the center of a circle with radius r, the circumference of this circle intersects various
cores. The cores that lie within the circle’s boundaries are the destinations the query is
dispatched to for processing. As illustrated in Figure 3.3, consider two query points, P1
and P2, positioned within a grid of cores. A circle with radius r is drawn around each
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Figure 3.3: Cores that intersect with a circle drawn from the query point with a specified
radius r are chosen as the target destinations for the query to be dispatched to.

query point. The circle around P1 encompasses the cores colored in orange; hence,
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these orange cores are the ones to which P1 is sent for computation. Similarly, the
circle around P2 passes through the pink-shaded cores, and therefore P2 is sent to and
processed by all the pink cores.

Once the target cores for a query have been identified, designing an effective routing
strategy becomes crucial. In a 2D-Mesh accelerator where each core is connected to
its adjacent neighbors, we suggest a routing method based on the relative position of
the destination cores to the initial core, which is treated as the reference point. As
illustrated in Figure 3.4, data packets are sent directly along the x or y-axis from the
starting core to the target cores if the target core is on the x or y-axis of the reference
core. For instance, the core at (0, 1), directly above the starting point at (1, 1), would
receive the data after a single upward step.
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(2, 1)

(0, 2)

(1, 2)

(2, 2)
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Q3 Q4

Figure 3.4: Quadrant-based routing is illustrated with blue arrows marking the path and
direction. The core at (1, 1) serves as the origin for dispatching queries to designated
target cores within the coordinate system from this reference point.

For destination cores that do not align with the axes of the reference core, the routing
strategy varies. To reach cores in the first quadrant of the reference system, the data
would first travel right to align horizontally with the target core, followed by an upward
movement to the final destination. For example, reaching the core (0, 2) from (1, 1)
would involve a rightward step to (1, 2), then upward to (0, 2).

The cores in the second quadrant would be approached by first moving upward to align
vertically with the target and then moving leftward. For example, the route to core (0,
0) from (1, 1) would contain an upward step to (0, 1), then a leftward step to (0, 0).

Similarly, for cores in the third quadrant, the route involves moving left from the
reference core initially, followed by downward steps. On the other hand, reaching the
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cores in the fourth quadrant requires an initial downward movement from the reference
core, then turning right to arrive at the destination.

This routing strategy benefits from a faster and wider transfer of data by avoiding
congestion in a single direction, which could lead to bandwidth bottlenecks and reduced
communication efficiency. This is achieved by ensuring that data transmission is evenly
distributed in all directions and reducing the data transmission workload for each core.

3.4 Broadcasting and Communication

3.4.1 Broadcasting

Having successfully constructed routes and segregated and placed data points and
queries to the corresponding cores based on their spatial attributes, the next step involves
dispatching these queries to their cores for the computation of distances between the
queries and nearby data points, which is a crucial step for subsequent K selection. Upon
allocation to the appropriate core, each query is broadcasted across the predefined
network of routes to all other cores that need to participate in the distance computation
process, as shown by Figure 3.5.

Query

Data Data Data

Query

(0, 0) (0, 1) (0, 2)

Start from (0, 0)

Route 1: (0, 0) -> (0, 1)

Route 2: (0, 0) -> (0, 1) -> (0, 2)

broadcast

Query

Data Data Data

Query

(0, 0) (0, 1) (0, 2)

broadcast broadcast
Router

Figure 3.5: The initial core is broadcasting its query to other specified target cores along
pre-defined routes. For example, in Route 2, the route involves passing through the
core (0, 1). Its packet manager will engage its router to forward the query to the final
destination at the core (0, 2).

This strategy maximizes the benefits of parallel processing on 2D-Mesh architecture-
based accelerators, allowing simultaneous calculations across multiple cores. The
2D-Mesh accelerators offer a distinct advantage that each core is equipped with its own
SRAM, ensuring operations by one core do not interfere with another. This architecture
inherently prevents race conditions, as each calculation is isolated. Thus, by utilizing
the unique capabilities of 2D-Mesh accelerators, we can achieve highly efficient and



Chapter 3. Methodology 20

concurrent computations, significantly enhancing the processing speed and reliability
of the system for KNN.

3.4.2 Core Communication

By utilizing a pre-defined routing scheme, each query is transmitted across the Network-
on-Chip (NoC). This NoC essentially acts as a pipe, linking two neighboring cores and
facilitating the close transfer of data between them. As a query traverses this network,
it is relayed from one core to the next through the NoC. Upon reception, the packet
manager of the core will assess whether the incoming data is intended for its own
processing tasks. If the data is relevant, the manager forwards the data to the computing
processor for on-chip calculation. Otherwise, the manager will call the router to send
the data through the NoC to another core based on the pre-defined route.

This iterative process of data transmission continues until the data reaches its destination
core. This method allows for the data transfer and computation processes to occur
asynchronously, making full use of both computational resources and data bandwidth.

3.5 On-Chip Computation

Once the core receives the query data intended for it, the packet manager instructs the
packet computation processor to carry out distance calculations between the query and
the data points stored in its SRAM. All operations happening in this core include:

• Calculating the L2 distances among query points and data points.

• Arranging the distances in ascending order from the smallest to the largest

• Selecting the K smallest distances and their associated indices from the original
dataset.

To minimize the computational effort involved in calculating L2 distances, we skip the
square root step since our goal is not to find the precise distances but rather to identify
the top k smallest neighbors. Furthermore, to enhance performance, we apply SIMD
operations [Wikipedia, 2024] (Single Instruction Multiple Data) to both the distance
calculation and the K selection process. This approach allows the algorithm to be
accelerated by performing multiple operations in parallel.

In a single core, suppose that the queries, denoted as Q, are organized in a matrix of
shape M×D, and our data points, denoted as P, in a shape of N×D. Additionally, we
maintain the indices A of the data points from the original dataset, arranged in a shape
of M, to facilitate the sorting of indices.

The algorithm 1 shows the computation process executed on a single core. Without
SIMD operations, the processing time would be O(MND+MNK), where

• The distance computation for D dimensions is O(MND).

• The K comparisons add an additional O(MNK).
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Algorithm 1 SR-KNN On-Chip Computation

1: Input: Q ∈ RM×D

2: Input: P ∈ RN×D

3: Input: A ∈ RM

4: Output: D ∈ RM×K TopK smallest distances
5: Output: S ∈ RM×K TopK smallest indices
6: for i← 1 to M do ▷ Vectorized
7: for j← 1 to N do
8: yi, j← L2 Distance(qi,p j)
9: for k← 1 to K do ▷ SIMD Comparisons

10: if yi, j < di,k then
11: di,k = yi, j
12: si,k = a j
13: end if
14: end for
15: end for
16: end for

Through vectorization and SIMD operations, this algorithm can achieve faster perfor-
mance by utilizing the SIMD capabilities, which allow for more than one operation per
instruction cycle. Therefore, optimally, SIMD operations can process all D dimensions
of the distance calculation and K comparisons in parallel which results in a processing
time close to O(MN).

The outputs S and D will be retained within their own SRAM to be available for any
later comparisons with data from other cores, which will be introduced in section 3.6.
The detailed single core operations are stated in Appendix A.4.

3.6 Back Transferring and Reduce

After a core completes its calculations on-chip, it sends the resulting matrices, S and D,
back to the starting core through the reversed route to carry out the final selection of
the top K smallest values. However, if every core related to the starting core transmits
its full sets of S and D back to it, this can lead to high data transfer load and create
a communication bottleneck. In particular, the NoC linked to the starting cores will
experience significant stress, as it will have to manage large volumes of data coming in
from all neighbor cores.

To tackle this problem, each query is given a unique ID, and we introduce a reduce
technique to be used between pairs of cores acting as the sender and the receiver. As
shown in Figure 3.6, a core with computation results sends its TopK to the next core
following a reverse route. The recipient core will perform a merge-sort, combining the
received TopKs with its own local TopKs that have matching IDs. It then stores the
merged TopKs, along with any others with non-matching IDs, in its SRAM. After this
step, the recipient core forwards the newly merged TopKs to the subsequent core on the
route.
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The merge-sort process is highly efficient since both sets of candidates are already
sorted arrays, so it is not necessary to divide each array in half and then sort them,
an operation that would lead to a time complexity of O(2K log(2K)), given that each
array has a length of K. Therefore, this efficient merge-sort algorithm for two sorted
arrays has a time complexity of O(K) since it only requires comparing elements from
the beginning of each array a total of K times. If the received TopKs contains L TopK,
the complexity of the reduce process is O(LK) and with parallel processing, the time
can be close to O(K). We will explain the details of the merge-sort implementation in
Section 3.8.3.
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Figure 3.6: Back transferring the TopKs through the reverse route (red arrows) and
applying the merge-sort to reduce the TopKs by pairwise merging them between adjacent
cores along the reverse route.

3.7 Gather and Final K Selection

As the TopK elements from the four directions reach the starting core, they must be
merged into a single sorted list for the final K selection. However, synchronizing the
arrival of these data packets from all directions to occur simultaneously is challenging.
Consequently, the TopKs will arrive in order. Upon the arrival of each TopK elements,
the starting core will apply the merge-sort, as detailed in Section 3.6, with its own TopK
elements and those just received.

However, while the merge-sort operation is in progress for one pair of TopK sets,
additional sets may arrive from other directions, seeking to be merged with the starting
core’s local TopKs. This concurrent arrival can lead to a race condition, potentially
resulting in wrong sorting outcomes. To manage this problem, the starting core’s local
TopK elements are secured with a locking mechanism as shown in Figure 3.7. With
this lock in place, the local TopK elements become inaccessible for merge-sorting
with newly arrived TopKs from other cores until the previous merge-sort operation is
complete and the lock is released. This ensures that merge-sort operations are applied
in an orderly fashion, preventing race conditions and preserving the correctness of the
sorted output. The final selection of the TopK elements is determined by the outcome
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of the last merge-sort operation.
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Figure 3.7: The gathering process at the starting core. While a merge-sort is being
applied between the local TopKs and a set of received TopKs, the local TopKs are locked
to prevent race conditions

The SR-KNN algorithm reaches completion once all the cores involved in the gathering
process have finished their operations.

3.8 Simulator Implementation Details

3.8.1 Data Partition Concerns

To implement the Space-Conscious Data Partition (Section 3.2), When considering
how to manage the transformation of original data from a format of (N,D) to (R,C),
it’s crucial to select an appropriate data structure. In Object-Oriented Programming
languages such as Python, C++, and Java, utilizing a 2D Object Array is often the
preferred approach. This choice allows for the definition of a custom structure with an
initial state and we can allocate a 2D array to store this structured data whose indices
can be regarded as the coordinate of each block (core) in the layout.

In Python, for enhanced operational speed and ease of implementation, the NumPy
Array [Harris et al., 2020] is the data structure of choice. Using NumPy’s vectorization
capabilities and high-level data structure API allows for efficient manipulations. A
single 2D NumPy Array can be defined for this purpose using the command data blocks
= np.zeros((R, C), dtype=Object). Here, ”data blocks” represents the partitioned results
inside a R×C layout.

Later, we can use indices to show the data partitioned to the block (i, j) with data blocks[i,
j].
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3.8.2 Core Simulation Concerns

Core Layout: We use Python’s multiprocessing package to represent each core as a
Process. These Process instances are arranged within a 2D array to create a 2D-Mesh
layout, allowing each Process to be accessed through its row and column indices.

NoC Simulation: In our approach, the Queue class from the multiprocessing package
serves as the NoC for communication between each core and its neighboring cores. Data
transfer is accomplished through the Queue, with each core utilizing the put method to
send data and the get method to receive data.

Packet Manager and Packet Compute Engine: We design each process to continu-
ously poll its associated queues for incoming data. When data is placed into the queue,
the process initially acts as a Router to get the data and determine if the data is intended
for itself. If the data is meant for the current process, the process then functions as a
Data Transfer Engine, forwarding the data to subsequent tasks. Before initiating the
computation process, each process preloads its corresponding data points, which match
the coordinates specified in the data blocks, into its allocated memory space, similar to
SRAM, and then the process operates as a Tensor Manipulation unit, retrieving data
from this memory space. It then engages the Data Transfer Engine to send the data to
the task for completing the computation. Once the computation is finished, the results
are sent back to the Manager. At this stage, the process assumes the role of a Router
again, responsible for forwarding the computed results back to the starting process. If
there are multiple data got from the queue, the process can execute them concurrently
using multithreads.

3.8.3 Merge-Sort Details

Our merge-sort algorithm is based on two sorted lists by comparing their elements,
tracked by indices i for the first list and j for the second. It iterates through both
lists, selecting the smaller of the two current elements to add to a merged list, thus
maintaining sorted order. The process continues until either the merged list reaches
the length of K or both input lists have been fully traversed. If any elements remain
in either list after the main loop and there are fewer than K elements in the merged
list, these elements are appended to the merged list until it reaches the size of K. The
implementation code is shown in Appendix A.4.

The merge-sort algorithm can be adapted for vectorization, enabling it to execute SIMD
operations. This enhancement is particularly useful when sorting the results of multiple
queries simultaneously. By utilizing vectorized instructions, the algorithm can process
multiple elements across different queries in parallel, increasing the efficiency and
speed of the sorting process.
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Experiment

This chapter offers a comprehensive evaluation of SR-KNN, covering three key aspects:
(1) assessing the computational FLOPs of our SR-KNN and comparing it with other
baseline methods, (2) examining the scalability of SR-KNN by increasing the number of
cores. (3) evaluating SR-KNN performance against other KNN methods implemented
on multiple platforms like GPU and CPU.

4.1 Dataset

4.1.1 Balanced Random 1M Dataset

We created a random 1M Dataset using functions in NumPy Random [Harris et al.,
2020]. These functions can be used to generate points, uniformly spread in the 2D space.
This method guarantees that each block (core) within the space receives an equivalent
number of points.

Figure 4.1: Visualization of Balanced Random 1M Dataset. The points inside this dataset
are evenly distributed across the entire space. This makes sure that the data points
partitioned inside each block (core) is equivalent.

The distribution of these points, as visualized in Figure 4.1, shows an even spread across

25



Chapter 4. Experiment 26

the whole space. We adjust the search radius to the minimum size that yields the same
outcomes as a brute force search.

4.1.2 Imbalanced GNS 1.1M Dataset

We utilize the largest dataset, SandRamp, from the GNS dataset [Sanchez-Gonzalez
et al., 2020]. The SandRamp dataset contains 400 frames, recording the movements
of 2,800 sand grains within a fixed area. As illustrated in Figure 4.2, the positions
of the sand grains vary between two selected frames, showing a biased and uneven
distribution within the space, a condition called imbalanced. To form the extensive
1.1M dataset, we concatenate all frames, resulting in a large and imbalanced dataset
where the distribution of points across different blocks varies, and some blocks even
have no point, as no sand grain is within their areas. The search radius is given by the
GNS dataset.

Figure 4.2: In the GNS SandRamps Dataset, frame 200 and frame 350 exhibit an
imbalanced distribution of sand grains (points) throughout the space, with some areas
remaining empty.

Our choice of the imbalanced dataset for evaluation aims to examine how an uneven
workload distribution among cores affects the efficiency of our SR-KNN. This strat-
egy helps identify whether workload disparity, where some cores are burdened with
heavy computational tasks while others have minimal workloads, affects the overall
effectiveness of the algorithm.

4.2 Computational FLOPs Benchmark

We evaluate the total computational FLOPs consumed for each well-known KNN al-
gorithm and SR-KNN on both datasets. We choose Brute-Force, KD-Tree [Bentley,
1975], and Ball-Tree [Omohundro, 2009] KNN algorithms as our baseline. The im-
plementations of KD-Tree and Ball-Tree are presented in Appendix A.1 & A.2. The
computational FLOPs are counted when calculations and comparisons on floating points
happen. Most FLOPs lie in the calculation of L2 Distance without the square root
operation, also known as the Squared Euclidean Distance. Suppose we have a Q ∈ RD
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would like to calculate the L2 distance with P ∈ RD. The formula of the L2 Distance
without square root is:

d2(Q,P) =
D

∑
i=1

(qi− pi)
2

The equation illustrates that the squared L2 distance needs D subtractions, D squaring,
and D−1 additions, which results in a total 3D−1 FLOPs. If we have M queries calcu-
lating L2 distances with N data points with the dimension D, the overall computational
FLOPs for distance calculation are M×N× (3D−1).

Figure 4.3: Computational FLOPs of our SR-KNN and baseline KNN (k=15) methodolo-
gies, the lower the better. We use 100 cores for SR-KNN evaluation.

Figure 4.3 shows that our SR-KNN can reduce a massive portion of computational
FLOPs around 96% compared to the Brute-Force KNN, 89 % compared to the Ball-Tree
KNN, and 83% compared to the KD-Tree. This tremendous decrease is brought by the
fact that SR-KNN only needs to calculate the distances with points within the circle
range of each query.

4.3 Performance Estimation

To estimate the performance of SR-KNN through our simulator, we need to consider
and estimate the following terms:

• Latency for On-chip computation

• Latency for Data transfer

• Latency for Reduce

• Latency for Gather

These terms constitute the overall latency of SR-KNN. However, it’s important to note
that there are additional overheads introduced by the hardware, which are challenging
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to capture accurately within the simulator. Moreover, our datasets are able to fit within
the SRAM of all cores after partitioning, ensuring that during evaluation, there is no
need for memory swapping between each core’s SRAM and the accelerator’s DRAM
so that there is no latency due to SRAM cache misses. Therefore, our performance
estimation is carried out under an ideal scenario, assuming optimal hardware conditions
where all processes run smoothly without these hardware delays.

We use the hardware specification of Tenstorrent GrayskullT M e150 [Tenstorrent, 2024]
as our example 2D-Mesh accelerator. The statistics can be easily found on [Vasiljevic
et al., 2021] and the official website of Tenstorrent.

Estimating On-Chip Computation Latency: Referring to Algorithm 1, the latency of
the algorithm is primarily affected by reading data points from the SRAM, calculating
distances, comparing floating-point numbers, and assigning values. As we utilize SIMD
operations, the computation can be conducted under each core’s SIMD performance for
floating-point numbers which is quantified as FLOPS (Floating-Point Operations Per
Second). Thus, the latency of the On-Chip Computation is:

Ton chip =
Data Size

Memory I/O Bandwidth
+

FLOPs+Comparisons+Value Assignments
FP SIMD Per f ormance

Estimating Data Transfer Latency: The latency of data transfer depends on the size
of the transmitted data recorded in Bytes and the bandwidth of the NoC recorded in
Bytes/s. So the latency of data transfer is:

Ttrans f er =
Trans f erred Data Size

NoC Bandwidth

Estimating Reduce Latency: The latency of the reduce procedure is determined by
reading current TopKs from the SRAM, the comparisons for floating-point numbers,
and the number of value assignments in the merge-sort algorithm. Due to the usage of
SIMD operations, the latency of the reduce is:

Treduce =
Data Size

Memory I/O Bandwidth
+

Comparisons+Value Assignments
FP SIMD Per f ormance

Estimating Gather Latency: Tgather is similar to Treduce as Gather can be seen as
multiple Reduce with locks. However, due to its locking mechanism, Gather of the
incoming query must wait for the Gather operations of preceding queries in the queue to
complete. Therefore, Tgather is equal to the Tgather of the immediately preceding query
plus its own Reduce time, which can be regarded as a Dynamic Programming problem
[Bellman, 2021]. If there are currently M queries waiting when a new query arrives, and
because the Reduce time for each query is measurable, we can have the state transition
equation:

i→ 2 to M

Tgather1 = Treduce1

Tgatheri = Tgatheri−1 +Treducei

https://tenstorrent.com/cards/
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In our simulator, it has been observed that the queue typically holds a maximum of three
queries at any given time. This is because the Reduce operation consistently processes
two sorted arrays of equal length K, which ideally should take the same amount of time
to complete for every Reduce. Consequently, as a new query enters the system just after
a Reduce operation with the preceding core, the Gather for one query on the starting
core is expected to be completed at the same time.

Estimating overall latency: As queries are travelled by routes, the total runtime of
each route is the combination of Ton chip, Ttrans f er, Treduce and Tgather. For example,
the running latency of the route (0,0)→ (0,1)→ (0,2) is equal to Ton chip +Ttrans f er +
Ttrans f er +Ton chip+Ttrans f er +Treduce+Ttrans f er +Tgather. Since 2D-Mesh accelerators
are fully distributed and enable asynchronous and multithreaded processing in every
core, allowing them to execute various tasks simultaneously, the overall latency of
SR-KNN is determined by the latency of the slowest route, as everyone needs to wait
for it to finish before terminating.

4.4 Scalability

Figure 4.4 illustrates the potential scalability trends of SR-KNN (k=10) when applied
to the Balanced Random 1M (Top) and Imbalanced GNS 1.1M (Bottom) datasets on
the Tenstorrent Grayskull accelerator. We investigated how scaling up the number of
cores of 2D-Mesh accelerators affects the SR-KNN’s performance.

Figure 4.4: Scalability trends of SR-KNN (k=10)

We assessed the performance of SR-KNN by changing the number of cores from 25
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to 100, using QPS (Queries Per Second) as the metric. The results indicate that as the
number of cores increases, there is an obvious enhancement in SR-KNN performance
as both datasets demonstrated a 3X improvement in performance. This outcome is in
line with expectations because scaling up the core usage implies fewer points per core
and more tasks to be executed in a distributed and parallel manner. The processing
speed is further amplified by the powerful performance of each Tensix core (Tenstorrent
Grayskull core).

4.5 Performance Benchmark

To evaluate the effectiveness of our SR-KNN algorithm, we applied the method to
both datasets and compared the end-to-end performance against other methods. Our
SR-KNN is evaluated based on the setting of Tenstorrent GraySkull accelerator. The
competing GPU-based algorithms are tested on a single NVIDIA RTX A5000 GPU.
Other CPU-based methods are tested on an AMD EPYC 7453 - 28 cores @ 2.75GHz
CPU.

We select Faiss-GPU [Johnson et al., 2021] and Scikit-learn [Pedregosa et al., 2011]
as our baselines due to their high-level optimizations and SOTA performance. Faiss
provides the Flat algorithm. It performs a Brute-Force and accurate search with GPU,
which aligns our requirement for exact nearest neighbors. Scikit-learn provides Brute-
Force, KD-Tree and Ball-Tree KNN algorithms, which are accurate and well-optimized
on the CPU. We also provide the Brute-Force search on the Tenstorrent as a baseline
with the same accelerator as SR-KNN.

Figure 4.5: Speed-K trade-off on Balanced Random 1M Dataset

Figure 4.5 shows that our performance significantly outperforms competing methods,
especially for small K values that can have around 4X speedup. With larger K values,
the difference narrows but maintains a roughly 2X increase in speed.
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Figure 4.6 demonstrates that, despite the dataset being imbalanced, our algorithm
continues to outperform all other methods in terms of efficiency. In this evaluation,
SR-KNN consistently achieves a speedup of about 2-3X among all K values compared
to other competitors.

Figure 4.6: Speed-K trade-off on Imbalanced GNS 1.1M Dataset

4.6 Discussion

We limit our experiments and discussion to single-chip accelerator KNN performance
of dense vectors. Due to the scalability of the 2D-Mesh accelerators, our algorithm
can also be extended to multiple devices as we can link more devices to establish an
expanded layout. The expanded layout not only enhances the use of distributed and
parallel processing, but also allows for faster KNN search with much larger datasets.

Nevertheless, the performance of accelerators on sparse vectors (with a lot of zero
values) operates under a different paradigm because of the random memory access.
Moreover, we only estimate the performance on 2D data, which is not enough as
currently KNN is also applied to high-dimension data.

Finally, in our evaluation, we have compared our algorithm to CPU-based well-
optimized KD-Tree and Ball-Tree KNN algorithms. We still need to compare the
GPU-based performance of these two algorithms but so far we have not found reliable
Python integrated libraries that completely implement correct GPU-based KD-Tree and
Ball-Tree. We are in the process of implementing them using CUDA.

4.7 Future Work

In order to handle high-dimensional data, we are going to try dimension reduction
techniques to project the data onto a 2D plane. This enables us to effectively partition
the data in a space-conscious manner within the 2D space.
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While in our evaluation, SR-KNN has demonstrated adequate performance on imbal-
anced datasets, this does not necessarily confirm its effectiveness on datasets that are
even more imbalanced, where points are densely clustered in a specific region. Such
extreme imbalance can lead to high computational demands on the core responsible
for processing the heavily concentrated area. Therefore, we plan to partition the data
depending on the density of points which is in a position of partitioning concentrated
points to various cores.

Moreover, we think the GPU-based KD-Tree method will have a much better perfor-
mance by utilizing the coalescing memory of GPU for tree indexing. Therefore, we plan
to discover a strategy in which SR-KNN can solve KNN requests on dynamic datasets.
Like the GNS dataset, we do not concatenate them into one large and static dataset,
instead, we use the original data and make SR-KNN do its job frame by frame without
transferring data from the host to the device except for the first frame. Index-based
KNN search methods such as KD-Tree and Ball-Tree are not suitable for this task
due to their requirement to construct indices for each frame. Building these indices is
time-consuming and even slower than the searching time, thereby inefficient for the
dynamic KNN searching.



Chapter 5

Conclusion

This thesis describes SR-KNN, a fixed-radius exact K Nearest Neighbor operated
on 2D-Mesh accelerators. We demonstrated that SR-KNN outperforms brute force
search implemented on various platforms, optimized CPU-based KD-Tree search and
Ball-Tree search in an ideal manner. The design of SR-KNN uncovers significant
opportunities for efficient algorithms and systems research on 2D-Mesh accelerators
including designing other efficient search algorithms, fast matrix calculation strategies
and tensor parallelism for large model training and inference. We believe our work
can extend to a dynamic situation where data points are moving, such as GNN-based
particle dynamics simulation [Kumar and Vantassel, 2023], by utilizing the layout of
2D-Mesh accelerators. We are in the process of implementing the SR-KNN on a real
2D-Mesh accelerator - Tenstorrent. We look forward to addressing these issues in the
future.
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Appendix A

Baseline Implementation

A.1 KD-Tree Implementation

1 class KDTree:
2 def __init__(self, points, depth=0):
3 if not points:
4 self.root = None
5 return
6

7 num_points = len(points)
8 axis = depth % len(points[0])
9 points.sort(key=lambda point: point[axis])

10 median_index = num_points // 2
11

12 self.root = points[median_index]
13 self.axis = axis
14 self.left = KDTree(points[:median_index], depth + 1) if

median_index > 0 else None
15 self.right = KDTree(points[median_index + 1:], depth + 1) if

num_points - median_index - 1 > 0 else None
16

17 def knn(self, target, k=1):
18 nearest_neighbors = [(-1, None) for _ in range(k)]
19

20 def distance_squared(point1, point2):
21 return sum((p1 - p2) ** 2 for p1, p2 in zip(point1, point2))
22

23 def insert_sorted(neighbors, dist, node):
24 for i, (d, _) in enumerate(neighbors):
25 if d == -1 or d > dist:
26 neighbors.insert(i, (dist, node))
27 neighbors.pop()
28 return
29
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30 def search(node, depth=0):
31 if node is None:
32 return
33 axis = depth % len(target)
34

35 diff = node.root[axis] - target[axis]
36 next_branch, opposite_branch = (node.left, node.right) if diff

> 0 else (node.right, node.left)
37 search(next_branch, depth + 1)
38

39 dist = distance_squared(node.root, target)
40 insert_sorted(nearest_neighbors, dist, node.root)
41

42 if nearest_neighbors[-1][0] == -1 or abs(diff) <
nearest_neighbors[-1][0]:

43 search(opposite_branch, depth + 1)
44

45 search(self)
46 return [(dist, point) for dist, point in nearest_neighbors if

point is not None]

A.2 Ball-Tree Implementation

1 import numpy as np
2

3 def distance(X, Y, p=2):
4 return np.sum(np.abs(X - Y) ** p, axis=1)
5

6 class BallNode:
7 def __init__(self, value, index, radius, left=None, right=None):
8 self.value = value # Feature values for the node; feature vectors

for leaf nodes
9 self.index = index # Indexes of training set; index vectors for

leaf nodes
10 self.radius = radius # Radius of the hypersphere
11 self.left = left # Left subtree
12 self.right = right # Right subtree
13

14 class BallTree:
15 def __init__(self, X, leaf_size=1000, p=2):
16 def build_node(X, X_indexes, leaf_size):
17 if X.shape[0] <= leaf_size:
18 return BallNode(X, X_indexes, None)
19 feature = np.argmax(np.std(X, axis=0))
20 X_feature_max = X[np.argmin(X[:, feature])]
21 X_feature_min = X[np.argmax(X[:, feature])]
22 X_feature_median = (X_feature_max + X_feature_min) / 2



Appendix A. Baseline Implementation 40

23 radius = np.max(distance(X, np.array([X_feature_median]), p))
24 left_index = (distance(X, np.array([X_feature_max]), p) -

distance(X, np.array([X_feature_min]), p)) < 0
25 left = right = None
26 if left_index.any():
27 left = build_node(X[left_index, :], X_indexes[left_index],

leaf_size)
28 right_index = ˜left_index
29 if right_index.any():
30 right = build_node(X[right_index, :],

X_indexes[right_index], leaf_size)
31 return BallNode(X_feature_median, None, radius, left, right)
32 self.root = build_node(X, np.arange(X.shape[0]), leaf_size)
33

34 def query(self, X, k=1, p=2):
35 nearests = -np.ones((X.shape[0], k), dtype=np.int)
36 distances = np.full((X.shape[0], k), np.inf)
37 return self.search(X, self.root, nearests, distances, p)
38

39 def search(self, X, node, nearests, distances, p=2):
40 if node.left is None and node.right is None:
41 for i, value in enumerate(node.value):
42 dist = distance(X, np.array([value]), p)
43 for x_index, x_dist in enumerate(dist):
44 for k_index, k_dist in enumerate(distances[x_index]):
45 if k_dist > x_dist:
46 distances[x_index, k_index+1:] =

distances[x_index, k_index:-1]
47 distances[x_index, k_index] = x_dist
48 nearests[x_index, k_index+1:] =

nearests[x_index, k_index:-1]
49 nearests[x_index, k_index] = node.index[i]
50 break
51 return nearests, distances
52

53 max_distance = np.max(distances, axis=1)
54 pivot_distance = distance(X, np.array([node.value]), p)
55 in_radius = pivot_distance - node.radius <= max_distance
56

57 if node.left and in_radius.any():
58 nearests[in_radius], distances[in_radius] =

self.search(X[in_radius], node.left, nearests[in_radius],
distances[in_radius], p)

59 if node.right and in_radius.any():
60 nearests[in_radius], distances[in_radius] =

self.search(X[in_radius], node.right, nearests[in_radius],
distances[in_radius], p)

61

62 return nearests, distances
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A.3 Space-Conscious Data Partition Detail

Algorithm 2 Space-Conscious Data Partition 2D

1: Input: P ∈ RN×2

2: Input: R, C
3: min x, min y = min(P)
4: max x, max y = max(P)
5: block size x = (max x - min x) // R
6: block size y = (max y - min y) // C
7: mapped core coords = []
8: for point in P do ▷ in parallel
9: block x = (point.x - min x) // block size x

10: block y = (point.y - min y) // block size y
11: mapped core coords.append([block x, block y])
12: end for
13: return mapped core coords

A.4 Single Core Operations
1: From host: Q ∈ RM×D

2: From host: P ∈ RN×D

3: From host: Routes
4:
5: procedure BROADCAST(Q, Routes, is backward)
6: for r in Routes do ▷ in parallel
7: step = r.pop()
8: forward to(r, Q, is backward=False)
9: end for

10: end procedure
11:
12: procedure ON-CHIP-CALCULATION(Q, P, A, D, S)
13: for i← 1 to M do ▷ Vectorized
14: for j← 1 to N do
15: yi, j← L2 Distance(qi,p j)
16: for k← 1 to K do ▷ SIMD Comparisons
17: if yi, j < di,k then
18: di,k = yi, j
19: si,k = a j
20: end if
21: end for
22: end for
23: end for
24: return D, S
25: end procedure
26:
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27: procedure REDUCE(Curr, Recv)
28: for d in Recv do ▷ in parallel
29: curr = Curr[curr.id == d.id]
30: curr = MERGE SORT(d, curr, k)
31: end for
32: forward to(next step, Curr, is backward=True)
33: end procedure
34:
35: procedure MERGE SORT(sorted left, sorted right, k)
36: i = 0
37: j = 0
38: merge count = 0
39: result = []
40: while i < sorted left.length && j < sorted right.length && merge count < k

do
41: if sorted left[i] < sorted right[j] then
42: result.append(sorted left[i])
43: i += 1
44: merge count += 1
45: else
46: result.append(sorted right[j])
47: j += 1
48: merge count += 1
49: end if
50: end while
51: while i < sorted left.length && merge count < k do
52: result.append(sorted left[i])
53: i += 1
54: merge count += 1
55: end while
56: while j < sorted right.length && merge count < k do
57: result.append(sorted right[j])
58: j += 1
59: merge count += 1
60: end while
61: end procedure
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