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Abstract
We present socialchoicekit, a software library that provides out-of-the-box implementa-
tions for major algorithms in computational social choice with a focus on the metric of
distortion. Our goal is to make implementations for key distortion-related algorithms in
the voting, one-sided matching, and two-sided matching settings to enable researchers
and software engineers to easily access research in distortion. In doing so, we propose
Double λ-TSF, an application of the binary search-based elicitation mechanism to stable
matching using Irving’s algorithm. We also prove a theorem related to generating
distortion-maximizing cardinal profiles for one-sided matching.
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Chapter 1

Introduction

Social choice theory [Sen, 1986] is the study of aggregating individual preferences into
a collective decision. Social choice theory has been used to formulate, analyze, and
evaluate decision-making processes in a number of settings. In this work, we consider
three settings. One of the most traditional settings is voting [Arrow, 1951], where the
goal is to select an alternative that best represents the preferences of agents [Zwicker,
2016]. The second setting is one-sided matching [Hylland and Zeckhauser, 1979],
where we want to match agents with preferences to items. The final setting is stable
matching, a classical problem introduced by Gale and Shapley [1962]. The goal of
stable matching is twofold. First, we want to match agents from one group to agents
from a second group while respecting the preferences of agents from both groups [Klaus
et al., 2016]. We also want to make a matching where no two agents are incentivized to
form their own pair. These settings each have a diverse array of applications, from policy
and budget planning [Adler, 2011] to university admissions [Gale and Shapley, 1962],
and marriage partner matching [Roth and Sotomayor, 1992]. Social choice theory is an
extremely interdisciplinary field, with origins in economics and incorporating elements
from philosophy, political science, mathematics, computer science, and biology [List,
2022]. Computational social choice theory is an active research area that examines the
application of computational techniques and paradigms to social choice theory and the
application of social choice theoretical concepts to computational environments [Brandt
et al., 2016].

Generally, social choice theory has two main approaches: the axiomatic approach and
the quantitative approach. The axiomatic approach originates from the first papers on
social choice and is the dominant approach in the traditional areas of social choice.
This approach studies the trade-offs of satisfying different axioms. A fundamental
result [Arrow, 1951] in social choice theory is that there is no aggregation method
for two or more agents and more than two alternatives that can satisfy five basic
axioms desirable in a social choice procedure: universal domain (can accept any set
of individual preferences), ordering (aggregated preference is well-ordered), weak
Pareto principle (if everyone’s preferences match for some pair of alternatives, this is
reflected in the aggregated preference), independence of irrelevant alternatives, and
non-dictatorship. The quantitative approach is more popular in computational social
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Chapter 1. Introduction 2

choice, although the two approaches are often taken together. Most often, this approach
involves optimizing a metric, such as the asymptotic space and time complexity of a
social choice algorithm or other computational properties that describe the ”quality” of
the aggregated preference.

The key computational property that we study is distortion. In social choice theory,
preferences are generally assumed to be cardinal information [Neumann and Morgen-
stern, 1953]. This means that an agent’s preference towards different alternatives can
be expressed as numerical values by a utility function. However, many algorithms
only require ordinal information (total or partial orders that express the individual’s
relative preferences between alternatives). This is because cardinal information is
usually more difficult to obtain, requiring a heavier cognitive load on agents. However,
making a choice based on incomplete information will often result in lower aggregate
utility compared to if we were to optimize a utility function based on known agent
utilities. In such cases, a key desire is to measure, analyze, and minimize this decrease,
which is named by Procaccia and Rosenschein [2006] as distortion. Elicitation is a
technique that achieves a better distortion by performing additional queries to obtain
the cardinal values for a small subset of alternatives. New applications in computational
environments make it easier to gain information about individuals’ cardinal preferences,
even if partially.

With the advent of the Internet and computational technologies, applied social choice
settings are changing. While applying results from social choice theory is difficult in
high-stakes political environments, they are far more feasible in the low-stakes, dynamic,
and easily calculable environments that computers provide [Brandt et al., 2016]. There
is a developing ecosystem of libraries and applications that enable researchers to empir-
ically experiment with their ideas and developers to push out social choice prototypes
to end users. PrefLib [Mattei and Walsh, 2013] is a comprehensive suite of preference
datasets relevant to social choice. PabuLib [Stolicki et al., 2020] is a library of datasets
specific to participatory budgeting primarily aimed to aid computational social choice
research. Researchers have also developed web applications like Pnyx [Brandt et al.,
2015] and Whale4 [Bouveret and Natete, 2015] which enable non-technical users to run
well-known aggregation methods studied in social choice theory. Similar developments
are seen in related areas; for example, Polis [Small et al., 2021] is an advanced system
for public discourse that maps non-quantitative individual inputs to high-dimensional
opinion spaces using statistics and machine learning. However, we found that the
computational social choice research and development ecosystem lacks a software
library for social choice algorithms oriented around distortion.

We present socialchoicekit, a Python library that aims to be a comprehensive implemen-
tation of the major algorithms in computational social choice with a focus on distortion.
We hope that socialchoicekit will help computational social choice researchers test their
algorithms empirically and help developers prototype software products using social
choice algorithms more easily. For this purpose, socialchoicekit provides an easily
extensible interface and out-of-the-box integration with datasets from PrefLib.
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1.1 Our Contributions� �
• We present socialchoicekit, which offers a comprehensive implementation of

distortion-related computational social choice algorithms. (Chapter 3)
• To our knowledge, we are the first to implement Irving’s algorithm, which is

the only known cardinal algorithm for stable matching. (Section 3.7.2)
• We propose and implement Double λ-TSF, a new elicitation-based mechanism

for stable matching. (Section 4.2)
• We name two types of distortion-maximizing cardinal profiles: pseudo-

distortion-maximizing cardinal profiles and rule-specific distortion-
maximizing profiles. (Chapter 5)

• We prove a theorem related to generating distortion-maximizing cardinal
profiles for one-sided matching. (Chapter 5)� �

We also fix a few minor mistakes and oversights in the related work. Namely, we impose
an additional requirement for constructing a graph used in a subroutine of Irving’s
algorithm. Furthermore, we make clarifications about an argument used in proving a
theorem related to generating a distortion-maximizing cardinal profile presented in a
previous paper.

1.2 Outline of Work

In Section 2.1, we formally introduce the voting, one-sided matching, and stable settings,
along with the definition of distortion in each of those settings. In Section 2.2, we
provide a literature review of previous works that studied distortion. We defer the
literature review of studies focusing on elicitation to Chapter 4.

In Chapter 3, we discuss the general implementation details of socialchoicekit, including
the representation of ordinal and cardinal profiles in Section 3.1, integration with PrefLib
in Section 3.2, and random data generation in Section 3.3. Furthermore, we discuss
the implementation of baseline algorithms for each of the three settings. Section 3.5
for voting covers three classes of baseline ordinal algorithms as well as a very simple
cardinal algorithm. Section 3.6 for one-sided matching discusses two randomized
ordinal algorithms and a graph-based cardinal algorithm. Finally, Section 3.7 for stable
matching starts with the famous Gale-Shapley algorithm (ordinal) and dives into the
details of Irving’s algorithm (cardinal).

Chapter 4 focuses on elicitation. Section 4.1 describes implementation details specific
to elicitation. We also introduce two classes of elicitation-based methods: binary
search-based and two query-based. Section 4.2 focuses on the new Double λ-TSF
mechanism for stable matching. Chapter 5 discusses distortion-maximizing cardinal
profile generation. In particular, we provide proofs to show that a simple and easily
generated type of cardinal profile maximizes distortion given any ordinal profile and
algorithm. Chapter 6 concludes the work and discusses limitations and areas for future
work.



Chapter 2

Background

2.1 The Model

Throughout this work, we consider the voting, one-sided matching, and stable matching
settings of social choice.

In the voting setting, also referred to as the general social choice setting, we con-
sider a set N of n agents labeled {1,2, . . . ,n} and a set A of m alternatives labeled
{a1,a2, . . . ,am}. Our goal is to select a single alternative based on the preferences of
agents in N. We consider two types of preferences. An ordinal profile σ represents
the agents’ preferences through ordered comparisons. It is expressed as a family of
preference rankings (≻i)i∈N , where each preference ranking of agent i is a linear order-
ing ≻i over the alternatives, and a j ≻i a j′ holds if and only if agent i strictly prefers
alternative a j to a j′ . Note that a linear ordering is a binary relation that is transitive,
anti-symmetric, and complete. In practice, preference rankings may not be complete, as
datasets often contain missing data; we will introduce methods in Section 3.2 to handle
this case. A cardinal profile v, also known as a valuation profile, represents the agents’
preferences with non-negative numeric values. By using a cardinal profile, we assume
that each agent i has a cardinal value or numeric utility vi j ∈ R≥0 for each alternative
a j. We represent v as an (n,m) matrix. We can also view v as a family of valuation
functions vi : A→ R≥0. A cardinal profile contains strictly more information than an
ordinal profile, and it induces a unique ordinal profile given a tie-breaker.

Example 2.1. Example voting problem with 3 agents and 4 alternatives.

Table 2.1: Ordinal Profile

Agents Preference rankings
1 a4 ≻1 a2 ≻1 a3 ≻1 a1
2 a4 ≻2 a3 ≻2 a2 ≻2 a1
3 a1 ≻3 a4 ≻3 a2 ≻3 a3

Table 2.2: Cardinal Profile

a1 a2 a3 a4
1 0.1 0.3 0.2 0.4
2 0.25 0.25 0.25 0.25
3 1 0 0 0

We refer to the alternatives, items, or agents being ranked in an ordinal or cardinal
profile as choices. An ordinal profile is said to be complete if no values are missing,
i.e. if its preference rankings are complete. A cardinal profile is complete if for every
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Chapter 2. Background 5

agent i and every choice j, j is in the domain of the valuation function vi. An ordinal
profile is said to be strict if, for every agent i, there are no ties in the preference ranking.
Our definition above does not admit any ordinal or cardinal profiles with ties or missing
values. In some parts of our implementation, we allow those for increased generality.
In Example 2.1, agent 3 strictly orders a4 ≻3 a2 ≻3 a3 although the cardinal utilities for
each alternative are all 0. This is coherent as we can assume there is a negligibly small
difference between the utilities.

The second setting is the one-sided matching setting. We consider a set N of agents.
Instead of alternatives, we consider the set A of items to allocate to agents. One-sided
matching is a special case of a more general setting called resource allocation, where
we require that the number of agents and items are equal, i.e. |N|= |A|= n, and every
agent receives 1 item. We let the preference ranking ≻i be a linear ordering over the
items and the ordinal profile σ be the family of preference rankings for each agent. Note
that the existence of a solution to the one-sided matching problem can be guaranteed
if and only if the profiles are complete. However, in our implementations, we extend
our algorithm to accept incomplete profiles for increased flexibility. We interpret that
a j is not related by ≻i to any other item if an agent i finds an item a j unacceptable.
We similarly consider a cardinal profile v where vi j ∈ R≥0 is the cardinal value agent i
has for item a j, with all properties of v from the voting setting holding for one-sided
matching. A matching M is a set comprising of pairs (i,a j) such that each agent i is
matched to exactly one item and no two agents are matched to the same item. Our goal
is to produce such a matching based on the agents’ preferences.

Example 2.2. Example one-sided matching problem with 3 agents and 3 items.

Table 2.3: Ordinal Profile

Agents Preference rankings
1 a3 ≻1 a2 ≻1 a1
2 a3 ≻2 a2 ≻2 a1
3 a1 ≻3 a3 ≻3 a2

Table 2.4: Cardinal Profile

a1 a2 a3
1 0.1 0.3 0.6
2 0.33 0.33 0.34
3 1 0 0

The stable matching setting works with two sets of agents, X = {x1,x2, . . . ,xn} and
Y = {y1,y2, . . . ,yn}. There are two ordinal profiles: σX where agents from X rank their
preference over agents in Y , and σY where agents from Y rank their preference over
agents in X . Each ordinal profile is a family of preference rankings over agents (≻X ,i
)xi∈X ,(≻Y, j)y j∈Y . We assume that ordinal profiles are strict and complete. Similarly,
we also consider two complete cardinal profiles vX ,vY . Our goal is to produce a stable
matching, which is a matching that satisfies the following stability property.

Definition 2.3. A matching M is stable if and only if it does not admit a blocking pair.
A blocking pair is a pair of agents not in the matching M where both prefer each other
over the agent they are matched to. More formally, it is a pair (xi,y j) /∈M such that
both of the following holds.

1. y j ≻X ,i y j′ , where y j′ is the agent xi is matched to in M

2. xi ≻Y, j xi′ , where xi′ is the agent y j is matched to in M
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The stable matching setting is a special case of the two-sided matching setting, which
does not have the stability requirement.

Example 2.4. Example stable matching problem with X = {x1,x2,x3} and Y = {y1,y2,y3}.

Table 2.5: Ordinal Profile for X

X Rankings (Y)
x1 y3 ≻X ,1 y2 ≻X ,1 y1
x2 y1 ≻X ,2 y3 ≻X ,2 y2
x3 y1 ≻X ,3 y3 ≻X ,3 y2

Table 2.6: Cardinal Profile for X

y1 y2 y3
x1 0.1 0.3 0.6
x2 0.4 0.3 0.3
x3 0.8 0 0.2

Table 2.7: Ordinal Profile for Y

Y Rankings (X)
y1 x2 ≻Y,1 x3 ≻Y,1 x1
y2 x3 ≻Y,2 x1 ≻Y,2 x2
y3 x3 ≻Y,3 x2 ≻Y,3 x1

Table 2.8: Cardinal Profile for Y

x1 x2 x3
y1 0.1 0.7 0.2
y2 0.4 0.1 0.5
y3 0 0 1

A matching (x1,y1),(x2,y2),(x3,y3) is not stable because there are blocking pairs, for
instance (x2,y1).

We now explain terminology commonly used in all three settings. A cardinal profile v
is consistent with an ordinal profile σ = (≻i)i∈N if a j ≻i a j′ implies vi(a j)≥ vi(a j′) for
any agent i and two choices a j,a j′ . In all three settings, the provided cardinal profile(s)
must be consistent with the provided ordinal profile(s). An ordinal algorithm f , also
known as a social choice function (SCF), is a process that takes as input ordinal profile(s)
and produces an outcome. This is in contrast to a cardinal algorithm, which takes as
input cardinal profile(s) and produces an optimal outcome. Deterministic algorithms
produce the same outcome given the same profile. Randomized algorithms produce
a discrete probability distribution over the outcomes, and will randomly select an
outcome according to the probability distribution each time. Unless explicitly specified,
we assume that algorithms are deterministic. We also refer to algorithms as rules.

Definition 2.5. The social welfare SW of an outcome measures the total utility of the
agents with respect to cardinal profile(s).

1. For voting: SW (a j | v) = ∑i∈N vi(a j)

2. For one-sided matching: Let M = ((i,ai))i∈N . Then, SW (M | v) = ∑i∈N vi(ai)

3. For stable matching: Let M = ((xi,yi))i∈N . Then,

SW (M | vX ,vY ) = ∑
i∈N

(vX)i(yi)+ ∑
i∈N

(vY )i(xi)

4. For randomized algorithms, let ∆(M) be the probability distribution outputted.
Then, SW (∆(M)) = ∑M∈∆(M)P(M) ·SW (M) where the v are omitted.

An optimal outcome is an outcome that maximizes the social welfare.

An ordinal algorithm works with inherently limited information, which may result
in a suboptimal outcome. The concept of distortion captures this discrepancy in the
worst-case scenario.
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Definition 2.6. The distortion dist( f ) of an algorithm f is the worst-case ratio between
the social welfare of an optimal outcome and the social welfare of the outcome produced
by the algorithm.

1. For voting: Let Σ be the set of all ordinal profiles possible. Let f : Σ→ A. Then,

dist( f ) = sup
N,A,v

maxa∗∈A SW (a∗ | v)
SW ( f (σ) | v)

2. For one-sided matching: Let M be the set of all matchings possible. Let Σ be the
set of all ordinal profiles possible. Let f : Σ→M. Then,

dist( f ) = sup
N,A,v

maxM∗∈M SW (M∗ | v)
SW ( f (σ) | v)

3. For stable matching: Let M be the set of all stable matchings possible. Let ΣX ,ΣY
be sets of all ordinal profiles possible for X ,Y . Let f : ΣX ×ΣY →M Then,

dist( f ) = sup
X ,Y,vX ,vY

maxM∗∈M SW (M∗ | vX ,vY )

SW ( f (σX ,σY ) | vX ,vY )

2.2 Related Work

Since distortion has been defined by Procaccia and Rosenschein [2006], it has been
mainly explored in the voting setting, with two major versions of utility. The first
version is normalized social choice, where we assume that each agent’s cardinal utility
for the alternatives sum to 1. Complexity analyses have found that the best achievable
distortion by deterministic voting rules is Θ(m2) [Caragiannis and Procaccia, 2011],
where m is the number of alternatives. This means that a general lower bound of Ω(m2)
was proven, and there exists an algorithm where the distortion with an upper bound of
O(m2). For randomized rules, distortion is calculated using the expected social welfare.
Randomization allows for significantly lower distortion, with the best possible distortion
of Θ(

√
m) proven by Boutilier et al. [2015] and Ebadian et al. [2022].

The second version of utility, metric social choice, represents agents and alternatives
as points in a metric space and aims to minimize the distance of an agent against the
selected alternative. Under metric social choice, distortion can be lowered to a constant
factor. For deterministic rules, a lower bound of 3 can be shown by a simple example.
Anshelevich et al. [2018] conjectured that this lower bound of 3 is tight, and Munagala
and Wang [2019] described properties that would be sufficient to achieve this bound.
The plurality matching voting rule, recently proposed by Gkatzelis et al. [2020], finally
achieved the lower bound of 3. The lower bound for randomized rules is an open area
of research. Along a line of work started by Anshelevich and Postl [2017], Charikar
and Ramakrishnan [2022] most recently showed a lower bound of 2.112, and Charikar
et al. [2024] showed that there is an algorithm that achieves distortion of at most 2.753.
For a more comprehensive survey of distortion literature, see Anshelevich et al. [2021].

In the one-sided matching setting, Amanatidis et al. [2022] proved a tight bound of
Θ(n2) for deterministic rules, and Filos-Ratsikas et al. [2014] proved a tight bound of
Θ(
√

n) for randomized rules. Distortion in stable matching has not been explored.



Chapter 3

Implementation of the Library

3.1 Profile Representation

When implementing a library for social choice, choosing a way to represent ordinal and
cardinal profiles is a crucial design decision. The inputs to an algorithm for a social
choice problem include the number of agents, the number of choices, and the ordinal or
cardinal profile(s) required by this algorithm. In practice, the input information can be
entirely represented by the ordinal or cardinal profile(s). All algorithms operate on the
given profile(s) to create intermediate data structures as needed and produce an outcome.
Poor representations impact the space and runtime efficiency of the implementations.

We chose to represent ordinal profiles as NumPy matrices [Harris et al., 2020] such
that the rows correspond to agents whose preferences are being represented, and the
columns correspond to choices. If agent i ranks a choice j as kth from the top, then
the NumPy matrix entry at (i−1, j−1) is set to m− k+1, where m is the number of
columns. Note that the subtraction is a conversion from 1-index to 0-index. We also
represent cardinal profiles as NumPy matrices where rows and columns correspond
similarly to the representation of ordinal profiles. The entry at (i−1, j−1) contains vi j.

Example 3.1. A representation of the voting problem presented in Example 2.1.
Figure 3.1: Ordinal Profile

import numpy as np
sigma = Profile.of(

np.array([
[4, 2, 3, 1],
[4, 3, 2, 1],
[1, 3, 4, 2]

])
)

Figure 3.2: Cardinal Profile

import numpy as np
v = ValuationProfile.of(

np.array([
[0.1, 0.3, 0.2, 0.4],
[0.25, 0.25, 0.25, 0.25],
[1, 0, 0, 0]

])
)

The Profile and ValuationProfile classes are subclasses of the NumPy matrix class,
np.ndarray, equipped with the of method to check the required profile properties
before construction. Missing entries in incomplete profiles will be set to NaN.

8
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Using NumPy matrices has the major advantage that efficient implementations of many
required operations on profiles, such as summation, reordering, conditional replacement,
range indexing, and argsort, are available by default. NumPy features are stable, have
good debugging support, and many users will likely have prior experience with NumPy.
A major disadvantage of our representation is that it is space-inefficient. Alternative
representations, such as that of PrefLib-Tools introduced in Section 3.2, have lower
memory requirements because they store a multiplicity value alongside each preference
ranking ≻i in the ordinal profile. This approach does not admit any duplications, even if
two agents have the same ≻i. This disadvantage becomes critical in settings where the
number of agents is large and the number of choices in the preference ranking is small.
However, we decided to not adopt this alternative approach because the multiplicity
and the lack of ordering of agents complicate the implementation of many algorithms.
Moreover, many practical use cases of this library assume that users are working with
data small enough to fit in memory. We leave supporting large data sizes as an extension
for future work. An alternative approach to representing cardinal profiles is to use
sparse matrices, such as the one provided by SciPy [Virtanen et al., 2020]. This is more
memory efficient if most entries of the valuation profile are 0. While we expect that
the cardinal utilities of most choices for most agents will not be 0 in practice, this is
not the case in empirical distortion-related experiments. We give as an example the
dichotomous cardinal profile discussed in Chapter 5, which maximizes distortion with
respect to some ordinal profile. Nevertheless, we dismiss the relative importance of
memory efficiency in our use cases as there is no practical need to run distortion-related
experiments with extremely large dataset sizes.

3.2 PrefLib Integration

As mentioned in the introduction, PrefLib [Mattei and Walsh, 2013] is a standard
source of data for researchers conducting empirical social choice experiments and
simulations. We offer out-of-the-box integration with PrefLib. Normally, users must
download PrefLib’s custom-formatted data files and parse them. For Python users,
PrefLib provides PrefLib-Tools [Mattei and Walsh, 2013], which can download the data
files programmatically and parse them into a usable representation. Our integration
provides wrappers on top of PrefLib-Tools to automatically download the PrefLib-
formatted file and convert it to our NumPy-based representation. Datasets on PrefLib
are classified into several different categories, based on completeness and strictness
of profiles. For each category, we provide a subclass of Profile to allow for smooth
conversion. For instance, the StrictCompleteProfile corresponds to the SOC (Strict
Orders - Complete List) format in PrefLib. We also provide helpers to convert profiles
from one type to another. For example, socialchoicekit can convert incomplete profiles
to complete profiles by assuming choices with missing rank are least preferred.

3.3 Data Generation

In many cases, especially when using datasets from PrefLib, cardinal profiles are not
readily available. As a social choice library with a focus on distortion, providing access

https://preflib.github.io/preflibtools/
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to cardinal profiles is a key concern of socialchoicekit. As a baseline, we provide
random cardinal utility generation with the uniform and normal probability distributions
to create a cardinal profile consistent with a given ordinal profile. These methods work
by simply generating random numbers according to some probability distribution and
reordering them using the preference rankings. If the user can accurately model the
distribution of cardinal values as a probability distribution, then this approach would be
effective at calculating the expected distortion in an empirical experiment.

However, users may want to test their data or algorithm with cardinal profiles that result
near the highest distortion. This would help them understand how their algorithm or data
performs in the worst scenarios. In these cases, random generation is not appropriate.
This is a difficult problem that we further explore in Chapter 5.

3.4 Testing

We use pytest [Krekel et al., 2004] to unit test our implementations. Testing social-
choicekit is challenging because while the library requires stability, there are often no
other implementations available to generate test cases. Hence, we hand-crafted test
cases for most tests and used examples presented in other works for other tests. We
automatically test our library on versions 3.8, 3.9, 3.10, and 3.11 of Python.

3.5 Voting Algorithms

In socialchoicekit, we implemented the ordinal voting algorithms indicated in Table 3.1.
The cardinal algorithm we implemented for voting is simple; it selects the choice a j
with the highest value of SW (a j | v), which can be computed with a simple sum over v.
We follow the classification by Brandt et al. [2016] of ordinal voting algorithms into
three classes: scoring, tournament, and multiround.

Scoring algorithms assign a numeric score to each agent-alternative combination. Then,
they select an alternative that has the highest total score across the agents. Randomized
scoring algorithms use the total score for each alternative, normalized by the total score
across all agents and alternatives, to create the discrete probability distribution. Borda
is the classic example of a scoring rule, where scores are assigned linearly with respect
to an alternative’s rank in the preference rankings. Plurality is widely used in elections,
where for each alternative, the number of agents who voted it as their top choice is
counted. This is equivalent to assigning a score of 1 for the top choice and 0 for all
others. See Table 3.1 for the rest of the scoring algorithms we implemented. Due to their
simplicity, scoring algorithms are often used as baseline algorithms to test new concepts
empirically. As such, they are critical to implement for a library like socialchoicekit.
Scoring algorithms are also used as subroutines by other algorithms.

Tournament algorithms, also known as Condorcet-extensions, compare for pairs of
alternatives which alternative has the majority vote.

Definition 3.2. The net preference of a profile σ for an alternative a j over another
alternative a j′ is the net difference of the number of voters that prefer a j over a j′ to
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Table 3.1: Voting Algorithms Implemented in socialchoicekit

Name Type Description Randomization
Plurality Scoring Choose the alternative with the

highest number of top-rank votes.
Both

K-
Approval

Scoring Choose alternative with the high-
est number of votes that are in
top K. (e.g. assign a score of 1
to the top-K ranked choices and
0 to others, for each preference
ranking)

Both

Veto Scoring Choose the alternative with the
lowest number of bottom-rank
votes.

Both

Borda Scoring Assign score of m− k+1 to the
kth-ranked choice for each pref-
erence ranking.

Both

Harmonic Scoring Assign score of 1
k to the kth-

ranked choice for each prefer-
ence ranking.

Both

Copeland Tournament Choose the alternative with the
highest Copeland score.

Deterministic

Single
Transfer-
able Vote

Multiround Iterate over rounds dropping an
alternative with the lowest Plural-
ity score.

Deterministic

those that prefer a j′ over a j.

Netσ(a j ≻ a j′) = |{i ∈ N | a j ≻i a j′}|− |{i ∈ N | a j′ ≻i a j}|

Let the pairwise majority relation a j >
µ a j′ hold if and only if Netσ(a j ≻ a j′)> 0.

Definition 3.3. A Condorcet winner is an alternative a j is an alternative for which the
pairwise majority relation a j >

µ a j′ holds for every other alternative a j′ .

It is easy to see that a Condorcet winner does not always exist. A Condorcet-extension
is a voting algorithm that always outputs a Condorcet-winner if it exists. Condorcet-
extensions are useful because they exhibit desirable properties including strategyproof-
ness [Campbell and Kelly, 2003]. We implemented the Copeland algorithm, which is
the prime example of a Condorcet-extension. It works by selecting the alternative with
the highest Copeland score as defined below.

Definition 3.4. The Copeland score for an alternative a j counts the net difference
between the number of alternatives that have a j has a pairwise majority and those that
a j have a ”pairwise minority”.

Copeland(a j) = |{a j′ ∈ A | a j >
µ a j′}|− |{a j′ ∈ A | a j′ >

µ a j}|
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A final class of voting algorithms is known as multiround algorithms, which iteratively
drop alternatives according to some score until there is only one left. We implemented
the Single Transferable Vote (STV) algorithm first introduced by Hare [1859], which
uses the plurality scoring rule introduced above to determine which alternative to drop.

3.6 One-sided Matching Algorithms

For one-sided matching, we implemented the three ordinal algorithms and one cardinal
algorithm as indicated in Table 3.2.

Table 3.2: One-sided Matching Algorithms Implemented in socialchoicekit

Name Description Randomization
Maximum
Weight
Matching

Assign a matching that maximizes the total
weight of the edges in a weighted bipartite
graph.

Deterministic

Random
Serial Dic-
tatorship

Randomly generate an ordering of the agents
and have agents select an item in that order.

Randomized

Probabilistic
Serial

Treat items as divisible and have agents greed-
ily take fractional items until they run out.

Randomized

Simultaneous
Eating

Probabilistic Serial with possibly different
speeds at which agents take items.

Randomized

The maximum weight matching problem is a general problem that finds a matching in
a graph with weighted edges such that the total weight of the edges in the matching
is maximized. We work with a special case of maximum weight matching, called the
assignment problem, in which we restrict the input weighted graph to bipartite graphs.
The following theorem shows that maximum weight matching can be used as a cardinal
algorithm for one-sided matching.

Theorem 3.5. Consider the following weighted undirected graph G = (V,E).

• Define a node for each agent or alternative, i.e. let V = N∪A.

• Let there be an edge (i,a j) ∈ E between agent i ∈ N and item a j ∈ A if and only if
i finds a j acceptable and attach a weight of vi j to this edge, i.e. w

(
(i,a j)

)
= vi j.

Then for complete cardinal profiles:

1. There always exists a perfect matching M′ whose weight is the maximum among
all matchings in G.

2. The perfect matching corresponds to a matching M in the one-sided matching
problem which maximizes the social welfare.

Proof. Notice that in the case of a complete cardinal profile, every agent will be
connected to every item. Now, suppose that the solution to the maximum weight
matching problem on G is not a perfect matching. Then, we can create a perfect
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matching by iteratively adding (i,a j) to the imperfect matching for any agent i and item
a j not in the matching until all agents and items are matched. Adding an edge will not
decrease the weight of the matching because all values of vi j are non-negative. Hence,
this perfect matching also has maximum weight, and the first claim is proven.

For the second point, since each agent is only paired with one item in a perfect matching
M′ of G, it is easy to see the correspondence with M. For social welfare maximization

∑
(i,a j)∈M′

w
(
(i,a j)

)
= ∑

(i,a j)∈M
vi j = SW (M | v)

follows by definition with a slight abuse of notation in the second summation.

We use SciPy’s sparse_graph.min_weight_full_bipartite_matching function
with the maximize option to find the maximum weight matching in our implementation.

Next, we discuss randomized algorithms. Probabilistic serial and simultaneous eating
are both algorithms which produce a bistochastic matrix deterministically. A bistochas-
tic matrix is a square matrix with non-negative real entries such that its columns and
rows sum to 1. Through an algorithm called the Birkhoff-von Neumann algorithm
[Birkhoff, 1946], which we implemented, we can convert any bistochastic matrix into a
discrete probability distribution of permutation matrices such that the expectation of
this distribution is equivalent to the bistochastic matrix. At runtime, the algorithm will
randomly select a matching from the distribution. From the perspective of an agent, if
she is allocated some fraction 0≤ k≤ 1 of an item a j, she can expect to receive a j with
probability k.

We now informally elaborate on how the two algorithms create the bistochastic matrix.
Suppose that the items are divisible, i.e. each whole item can be split into fractional
parts and be allocated to different agents. To fairly allocate items, we assume that agents
who receive fractional items will receive multiple such fractional items, such that the
sum of the fractions of items is 1 (∗). We represent the result of this allocation as an
(n,n) matrix, with rows corresponding to agents and columns corresponding to items.
Every row will sum to 1 because of (∗). Every column will sum to 1 because only 1 of
each item is split. Every entry in the matrix is trivially non-negative.

In both algorithms, we let agents increase their share of any remaining fractions of items
continuously until the sum of fractions they claimed reaches 1. Items that are preferred
by multiple agents will be consumed by multiple agents simultaneously. In simultaneous
eating, the speeds at which agents take the items are parameters. Probabilistic serial is
a special case of simultaneous eating where the eating speeds are equal across agents.
Hence, we implement the more general simultaneous eating algorithm and call it from
probabilistic serial. In implementing this, we use a greedy approach where we calculate
the ”time” until an item next becomes fully taken. Then we calculate the changes in
this ”time” period and redirect any agents who still can receive items to claim their next
available preferred item.

In contrast, random serial dictatorship is a simple algorithm. It works by picking a
random order of agents and having agents pick their favorite remaining item in that
order. We have not implemented any deterministic algorithms for one-sided matching,
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but we can think of a deterministic serial dictatorship, where agent 1 ∈ N picks first,
then 2 ∈ N, and so forth, and n ∈ N picks last.

3.7 Stable Matching Algorithms

Gale and Shapley [1962] proved that there is at least one stable matching for all instances
of the stable matching problem. The paper also provided an efficient ordinal algorithm
to compute it, which we call the Gale-Shapley algorithm. We start by discussing the
Gale-Shapley algorithm and its implementation. We then discuss Irving’s algorithm,
which is a cardinal algorithm for stable matching proposed by Irving et al. [1987].
While its implementation is involved and not comfortably efficient, we included Irving’s
algorithm in our library because it was the only cardinal algorithm we found in the
literature.

3.7.1 Gale-Shapley

The Gale-Shapley algorithm can produce a stable matching that maximizes the utilities
of agents in X and minimizes the utilities of agents in Y , or vice versa. In this work, we
call the former an X-optimal stable matching and the latter Y -optimal. While we have
implemented both the algorithm that produces the X-optimal stable matching and the
algorithm that produces the Y -optimal matching, we will describe the former as the two
are structurally similar. This is an efficient algorithm that runs in O(n2) time [Gusfield
and Irving, 1989].

Let the X-oriented Gale-Shapley algorithm proceed as follows. First, start with an initial
state where no agents are matched. Then, iteratively perform rounds of the following
procedure. For each agent xi ∈ X who is currently not matched to an agent, xi proposes
to an agent y j who is xi’s most preferred agent that has so far not rejected xi. If y j is
not currently matched, then y j accepts the proposal. If y j is currently matched, then y j
accepts the proposal if and only if y j prefers xi to the agent she is currently matched
with, which we call xi′ . If y j accepts the proposal, then xi,y j are now matched and xi′ is
rejected. Otherwise, y j rejects xi. When all agents are matched, the algorithm finishes.

Theorem 3.6. The X-oriented Gale-Shapley algorithm produces a stable matching.

Proof. Suppose, for a contradiction, that there is a blocking pair (xi,y j) as defined in
Definition 2.3. Since xi prefers y j to y j′ , xi would have proposed to y j before y j′ in the
X-oriented Gale Shapley algorithm. However, y j is matched to xi′ . This means that y j
prefers xi′ to xi because otherwise xi would be accepted when xi proposed to y j′ . This is
a contradiction because (xi,y j) would not be a blocking pair. Therefore, there are no
blocking pairs in the matching returned by X-optimal Gale-Shapley.

Example 3.7. The stable matching problem from Example 2.4 is solved by X-oriented
Gale-Shapley as follows.

• Round 1: x1 proposes to y3 and is accepted. x2 and x3 propose to y1. x2 is
accepted and x3 is rejected because x2 ≻Y,1 x3.
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• Round 2: The current match is (x1,y3),(x2,y1). x3 proposes to y3. y3 prefers x3
to x1. Hence, y3 accepts x3 and rejects the currently matched agent x1.

• Round 3: The current match is (x2,y1),(x3,y3). x1 proposes to y2 and is accepted.

• The algorithm terminates as every agent is matched. The stable matching is
(x1,y2),(x2,y1),(x3,y3).

Our implementation of the Gale-Shapley algorithm supports an extension of the stable
matching problem defined in Section 2.1, where the sizes of X and Y can be different,
and each y j ∈ Y can be matched with multiple xi ∈ X . However, we refer the reader to
Klaus et al. [2016] and omit any explanation here.

A concept that will become useful in Section 3.7.2 is the shortlist.

Definition 3.8. Let xi be an agent in X. xi’s shortlist or reduced preference list sX is
an (ordered) list of agents in Y that

1. satisfies the preference ranking ≻X ,i.

2. does not contain any agent in Y who rejected xi’s proposal.

Let y j be an agent in Y . yi’s shortlist sY is an (ordered) list of agents in X that

1. satisfies the preference ranking ≻Y, j.

2. does not contain any agent in X who are worse than the best agent from which y j
received a proposal.

Theorem 3.9. [Gusfield and Irving, 1989] The X-oriented Gale-Shapley algorithm
produces an X-optimal matching such that

1. there is no stable matching in which any agent from X can be assigned to a better
agent from Y than the one assigned by X-oriented Gale-Shapley.

2. in every stable matching, every agent from Y is assigned to an agent from X that
is better than or equal to the one assigned by X-oriented Gale-Shapley.

From Theorem 3.9 and Definition 3.8, y j appears on xi’s shortlist if and only if xi
appears on y j’s shortlist, and y j is first on xi’s shortlist if and only if xi is last on y j’s
shortlist.

Example 3.10. At the end of Example 3.7, the shortlists are as follows.

Figure 3.3: Shortlists for Agents in X

x1 [y2]
x2 [y1]
x3 [y3,y2]

Figure 3.4: Shortlists for Agents in Y

y1 [x2]
y2 [x3,x1]
y3 [x3]

3.7.2 Irving’s Algorithm

As introduced at the beginning of this section, Irving’s algorithm is the only efficient
cardinal algorithm for stable matching that we are aware of. In Section 4.2, we will
use Irving’s algorithm to propose and implement an application of an elicitation-based
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algorithm to stable matching. In this section, we introduce the algorithm and present
our implementation which achieves O(n4) runtime complexity. To our knowledge, this
work is the first implementation of Irving’s algorithm. Throughout this section, we will
use our own notation introduced in Section 2.1.

Irving’s algorithm works by performing a sequence of actions related to rotations on a
stable matching to obtain another stable matching. Such an action either increases or
decreases the social welfare. The algorithm finds a sequence of rotations that maximizes
increases in social welfare. We begin by defining rotation.

Definition 3.11. A rotation ρ exposed to some shortlists of X ,Y is a sequence of
pairs ρ = (x0,y0), . . . ,(xr−1,yr−1) where each xk ∈ X ,yk ∈ Y such that for every k ∈
{0, . . . ,r−1},

1. yk is first in xk’s shortlist

2. y(k+1) mod r is second in xk’s shortlist

Irving et al. [1987] claims that at least one rotation is always exposed unless the given
shortlist is Y -optimal.

Example 3.12. The problem from Example 2.4 is too simple to demonstrate Irving’s
algorithm. From now on, consider the following stable matching problem. Note that we
abbreviate the subscripts on ≻ for readability. We also express the cardinal profile as
integers where each row sums to 10, for reasons explained later.

Figure 3.5: Ordinal Profile for X

x1 y4 ≻ y3 ≻ y2 ≻ y1 ≻ y5 ≻ y6
x2 y3 ≻ y2 ≻ y5 ≻ y6 ≻ y1 ≻ y4
x3 y2 ≻ y5 ≻ y6 ≻ y3 ≻ y4 ≻ y1
x4 y2 ≻ y6 ≻ y3 ≻ y1 ≻ y4 ≻ y5
x5 y5 ≻ y1 ≻ y4 ≻ y6 ≻ y2 ≻ y3
x6 y1 ≻ y6 ≻ y4 ≻ y5 ≻ y3 ≻ y2

Figure 3.6: Ordinal Profile for Y

y1 x3 ≻ x2 ≻ x4 ≻ x1 ≻ x5 ≻ x6
y2 x6 ≻ x5 ≻ x1 ≻ x2 ≻ x3 ≻ x4
y3 x5 ≻ x6 ≻ x3 ≻ x4 ≻ x1 ≻ x2
y4 x6 ≻ x5 ≻ x4 ≻ x3 ≻ x2 ≻ x1
y5 x4 ≻ x1 ≻ x6 ≻ x2 ≻ x3 ≻ x5
y6 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4 ≻ x6

vX =


1 1 3 5 0 0
1 2 2 1 2 2
1 3 1 1 2 2
1 3 2 1 1 2
3 1 1 1 3 1
4 0 0 2 1 3

 ,vY =


0 5 5 0 0 0
3 0 0 0 3 4
0 0 0 0 10 0
0 0 0 0 3 7
2 0 0 7 0 1
9 1 0 0 0 0


After running X-optimal Gale-Shapley on this example, we will obtain the following
stable matching

MX = (1,4),(2,3),(3,2),(4,6),(5,5),(6,1)

and shortlists
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Figure 3.7: Shortlists for Agents in X

x1 [y4,y3,y2,y1,y5,y6]
x2 [y3,y2,y5,y6,y1,y4]
x3 [y2,y5,y6,y3,y4,y1]
x4 [y6,y3,y1,y4,y5]
x5 [y5,y1,y4,y6,y2,y3]
x6 [y1,y4,y5,y3,y2]

Figure 3.8: Shortlists for Agents in Y

y1 [x3,x2,x4,x1,x5,x6]
y2 [x6,x5,x1,x2,x3]
y3 [x5,x6,x3,x4,x1,x2]
y4 [x6,x5,x4,x3,x2,x1]
y5 [x4,x1,x6,x2,x3,x5]
y6 [x1,x2,x5,x3,x4]

Here, only one rotation ρ1 = (1,4),(2,3),(3,2),(5,5),(6,1) is exposed. x2 is matched
to y3, who is second on x1’s shortlist. x3 is matched to y2, who is second on x2’s shortlist,
and so on.

We operate on these rotations by performing an action called elimination.

Definition 3.13. A rotation ρ is eliminated when we remove the following pairs from
each others’ shortlists. These pairs are said to be eliminated by ρ.

1. members of the rotation, i.e. (xk,yk)

2. (x,yk) for all x between xk−1 and xk on yk’s shortlist.

We then further reduce the shortlists of X to enforce property 2 in Definition 3.8. When
ρ is eliminated, a new stable matching is induced where each xk is matched with
y(k+1) mod r, and all other agents not in ρ keep their match. It is not difficult to show
that elimination preserves the stability property defined in Definition 2.3. It is also easy
to see that eliminating a rotation will expose a new set of rotations under the further
reduced shortlists. This makes eliminating some rotations a prerequisite for accessing
other rotations.

Definition 3.14. A rotation π is an explicit predecessor of rotation ρ if for some
(xk,yk) ∈ ρ and some y ̸= yk, the pair (xk,y) is eliminated by π and xk prefers y to
y(k+1) mod r. Let the relation π < ρ hold if and only if π is an explicit predecessor of
ρ. The reflexive transitive closure of <, denoted as ≤, is a partial order [Irving and
Leather, 1986]. Hence, the set of all rotations that can be exposed, equipped with ≤,
forms the rotation poset P,≤.

Clearly, a rotation will only become exposed if and only if all its explicit predecessors
have been eliminated. We now demonstrate elimination with our toy example.

Example 3.15. In Example 3.12, when we eliminate ρ1, we find a new stable matching

Mρ1 = (1,3),(2,2),(3,5),(4,6),(5,1),(6,4)

which exposes the rotation ρ2 = (1,3),(2,2),(3,5),(4,6). Indeed, in this problem, there
are 5 rotations related by < which we can express in the following rotation poset graph.

ρ1 ρ2 ρ3 ρ4 ρ5

Note that here, we do not include the edges which hold with transitivity. The pairs in
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each rotation are

ρ1 = (1,4),(2,3),(3,2),(5,5),(6,1)
ρ2 = (1,3),(2,2),(3,5),(4,6)
ρ3 = (5,1),(3,6),(4,3)
ρ4 = (1,2),(2,5),(5,6)
ρ5 = (1,5),(2,6),(4,1)

So far, we have shown that traversing the rotation poset graph will allow us to encounter
different stable matchings. However, the number of stable matchings is known to be
exponential in the number of agents [Knuth, 1976] [Irving and Leather, 1986], and thus
it is not possible for an efficient algorithm to search the entire space of stable matchings.
Irving et al. [1987] establishes the following definition, which reduces the problem to a
problem of finding the set of rotations that can be eliminated together while maximizing
some metric.

Definition 3.16. Let ρ be a rotation that is exposed in a stable matching M, and let Mρ

be the stable matching obtained by eliminating ρ. The weight w(ρ) is the difference in
the social welfare of M and Mρ. We can compute w(ρ) efficiently as follows because
only xk,yk ∈ ρ get a different pair before and after the elimination.

w(ρ) =
r−1

∑
k=0

(vX xk,y(k+1) mod r
− vX xk,yk)+

r−1

∑
k=0

(vY yk,x(k−1) mod r
− vY yk,xk)

From this definition, we can derive a corollary which says that the social welfare of the
stable matching MS obtained by eliminating rotations in some set S is

SW (MS | v) = SW (M | v)+ ∑
ρ∈S

w(ρ) (3.1)

Hence, we can obtain the optimal stable matching by maximizing the sum of the
weights of rotations. Irving and Leather [1986] presented the following theorem which
establishes the optimality and efficiency of this approach.

Theorem 3.17. Let a closed subset C of rotation poset be a subset where for every
ρ ∈C, all explicit predecessors of ρ are in C. There is a one-to-one correspondence
between the stable matchings M of a stable matching problem and the closed subsets of
the rotation poset.

Optimality is established because all stable matchings correspond to a closed subset.
Hence, any stable matching can also be found using the approach. Efficiency is
established because from Equation 3.1 and Theorem 3.17 we can reduce the problem to
the maximum weight closed subset problem, which is a widely-known problem with
polynomial time solutions.

In the maximum weight closed subset problem, the input is a general directed graph
with weighted nodes, and we want to find a subset C of nodes which maximizes the
weights such that for every node v ∈C, all nodes with outgoing edges to v are also in C.
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This problem has been explored in other contexts, such as open pit mining and project
planning [Ahuja et al., 1993]. The most prominent solution is a network flow-based
approach, which we adopt.

Now, we present our implementation of Irving’s algorithm, guided by Irving et al.
[1987]. For an overview, refer to the pseudocode below.

Algorithm 1 IRVING(v1,v2,σ1,σ2)
1: MX ← GALE-SHAPLEY(σ1,σ2)
2: sX ,sY ← FIND-SHORTLISTS(MX ,σX ,σY )
3: Π← FIND-ALL-ROTATIONS(sX ,sY ) ▷ In this step, also create a map of pairs (xi,y j)

to a rotation that eliminated it.
4: Construct P′, a sparse graph representing the rotation poset P
5: w← WEIGHTS(Π,v1,v2)
6: C∗← MAXIMUM-WEIGHT-CLOSED-SUBSET(P′,w)
7: M∗← ELIMINATE-ROTATIONS(MX ,Π,C∗)
8: return M∗

We have previously presented line 1 in Section 3.7.1, line 2 in Definition 3.8, line 5 in
Definition 3.16, and line 7 in the comment after Definition 3.13. We will show the rest
of the steps in the order of lines 3, 4, 6.

The first key step in implementing Irving’s algorithm is to find the set of all rotations
Π which can be exposed at any point. This is an important step because we require
all rotations to be known to search for the most optimal one. We implemented the
method described in Irving et al. [1987] which runs in O(n3) time, although Gusfield
[1987] has an improve version that runs in O(n2) time. The method works by iteratively
performing rounds in which it finds and eliminates all exposed rotations. Rotations that
are found in the same iteration are put into the same layer, where the initially exposed
rotations are in layer 0. More formally, we present the following pseudocode.

Algorithm 2 FIND-ALL-ROTATIONS(sX ,sY )

1: Π← []
2: D←{} ▷ the map which keeps track of which rotation eliminated each pair
3: while (ρ(1),ρ(2), . . . ,ρ(k)) = FIND-ROTATIONS(sX ,sY ) is not empty do
4: Π←Π+(ρ(1),ρ(2), . . . ,ρ(k))
5: for each rotation ρ(l) in (ρ(1),ρ(2), . . . ,ρ(k)) do
6: Eliminate ρ(l) in sY
7: Update D as pairs are eliminated
8: end for
9: Reduce sX by examining reduced sY

10: end while
11: return Π,D

The central insight is that in line 9, it is only necessary to keep updated the first and
second agents in each X shortlist, and the last agent in each Y shortlist. This is because
the existence of a rotation is determined completely by those positions. The rest of the



Chapter 3. Implementation of the Library 20

shortlist is not reduced when it is supplied to FIND-ROTATIONS. With this workaround,
we only have to traverse each shortlist once in total throughout the whole algorithm.
Since each shortlist is O(n) in size and there are O(n) shortlists, the traversal takes
O(n2) time. Another cost arises from looping through rotations. As proven in Irving
et al. [1987], the total number of rotations is O(n2) since each pair can appear in only
one rotation. In line 5, we loop through the rotations once. While the original paper
claims this can be done in O(n2) time total, each iteration of our loop takes O(n) time
since each rotation contains O(n) pairs. In advance of discussing FIND-ROTATIONS, we
claim that it runs in O(n) time and that there are at most O(n2) levels. The latter can be
seen if at each level only one rotation was exposed, as Example 3.15 was. Hence, the
algorithm runs in O(n3) time.

Next, we briefly examine the algorithm that finds all exposed rotations, used as an
internal routine in the algorithm above. In this algorithm, we construct the following
directed graph G(M) so that each cycle corresponds to an exposed rotation.

Definition 3.18. Let M be a stable matching, and let sX ,sY be the reduced shortlists for
M. Then, let the graph G(M) = (V,E) be a directed graph defined as follows.

1. Define a node for each agent in X, i.e. V = X

2. Define an edge from xi to xi′ if and only if xi′ is matched to y j′ ∈ Y in M and y j′ is
second on xi’s shortlist in sX .

Finding every cycle in G(M) can be achieved in O(n) with a depth-first search.

We now discuss item 4 from the overview, which constructs a sparse representation of
the rotation poset P. Trivially, we can think of a graph P, where nodes are the rotations
and edges are the relation <. However, this can be very dense. Given that there are
O(n2) nodes, P in the worst case can have O(n4) edges. Irving et al. [1987] introduces a
graph P′, a subgraph of P, which only has O(n2) edges and preserves the closed subsets.

Definition 3.19. Let P be a rotation poset. Let P′ = (V,E) be a directed acyclic graph
defined as follows.

1. Define a node for each rotation in P.

2. Define an edge between from rotation π to rotation ρ if either

• Rule 1: (x,y) ∈ π and y′ is the first agent below y in x’s shortlist such that
(x,y′) is in some rotation, and this rotation is ρ.

• Rule 2: (x,y) ∈ ρ, (x,y′) is eliminated by π,y is the first agent above y′ in
some rotation, and y′ is more preferred than the agent in Y that x will be
matched with upon eliminating ρ.

Remark 3.20. We believe that there is a mistake in the presentation of Rule 2 in Irving
et al. [1987], which originally read

• Rule 2: (x,y) ∈ ρ, (x,y′) is eliminated by π, and y is the first agent above y′ in
some rotation.
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Proof. We prove that the bolded condition in Rule 2 is necessary. We show that there
is an application of Rule 2 which creates an edge from a rotation π to rotation ρ even
though the relation π < ρ does not hold. Upon showing this, it no longer holds that P′

is a subgraph of P.

Suppose that all of the conditions outlined in the original Rule 2 hold. For this proof,
let ≻ denote the preference ordering of x on agents from Y . Any shortlist for x will
satisfy this ordering. Let y′′ be the agent that x will receive after eliminating ρ. If x was
in the k-th pair of ρ, then y′′ will be in the (k+1) mod rth pair of ρ. The original Rule
2 admits the following partial ordering.

y≻ y′′ ≻ y′

Recall from Definition 3.14 that π is an explicit predecessor of ρ if x prefers y′ to y′′.
However, this is not the case. Hence, the condition outlined in Rule 2 alone does not
establish that π is an explicit predecessor of ρ. Therefore, it is possible that an edge is
drawn from π to ρ in P′ even if π > ρ does not hold.

Even with the added condition, we can construct P′ efficiently as done in Algorithm
3. In Algorithm 3, the input D is the map created by Algorithm 2 which maps pairs to
their eliminating rotation (if any). Note that the three loops account for O(n2) iterations
because any increase in j′ will also increase j in one step. In our implementation, an
additional complexity of O(n) is introduced by finding y′′ and checking whether y′′ ≻ y′

in O(n) time. However, the runtime complexity of O(n3) is not the bottleneck of this
algorithm. Even with the modification, the following theorem for correctness still holds.

Theorem 3.21. P is the transitive closure of P′. Hence, any closed subset in P is also a
closed subset in P′.

Proof. In the proof to this theorem, Irving et al. [1987] claimed without proof that P′ is
a subgraph of P. The rest of their proof focuses on showing that if for some rotations
π,ρ, π explicitly precedes ρ, then there is a directed path from π to ρ in P′. From
Remark 3.20, it should be clear that the only edge that will be eliminated by adding the
bolded condition in Definition 3.19 is one where π is not an explicit predecessor of ρ.
Hence, the correctness of the theorem follows.

The final challenge of implementing Irving’s algorithm is to find the maximum weight
closed subset of P′ efficiently. There are multiple known approaches to this problem, and
we choose the network flow-based approach because it is the simplest and sufficiently
fast. The network flow-based method works by creating the flow network P′(s, t) as
follows. First, add the source and sink nodes to P′. Then, add an edge from the source
to each rotation with a strictly negative weight with capacity −w(ρ). Next, add an
edge from each rotation with a strictly positive weight to the sink with capacity w(ρ).
Finally, add any edges from P′ with infinite capacity. To get a maximum weight closed
subset, we obtain a minimum cut in P′(s, t) using a general max-flow algorithm. Then,
all the nodes with positive weights in the t-side of the cut and their predecessors form a
maximum weight closed subset. Since this is a well-known method, we will omit the
proof and refer the reader to Ahuja et al. [1993].
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Algorithm 3 CONSTRUCT-SPARSE-ROTATION-POSET-GRAPH(Π,sX ,D)

1: P′←{π : {} for π ∈Π }
2: Construct D′, a map from each pair to a rotation it appears in by iterating through

the pairs in every rotation. Pairs without such rotation will be excluded.
3: for each x in X do
4: j← 0
5: while j < length of sX [x] do
6: y← jth element in sX [x]
7: if (x,y) /∈ D′ then ▷ In both rules (x,y) must be in some rotation
8: j← j+1, continue
9: end if

10: j′← j+1
11: while j′ < length of sX [x] do
12: y′← j′th element in sX [x] ▷ In both rules, y is above y′

13: if (x,y′) ∈ D′ then ▷ Rule 1 satisfied
14: π← rotation of (x,y) in D′

15: ρ← rotation of (x,y′) in D′

16: Add ρ to P′[π], break
17: end if
18: if (x,y′) ∈ D then
19: Find y′′ by examining ρ ∈Π

20: if y′′ ≻ y′ then ▷ Rule 2 satisfied
21: π← eliminating rotation of (x,y′) from D′

22: ρ← rotation of (x,y) in D′

23: Add ρ to P′[π]
24: end if
25: end if
26: j′← j′+1
27: end while
28: j← j′

29: end while
30: end for
31: return P′

Example 3.22. The flow network P′(s, t) constructed from Example 3.12 is as follows.

ρ1
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ρ2

1

ρ3
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ρ4

2

ρ5

17
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t
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For readability, we do not label edges with their capacities. Instead, we label the
rotation nodes with their weights.

The maximum weight closed subset contains all nodes in P, and the total weight of the
rotations is 18. Quite clearly, the minimum cut in P′(s, t) is {s},{ρ1,ρ2,ρ3,ρ4,ρ5, t}
where the capacity across the cut is 4. This also induces the maximum weight closed
subset above. The stable matching chosen by Irving has a social welfare of 37, while
the stable matching chosen by X-optimal Gale-Shapley has a social welfare of 19.

Since the graph has O(n2) nodes and edges, most flow algorithms will run in O(n6)
time. Upon implementation, we compiled a list of algorithms available in Python and
their runtime complexity on our problem in Table 3.3. Irving et al. [1987] showed that
the Ford-Fulkerson algorithm runs in O(n4) time by proving the following lemma.

Table 3.3: Runtime Complexity of Popular Flow Algorithms for Irving’s Algorithm

Algorithm Library Complexity Comments
Ford-
Fulkerson

socialchoicekit O(n4) Naive implementation used in
the Birkhoff-von Neumann al-
gorithm from Section 3.6. Re-
quires integral capacities.

Edmonds-
Karp

Graph Tool,
SciPy

O(n6) Claims to support non-integer
capacities.

Dinic
(1970)

SciPy O(n6)

Goldberg’s
push-
relabel

Graph Tool O(n6)

Boykov-
Kolmogorov

Graph Tool O(n7) Claims to typically perform
much better than the upper
bound.

Lemma 3.23. The capacity of the minimum cut in P′(s, t) is bounded by O(n2).

Irving et al. [1987] also refers the reader to Sleator and Tarjan [1983], which solves
the problem in O(n4 logn) time. However, we were not able to find a reliable working
implementation in Python for this algorithm.

One major shortcoming of the flow-based approaches is that they require integral
capacities, meaning that the values of the cardinal utility functions must be integral. In
the normalized social choice approach, we employ an equal utility system where every
agent’s total utility across all of the choices sums to 1. However, such a normalization
scheme would produce non-integer utilities that cannot be handled by Ford-Fulkerson.
A workaround is to give each agent a fixed integer utility allowance and require integral
utilities, as we did with Example 3.12. We further discuss the implications of this
constraint in Section 6.1.



Chapter 4

Improving Distortion with Elicitation

As we briefly covered in the introduction, elicitation is a recent area of study that
explores how distortion can be reduced by having access to limited cardinal information.
Our goal in this chapter is to present our implementation of the major elicitation-based
algorithms and propose a new elicitation-based algorithm for stable matching. The
former can be found in Section 4.1 and the latter can be found in Section 4.2.

Elicitation, also called querying, was first considered by the pioneering work of Amana-
tidis et al. [2021]. Under their model, an elicitation-based algorithm would be able to
obtain partial cardinal information by querying agents about their cardinal profile. In
this work, we work with the following type of query.

Definition 4.1. A value query asks an agent to answer the cardinal utility for a specific
choice. More formally, it is a function V : N×A→ R≥0 which, given an agent i and
a choice j, returns agent i’s cardinal utility for choice j, i.e. vi j. For stable matching,
the function is V : X ×Y → R≥0 for queries to agents in X and V : Y ×X → R≥0 for
queries to agents in Y .

The purpose of querying is to obtain useful information about the agents’ underlying
cardinal profile in cases when supplying the full cardinal profile is too demanding for
the agents.

Definition 4.2. Any elicitation-based algorithm is a mechanism M = (Q , f ) with
access to a value or comparison oracle which is equipped with

1. an algorithm Q which makes queries to the oracle. Q takes as input an ordinal
preference profile σ, decides which agent-choice combination(s) to query, and
returns the answer(s) to these queries.

2. an ordinal algorithm, also known as a social choice function, f , as defined in
Section 2.1, with the exception that f also takes as input the answers from Q ,
which we name Q (σ).

In stable matching, a mechanism M = (QX ,QY , f ) consists of two query algorithms,
one for each set of agents. The social choice function f will also take as input two sets
QX(σX),QY (σY ).

24
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Table 4.1: Composition of Elicitation-based Algorithms and Settings

Voting One-sided
Matching

Stable Matching

Binary Search-
based

k-ARV: Amana-
tidis et al. [2021]

λ-TSF: Amana-
tidis et al. [2022]

Double λ-TSF:
Section 4.2

Two Query-
based

SC-TwoQueries:
Amanatidis et al.
[2024], under
limitations

Match-
TwoQueries:
Amanatidis et al.
[2024]

None

The distortion of a mechanism is the distortion of the social choice function f .

Previous works have shown that elicitation-based methods are effective in reducing
distortion while only requiring a small portion of the cardinal profile. For determin-
istic voting rules, Amanatidis et al. [2021] showed that elicitation of one query per
individual can lower the distortion to O(m), where m is the number of alternatives.
Furthermore, they proposed a mechanism called k-ARV, which achieves a distortion of
O(
√

m) with O(logm) queries per agent and constant distortion with O(log2 m) queries
per agent. More recently, Amanatidis et al. [2024] proposed a mechanism known
as SC-TwoQueries, which makes only two queries but achieves O(

√
m) distortion.

However, this mechanism works under certain conditions explained in Section 4.1.2.
Amanatidis et al. [2024] also established a general lower bound of Ω(m

1
λ ) distortion for

any elicitation-based mechanism with λ = Θ(1) queries per agent in the voting setting.

Elicitation has also been studied in the one-sided matching setting. Amanatidis et al.
[2022] showed that with n as the number of items, O(n

1
λ ) can be achieved with O(λ logn)

queries per agent. This result is equivalent to the result of k-ARV and is achieved using
a similar mechanism named λ-TSF. The same paper established a lower bound of Ω(n

1
λ )

for the distortion of any mechanisms making λ = Θ(1) queries. Amanatidis et al. [2024]
also came up with the Match-TwoQueries mechanism that achieves O(

√
n) distortion

with only two queries in one-sided matching.

The previously mentioned works [Amanatidis et al., 2022], [Amanatidis et al., 2024]
also studied the application of their algorithm on more general combinatorial problems,
including two-sided matching. However, there has been no previous exploration of
elicitation mechanisms in the stable matching setting. Table 4.1 is a concise summary
of the algorithms we cover in this chapter.

4.1 Implementation of Elicitation-based Algorithms

In this section, we will provide a high-level overview of the state-of-the-art mechanisms
proposed by Amanatidis et al. [2021], Amanatidis et al. [2022], and Amanatidis et al.
[2024], and we then will discuss their implementation. These mechanisms can be split
into two types, binary search-based and two query-based, which we show in Table 4.1.

Since the authors of all three papers provided pseudocode for their mechanisms, the
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main implementational challenge was to design the oracle which would provide answers
to the query algorithm Q . This is an oracle superclass called Elicitor which has an
elicit method taking an agent i and a choice j as parameters and returns a float. Users
are supposed to instantiate a subclass of Elicitor, which implements a superclass
method _elicit_impl. This private method is called from the elicit method. One
subclass of Elicitor we provide is ValuationProfileElicitor, which takes as
input a cardinal profile v upon initialization and automatically provides answers from
v when _elicit_impl is called. While this oracle requires the entire cardinal profile,
which we assume is not available in a practical elicitation environment, this oracle
is useful for automating empirical computational simulations. Another subclass of
Elicitor we provide is SynchronousStdInElicitor, which prints a basic English
query to standard output and reads a number from standard input. While this oracle
would be more applicable in scenarios where we are querying real agents, we expect that
more complicated oracles will need to be developed by the user. We therefore also pro-
vide a subclass LambdaElicitor, to which users can provide custom _elicit_impl
functions to use. To make the elicitation process easier for agents, we also provide a
memoize option to every oracle, enabled by default. When this is enabled, the oracle will
remember answers to previous _elicit_impl calls and will not call _elicit_impl
with the same parameters. We expect that this will also help reduce the number of
queries in practice for binary search-based mechanisms.

4.1.1 Binary Search-based Mechanisms

The binary search-based method is the first elicitation-based method proposed by
Amanatidis et al. [2021]. The main idea of this approach is to construct a simulated
valuation function, ṽ, which approximates the true cardinal profile v. In this section, we
limit our definition to be applicable to only the voting and one-sided matching settings.
We will expand these definitions to the stable matching setting in Section 4.2.

Definition 4.3. Let v be the cardinal profile we want to simulate, and let it be an (n,m)
matrix. Let λ be a natural number λ≤ m, which we parameterize the mechanism with.
Define λ+1 thresholds α0,α1, . . . ,αℓ, . . . ,αλ where

αℓ = m
l

λ+1

Notice that α0 = 1. Let v∗i be the cardinal utility of agent i’s favorite choice. An
αℓ-acceptable set Qi,ℓ is a set of choices such that

1. Qi,0 contains the favorite choice of agent i

2. Qi,ℓ for ℓ ∈ {1, . . . ,λ} contains all elements a j such that vi(a j) ≥
v∗i
αℓ

and a j /∈
Qi,ℓ−1, . . . ,a j /∈ Qi,0.

Let Qi =
⋃

ℓ∈{0,...,λ}Qi,ℓ. A simulated valuation function ṽi is a function with the same
domain and codomain as v such that

ṽi(a j) =

{
v∗i
αℓ
, a j ∈ Qi,ℓ for some ℓ ∈ {0, . . . ,λ}

0, a j /∈ Qi,ℓ for all ℓ ∈ {0, . . . ,λ}
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From the simulated valuation functions, we can construct a simulated cardinal profile ṽ,
a matrix representation of (ṽi)i∈N .

A binary search-based mechanism, an overview of which is presented below, would
calculate ṽ by first constructing each αℓ-acceptable set. This can be efficiently done by
performing a binary search to find the least preferred choice a j such that v∗i

αℓ
≤ ṽi(a j)

holds. Then, any choice a j′ which is less preferred than the least preferred choice in
Qi,ℓ−1 but more preferred than a j is in Qi,ℓ. The algorithm Q knows the most preferred
choice and can perform a binary search because Q is provided an ordinal profile σ.

Binary Search-based Mechanism Overview� �
Compute α0,α1, . . . ,αλ.
For each agent i, perform the following routine to construct ṽi independently.

1. Query agent i for her most preferred choice. Let this be v∗i .
2. For each ℓ= {1, . . . ,λ}, going from lowest to highest, compute Qi,ℓ.
3. Set ṽi j =

v∗i
αℓ

for all choices in Qi,ℓ.
For choices that are not in any setting, set their simulated value to 0. Note that this
can be done by initializing ṽi j = 0.
Return an outcome that maximizes the social welfare.� �

As seen in Table 4.1, k-Acceptable Range Voting, or k-ARV, is the original mechanism
that works with the voting setting. In k-ARV, the authors use the symbol k instead
of the symbol λ in Definition 4.3. Confusingly, λℓ is used to indicate our thresholds
αℓ. Moreover, Si,ℓ is used instead of Qi,ℓ for acceptable sets, and Si,ℓ contains Si,ℓ−1.
λ-Threshold Step Function, or λ-TSF, was introduced in a followup work, which adapts
k-ARV to the one-sided matching setting. In λ-TSF, αℓ is defined to be multiplicative
factors on v∗i , i.e. the paper’s αℓ is equal to 1

αℓ
in our definition. Since the authors of k-

ARV and λ-TSF have included the pseudocode for their mechanisms in their respective
papers, we will only briefly describe their high-level design in this section. We have
attached their pseudocode in Appendix B.1 and Appendix B.2, with some syntactic
modifications. In Section 4.2, we propose the Double λ-Threshold Step Function, or
Double λ-TSF, in which we apply λ-TSF to the stable matching setting.

In general, we can ensure that the outcome returned by the binary search-based mech-
anism is only optimal with respect to the simulated cardinal profile, not to the real
cardinal profile. Hence, we need theorems to prove that this approach achieves low
distortion. As mentioned at the beginning of this chapter, both k-ARV and λ-TSF
achieve O(m

1
λ+1 ) distortion with O(λ logm) queries per agent, where m is the number

of choices. This implies O(
√

m) distortion with O(logm) queries per agent and O(1)
distortion with O(log2 m) queries per agent. We choose to demonstrate this for λ-TSF
with our own notation, as the proof will become relevant when we discuss extending
λ-TSF to stable-matching.

Theorem 4.4. [Amanatidis et al., 2022] Let n be the number of items in a one-sided
matching problem. λ-TSF makes O(λ logn) value queries per agent and achieves a
distortion of 2n

1
λ+1 .
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Proof. Since λ-TSF uses binary search on n choices to find λ+1 sets, it is clear that
the mechanism makes O(λ logn) queries per agent.

The rest of the proof focuses on proving the distortion bound. Consider an arbitrary
cardinal profile v. Let M be an optimal matching, and let M̃ be the matching returned
by λ-TSF. We denote the item that agent i received in M as ai.

To begin, we split the set of agents N into those whose received item is in some Qi,ℓ,
say S, and those whose item is not in any Qi,ℓ, say S̄. Then, S, S̄ is a partition of N. The
social welfare for optimal matching M can be rewritten as

SW (M | v) = ∑
i∈N

vi(ai) = ∑
i∈S̄

vi(ai)+∑
i∈S

vi(ai)

We evaluate the bounds separately on the two terms. In the term with items in S̄,

∑
i∈S̄

vi(ai)<
∑i∈S̄ v∗i

αλ

≤ n ·maxi∈N v∗i
αλ

≤ n ·SW (M̃ | ṽ)
αλ

≤ n ·SW (M̃ | v)
αλ

(4.1)

Note that αλ ̸= 0. The first inequality is established because the item is from S̄. The
second inequality follows because S̄⊆ N, therefore |S̄| ≤ |N|= n. The third inequality
holds because M̃ is the optimal matching with respect to the simulated cardinal profile
ṽ. If there was an agent whose utility would exceed SW (M̃ | ṽ) from receiving their
favorite item, then we can achieve better social welfare by giving that item to the agent,
and M̃ will no longer be optimal. The fourth inequality holds because the simulated
cardinal values are lower bounds on the actual cardinal values.

For the term with items in S, define Sℓ for each ℓ ∈ {0, . . . ,λ} as the set of agents who
received an item in Qi,ℓ. It follows that

∑
i∈S

vi(ai) =
λ

∑
l=0

∑
i∈Sℓ

vi(ai) (4.2)

When λ = 0,
∑
i∈S

vi(ai) = ∑
i∈S

ṽi(ai)≤ SW (M̃ | v)

In the original paper, the first equality was ≤. We believe that this holds as an equality
because the single element in S holds the value v∗i for agent i in both v and ṽ. The second
inequality holds due to a similar argument made for the third inequality of Equation 4.1.

When λ > 0, we know by definition for any ℓ ∈ {1, . . . ,λ} and for any a j ∈ Qi,ℓ,

vi(a j)≤
v∗i

αℓ−1
=

αℓ

αℓ−1
· 1

αℓ
· v∗i = α1 · ṽi(a j) (4.3)

Let Qi,0 = {a∗i }. Then, also by definition,

vi(a∗i ) = ṽi(a∗i )≤ α1 · ṽi(a∗i ) (4.4)



Chapter 4. Improving Distortion with Elicitation 29

Hence,

∑
i∈S

vi(ai)≤ α1

λ

∑
l=0

∑
i∈Sℓ

ṽi(ai)≤ α1 ·∑
i∈N

ṽi(ai)≤ α1 ·SW (M̃ | ṽ)≤ α1 ·SW (M̃ | v) (4.5)

The first inequality follows naturally from Equations 4.2, 4.3, and 4.4. The second
inequality holds because all agents are now considered. The third inequality holds
because M̃ is an optimal solution and M isn’t. The last inequality holds because the ṽi j
is a lower bound on vi j. From Equations 4.1 and 4.5, we have

SW (M | v)≤
(

α1 +
n

αλ

)
·SW (M̃ | v) = 2n

1
λ+1 ·SW (M̃ | v) (4.6)

The last equality holds because α1 = n
l

λ+1 and n
αλ

= n1− λ

λ+1 .

A similar theorem exists for k-ARV, which is proven in Amanatidis et al. [2021].

4.1.2 Two Query-based Mechanisms

The two query-based method is the second group of elicitation mechanisms. As
previously mentioned, Match-TwoQueries uses this method for one-sided matching and
SC-TwoQueries is the application of Match-TwoQueries for voting.

As could be understood from the name, this approach only makes two queries to
achieve a distortion of O(

√
n). Since Amanatidis et al. [2022] proved a lower bound

of Ω(n
1
λ ), this mechanism closes the gap between the distortion bounds for λ = 2. We

implemented Match-TwoQueries but did not implement SC-TwoQueries, as the latter
requires certain conditions to be true about the voting problem. In this section, we will
introduce Match-TwoQueries first and consider an extension to voting.

Match-TwoQueries uses the first query to ask each agent for their favorite choice. It
uses the second query to create the following sufficiently representative assignment.

Definition 4.5. A sufficiently representative assignment M0 is a many-to-one assign-
ment (where multiple agents can be assigned to the same item, but only one item is
assigned to an agent) such that

1. for every item a j ∈ A, there are at most O(
√

n) agents assigned to a j

2. for any matching M, there are at most
√

n agents who prefer the item they are
matched to in M to the item they are assigned to in M0.

The main idea of the two query-based mechanisms is to compute a sufficiently repre-
sentative data structure, such as the sufficiently representative assignment above for
one-sided matching. Then, it creates a simulated cardinal profile, albeit with different
characteristics from the one in Definition 4.3. To do this, the mechanism queries each
agent about a choice in this sufficient representative data structure and sets the simulated
cardinal value to the utility of the queried choice for any choices more preferred over
the queried choice (including the queried choice). All other choices will get a simulated
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cardinal value of 0. At this point, the mechanism has a simulated cardinal profile which
it feeds to a cardinal algorithm. Amanatidis et al. [2024] provides pseudocode for
Match-TwoQueries, which we attach in Appendix B.3. As seen in the pseudocode, our
implementation of Match-TwoQueries uses the maximum weight matching algorithm
we defined in Section 3.6 as the cardinal algorithm.

Theorem 4.6. [Amanatidis et al., 2024] Match-TwoQueries has distortion O(
√

n).

Proof. We only provide an informal proof sketch as the full proof is provided in the
original paper. Let M̃ be the matching produced by Match-TwoQueries. We can split
the pairs in M̃ to those where the social welfare is revealed, or known because the
agent received an item they were queried about, and to those where the social welfare is
concealed. We let the welfare from the revealed pairs be denoted as SW (M̃)R and the
welfare from the concealed pairs be denoted as SW (M̃)C. Then, we show

SW (M)≤ (1+2
√

n) ·SWR(M̃)

where M is an optimal matching. The 1 in 1+2
√

n comes from

SWR(M)≤ SWR(M̃)

which is deduced from the fact that M̃ is a matching that maximizes the social welfare
based only on the revealed utilities. Since

SW (M) = SWR(M)+SWC(M)

we want to show that
SWC(M)≤ 2

√
n ·SWR(M̃)

The proof for this bound can be found in Theorem 1 of Amanatidis et al. [2024].

In general, nothing in the two query-based mechanisms requires a complicated imple-
mentation, except computing the sufficiently representative data structure. For one-sided
matching, computing the sufficiently representative matching can easily be done by
Algorithm 10 in Appendix B.3, which Amanatidis et al. [2024] introduced and proved.
In socialchoicekit, we have also implemented this algorithm. However, computing a
sufficiently representative data structure becomes a roadblock for the voting setting.
The mechanism SC-TwoQueries also presented by Amanatidis et al. [2024] considers a
sufficiently representative set, as follows.

Definition 4.7. A sufficiently representative set is a set of alternatives B ⊆ A such
that for any constant c≤ 1, |B|= c ·

√
m and for every alternative a j ∈ A, at most

√
m

agents prefer a j over their favorite alternative in B.

With a sufficiently representative set B, SC-TwoQueries can ask each agent about their
favorite alternative in B in the second query. This would allow SC-TwoQueries to
create a simulated cardinal profile similar to the one Match-TwoQueries made with
one-sided matching. However, this is known to only exist when m = Ω(n), as deduced
by Amanatidis et al. [2024] from the following theorem of Jiang et al. [2020].
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Theorem 4.8. For any ξ∈ {1, . . . ,n}, there exists a set S of alternatives with |S| ≤ 16 · n
ξ

such that for every a j ∈ A, there are at most ξ agents that prefer a j over their favorite
alternative in S.

When ξ =
√

n and n = Θ(m), Definition 4.7 is satisfied with c = 16. Note that this is a
restrictive condition. We also remark that the set S mentioned in Theorem 4.8, called
the approximately stable committee, is difficult to compute.

4.2 Double λ-TSF for Stable Matching

In this section, we extend the binary search-based method for one-sided matching by
Amanatidis et al. [2022], λ-Threshold Step Function, to stable matching. We name the
new mechanism Double λ-Threshold Step Function, or Double λ-TSF, as it involves
having two λ-TSFs, one for each set of agents. We begin by adapting Definition 4.3 to
the stable matching setting.

Definition 4.9. Let vX ,vY be cardinal profiles we want to simulate, corresponding to
utilities for X and Y , respectively. Then, both vX and vY will be (n,n) matrices, as
defined in Section 2.1. Use the same definition for v∗i , λ and αℓ for each ℓ ∈ {0, . . . ,λ}
as Definition 4.3 substituting n for m. For each agent xi ∈ X and ℓ ∈ {0, . . . ,λ}, let the
αℓ-acceptable set Qi,ℓ be a set of agents in Y such that

1. Qi,0 contains the favorite choice of agent xi

2. Qi,ℓ for ℓ ∈ {1, . . . ,λ} contains all agents y j such that (vX)i(y j) ≥
v∗i
αℓ

and y j /∈
Qi,ℓ−1, . . . ,y j /∈ Qi,0

Let Qi =
⋃

ℓ∈{0,...,λ}Qi,ℓ. Also define ṽX similarly as follows.

(ṽX)i(y j) =

{
v∗i
αℓ
, y j ∈ Qi,ℓ for some ℓ ∈ {0, . . . ,λ}

0, y j /∈ Qi,ℓ for all ℓ ∈ {0, . . . ,λ}

Similarly, define αℓ-acceptable sets R j,ℓ, the union Rℓ, and ṽY by swapping X and Y .

The basic idea of λ-TSF is unchanged in Double λ-TSF, which is shown in Algorithm
4. We create two simulated cardinal profiles, ṽX , ṽY , which simulate vX ,vY , respectively.
We do so by performing the routine in Algorithm 5 separately for X and Y .

Algorithm 4 DOUBLE-λ-THRESHOLD-STEP-FUNCTION(λ,σX ,σY )

1: ṽX ← CONSTRUCT-SIMULATED-CARDINAL-PROFILE(Q (σX),σX ,λ)
2: ṽY ← CONSTRUCT-SIMULATED-CARDINAL-PROFILE(Q (σY ),σY ,λ)
3: M← IRVING(ṽX , ṽY ,σX ,σY )

The pseudocode in Algorithm 5 we show is for X , but it is easily replaceable with Y .

Algorithm 5 roughly follows the overview box in Section 4.1.1. The only major
difference is that in Double λ-TSF,
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Algorithm 5 CONSTRUCT-SIMULATED-CARDINAL-PROFILE(Q (σX),σX ,λ)
1: ṽX ← 0 ▷ where 0 is the zero matrix
2: for xi ∈ X do ▷ from xi, we also have the index i
3: v∗i ← Q (σX) ▷ where Q queries agent xi for their favorite agent
4: (ṽX)i(y∗i )← v∗i
5: (p∗i )

′ = v∗i ▷ Cache for previous p∗i
6: end for
7: for l ∈ {0, . . . ,λ} do
8: αℓ← n

l
λ+1

9: for xi ∈ X do ▷ from xi, we also have the index i
10: p∗i ← BSEARCH(0,n,αℓ,v∗i ) ▷ Least preferred agent in Qi,ℓ
11: for y j ∈ Y such that (p∗i )

′ ≻X ,i y j ≻X ,i p∗i do
12: (ṽX)i(y j)← (vX)i(p∗i ) ▷ (vX)i(p∗i ) should be memoized by oracle
13: (p∗i )

′← p∗i
14: end for
15: end for
16: end for
17: return ṽX

1. we require the cardinal profiles vX ,vY to only contain integral utilities

2. we use the cardinal utility of the least preferred agent p∗i in Qi,ℓ (or R j,ℓ), as the
simulated utility for all agents in Qi,ℓ (or R j,ℓ) instead of the non-integer value v∗i

αλ

The BSEARCH routine is a common routine used in k-ARV and λ-TSF. An example
pseudocode by Amanatidis et al. [2021] can be found in Appendix B.1.

To prove the theoretical correctness of Algorithm 4, we need to prove Theorem 4.10.
This is because a normal cardinal algorithm for stable matching would only ensure
stability in terms of the cardinal profiles provided, that is ṽX , ṽY . Here, we assume that
a blocking pair over the cardinal profile will employ the strict inequality ordering >.

Theorem 4.10. The matching M produced by the mechanism Double λ-TSF satisfies
the stability property defined in Definition 2.3 with respect to vX ,vY .

Proof. We need to show that M admits no blocking pairs. We will rely on the following
lemma about our implementation of Irving’s algorithm.

Lemma 4.11. A matching produced by the implementation of Irving’s algorithm in
Section 3.7.2 has no blocking pairs with respect to σX ,σY supplied to the algorithm.

The proof for this lemma is that when we first construct the shortlists sX ,sY in line 2 of
Algorithm 1, we use the ordinal profiles σX ,σY , instead of the cardinal profiles vX ,vY .
Therefore, any ordering assumed by Irving’s algorithm is with respect to σX ,σY . Since
any two agents (vX)i(y j)> (vX)i(y j′) implies y j ≻i y j′ and similarly for > over vY and
≻ j∈ σY , a blocking pair in M with respect to vX ,vY exists only if there is a blocking pair
in M with respect to σX ,σY . However, Theorem 3.17 states that the latter is false.
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We also attempt to show that Double λ-TSF achieves low distortion. Since Double λ-
TSF is structured similarly to λ-TSF, one might consider using a similar proof structure
to that of Theorem 4.4. However, we were not able to derive a distortion bound with
this approach. We show an informal sketch. For example, let

SW (M | vX ,vY ) = ∑
(xi,y j)∈M

(vX)i(y j)+(vY ) j(xi)≤ n · max
(xi,y j)∈M

(vX)i(y j)+(vY ) j(xi)

Define S, S̄ and T, T̄ similarly as we did in Theorem 4.4 for X ,Y , respectively. Since we
require the stability property, it might be the case that the maximum welfare-producing
(xi,y j) ∈ M is such that both xi ∈ S̄ and y j ∈ T̄ . In this case, SW (M̃ | ṽX , ṽY ) = 0.
Therefore, we cannot place an upper bound on SW (M|vX ,vY )

SW (M̃|ṽX ,ṽY )
. It is unknown whether there

is a good way to bound SW (M|vX ,vY )
SW (M̃|vX ,vY )

, which is needed for bounding distortion.

Theorem 4.12. Double λ-TSF makes O(λ logn) queries per agent.

Even though we do not have a formal proof to establish distortion bounds for Double
λ-TSF, we finish with an example where Double λ-TSF works well.

Example 4.13. When we apply Double λ-TSF with λ = 1 on the instance of the stable
matching problem from Example 3.12, we obtain the following:

ṽX =


0 0 3 5 0 0
1 1 2 1 1 1
0 3 0 0 2 2
0 3 2 0 0 2
3 0 0 0 3 0
4 0 0 2 0 2

 , ṽY =


0 5 5 0 0 0
3 0 0 0 3 4
0 0 0 0 10 0
0 0 0 0 3 7
0 0 0 7 0 1
9 0 0 0 0 0


Since λ = 1, Double λ-TSF creates two acceptable sets Qi,0 and Qi,1 for each agent
i. Each Qi,0 contains just the agent’s favorite choice, which has utility v∗i . Each Qi,1

contains choices whose utility is above v∗i
α1

=
v∗i√

6
, and choices in Qi,1 share the simulated

cardinal value of the least preferred choice. For example, x2 places a utility of 2 for
multiple choices, but all except one choice is downgraded to Q2,1, the elements in which
are given a simulated cardinal value of 1. Even with λ = 1, the structure of the cardinal
profiles is mostly preserved.

Using ṽX , ṽY as inputs to Irving, along with σX ,σY , will output the same stable matching
referred to in Example 3.22, and the social welfare will be 37. With the simulated
cardinal values, the graph P′ will remain unchanged, but its weights will change. Under
ṽX , ṽY ,

w(ρ1) = 1, w(ρ2) = 0, w(ρ3) =−7, w(ρ4) = 0, w(ρ5) = 21

and it is also clear here that the maximum weight closed subset is {ρ1,ρ2,ρ3,ρ4,ρ5}.



Chapter 5

Data Generation for Empirical
Evaluation of Distortion

In this small chapter, we discuss the generation of cardinal profiles from ordinal profiles
to maximize distortion. We consider the voting and one-sided matching settings. It is
inherently difficult to generate distortion-optimal cardinal profiles for stable matching,
as we must account for the stability structure. We also limit our focus to unit-sum
cardinal profiles, which is a commonly used type of cardinal profile that treats the
preferences of each agent equally by requiring the total utility of each agent to be 1.
An ordinal profile σ has many consistent unit-sum cardinal profiles, which form a set
denoted as C(σ). As remarked in Section 3.3, randomly picking a consistent cardinal
profile in C(σ) will not result in a high distortion. We use the foundations provided
by Ebadian et al. [2024] to solve this problem, although the original paper aims to
achieve a different goal. We examine the use of a type of valuation function called the
dichotomous utility function to achieve this.

Definition 5.1. Let σ be an ordinal profile with n agents and m choices. For each agent
i, define a ranking function σi : [1,m]→ A, where if a j is the kth most preferred choice,
σi(k) = a j. For any r ∈ [1,m], the dichotomous utility function with respect to σi is
defined as

1σi,r(a j) =

{
1
r , σ

−1
i (a j)≤ r

0, otherwise

The dichotomous utility function is a valuation function and creates a cardinal profile
where each agent prefers some top r choices equally and has zero utility for the bottom
m− r choices. We call such a profile a dichotomous utility profile. Next, recall that
randomized voting rules output a discrete probability distribution p ∈ ∆(A). As we
assumed with randomized voting rules, we can compute the expected social welfare
and expected distortion of p with respect to some cardinal profile v. In this chapter, we
make explicit the cardinal profile used to calculate distortion, i.e. dist(p,v).

For the voting setting, Ebadian et al. [2024] showed in the following theorem that
among the distortion-maximizing unit-sum cardinal profiles consistent with an ordinal
profile, there is one that is dichotomous.

34



Chapter 5. Data Generation for Empirical Evaluation of Distortion 35

Theorem 5.2. [Ebadian et al., 2024] For any ordinal profile σ and distribution p∈∆(A),
there exists a dichotomous utility profile u∗ ∈C(σ) such that dist(p,u∗) is the highest
among all unit-sum cardinal profiles consistent with σ.

Proof. Let d = maxu∈C(σ) dist(p,u). Then, this equation follows.

max
u∈C(σ)

maxa∗∈A SW (a∗ | u)
SW (p | u)

= d

max
u∈C(σ)

(
max
a∗∈A

SW (a∗ | u)−d ·SW (p | u)
)
= 0

max
a∗∈A

max
u∈C(σ)

∑
i∈N

(ui(a∗)−d ·ui(p)) = 0

Since the summation is linear over agents, we can move the maximum inside the
summation to construct the optimal cardinal profile. As a small syntactic detail, we
denote the set of unit-sum valuation functions consistent with some ranking function σi
as C(σi).

max
a∗∈A

∑
i∈N

max
ui∈C(σi)

(ui(a∗)−d ·ui(p)) = 0 (5.1)

Now, we show that for some alternative a∗ and agent i, ui(a∗)−d ·ui(p) is maximized
at some dichotomous utility function. Let ∆m = {α ∈ [0,1]m | ∑r∈[1,m]αr = 1} be the
m−1 simplex. Then,

max
ui∈C(σi)

ui(a∗)−d ·ui(p) = max
α∈∆m

(
∑

r∈[1,m]

αr ·1σi,r(a
∗)−d · ∑

r∈[1,m]

αr ·1σi,r(p)

)
(5.2)

= max
α∈∆m ∑

r∈[1,m]

αr · (1σi,r(a
∗)−d ·1σi,r(p)) (5.3)

To show that the first equality holds, Ebadian et al. [2024] claims that C(σ) is an m-
dimensional subspace spanned by the dichotomous utility functions (1σi,r)r∈[1,m]. Note
that the linear span of (1σi,r)r∈[1,m] is not equal to C(σi). As a simple counterexample,
consider the linear combination 2 ·1σi,1. This is not a unit-sum valuation function.

We clarify that C(σi) is an m-dimensional vector subspace which can be represented
as a linear combination of the dichotomous utility functions (1σi,r)r∈[1,m] where every
coefficient is between 0 and 1 and the coefficients sum to 1.

We now show that our claim is true. The elements in (1σi,r)r∈[1,m] are clearly linearly
independent. Now, given an arbitrary unit-sum valuation function vi, we construct
a linear combination of (1σi,r)r∈[1,m]. This can be done canonically as follows. Let
t1, . . . , tm be the coefficients of the linear combination, corresponding to 1σi,1, . . . ,1σi,m.
We start with the coefficient tm. Since 1σi,m is the only element in (1σi,r)r∈[1,m] that
assigns a nonzero value for σi(m), we must set

tm = m · vi(σi(m))

In any linear combination where the above holds, the utility of σi(m) correctly becomes
vi(σi(m)) because

m

∑
r=1

tr ·1σi,r(σi(m)) = tm ·1σi,m(σi(m)) = m · vi(σi(m)) · 1
m

= vi(σi(m))
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We use this fact as the base case of a mathematical induction. For the inductive
hypothesis, assume that we have set tk+1, . . . , tm, such that any linear combination of
(1σi,r)r∈[1,m] using tk+1, . . . , tm recreates the utility of σi(k+1), . . . ,σi(m) as vi(σi(k+
1)), . . . ,vi(σi(m)). Then, we want to show that we can set tk such that any linear
combination of (1σi,r)r∈[1,m] using tk, . . . , tm recreates the utility of σi(k), . . . ,σi(m)
correctly. To do this, we set

tk = k · (vi(σi(k)− vi(σi(k+1)))

From the assumption, we know that

m

∑
r=k+1

tr ·1σi,r(σi(k)) =
m

∑
r=k+1

tr ·1σi,r(σi(k+1)) = vi(σi(k+1))

Since 1σi,k, . . . ,1σi,m are the only elements in (1σi,r)r∈[1,m] that assign a nonzero value
to σi(k),

m

∑
r=k

tr ·1σi,r(σi(k)) = tk ·1σi,k(σi(k))+
m

∑
r=k+1

tr ·1σi,r(σi(k))

= k · (vi(σi(k)− vi(σi(k+1))) · 1
k
+ vi(σi(k+1)) = vi(σi(k))

Since the value of tk does not affect the recreation of σi(k+ 1), . . . ,σi(m), we have
proved the inductive hypothesis. Each tk is in [0,1] because

1
k
≥ vi(σi(k))≥ vi(σi(k+1))≥ 0

As such, we can inductively represent any unit-sum valuation function as a linear
combination of (1σi,r)r∈[1,m] with coefficients in [0,1]. The final thing to show is that
the coefficients sum to 1, which holds due to the unit-sum assumption.

1 · (vi(σi(1))− vi(σi(2)))+2 · (vi(σi(2))− vi(σi(3)))+ . . .

+(m−1) · (vi(σi(m−1))− vi(σi(m)))+m · vi(σi(m)) = ∑
r∈[1,m]

vi(σi(r)) = 1

Note that in Equation 5.3, there is some r ∈ [1,m] for which the expression αr ·
(1σi,r(a

∗)− d · 1σi,r(p)) is maximized. Since the last expression is linear in α, the
maximum must be achieved at an α∗ such that α∗r = 1 for this r and 0 for all others.

We now propose two types of distortion-maximizing cardinal profiles. Both types are
generated from a fixed ordinal profile σ. The first is defined as follows.

Definition 5.3. Let p be the discrete probability distribution that achieves the lowest
distortion d = maxu∈C(σ) dist(p,u). Then, the pseudo-distortion-maximizing cardinal
profile is a cardinal profile that achieves maximum distortion with respect to p,d among
the unit-sum cardinal profiles consistent with σ.
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This profile does not maximize distortion against every voting rule, but only against
the optimal randomized voting rule p. However, we conjecture that it will achieve a
relatively high distortion for most other voting rules. We show later that there is no
cardinal profile that will achieve a sufficiently high distortion for every voting rule.
Whether the pseudo-distortion-maximizing cardinal profile achieves high distortion for
most voting rules is an open problem. Such a profile will be useful for users who want
to compare the performance of multiple voting rules on a single hard cardinal profile.

To compute the pseudo-distortion-maximizing cardinal profile, we need to find p and d.
Ebadian et al. [2024] uses Theorem 5.2 to construct a linear program that gives these in
polynomial time. We attach the linear program in Appendix B.4. Given p and d, we
know that there is an underlying distortion-maximizing dichotomous cardinal profile.
We do not know this cardinal profile yet, but we need to know the alternative a∗ that
maximizes social welfare under this distortion-maximizing cardinal profile. We can
use a brute-force method, looping over each a j ∈ A and compute the optimal r ∈ [1,m]
for each agent i ∈ N. The summation in Equation 5.1 will evaluate to 0 for the optimal
alternative a∗. When calculating a∗, we also find r for each agent i.

We name the second type of distortion-maximizing cardinal profile a rule-specific
distortion-maximizing cardinal profile. As can be understood from the name, this
unit-sum cardinal profile attains the worst distortion given a probability distribution p
representing some voting rule f , in addition to an ordinal profile σ. In this way, the user
can generate the worst-case distortion for a specific algorithm they may want to test.
The following theorem from Ebadian et al. [2024] shows that this can be done.

Theorem 5.4. There is an O(nm lognm) algorithm to compute maxu∈C(σ) dist(p,u).

We will not show the proof of this theorem, but Ebadian et al. [2024] provides pseu-
docode to achieve this with dichotomous utility profiles in Appendix B of their paper.

Unfortunately, there is no single cardinal profile that attains a high distortion on all
voting rules. Suppose for a contradiction that there is a cardinal profile ũ∗, such that

dist(p, ũ∗)≥ α ·dist(p,u∗) ∀p ∈ ∆(A)

where u∗ is the rule-specific distortion-maximizing cardinal profile for the given p
and α is any constant factor with value in the range 1

dist(p,u∗) < α ≤ 1. We require
the first inequality on α because we most conservatively interpret ”high distortion”
as a distortion larger than 1. If α = 1

dist(p,u∗) , then dist(p, ũ∗) = 1 and this becomes
the lowest distortion possible. To contradict this, we let p select an alternative that
maximizes the social welfare under ũ∗ with probability 1. Then, dist(p, ũ∗) will be
1, and the condition on α will be violated. Hence, there is no cardinal profile which
maximizes distortion for all voting rules up to some constant factor.

We now apply the idea of Theorem 5.2 to one-sided matching. Let Sn be the set
of all (n,n) permutation matrices. A permutation matrix corresponds to a one-sided
matching. Recall that a bistochastic matrix can be seen as a probability distribution over
permutation matrices. Hence, it corresponds to a probability distribution over one-sided
matchings, and we can calculate the expected social welfare and distortion on B.
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Theorem 5.5. Let σ be any ordinal profile with n agents and n items. Let B be any (n,n)
bistochastic matrix B. Then, there exists a dichotomous cardinal profile u∗ ∈C(σ) such
that dist(B,u∗) is the highest among all unit-sum cardinal profiles consistent with σ.

Proof. We follow similar steps as done in the proof to Theorem 5.2. By definition,

max
u∈C(σ)

maxM∗∈Sn SW (M∗ | u)
SW (B | u)

= d

max
u∈C(σ)

(
max

M∗∈Sn
SW (M∗ | u)−d ·SW (B | u)

)
= 0

max
M∗∈Sn

max
u∈C(σ)

∑
i∈N

(ui(M∗i )−d ·ui(Bi)) = 0

max
M∗∈Sn

∑
i∈N

max
ui∈C(σi)

(ui(M∗i )−d ·ui(Bi)) = 0

where M∗i is the ith row of M∗ and Bi is the ith row of B and ui(M∗i ),ui(Bi) are expected
utilities for agent i of M∗,B respectively. Note that the rows M∗i ,Bi are probability
distributions, as discussed in Section 3.6. The last equation corresponds to Equation 5.1
in the proof of Theorem 5.2.

We now show that for a fixed matching M∗ and agent i, ui(M∗i )− d · ui(Bi) is max-
imized at some dichotomous utility function u∗i ∈ C(σ). We claim that C(σi) is an
n-dimensional vector subspace spanned by a linear combination of (1σi,r)r∈[1,n] such
that the coefficients are in [0,1] and sum to 1. The proof of this claim is identical to the
proof given in Theorem 5.2. Hence,

max
ui∈C(σi)

(ui(M∗i )−d ·ui(Bi)) = max
α∈∆n

(
∑

r∈[1,n]
αr ·1σi,r(M

∗
i )−d · ∑

r∈[1,n]
αr ·1σi,r(Bi)

)
= max

α∈∆n ∑
r∈[1,n]

αr · (1σi,r(M
∗
i )−d ·1σi,r(Bi))

where ∆n is the n−1 simplex ∆n = {α∈ [0,1]n |∑r∈[1,n]αr = 1}. Since the last equation
is linear in α, we know that it is maximized when αr = 1 for some r and αs = 0 for all
s ̸= r.

However, generating distortion-maximizing dichotomous cardinal profiles is not easy for
one-sided matching. The linear programming approach for voting proposed by Ebadian
et al. [2024] does not run in polynomial time in the one-sided matching because the
number of matchings in Sn grows factorially with the number of agents and items. It
is an open problem whether a different representation exists that allows us to create a
distortion-maximizing profile or whether this can be shown to be impossible.
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Conclusion

Our work is a first attempt to create a comprehensive set of implementations for
distortion-oriented social choice algorithms. In particular, we explored the application
of elicitation-based algorithms and distortion-maximizing cardinal profile generation
in the one-sided matching and stable matching settings. In some places, our results
highlight the difficulty of computing distortion-efficient outcomes in new settings with
structural differences. We have also shown that this is doable.

6.1 Limitations and Directions for Future Work

As briefly discussed at the end of Section 3.7.2, we currently do not have a way of
efficiently computing an optimal stable matching from non-integral cardinal profiles.
This is because the most efficient flow algorithm for our problem is Ford-Fulkerson,
which runs in O(n4) time but requires capacities to be integers. As Irving et al. [1987]
stated, whether there is a flow algorithm more practical than Ford-Fulkerson for com-
puting weighted closed subsets is an open problem. Note that the maximum weight
closed subset problem is a special case of the max-flow problem because all edges in
the constructed network have infinite capacities except the edges from source s and
the edges to sink t. Another area of difficulty was finding efficient flow implementa-
tions available in Python that worked with non-integral values. Even though there are
max-flow algorithms with better asymptotic complexities, we suspect that they are too
involved to outperform Ford-Fulkerson in practice, and the implementations do not
exist. Even with the integral utility requirement, the unit-sum restriction can still be
enforced by asking users to distribute a fixed integral number of points to each choice.
However, this becomes more difficult for agents to do in elicitation, where agents are
queried only about a small subset of the choices. Note that the simulated cardinal profile
is not unit-sum, regardless of whether the true cardinal profile is integral.

Results in Chapter 5 have highlighted difficulties with generating distortion-maximizing
cardinal profiles for empirical experiments. Namely, we showed that there is no cardinal
profile that will attain a high distortion on all algorithms. The one-sided matching and
stable matching problems inherently require us to search from a larger space of possible
outcomes. We have shown that there is a dichotomous distortion-maximizing cardinal
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profile for one-sided matching. We also found that the linear programming approach
does not run in polynomial time for one-sided matching, and it is an open question
whether there is a more efficient approach to computing one. It is also an open question
whether we can quantify how ”good” the pseudo-distortion-maximizing cardinal profile
is on some portion of the voting rules.

In Section 4.2, while we created an extension of λ-TSF to the stable matching and
showed that the stability property holds, we were not able to show that the same
distortion bound held. Moreover, it remains an open question whether there is a good
way to prove distortion bounds on stable matchings in general, not just Double λ-
TSF. Computing distortion for stable matchings is especially difficult because we must
preserve the stability property when we are considering an optimal matching.

We remark that in practical settings with a small number of alternatives, the binary
search-based elicitation mechanisms do not necessarily achieve a significant reduction
in the agent’s burden of providing cardinal information. This is because the number of
queries quickly grows with λ. For example, in Example 4.13 with 6 choices, Double
λ-TSF queries each agent two to four times with λ = 2. However, when we change
λ from 2 to 3, the algorithm must now query each agent three to seven times. While
socialchoicekit provides memoization to reduce the number of queries as much as
possible, we believe that two query-based approaches are more practical for settings
with a small number of choices. It remains to be answered whether there is a two
query-based approach for the stable matching setting, i.e. whether there is a sufficiently
representative data structure for stable matching.

In most of this work, we have assumed that we select one choice. In voting, we
assumed that we only select one winning alternative, but there is a broad selection of
literature Caragiannis et al. [2017] studying committee selection problems where the
goal is to select multiple alternatives. Similarly, we assumed in one-sided matching that
we only select one item for each agent and that the number of agents is equal to the
number of items. In stable matching, we have largely considered instances where the
number of agents in X and Y were equal, and each agent was matched with exactly one
agent. While extensions on these constraints are likely to increase the complexity of the
problem, it is interesting how strategies to improve distortion can be effectively applied
to more general settings.

There are also limitations in the socialchoicekit library. Due to the breadth of the field
of computational social choice and research surrounding distortion, the algorithms
we implemented are only from a small part of the existing literature. The library can
be extended to other settings we did not consider. In Chapter 3, we have also made
assumptions about the size and type of the data. In particular, many of our algorithms
could be extended to support incomplete profiles and profiles with ties. Adding support
for this would allow users to work with more profiles since many ordinal profiles from
PrefLib are not strict and complete. Finally, our work did not run case studies with
potential users of socialchoicekit. A direction for follow-up work is to receive feedback
from researchers and software engineers about the practicality of our implementation.
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Appendix A

Example Usage of socialchoicekit
Library

This example from Ozawa [2024] demonstrates how the user can run social choice
functions from socialchoicekit using out-of-the-box integration with PrefLib. This par-
ticular example demonstrates how we can test the empirical distortion of various voting
algorithms on a course selection dataset from PrefLib. The usage and implementation
of this library are described in Chapter 3.

import numpy as np

from preflibtools.instances import OrdinalInstance

from socialchoicekit.preflib_utils
import preflib_soc_to_profile

from socialchoicekit.data_generation
import UniformValuationProfileGenerator

from socialchoicekit.deterministic_scoring
import Plurality, SocialWelfare

from socialchoicekit.elicitation_voting
import KARV

from socialchoicekit.elicitation_utils
import ValuationProfileElicitor, SynchronousStdInElicitor

from socialchoicekit.distortion import distortion

url = 'https://www.preflib.org/static/data/agh/00009-00000001.soc'

# 1.1) Import data
instance = OrdinalInstance()
instance.parse_url(url)
profile = preflib_soc_to_profile(instance)
print(profile)
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# 1.2) Generate (hypothetical) cardinal profile
valuation_profile = UniformValuationProfileGenerator(

high=1, low=0, seed=1
).generate(profile)
print(valuation_profile)

# 1.3) Compute optimal utility
# using cardinal information
social_welfare = SocialWelfare().score(valuation_profile)
print(social_welfare)
optimal_alternative = int(np.argmax(social_welfare))
print("Optimal alternative: ", optimal_alternative + 1)
optimal_welfare = np.amax(social_welfare)
print("Optimal welfare: ", optimal_welfare)

# 2) Test baseline: Plurality (pick favorite)
plurality = Plurality()
plurality_winner = plurality.scf(profile)
print(plurality.score(profile))
print("Plurality winner: ", plurality_winner)
print(

"Distortion: ",
distortion(plurality_winner, valuation_profile)

)

# 3) Elicitation (query)-based voting
karv = KARV(k=3)
valuation_profile_elicitor = ValuationProfileElicitor(

valuation_profile=valuation_profile, memoize=True
)
karv_winner = karv.scf(profile, valuation_profile_elicitor)
print("KARV winner: ", karv_winner)
print(

"Distortion: ",
distortion(karv_winner, valuation_profile)

)



Appendix B

Omitted Pseudocode and Programs

B.1 Pseudocode for k-Acceptable Range Voting

This is the pseudocode for k-Acceptable Range Voting presented by Amanatidis et al.
[2021]. This mechanism is described in Section 4.1.1. Note that the notation used is not
modified from the original paper.

Algorithm 6 k-ACCEPTABLE-RANGE-VOTING(k,σ)
1: for i ∈ N do
2: v∗i ← vi(σi(1)), where σi(p) is the alternative that agent i ranks at position p.
3: ṽi(σi(1))← v∗i
4: Si,0←{σi(1)}
5: for ℓ ∈ {1,2, . . . ,k} do
6: λℓ← m

ℓ
k+1

7: p∗← BSEARCH(1,m,λℓ,v∗i )
8: Si,ℓ←{a j ∈ A : a j ≻i σi(p∗)} ▷ define the λℓ-acceptable set of agent i
9: for a j ∈ Si,ℓ \Si,ℓ−1 do ▷ Si,ℓ assumed to contain all Si,ℓ−1, . . . ,Si,0

10: ṽi(a j)←
v∗i
λℓ

▷ define the simulated cardinal profile
11: end for
12: end for
13: for a j ∈ A\Si,k do
14: ṽi(a j)← 0
15: end for
16: end for
17: for a j ∈ A do
18: SWs(a j|ṽ)← 0 ▷ compute the simulated welfare of alternative j
19: for a j ∈ A do
20: SWs(a j|ṽ)← SWs(a j|ṽ)+ ṽi(a j)
21: end for
22: end for
23: return argmaxa j∈A SWs(a j|ṽ)

47



Appendix B. Omitted Pseudocode and Programs 48

Algorithm 7 BSEARCH(α,β,λ,v)

1: if α = β then
2: return α

3: end if
4: Let u← vi

(
σi

(
α+β

2

))
▷ vi is the valuation function for agent i, whose value is

obtained through querying
5: if u > v

λ
then

6: return BSEARCH(α+β

2 ,β,λ,v)
7: else
8: return BSEARCH(α, α+β

2 ,λ,v)
9: end if

B.2 Pseudocode for λ-Threshold Step Function

This is the pseudocode for the λ-threshold step function presented by Amanatidis et al.
[2022]. This mechanism is described in Section 4.1.1. The mechanism is slightly
modified to be consistent with our model.

Algorithm 8 λ-THRESHOLD-STEP-FUNCTION(λ,σ)

1: Let αℓ = nℓ/(λ+1) for ℓ ∈ {0, . . . ,λ}.
2: for every agent i ∈ N do
3: Query i for her top-ranked item a∗i ; let v∗i be this value.
4: Let Qi,0 = {a∗i } and ṽi(a∗i ) =

v∗i
α0

= v∗i .
5: for ℓ ∈ {1, . . . ,λ}, using binary search do
6: Compute Qi,ℓ = {a j ∈ A : ṽi(a j) ∈ [

v∗i
αℓ
,

v∗i
αℓ−1

)}
7: and let ṽi(a j) =

v∗i
αℓ

for every j ∈ Qi,ℓ.
8: end for
9: Let Qi =

⋃
λ

ℓ=0 Qi,ℓ and set ṽi(a j) = 0 for a j ∈ A\Qi.
10: end for
11: return a matching M∗ ∈ argmaxM∈M SW (M|ṽ).

B.3 Pseudocode for Match-TwoQueries

Algorithm 9 MATCH-TWO-QUERIES(σ)
1: Query each i ∈ N about her favorite item w.r.t. ⪰i
2: Compute a sufficiently representative assignment M0
3: Query each agent about the item she is assigned to in M0
4: Set all non-revealed values to 0
5: return a maximum-weight perfect matching M

This is the pseudocode for the Match-TwoQueries mechanism presented by Amanatidis
et al. [2024]. This mechanism is described in Section 4.1.2. The syntax is modified to
be consistent with the notations used in the rest of the dissertation.
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Algorithm 10
√

n-SERIAL-DICTATORSHIP(σ)

1: Let B be a multiset containing
√

n copies of each a j ∈ A
2: for every agent i ∈ N do
3: Let αi be the most preferred item of agent i in B
4: Remove αi from B
5: end for
6: return (αi)i∈N

B.4 Linear Program for Computing the Optimal Distor-
tion and Probability Distribution

This is the linear program by Ebadian et al. [2024] to determine the optimal distortion
d and probability distribution p, given an ordinal profile σ for the voting setting. This
linear program is referenced in Chapter 5. We now briefly show the derivation of the
linear program and explain the terms used.

From Theorem 5.2, we begin by replacing the maximum over ui ∈C(σi) with a maxi-
mum over the dichotomous utility functions.

dist(p,σ) = d ⇐⇒ max
a∗∈A

∑
i∈N

max
r∈[1,m]

1
r

(
I
[
σ
−1
i (a∗)≤ r

]
−d ·

r

∑
ℓ=1

pσi(ℓ)

)
= 0 (B.1)

where I is the indicator function which returns 1 when the argument is true and 0 if
otherwise. We have rewritten the rank function given in the original paper as σ−1.
Remember that p is a discrete probability distribution. As the original paper does, we
write pσi(ℓ) to indicate the probability that the alternative σi(ℓ) is chosen.

Ebadian et al. [2024] started with the following program.

min d

s.t. δi,a ≥
1
r

(
I
[
σ
−1
i (a)≤ r

]
−d ·

r

∑
ℓ=1

pσi(ℓ)

)
∀i ∈ N,a ∈ A,r ∈ [1,m]

∑
i∈N

δi,a ≤ 0 ∀a ∈ A

∑
a∈A

pa = 1

pa ≥ 0 ∀a ∈ A

With the above program, we will also find p that will achieve this minimal distortion.
Note that δi,a is an upper bound on the inner maximum in Equation B.1, given a fixed
a = a∗ and i ∈ N. Therefore, the second constraint makes the program equivalent to
Equation B.1. The problem here is that the program is not linear because we multiply
d, a decision variable, with some pa, also a decision variable, in the first constraint.
Ebadian et al. [2024] linearized this by introducing a new variable p̂a = d · pa for
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every a ∈ A. Since d = ∑a∈A p̂a, we can obtain the following linear program where the
decision variables are just (p̂a)a∈A.

min ∑
a∈A

p̂a

s.t. δi,a ≥
1
r

(
I
[
σ
−1
i (a)≤ r

]
−

r

∑
ℓ=1

p̂σi(ℓ)

)
∀i ∈ N,a ∈ A,r ∈ [1,m]

∑
i∈N

δi,a ≤ 0 ∀a ∈ A

p̂a ≥ 0 ∀a ∈ A

From the solution p̂ of this linear program, we can compute the optimal distortion d and
the probability distribution p. This program currently has O(nm) variables and O(nm2)
constraints. The final step taken by Ebadian et al. [2024] is to reduce the number of
constraints down to O(mn). For i ∈ N, r ∈ [1,m], let si,r = ∑

r
ℓ=1 p̂σi(ℓ). Then, we can

rewrite the first constraint as

δi,σi(r) ≥max
{

max
ℓ∈[1,r−1]

−1
ℓ
· si,ℓ, max

ℓ∈[r,m]

1
ℓ
· (1− si,ℓ)

}
Let αi,r = maxℓ∈[1,r]−1

ℓ · si,ℓ and let βi,r = maxℓ∈[r,m]
1
ℓ · si,ℓ. Then, αi,r and βi,r can be

constrained with only O(mn) constraints, and each δi,r can be bound with only two
constraints.

δi,σi(r) ≥ αi,r−1, δi,σi(r) ≥ βi,r

This produces the following linear program with O(mn) variables and constraints.
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Linear Program P� �
min ∑

a∈[1,m]

p̂a

s.t. δi,σi(r) ≥ αi,r−1 ∀i ∈ N,r ∈ [2,m−1]

δi,σi(r) ≥ βi,r ∀i ∈ N,r ∈ [1,m]
n

∑
i=1

δi,a ≤ 0 ∀a ∈ [1,m]

Partial sums:
si,1 = p̂σi(1) ∀i ∈ N

si,r = si,r−1 + p̂σi(r) ∀i ∈ N,r ∈ [2,m]

Top partial maximums:
αi,r ≥ αi,r−1 ∀i ∈ N,r ∈ [2,m−1]

αi,r ≥
1
r
(−si,r) ∀i ∈ N,r ∈ [1,m−1]

Bottom partial maximums:
βi,r ≥ βi,r+1 ∀i ∈ N,r ∈ [1,m−1]

βi,r ≥
1
r
(1− si,r) ∀i ∈ N,r ∈ [1,m]

Variable ranges:
p̂a ≥ 0 ∀a ∈ [1,m]

δi,σi(r),αi,r,βi,r ∈ R ∀i ∈ N,r ∈ [1,m]� �
This linear program can be solved programmatically. For example, Google’s OR-Tools
[Perron and Furnon, 2024] offer functionality to express this linear program.
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