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Abstract

Recent advances in large language models (LLMs) have significantly extended the
context length, enabling long document summarization to be accomplished by directly
processing the entire input. Nevertheless, it is often the case that the summary contains
only the most relevant information from the source document while omitting less
important details. This raises the question of whether all parts of the input are helpful
for generating the summary. Therefore, the focus of this work is to explore how
selecting salient information before summarization can improve the quality of generated
summaries.

Since selecting salient information is similar to extractive summarization, we start
by assessing the performance of oracle extractive summarization in long document
summarization tasks. This exploration offers valuable insights into the potential gains
from high-quality content selection. Subsequently, we investigate how to select salient
information solely from the input document, without specific queries to focus on.
Inspired by prior research that generates text plans in the form of question-answer
(QA) pairs as blueprints that can be viewed as an outline representation, we propose
utilizing retrieval against these blueprints to identify potentially relevant information.
Our pipeline begins with generating text plans from the input document, then it retrieves
relevant input passages based on these plans, and finally, it uses the selected passages
to create the final summaries. Our results demonstrate that a simple setup involving
blueprint generation and summarization, executed by fine-tuned end-to-end models
combined with efficient lexical retrieval, can achieve competitive results on certain
faithfulness metrics with a slight compromise on generation quality, highlighting the
potential of our proposed pipeline.
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Chapter 1

Introduction

Due to the quadratic complexity of self-attention (Vaswani et al., 2017), traditional
transformer-based language models (LMs) such as BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020) have limited context length despite being pretrained on large
corpora. This limitation hinders the effectiveness of such models in tasks requiring
long inputs, such as book-level summarization and open-domain question answering,
where multiple documents are retrieved and concatenated. To extend the context length
of transformer-based LMs, early work focused on approximating self-attention with
combinations of local and global attention, reducing computational complexity while
keeping performance loss minimal. More recently, with the rise of large language
models (LLMs), the focus has shifted towards developing efficient fine-tuning methods
to adapt existing LLLMs to longer input lengths, thereby increasing the context length to
beyond 100K tokens (Chen et al., 2024).

Previous methods for improving LMs primarily focused on processing longer sequences,
mostly addressing the aspect of modeling efficiency. However, these advancements have
paid little attention to two other crucial aspects: hallucination and context utilization,
which are essential for accurate and efficient downstream deployment. The problem of
hallucination, where models generate seemingly coherent but factually incorrect outputs,
persists because the reasoning and verification mechanisms are still shrouded in opacity.
Additionally, previous methods did not consider the fact that not all contexts provided
to the model are necessarily helpful. Recent studies on context utilization showed that
LLMs struggle to process information located in the middle of long input contexts
(Liu et al., 2023). Focusing on selecting salient information, Xu et al. (2024) also
found that by selecting context related to the input query, the performance of zero-shot
LLMs improved significantly on multiple long context query-focused summarization
and question-answering benchmarks.

Believing that addressing both hallucination and context utilization is critical for build-
ing more robust and trustworthy LMs for real-world applications, we explore, in this
work, how content selection can prioritize salient and factual information. Drawing
inspiration from existing work that generates blueprints - text plans in the form of
question-answer (QA) pairs - as an intermediate step to long document summarization
(Narayan et al., 2023), we envisage these blueprints as reflecting important aspects
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Figure 1.1: Overview of the whole summarization pipeline with QA blueprints and
retrieval. The blueprint QA can be regarded as 1) an outline of the input document,
which makes the generation less opaque, and 2) a set of facts derived from the input
document, guiding the summary generation to be more faithful.

of the input content. We propose a pipeline (shown in Figure 1.1) that first generates
such blueprints, then retrieves relevant information from the input using the blueprint
questions, and finally performs summarization based on the retrieved information. One
benefit of this pipeline is that the generated blueprints can be viewed as a gist of the
input, making the process more interpretable. Our findings show that a straightforward
approach, where blueprint generation and summarization are handled by fine-tuned
end-to-end models coupled with efficient lexical retrieval, can achieve comparable
results on various faithfulness metrics at the cost of a slight decline in the overall quality
of the generated text.

1.1 The Potential of Content Selection

The idea of prioritizing salient information is similar to the task of extractive summa-
rization, where the summary is composed by carefully selecting the most representative
sentences from the input. However, most summarization datasets tend to provide abstrac-
tive summaries as the ground truth, rather than extracted sentences. As a result, previous
work has investigated oracle extractive summarization, which uses reference abstractive
summaries to create ground truth extractive summaries as high-quality training data
for training extractive summarizers. These ground truth extractive summaries are often
referred to as oracle summaries, since they are created based on reference abstractive
summaries. To validate our hypothesis that selecting salient information is important
for long document summarization, we evaluate the quality of oracle summaries to set
an upper bound on content selection performance for our task.
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GovReport SummScreenfd
R-1 R-2 R-L | R-1 R-2 R-L
Greedy Beam Search (size 2) | 72.2 43.6 27.2 | 48.8 123 17.8
LongT5-XL 4096 58.1 27.3 29.7 | 314 6.7 18.8

Methods

Table 1.1: Results of oracle extractive summarization using greedy selection with
beam search of size 2, against LongT5-XL trained with the first 4096 input tokens on
the GovReport and SummScreenfd datasets (details described in Section 4.1). R-1,
R-2, and R-L are shorthands for the metrics ROUGE-1, ROUGE-2, and ROUGE-L,
respectively.

We use the greedy selection with beam search oracle extractive summarization method
proposed by Gu et al. (2022) in this experiment. For a beam size of &, this method
maintains a beam of k partial summaries at each step. At every step, the method extends
each partial summary in the beam by adding a new sentence from the input document.
It selects the k extensions that maximize the current average ROUGE-1 and ROUGE-2
scores, which then form the new beam for the next step. This process continues until
the addition of a new sentence does not increase the ROUGE score for any of the
partial summaries in the beam, at which point the method concludes and outputs the
highest-scoring partial summary as the final summary.

In our experiments, we utilize a beam size of 2, consistent with Gu et al. (2022),
and compare the performance with the fine-tuned LongT5-XL model for abstractive
summarization (Guo et al., 2022), which has demonstrated superior performance on
multiple long-document summarization benchmarks. Table 1.1 summarizes the related
results. We observe that the oracle method achieves significantly higher ROUGE-1
and ROUGE-2 scores compared to LongT5-XL, but lower ROUGE-L scores. This
discrepancy can be explained by the oracle method’s priority in maximizing ROUGE-1
and ROUGE-2 scores during sentence selection while neglecting ROUGE-L rewards.
Nevertheless, the significant improvement in ROUGE-1 and ROUGE-2 scores indicates
the potential of the content selection approach to outperform capable long context
models.

1.2 Extracted Summary as Abstractive Input

Recent studies on long context models have discovered the lost-in-the-middle problem,
where the ability of long context language models to process information in the middle
of the input is significantly inferior compared to that at the start and end (Liu et al.,
2023). Since traditional long document summarization models often utilize either the
entire input or truncation that retains the first n tokens, the lost-in-the-middle issue
can potentially impact these models, leading to a bias towards summarizing different
parts of the input. Consequently, the final summary may lack comprehensiveness and
faithfulness. This provides further motivation for employing content selection to reduce
the context length and allow the model to focus on salient parts of the input in an
unbiased manner.
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Methods GovReport SummScreenfd
R-1 R-2 R-L| R-1 R-2 R-L
LongT5-XL 4096 58.1 273 29.7|314 6.7 18.8
Extract-then-summarize 59.1 323 30.1 335 82 19.2
Extract-then-summarize + oracle fine-tune | 67.3 36.8 32.8 | 39.7 11.1 22.0
Extractive only 722 43.6 272|488 123 17.8

Table 1.2: Results using the extractive summary as input for abstractive summariza-
tion based on LongT5-XL. "extract-then-summarize” is the method that uses extractive
summary for abstractive summarization, with "+ oracle fine-tune” representing the
method with LongT5-XL fine-tuned on oracle extracted input sentences. We copy the
LongT5-XL 4096 and extractive summarization results from Table 1.1 for clear compar-
isons.

To study the extent to which content selection can help long context models in focusing
on important information in the input, we utilize the summary obtained from oracle
extractive summarization as the input to an abstractive summarizer to establish an
upper bound on the performance of salient content selection. We first test whether
summarization performance can be improved by employing the same LongT5-XL
model, replacing the truncated input document with the extractive summary. In addition,
we fine-tune the same backbone model by replacing input documents in both training
and validation data with the oracle-extracted inputs, allowing the model to learn how to
better utilize the extracted inputs for summarization.

The results of the abstractive summarization over extractive summaries are shown in
Table 1.2. We use “extract-then-summarize” as an abbreviation to denote the approach
using the LongT5-XL abstractive summarization model over oracle extracted input
sentences at test time only, and ”+ oracle fine-tune” to denote fine-tuning LongT5-XL
on oracle extracted input sentences. Compared to the vanilla LongT5-XL model, The
extract-then-summarize method provides a considerable gain in all ROUGE metrics,
demonstrating the effectiveness of prioritizing salient information in the input. More
importantly, we observe a much larger gain in the “extract-then-summarize + oracle
fine-tune” method, increasing the ROUGE-1 score by almost 10 on both datasets and
bridging the gap between oracle extractive summarization on both ROUGE-1 and
ROUGE-2. We also notice that "extract-then-summarize + oracle fine-tune” yields the
best ROUGE-L scores among all experiments, while oracle extractive summarization
has the lowest ROUGE-L scores, demonstrating the ability of oracle fine-tune to capture
more informative content from the reference summaries.

1.3 Comparing Oracle Methods

In the previous sections, we demonstrated the advantage of the greedy selection with
the beam search method in producing oracle summaries with high ROUGE scores under
various settings. Nevertheless, previous literature has suggested that greedy oracle
methods have a bias towards selecting sentences at the start of the input (Kedzie et al.,
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Relative position of sentence in document Relative position of sentence in document

Figure 1.2: Proportions of extracted sentences at each range of relative positions for
GovReport (left) and SummScreenfd (right). For example, the 30.6% on the 0-20%
bar for SummScreenfd indicates that 30.6% of the extracted sentences are located in
the first 20% of the input document.

2018; Grenander et al., 2019). As a background study, we explored the lead bias issue
in oracle extractive summarization approaches on the GovReport (Huang et al., 2021)
and SummScreenfd (Chen et al., 2022) datasets. Our results are shown in Figure 1.2.
Specifically, we observe the lead bias problem in both datasets, where the proportion of
extracted sentences in the first 20% of the input is the highest, with 26.3% in GovReport
and 30.6% in SummScreenfd, each containing more than one-quarter of all sentences.
The proportions for the rest of the positions are therefore lower than the average, with
the only exception in the 60%-80% range for GovReport, which has 24.7% of sentences.
Even though many oracle-extracted sentences lie in the front part of the input, it does
not mean we can simply ignore the contents in the middle or at the end, as together they
represents 73.7% and 69.4% of oracle sentences, respectively.

A more recent approach attempted to build a better sentence labelling scheme called
OREO (ORacle ExpectatiOn labeling) for extractive summarization (Xu and Lapata,
2022). OREO creates soft sentence labels by incorporating information from multiple
high-quality summary hypotheses obtained using beam search. It estimates the expected
summary quality score for each sentence based on its presence in the different high-
quality summary hypotheses, rather than relying on a single greedy or beam search
extraction method that considers only the overall score. To understand the effectiveness
of OREO on long document summarization tasks, we conduct a comparison of these
two approaches on our tasks of extractive summarization and abstractive summarization
on extracted summaries (extract-then-summarize) to establish the optimal method for
future experiments. In terms of the experimental setting, we use a lightweight setup
consisting of BART-base as the backbone model for extract-then-summarize, as the
focus here is to compare performances rather than achieving better ROUGE scores.

The results of this comparison are summarized in Table 1.3. For the task of extractive
summarization, we observe that greedy selection with beam search significantly out-
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Methods GovReport SummScreenfd
R-1 R-2 R-L | R-1 R-2 R-L
ExtSumm
Greedy Beam Search (size 2) | 72.2 43.6 27.2 | 48.8 123 17.8
OREO 594 36.8 254|405 11.5 16.1

Extract-then-summarize w/ fine-tune
Greedy Beam Search (size 2) | 68.6 37.1 29.8 | 41.7 11.6 22.6
OREO 609 317 273 1]33.1 87 193

Table 1.3: Results on extractive summarization (ExtSumm) and abstractive summa-
rization w/ extracted summary and fine-tune (extract-then-summarize w/ fine-tune).
Here OREQ is the shorthand for the oracle expectation approach.

perform OREO on all ROUGE metrics. This is consistent with the results reported
by Xu and Lapata (2022), where the performance of OREO was also worse compared
to beam search on the CNN/DM dataset (See et al., 2017). Furthermore, OREO’s
performance continues to be worse on the extract-then-summarize task, with similar
performance gaps observed in extractive summarization. This potentially suggests that
for the extract-then-summarize task, the oracle ROUGE score is positively correlated
with the ROUGE score at inference. We therefore adopt greedy selection with beam
search for all our future experiments in this work.

1.4 Structure of Report

Chapter 1 is the introduction where we detail the motivation behind the project and
present results of background studies in support of further investigation. Chapter
2 surveys previous work related to the project’s themes, including long-document
summarization, extractive summarization and retrieval enhanced generation. In chapter
3 and 4, we outline the methodology deployed in the proposed pipeline and provide
details of the datasets used, as well as the experimental setups. Chapter 5 presents and
discusses the results of our proposed pipeline, followed by an overview of the project
and a discussion of future directions.
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Related Work

2.1 Extractive Summarization

Early work on extractive summarization, prior to the emergence of the transformer
architecture (Vaswani et al., 2017), approached this task by formulating it as a sentence
classification or ranking problem. This was achieved using graph-based approaches
(Erkan and Radev, 2004; Mihalcea and Tarau, 2004) or recurrent neural networks (Nal-
lapati et al., 2016; Cheng and Lapata, 2016) to label sequences in the input, determining
whether they should be included in the summary. The introduction of the transformer
model enabled new approaches that could better capture long-range dependencies and
attend to the entire input context. Multiple architectures extending the BERT model
(Liu and Lapata, 2019; Cui et al., 2020) have demonstrated strong performances on
the CNN/DM dataset (See et al., 2017), which is widely used for summarization tasks.
More recently, there have been attempts to use LLMs for the extractive summarization
task through prompting approaches (Zhang et al., 2023), showcasing the potential of
LLMs to generate factual and human-readable summaries.

As mentioned in Section 1.1, previous literature also investigated better oracle extractive
summarization methods to obtain oracle labels that achieve good results in terms of
automatic evaluation metrics and improve the training of extractive summarization
models. Most existing approaches build oracle labels by greedily selecting sentences
that together maximize the ROUGE scores (Nallapati et al., 2016; Gu et al., 2022).
Nevertheless, previous literature suggested that greedy oracle methods have a bias
toward selecting sentences at the start of the input (Kedzie et al., 2018; Grenander et al.,
2019). Addressing this issue, some recent work proposes different labeling schemes
that sacrifice oracle ROUGE scores but improve the final performance of extractive
summarization models (Xu and Lapata, 2022).

2.2 Abstractive Summarization

Long documents pose challenges for traditional attention mechanisms due to their
quadratic computational and memory complexities. Consequently, much existing work
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has focused on linear-time attention mechanisms, which combine local self-attention
(for neighboring tokens) with full self-attention over a set of global tokens to minimize
information loss (Beltagy et al., 2020; Zaheer et al., 2021; Guo et al., 2022). Similarly, as
described in Section 1.2, the literature also explores using content selection to compress
long contexts with an RNN model (Manakul and Gales, 2021).

The advance in LLMs has aroused interest in extending the context window of base
LLMs. Since modifying the base model architecture requires pre-training, which is
computationally expensive, existing approaches mainly focus on fine-tuning methods
that adapt LLMs to longer contexts with manageable computational costs. For example,
the position interpolation method (Chen et al., 2023) modifies rotary position embedding
(Su et al., 2023) to extend the context length of LLAMA (Touvron et al., 2023a) to over
30k. Similarly, LoRa fine-tuning (Hu et al., 2021) via approximate attention has been
deployed to adapt the context length to over 100k for 7b models (Chen et al., 2024),
showing improvements in language modeling in terms of perplexity.

2.3 Conditional Generation

Most NLP tasks can be solved using end-to-end models, where desired outputs are
generated given only the input. However, one problem with end-to-end approaches
is that they are not interpretable and are prone to hallucination, generating outputs
that are not fully grounded in the input. Various attempts have addressed this issue
by proposing multi-stage pipelines, breaking down the problem to smaller and more
logical sub-tasks. For example, Puduppully et al. (2019) broke down the data-to-text
problem by introducing intermediate steps of content selection and planning, presenting
a high-level organization of the input for better interpretability. Narayan et al. (2021)
proposed a more readable representation consisting of entity chains that symbolize
the logic flow of input, using it as a pre-training objective or an intermediate step of
generation at inference.

With the advance of LLMs, previous work also attempts to build more sophisticated
pipelines and craft more informative prompts exploiting the abilities of LLMs to follow
very complex instructions. For example, chain-of-thought prompting has demonstrated
significant performance gains in very large models by instructing them to include
a sequence of reasoning steps before the answer in their outputs (Wei et al., 2023),
modifying only the output format and leaving the rest of the pipeline unchanged.
Intermediate generations are also used as a compression step in open-domain question-
answering tasks by generating a summary of the input knowledge using a lightweight
model (Xu et al., 2023), effectively reducing the computation cost while guaranteeing
minimal performance loss.

Our work draws significant inspiration from Narayan et al. (2023), which uses QA pairs
as the format for intermediate presentation. The idea is based on the ”Question Under
Discussion” theory, where discourse structure can be clarified by raising questions
and their respective answers based on spans of input text (Riester, 2019). Specifically,
each QA pair can be viewed as a piece of factual information from the input text,
together representing a series of important points that construct a blueprint of the
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Model Seqlen. Ave. QM QASP NQA QLTY MSQ HQA MFQA

GPT-43B 4k 2644 1556 23.66 1564 4935 11.08 2891 40.90
+ ret 4k 2932 16.60 2345 1981 5155 1495 3426 44.63
GPT-43B 16k 2045 16.09 2575 1694 50.05 1474 3748 45.08
+ret 16k 29.65 1569 2382 21.11 4790 1552 36.14 47.39
Llama2-70B 4k 31.61 1634 27770 19.07 6355 1540 34.64 44.55
+ ret 4k 36.02 1741 28.74 2341 70.15 21.39 42.06 48.96
Llama2-70B 16k 36.78 1672 30.92 2232 7610 18.78 4397  48.63
+ ret 16k 37.23 1870 2954 23.12 7090 2328 4481 50.24
Llama2-70B 32k 3736 1537 31.88 2359 73.80 19.07 4949 4835
+ret 32k 39.60 1834 3127 2453 6955 2672 53.89 5291
Llama2-7B 4k 2265 1425 22.07 1438 4090 8.66 23.13 35.20
+ ret 4k 26.04 1645 2297 18.18 4325 14.68 26.62 40.10
Llama2-7B 32k 28.20 16.09 2366 19.07 4450 1574 31.63 46.71
+ ret 32k 27.63 17.11 2325 19.12 43770 15.67 29.55 45.03

Figure 2.1: Results of retrieval on LLMs copied from Xu et al. (2024). + ret denotes
the results obtained incorporating retrieval. "QM” is a query-focused summariza-
tion dataset, while the others are QA datasets with long evidences sourced from the
SCROLLS benchmark (Shaham et al., 2022) and LongBench (Bai et al., 2023).

input. Blueprints are generated in natural language, which is more human-readable
and expressive, including further details and complex relations. This approach is
studied across a number of long-form question-answering and summarization datasets,
demonstrating that blueprints improve factuality and allow tighter control over the
output.

2.4 Retrieval Enhanced Generation

Information retrieval is often applied to NLP tasks that require locating relevant texts
from potentially unlimited input data, such as open-domain question-answering and
fact checking. Given an input query, often in the form of a question or short summary,
and some knowledge source containing documents or passages as external knowledge,
a retriever needs to find the relevant documents or passages that will be used as input
contexts for solving the knowledge-intensive task. The difference between retrieval
and extractive summarization is that retrieval methods focus on whether passages
contain information needed to answer the query, while extractive summarization selects
sentences considering their importance and salience in representing the key points of
the input document.

The significant advance of long context modeling extended context windows to the
scale of 100K tokens (Chen et al., 2024; Fu et al., 2024) for LL.Ms, enabling models to
process more information but also increasing inference costs. Moreover, the lost-in-the-
middle problem (Liu et al., 2023) indicates that models cannot utilize long contexts very
well, suggesting solutions focus on either improving context utilization or investigating
whether the input contexts can be compressed with minimal loss. Addressing the latter
point, Xu et al. (2024) studied how retrieval methods can be applied to query-focused
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summarization or question-answering tasks requiring very long contexts as information
sources, utilizing the input query to select only the most relevant information for efficient
and focused inference. Additionally, Bai et al. (2023) also evaluated the performance of
retrieval methods as content compression for a series of long context tasks.

We now describe the work of Xu et al. (2024) in detail, as we use a similar idea in
our proposed pipeline. The main approach is to retrieve relevant passages from the
input context as the new input to LLMs for query-focused NLP tasks. Specifically, the
document is first chunked into uniform-length passages. A retriever then retrieves the
top-k passages against the input query. Xu et al. (2024) showed that using retrieval
improves the performance on multiple query-focused summarization and question-
answering tasks for LLMs such as LLAMA-2 (Touvron et al., 2023b). Importantly,
using retrieval yields better performance for LLMs of varying maximum context length,
even those that can fit entire input contexts. This suggests the presence of lost-in-the-
middle effect of LLMs when handling long input contexts, showing that retrieval helps
the model to focus on salient information.



Chapter 3

Methodology

An illustration of our proposed pipeline is shown in Figure 1.1. Given an input document,
we first generate QA blueprints using a fine-tuned end-to-end LM (Section 3.1). Next,
each generated blueprint question is used as a query for a retriever to retrieve the
top-k relevant passages from the input (Section 3.2). After obtaining all the retrieved
passages for all the blueprint questions, we concatenate them for the use of extractive
and abstractive summarization (Section 3.3).

3.1 Blueprint Generation

The notion of blueprint” was first proposed by Narayan et al. (2023). A blueprint
for an input document consists of QA pairs containing factual information from the
input and can be viewed as a gist of what should be included in the final output. By
generating blueprints as an intermediate step before summarization, we can guide
summary generation with them, making the whole process more interpretable. Formally,
given a document d, the blueprint generation stage employs a fine-tuned language
model to generate an ordered sequence of QA pairs, also called blueprint, denoted as
(a1,q1)," -+, (an,qn) where a refers to the answer and ¢ to the question. The number of
QA pairs varies depending on the specific output of the model. Next, we describe how
we obtain data to train models for blueprint generation and provide details about the
base language model, as well as the input-output format.

Summarization datasets typically do not contain blueprints derived from the input. As
a result, we need to extend existing datasets to include a reference blueprint, which
will enable us to fine-tune an LM to generate blueprints during inference. We follow
a similar approach as described by Narayan et al. (2023). Firstly, a model is trained
on the SQuAD dataset (Rajpurkar et al., 2016), which uses the answer and context to
predict the question. For example, given an answer of coke and a context Coke is a soft
drink, the question predicted would be What is a soft drink. The question generation
model is obtained by fine-tuning T5-3b (Raffel et al., 2020) using the modified SQuAD
dataset format for question generation. For each example in the dataset, we extract the
noun chunks in the reference summary using spaCy (Honnibal et al., 2020). We then
use these extracted noun chunks as answers for each QA pair in the blueprint. Finally,

11
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All generated QA pairs RP | QA | CR | CO

. ) A1: demonic
Q1: What is the residue left ) | v/ X
from? vanquishes
Q>: What do the sisters lose Ay:sleep | v | V | V/ v
when demonic vanquishes build
up in the manor?
Q3: What does the demonic Aj: theirlives | vV | V | V/ X
residue take over?
Q4: Who calls upon the Witch Agithey | vV | V | X
Doctor?
Q5: Who does Leo not trust? As: whom | vV | V X
Qs: Who does not trust the Ag:Leo | vV | V | V/ v
Witch Doctor?
Q7: What does the Witch Doc- A7: the I:;Ssgﬁ v | X
tor believe the sisters are?
Qg: Who does the Witch Doctor Ag: Witch | X
think is evil?

When residue left from demonic vanquishes builds up in the manor, the sisters
lose sleep and it takes over their lives. They call upon the Witch Doctor, whom
Leo does not trust. The Witch Doctor makes a house call to the Charmed Ones but
because of the massive amount of demonic energy he believes they are evil.

Table 3.1: A blueprint filter example for a set of QA pairs based on a summary. RP,
QA, CR and CO are shorthands for Repetition, Question-Answering Consistency,
Coreference and Coverage. QA pairs that pass/fail each filter are labeled with v/X.

we utilize each blueprint answer and the reference summary as context to generate the
blueprint question.

Empirical examination of the blueprint has revealed many errors. hence, we filter
out undesired QA pairs and use the filtered blueprint as references when training the
blueprint LM. Table 3.1 illustrates an example of how the generated blueprint is filtered.
We describe the details of the filtering methods used below.

Repetition A common error observed in the question generation model is that the
blueprint answer is sometimes included in the generated blueprint question. For ex-
ample: "Q: Where is Paris? A: Paris”. Such QA pairs contain repeated information,
which makes them less meaningful as reference blueprints. We filter these cases by
checking if the blueprint answer is contained in the generated blueprint question.
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Question-Answering Consistency Another error made by the question generation
model is that the generated blueprint question might not be answered correctly by the
blueprint answer. We filter these cases by checking the round-trip QA consistency
(Alberti et al., 2019), where we utilize a QA model to generate an answer based on the
generated question and the given context, checking whether it matches the blueprint
answer.

Coreferences Some extracted noun chunks can be confusing. Consider the sentence
"They built a company in Edinburgh.” If we use the pronoun “They” as the answer, we
would likely have the QA pair ”Q: Who built a company in Edinburgh? A: They.” In
this case, we do not know what “They” stands for as its coreference lies somewhere else
in the context, making the QA pair uninformative. We filter these cases by removing
answers with occurrences of words that are highly related to this issue, such as “they”,

»

“these”, “those”.

Coverage This step is identical to the coverage check first introduced by Narayan
et al. (2023). We construct the bag of tokens to include only the noun chunks and
repeatedly select the blueprint question with the highest overlap until the bag is empty.

In order to train models to be able to generate blueprints at inference, we use the
reference blueprints collected and filtered previously, to fine-tune a LongT5-XL model
(Guo et al., 2022) to directly generate blueprints given input documents. Following
Narayan et al. (2023), we structure the model output as a sequence of QA pairs in the
format of ay;q1;- - -;au; g, with the prepended prefixes Q: and A:. The final blueprint is
therefore the sequence of QA pairs (q1,a1),- -+, (qn,an)-

3.1.1 LongT5

LongTS5 is a long context language model built upon T3, featuring an approximate atten-
tion mechanism that reduces the quadratic complexity when computing self-attention
(Vaswani et al., 2017). Instead of attending to every token in the input context, LongT5
employs a combination of local and global attention. Each token attends to a fixed
window of local context and several global tokens, as shown in Figure 3.1. The global
tokens are obtained by dividing the input context into blocks, and for each block, an
aggregate representation is computed by summing and then normalizing the embedding
of all the tokens within it. We use LongT5 as our backbone model due to its ability
in handling long inputs and its strong performance on long document summarization
tasks, as evidenced by the SCROLLS benchmark (Shaham et al., 2022).

3.2 Retrieval

As blueprints can serve as a gist of the input document, we can utilize the blueprint
questions as queries to retrieve salient passages back from the input document, perform-
ing high-quality content selection that ideally removes some less relevant information.
Formally, an input document 4 is first split into uniform length passages cy, - -, ¢, be-
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Figure 3.1: lllustration of the LongT5 attention mechanism by Guo et al. (2022).

fore a retriever R retrieves the top-k most relevant passages given the blueprint question
qg.

3.2.1 BM25

BM25 (Robertson and Zaragoza, 2009) is a lexical ranking function used in information
retrieval systems, particularly for text documents. It operates as a bag-of-words retrieval
function that ranks documents based on the relevance scores of matching terms against
the query. Given a query ¢g containing query terms ¢, ---,qn, the BM25 score of a
passage p for the query ¢ is calculated as:

u (k1+1)><fV€CI(Qia )
score p q Z length(p) G-
P klx(l—b+bx e 2\ 1 freq(qi p)

Where IDF (g;) represents the Inverse Document Frequency of the term ¢;, freq(gi,p)
denotes the term frequency of g; in passage p, length(p) represents the length (number
of words) of passage p, avgd! stands for the average document length in the corpus,
and k| and b are free parameters.

3.2.2 Dense Retrieval

Lexical approaches like BM25 cannot capture semantic relationships between queries
and documents. Dense retrieval attempts to tackle this limitation by encoding both
queries and documents into dense vector representations, often leveraging transformer-
based models (Karpukhin et al., 2020a). This approach allows for retrieval based on
semantic similarity, where documents with similar meanings will have closer vectors
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in the embedding space. Formally, given a query g and a passage p, dense retrieval
uses a query encoder Eg and passage encoder Ep to generate embedding for the query
g and passage p respectively. The embedding similarity is used to rank passages, where
a higher score indicates a higher likelihood of relevance to the query. For example,
Karpukhin et al. (2020a) used dot product similarity calculated as:

sim(q,p) = Eo(q)" Er(p) (3.2)

3.2.3 Tradeoff

BM2S5 is very efficient to run due to its reliance on lexical features such as term
frequency and inverse document frequency, making it computationally inexpensive to
calculate and implement. On the contrary, dense embedding projects sequences into
high-dimensional spaces, allowing more features to be considered, such as semantic
similarity and factual relevance.

In this work, we utilize BM25 due to task-specific reasons. Our task needs to retrieve
passages for every blueprint question, which often yields many passages even in the
top-1 setting. In order to utilize these passages for extractive summarization (described
in more detail in the next section), we need to keep the total number of tokens in
these passages similar to the average reference summary length to allow meaningful
evaluation. This makes dense retrieval less effective, as it is often applied to tasks
like open-domain question answering, where long passages are retrieved. Lexical
approaches like BM25 can perform quite well by capturing the keywords in these
relatively short passages while being significantly more efficient to run compared to
dense retrieval.

3.3 Composing the Summary

To obtain final summaries, we concatenate all retrieved passages for each blueprint
question and use them 1) directly for extractive summarization and 2) as input to a
summarizer LM to generate an abstractive summary. Formally, for the task of extractive
summarization, after retrieving the top-k passagesp(ll), e p,(:) ordered according to

their positions in the input document d for blueprint questions ¢, we concatenate all
the passages to form the extractive summary:

Sext = concat(pgl), . 7p](<1),p(12)7 - ’p(ln)7 - ’pl(cn)) (33)

This extractive summary is used as the input to the abstractive summarizer. Similar
to the blueprint generation stage, we also fine-tune a LongT5 model to perform the
abstractive summarization step. The process can be described as:

Sahs = LongTSabs (Sext) (34)



Chapter 4

Experimental Setting

4.1 Datasets

In this project, we focus on summarization datasets that do not require a query to
specify the topic of interest, i.e. query-focused summarization; instead, we generate
summaries solely based on the input document. We use the following two long document
summarization datasets that have different domains:

GovReport GovReport (Huang et al., 2021) is a long-document summarization dataset
containing reports published by the U.S. Government Accountability Office (GAO)! and
the Congressional Research Service (CRS)?. The dataset is split into training, validation
and test sets with approximate ratio of 90-5-5. All summaries are written in the form of
abstractive summaries by expert annotators.

SummScreen SummScreen (Chen et al., 2022) is a long-document summarization
dataset comprised of TV show transcripts. Unlike formally written articles, these
transcripts mainly consist of dialogues between TV show characters and descriptions of
environments or character interactions. The dialogues’ contexts are further identified
and separated by descriptions of scenes with the format [Scene Description]. All
summaries are written by human annotators and can be viewed as recaps of the entire
transcript in the form of abstractive summaries.

The original SummScreen dataset has two distinct splits: TV MegaSite, Inc. (TMS)?,
which are mostly soap operas, and ForeverDreaming (FD)*, which has more genres than
TMS. Following most existing work, we utilize the FD split as it contains transcripts
from more TV shows than the TMS split, thereby making the dataset more diverse and
potentially generalizing well to the summarization of other TV show transcripts. The
FD split has training, validation and test sets with approximate ratio of 10-1-1.

1
2

WWW. 30. gOV
crsreports.congress.gov
3tvmegasite.net

*transcripts. foreverdreaming.org
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Avg # tokens

Dataset Domain # examples (train/val/test) | Input Output

GovReport Government 17,457 /972 /973 9,616 597

SummScreenfd TV show 3,673 /338 /337 8,987 137

Table 4.1: Statistics of the two summarization datasets used in our experiments.

The statistics for both datasets are shown in Table 4.1. We also include an example
input/output pair for each dataset in Appendix A.1. For each dataset, the data is collected
from publicly available Hugging Face repositories. We keep all examples from the
collected datasets and remove all non-ASCII characters in the inputs and summaries.

4.2 Experiment Setup

We fine-tune T5-3b on the question generation task described in Section 3.1 that
generates blueprint questions given blueprint answers and a supporting context. Each
blueprint answer and its supporting context are attached with a prefix and separated by a
single space: “Answer: {answer} Context: {context}”. The output is the plain question
with no specific prefix. We fine-tune the model for 10 epochs and use the checkpoint
with the lowest validation loss. Our batch size is 8, and we utilize the Adam optimizer
(Kingma and Ba, 2017) with learning rate le-4, betas (0.9, 0.999) and epsilon 1le-8.
Questions are decoded with greedy decoding and no repetition penalty.

For the blueprint generation stage, we fine-tune the LongT5-XL (3b parameters) model
that generates a string of concatenated blueprint QA pairs given the input document.
Following (Narayan et al., 2023), we truncate the input document to 4096 tokens for
all datasets, constituting about half of original input length according to Table 4.1.
The model is fine-tuned for 40 epochs, and we select the checkpoint with the best
validation set average ROUGE score for future inference. We use a batch size of 8
and the Adafactor optimizer (Shazeer and Stern, 2018) with a learning rate of le-3,
identical to the original LongT5 fine-tuning learning rate. The maximum output length
is set to 1024 for GovReport and 512 for SummScreenfd to ensure optimal performance,
considering the average output length shown in Table 4.1. The blueprint is decoded
with greedy coding and repetition penalty set to 1.2, based on empirical observations
that the fine-tuned LongT5 model sometimes generates repeated n-grams.

Retrieval against blueprint questions is performed using BM25, as discussed in Section
3.2. In practice, we observe that the blueprint generation stage yields on average 20-30
questions for GovReport and 10-20 questions for SummScreenfd. To enable meaningful
evaluation for the extractive summarization task defined in Section 3.3, we chunk the
input into 40-token segments for GovReport and 20-token segments for SummScreenfd.
We then concatenate the top-1 retrieved passage for each blueprint question.

For the final stage of abstractive summarization over retrieved passages, we also fine-
tune a LongT5-XL model that generates an abstractive summary given the concatenated
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) # Tokens o
Generation Task Model Optimizer LR  Epochs

Input Output

Question T5-3B All - Adam le-4 10
Blueprint LongT5-XL 4096 1,024/512 Adafactor 1le-3 40
Summary LongT5-XL  All  1,024/512 Adafactor 1le-3 40

Table 4.2: List of important hyperparameters used for each stage of the pipeline ex-
cluding retrieval. For question generation, we do not specify maximum input and
output length as both are within range of the T5 context length. The output lengths
vary across the datasets.

retrieved passages. As the concatenated retrieved passages are significantly shorter
in length compared to the original input document, we do not truncate them during
fine-tuning. Following the extract-then-summarize approach described in Section 1.2,
we replace inputs in training and validation data with oracle-extracted passages for
fine-tuning. The hyperparameters used are identical to those used in the blueprint
generation stage. An overview of all the important hyperparameter setups is provided
in Table 4.2.

4.3 Baseline

In addition to the vanilla LongT5-XL baseline, we also consider the MemSum extractive
summarization model (Gu et al., 2022), which has achieved state-of-the-art results on
the GovReport dataset®. Specifically, we use the MemSum model as an extractive
summarization baseline and employed extract-then-summarize with MemSum extracted
summaries as an abstractive summarization baseline for comparison with our proposed
pipeline.

4.3.1 MemSum

MemSum is an extractive summarization model that treats extractive summarization as
a multi-step episodic Markov Decision Process (MDP). In each step, MemSum defines
a sentence state composed of three components: 1) the local content of the sentence,
encoded by a bidirectional LSTM (Hochreiter and Schmidhuber, 1997), 2) the global
context within the document, encoded by another bidirectional LSTM over the sentence
embedding, and 3) the extraction history, which captures information about previously
extracted sentences using multi-head attention, as illustrated in Figure 4.1. MemSum
employs a policy network to score sentences based on the sentence state, allowing it to
select an action of either extracting the top-scoring sentence or stopping the extraction
process. MemSum is trained with reinforcement learning to maximize the average
ROUGE-1/2/L scores of the extracted summaries.

5https ://paperswithcode.com/sota/extractive-text-summarization-on-govreport
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Figure 4.1: Architecture of the MemSum extractive summarization model by Gu et al.
(2022)

In addition to the extractive summarization model described above, MemSum uses
greedy selection with beam search over input sentences to create oracle-extracted
summaries with high average ROUGE-1/2 scores. As shown previously in Table
1.1, the ROUGE-1/2 scores achieved by the oracle extractive summarization method
significantly outperform those of LongT5-XL for abstractive summarization. Therefore,
we employ the beam search approach in all our experiments that require obtaining
oracle-extracted summaries.

4.4 Evaluation

4.4.1 ROUGE

The ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score (Lin, 2004) is a
widely adopted metric for evaluating the quality of model-generated summaries against
human-written reference summaries. It measures the overlap of n-grams between the
system-generated summary and the reference summaries, providing various scoring
variants such as ROUGE-N which calculates the n-gram recall, and ROUGE-L for
longest common subsequence similarity. We use ROUGE-1/2/L score as a measure to
reflect the quality of both extractive and abstractive summarization.

4.4.2 F1 Oracle

For extractive summarization only, we design a metric named “’F1 oracle” that measures
the agreement of selected sentences between extractive summarization models and
oracle extractive summarization. The motivation is that extractive summarization
systems are often trained on oracle extractions, while the task itself can be formulated as
simple as a binary sentence classification task. Therefore, we can calculate the precision
and recall between the model and oracle-extracted sentences to gain insights into how
well the model is trained to match the oracle selection process as accurately as possible.
Formally, for a model-generated extractive summary consisting of m input sentences
and a reference summary containing » input sentences, if we have k matching sentences,
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Figure 4.2: Overview of the SummaCConv entailment copied from (Laban et al.,
2022). It aggregates all sentence-to-sentence entailment scores calculated using
an NLI model.

then we can calculate the precision, recall, and F1 as follows:

k k 2 % Precision « Recall
Precision = — Recall = = Fl = * Lrecision x Keca
m n

4.1
Precision + Recall .1

4.4.3 Entailment

The two metrics discussed previously generally focused on content matching against the
reference from a lexical perspective. However, for the task of abstractive summarization,
it is also crucial to ensure that the generated summary is faithful to the input document.
This means that the summaries should ideally not only capture the relevant content but
also avoid hallucinating the meaning and implications of the original texts. Therefore,
we employ several faithfulness metrics to evaluate factual consistency in the generated
abstractive summaries.

The first faithfulness metric we use is entailment, which refers to the process of checking
the logical relationship between two statements where one statement logically implies
the other. In the context of summarization, the entailment metric evaluates whether the
generated summary is logically entailed by the original document. A high entailment
score generally indicates that the summary preserves the key facts and implications of
the input text without introducing contradictory information. We employ entailment
in evaluating abstractive summaries based on previous research suggesting its high
correlation with human judgments (Maynez et al., 2020).

In practice, entailment is usually calculated at the sentence level, as internal reasoning
when comparing whole passages and documents can be very complex. Sentence-level
computation is also ideal for our primary task of long document summarization, as
comparing documents poses high context length requirements for natural language
inference (NLI) models. Formally, given a summary consisting of m sentences and an
input document with n sentences, an entailment score is calculated for each summary
sentence against each input sentence using an NLI model. The final entailment metric
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Context

The 2024 Summer Olympics is an upcoming sports event
scheduled to take place from 26 July to 11 August 2024 in
France, with Paris as the main host city.

Summary Entailed
Paris hosts Olympics 2024. v
The 2024 Olympics will feature new sports. X
France organizes the 2024 Summer Olympics. v

Table 4.3: Example of what summaries are entailed/not entailed by the given context.

is calculated by aggregating these scores, with the simplest approach being to take the
maximum entailment score for each summary sentence across all input sentences, and
then take the average of all the maximum entailment scores:

1 & &
Entailment = — Z maf(NLI(si, d;) 4.2)
mi=y =

In this work, we consider another aggregation method named SummaCConv (Laban
et al., 2022), which has superior performance compared to the simple approach outlined
in Equation 4.2. An overview of the SummaCConv method is shown in Figure 4.2. The
SummaCConv method utilizes a learned convolutional layer to aggregate the entailment
scores between each pair of document and summary sentences. First, it bins the
entailment scores for each summary sentence into a fixed-size histogram representing
the distribution of scores. Next, a 1D convolutional layer with a kernel size equal to the
number of bins is applied to each histogram, compiling it into a single score for that
summary sentence. Finally, the scores for all summary sentences are averaged to obtain
the overall inconsistency score for the summary. By considering the full distribution of
entailment scores instead of just the maximum, SummaCConv is able to make more
robust predictions compared to the maximum aggregation approach.

4.4.4 FactScore

FactScore (Min et al., 2023) is a recently introduced faithfulness metric that breaks
down passages into phrase-level facts and measures whether each fact is supported by a
reliable external knowledge source constructed from Wikipedia. An example of how a
passage is broken down into atomic facts is shown in Figure 4.3, where each atomic fact
can be viewed as a single unit of knowledge about the passage. Given these atomic facts,
The FactScore metric then checks whether each atomic fact is supported by the external
knowledge source and outputs the proportion of facts that pass the check. Formally, for
a passage p with facts A, the FactScore of the passage is calculated as:
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Bridget Moynahan is an American filmmaker and writer. She is best known for her
work on the socap opera General Hospital, which she co-created with husband
Charles Kelly. Moynahan was raised in a middle-class family in Los Angeles, ...

- Bridget Moynahan is American. v

- Bridget Moynahan is a filmmaker.

- Bridget Moynahan is a writer. f

- She is best known for her work on General Hospital. )
- General Hospital is the soap opera.

- She co-created General Hospital.

= She co-created General Hospital with her husband. x
- Her husband is Charles Kelly. X

- Moynahan was raised in a middle-class family. x

- Moynahan was raised in Los Angeles. x

Figure 4.3: Example of how FactScore breaks down a biography to atomic facts
copied from (Min et al., 2023). All atomic facts are then checked against a knowl-
edge source to determine which facts generated are factually incorrect.

flp)=— Z I[knowledge source supports a 4.3)
acAy

Min et al. (2023) used LLMs to both generate and check atomic facts and found that
ChatGPT and GPT-4 perform better at these tasks. One limitation of FactScore is that
the original paper designed it to be a metric catered specifically to evaluating models’
abilities in generating biographies with input format as “7ell me a bio of <entity>". In
this task, no ground truth generation is needed for evaluation as checking atomic facts
only use relevant information in the knowledge source. Despite the task mismatch, the
idea of the approach for faithfulness evaluation remains useful, as atomic facts offer
finer granularity compared to sentences in entailment.

Generation

Reference

Figure 4.4: Example of the adapted FactScore metric for summarization. GF and RF
are shorthands for Generated Fact and Reference Fact, respectively.

We now describe how we adapt the FactScore metric to the long document summa-
rization task. An overview of the adaptation process is illustrated in Figure 4.4. Given
a generated summary and its reference, we first break them down to generation facts
(GFs) and reference facts (RFs) following the original FactScore approach. For each
GF, we check whether it is supported by the concatenated RFs and output the proportion
of GFs that pass the check as FactScore precision. Similarly, for each RF, we check
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whether it is implied in the concatenated GFs and output the proportion of RFs that pass
the check as FactScore recall. Together, the precision and recall reflect the accuracy and
coverage of factual information in the generated summary with respect to the reference.

In practice, we run the adapted FactScore metric using GPT-3.5-turbo for both atomic
fact generation and fact checking. We note that Min et al. (2023) originally used the
text-davinci-003 model for atomic fact generation, which is now deprecated6. Therefore,
we replace it with the GPT-3.5-turbo model. We format our prompts to be similar to
the original FactScore prompts with minor changes for accurate adaptation. We use a
temperature of 0.7 for all generations.

6https ://platform.openai.com/docs/deprecations/2023-07-06-gpt-and-embeddings
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Chapter 5

Results

5.1 Extractive Summarization

Table 5.1 shows the results of our proposed pipeline using the end-to-end LongT5-XL
blueprint generation model and BM25 top-1 passages against baseline methods using
MemSum and GPT-3.5-turbo extractive prompting introduced by Zhang et al. (2023).
Compared to MemSum, our proposed pipeline performs worse on all ROUGE metrics
except ROUGE-L on GovReport. The performance gap is most significant for ROUGE-
2 on GovReport, where our proposed pipeline scores 3.4 points less than MemSum,
while on other metrics, the performance gaps fluctuate around 1.0. Nevertheless, our
proposed pipeline shows a significant increase over MemSum on the F1-oracle metric,
suggesting a better ability at learning to follow oracle selections.

The reason for this performance gap can be attributed to our extractive summarization
pipeline not being directly trained to maximize ROUGE scores over the summary. Our
LongT5 model is fine-tuned end-to-end, considering only the blueprint but not the
retrieval performance. Additionally, since the ground truth blueprints are also gen-
erated from the abstractive summary without considering extractive summarization,
our blueprint generation model can be viewed as not being trained on objectives that
maximize extractive summarization performance. Moreover, the pipeline setup using
an end-to-end fine-tuned LongT5 may also cause sub-optimal blueprints to be gener-
ated. Narayan et al. (2023) showed in their results that the approach of first generating
blueprints, then summaries conditioned on the blueprint only, has significantly inferior
performance. The use of BM25 top-1 and short retrieval length might also negatively
affect performance. Nevertheless, we demonstrated the potential of this simple pipeline
by observing only a 1.0 lower ROUGE score on most metrics while even outperform-
ing on ROUGE-L for GovReport. The higher F1-oracle score further highlights the
proposed pipeline’s capability to align with the oracle labels despite not being directly
trained on these labels. Further discussion is provided in Section 5.3.

Compared to GPT-3.5-turbo with zero-shot prompting, we observe a significant gap
between the proposed pipeline and GPT-3.5-turbo zero-shot on GovReport, with dif-
ferences of 5.7, 6.6, and 2.4 in the ROUGE-1, ROUGE-2, and ROUGE-L metric,
respectively. On the contrary, GPT-3.5-turbo performs best on SummScreenfd, achiev-

24
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GovReport SummScreenfd
Methods
R'l R'2 R'L Floracle R'l R'2 R'L Floracle
MemSum 58.3 28.5 24.0 16.9 265 34 142 2.4
GPT-3.5-turbo 514 185 223 - 275 54 14.8 -

(zero-shot)

LongT5 4096 + | 57.1 25.1 247 246 |245 27 11.6 7.5
BM25 top-1

Table 5.1: Results for extractive summarization experiments. The F1-oracle metric is
not reported for GPT-3.5-turbo, as the outputs have minor differences from the original
document, making sentence/passage exact matching difficult to implement. We use
zero-shot prompting for GPT-3.5-turbo and truncate the input to 4096 tokens to avoid
outliers exceeding context length restrictions and to make a meaningful comparison
with the proposed pipeline.

ing the highest scores on all metrics. This discrepancy in performance can potentially
be explained by the nature of the two datasets. As described in Section 4.1, Gov-
Report is formatted as articles written in formal language. This clean format allows
fine-tuning approaches that are better at capturing keyword similarities to perform well
on GovReport. In contrast, SummScreenfd consists of TV show transcripts containing
mostly dialogues and scene descriptions, while the corresponding summaries focus
more on capturing the abstract information conveyed in the transcripts. Because of this,
GPT-3.5-turbo’s stronger natural language understanding abilities can help to extract
sentences that accurately capture abstract information.

The performance differences on the two datasets can be further analyzed to reveal
key properties of extractive summarization systems. In Table 1.1, we see that the
LongT5-XL abstractive summarization model achieves scores of 58.1, 27.3, and 29.7 on
ROUGE-1, 2, L for GovReport, and 31.4, 6.7, and 18.8 for SummScreenfd, respectively.
Comparing these results to the MemSum baseline and the proposed pipeline, we can
observe that the ROUGE score difference on GovReport is relatively small, with roughly
similar ROUGE-1 and ROUGE-2 but higher ROUGE-L. Nevertheless, the performance
gap on SummScreenfd becomes much more significant, where the abstractive model
has ROUGE scores that are 6.9, 4.0, and 7.2 points higher compared to the proposed
pipeline. Since summarization on SummScreenfd is often more abstract, requiring the
capture of complex discourse information, the observation that extractive summarization
methods perform less well on SummScreenfd suggests that current models are still
struggling to demonstrate a high-level understanding of the input text. Current methods
emphasize maximizing ROUGE scores, which focus on keyword recall, while future
approaches should also aim to improve natural language understanding in extractive
summarization models to generate summaries that are more comprehensive and faithful.
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GovReport SummScreenfd
Method
R-LL SummaC FactScore | R-LL. SummaC FactScore
(input/ext) (input/ext)

LongT5-XL 29.7 68.8 78.1 18.8 36.9 38.8
4096

MemSum ext 289 63.5/414 78.3 16.6 36.5/222 30.1
+ LongT5-XL

beam fine-tune

Blueprint ext 272 689/51.3 74.9 16.3 37.4/23.8 30.4
+ LongT5-XL

beam fine-tune

Zero-shot LLM

GPT-3.5-turbo 21.8 - - 13.7 - -
GPT-3.5-turbo 21.7 - - 15.2 - -
(blueprint ext)

Table 5.2: Results of abstractive summarization. LongT5-XL 4096 is the end-to-end
abstractive summarization model. For both MemSum and our proposed extractive
summarization pipeline, we fine-tune LongT5-XL on oracle labels and perform extract-
then-summarize. We also include zero-shot LLM results using GPT-3.5-turbo in two
settings 1) utilizing the first 4096 tokens and 2) utilizing the blueprint-extracted pas-
sages. For brevity, we only report the ROUGE-L score. The SummaC scores compare
the results to the input document truncated to the first 4096 tokens for all outcomes
(input/ext), and for the extract-then-summarize approaches, we also calculate entail-
ment against the extracted passages (input/ext).

5.2 Abstractive Summarization

Table 5.2 shows the results of our proposed method using blueprint-extracted pas-
sages, compared against the LongT5-XL abstractive summarization and extract-then-
summarize using MemSum extracted passages baselines. Similar to the results of
extractive summarization, we observe that our pipeline produces worse ROUGE-L
scores compared to both LongT5-XL and MemSum extract-then-summarize. The per-
formance gap between our pipeline and MemSum extract-then-summarize suggests that
the quality of retrieved passages at the extractive summarization stage also influences
the abstractive summarization stage. We also note that our extract-then-summarize
results presented in Table 1.2 have ROUGE-L scores of 32.8 and 22.0 for GovReport
and SummScreenfd, respectively, which are much higher than the results in Table 5.2
where the best performing LongT5-XL abstractive baseline only has ROUGE-L scores
of 29.7 and 18.8 for GovReport and SummScreenfd, respectively. This highlights the
importance of obtaining salient extracted passages, as they have a strong influence on
abstractive summarization results.
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In addition, we note that both extract-then-summarize methods produce lower ROUGE-
L scores compared to the end-to-end LongT5 abstractive summarization model, with
the biggest gap of 2 ROUGE-L scores on SummScreenfd. For our proposed pipeline,
the reason for performance drop can be attributed to the fact that we use two end-to-end
LongT5 models in our pipeline, which potentially accumulate errors in the output.
This is consistent with the results of Narayan et al. (2023), where the 2-stage pipeline
performs significantly worse than using a single LongT5 model to generate both the
blueprint and summary. Nevertheless, the abstractive model still works reasonably well
compared to the MemSum extract-then-summarize baseline, suggesting that current
extractive summarization approaches cannot effectively find salient information for
abstractive models to focus on.

In terms of the GPT-3.5-turbo zero-shot baseline, we observe that the ROUGE-L scores
are significantly lower than the previous baselines and the proposed pipeline. This
result is consistent with previous abstractive summarization evaluations on LLMs
(Shaham et al., 2023), where even state-of-the-art LLMs like GPT-4 cannot surpass the
performance of state-of-the-art fine-tuned results. Additionally, we also compare the
zero-shot performance between using the first 4096 tokens and extracted passages with
blueprint questions. The resulting ROUGE-L scores are similar for GovReport, while
blueprint extraction has 1.5 higher ROUGE-L on SummScreenfd.

Despite worse results on the ROUGE-L metric for our proposed pipeline, the results on
faithfulness metrics are competitive against both baseline models, with our proposed
pipeline achieving the best scores on SummaC for both datasets and on FactScore
for SummScreenfd. Regarding the SummaC metric, we first calculate the entailment
of generated summaries against the first 4096 tokens of the input document, as our
proposed pipeline uses this truncated input for the blueprint generation stage. For
extract-then-summarize approaches, we also calculate entailment against the extracted
passages to examine the influence of extractive summarization on abstractive summary.
We observe that compared to the first 4096 tokens, the SummaC score of our proposed
pipeline outperforms all baselines, with the most significant improvements seen over
the MemSum extract-then-summarize approach, with an increase of 5.4 and 0.9 on
GovReport and SummScreenfd, respectively. The performance gap is even bigger for
SummaC calculated against extracted passages, where the gains are now 9.9 and 1.6.
This shows that our proposed pipeline not only generates abstractive summaries that are
better entailed by the input document but also helps the abstractive summaries to be
more grounded on the extracted passages. The reasons for this performance increase
can be attributed to the use of blueprints, which helps retrieval in locating factual
information in the input, which provides stronger signals to the abstractive summarizer
on what contents it should include.

In terms of the FactScore metric, our proposed pipeline slightly outperforms the Mem-
Sum extract-then-summarize on SummScreenfd but performs significantly worse on
GovReport. The LongT5-XL abstractive baseline achieves the strongest results on
FactScore, recording 38.8 on SummScreenfd compared to 30.4 for the blueprint extract-
then-summarize and 78.1 on GovReport, which is close to the 78.3 of MemSum
extract-then-summarize. These results highlight significant performance gaps: between
the blueprint extract-then-summarize method and baselines for GovReport, and be-
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tween the LongT5-XL abstractive baseline and the extract-then-summarize methods for
SummScreenfd.

There are several takeaways from the FactScore results. First, the strong and consistent
LongT5-XL abstractive baseline results suggest that extract-then-summarize methods
have shortcomings in achieving fine-grained factual consistencies. Considering better
results on entailment for the blueprint extract-then-summarize model, the reason for
the worse results on extract-then-summarize methods can potentially be attributed to
retrieved passages missing some important factual information (i.e. lower recall), as
calculating entailment is similar to calculating precision where we check whether each
summary sentence is entailed by the input document. This makes it possible to have
high entailment even if the summary does not cover all important information. Second,
looking specifically at the FactScore results for extract-then-summarize methods, we
see that the blueprint approach performs slightly better than the MemSum on Summ-
Screenfd, while being significantly worse on GovReport. The performance difference
between the two datasets can potentially be explained by the differing writing styles in
the input/output. SummScreenfd summaries are less straightforwardly inferred from
the input, making blueprints potentially helpful for the abstractive summarizer to focus
on specific factual information in TV show transcripts. In contrast, GovReport’s formal
language may make information aggregation and reasoning easier, diminishing the
advantage of using blueprints. Hence, the MemSum extract-then-summarize approach,
with better extractive summarization performance, may benefit more from GovReport’s
formal writing style, making factual content more extractable.

5.3 Oracle Experiments

Despite the slightly worse performance of the proposed pipeline on extractive summa-
rization, we do note that the whole process can potentially be improved to achieve better
performance. Similar to what we did in the Introduction section, where we established
upper bounds of the extractive summarization task on long document summarization,
we extend the proposed pipeline with simple oracle approaches to explore possible
performance improvements.

5.3.1 Blueprint Generation

For the blueprint generation stage, one potential performance bottleneck is that the
LongT5 model is only fine-tuned with a maximum of 4096 input tokens. Better
performance may be achieved by considering the entire input, which could enable
more important aspects to be considered. Drawing inspiration from the hierarchical
merging method used for book-length summarization (Chang et al., 2024), we use the
blueprint generation model to generate a blueprint for each 4096-token chunk in the
input. This yields much more blueprint QA pairs than the first 4096-token approach,
but the concatenation of the retrieved passages would also result in more tokens for
extractive summaries, making evaluation unfair. We thus perform greedy selection
with beam search on the retrieved passages, essentially calculating a recall of oracle
extractions to see whether the generate for each approach can capture more salient
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GovReport SummScreenfd
R-1 R-2 R-L| R-1 R-2 R-L
Generate for each 4096 chunk | 68.9 35.8 30.5 359 55 159
Oracle blueprint + BM25 top-1 | 62.3 34.1 30.2 | 33.6 6.0 16.5

Method

Table 5.3: Results of the generate for each and the ground truth extractive summariza-
tion methods.

information than only using the first 4096 tokens. The retrieval method remains to be
BM25 top-1.

Our results are shown in Table 5.3. We compare this approach to the extractive sum-
marization performance using BM25 top-1 retrieval over the ground truth blueprints.
Interestingly, we observe that the generation for each approach outperforms the ground
truth on all ROUGE metrics for GovReport, with significant gaps on ROUGE-1, while
the performance on SummScreenfd is also competitive. Relating to the background
study described in Section 2.1, we argue the importance of including more context
length beyond the 4096 tokens used by Narayan et al. (2023). In addition, the generation
for each method could be viewed as performing an intermediate filtering that focuses
more on salient passages, which potentially suggests that extractive summarization
approaches can be applied to this filtered set of passages to reduce the noise of less
relevant information.

5.3.2 Retrieval

Recall against oracle
Method
GovReport SummScreenfd
top-1 30.0 10.4
top-10 80.3 47.6

Table 5.4: Recall against oracle for BM25 top-1 and top-10 on GovReport and Summ-
Screenfd.

For the retrieval stage, we utilize the top-1 passage for each blueprint question to ensure
a sensible concatenated passage length for evaluation. Nevertheless, previous work has
demonstrated the inaccuracy of retrieval when using a small number of top-k passages
for downstream tasks (Karpukhin et al., 2020b). Therefore, we conduct a simple
experiment by considering the top-10 passages retrieved using BM25 and calculate
their recall against the oracle, using a similar calculation as described in Section 4.4.2.

Our results are shown in Table 5.4. Compared to BM25 top-1, top-10 passages have
a drastically higher oracle recall with 50.3 and 37.2 gaps for GovReport and Summ-
Screenfd, respectively. This suggests potential improvements to the proposed pipeline
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by using more generous retrieval methods aligned with the extractive summarization
objective, with carefully selected procedures to locate the best passage related to a
single blueprint question. In addition to retrieval methods, the retrieval unit length
could also be an influential factor as Xu et al. (2024) used 300 word length passages
as retrieval targets (compared to 40 and 20 words for GovReport and SummScreenfd
respectively in this work). Even though longer passage lengths make evaluation on
extractive summarization not meaningful, the concatenated passages could instead
offer improvements to the extract-then-summarize stage by providing the abstractive
summarizer with more information.

5.4 Empirical Analysis

In Table 5.5, we present examples of summaries generated by the MemSum and
Blueprint extract-then-summarize methods for a TV show transcript from the Summ-
Screenfd dataset, along with the generated blueprint QA pairs and the ground truth
summary. Inconsistencies in the generated summaries and QA pairs are highlighted
in red. Upon comparison of the two generated summaries, it becomes evident that the
MemSum extract-then-summarize method produces a summary that is almost entirely
unfaithful, with only one sentence consistent with the information in the input document.
Upon closer examination, we note that the summary heavily focuses on the character
Professor Spafford, who plays a minor role largely irrelevant to the main plot of the
transcript which revolves around Joey’s party. Conversely, the blueprint extract-then-
summarize summary exhibits fewer factual inconsistencies, capturing the gist of a
crucial scene where Rachel learnt about Joey’s party and Joey’s initial reluctance to
have his friends attend due to fear of them looking silly at the party.

The factual inconsistencies in the blueprint extract-then-summarize summary may be
attributed to errors in the blueprint QA pairs, as they contain incorrect information
about characters Ross and Charlie. Despite these errors, the QA pairs successfully
captured salient information regarding Rachel discovering Joey’s secret party, which
likely contributed to the summary accurately describing this scene. Additionally, it is
worth noting that the blueprint extract-then-summarize summary includes information
about characters Chandler and Phoebe, which are not mentioned in the blueprint QA
pairs but are present in the retrieved passages. This discrepancy suggests that retrieved
passages may contain noise that deviates the focus of the QA pairs.
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Reference
Summary

While Rachel is in the same position as Joey was a year ago, Joey
holds a Days of our Lives cast party, but does not want any of his
friends to attend. Ross gets a crush on another professor, Charlie
(Aisha Tyler), who has only ever dated "Nobel Prize” winners. He
and Rachel catch her and Joey kissing at the party.

MemSum
ext Sum-

mary

Joey is unable to get Monica to attend his Days of Our Lives party on
the roof of the building, but he promises to get her there if Monica will
only agree to pose as a fake ”British accent” for a guy who is in a cult.
Monica is soon in over her head and it costs her the friendship of one
of the guys in the cult. Ross and Charlie find a very sweet and kind
Professor Spafford (whom they later see in a restaurant) and his wife,
who is very knowledgeable about science and won the Nobel Prize
for his work. When they go on a cruise to the Galapagos, Ross and
Charlie meet a very different Professor Spafford, who is very different
in his thinking and who makes absolutely no sense at all. The two
disagree with his teaching methods and refuse to accept his wife’s
findings. Ross and Charlie go to a restaurant to get away from all the
women, and find a very masculine Professor Spafford. He refuses

to believe anything that Rachel has to say, and storms out in anger.
Rachel, realizing that he is not the only one in a cult, breaks up with
the very handsome Professor Spafford.

Blueprint
ext Sum-
mary

Chandler dates a woman who intimidates him by being a soap opera
fanatic, despite his protests that he doesn’t like them. Rachel goes to
a rooftop party with Joey, who invites her to meet some friends of his
from work. Joey is uncomfortable around his friends who are also his
co-workers. Phoebe has trouble connecting with her new boss, who
is also her ex-boyfriend. Ross meets a guy who flirts with him, but
intimidates him by being a Nobel Prize laureate.

Blueprint
QA pairs

Q: Who is shocked to see that Charlie Wealer is the new professor in
his department A: Ross

Q: What does Ross have to deal with by visiting a restaurant contain-
ing nuts A: his allergy

Q: Who secretly hosts a party for the Days of Our Lives crew A: Joey
Q: Where does Joey host his party A: the roof

Q: When did Rachel discover that Joey was hosting a party for the
Days of Our Lives crew A: the last minute

Q: Who discovers that Joey was hosting a party for the Days of Our
Lives crew A: Rachel

Q: What does Rachel accidentally discover that Joey was hosting A:
the party

Q: Where does Rachel go to apologize to Joey A: the house

Table 5.5: Examples of MemSum and Blueprint extract-then-summarize abstractive
summaries from the Friends TV show S9E20, along with generated blueprint QA pairs
for the Blueprint extraction approach. Due to space constraints, we omit the retrieved
passages. Summary information and blueprint QA pairs inconsistent with the input are
highlighted in red.
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Conclusions

In this work, we developed a pipeline for both extractive and abstractive summarization.
Initially, the pipeline generates blueprints from the input document. It then retrieves
relevant input passages based on the blueprint questions to create an extractive summary.
Finally, the selected passages are used to compose an abstractive summary using an
oracle fine-tuned model specifically designed for summarizing extracted passages. We
conducted our experiments on the GovReport and SummScreenfd datasets, evaluating
the results against state-of-the-art extractive and abstractive baselines, as well as zero-
shot LLM approaches. Performance was assessed using various automatic metrics
reflecting generation quality and faithfulness.

During our background study, we validated the idea of using extractive summarization
for long documents by establishing performance upper bounds using oracle extractive
summarization methods. We further explored whether such oracle methods could be
applied to model fine-tuning to enable better task performance in summarization over
extracted inputs. These observations supported our hypotheses that prioritizing the
processing of salient information in the input could potentially lead to performance
gains in the long document summarization task.

Our results demonstrate that employing a simple setup utilizing end-to-end models
for both blueprint and summary generation, along with BM25 retrieval, can achieve
competitive faithfulness performance in terms of entailment compared to LongT5-
XL and MemSum extract-then-summarize. However, our approach exhibits inferior
performance in terms of generation quality as measured by ROUGE scores, while also
falling behind on FactScore, where significant performance gaps exist compared to the
LongT5-XL baseline. We attribute the strong showing on entailment to the intermediate
generation of blueprints, which capture factual information from the input, thereby
enabling a more grounded abstractive summarization process. Additionally, we discuss
reasons for the lower generation quality, which can be explained by the drawbacks of
using two separate end-to-end models and the simplicity of our setup in fine-tuning
and retrieval methods, and lower FactScore due to incompleteness in the retrieved
passages used for abstractive summarization. Nevertheless, our oracle experiments
show that our proposed approach can generate summaries that capture more aspects
of the ground truth under oracle settings, showing promise for future improvements

32
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to the pipeline. Furthermore, we note that our proposed pipeline, with intermediate
blueprints, is more interpretable than end-to-end abstractive and extract-then-summarize
approaches, providing a list of factual information that can be viewed as a gist of the
input to make summarization less opaque.

In the future, we aim to explore more sophisticated pipeline configurations to gain
a better understanding of the extent to which blueprints and retrieval can enhance
summary quality. Specifically, we plan to test alternate setups by increasing the retrieval
unit length to assess whether extracting more information can improve abstractive
summarization. Additionally, we intend to modify the blueprint generation and retrieval
stages to consider extractive summarization objectives, which would enable us to obtain
higher-quality retrieved passages. By conducting more in-depth studies of the process,
we aim to develop more optimal pipelines capable of achieving competitive generation
quality while maintaining fidelity compared to state-of-the-art baselines.
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Appendix

A.1 Dataset Examples

Table A.1 and A.2 provide one example input/output pair from GovReport and Summ-
Screenfd datasets, respectively. The contexts and summaries are truncated to fit into
one page where necessary.
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Congress annually considers 12 regular appropriations bills for the fiscal year that
begins on October 1. These bills together with other legislative measures provid-
ing appropriations known as supplemental and continuing appropriations (also
referred to as continuing resolutions or CRs) provide annual appropriations for
the agencies, projects, and activities funded therein. The annual appropriations
cycle is often initiated after the President’s budget submission. The House and
Senate Appropriations Committees then hold hearings at which agencies provide
further information and details about the President’s budget. These hearings may
be followed by congressional consideration of a budget resolution establishing a
ceiling on overall spending within appropriations bills for the upcoming fiscal year.
Committee and floor consideration of the annual appropriations bills occurs during
the spring and summer months and may continue through the fall and winter until
annual appropriations actions are completed. This report discusses FY2019 con-
gressional appropriations actions and the impacts of the statutory budget enforce-
ment framework established in the Budget Control Act of 2011 (BCA; PL. 112-25
) and the Bipartisan Budget Act of 2018 (BBA 2018; P.L. 115-123 ). It includes a
chronological discussion and timeline ( Figure 1) of these actions. FY2019 Ap-
propriations and the Bipartisan Budget Act of 2018 FY2019 appropriations actions
were impacted by the BCA, which placed statutory limits on spending for FY2012-
FY2021, divided between defense and nondefense. In addition, the law created
procedures that would automatically lower those caps if specified deficit-reducing
legislation were not enacted. Congress has adjusted these statutory caps, including
through the Bipartisan Budget Acts (BBAs) of 2013 (for FY2014 and FY2015),
2015 (for FY2016 and FY2017), 2018 (for FY2018 and FY2019), and 2019 (for
FY2020 and FY2021), which provided for spending cap increases in both defense
and nondefense categories. BBA 2018 capped FY2019 discretionary spending for
defense at $647 billion and for nondefense at $597 billion.

Congress annually considers 12 regular appropriations measures to provide discre-
tionary funding for federal government activities and operations. For FY2019, ap-
propriations actions spanned two Congresses, between which there was a change
in the majority party in the House. The process of drafting, considering, and enact-
ing FY2019 appropriations began in early 2018 and included the House and Sen-
ate Appropriations Committees each marking up and reporting all 12 annual appro-
priations bills by the end of July. Five appropriations bills in the 115th Congress
were enacted into law by the start of the fiscal year. An additional seven appropri-
ations bills remained in various stages of consideration. Continuing resolutions
(CRs) were enacted in order to extend funding of government operations covered
in these seven bills.

Table A.1: Example of one truncated input/output pair in the GovReport dataset.
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[Scene: Central Perk, Joey is talking to Ross] Joey: There’s this woman, that I
like. A lot. Well, it’s complicated. She’s with this other guy. For a long time. And
I could never do that to the guy, y’know? ’Ccause we’re really good friends. Ross:
So, uh, this guy, she used to go out with, is, uh... is he a good guy? Joey: Yeah,
he’s the best. Ross: Then talk to him! He might be fine with it. Joey: Oh, I don’t
know. Ross: Joey, it’s worth finding out. I mean, if you really like her. Joey: I
do! So much! I can’t stop thinking about her! I can’t sleep, I- Ross: Okay, Joey,
you know what? You have to go for it. How often does this happen to you, huh?
You owe it to yourself. (Walks towards the door until...) Joey: It’s Rachel. [Fade
to Black, then fade in again with Ross stopped at the doorway.] Ross: (closes

the door) Did you um-I"m sorry, did you just say it’s Rachel? Joey: Yes. Ross:
Um, you...you like Rachel? Joey: Yes. I like Rachel. Ross: Rachel?! Joey: (star-
tled) Yeah, okay but look, buy uh-Hey-hey, y’know, y’know who else I like?
You! And it-it doesn’t get said enough. I like you Ross. Ross: But R-R-Rachel-
Rachel?! Joey: Yeah, but it’s not a big deal. Ross: It’s not a big deal? Oh, I’'m
sorry I just...um, I...what about all the stuff you-you just said? I mean how about,
I like-you-you can’t stop thinking about her. Like how you can’t sleep? Joey:

I’m an actor, y’know? As-as a group, we tend to be over dramatic. Ross: Rachel
who’s carrying my baby? Rachel? Joey: Look no, I-I know it’s bad, and I know
it’s wrong. Okay? But-but it’s not like anything’s ever gonna happen. Y know?
These-these are just feelings, they’re gonna go away. Ross: Y’ know what? I-I
gotta go. (Starts to leave.) Joey: Oh come on Ross! Hey Ross-Ross don’t... Ross:
(stops) I just-y’know-I-I just have one-Rachel?! (He exits and starts to walk away,
passes a window, stops, and says “Rachel?!” again. Joey sighs and turns around to
face Gunther.)

Ross, shocked at Joey’s declaration, avoids him, but eventually convinces him to
tell Rachel. Joey confesses his love for Rachel, but Rachel politely and lovingly
turns him down. Phoebe is convinced that a British man called Don is Monica’s
soulmate.

Table A.2: Example of one truncated input/output pair in the SummScreenfd dataset.
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