
General Game Playing with pUCT and Deep RL

Cosmo Bobak

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
We produce a general game playing system based on deep neural networks and an
enhanced form of Monte-Carlo Tree Search that learns and improves by training against
itself, and apply it to a novel pair of board games - Gomoku and Ataxx. Our system
is designed to be general - it requires no domain-specific knowledge to apply to new
games.

We evaluate this system against human players and a set of algorithmic baselines,
and show that our system produces agents that learn to play these games to a high
standard, surpassing the performance of the human players and our benchmarks and
demonstrating the system’s general ability to learn to play new games.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee. Relevant information can be found in the Appendix.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Cosmo Bobak)

ii

Acknowledgements
I would like to thank my supervisor, Dr. Kobi Gal, for his wise guidance and support
throughout this project, my friends and family for their encouragement and incredible
support, the School of Informatics for providing the resources necessary to complete
this project, and particularly the many intelligent and shockingly patient friends I have
made in the game programming community, without whom this project would not have
been possible.

iii

Table of Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Contributions . 1

2 Background 3
2.1 History of AI for games . 3
2.2 Foundations . 4
2.3 AlphaGo, AlphaGo Zero, AlphaZero 5
2.4 Enhancements to AlphaZero . 5

3 The Veritas General Game Player 7
3.1 Overview . 7
3.2 Search Engine . 8
3.3 Self-Play Loop . 13

3.3.1 Game Generation . 13
3.3.2 Playout Cap Randomisation 13
3.3.3 Parallelism . 14

3.4 Training Procedure . 14
3.4.1 Model Architecture . 14
3.4.2 Softmax Policy Temperature 15
3.4.3 Auxiliary Soft Policy Head 16
3.4.4 Legal Move Masking . 16
3.4.5 Policy / Value Weighting . 16

4 Evaluation 17
4.1 Results against Human Players . 17

4.1.1 Ataxx . 17
4.1.2 Gomoku . 18

4.2 Results against Algorithmic Baselines 20
4.2.1 Ataxx . 20
4.2.2 Gomoku . 23

5 Conclusions and Future Work 24
5.1 Conclusions . 24
5.2 Future Work . 24

5.2.1 Improving the Search Engine 25

iv

5.2.2 Improving the Training Procedure 25
5.2.3 Improving the Neural Network 25
5.2.4 Application to Other Games 25

Bibliography 26

A Participants’ Information and Ethics 29

B Game Descriptions 30
B.1 Gomoku . 30
B.2 Ataxx . 30

v

Chapter 1

Introduction

This chapter will introduce the reader to the problem this paper addresses, and the
solution that we propose.

1.1 Motivation and Problem Statement

While strong programs for popular games like Chess (Disservin, 2024) and Go (Wu,
2019) exist, less popular games may not have enjoyed corresponding levels of effort
developing dedicated AI programs for evaluation, game review, and practice. Prior work
(Silver et al., 2018) demonstrates that a general system for learning to play board games
is possible, but focuses strictly on popular games, and many subsequent replications
and improvements have not applied such a system to new games (Tian et al., 2019; Wu,
2019).

1.2 Contributions

In this project we present a general game playing framework for creating AI programs
for playing board games, designed to achieve high performance in novel games with
minimal adaption, and we train strong agents for the games of Gomoku and Ataxx1,
which are interesting for their complexity, strategic depth, and relative lack of previous
work exploring them.

Our main contributions are the following:

• An open-source framework for training strong agents in arbitrary two-player
perfect information2 games, the main component of which is our game engine,
Veritas, a sub-system that contains an algorithm for finding strong moves and a
self-play tournament handler for training the system against itself.

1We describe these games in the Appendix.
2Perfect information games are games where all strategically relevant information is available to all

players at all times - examples include Chess, Go, and Checkers.

1

https://github.com/cosmobobak/veritas

Chapter 1. Introduction 2

• Two high-performance open-source board game libraries - we develop Gomoku-
gen, a library for the game of Gomoku, and Ataxxgen, a library for the game
of Ataxx. These libraries handle move generation, game state representation,
serialisation, and encodings for tensor representations of actions and states for
use in machine learning.

• Trained agents for both games, alongside evaluation and analysis of their perfor-
mance against both humans and algorithmic benchmarks.

https://github.com/cosmobobak/gomokugen
https://github.com/cosmobobak/gomokugen
https://github.com/cosmobobak/ataxxgen

Chapter 2

Background

This thesis relates to work in the domains of game-tree search, deep neural networks, and
reinforcement learning, specifically the problem of creating artificial agents that can play
abstract strategy games. In this section we discuss the relevant history of the application
of artificial intelligence techniques to board games, and then we move on to cover
three critical areas: first, the foundational work in Gerald Tesauro’s two Backgammon
papers (Tesauro, 1990, 1995); second, the work we replicate in DeepMind’s three
AlphaGo/AlphaZero papers (Silver et al., 2016, 2017, 2018); and lastly, work that
builds upon the AlphaZero approach from other researchers (Wu, 2019, 2024a,b; Zhao
et al., 2022; Grill et al., 2020).

2.1 History of AI for games

Since the beginning of the field of artificial intelligence, there has been interest in
programs that are able to play board games, and the creation of such programs has
been viewed as an important milestone towards more powerful and general AI systems
(Shannon, 1950).

Early programs would typically rely on hand-crafted heuristics and features, but modern
game playing programs near-universally rely upon neural networks and reinforce-
ment learning. One of the earliest successes with neural networks was Neurogammon
(Tesauro, 1990), a program that used supervised learning to train an outcome-estimating
neural network for the game of Backgammon which was then combined with expec-
timinimax1 search (Michie, 1966), becoming the strongest Backgammon program of
its time. Later came TD-Gammon, which combined this approach with reinforce-
ment learning, where TD-Gammon could play games of Backgammon against itself
to improve, becoming the first program to compete at the level of top Backgammon
professionals. TD-Gammon also exhibited novel and superior strategies that it had
not been programmed with, demonstrating the ability of reinforcement learning to go
beyond existing human knowledge (Tesauro, 1995).

1Expectiminimax is an extension of standard minimax search that can handle random chance by
performing a weighted average across all outcomes.

3

Chapter 2. Background 4

Modern programs have developed this approach further - the first system to become
superhuman at the game of Go was AlphaGo (Silver et al., 2016), a program that
combined deep neural networks, Monte-Carlo Tree Search, and reinforcement learning
to beat one of the strongest Go players four games to one (Borowiec, 2016).

Even in Chess, where hand-designed heuristic approaches have been historically dom-
inant, neural networks combined with reinforcement learning have been successful.
AlphaZero, a generalisation of the AlphaGo system that uses iterative self-play rein-
forcement learning beginning from random data was applied to Chess and significantly
outperformed Stockfish, the strongest program at the time (Silver et al., 2018). In the
time since, Stockfish has once again become unambiguously stronger than any other
program, including AlphaZero, partially as a result of the replacement of its evaluation
function with a shallow neural network (Disservin, 2024).

Programs like AlphaZero are considered to be generally applicable to any two-player
perfect-information game, as evidenced by the fact that the same architecture can be
applied to Chess, Go, and Shogi, achieving superhuman performance in each case.
There is also ongoing research to improve this approach further, resulting in systems
like KataGo, which is much stronger than AlphaGo/AlphaZero at the game of Go, while
requiring significantly less computational input for training (Wu, 2019), and Leela
Chess Zero, an open-source implementation of AlphaZero focused on Chess, which has
been developed into a much stronger program than AlphaZero, often competing with
Stockfish for the title of ”strongest chess program”.

2.2 Foundations

Shannon (1950) identified the necessity for strong game playing agents to be able to
estimate the value of game-states quickly, and to search ahead in the game to improve
such estimates and calculate important sequences of moves. The following two papers
demonstrate a system that does just that.

Tesauro (1990) introduces Neurogammon, a Backgammon program that uses neural
networks trained on human games to approximate the state-value function, setting a new
standard in the quality of computer Backgammon play. The success of Neurongammon
demonstrated the efficacy of learned value functions for use in combination with game-
tree search.

Later, Tesauro (1995) enhances Neurogammon to develop TD-Gammon, a system that
improves by self-play reinforcement learning using T D(λ) (Sutton and Barto, 2020),
becoming a master-strength Backgammon player and advancing Backgammon theory
as a result of its novel approach to some strategic decisions.

These papers outline the general principle of combining search with learned value
approximation, and show how it can be very effective even with simple approaches.
Neurogammon is relevant to this work, as it represents one of the first example of
successfully applying neural networks to a complex board game. TD-Gammon is
relevant, arguably even more so, for demonstrating the power of self-play to match and
even surpass supervised methods.

Chapter 2. Background 5

2.3 AlphaGo, AlphaGo Zero, AlphaZero

This project aims to create strong programs for the games of Ataxx and Gomoku without
game-specific knowledge, using machine learning and self-play. The following papers
describe a system that can achieve this.

Silver et al. (2016) introduces AlphaGo, a system that uses deep neural networks trained
on human master play to evaluate positions and to guide Monte-Carlo Tree Search,
overcoming Go’s problematically high branching factor.

Silver et al. (2017) introduces AlphaGo Zero, which can be trained entirely without hu-
man data, using only self-play reinforcement learning to generate successively stronger
iterations of the system.

Silver et al. (2018) generalises AlphaGo Zero, removing Go-specific heuristics to create
AlphaZero, a system that plays Chess, Go, and Shogi to a superhuman standard.

Tian et al. (2019) replicates AlphaGo Zero, providing a high-quality open-source
implementation of the methods detailed in Silver et al. (2017).

These papers show how to apply search and learning methods to complex games for
which no trivial features exist for evaluation and move prediction. Silver et al. (2016) is
relevant to this work for its demonstration of how deep convolutional neural networks
are able to learn and predict the outcome of games that have complex structure. Silver
et al. (2017) is relevant to this work as we do not have the time nor expertise to produce
thousands of high-quality examples of play in the games we create agents for, and the
AlphaGo Zero paper demonstrates that their system works as well, if not better, when
trained from zero knowledge. Last of all, Silver et al. (2018) is of utmost relevance, as
it shows that our goal of training agents for new games is likely to work with minimal
domain knowledge, as demonstrated by the variety of games that AlphaZero learns to
play. Tian et al. (2019) is not especially groundbreaking, but it is relevant to this project
as it achieves the same goal as us - replicating and improving upon AlphaZero - while
providing an open-source implementation to build upon.

2.4 Enhancements to AlphaZero

Implementation of the two games will test the generality of the AlphaZero approach,
revealing whether it can cope well with games beyond Chess, Go, and Shogi. Addi-
tionally, this project combines a number of the enhancements developed for AlphaZero
since 2016, resulting in a system that incorporates the much of the state of the art,
particularly those improvements in the following works:

Wu (2019) adds many enhancements to AlphaZero to produce KataGo, a Go-specific
program that achieves much higher strength and training efficiency.

Zhao et al. (2022) adds a ”path consistency” regularisation loss to AlphaZero, and
claims significant benefits for training efficiency.

Wu (2024a), which enumerates additional enhancements to the AlphaZero approach
that have been developed since the publication of Wu (2019).

Chapter 2. Background 6

These papers are relevant to this work as a result of a notable issue with AlphaZero
- its data-inefficiency. DeepMind’s main AlphaGo Zero run reportedly took about 41
TPU-years of compute, while Wu (2019) achieves similar results in 1.4 GPU-years,
a 50x improvement over AlphaGo Zero, and Zhao et al. (2022) similarly claims an
increase in the rate of self-play learning, outperforming AlphaZero trained for 900K
steps after only 600K steps with PCZero, by 175 games to 163. We implement and
adapt many of the methods developed by these papers, and are able to train our agents
to high performance using limited resources as a result.

Chapter 3

The Veritas General Game Player

In this chapter we introduce our system, and explain how it achieves strong performance
in Gomoku and Ataxx. Images and explanations of these games are provided in the
Appendix. A visualisation of the overall operation of the system is shown in Figure 3.1.

3.1 Overview

Our system can learn to play any board game with all of the following characteristics:

1. The game must have exactly two players.

2. The game must be zero-sum, meaning that any gain for one player is an equal
loss for the other player, excluding games like Pandemic, where players cooperate
to win.

3. The game must be perfect information, meaning that all strategically relevant
information is available to all players at all times, excluding games like Poker,
where players cannot see each other’s hands.

Figure 3.1: An abstract visualisation of the self-play loop, showing the inputs and outputs
of the system and the process of self-improvement via reinforcement learning.

7

Chapter 3. The Veritas General Game Player 8

4. The game must be non-stochastic - all state transitions must be deterministic,
excluding games like Backgammon where the outcomes of dice rolls determine
future states.1.

By the process of iterated distillation and amplification we train neural networks that
progressively more accurately predict the value of states in the game and the best moves
to make in those states. Our system combines these neural networks with forward
planning via Monte-Carlo Tree Search to produce a strong game-playing agent that can
improve its decisions if it is allowed to think for longer.

Our system has three main components - the search engine, the self-play data generator,
and the training program. Components #1 and #2 are integrated in the same artefact,
veritas, while the training is managed by PyTorch code in the veritas-training project.
We explain the design and functioning of these components below.

3.2 Search Engine

Veritas’ search engine - the system that decides which moves to play - is a modified
form of Monte-Carlo Tree Search (MCTS) (Coulom, 2006), which is a search algorithm
for exploring adversarial game trees, like those of Chess and Go. The variant we
employ is called pUCT, which is a modification of the UCT algorithm2 that uses a
policy predictor to guide the search, rather than relying on uniform exploration. We use
the terms ”MCTS” and ”Monte-Carlo Tree Search” henceforth to refer to this modified
version of the algorithm, and ”pure MCTS” to refer to the original UCT algorithm.

A policy in the reinforcement learning and game theory setting is a a function that assigns
probabilities to each action in each state of the game, defining the action-probability
function π as shown in Equation 3.1.

π(a|s) = ∀a ∈ A(s),π(a|s)≥ 0, ∑
a′∈A(s)

π(a′|s) = 1

where π(a|s) is the probability of taking action a in state s
A(s) is the set of all actions in state s

(3.1)

A ”policy” can also refer to a partial policy representing a probability distribution over
actions in a single game-state, and we will primarily use the term in this manner.

Monte-Carlo Tree Search constructs a best-first search tree by iterating four steps - selec-
tion, expansion, simulation, and backpropagation, until a limit is reached. Pseudocode
for this procedure can be seen in Algorithm 1. During the construction of this tree,
MCTS generates a rollout distribution at the root of the search tree that corresponds to
a policy for the current game state. The MCTS policy is an unnormalised probability
distribution over the possible actions in this game-state. Visualisations of such policy
distributions are shown in Figures 3.2 and 3.3.

1This constraint is the least important for our system - MCTS admits the extension of ”chance nodes”
with little modification, which would allow our system to learn to play games like Backgammon.

2Essentially the ”canonical” form of MCTS.

https://github.com/cosmobobak/veritas
https://github.com/cosmobobak/veritas-training

Chapter 3. The Veritas General Game Player 9

Algorithm 1 Monte-Carlo Tree Search
1: s← Root State
2: while time limit not reached do
3: s′← Select(s) ▷ Select a child node according to pUCT (3.2; 3.3)
4: if s′ is not terminal then
5: s′← Expand(s′) ▷ Add a child node to the tree
6: v← Simulate(s′) ▷ Estimate the value of the new node
7: else
8: v← Value(s′) ▷ Get the value of the terminal node
9: end if

10: Backpropagate(s′,v) ▷ Update the statistics of the path s→ s′

11: end while
12: return Rollout Distribution(s)

Select(s) =

Select

(
argmax

s′∈Children(s)
pUCT(s′)

)
if ∃s′ ∈ Children(s) s.t. N(s′)> 0

s otherwise
(3.2)

pUCT(s) =

fpu+ cpπ(a→s)
√

N(s)+1 if N(s) = 0

Q(s′)+ cpπ(a→s)

√
N(s)+1

1+N(s′) otherwise

where π(a→s) is the prior policy for the move to s
Q(s) is the value of s
N(s) is the number of visits to s
s′ is the parent state of s

fpu is the first-play urgency heuristic,
1
2

in Veritas

cp is the exploration constant,
5
2

in Veritas

(3.3)

Chapter 3. The Veritas General Game Player 10

Figure 3.2: A two-dimensional visualisation of the rollout distribution in a 15×15 Gomoku
position. Red stones belong to the side to move, blue stones the opponent. The
brightness of the grayscale indicates the number of rollouts that MCTS allocated to the
move, indicating the probability that placing a stone on the corresponding square is the
best move.

Chapter 3. The Veritas General Game Player 11

Figure 3.3: A three-dimensional visualisation of the same rollout distribution shown in
Figure 3.2. The height of the bars corresponds to the number of rollouts that MCTS
allocated to the move, indicating the probability of the move being played. It can be seen
how Monte-Carlo Tree Search finds ”sharp” policies that allocate a large fraction of the
probability mass to only a few moves.

Chapter 3. The Veritas General Game Player 12

Monte-Carlo Tree Search has a few notable characteristics:

First, MCTS is anytime - it conducts iterative simulations, each taking a short time,
and performs backup after each simulation, progressively growing and improving the
search tree. This means that it can be stopped at any time, and longer time will result in
progressively higher-quality results.

Second, MCTS is an improvement operator. The models we use generate a policy
and a value estimate for a game state, possessing a type signature of

NN : S→ (π,V) (3.4)

Our extended MCTS algorithm uses such a model and with it searches to improve the
policy and value estimates, and then uses the improved estimates to search further, and
so on, and as such has the signature

MCTS : (S→ (π,V))→ S→ (π,V) (3.5)

taking an existing policy-value predictor and improving it, to produce a new, stronger
policy-value predictor. This is what it means to be an improvement operator, and it is
the core property that makes MCTS useful for reinforcement learning in this setting. An
explicit view of exactly how MCTS acts to generate improved policies can be found in
Grill et al. (2020), which reframes MCTS as an online learning algorithm. They show
that MCTS converges on a rollout distribution that is the solution to the optimisation
problem of finding the policy π that maximises

∑
a

π(a)Q(a)−λNDKL(P||π)

where π(a) is the probability of taking action a
Q(a) is the value of taking action a
P(a) is the prior policy for taking action a
DKL(P||π) is the KL divergence between P and π

λN is a regularisation term that decays with N

(3.6)

This is just a maximisation of the expected value of acting under π, minus the weighted
KL divergence between the prior policy and the new policy, which is a regularisation
term that encourages the new policy to be close to the prior policy, and which decays as
the number of visits to a node increases. The KL divergence term is reversed from the
usual DKL(Posterior || Prior), and this has the benefit of allowing MCTS to allocate high
likelihood to moves that the policy network considers very unlikely without incurring a
large penalty (Wu, 2024b). As explicated by Wu (2024b):

”This also gives context to our earlier observations on why the visit distri-
bution can be treated so much like a high-quality policy, and for example
why in AlphaZero the visit distribution is a good policy training target
for future neural net training. Except for the discretization of the visits,
it basically is the policy of a continuous learning algorithm that broadly
resembles a lot of classical regularized reinforcement learning algorithms.”

- David Wu, Monte-Carlo Graph Search from First Principles

https://github.com/lightvector/KataGo/blob/master/docs/GraphSearch.md

Chapter 3. The Veritas General Game Player 13

3.3 Self-Play Loop

To train our agent to play a given game we use a technique called self-play, where the
agent plays games against itself to generate training data. This data is then used to
train a new model, which is then used to play more games, and so on. This process is
visualised in Figure 3.1.

3.3.1 Game Generation

To generate games, we use the procedure outlined in Algorithm 2.

Algorithm 2 Game Generation Procedure
1: Start with the initial game position
2: n← 8+Bernoulli(0.5) ▷ For Gomoku and Ataxx
3: Play n random moves
4: while game is not over do
5: Perform and record either 800 or 200 rollouts via playout cap randomisation
6: Make the move with the largest number of allocated rollouts
7: end while
8: Record the sequence of rollout distributions in conjunction with the game outcome

This procedure forces exploration by starting each game from an essentially unique
initial position, but after the initial period of randomisation the agent’s choices are fully
deterministic and always correspond with the move that is allocated the largest number
of rollouts. This marks a divergence from Silver et al. (2018), which uses Dirichlet
noise to induce exploration throughout the game.

This alternative method is motivated for two reasons. The first is simplicity of imple-
mentation, while the second is subtler - initial runs of Leela Chess Zero, an open-source
replication of AlphaZero for the game of Chess suffered from weak endgame play, as
a result of noise inducing blunders in the data that caused misevalation of endgames
requiring precise play. When the full evaluation of AlphaZero was released, it was
discovered that applying temperature (random noise) to the moves ought only be done
in the early stage of the game, which our approach achieves cleanly and avoids such
issues as were had by the Leela Chess Zero team.

3.3.2 Playout Cap Randomisation

In order to improve the quality of the data generated by self-play, we apply a technique
called playout cap randomisation, which involves randomly selecting a number of
rollouts to perform for each move, rather than using a fixed number of rollouts. This
technique was introduced in Wu (2019), and sacrifices some of the quality of the data
for a significant increase in the number of games generated, which is very important
for training the value-prediction head of the neural network, as each full game only
provides a single Win/Loss/Draw result - an extremely noisy and low-information
signal.

Chapter 3. The Veritas General Game Player 14

3.3.3 Parallelism

In order to take full advantage of a GPU, it is important to fully saturate the GPU with
work. In order to achieve this, we must ensure that the GPU is never waiting for data to
be loaded from main memory, and that the CPU is never waiting for the GPU to finish
its work. To this end, we develop an asynchronous data generation pipeline, where
hundreds of agents play in parallel while all sharing the same GPU executor, which
batches states to the GPU for evaluation and policy generation, and dynamically routes
the results back to the correct agent.

All finished games are sent through a channel to a writer thread, which outputs into three
files - a file of game outcomes, a file of game positions, and a file of rollout distributions.
Each file is formatted in csv, for ease of processing.

3.4 Training Procedure

Networks are trained with the PyTorch deep learning package (Paszke et al., 2019),
using the AdamW optimiser (Loshchilov and Hutter, 2017) with a learning rate of 10−4,
weight decay of 0.03, and a batch size of 64.

We encountered significant issues with training stability, which motivated the use
of a number of techniques to improve stability, including gradient clipping, batch
normalisation, and post-activation residual connections in the network architecture,
which we describe below.

3.4.1 Model Architecture

Given a game-state in tensor representation, the model predicts both the value of the
position and the policy distribution. As such, it has a shared backbone, which is then
split into two heads - a value head and a policy head. The value head outputs a scalar
value from 0 to 1, representing the the expected value of the current state, where 1 is
a guaranteed win, 0 is a guaranteed loss, and 0.5 is a draw or a position where both
sides have equal chances. The policy head determines the likelihood of the moves in the
position, producing a probability distribution over the actions available in the position.
We describe the architecture of these components in greater detail below.

Backbone

The model has a 5-block 128-filter residual backbone, using 3x3 convolutions through-
out. The blocks are similar to those of Leela Chess Zero, making use of Squeeze-
and-Excitation (Hu et al., 2017) modules and two convolutions per block. Notable
differences from the Lc0 architecture include the use of ReLU nonlinearities after every
convolution, the use of explicit batch normalisation, and the use of post-activation resid-
ual connections, which were found to significantly reduce the rate at which the network
diverges during training while improving the accuracy of the model’s predictions.

https://lczero.org/dev/backend/nn/#body

Chapter 3. The Veritas General Game Player 15

Value Head

The value head applies a 1x1 convolution to the latent representation to reduce it to
a single channel, which is then passed through a fully connected layer to produce a
128-unit hidden vector, which is then activated with a ReLU and passed through another
fully connected layer and a sigmoid to produce the final value estimate.

Policy Head

The policy head is implemented differently for each game. For Gomoku, the policy
head applies two steps of 1x1 convolution to generate a N×N policy distribution, where
N is the board size.

For Ataxx, we make use of attention policy, which involves the generation of N×N
sets of source and target vectors, which are then used to compute logits for the full
Cartesian product of the source and target sets - the logit for moving from some source
to some target is equal to the dot product of the source and target vectors.

Here, S and T are N×N×D tensors, where D is the length of the attention policy
vectors, and the policy is computed as in Equation 3.7.

S,T = NN-Policy(State)
Logits,t = Ss ·Tt

π(a) = σ({Logits,t : s ∈ S, t ∈ T})source(a),target(a)

(3.7)

This technique was proposed informally by Connor McMonigle, and is also employed
by the open-source Leela Chess Zero project (borg, 2022). The main advantage of this
approach is that it reduces the dimensionality of the policy head by a quadratic factor,
predicting N×N×2×D values, where D is the length of the attention policy vectors,
rather than (N×N)2 values, and we additionally speculate that it provides an inductive
bias that allows the network to learn that moves that use the same stone or which land
on the same square are likely correlated in quality.

3.4.2 Softmax Policy Temperature

When the prior policy from the neural network and the posterior MCTS policy are
compared, the MCTS policy is often found to be a significantly ”sharper” distribution
than the prior policy. This leads to an issue where successive iterations of reinforcement
learning will tend to over-sharpen the neural policy, and this can lead to a lack of
exploration or ”policy blindness”, where the neural policy so strongly believes that
some small set of moves are best that the search is unable to recover if it is incorrect.
To counteract this, we apply temperature to the output of the network during training, to
force it to learn a smoother policy. This is done by multiplying the logits by a scalar
before softmax is applied. We use a policy softmax temperature of 1.3 for both games.

In order to encourage exploration during search, we also apply temperature to the neural
network’s policy output in the root node of the MCTS tree when the agent is playing,
which has the added benefit of empirically improving playing strength. This latter
technique is used in KataGo (Wu, 2024a).

Chapter 3. The Veritas General Game Player 16

3.4.3 Auxiliary Soft Policy Head

In order to incentivise the network to learn the difference between moves that are poor
quality (e.g. the difference between a move that is merely ”not great” and a move that
would lose on the spot), we add an auxiliary policy head that is trained to predict the
output of the MCTS policy with a very high temperature (4.0, in our system). This
massively flattens the target distribution, and so the loss of this head depends far more
strongly on the relative quality of weaker moves in comparison to the main policy head,
which does not need to discriminate in this manner to achieve low loss.

This head is not used during play, and in fact it is pruned from the network before it
is converted to ONNX format for deployment. This technique is used in KataGo, but
was added after the publication of Wu (2019), and their implementation is described in
detail in Wu (2024a).

3.4.4 Legal Move Masking

During training, we manually set the values of all logits corresponding to illegal moves
to −∞, after the neural network generates them. This is done as an optimisation, as we
always know which moves are legal in any given position, and as such there is no need
for the model to waste effort learning to predict move legality. This technique masks off
the gradients that would ordinarily originate from mispredictions of move legality and,
this should free up more of the model’s representative capacity for learning to predict
the value of the position and the quality of the moves.

3.4.5 Policy / Value Weighting

During early generations, we weight the policy loss more strongly than the value loss,
as data generated early in the reinforcement learning process has a particularly poor
signal for the value of the position.

To understand why this is reasonable, consider that if an agent makes significant
mistakes in 1

10 of the states in a self-play game, then the value of all states prior to
a mistake becomes decorrelated with the actual outcome of the game, corrupting the
value target. In constrast, such a mistake-prone agent will still produce good data for
training the policy head in 9

10 of positions, and so the policy data generated by weak
agents is comparatively much more trustworthy.

Naturally, as the quality of the data improves, we remove this weighting, allowing
the networks to dedicate greater effort to value prediction once the data is sufficiently
high-quality to support this.

Chapter 4

Evaluation

We evaluate our agents against human opponents and against algorithmic baselines. We
find that our agents significantly outperform the baselines, and our final agents are able
to beat human players in both games.

4.1 Results against Human Players

We tested our agents against human players in both Gomoku and Ataxx. Each human
player played three games against each configuration of our system, and were given
a practice game prior to the test games. The human players were given extensive
explanation of the rules of the games, and two were novices, while one had prior
experience with both games. Our system played in three configurations for each game -
a pure MCTS agent with no neural networks, an agent that uses the very first trained
network from the game’s training run, and the final agent from the training run. In all
matches our agent was limited to one second of thinking time per move, and ran on a
GTX 1060 6GB GPU1.

4.1.1 Ataxx

In Ataxx, our final agent was able to beat all three human players in all three games.
Table 4.1 shows the results of the human matches. We find that the final agent is
strong enough that it wins every game against human players, even when they have
prior experience with the game. We additionally note a significant improvement in the
performance of the agent over the course of training, as the generation 1 agent was only
able to beat the novice players.

One of the human testers noted an interesting behaviour of the fully-trained agent in one
of the games - the agent got into a position where it was clearly completely winning,
and then did not make much effort to end the game quickly, instead playing ”slack”
moves that retained its advantage but that did not increase the agent’s number of stones
or attempt to capture all of the human player’s stones. We hypothesise that this is an

1UUID: GPU-c3d3665e-0c94-3ad5-2269-9542afe7e6d7

17

Chapter 4. Evaluation 18

artefact of the system’s learning objective, as the system is only trained to maximise the
probability of winning, and not to maximise the margin of victory, and as such it sees
no difference between winning by a single stone or by forty stones.

Agent Player 1 - Novice Player 2 - Novice Player 3 - Expert
MCTS Agent 0-3 1-2 0-3

Generation 1 Agent 3-0 1-2 0-3
Final Agent (Gen 17) 3-0 3-0 3-0

Table 4.1: Results of human matches in Ataxx. Results given in the format of ”wins for
the agent - wins for the human player”.

4.1.2 Gomoku

In Gomoku, our agents were comparatively weak, though still outperformed the human
testers by a large margin. We attribute this almost entirely to the significantly shorter
training run for Gomoku, which was only 9 generations long, compared to 17 for Ataxx.
The final agent was able to beat one novice player and the expert every time, but one
novice showed surprising skill and managed to win a game against the final generation-9
agent. The results of the human matches in Gomoku are shown in Table 4.2.

Figure 4.1 shows the position in which the final agent blundered against the novice
player. The agent takes longer than the allocated second of time to see that it must
play in either of the F9 or B13 squares, and instead plays in the D14 square, allowing
the human player to create a double-threat that the agent cannot defend against. In
post-game analysis, we find that if the agent is allowed to search for longer, even as
little as 1.5 seconds, it manages to find the F9 move and avoid a loss. This indicates
that this is not a fundamental flaw in the agent’s policy (as the agent is able to find the
correct move with more time), and we strongly suspect that the agent would overcome
this issue with more training.

Agent Player 1 - Novice Player 2 - Novice Player 3 - Expert
MCTS Agent 0-3 2-1 1-2

Generation 1 Agent 0-3 0-3 0-3
Final Agent (Gen 9) 3-0 2-1 3-0

Table 4.2: Results of human matches in Gomoku. Results given in the format of ”wins
for the agent - wins for the human player”.

Chapter 4. Evaluation 19

Figure 4.1: The position in which the agent blundered against a human tester (White to
move). The agent needed to play in either of the marked red intersections to avoid a
loss, but instead played on the marked blue intersection, allowing the human player to
create an unstoppable double-threat. The human player went on to win this game.

Chapter 4. Evaluation 20

4.2 Results against Algorithmic Baselines

We compare our agent to the following baselines:

• Random Agent - An agent that follows the uniform policy - for each available
action the probability of taking that action is the reciprocal of the number of
available actions, π(a) = |A|−1.

• Pure MCTS - A agent that uses Monte-Carlo Tree Search with no neural network
(uniform policy, determines state-value estimates via stochastic playouts). This is
a classical algorithm for general game playing that achieves strong performance
in many games without the need for domain-specific knowledge.

• Least-Captures (Ataxx-specific) - An agent that selects the move that flips the
fewest pieces to the player’s colour, with ties broken by selecting moves that do
not create new pieces.

• Most-Captures (Ataxx-specific) - An agent that selects the move that flips the
most pieces to the player’s colour, with ties broken by selecting moves that create
new pieces.

4.2.1 Ataxx

4.2.1.1 Random Agent, MCTS Agent, and Least-Captures

Ataxx is a complex, tactical game, and does not admit strong performance from agents
that rely on random simulation or that use weak heuristics.

As such, the three weaker benchmarks - random agent, MCTS agent, and Least-Captures
agent - lose every single game to the very first trained network playing at 1 node (no
lookahead).

This is a very pleasing result - our system soundly outperforms pure MCTS, which is
already a sophisticated general game playing algorithm - but it is not the most rigorous
test of the system’s strength. As such, we also test the system against the Most-Captures
agent.

4.2.1.2 Most-Captures

Most-Captures is a surprisingly strong heuristic agent (human players regularly report
finding it extremely difficult to beat), that relies on domain knowledge about the game
of Ataxx to select moves. It always picks the move that flips the most stones to its own
colour, breaking ties by selecting single-moves that create new stones.

The Ataxx networks were benchmarked primarily against this agent, as it is by far
the strongest of the four baselines. Despite the fact that Most-Captures is weak in an
absolute sense, performing no forward search, we can compare it against low-compute
configurations of our agent and gain very useful insight into our agent’s strength. We
measure performance using the Elo rating system, where a difference of 400 Elo
corresponds to a 10:1 win ratio.

https://en.wikipedia.org/wiki/Elo_rating_system

Chapter 4. Evaluation 21

Figure 4.2: Results from the main Ataxx reinforcement learning run. Missing data
points and error bars result from the fact that very large strength differences cannot
be accurately converted into an Elo rating. Note that after generation 11 the network
becomes so strong that it wins every single game at 100 nodes, and as such we chart
no 100-node data beyond that point.

As training progressed, we tested our agent with varying levels of computational power,
both to determine its strength against the baseline and also to measure how well the
agent’s performance scales with increasing compute. To achieve this, we set the number
of nodes (future game-states) that the agent is permitted to evaluate per move to a fixed
value and then run matches from varied opening positions against Most-Captures. When
the agent is limited to one node, it can do no forward search at all, and must rely only
on the learned policy of the neural network. We test our agent with node budgets of 1,
10, and 100, and Elo ratings of the these configurations are shown in Figure 4.2.

Between generations 7 and 9, the agent’s raw network learns to implement a strategy
that is as strong as Most-Captures2, and subsequent networks continue to learn far
stronger strategies, and by generation 16 the raw network outperforms Most-Captures
by an enormous 534.80±78.52 Elo margin3, without performing any forward search.
An example of the raw network’s policy prediction is shown in Figure 4.3.

When the agent is allowed to search ahead, it performs far better, and by the later
generations it simply wins every game. This result is a clear demonstration of our

2in that the raw network wins as many games as it loses against Most-Captures.
3This corresponds to a win ratio of approximately 22 to 1.

Chapter 4. Evaluation 22

Figure 4.3: A visualisation of the policy output of the Ataxx policy head at generation
16. The policy is split into source- and target-boards, due to the nature of Ataxx’s move
structure. The clean game board is shown on the left, the policy source board is shown
in the centre, and the policy target board on the right. Red stones belong to the side to
move, blue stones the opponent. The brightness of the grayscale indicates the likelihood
that a stone will be moved from the square or to the square, and self-square moves
indicate the placement of a new stone.

Chapter 4. Evaluation 23

system’s ability to learn strong strategies in novel games, outperforming systems that
rely on hand-crafted domain knowledge.

To properly contextualise the results in Figure 4.2, we note that our system searches and
evaluates hundreds of positions per second on even relatively weak hardware4, and as a
result our agents would search two to four orders of magnitude more game-states were
they playing under standard time-controls used for official tournament play, and as such
would exhibit play of a quality commensurate with such an increase in computational
budget.

4.2.2 Gomoku

During the development of the system, Gomoku was used as the main testing ground for
correctness and improvements. As such, many experimental networks were produced
before the first proper training run began, although even these networks showed strong
performance against the baselines.

4.2.2.1 Random Agent

The random agent loses every game to the first trained network playing at 1 node (no
lookahead). This is expected, as the random policy is extremely weak in Gomoku.
Nevertheless, it is pleasing that even the very first trained network is able to outperform
the random agent.

4.2.2.2 MCTS Agent

The first trained network for Gomoku performs very well (wins every single game) when
compared node-for-node against pure MCTS search, demonstrating that the network has
learned a policy that outperforms the uniform policy, and is able to evaluate positions to
an accuracy better than that of pure MCTS’s random playouts.

This is remarkable, as pure MCTS is rather well-suited to board-filling games like
Gomoku, so the fact that the network is able to outperform it is a strong indicator of the
network’s strength.

4539 nodes/sec on an Nvidia GTX 1060 6GB GPU

Chapter 5

Conclusions and Future Work

In this chapter, we summarise the results of our project, and review the strengths and
weaknesses of our system. We also discuss potential future work that could extend or
enhance our system.

5.1 Conclusions

This project has introduced a system for training game-playing agents that is generally
applicable across different games, and has demonstrated the system’s effectiveness in
the games of Gomoku and Ataxx. By testing our agents against human players and
multiple algorithmic baselines, we prove that our agents learn strong strategies in these
games. We observe that the final agents learn robust strategies that perform well across
a range of testing conditions and opponents, beating our baselines by enormous margins
even in our system’s lowest-resource configuration, and demonstrate that our agents
reliably benefit from increased computation, be that in the form of longer training runs
or greater computational budget at test-time.

We find that our system outperforms classical general game playing algorithms like
MCTS by using deep reinforcement learning to learn more accurate policy and value
estimates, and that the system is able to learn strong strategies in games with complex
rules without the need for hand-crafted heuristics. When tested against human players,
we show that our agents outperform human players across both games, although we note
that there remain weaknesses that human players can successfully exploit, particularly
in Gomoku.

5.2 Future Work

The possible future work for this project is extensive, as the generality of the system
admits extension to a wide range of domains and applications. We discuss possible
improvements to the algorithms used in the system, the architecture of the deep neural
networks used, and possible extensions of the system to new games.

24

Chapter 5. Conclusions and Future Work 25

5.2.1 Improving the Search Engine

Many improvements can be made to the core search algorithm, including the use of
virtual loss (Chaslot et al., 2008) for enhanced parallelism during match play, progres-
sive widening and dynamic Cp for improved exploration (Browne et al., 2012), and
Monte-Carlo Graph Search (Wu, 2024b) for handling transpositions in the game tree.
We are confident that the use of these techniques would improve the strength of the
agent significantly, but they are less important for reinforcement learning performance
and so were not implemented in this project.

5.2.2 Improving the Training Procedure

Many standard training enhancements could be applied to the system, including hyperpa-
rameter tuning, application of additional regularisation techniques, and the use of more
advanced optimisers. We would be particularly optimistic that the addition of additional
predictive heads, like a moves-left head or a final-score head for Ataxx, would give
the agent a richer training signal and potentially improve characteristics like the Ataxx
agent’s ”slack” play, which we conjecture originated from the score-oblivious training
objective. Such auxiliary predictive heads have proven effective in other systems (Wu,
2019), and we believe that they would be similarly effective in our system.

5.2.3 Improving the Neural Network

The open-source Leela Chess Zero project has demonstrated that the use of transformer
architectures over convolutional neural networks can significantly improve the strength
of a game-playing agent (Monroe, 2024), and it is likely that the same would be true for
our system. Additionally, the use of augmented input representations like history planes,
where the network is shown the previous states of the game, would almost certainly
improve the strength of the agent, as they would allow the agent to perform conditional
reasoning about its strategic choices based on the previous moves in the game.

Our results, particularly those shown in Figure 4.2, show that the agent’s strength
reliably increases with training time, and as such an obvious extension of this work
would be to train the agents for longer. We strongly suspect that our agents would
continue to improve in strength with more data and more training time.

5.2.4 Application to Other Games

Our system has been tested on two games with strong results, but there are many more
games that could be tested. In particular, we would be interested to apply the system
to mainstream games, like Chess or Go, or to popular Chess variants like Crazyhouse
and Antichess, to see if it is able to learn strong strategies in these games as well. In
addition, results like those in Yen et al. (2013) show that MCTS can be extended further
to stochastic games like Backgammon via the addition of chance nodes, and we believe
that such an extension is extremely promising for our system.

Bibliography

borg. Lc0 release v0.29.0, Dec 2022. URL https://lczero.org/blog/2022/12/
lc0-release-v0.29.0/.

Steven Borowiec. Alphago seals 4-1 victory over go grandmaster lee sedol. The
Guardian, 2016. URL https://www.theguardian.com/technology/2016/mar/
15/googles-alphago-seals-4-1-victory-over-grandmaster-lee-sedol.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1):1–43, 2012. doi: 10.1109/
TCIAIG.2012.2186810.

Guillaume Chaslot, Mark Winands, and H. Herik. Parallel monte-carlo tree search.
pages 60–71, 09 2008. ISBN 978-3-540-87607-6. doi: 10.1007/978-3-540-87608-3
6.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
In Paolo Ciancarini and H. Jaap van den Herik, editors, 5th International Conference
on Computer and Games, Turin, Italy, May 2006. URL https://inria.hal.
science/inria-00116992.

Disservin. NNUE | Stockfish, 2024. URL https://disservin.github.io/
stockfish-docs/pages-nnue/docs/nnue.html. [Online; accessed 22-March-
2024].

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioan-
nis Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy
optimization, 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. CoRR,
abs/1709.01507, 2017. URL http://arxiv.org/abs/1709.01507.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

D. Michie. Chapter 8 - game-playing and game-learning automata. In L. FOX,
editor, Advances in Programming and Non-Numerical Computation, pages 183–
200. Pergamon, 1966. ISBN 978-0-08-011356-2. doi: https://doi.org/10.

26

https://lczero.org/blog/2022/12/lc0-release-v0.29.0/
https://lczero.org/blog/2022/12/lc0-release-v0.29.0/
https://www.theguardian.com/technology/2016/mar/15/googles-alphago-seals-4-1-victory-over-grandmaster-lee-sedol
https://www.theguardian.com/technology/2016/mar/15/googles-alphago-seals-4-1-victory-over-grandmaster-lee-sedol
https://inria.hal.science/inria-00116992
https://inria.hal.science/inria-00116992
https://disservin.github.io/stockfish-docs/pages-nnue/docs/nnue.html
https://disservin.github.io/stockfish-docs/pages-nnue/docs/nnue.html
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1711.05101

Bibliography 27

1016/B978-0-08-011356-2.50011-2. URL https://www.sciencedirect.com/
science/article/pii/B9780080113562500112.

Daniel Monroe. Transformer progress, Feb 2024. URL https://lczero.org/blog/
2024/02/transformer-progress/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Claude E. Shannon. XXII. Programming a computer for playing chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314):256–
275, March 1950. ISSN 1941-5982, 1941-5990. doi: 10.1080/14786445008521796.
URL http://www.tandfonline.com/doi/abs/10.1080/14786445008521796.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, January 2016. ISSN 1476-4687. doi:
10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yu-
tian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of Go without human
knowledge. Nature, 550(7676):354–359, October 2017. ISSN 1476-4687. doi:
10.1038/nature24270. URL https://doi.org/10.1038/nature24270.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362
(6419):1140–1144, December 2018. doi: 10.1126/science.aar6404. URL https:
//doi.org/10.1126/science.aar6404. Publisher: American Association for the
Advancement of Science.

Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. Adap-
tive computation and machine learning. The MIT Press, Cambridge, Massachusetts
London, England, second edition edition, 2020. ISBN 978-0-262-03924-6.

G. Tesauro. Neurogammon: a neural-network backgammon program. In 1990

https://www.sciencedirect.com/science/article/pii/B9780080113562500112
https://www.sciencedirect.com/science/article/pii/B9780080113562500112
https://lczero.org/blog/2024/02/transformer-progress/
https://lczero.org/blog/2024/02/transformer-progress/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.tandfonline.com/doi/abs/10.1080/14786445008521796
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404

Bibliography 28

IJCNN International Joint Conference on Neural Networks, pages 33–39 vol.3,
San Diego, CA, USA, 1990. IEEE. doi: 10.1109/IJCNN.1990.137821. URL
http://ieeexplore.ieee.org/document/5726779/.

Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of
the ACM, 38(3):58–68, March 1995. ISSN 0001-0782, 1557-7317. doi: 10.1145/
203330.203343. URL https://dl.acm.org/doi/10.1145/203330.203343.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James
Pinkerton, and C. Lawrence Zitnick. ELF OpenGo: An Analysis and Open Reim-
plementation of AlphaZero. 2019. doi: 10.48550/ARXIV.1902.04522. URL
https://arxiv.org/abs/1902.04522. Publisher: arXiv Version Number: 5.

David J. Wu. Accelerating Self-Play Learning in Go. 2019. doi: 10.48550/ARXIV.1902.
10565. URL https://arxiv.org/abs/1902.10565. Publisher: arXiv Version
Number: 5.

David J. Wu. Other methods implemented in katago, 2024a. URL https://github.
com/lightvector/KataGo/blob/master/docs/KataGoMethods.md. [Online;
accessed 22-March-2024].

David J. Wu. Monte-carlo graph search from first principles, 2024b. URL https://
github.com/lightvector/KataGo/blob/master/docs/GraphSearch.md. [On-
line; accessed 22-March-2024].

Shi-Jim Yen, Cheng-Wei Chou, Jr-Chang Chen, I-Chen Wu, and Kuo-Yuan Kao. The
art of the chinese dark chess program diable. In Ruay-Shiung Chang, Lakhmi C. Jain,
and Sheng-Lung Peng, editors, Advances in Intelligent Systems and Applications
- Volume 1, pages 231–242, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-35452-6.

Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for AlphaZero via
path consistency. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 26971–26981. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/zhao22h.html.

http://ieeexplore.ieee.org/document/5726779/
https://dl.acm.org/doi/10.1145/203330.203343
https://arxiv.org/abs/1902.04522
https://arxiv.org/abs/1902.10565
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md
https://github.com/lightvector/KataGo/blob/master/docs/GraphSearch.md
https://github.com/lightvector/KataGo/blob/master/docs/GraphSearch.md
https://proceedings.mlr.press/v162/zhao22h.html

Appendix A

Participants’ Information and Ethics

Participants were taught the rules of each game in detail by the author, and guided
through a practice game. No other information was given to the participants.

Our participants were several students, who were offered the option to play informal
games against our agents. No forms were signed, and all participants were free to leave
or give up at any time during testing.

29

Appendix B

Game Descriptions

B.1 Gomoku

Gomoku is a two-player perfect information game played on a square board, typically
15× 15. Players take turns placing stones of their colour on the board, and the first
player to get five stones in a row, either horizontally, vertically, or diagonally, wins the
game. The game is a draw if the board fills up before either player wins. A visualisation
of a Gomoku board is shown in Figure B.1.

B.2 Ataxx

Ataxx is a two-player perfect information game played on a square board, typically
7× 7. Players begin with two stones each, placed in diagonally opposing corners.
Players take turns either adding a new stone adjacent to one of their existing stones, or
moving one of their stones two squares, and each time a stone arrives on a square, all
the opposing stones adjacent to it are flipped to the colour of the arriving stone. The
game ends when neither player can make a move (usually as a result of the board filling
up), and the player with the most stones on the board wins. A visualisation of an Ataxx
board is shown in Figure B.2.

30

Appendix B. Game Descriptions 31

Figure B.1: A 15×15 Gomoku board.

Figure B.2: A 7×7 Ataxx board.

	Introduction
	Motivation and Problem Statement
	Contributions

	Background
	History of AI for games
	Foundations
	AlphaGo, AlphaGo Zero, AlphaZero
	Enhancements to AlphaZero

	The Veritas General Game Player
	Overview
	Search Engine
	Self-Play Loop
	Game Generation
	Playout Cap Randomisation
	Parallelism

	Training Procedure
	Model Architecture
	Softmax Policy Temperature
	Auxiliary Soft Policy Head
	Legal Move Masking
	Policy / Value Weighting

	Evaluation
	Results against Human Players
	Ataxx
	Gomoku

	Results against Algorithmic Baselines
	Ataxx
	Gomoku

	Conclusions and Future Work
	Conclusions
	Future Work
	Improving the Search Engine
	Improving the Training Procedure
	Improving the Neural Network
	Application to Other Games

	Bibliography
	Participants' Information and Ethics
	Game Descriptions
	Gomoku
	Ataxx

