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Abstract
Formula Student AI is an international autonomous racing competition where students
from different universities create a driving system for an autonomous vehicle and
compete against each other across a range of events, with no prior knowledge of the
track. Simultaneous Localisation and Mapping, SLAM, is a method of localising a
vehicle in an unknown environment while creating a map of this environment. SLAM is
an ideal candidate for use in the Formula Student AI events to localise the vehicle while
generating a map of each track. This thesis aims to compare particle filter-based and
graph-based SLAM algorithms in the context of Formula Student AI. To achieve this
goal, FastSLAM 2.0 and GraphSLAM have been implemented and tested on real-world
track data and compared across a variety of metrics. Furthermore, additional cone
colouring has also been implemented into the GraphSLAM algorithm. The results show
the GraphSLAM algorithm outperforms the FastSLAM 2.0 algorithm and could be used
to map the tracks during Formula Student AI events.
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Chapter 1

Introduction

Autonomous vehicles have been a topic of interest in recent years to improve road
safety by making use of advancing technologies that are being made available, such as
advanced lidar and camera systems. From June 2022 to June 2023 in Great Britain alone
29,429 people were killed or seriously injured in road accidents [39], where it is thought
90-95% of these fatalities were down to human error [31]. Autonomous systems have
the potential to reduce these numbers and many manufacturers are already making use
of autonomous systems, in the form of Advanced Driver Assistance Systems (ADAS)
[34], in their cars to improve safety. ADAS makes use of lidar, radar, and camera
systems to implement features such as pedestrian detection/avoidance, lane departure
warning/correction, and automatic emergency braking. All of which improve road
safety. Companies such as Oxa Technologies [30] and Waymo [42] are taking this a step
further and are trying to implement fully autonomous systems where no human driver
is required at all. To speed up the research and development of autonomous systems
many autonomous car competitions have been created over the years, the first being
DARPA in 2004 [8] and more recent competitions include Indy Autonomous Challenge
[14] and Formula Student AI [15]. Pictures of an Indy Autonomous Challenge car and
Formula Student AI Autonomous Driving Systems – Dedicated Vehicle (ADS-DV) can
be seen in Figure 1.1.

(a) Indy Autonomous Challenge Car 2024
[14]. (b) IMechE Formula Student AI ADS-DV.

Figure 1.1: Example of vehicles in autonomous car competitions.
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1.1 Formula Student AI

Formula Student AI is an annual autonomous vehicle competition organised by the
Institution of Mechanical Engineers (IMechE), held at Silverstone Race Track. It was
first introduced in 2017 and is a competition for university students to develop a system
to drive a fully autonomous vehicle across a range of dynamic events, as well as compete
in static events such as design, business, and real-world AI presentations. There are two
competition classes within Formula Student AI that teams can compete in; the Dynamic
Driving Task (DDT) category and the Automated Driving System (ADS) category. For
the DDT category, the IMechE provides a vehicle, the ADS-DV, for the teams to fit
their sensors onto and run their software stack on. For the ADS category, teams must
build their own vehicle fitted with their sensors and run their software stack on it.

The dynamic events include Skid Pad, Acceleration, Autocross, and Trackdrive. Each
has a different configuration specified in the FS2024 AI Rules [3]. Skid Pad is a figure
of eight; the vehicle enters perpendicular to the figure of eight and must complete two
loops of each side before exiting opposite the entrance point, where it must stop in a
bounded box. Acceleration is a 75-metre straight with a bounded box at the end where
the autonomous vehicle must stop. Autocross is a single lap of an unknown track where
the autonomous vehicle must stop within 30 metres after the finish line. Trackdrive is
similar to autocross except 10 laps must be completed before stopping within 30 metres
after the finish line. This thesis will focus on the dynamic Trackdrive event, with more
details following in Section 1.1.1.

The track boundaries for the dynamic events are determined by coloured cones, small
blue cones to the left, and small yellow cones to the right. Small orange cones indicate
the entry and exit boxes and big orange cones indicate the start and finish lines. The
maximum distance between cones is 5 metres. The different cones used in Formula
Student AI can be seen in Figure 1.2.

Figure 1.2: Big orange, small orange, small yellow, and small blue cones used for
Formula Student AI dynamic events [32].

1.1.1 Trackdrive

As mentioned in Section 1.1, this thesis will focus on the dynamic Trackdrive event.
Trackdrive involves autonomously navigating an unknown track for 10 laps. No prior
knowledge of the track can be used by the autonomous system, meaning any knowledge
of the track must be learned during each attempt. The system must autonomously count
the number of laps and stop within 30 metres after the finish line.
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The exact configuration for the Trackdrive event, specified in the Formula Student AI
Rules [3], is as follows:

• No straights longer than 80 metres

• Constant turns can have a diameter of up to 50 metres

• Hairpin turns must have a minimum of 9 metres outside diameter

• Track may have chicanes, multiple turns, decreasing radius turns, etc.

• The minimum track width at all points is 3 metres

• The maximum distance between track boundary cones is 5 metres

Figure 1.3 gives a visual representation of this configuration around the start/finish line;
showing the start position, the stop area, the distance between cones, the start/finish
line, the track width, and the cone configuration.

Figure 1.3: Trackdrive configuration. Figure from Formula Student Germany Competition
Handbook 2024 [4].

The event is scored based on the time to complete each lap, including any penalties
received. A 2-second penalty is awarded for knocking over cones or moving a cone
enough that its base is outside the perimeter of its starting base position. A 10-second
penalty is awarded for all four wheels of the vehicle exiting the track boundary. Points
are awarded based on elapsed time, including penalties, and an additional 10 points are
awarded for each successfully completed lap. Finally, a 50-point deduction is awarded
for an unsafe stop, where the vehicle does not stop within the track boundary or it has
not entered the ’AS Finished’ state, which indicates the vehicle is safe to approach.

1.1.2 ADS-Dedicated Vehicle

Section 1.1 briefly mentions the IMechE-provided Formula Student AI ADS-DV, seen
in Figure 1.1b. Teams must provide their own AI computer which communicates with
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the Vehicle Control Unit (VCU) using the CANbus communication protocol through an
umbilical connector which also provides power to the AI computer and sensors. The
ADS-DV comes fitted with a stereo camera that teams can use for autonomous driving.
Teams also have the option to fit additional sensors to the vehicle as long as they are
approved by the IMechE and are mounted securely within the regions shown in Figure
1.4 or within 100mm of the bodywork.

Figure 1.4: Sensor mounting locations [3].

The experiments conducted in this thesis were carried out on the ADS-DV with a similar
sensor plate to that in Figure 1.5; where a stereo camera, inertial measurement unit
(IMU) sensor, and lidar can be seen mounted in the triangular region in front of the
ADS-DV ’shark fin’ that can be seen in Figure 1.1b.

Figure 1.5: Edinburgh University For-
mula Student sensor plate.

Figure 1.6: Edinburgh University Formula Student
example camera image.

The restricted sensor mounting locations pose an additional challenge when receiving
sensor data. Figure 1.6 shows the restricted view the camera has of the track. This is
due to the low profile of the sensor plate, required to fit in the zones outlined in Figure
1.4, and the obstruction from the wheels. Due to the limited field of view, it can be hard
to differentiate between different points on the track. As the track layout consists of
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the same coloured cones on each side of the track, as mentioned in Section 1.1.1, there
may be multiple points on the track that produce very similar images. For example, two
different straights may look the same, only being able to see a few blue cones on the
left and a few yellow cones on the right.

1.2 SLAM

To achieve the fastest lap time and the most number of points in the Trackdrive event,
the autonomous system must navigate the vehicle accurately and quickly around the
track following the optimal racing line. Racing at higher speeds, to achieve the optimal
lap time, increases the noise error in the sensor measurement. This makes it harder to
detect cones, giving the system less time to react to the twists and turns of the track
layout. Therefore only using sensors to navigate the track is not sufficient. These
limitations can be overcome by mapping the track on the first lap of the Trackdrive
event and maintaining the location of the vehicle within this map. The trajectory can be
used for optimising the racing line for the proceeding 9 laps of the Trackdrive event.
Without the detection of the finish line, the first complete lap cannot be determined and
the optimisation cannot be applied.

The problem of autonomously creating a map of an unknown environment has been a
topic of interest in research for many years. SLAM is one solution to this problem and
focuses on creating a map of an unknown environment while simultaneously localising
within it. A basic mapping algorithm is not sufficient for the Trackdrive event due to
the navigational precision that is required. Creating a map of the track by solely taking
cone measurements from the sensors on the vehicle and transforming them to the global
frame requires positional accuracy of the vehicle that cannot be achieved with a standard
Global Positioning System (GPS). Standard GPS has an accuracy of 4.9 metres in open
space [40], this is not sufficient for Formula Student AI events where the track width is
3 metres. This means a more complex solution is required, such as SLAM.

The application of Formula Student’s Trackdrive event poses a unique opportunity to test
SLAM in the context of autonomous racing. In most autonomous racing competitions,
such as Indy Autonomous Challenge [14] and DARPA [8], the track is known prior to
racing. This is not the case for Formula Student’s Trackdrive event where the track is
unknown, making SLAM more applicable.

1.3 Motivation

Edinburgh University Formula Student AI (EUFS-AI) has had great success in Formula
Student AI since first competing in 2018, where we won the DDT class. Since then
we have won Formula Student AI five years in a row and are hoping for another year
of success in 2024. Over the years we have used various SLAM algorithms, but have
not had much success with them at competition; until last year when our FastSLAM
2.0 algorithm played a vital role in our Trackdrive event win at the competition. Over
the years Formula Student AI has been getting more popular and teams are gradually
producing more competitive software, meaning at EUFS-AI we must continue to
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develop our software stack and explore areas of improvement. There are different
families of SLAM algorithms, that excel in different applications, FastSLAM 2.0 and
the other SLAM algorithms we have previously implemented at EUFS-AI are all from
the family of particle filter-based SLAM algorithms, so choosing a SLAM algorithm
from a different family of algorithms, such as graph-based SLAM algorithms, may lead
to improvement in performance. More details on particle filter-based and graph-based
SLAM algorithms will follow in Section 2.3.2.

This thesis sets out to implement GraphSLAM, a graph-based SLAM algorithm, that will
be compared with our current FastSLAM 2.0, a particle filter-based SLAM algorithm,
implementation at EUFS-AI. An improved algorithm will output a more accurate map
and trajectory. This is particularly useful for the Trackdrive event, where an accurate
map allows the planning and control pipeline to produce an optimal racing line based
on the track layout, achieving faster lap times and receiving minimal penalties.

1.4 Aims

The work discussed in this thesis explores how particle filter-based SLAM algorithms
and graph-based SLAM algorithms behave under the requirements of Formula Student
AI. Specifically, the main aims of this thesis can be summarised as follows:

1. To implement a graph-based SLAM algorithm into the EUFS-AI software stack.

2. To determine which SLAM algorithm, either particle filter-based or graph-based,
consistently produces more accurate maps.

3. To identify which SLAM algorithm, either particle filter-based or graph-based,
has a smaller computational latency.

4. To recognise any challenges for SLAM algorithms in Formula Student AI.

To explore these aims the graph-based SLAM algorithm that will be implemented
will be GraphSLAM and the compared particle filter-based SLAM algorithm will be
FastSLAM 2.0. The algorithms will be evaluated on real-world data sets similar to those
that can be found at the Formula Student AI competition. All data sets were collected
by the EUFS-AI team using the ADS-DV, seen in Figure 1.1b.

1.5 Thesis Outline

The rest of the thesis will be laid out as follows. Chapter 2 explores the theoretical
background of SLAM and the two algorithms of focus. It also includes a literature
review on SLAM evaluation methods. Chapter 3 describes the wider Formula Student
AI software stack and the SLAM implementation details. Chapter 4 explains the data
collection procedure and the evaluation approach. Chapter 5 presents and evaluates the
results from the experiments. Chapter 6 concludes with a summary of the thesis and
potential future work.



Chapter 2

Background and Related Work

This chapter will explore the theory behind particle filter-based SLAM algorithms
and graph-based SLAM algorithms, highlighting the specific algorithms that will be
explored in this thesis. Following this is a review of previous literature that discusses
common evaluation methods for comparing SLAM algorithms. Finally, a review of
literature specific to the application of SLAM in Formula Student will be conducted,
highlighting different evaluation methods to compare different SLAM algorithms.

2.1 SLAM History

The idea of creating a map and simultaneously localising within that map was first
introduced in 1991 by Leonard and Durrant-Whyte [20]. The term SLAM did not
come around until 1996 in a paper about localising autonomous guided vehicles by
Thrun and Montemerlo [9]. At this time all SLAM algorithms used Extended Kalman
Filters or paticle methods for estimating position. A year later in 1997, Lu and Milios
introduced a graph-like representation with links between different poses and formulated
an optimisation algorithm to globally optimise the graph [24]. This eventually led to
the development of GraphSLAM in 2006 by Thrun and Montemerlo [36]. GraphSLAM
does not make use of the traditional probabilistic approach, instead introducing soft
constraints and then optimising these constraints. The following year, in 2007, another
breakthrough in SLAM development was made by Georg Klein and David Murray.
They presented Parallel Tracking and Mapping (PTAM) [17] which explores the idea of
splitting the tracking and mapping in Augmented Reality systems. This was a significant
breakthrough, showing that the mapping does not need to be done live, simultaneously
with the tracking. Meaning the optimisation of the map can be done separately, when
computational resources are less sparse, resulting in better optimisations.

2.2 Mapping and Localisation

As mentioned in Section 1.2 achieving the optimal lap time for the Trackdrive event
requires a map of the track and the position of the vehicle in this map. With this
information, the optimal path around the track can be created and the fastest lap times

7
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achieved. Mapping the track and localising within this map are the fundamentals behind
SLAM.

Mapping aims to produce a map of the track using landmarks to represent the environ-
ment. Landmarks are features that are extracted from the environment using sensor
measurements, such as lidar data and image data from cameras. Due to sensor limi-
tations, unless the track is very small, not all landmarks can be identified in a single
lidar point cloud or image frame. Landmarks can be artificial, where they are placed in
the environment to help the robot localise, or natural, where they already exist in the
environment. The quality of a landmark is determined by how easily it can be identified
by the robot’s sensors. If a landmark can be identified across multiple frames then it is
likely that this same landmark will be easily detected if the traversing robot returns to
the same area. In the context of the Trackdrive event, the map is static as the landmarks
are the cones that are set out to represent the track boundary, as seen in Figure 2.1.
These are artificial and not natural landmarks.

Figure 2.1: Example map with cones for landmarks.

Localisation aims to find the position of the vehicle in the environment. For this, we
require a map of the environment. For localising within a map there are two frames
of importance; the map frame and the vehicle frame, as seen in Figure 2.2. The map
frame is the global coordinate system in which the landmarks and the pose of the
vehicle are described. This is independent of the vehicle position. The vehicle frame is
the coordinate system attached to the vehicle and is used to describe the detection of
landmarks. There are different types of localisation; tracking, where the initial position
is known, global localisation, where the initial position is unknown, and kidnapped
robot problem, where the robot can teleport anywhere at any time. The Formula Student
AI application focuses on tracking, as the initial position of the vehicle is known on the
track. Localisation works by considering the robot’s motion between timesteps, and
how the perceived environment has changed in this time to identify its location in the
map.
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Figure 2.2: Frames of reference.

2.3 SLAM Properties

SLAM problems can be categorised based on different properties. This section will
explore the main properties covered in this thesis.

2.3.1 Online SLAM and Full SLAM

Whether a SLAM solution has the property of online SLAM or full SLAM is determined
by the approach used for handling data.

The online SLAM problem focuses on estimating the map and only the current pose of
the vehicle. Some online SLAM algorithms discard older sensor data focusing solely
on more recent data [38] to allow for quick adjustments to changing environments and
improve computational efficiency. These characteristics make online SLAM a suitable
candidate for the Trackdrive event where real-time responses are required to navigate
the unknown track layout and only the current position of the vehicle in the track is
desired. However, as the estimates are made based on recent observations and not all
observations, any previous errors that have not been accounted for are propagated into
future estimates, accumulating and potentially resulting in worse performance on longer
or more complex tracks.

On the other hand, the full SLAM problem focuses on estimating the map and all vehicle
poses. No previous data is discarded and all knowledge about the map and poses is used
for making estimates [38]. This improves accuracy as all available data is considered,
giving a global solution to the problem. This makes full SLAM a suitable candidate
for the Trackdrive event where multiple laps are completed on the same static track
meaning a global optimisation can be created and utilised to remove errors and improve
the accuracy of navigation over the 10 laps. However, due to full SLAM making use of
all knowledge about the map and the vehicles poses additional computation is required.
This could lead to an increase in computational latency, introducing delays and reducing
real-time responsiveness.

2.3.2 Particle Filter-Based SLAM and Graph-Based SLAM

Particle filter-based SLAM and graph-based SLAM are two of the most common
approaches to solving the SLAM problem mentioned in Section 1.2. Both excel in
different scenarios depending on the characteristics of the application.
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Particle filter-based SLAM generates a collection of particles, each representing a
different state, which includes the vehicle’s position and the map of the track. As
the vehicle is traversing around the track the particles get assigned weights based on
the accuracy of the predicted state compared to the sensor measurements. After new
weights are assigned to each particle, only the particles with the highest weights are
maintained, this is known as resampling. This process is repeated allowing the vehicle
to traverse the track following the most probable path, whilst creating a map of the track
[38]. As the Trackdrive track can have sharp twists and turns as well as long straights,
the vehicle can travel at varying speeds. These non-linear movements allow for particle
filter-based SLAM algorithms to excel due to their probabilistic nature.

Graph-based SLAM constructs a graph of the track where nodes represent the vehicle
pose or landmarks (cones) and edges represent sensor measurement encoding between
two nodes, these are constraints. The graph is then optimised to find the best configura-
tion of nodes that aligns with the real-world sensor measurements [11], resulting in the
optimal map and vehicle trajectory. Graph-based SLAM can also utilise the properties
of loop closure, this is when nodes that we have previously added to the graph are
observed again, allowing any drift to be corrected. This makes graph-based SLAM
particularly useful for the Trackdrive event where we complete 10 laps of the same
track, seeing the same landmarks/cones on the track multiple times, allowing any drift
to be corrected and a more accurate map and trajectory to be achieved.

2.4 SLAM Theory

As stated in Section 1.2, SLAM addresses the problem of estimating the map of the
track whilst also estimating the position of the vehicle in this map. Probabilistically this
can be formulated in two different ways; the first being the online SLAM problem and
the second being the full SLAM problem, both outlined in Section 2.3.1. Before going
into the details of these SLAM problems, some important variables need to be defined:

xt represents the vehicle state at time t. The state is made up of the location, x
and y coordinates, of the robot and the orientation θ. Both are in the map frame.

mi represents the location of cone i in the map frame. The map m is all the
landmarks that make up the track.

ut represents the control data and the change of state during time (t −1; t]. The
sequence of control data from time t1 to t2 is represented as ut1:t2 .

zt represents the measurements from the sensors present on the vehicle. For nota-
tional simplicity, the rest of this section assumes one measurement per timestep
but this is not the case for the implemented algorithms or the rest of this thesis.
The sequence of measurements from time t1 to t2 is represented as zt1:t2 .

2.4.1 Online SLAM Formulation

The online SLAM problem can be defined as the joint posterior probability density of
the current vehicle state and the map given the vehicle state at time t = 0, along with
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the measurements and control inputs.

p(xt ,m|z1:t ,u1:t ,x0) (2.1)

The joint posterior of the online SLAM problem can be estimated using the Bayes Filter,
as seen in Algorithm 1. The key idea of the Bayes Filter is to maintain a belief of the
state, which is updated over time with new observations.

Algorithm 1 Pseudocode for the Bayes filter [38]

1: function BAYES FILTER(bel(xt−1,m),ut ,zt)
2: for all xt do
3: bel(xt) =

∫
p(xt |ut ,xt−1)bel(xt−1)dx

4: bel(xt) = ηp(zt |xt)bel(xt)
5: end for
6: return bel(xt)
7: end function

There are two main steps to the Bayes Filter; the prediction step and the update step. The
prediction step aims to predict the next pose of the vehicle based on the control inputs
(ut), this is line 3 in Algorithm 1. The update step aims to correct the predicted pose
based on the measurement models (p(zt |xt)), this is line 4 in Algorithm 1. Measurement
models describe the probability of the measurement given the current state of the
vehicle.

The Bayes Filter is underlined by the Markov assumption, which states that if the current
state of the vehicle (xt) and the map (m) are known, then the previous control inputs
(u1:t) and measurements (z1:t) do not affect our belief about the state. The effect of this
assumption can be seen in Figure 2.3. This assumption may seem extreme but works
surprisingly well in real work applications as a large amount of information about the
state at time t is held within the state and the recent control inputs.

Figure 2.3: Hidden Markov model showing the relationship between the vehicles states
x, the controls u and the measurements z over time. [38]

Due to the complexity and the dimensionality of the state space, it would be too com-
putationally expensive to estimate the exact probability distribution given in Equation
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2.1. Therefore, we must approximate the Bayes Filter and one approach to this is the
Particle Filter. Particle filters estimate the pose distribution using many particles, each
representing a ’guess’ at the vehicle’s pose. A location with more particles is more
likely. There are three steps involved in the particle filter:

1. Update step involves updating each particle based on the motion model, this
typically introduces noise to incorporate the uncertainty in the vehicle motion.

2. Weighting step assigns a weight to each particle based on the number of observa-
tions. Higher weights mean a better match between the perception systems and
the measurement model.

3. Resampling step resamples the particles with replacement proportional to the
weight of each particle. The weights are reset after sampling.

These steps are repeated updating the state of the vehicle. A particle filter-based SLAM
algorithm will be explored in Section 2.5.

2.4.2 Full SLAM Formulation

The full SLAM problem can be defined as the joint posterior probability density of
all vehicle states and the map given the vehicle state at time t = 0, along with the
measurements and control inputs [38].

p(x1:t ,m|z1:t ,u1:t ,x0) (2.2)

It is also not feasible to compute the full joint posterior, given in Equation 2.2, in real-
time due to the size of the state space. Therefore, approximation methods are required.
One approach to this is a graph-based method, where nodes represent landmarks and
vehicle positions and edges represent constraints between sensor measurements and
vehicle motions, as discussed in Section 2.3.1. Typically these constraints are optimised
using least-square to minimise the error introduced by the constraints [11]. A graph-
based SLAM algorithm will be explored in Section 2.6.

2.5 FastSLAM 2.0

FastSLAM 2.0 was first introduced in 2003 by Montemerlo and Thrun [26] to improve
on its predecessor, FastSLAM 1.0. FastSLAM 2.0 uses particle filters for estimating
the optimal vehicle path. Each particle contains an estimated vehicle state and an
Extended Kalman Filter (EKF) for each landmark in the map, where each EKF updates
the landmark’s position relative to the particle’s pose. The steps involved in FastSLAM
2.0 can be seen in Algorithm 2.

FastSLAM 2.0 was chosen to represent the class of particle filter-based SLAM algo-
rithms in this thesis as it has been proven by EUFS-AI to solve the SLAM problem
efficiently in the context of Formula Student AI. Due to the use of particles, FastSLAM
2.0 does not have to explore the entire state space, improving its computational effi-
ciency. In Formula Student AI, being computationally efficient is a key property to
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Algorithm 2 Single time step of the FastSLAM 2.0 algorithm
for each particle do

Prediction: predict new state from motion model and control inputs

Data Association: associate the observed landmark with an existing landmark on
the map or add a new landmark to the map

Update: update the local map with the measurement

Weight: compute the new weight of the particle based on the number of
observations

Resampling: resample M particles based on their weights, where larger weights are
assigned higher probabilities, keeping the most accurate particles

ensure the algorithm does not lag behind the real-time movements of the autonomous ve-
hicle. The real-time updates of the vehicle state and map are also crucial for autonomous
racing to make immediate decisions when navigating the track.

FastSLAM 2.0 is the probabilistic SLAM algorithm of choice in this thesis as it has
already been implemented by EUFS-AI and has shown good results for this application.

2.6 GraphSLAM

GraphSLAM solves the full SLAM problem by using all the poses and landmarks in
the map. It works by first generating a sparse graph of nodes and edges, where nodes
represent the pose of the vehicle or a landmark and edges represent nonlinear quadratic
constraints. This can be seen in figure 2.4. Through constraint optimisation, a maximum
likelihood map and a corresponding set of vehicle poses are generated [36].

Figure 2.4: GraphSLAM graph showing 5 poses (x0, ...,x4), 2 map features (m1,m2),
motion constraints (solid lines) and measurement constraints (dashed lines). [36]

In GraphSLAM there are two types of constraints; motion edges and measurement
edges. Motion edges join two consecutive vehicle poses and measurement edges join
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vehicle poses to landmarks. These constraints are the negative log-likelihood of the
measurement and motion models. Therefore, minimising the sum of the constraints
gives the most likely map and the most likely vehicle path [38].

The sum of constraints, J, for the example graph in figure 2.4 would be:

J =x⊤0 Ωx0+

∑
t
[xt −g(ut ,xt−1)]

⊤R−1[xt −g(ut ,xt−1)]+

∑
t
[zt −h(mct ,xt)]

⊤Q−1[zt −h(mct ,xt)]

(2.3)

Where the three terms represent the constraints of the initial pose x0, the constraints of
the motion model, and the constraints of the measurement model, respectively.

The steps involved in the GraphSLAM algorithm can be seen in Algorithm 3.

Algorithm 3 GraphSLAM algorithm
Initialisation: initialise an empty graph for the poses and constraints

Graph construction: add nodes for vehicle poses and landmarks to the graph, create
edges for constraints between nodes based on sensor data, the motion model, and the
measurement model

Optimisation: minimise the sum of constraints to find the optimal vehicle path and
landmark positions

In this thesis, the g2o library will be used for graph optimisation [18].

In the context of Formula Student AI, if loop closure is achieved we can obtain a
complete map of the track after one full lap. Therefore, using a SLAM algorithm that
solves the full SLAM problem, such as GraphSLAM, seems desirable. The environment
is also static, with a fixed number of landmarks. This means after a landmark has been
added to the map it is unlikely to change position, keeping our graph up to date.

2.7 Literature Evaluating SLAM

This section explores the literature encompassing SLAM evaluation methods, first
identifying possible evaluation metrics and then moving on to comparisons between
SLAM algorithms on baseline datasets.

Zhang et al. presents metrics to evaluate the quality of trajectory estimates in visual(-
inertial) odometry systems [43]. The two error metrics explored are the Absolute
Trajectory Error (ATE) and the Relative Error (RE). The ATE measures the difference
between the ground truth trajectory and the estimated trajectory in the same reference
frame. It is calculated by aligning the estimated trajectory to the ground truth trajectory
and then computing the root mean squared error (RMSE) for all positions in the
estimated trajectory and ground truth trajectory. ATE may be sensitive to outliers
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due to the alignment process; if the two trajectories are not aligned properly then the
RMSE between all positions will be much larger. The RE measures the accuracy of
the trajectory estimate by splitting the trajectory into segments and examining the
relative motion between these segments. It is calculated by picking pairs of points on
the trajectory, either a certain distance apart or over a certain time interval, to create
segments. These segments are extracted from both the estimated and true trajectory
and a relative transformation is computed. The difference in the relative transformation
across all segments is the error. This is more complex to compute than the ATE as
it involves aligning multiple segments and then computing a distribution over these
segments but it is more robust to outliers as there is no global alignment.

Campos et al. presents ORB-SLAM3, one of the latest cutting-edge SLAM algorithms,
which at its core is a graph-based SLAM system [6]. The algorithm is compared across
different configurations on metrics such as RMSE of ATE, scale error and running
time. The RMSE of ATE metric is used as described above in the paper by Zhang et al.
[43]. The scale error measures the difference between the true scale and the estimated
scale. First, the scale factor needs to be computed by aligning the estimated trajectory
with the ground truth trajectory and taking this transformation to determine the scale
factor. The scale factor, s, is then used to calculate the difference between the estimated
and true scale using this equation Scale error = |1− s| × 100%. The running time
measures the time to complete different parts of the algorithm, for example, the time to
complete feature extraction, pose estimation, local and global optimisation steps, and
map merging.

For evaluating SLAM algorithms there are two main data sets used consistently across
the field. Nieto et al. [28] introduced these benchmark data sets which give sensor
data for two different outdoor environments navigated using a utility vehicle. The
vehicle was fitted with additional sensors, such as GPS for evaluating ground truth,
dead reckoning sensors, and a laser range sensor. The first data set was collected at the
top of a parking lot for better satellite-to-GPS communication and used 60mm steel
poles covered with reflective tape for landmarks. The second data set was collected in
Victoria Park and made use of natural landmarks such as trees.

Thrun et al.[37] compared FastSLAM 1.0 with EKF SLAM and FastSLAM 2.0 on
the benchmark data sets mentioned above. The root mean square (RMS) vehicle pose
error is computed for different algorithms and is the difference between the vehicle
pose from the SLAM output and the true ground truth pose. Convergence speed is the
rate at which the algorithm processes the sensor measurements, updating its estimate
of the map and vehicle pose. The accuracy of each algorithm was computed using
100 landmarks. For FastSLAM 1.0 the RMS vehicle pose error was calculated over
a various number of particles ranging from 1 to 5000. The scaling performance of
FastSLAM 1.0 is evaluated using the computation time for 500 sensor updates over a
varying number of landmarks. Memory usage for FastSLAM 1.0 was also presented
to show the effect of increasing the number of landmarks. Varying odometric noise
was added to the data to compare its effect on the vehicle position. The RMS vehicle
pose error, for FastSLAM 1.0 and EKF SLAM, was computed over 4 different noise
values. The RMS vehicle pose error is computed for FastSLAM 1.0 and 2.0 on the
simulated data set with varying levels of measurement noise and on the simulated data
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set and Victoria Park data set with varying numbers of particles. Scaling performance
for FastSLAM 1.0 and 2.0 is also computed. The RMS vehicle pose error is computed
for FastSLAM 1.0 and 2.0 on varying-sized loops to evaluate the performance of loop
closing. The convergence speed between FastSLAM 2.0 and EFK SLAM was also
calculated and evaluated by calculating the RMS landmark error over time. FastSLAM
2.0 was evaluated on 1, 10, and 100 particles. These experiments were all repeated
multiple times and error bars were computed where applicable.

Li et al. presents a comparison between different GraphSLAM optimisation algorithms
[21]. The three data sets used are the City1000, M10000, and Manhattan3500; which are
all commonly used SLAM data sets. Various metrics are used to evaluate convergence
speed, sensitivity to noise, and robustness to outliers. Convergence speed is evaluated
by recording the time taken for each algorithm to minimise the total error in the SLAM
graph. Sensitivity to noise is evaluated by adding Gaussian noise to initial poses
and constraint measurements before computing the RMSE between the ground truth
trajectory and the estimated poses, the sum of the squared differences between the true
measurements and the estimated measurements, and the convergence speed. Robustness
to outliers is evaluated by adding false positive loop closures and measuring the RMSE
between the ground truth trajectory and the estimated poses.

The papers above all shared different metrics for evaluating a range of SLAM algorithms,
some more modern like ORB-SLAM 3 and some more traditional like FastSLAM and
GraphSLAM. Although these SLAM algorithms are from different eras in SLAM
history they still share common evaluation metrics such as root mean squared error of
vehicle pose, levels of noise and algorithmic speed. The higher-quality papers repeat
experiments to show reliability and validity and compute error bars to show variability.

2.8 SLAM in Formula Student

SLAM plays an influential role in the autonomous Formula Student competition for
traversing and mapping the track. Many teams adopt SLAM to solve the localisation
and mapping problem. One of the first teams to produce a paper on their autonomous
system was AMZ, students of ETH Zurich [16]. For the 2018 competition, they chose
to implement FastSLAM 1.0 over other SLAM algorithms as they believed it best suited
the rules and requirements of Formula Student AI, as outlined in Section 1.1. They
believed the chosen algorithm had to be real-time to compute the latest sensor data and
easily tunable to reach its full potential quickly due to limited testing time. For AMZ, a
particle-based approach ticked these boxes and they continued to follow this belief into
the 2019 competition, upgrading from FastSLAM 1.0 to FastSLAM 2.0.

Due to the popularity of SLAM within the Formula Student community, finding the
optimal SLAM algorithm can determine your success at the competition. Therefore,
over recent years many teams have produced papers comparing SLAM algorithms on a
variety of evaluation metrics.
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2.8.1 Formula Student Literature Evaluating SLAM

Lopes presents a comparison between FastSLAM 1.0, FastSLAM 2.0 and GraphSLAM
in the context of Formula Student [23]. The algorithms are tested on simulation and
real-world data gathered by Lopes. On both data sets, the RMSE of the cone positions
between the ground truth and the SLAM map are computed and compared across all
three algorithms. Also, on the real-world data, the RMSE per cone class as a function
of the distance travelled is computed for all three algorithms. Both real-world data
experiments are conducted on two different tracks. Qualitative analysis is carried
out to compare the localisation results by illustrating the estimated SLAM trajectory
against the raw odometry data. Three different methods are used for data association;
Maximum Likelihood + Individual Compatibility, Joint Compatibility Branch and
Bound, and Maximum Likelihood + Tracking Information. The accuracy of each
method is evaluated by first computing the distance between the observations and the
associated landmarks and then verifying if the distance is within the expected radius of
a cone. The computational time for each method was also evaluated.

Le Large et al. evaluates the accuracy and efficiency between EKF SLAM and Graph-
SLAM [19]. Different metrics are used to evaluate the accuracy. The first being the
number of blue, yellow, orange, and total cones mapped by each algorithm. The
match ratio was also calculated, which is the number of cones that match between the
SLAM-generated map and the ground truth map, divided by the number of cones on
the SLAM-generated map. The next metric evaluated was the percentage of mapped
cones with a positioning error above 30cm. Finally, the mean squared error (MSE) of
the positions of all mapped cones was calculated. Efficiency was also evaluated on
various metrics. The first being the time taken to compute the callback for odometry
data and observations, and the second being the central processing unit (CPU) usage for
one complete lap of the Autocross event. Finally, for the GraphSLAM algorithm only, a
sliding window was implemented with varying window lengths (5s, 10s, 20s, and 30s),
which limits the number of constraints used for optimisation. The MSE, run time, and
CPU usage were evaluated for each window length and when no window was used.

The papers covered in this section all show quantitative comparisons between particle
filter-based SLAM algorithms and graph-based SLAM algorithms for a variety of
evaluation metrics. This is just a select few of many papers [41, 5] that explore SLAM
comparisons in the context of Formula Student, all making use of similar evaluation
metrics.

Within Edinburgh University Formula Student we have also evaluated FastSLAM 1.0
and FastSLAM 2.0 on various metrics. The metrics used were false positive and
false negative rates for loop closure, the RMSE between the map produced by the
SLAM algorithm and the map generated from the Real-Time Kinematic (RTK) receiver,
the difference in the number of landmarks between the map produced by the SLAM
algorithm and the map generated from the RTK receiver, and worst-case execution time
for one iteration. Some of these metrics will be further explored in this thesis through
the comparison with GraphSLAM.



Chapter 2. Background and Related Work 18

2.9 Summary

In this chapter, we explored the development of the localisation and mapping problem
and looked at how SLAM solves this problem. We went into detail on a particle
filter-based SLAM algorithm, FastSLAM 2.0, and a graph-based SLAM algorithm,
GraphSLAM. Finally, we carried out a literature review on different evaluation metrics
used in the general SLAM field and then the specific use case of Formula Student AI.

I chose FastSLAM 2.0 as the baseline for comparison with GraphSLAM, as mentioned
in Section 1.3, as it is our best-performing SLAM implementation at EUFS-AI. The
choice to implement GraphSLAM, over other more modern graph-based SLAM al-
gorithms such as ORB-SLAM3, was due to the simplicity of the Formula Student
application, limitations of our hardware and current software architecture. As seen
in 1.1, the environment in which the vehicle is traversing is relatively controlled and
predictable. We only have four types of cones/landmarks, with each track layout having
to comply with very specific rules. This means we would not be able to utilise the full
potential of implementing a more modern advanced algorithm such as ORB-SLAM3,
which can handle dynamically changing environments and multi-map merging [6]. The
simplicity of GraphSLAM makes it more applicable to the Formula Student application.
Furthermore, a combination of the ADS-DV’s hardware constraints and the computa-
tional complexity of our current software stack, explained more in Section 3.1, limits
the computational resources that are available for our SLAM implementation. Due
to this limitation, choosing a simpler, less computationally expensive algorithm, such
as GraphSLAM, reduces the computational latency and helps maintain the real-time
performance required in a racing environment.
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Implementation

In this chapter, the high-level architecture of the EUFS-AI autonomous software system
is explained, detailing the requirements for the implementation. Followed by a detailed
explanation of the SLAM implementation.

3.1 EUFS-AI Software Architecture

This section outlines the high-level architecture of the EUFS-AI autonomous software
system to determine the implementation requirements for the SLAM algorithms to fit
into the wider system. The structure can be seen in Figure 3.1.

Figure 3.1: EUFS-AI software architecture.

The autonomous system has two modes; learning mode and racing mode. For the Track-
drive event, the system starts in learning mode. Learning mode navigates the vehicle
around the track while the SLAM sub-system, seen in red in Figure 3.1, creates the
map of the track. While in learning mode the perception sub-system, in green, outputs
cone positions to the planning and control sub-system, in yellow, which calculates a
trajectory and generates a set of commands using the controller to follow this trajectory.
The controller also considers the velocity estimates from the EKF output, in pink,

19
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when generating the output commands. The trajectory is restricted by the distance the
perception pipeline can identify cones, limiting the speed of the vehicle, as discussed in
Section 1.2. Note the global planner is not used at this time as there is no SLAM output.

After the first lap is complete, SLAM outputs a map of the track to the global planner,
which generates an optimal trajectory. After this optimal trajectory has been generated
the system then switches to racing mode. The planning multiplexer takes the optimal
trajectory from the global planner, along with the current pose from the SLAM sub-
system and outputs a new trajectory for the controller to generate a set of commands
to follow this trajectory. As the track is now known, the vehicle is not limited by the
perception sub-system and can travel at much faster speeds.

The focus of this thesis is on the SLAM sub-system, seen in red in Figure 3.1, which
takes in velocity from the EKF and cones from the perception sub-system. Figure 3.2
shows the current perception cone extraction algorithm applied on top of a camera image.
Due to the preprocessing of the images by the perception sub-system to extract the cone
locations, implementing a visual-based SLAM algorithm, such as ORB-SLAM3, where
images are taken as the input and landmarks are extracted directly from the images,
would require drastic changes to the entire sub-system. The perception sub-system
would no longer be required to extract the cones, as the images would be directly fed
into the SLAM sub-system. Furthermore, the map output from the SLAM sub-system
would contain more than just cones as landmarks, which would require additional
changes to the planning and control sub-system to account for the additional landmarks.
These changes to the perception and planning and control sub-systems are outside the
scope of this thesis, which focuses on the SLAM sub-system only. Future work could be
carried out to explore this, as better results could be achieved by extracting landmarks
directly from images.

Figure 3.2: EUFS-AI camera image with cone extraction algorithm.

3.1.1 SLAM Implementation Requirements for EUFS-AI

Based on the architecture of the autonomous system mentioned in Section 3.1, the
SLAM implementation in this thesis must be Robot Operating System (ROS) 2 com-
pliant [35] to allow integration with the other sub-systems. It must take in velocity
measurement, from the EKF sub-system, and an array of x and y-coordinates with
the corresponding 2 by 2 covariance matrix, from the perception sub-system. Note
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the x and y-coordinates are in the ROS base footprint coordinate frame, where the
origin is under the centre of mass of the vehicle. The implementation must publish each
complete lap of the track, the vehicle pose continuously after the first lap, and the map
of the track after the first lap (to allow racing mode). Based on these requirements we
can now go into the implementation details.

3.2 Programming Language

Due to the requirement that the system must be ROS 2 compliant, the system can only
be implemented in C/C++ or Python, as these are the only supported programming
languages in ROS 2. C/C++ are faster at runtime compared to Python, therefore the
GraphSLAM implementation is in C++. Furthermore, the current EUFS-AI SLAM
implementations are in C++, allowing for common methods and classes to be shared
between algorithms.

3.3 Odometry Buffer

As outlined in Section 3.1, the inputs to the SLAM sub-system are the velocity estimates
from the EKF and the cone positions from the perception sub-system. The rates of
these inputs are different; velocity estimates are received at a rate of 30Hz and cone
positions around 10Hz. To handle the variations in input rates a buffer was implemented
to store the most frequent inputs, in this case, the velocity estimates. As the motion
model requires only the previous pose and the current pose, the velocity estimates are
integrated into a sequence of poses and stored as poses instead. Each pose in the buffer
is assigned a timestamp which comes from the timestamp of the velocity measurement
that caused the vehicle to move from the previous pose to the current pose. Upon
receiving cone estimates, the motion model takes as input the oldest pose in the buffer
and the most recent pose in the buffer, before or at the timestamp on the cone estimates.
The buffer is then cleared, except for the last pose which is kept as the current pose of
the vehicle for use when the next set of cone estimates are received.

3.4 Motion Model

The motion model is used to predict the future pose of the vehicle before considering
the cone estimates. The chosen motion model for this thesis was the odometry motion
model outlined by Thrun et al. in Probabilistic Robotics [38]. This odometry motion
model is simple with few parameters, making it easy to implement and a common
choice for SLAM implementations [7, 25]. The motion model algorithm, along with
the mathematics behind this model, can be found in Appendix A.

3.5 Measurement Model

The measurement model is used to interpret the cone positions based on the vehicle pose
and the map. The measurement model described in [10] was chosen as it transforms
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the cone positions from the base footprint frame to the map frame using the vehicle
pose in the map, which suits our system as we receive the cone positions in this frame.
The underlying theory behind this measurement model can be found in Appendix B.

3.6 Data Association

Data association is used in SLAM to identify if a newly received cone already exists in
the SLAM map or if it should be added to the map. One of the simplest data association
techniques is gating, which is the technique used in this thesis. There are also more
advanced techniques such as joint compatibility branch and bound (JCBB) [27] and
multi-hypothesis association [28].

The gating technique implemented uses nearest neighbour with the Mahalanobis dis-
tance. Mahalanobis distance was chosen over the standard Euclidean distance as it
considers the cone measurement uncertainty, giving more accurate data association.
The cone estimates received from the perception sub-system have colours associated
with each cone. When the perception sub-system cannot determine the colour of the
cone with enough accuracy it marks the colour as unknown. For each cone received
from perception, the Mahalanobis distance is calculated between this cone and each
cone of the same colour or unknown colour in the map. The pair of cones with the
smallest Mahalanobis distance and within the threshold distance are merged with the
new position being the mean of the two positions, the colour of the pre-existing cone is
adopted, if not unknown. If the distance threshold is not met and no cones are merged
then the new cone is added to the map. Incorporating the cone colours into the data
association prevents cones that we know are on different sides of the track from being
merged. This addition makes the assumption that the cones assigned a colour by the
perception sub-system are done so accurately.

3.7 Loop Closure

Loop closing identifies when the vehicle crosses the finish line and thus has completed a
lap. There is no standard loop closure detection approach for SLAM as it is application-
specific. The loop closure approach implemented in this thesis works as follows. Once
the SLAM system receives large orange cones from the perception sub-system, the
largest distance between these cones is calculated. If this distance exceeds 2.5 metres
then a vector between these cones is created. The threshold distance of 2.5 metres was
chosen based on the Trackdrive layout, where the start/finish line width must be at least
3 metres, as specified in Section 1.1.1. This threshold distance prevents a vector from
being created between two orange cones on the same side of the track. Once we have
the vector across the track a 3m by 3m square is created perpendicular to the vector.
As we do not know the direction of the vector, i.e. it could be from the big orange
cone on the left to the big orange cone on the right or vice versa, a square is created on
each side of the vector. When the vehicle enters this square, known by calculating the
distance to the orange cones, a countdown is started to estimate when the vehicle will
cross the start/finish line. This estimate is calculated based on the distance to the line
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and the current velocity of the vehicle, assuming the vehicle will continue at constant
velocity. To reduce the impact of this assumption, the countdown value is repeatedly
re-computed until the vehicle is no longer in the square or the large orange cones are
no longer reported by the perception sub-system. This countdown is required due to
the sensor’s limited field of view, first mentioned in Section 1.1.2, meaning the large
orange cones go out of sight of the sensors before the vehicle crosses the line, as seen
in the right-most diagram of Figure 3.3. Figure 3.3 helps to visualise this loop closure
approach.

Figure 3.3: Loop closure detection.

3.8 Unknown Cone Colouring

After running my GraphSLAM algorithm and looking at the results I noticed many of
the cones in the SLAM map were left uncoloured, despite updating colours during data
association. I decided to further advance the colour correction in the data association
process to also account for the side of the vehicle the cones are positioned on. We
know the colour of the cones to the left of the vehicle are blue and to the right of the
vehicle are yellow, as highlighted in Section 1.1, so this information can be utilised to
colour cones with unknown colour. The orientation of the vehicle is taken and a line is
projected in the direction of travel. If the cone of interest is within a distance threshold
from the vehicle and is to the left of this line, it is assigned the colour blue, and to the
right, it is assigned the colour yellow. The distance threshold is to restrict the distance
of colouring unknown cones, as it is common for the perception sub-system to mark
far away cones as unknown before the vehicle is close enough to be confident in their
colour. It also limits the negative effect of colouring cones on the wrong side of the
track at sharp corners, where it may appear that cones on the left side of the track are on
the right side of the vehicle, and vice versa, due to the vehicle not yet changing direction
for the corner. This addition may help improve data association as more cones around
the vehicle will be assigned a colour, allowing them to be merged if they are within
the Mahalanobis distance of another cone already in the map. Furthermore, outputting
a more accurate map from the SLAM sub-system will allow the planning and control
sub-system to plan a better trajectory around the track.
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Methodology

In this chapter, the data collection procedure is outlined, along with the evaluation
metrics, and evaluation procedure used to analyse the collected data and answer the
aims outlined in Section 1.4. The results of the evaluation procedure are presented in
Chapter 5.

4.1 Track Layouts

This section details the three track layouts used in this thesis to evaluate the two SLAM
algorithms of choice. These tracks follow the Trackdrive event rules, outlined in Section
1.1.1, but have very different layouts to test various aspects of the SLAM algorithms.

For each track, an RTK Global Navigation Satellite System (GNSS) receiver was used
to map the cones with centimetre accuracy. The RKT GNSS was placed on the centre
of each cone and its position was recorded. To obtain more accurate position data,
readings were recorded for 2 seconds, collecting 20+ GPS messages, and an average
was calculated. As well as the position of each cone, the colour of each cone and the
rough starting position of the vehicle (around 3 metres behind the start line) were also
manually recorded. The complete RTK maps of the tracks can be seen in Figures 4.1,
4.2, and 4.3.

4.1.1 Rectangle Track

The rectangle track, as seen in Figure 4.1, has 90°turns at each corner of the track and
long straights between. Based on the author’s experience, this is unlikely to be a track
layout at the Formula Student AI competition; however, it tests the SLAM algorithm’s
capability to handle long straights and sharp turns. Being able to do this accurately
would allow for increased speeds along the straights, beyond the capability of solely
using perception data, and faster navigation through tight corners, such as hairpins or
chicanes. This being the longest of the three tracks maximises the distance before the
vehicle revisits the same point on the track, testing the performance of loop closure and
data association.
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Figure 4.1: RTK map of the rectangle track.

4.1.2 Peanut Track

The peanut track, as seen in Figure 4.2, has a relatively simple shape without any long
straights or sharp turns. The complexity of this track comes from the near intersection in
the middle of the track where the perception sub-system will output cones from the other
side of the track as well as the side of the track the vehicle is currently on. This poses
additional challenges for the algorithm’s data association. Unlike the rectangle track,
the peanut track is non-linear as it is made up of continuous left and right turns. This
tests the algorithm’s ability to deal with larger uncertainty in the vehicle orientation.

Figure 4.2: RTK map of the peanut track.

4.1.3 Hairpin Track

Finally, the hairpin track, as seen in Figure 4.3, is the most complex of the three tracks
and, based on the author’s experience, is the most representative of what a Trackdrive
track layout might look like at the Formula Student AI competition. Similar to the
peanut track, this track is non-linear with few straights. The cone density is also a lot
higher compared to the other two tracks, which tests the algorithm’s ability to deal with
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increased computational complexity and the ability of the algorithm’s data association
to handle cones closer together.

Figure 4.3: RTK map of the hairpin track.

4.2 Autonomous Data Collection

The ADS-DV, outlined in Section 1.1.2, equipped with a sensor suite and the EUFS-AI
software stack, was the chosen platform to obtain the data required to evaluate the
SLAM algorithms of interest in this thesis. Each track was mapped using the RTK
GNSS, as described in Section 4.1, and then the ADS-DV was driven around each track
autonomously in learning mode (defined in Section 3.1). As the vehicle was traversing
the track, the EKF output and the perception output were recorded using rosbag2 to
allow the SLAM algorithms to be evaluated offline.

4.3 Evaluation Metrics

This section outlines the evaluation metrics used to analyse the two SLAM algorithms
of interest in this thesis. The initial metrics used to evaluate the performance of the
algorithms were; map RMSE, cone counts, and worst-case execution time. These
metrics were chosen, over other metrics (see Sections 2.7 and 2.8.1), as they most
effectively answer the aims defined in Section 1.4. Additionally, the chi-squared metric
was used to evaluate the accuracy of different GraphSLAM optimisation algorithms.

4.3.1 Map Root Mean Squared Error (RMSE)

The first metric is the map root mean square error. This metric is a measure of the
error in the distances between the cones in the map generated by the SLAM algorithms
after the first lap of the track and the map created using the RTK receiver, mentioned
in Section 4.1. The RMSE is a metric used across most SLAM evaluation literature to
compute the accuracy of the SLAM map, as outlined in Sections 2.7 and 2.8.1. The
SLAM algorithm that consistently produces a lower RMSE can be determined as the
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algorithm that more accurately maps the track, which is the second aim of this thesis.
Furthermore, as this is a common metric for measuring accuracy, performance can be
easily compared with other literature.

4.3.2 Cone Counts

The second metric is the difference between the number of cones in the map generated
by the SLAM algorithms after the first lap of the track and the map created using the
RTK receiver. Using this metric alongside the RMSE gives a truer representation of the
accuracy, as the SLAM map could have additional cones nearer to the cones in the RTK
map, skewing the RMSE and accuracy of the algorithm. The SLAM algorithm that
consistently produces a lower cone count difference, alongside a lower RMSE, can be
determined as the algorithm that more accurately maps the track, which is the second
aim of this thesis. These counts can also be refined by colour to assess the ability of the
algorithm to classify cones.

4.3.3 Worst-Case Execution Time

The third metric is the worst-case execution time for one iteration in learning mode. One
iteration is the time taken for a message from the perception subsystem to be integrated
into the state. Lower computation time is desirable to guarantee the SLAM algorithms
process the inputs fast enough to keep up with the real-time responsiveness required
when racing. Also, lower computation time within the SLAM sub-system allows the
limited computational resources of the ADS-DV to be used by other sub-systems. The
worst-case execution time was chosen as this shows the maximum delay between
consecutive outputs, which is crucial for understanding the sub-system’s reliability and
safety. The SLAM algorithm with the lower worst-case execution time across different
tracks can be determined as the algorithm with the smaller computational latency, which
is the third aim of this thesis.

4.3.4 Chi-Squared

The additional metric is the chi-squared value, which is the sum of the squared residuals
between the estimated values and measurements during the GraphSLAM optimisation
process. A lower chi-squared value indicates the robot pose and cone position estimates
are close to the measurements, resulting in a better-fitting graph. The graph optimisation
process is an iterative procedure and computing the chi-squared value after each iteration
allows for convergence to be evaluated and different optimisation algorithms to be
compared. The optimisation algorithm that converges to a lower Chi-value is more
desirable as it shows a better fit to the measurements, suggesting a more accurate
solution to the real-world environment.

4.4 Evaluation Procedure

This section describes the evaluation procedure that was carried out on the collected
data, as described in Section 4.2, to obtain the results in Chapter 5.
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4.4.1 Parameter Tuning

Prior to conducting experiments, the parameters for the SLAM algorithms were tuned.
As the FastSLAM 2.0 algorithm was used by EUFS-AI at the Formula Student AI
competition, the parameters for this algorithm were already tuned. The optimisation
techniques used for this tuning were a Bayesian Optimisation technique, implemented
by Nogueira et al. [29], and the Covariance Matrix Adaptation Evolution Strategy [12],
which is a black box optimisation (BBO) technique. BBO is the process of minimising
an objective function without knowing the underlying function itself, simply choosing
inputs and observing the outputs. The objective function used by both techniques
was the RMSE value between the SLAM-generated map and the RTK-created map
after alignment using Iterative Closest Point (IPC). As the GraphSLAM algorithm
implemented in this thesis has different parameters from the FastSLAM 2.0 algorithm,
parameter tuning had to be carried out. Due to limited time constraints and surprisingly
accurate results from hand-tuning the parameters, the optimisation techniques used
for FastSLAM 2.0 were not used for GraphSLAM. The parameters were hand-tuned
across the different tracks until a sufficient map was generated. Future work should be
conducted to tune these parameters using optimisation techniques.

4.4.2 Map RMSE

The GPS coordinates collected using the RTK receiver were converted to Universal
Transverse Mercator coordinates to transform them onto a 2D flat plane. The coordinates
were then shifted so the estimated vehicle start position became the origin of the map
frame. The cone coordinates were then rotated so that the positive x-axis lies in the
vehicle’s direction of travel, determined by a vector from the vehicle start position to
the centre of the start line. IPC is then used to align the cone in the SLAM map with the
cones in the RTK map to create cone pairs. The RMSE of these pairs is then computed.

4.4.3 Worst-Case Execution Time

The worst-case execution time was calculated by recording the execution time of the
function that integrates the perception input. This time was computed for every percep-
tion input received during the first lap of the track and the largest time reported. The
computation time for integrating the velocity inputs are ignored as they are insignificant
compared to the computation time of integrating the perception input.

This metric was collected offline on a laptop running Ubuntu 22.04 LTS with an Intel
Core i7-8565U CPU with 16GB RAM. See Appendix C for the extended specifications.

4.4.4 Chi-Squared

Seeking further improvement to the accuracy of the GraphSLAM algorithm an exper-
iment to compare different optimisation algorithms was conducted. The chi-squared
value for each iteration was computed during the optimisation procedure by the g2o li-
brary [18], where the optimisation algorithm and the number of iterations were specified
as parameters.
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Results & Discussion

This chapter explores the results of the FastSLAM 2.0 and GraphSLAM algorithms
across various metrics, followed by a discussion regarding these results.

5.1 Results

This section presents the results from the experiments described in Chapter 4. Initially,
FastSLAM 2.0 is compared to GraphSLAM across a variety of metrics, followed by an
additional experiment to seek further improvement to the GraphSLAM algorithm. Note
for all experiments involving a comparison between FastSLAM 2.0 and GraphSLAM,
FastSLAM 2.0 was run with 100 particles and 10 treads, and GraphSLAM was run
using the Levenberg-Marquardt (LM) optimisation algorithm with a maximum of 50
iterations for optimisation. These experiments were repeated 20 times and averages
were computed, except for the worst-case execution time where the largest result
was reported. The asterisk (*) indicates the enabling of unknown cone colouring for
GraphSLAM.

5.1.1 Map RMSE

Table 5.1 presents the RMSE of the cone positions between the map generated from the
SLAM algorithms and the map created using the RTK receiver. Note that the number
of cones is not considered in these experiments, allowing a perfect score of 0 to be
obtained if there were no cones in the SLAM map. The cone counts are considered in
section 5.1.2.

Algorithm Rectangle Peanut Hairpin

FastSLAM 2.0 0.86 1.54 1.42
GraphSLAM 0.38 0.93 0.73
GraphSLAM* 0.38 0.93 0.71

Table 5.1: Comparison of RMSE values for GraphSLAM and FastSLAM 2.0 across
different tracks.

29
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5.1.2 Cone Counts

Table 5.2, 5.3 and 5.4 show the average difference in the number of cones between the
map generated from the SLAM algorithms and the map created using the RTK receiver.
Positive values indicate more cones in the map generated from the SLAM algorithms
and negative values indicate more cones in the map created using the RTK receiver.

Algorithm Blue Yellow Orange Unknown Total

FastSLAM 2.0 +1.40 -4.20 -1.00 +3.10 -0.70
GraphSLAM +1.00 -6.00 -2.00 +7.00 0.00
GraphSLAM* +0.95 -1.00 -2.00 +2.00 -0.05

Table 5.2: Cone count differences for the rectangle track.

Algorithm Blue Yellow Orange Unknown Total

FastSLAM 2.0 +5.20 +20.10 +2.36 +0.32 +27.98
GraphSLAM -16.84 -1.00 -2.00 +18.32 -1.52
GraphSLAM* -1.60 +0.10 -2.00 +3.00 -0.50

Table 5.3: Cone count differences for the peanut track.

Algorithm Blue Yellow Orange Unknown Total

FastSLAM 2.0 -6.30 +7.90 -2.10 +1.00 +0.50
GraphSLAM -2.05 +17.00 -2.00 +9.00 +21.95
GraphSLAM* -0.05 +16.9 -2.00 +7.05 +21.9

Table 5.4: Cone count differences for the hairpin track.

5.1.3 Worst-Case Execution Time

Table 5.5 shows the worst-case execution time, in seconds, across the three different
tracks.

Algorithm Rectangle Peanut Hairpin

FastSLAM 2.0 0.0279 0.0115 0.0174
GraphSLAM 0.0028 0.0031 0.0022
GraphSLAM* 0.0029 0.0034 0.0022

Table 5.5: Comparison of worst-case execution time, in seconds, for each SLAM algo-
rithm across each track.
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5.1.4 Chi-Squared

Figure 5.1 shows the chi-squared error over 10 iterations of the Powell’s Dogleg and the
Levenberg-Marquardt optimisation algorithms on the rectangle track. Both algorithms
were run 5 times and all results were reported. Note the maximum number of iterations
was set to 10 and unknown cone colouring was enabled.

Figure 5.1: Chi-squared error over 10 iterations across 5 runs of the rectangle track for
the Powell’s Dogleg and the Levenberg-Marquardt optimisation algorithms.

Table 5.6 presents the average RMSE of the cone positions between the map generated
from the GraphSLAM algorithm and the map created using the RTK receiver for both
the optimisation algorithms. Each experiment was conducted 5 times and an average
was computed for all tracks.

Optimisation Algorithm Rectangle Peanut Hairpin

Levenberg-Marquardt 0.383 0.924 0.699
Dogleg 0.383 0.935 0.705

Table 5.6: Average RMSE across different tracks for the Powell’s Dogleg and the
Levenberg-Marquardt GraphSLAM optimisation algorithms.

5.2 Discussion

In this section, the results from Section 5 and the maps shown in Figures 5.2, 5.3, and
5.4 are analysed based on the thesis aims, outlined in Section 1.4. Including a discussion
about the challenges and limitations of these results.
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5.2.1 Implementation

The first aim of this thesis was to implement a graph-based SLAM algorithm into the
EUFS-AI software stack. This has been successfully achieved, obtaining results for all
metrics (see Section 5.1) and producing SLAM maps for each track (see Figures 5.2,
5.3, and 5.4).

5.2.2 Accuracy

The second aim of this thesis was to determine which type of SLAM algorithm, either
particle filter-based or graph-based, consistently produced more accurate maps. To
determine the accuracy of FastSLAM 2.0 maps and GraphSLAM maps two metrics
were used; the RMSE between the SLAM map and the RTK map and the cone counts.

From Table 5.1 we can see that the RMSE across all tracks was smaller using the
GraphSLAM algorithm compared to the FastSLAM 2.0 algorithm. The SLAM maps in
Figures 5.2, 5.3, and 5.4 agree with this, showing GraphSLAM’s SLAM map having
more cones closer to the cones in the RTK maps than FastSLAM 2.0’s SLAM map.
Furthermore, the addition of the unknown cone colouring, during data association,
further improved the accuracy of the hairpin track. As previously mentioned, in Section
4.1.3, the cone density of the hairpin track is higher than that of the other tracks. This
potentially explains the improvement; an increase in cone density means more cones
will be within the distance threshold for merging. Colouring more of these cones before
merging prevents cones that previously would have had unknown colour, if unknown
cone colouring was disabled, from being incorrectly merged with a cone where their
true colours differ, thus resulting in more accurate maps, as seen in Figure 5.4c.

The cone counts show varying results. Table 5.2 shows that on the rectangle track, the
difference in the total number of cones is similar for all algorithms, around 0. This may
indicate that the RMSE for the rectangle track is a reliable metric to determine accuracy.
Table 5.3 shows that on the peanut track, for FastSLAM 2.0, there are on average around
28 more cones in the SLAM map than the RTK map. This could indicate that the RMSE
of the FastSLAM 2.0 SLAM map is skewed by the additional cones, making the use
of the RMSE on the peanut track, as a measure of accuracy, less desirable. We can
see from Figure 5.3a that the additional cones in the FastSLAM 2.0 SLAM map are
mostly around the centre of the track, where the perception sub-system will report cones
on both sides of the track. This is potentially a weak point in the FastSLAM 2.0 data
association algorithm as it struggled to determine which cones to merge on which side
of the track. Both the GraphSLAM implementations have similar totals, around 1, for
the peanut track. Conversely, on the hairpin track, the FastSLAM 2.0 map has a total
of +0.50 and the GraphSLAM maps both have much larger totals, around 22. This
suggests that the GraphSLAM algorithms may have skewed RMSE results for this track.
Looking at the maps of the hairpin track in Figure 5.4 we can see that both GraphSLAM
maps have a surplus of cones around the start/finish line. This could suggest a weakness
in the GraphSLAM data association algorithm, particularly when trying the merge big
orange cones and the surrounding cones at the start/finish line.

The fluctuations in the cone counts across the peanut and hairpin tracks may indicate
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that the threshold distance used in data association is nonoptimal and a better value
could be chosen to improve performance across all tracks. Furthermore, a completely
different data association algorithm, such as JCBB, may produce better SLAM maps
with similar cone counts to the RTK maps.

Taking into consideration the RMSE values and the cone counts, potentially the most
reliable set of results to determine the accuracy of the SLAM maps are the RMSE values
from the rectangle track in Table 5.1. Based on these results the GraphSLAM algorithm
is more accurate than the FastSLAM 2.0 algorithm; thus, meaning a graph-based
approach produce more accurate SLAM maps than a particle filter-based approach.

The additional experiment conducted to further improve the accuracy of the Graph-
SLAM algorithm by changing the optimisation algorithm showed minimal difference in
the results. From Figure 5.1 we can see that on the rectangle track both optimisation
algorithms converge to a chi-squared value just below 3000 across nearly all 5 runs
of each algorithm. One Dogleg run converges to a slightly smaller chi-squared value,
indicating that this run found a different minimum. This suggests that neither algorithm
is consistently identifying the global minimum and further parameter tuning or the use
of different optimisation algorithms should be considered. Figure 5.1 also shows that
the Dogleg algorithm seems to converge faster, indicated by the steep drop down to the
minimum chi-squared value after 2 iterations. The LM algorithm has a less steep drop
after the first iteration and remains above the minimum value before plateauing out after
4 iterations. This suggests the Dogleg algorithm is slightly more efficient at finding the
optimal value; however, this does not mean it is more accurate as they both converge to
similar chi-squared values. Lin et al.[22] explores the same optimisation algorithms as
this thesis, also on a SLAM problem, and reports a figure that follows the same trend as
Figure 5.1. The plots for the peanut track and the hairpin track also follow the same
trend as the rectangle track, thus were not presented.

If one algorithm was to converge to a smaller chi-squared value then it could be
determined as a more accurate algorithm, as the error between the measurements and
the estimates is smaller, however, this was not the case for either the Dogleg or the LM
algorithms. Table 5.6 reinforces this as the RMSE between the SLAM map and the
RTK map are similar across both algorithms on all tracks. There is potentially a slight
reduction in accuracy on the peanut track when switching from the LM algorithm to
the Dogleg algorithm as the RMSE increases by 0.011. Similarly, for the hairpin track
the RMSE increases by 0.006 when switching from the LM algorithm to the Dogleg
algorithm. However, these differences in RMSE are not significant enough to claim one
optimisation algorithm produces more accurate maps than the other.

5.2.3 Computational Latency

The third aim of this thesis was to identify which type of SLAM algorithm, either particle
filter-based or graph-based, has a smaller computational latency. The computational
latency must be smaller than 100ms due to the 10Hz perception input. If this is exceeded
then we will begin to lose messages and performance will start to deteriorate. To
determine the computational latency of FastSLAM 2.0 and GraphSLAM the worst-case
execution time metric was used.
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From Table 5.5 we can see that the worst-case execution time for all algorithms across
all tracks is below the 0.1 seconds (100ms) upper limit. However, the worst-case
execution time for FastSLAM 2.0 is an order of magnitude larger than GraphSLAM
across all tracks. This can be justified by FastSLAM 2.0’s additional computational
complexity when sampling the vehicle’s pose before adding the cone to the map,
which is not required by the GraphSLAM algorithm. The GraphSLAM algorithm
with additional unknown cone colouring is very slightly slower than the standard
GraphSLAM algorithm on the rectangle and peanut tracks. This is expected due to the
additional computation required to determine the colour of any cone marked as having
an unknown colour. The extra magnitude of difference in the GraphSLAM results
compared to the FastSLAM 2.0 results makes GraphSLAM favourable, allowing for
additional scope in the latency without worrying about crossing over the 100ms upper
bound and losing perception data.

It must also be noted that these results were obtained on the author’s laptop which has
an Intel Core i7-8565U CPU [2], as mentioned in Section 4.4.3. This differs from the
target CPU, used on the ADS-DV at the Formula Student AI competition, which is an
Intel Core i7-6700TE [1]. However, both have the same number of cores and threads,
meaning the results are unlikely to greatly differ. Note the memory and operating
system are also the same across both platforms, as outlined in Appendix C.

Based on this analysis we can conclude that the algorithm with the smaller computational
latency is GraphSLAM, the graph-based SLAM algorithm, and due to the additional
magnitude of difference in results comes out more favourable when compared to
FastSLAM 2.0.

5.2.4 Challenges & Limitations

The final aim of this thesis was to identify any challenges for SLAM algorithms in the
context of Formula Student AI. This section will cover some challenges and limitations
experienced when collecting and analysing these results.

Firstly, due to limited access to the ADS-DV, the RTK maps and the associated EKF
and perception data used in these results were collected in 2022, using an older sensor
suite than the current suite used by the EUFS-AI team. Our current sensor suite has
an improved Lidar which can see cones further away and can measure intensity with
greater accuracy. This allows for not just distance to the cones to be measured but also
cone colour. This improves perception output and would further improve the SLAM
results presented in this thesis.

Secondly, based on the author’s experience at Formula Student AI competitions, the
tracks used in this thesis were shorter than most tracks used at the competition. This
was down to the limited space available at our test location. Due to the accumulation of
drift, longer tracks are inherently more difficult, meaning there is no guarantee that the
SLAM maps created will be as accurate.

Finally, the parameter optimisation process was conducted only on the FastSLAM 2.0
algorithm and not the GraphSLAM algorithm, which was hand-tuned. This potentially
means the GraphSLAM algorithm is using sub-optimal parameters, limiting its per-
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formance and reducing the accuracy of the SLAM maps. Furthermore, the parameter
optimisation process takes many hours, depending on the number of parameters and
track layout. At the competition the track is unknown prior to the event and the time
between runs of the same track is not long enough to carry out the full parameter
optimisation process. This poses an additional challenge of obtaining enough data
on competition tracks prior to the event to generalise the parameters enough that they
perform well on all tracks or come up with a more efficient parameter tuning approach
that can be conducted either between runs or during runs at the competition. This should
be investigated more.

(a) FastSLAM 2.0 (b) GraphSLAM

(c) GraphSLAM with unknown cone colouring
enabled

Figure 5.2: Rectangle track: The lowest RMSE SLAM maps (crosses) with RTK maps
(faded circles) for each algorithm. The marker colours match the true cone colours and
the grey markers indicate unknown cone colour.
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(a) FastSLAM 2.0 (b) GraphSLAM

(c) GraphSLAM with unknown cone colouring
enabled

Figure 5.3: Peanut track: The lowest RMSE SLAM maps (crosses) with RTK maps
(faded circles) for each algorithm. The marker colours match the true cone colours and
the grey markers indicate unknown cone colour.
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(a) FastSLAM 2.0 (b) GraphSLAM

(c) GraphSLAM with unknown cone colouring
enabled

Figure 5.4: Hairpin track: The lowest RMSE SLAM maps (crosses) with RTK maps
(faded circles) for each algorithm. The marker colours match the true cone colours and
the grey markers indicate unknown cone colour.
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Conclusion

In this chapter, the thesis is concluded with a summary of the achieved work, followed
by an outline of potential future work.

6.1 Summary

This thesis investigated the use of particle filter-based and graph-based SLAM algo-
rithms in the context of the Formula Student AI Trackdrive event. This event consists of
navigating 10 laps of an unknown track in the fastest time possible. It was highlighted
that the speed of the vehicle was limited by the perception range and to overcome this
a map of the track, along with the position of the vehicle in this map, was required.
SLAM was presented as the solution to this problem; creating a map of the track on the
first lap and maintaining the vehicle pose within this map, allowing for optimal path
planning and increased maximum speed thereafter.

The background was presented explaining the theory behind SLAM, introducing particle
filter-based SLAM as a method for solving the online SLAM problem and graph-
based SLAM as a method for solving the full SLAM problem. FastSLAM 2.0 and
GraphSLAM were presented as the chosen SLAM algorithms for comparison in this
thesis. FastSLAM 2.0 was previously implemented in the EUFS-AI software stack and
GraphSLAM was implemented as part of this thesis. The background was concluded
by exploring SLAM literature to identify potential evaluation metrics. The architecture
of the EUFS-AI software stack was presented and the SLAM implementation details
were discussed.

The data collection approach and evaluation approach were then presented, including
the three track layouts and the chosen evaluation metrics. The maps of the three tracks
were collected by the author and the EUFS-AI team using an RTK receiver. The EFK
and perception output were also recorded as the autonomous vehicles navigated the
track. The procedure used to obtain the chosen metrics of map RMSE, cone counts and
worst-case execution time, alongside the additional chi-squared metric, was outlined.

The results showed that the GraphSLAM algorithm was able to create more accurate
maps of the tracks than the FastSLAM 2.0 algorithm, along with a vastly smaller
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computational latency, making it the superior SLAM algorithm. This agrees with the
literature [23], where Lopes also found GraphSLAM outperformed FastSLAM 2.0 in
an autonomous racing context. However, the pose accuracy was not considered in this
thesis and should be evaluated before disregarding either of the algorithms and running
on the EUFS-AI software stack at the Formula Student AI competition. Furthermore,
the additional unknown cone colouring showed slight improvements in accuracy on the
hairpin track but largely performed similarly to the standard GraphSLAM algorithm.
Finally, the different GraphSLAM optimisation algorithms explored all resulted in simi-
lar performance across all tracks, and did not increase the accuracy of the GraphSLAM
algorithm.

6.2 Future work

This section outlines potential future work that could be carried out to further improve
the mapping of the Formula Student AI tracks and the localisation of the vehicle within
these maps.

6.2.1 Pose Evaluation

The accuracy of the pose estimates was not tested in this thesis but is fundamental to
the evaluation of SLAM algorithms in the context of Formula Student AI. Similar to
the map evaluation procedure outlined in Section 4.4.2, the RTK GNSS receiver could
be used to track the vehicle’s ”true” position on the track and the RMSE error between
this and the pose estimates generated from the SLAM algorithm could be computed.
This would give a value for the accuracy of the pose estimates, providing the missing
metric to conclude with strong evidence which of the SLAM algorithms is superior for
this application.

6.2.2 Data Association

As described in Section 3.6, the current data association technique is gated Mahalanobis
distance. This is a simple and computationally efficient technique that can work well
in environments where processing data quickly is required. However, more advanced
techniques such as JCBB [27] may work better in the context of Formula Student AI.
Unlike gated Mahalanobis distance, JCBB considers multiple observations at once,
comparing groups of observations to groups of landmarks. This would improve the data
association of cones that are clustered together in areas of the track such as around the
start/finish line and in tight corners.

6.2.3 Parameter Tuning

As mentioned in Section 5.2.4, the current parameter tuning process that involves
running the Bayesian Optimisation technique and the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) is not sufficient for use at the competition. Exploring a
more efficient method for parameter optimisation or limiting the number of parameters
that need to be tuned at the competition by identifying the parameters that are not
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dependent on the track layout and tuning these prior to the competition could help
overcome this challenge. Furthermore, CMA-ES can be modified to work in real-time
[13], tuning the parameters as the vehicle navigates the track, which may also be another
viable solution.

6.2.4 Visual-based slam

Due to the current EUFS-AI software stack architecture, as defined in Section 3.1,
the input to both SLAM algorithms explored in this thesis comes from the perception
sub-system where we received cone locations. This makes these SLAM algorithms
feature-based. In more recent years the development of SLAM algorithms has taken a
shift towards visual-based SLAM, such as ORB-SLAM3 [6] and OpenVSLAM [33],
where the raw sensor measurements are directly used as inputs to the SLAM algorithm.
Visual-based SLAM algorithms could be implemented and evaluated in the context of
Formula Student AI. The computational complexity of these algorithms would need
to be considered due to the limited computational resources available on the ADS-DV;
however, if raw camera images are too computationally expensive to process then there
is the potential to use Lidar point clouds to extract landmarks instead.

6.2.5 GraphSLAM Optimisation procedure

This thesis explored different optimisation algorithms that the g2o library [18] had
to offer. However, the g2o library also allows the customisation of the optimisation
algorithms through parameters such as maximum number of iterations, convergence
threshold, robust kernel parameters, edge weighting and many more. This opens up
another opportunity to carry out hyperparameter tuning to find the optimal parameter
configuration for Formula Student AI.

Furthermore, the GraphSLAM algorithm implemented in this thesis optimises the
graph after a full lap of the track is complete. Optimising the graph at different points
throughout the first lap, instead of solely at the end of the lap, may allow for early
correction of any errors in the vehicle pose or cone position estimates. This could
improve the overall graph by preventing the accumulation of errors.

Finally, unlike FastSLAM 2.0, where there is no computational overhead after the
first lap is complete, GraphSLAM has to optimise the graph after the completion
of the first lap. The EUFS-AI software system cannot enter racing mode until the
SLAM sub-system publishes the map, this means when the GraphSLAM algorithm
is used the system will be in learning mode for longer than when the FastSLAM 2.0
algorithm is used. The length of this delay is determined by the graph optimisation
time, which depends on the complexity of the graph and the values chosen for the
parameters mentioned above. By tuning the parameters to reduce the optimisation time,
for example, by reducing the number of optimisation iterations, the SLAM map could
be published earlier but may be less accurate as it has undergone fewer optimisation
iterations. An investigation could be carried out to compare the trade-off between the
accuracy of the SLAM map and the optimisation time, to determine the effect of this
delay in regard to the overall completion time of the 10 lap Trackdrive event.
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Appendix A

Motion Model

The following odometry motion model was presented in Probabilistic Robotics by
Thrun et al. [38]. It samples a new vehicle pose based on the previous vehicle pose xt−1

as xt−1 =

x
y
θ

 and the odometry ut as ut =

[
x̄t−1
x̄t

]
between times t −1 and t.

The algorithm transforms the change in odometry into a sequence made up of a rotation,
translation, and another rotation (lines 2 to 4). Control noise is then added to this
sequence (lines 5 to 7). The resulting values are then used to update the vehicle pose
for the current time t (lines 8 to 10) and the new vehicle pose is returned (line 11).

Algorithm 4 Pseudocode for the Odometry Motion Model
1: function ODOMETRY MOTION MODEL(xt−1,ut)
2: δrot1 = atan2(yt − yt−1,xt − xt−1)−θt−1
3: δtrans =

√
(yt − yt−1)2 +(xt − xt−1)2

4: δrot2 = θt −θt−1 −δrot1

5: δ̂rot1 = δrot1 −GAUSSIAN(α1δ2
rot1 +α2δ2

trans)

6: δ̂trans = δtrans −GAUSSIAN(α3δ2
trans +α4(δ

2
rot1 +δ2

rot2))

7: δ̂rot2 = δrot2 −GAUSSIAN(α1δ2
rot2 +α2δ2

trans)

8: x′ = x+ δ̂trans cos(θ+ δ̂rot1)

9: y′ = y+ δ̂trans sin(θ+ δ̂rot1)

10: θ′ = θ+ δ̂rot1 + δ̂rot2

11: return X̄t
12: end function

Mathematically, the motion model can be defined as the noise-free motion model g plus
some Gaussian noise:

x̂t = g(xt−1,ut)+N (0,Rt) (A.1)

The noise-free motion model g is defined as:

45



Appendix A. Motion Model 46

g(xt−1,ut) =

x′

y′

θ′

=

x+δtrans cos(θ+δrot1)
y+δtrans sin(θ+δrot1)

θ+δrot1 +δrot2

 (A.2)

where the control parameters δ = [δrot1 δtrans δrot2] are defined as:

δrot1 = atan2(yt − yt−1,xt − xt−1)−θt−1 (A.3)

δtrans =
√
(yt − yt−1)2 +(xt − xt−1)2 (A.4)

δrot2 = θt −θt−1 −δrot1 (A.5)

The Jacobian for the motion model with respect to the above control parameters δ is:

Gδ =
∂g(xt−1,ut)

∂δ
=

−δtrans sin(θ+δrot1) cos(θ+δrot1) 0
δtrans cos(θ+δrot1) sin(θ+δrot1) 0

1 0 1

 (A.6)

The Jacobian for the motion model with respect to the vehicle pose xt−1 is:

Gx =
∂g(xt−1,ut)

∂xt−1
=

1 0 −δtrans sin(θ+δrot1)
0 1 δtrans cos(θ+δrot1)
0 0 1

 (A.7)

The covariance matrix Rt is:

Rt = GδMtGT
δ

(A.8)

where Mt is defined as the covariance matrix of the noise that is added to the control
parameters:

Mt =

α1δ2
rot1 +α2δ2

trans 0 0
0 α3δ2

trans +α4(δ
2
rot1 +δ2

rot2) 0
0 0 α1δ2

rot2 +α2δ2
trans

 (A.9)

where α1, α2, α3 and α4 are the tunable hyperparameters of the motion model.



Appendix B

Measurement Model

Mathematically, the measurement model can be defined as the noise-free measurement
model h plus some white Gaussian noise N (0,Qt) with covariance Qt :

ẑ = h(µt ,mi)+N (0,Qt) (B.1)

where ẑ =
[

ẑx
ẑy

]
is the predicted measurement.

The noise-free measurement model h is defined as:

h(µt ,mi) =

[
cosµt,θ sinµt,θ
−sinµt,θ cosµt,θ

][
mi,x −µt,x
mi,y −µt,y

]
(B.2)

where µt =

µt,x
µt,y
µt,θ

 is the vehicle pose at time t and mi =

[
mi,x
mi,y

]
is the ith landmark in

the map m.

The Jacobian for the measurement model with respect to the vehicle pose µt is:

Hµ =
∂h(µt ,mi)

∂µt
=

[
−cosµt,θ −sinµt,θ −dx sinµt,θ +dy cosµt,θ
−sinµt,θ cosµt,θ −dx cosµt,θ −dy sinµt,θ

]
(B.3)

where dx = mi,x −µt,x and dy = mi,y −µt,y.

The Jacobian for the measurement model with respect to the landmark mi is:

Hm =
∂h(µt ,mi)

∂mi
=

[
cosµt,θ sinµt,θ
−sinµt,θ cosµt,θ

]
(B.4)

The inverse measurement model h−1 is defined as:

h−1(µt ,zt) =

[
µt,x
µt,y

]
+

[
cosµt,θ −sinµt,θ
sinµt,θ cosµt,θ

][
zt,x
zt,y

]
(B.5)
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The Jacobian for the inverse measurement model with respect to the predicted measure-
ment zt is:

Gm =
∂h−1(µt ,zt)

∂zt
=

[
cosµt,θ −sinµt,θ
sinµt,θ cosµt,θ

]
(B.6)

The Jacobian for the inverse measurement model with respect to the vehicle pose µt is:

Gµ =
∂h−1(µt ,zt)

∂µt
=

[
1 0 −zt,x sinµt,θ + zt,y cosµt,θ
0 1 −zt,x cosµt,θ − zt,y sinµt,θ

]
(B.7)



Appendix C

Hardware & Software Specifications

ADS-DV Computer Author’s Laptop

Model CQ67G fanless PC Dell Inspiron 7580
Processor Intel Core i7-6700TE Intel Core i7-8565U
Processor cores 4 4
Processor threads 8 8
RAM 16GB 16GB
GPU Nvidia GTX 1050 Ti Nvidia MX150
Operating System Ubuntu 22.04 LTS Ubuntu 22.04 LTS

Table C.1: Hardware and software specifications for the ADS-DV computer used at the
competition and during data collection, and the author’s laptop used for obtaining the
results.

49


	Introduction
	Formula Student AI
	Trackdrive
	ADS-Dedicated Vehicle

	SLAM
	Motivation
	Aims
	Thesis Outline

	Background and Related Work
	SLAM History
	Mapping and Localisation
	SLAM Properties
	Online SLAM and Full SLAM
	Particle Filter-Based SLAM and Graph-Based SLAM

	SLAM Theory
	Online SLAM Formulation
	Full SLAM Formulation

	FastSLAM 2.0
	GraphSLAM
	Literature Evaluating SLAM
	SLAM in Formula Student
	Formula Student Literature Evaluating SLAM

	Summary

	Implementation
	EUFS-AI Software Architecture
	SLAM Implementation Requirements for EUFS-AI

	Programming Language
	Odometry Buffer
	Motion Model
	Measurement Model
	Data Association
	Loop Closure
	Unknown Cone Colouring

	Methodology
	Track Layouts
	Rectangle Track
	Peanut Track
	Hairpin Track

	Autonomous Data Collection
	Evaluation Metrics
	Map Root Mean Squared Error (RMSE)
	Cone Counts
	Worst-Case Execution Time
	Chi-Squared

	Evaluation Procedure
	Parameter Tuning
	Map RMSE
	Worst-Case Execution Time
	Chi-Squared


	Results & Discussion
	Results
	Map RMSE
	Cone Counts
	Worst-Case Execution Time
	Chi-Squared

	Discussion
	Implementation
	Accuracy
	Computational Latency
	Challenges & Limitations


	Conclusion
	Summary
	Future work
	Pose Evaluation
	Data Association
	Parameter Tuning
	Visual-based slam
	GraphSLAM Optimisation procedure


	Bibliography
	Motion Model
	Measurement Model
	Hardware & Software Specifications

