
ezSTEP: an online platform for training and
testing machine learning models for protein

expression

Andreas Hiropedi

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Computer Science

School of Informatics
University of Edinburgh

2024



Abstract
The biotechnology industry offers many promising avenues to help against many global
challenges. One such avenue is that of “cell factories”, where microbes are genetically
engineered to produce high-value chemicals, which can be used in the production of
pharmaceuticals, food, or fuels from green sources. However, developing cell factories
requires many trial-and-error rounds of design and experimental testing, which slows
down Research & Development and stifles innovation. To address this issue, several
efforts have been made to develop accessible and efficient tools to leverage machine
learning models for the task of measuring protein expression directly from the DNA
sequence. In this dissertation, we introduce ezSTEP, an online platform designed to
meet this need by enabling the training and testing of shallow sequence-to-expression
regression models. The ezSTEP platform is publicly available online and can be ac-
cessed using the following link: https://ezstep-f617792399bb.herokuapp.com. The re-
sults from this dissertation have been reported in the manuscript: Hiropedi, A., Shen,
Y., Oyarzún D. A. “ezSTEP: a web-based tool for Sequence-To-Expression Predic-
tion”, 2024. which will be submitted to a peer-reviewed journal in biotechnology and
synthetic biology. The manuscript has been attached to this dissertation in Appendix
D.
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Chapter 1

Introduction

1.1 Motivation

Microbial engineering involves the manipulation of microbes in order to develop novel
uses, covering a wide variety of applications in the pharmaceutical, food and energy
sectors (Roell & Zurbriggen, 2020; Spadiut et al., 2014). Predicting protein expression
in the cells from DNA sequences is critical for strain optimization in heterologous
protein production (Nikolados & Oyarzún, 2023). However, this has proven to be
notoriously challenging, as protein expression involves the complex transcriptional and
translational process in biosystems (KIreeva et al., 2018; Shah et al., 2013).

Current advances in high-throughput sequencing and screening techniques have fa-
cilitated the acquisition of large sequence-to-expression datasets. Machine learning
models can be built on these datasets to deliver protein expression prediction of ac-
ceptable accuracy for practical applications. Previous research has demonstrated that
convolutional neural networks (CNN) can achieve an R-squared prediction accuracy
of approximately 0.9 for ribosome binding sequences (RBS) (Höllerer et al., 2020).
Machine learning models have also been trained to predict protein expression from
promoter performance (Kotopka & Smolke, 2020b; Penzar et al., 2022). Moreover,
deep learning models applied to 5’-UTR sequences can facilitate the in silico evolu-
tion of DNA (Cuperus et al., 2017). Nonetheless, such models often suffer from certain
limitations when it comes to their usability and interpretability, posing great hurdles
and barriers for biology researchers.

Considering these limitations, efforts have been made in order to ease the adoption of
machine learning tools to analyze biological datasets. A proposed solution that has
proven to be quite promising is automated machine learning (AutoML), which auto-
mates the design and deployment of ML pipelines with minimal user intervention (He
et al., 2021). Several tools that adopt this AutoML architecture have already been made
publicly available. For instance, BioAutoMATED provides users with an end-to-end
pipeline for biological sequence design (Valeri et al., 2023). Another example would
be iLearnPlus, a web platform for DNA, RNA and protein sequence classification,
which wraps together different feature extraction methods and classifiers (Z. Chen et
al., 2021). Vaishnav et al. (2022) also created a web platform that enables users to
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Chapter 1. Introduction 2

query a pre-trained transformer model which was trained on 20 million promoter se-
quences. However, whilst existing platforms tackle the problem of classification, there
currently exist no AutoML tools that enable users to train and test their own models
for the task of regression.

This dissertation introduces a new platform called ezSTEP (Sequence-To-Expression
Predictor). ezSTEP also adopts the AutoML architecture, allowing non-programmers
to easily create, train, and evaluate their own sequence-to-expression models in a sim-
ple and efficient way. Our platform offers several shallow machine learning models
that have been used and tested in current literature (Nikolados et al., 2022), all of
which can be customised through a series of selectable input parameters and optional
features prior to training and evaluation.

1.2 Research Aims and Objectives

The overarching aim of our research is to provide a user-friendly platform for biologists
on sequence-to-expression regression tasks. This aim can be broken down into the
following list of objectives:

1. Create a user-friendly platform with a simple, easy-to-use user interface.

2. Ensure the platform supports training and evaluating machine learning models.

3. Make the platform publicly accessible through a web browser, removing the
need for local setup.

4. Provide several options for model creation, whilst still maintaining a smooth user
experience.

1.3 Dissertation Structure

This dissertation is broken down into six chapters, each detailing important steps of
the project:

Chapter 2: This chapter includes a literature review of microbial engineering, protein
expression, sequence-to-expression models, and existing tools and their limitations.

Chapter 3: This chapter explores the original concept of our platform and early design
before implementation.

Chapter 4: This chapter discusses the implementation details of our platform, in terms
of the technologies used, how it was made publicly available, and how we ensure the
security and privacy of users’ data.

Chapter 5: This chapter focuses on the evaluation techniques used for testing our
platform to ensure it aligns with our original objectives.

Chapter 6: This chapter concludes the dissertation by analysing the research findings
and results from the evaluation and proposing steps for future work.



Chapter 2

Background

This chapter provides a literature review of the existing methods used for sequence-
to-expression modelling. First, we introduce the notion of microbial engineering and
how it relates to protein expression, which will help familiarise the reader with the key
concepts. We will then focus on sequence-to-expression models, and how machine
learning tools can be used to develop such models. Finally, we will discuss how these
tools can be integrated into automated pipelines and leveraged by end users, citing
three examples from current literature, and then introducing our contribution.

2.1 Microbial Engineering and Protein Expression

Figure 2.1: The full conversion of a DNA double-helix to a protein.

Microbial engineering involves the manipulation of microbes in order to develop new
uses for them, with one such use being the expression of high-value proteins. In order
to achieve this, understanding the relation between DNA sequence and protein expres-
sion is of the utmost importance: to transcribe a DNA sequence to a protein sequence,
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Chapter 2. Background 4

we must first convert the DNA sequence into messenger RNA (mRNA), and then con-
vert the mRNA into protein (see Figure 2.1) (Hopkin et al., 2018).

However, predicting protein expression from DNA sequences has proven to be no-
toriously challenging, as protein expression involves the complex transcriptional and
translational process in biosystems (KIreeva et al., 2018) (Shah et al., 2013). This is
heavily impacting microbial strain development, as this process ends up suffering from
several costly rounds of design and experimental testing, thus slowing down research
and development and stifling innovation.

Figure 2.2: Example dataset showing genotype-phenotype associations. Note that
fluorescent detectors within the flow cytometer are used to determine the amount of
fluorescence emitted by cells, which indicates the level of protein expression (right)
(Niedenthal et al., 1996).

Despite these challenges, recent advancements in batch DNA synthesis and high-
throughput sequencing have fueled the use of deep mutational scanning to study genotype-
phenotype associations. This has resulted in a large number of strategies being devel-
oped, all of which have led to the production of really large datasets containing thou-
sands and even millions of genotype-phenotype associations (see Figure 2.2). These
large datasets have sparked a growing interest in building sequence-to-expression mod-
els that can predict protein expression directly from nucleotide sequences, hence fore-
going the middle step of transcribing DNA to mRNA before it gets converted to protein
(Nikolados et al., 2022).
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2.2 Machine Learning for Sequence-to-expression Mod-
els

In synthetic biology, the traditional approaches to microbial strain engineering relied
on phenotyping libraries of sequence variants and selecting a subset of top producers
for further validation, scale-up or iterative design. However, due to the recent advance-
ments and the creation of such large datasets, new model-guided strategies are being
developed in order to utilize sequence-to-expression predictors for acquiring knowl-
edge about the phenotypic landscape’s structure. We can then repeatedly query such
models within sequence optimization loops to explore and navigate the landscape of
gene expression (Nikolados & Oyarzún, 2023).

2.2.1 Machine Learning

Among the various strategies for sequence-to-expression modelling, machine learning
models have rapidly emerged as a popular and efficient solution to address the problem
of accurate prediction for biological sequences (Z. Chen et al., 2021). Recent works
have started to incorporate machine learning in the design-build-test cycle for several
predictive modelling tasks, including ribosomal binding sequences (RBS) (Höllerer
et al., 2020), RNA constructs (Angenent-Mari et al., 2020), promoters (Kotopka &
Smolke, 2020a) and other regulatory elements (Cuperus et al., 2017) to name a few.

The growing interest in machine learning tools for sequence-to-expression modelling
stems from the availability of large, high-dimensional biological datasets of genotype-
phenotype associations. Once trained, these models can be used in silico to infer rela-
tions between sequence and expression levels (Vaishnav et al., 2022). These relations
could further aid researchers in extracting relevant biological insights and help speed
up the design of biological sequences with desired properties (Valeri et al., 2023).

2.2.2 Deep Learning

One particular branch of machine learning that has seen great promise for generating
accurate sequence predictors is deep learning. In essence, deep learning models can
be described as data regressors that predict a continuous variable by processing a set of
input parameters. One aspect that makes these models stand out is their computational
power: they can process incredibly large datasets, deliver highly accurate predictions,
and capture complex dependencies with minimal prior assumptions. This, in turn,
can help uncover relations in the data on a much greater scale compared to non-deep
machine learning models, and one that would be simply infeasible by inspection alone
(Nikolados & Oyarzún, 2023).

Deep learning models have enjoyed early successes across several phenotype predic-
tion tasks, including transcription factor binding affinity (Alipanahi et al., 2015), ri-
bosome loading (Sample et al., 2019), and RNA splicing (Jaganathan et al., 2019)
to name a few. However, one particularly relevant example from recent literature of
the success of deep learning models was the work done by Vaishnav et al. (2022) in
investigating the relationship between promoter sequence, expression phenotype, and
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fitness. In their research, they generated a large genotype-phenotype dataset with over
20 million randomly generated promoter sequences, as well as their expression levels
in Y8205 Saccharomyces cerevisiae (S. cerevisiae) measured in complex and synthetic
media lacking uracil. This dataset was used to train a convolutional neural network
(CNN) that can capture fitness landscapes and is able to generalize beyond the training
sequence space. The ability to generalize enabled their model predictions to be used as
a surrogate for a fitness function in molecular evolution studies (Nikolados & Oyarzún,
2023; Vaishnav et al., 2022).

2.2.3 Limitations of Machine Learning Tools

Despite the wide variety of machine learning models and frameworks that can be used
for sequence analysis and prediction, the core underlying mechanisms tend to fol-
low the same generic five-step process: feature extraction, feature analysis, model
construction, performance evaluation, and output visualization (Z. Chen et al., 2021).
Nonetheless, despite the rather simple outline of their functionality, machine learning
tools often pose great hurdles and barriers for biology researchers.

One of these barriers pertains to the trade-off between model accuracy and the budget
of experiments. When it comes to deep learning models described in current litera-
ture, the vast majority have been trained on fully randomized sequences. While this
may seem beneficial, as it prevents models from inheriting any form of bias from the
training data, a large number of samples is needed in order to balance the depth and
breadth of coverage of the sequence space (Nikolados & Oyarzún, 2023). Addition-
ally, deep learning models such as convolutional neural networks (CNN) require a long
training time and computational resources in order to provide a high degree of accu-
racy (Alzubaidi et al., 2021). Since obtaining such large datasets and computational
resources can be very costly, this results in a trade-off between the cost of producing
data and the accuracy of the model’s predictions. Several considerations regarding
the design of training datasets have been discussed in protein engineering literature
(Wittmann et al., 2021), and are now emerging within the context of sequence-to-
expression models (Nikolados et al., 2022).

Another hurdle comes from the inability to generalize machine learning models due to
the design of the training data. In current research, the data needed to train sequence-
to-expression models is typically collected using very lab-specific experimental setups
and DNA strains. Since these conditions tend to vary significantly across different
labs, this results in the inability to extend existing models to predict sequences using
unseen data, hence limiting researchers to using their own in-house models (Nikolados
& Oyarzún, 2023).

In addition to difficulties faced when it comes to data, there are also concerns when it
comes to the actual usability of machine learning models. The sequence-based analysis
and predictions tend to require complex processing steps, access to sophisticated soft-
ware, as well as significant data science expertise (Z. Chen et al., 2021). Moreover, in
order to build, train and deploy machine learning models, significant machine learning
expertise is also required. Despite the current resources available for scientists, such
as online tutorials, open-source code, and a wide range of software packages (Avsec
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et al., 2019), there are a large number of user-made decisions that can dramatically in-
fluence the quality and performance of machine learning models (Valeri et al., 2023).
Such decisions have proven to be rather difficult even among skilled ML practitioners
(Zoph et al., 2018), thus raising concerns about the models’ usability for researchers
with limited ML experience.

2.2.4 AutoML

Considering the limitations outlined in the previous section, several efforts have been
made in order to ease the adoption of machine learning tools to analyze biological
datasets. A proposed solution that has proven to be quite promising is the use of auto-
mated machine learning (AutoML). In essence, AutoML provides methods to automate
the design and deployment of ML pipelines with minimal user intervention (He et al.,
2021). The techniques provided by AutoML can automatically identify the appropri-
ate model architectures and model hyper-parameters, providing a solid foundation for
researchers with limited ML expertise to build initial predictive models (Valeri et al.,
2023). There are currently numerous AutoML tools available, spanning from more
”shallow” models, such as tree-based optimization using random forest or other scikit-
learn methods (Olson & Moore, 2016), to deep learning models such as convolutional
neural networks (CNN).

One crucial benefit of AutoML tools, however, is that they can be extended to create au-
tomated end-to-end pipelines. Such pipelines would provide scientists with easy data
pre-processing, feature extraction, model selection and optimization, and performance
visualisation. This would, in essence, address all the current limitations of machine
learning tools, by providing researchers with a platform for reaping the benefits of ma-
chine learning analysis and prediction in a simple, user-friendly manner (Valeri et al.,
2023).

2.3 Previous Work

Given the benefits provided by end-to-end AutoML pipelines, there has been a recent
shift towards developing such online platforms to match the needs of end users, namely
biology researchers. There are currently several platforms available online; however,
in this section, we are only going to focus on three examples.

The three platforms that we are going to consider are iLearnPlus (Z. Chen et al., 2021)),
BioAutoMATED (Valeri et al., 2023)), and the Evolution App (Vaishnav et al., 2022)).
We have chosen to focus on these three platforms in particular because they address a
similar problem to our own. Throughout this section, we are going to critically assess
the individual strengths and limitations of each of these platforms.

2.3.1 iLearnPlus

First, we are going to focus on iLearnPlus, which is one of the first tools that auto-
mated machine learning for DNA, RNA, and peptide sequences (Z. Chen et al., 2021).
iLearnPLus provides the user with the option to download the code and run it on their
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own local machine or access the online platform through a website. We assessed the
performance usability of the platform by experimenting with several different input
parameter combinations.

One thing we instantly noticed is that the user is given plenty of freedom regarding the
choice of parameters they can select. Such parameters include feature representation,
feature selection, feature normalization are all decisions that are entirely up to the end
user. While this may sound good on paper, giving users with limited ML expertise such
freedom fails to address one of the current limitations of machine learning models that
AutoML tools aim to address, thus taking away some of the usability of the platform.

Another noticeable limitation of the iLearnPlus platform is that, despite the friendly
graphical user interface (GUI) (Z. Chen et al., 2021), there is actually very little guid-
ance for the user when it comes to using the platform. Although, before accessing
the web server, the user is given a brief explanation of the overall functionality and
features available, there is very limited information about the input parameters them-
selves, which again hinders the usability of this platform for researchers with little ML
experience.

Yet another limitation of the iLearnPlus platform is that it is only able to handle clas-
sification tasks. This essentially implies that the platform can only handle data with
discrete labels, making it impossible for their integrated models to solve tasks involv-
ing continuous labels, such as regression problems.

2.3.2 Evolution, Evolvability and Expression App

Next, we will consider the evolution, evolvability and expression app, which serves as
a general framework for designing regulatory DNA sequences and addressing funda-
mental questions in regulatory evolution (Vaishnav et al., 2022). Like iLearnPlus, the
user can also choose between downloading the code and running it on their own local
machine or accessing the online platform through a website.

Some of the advantages of this platform over iLearnPlus pertain to the usability of the
app. For example, one such advantage is that user guidelines are included in order to
clarify any ambiguities. Another such advantage is that most of the decision-making
process is abstracted away from the user: the only interactions users have with the
platform - excluding output visualizations - are for uploading their data and choosing
the type of medium between complex and defined media (Vaishnav et al., 2022). These
design decisions ensure that less experienced ML researchers can easily interact with
the platform, thus rendering it more usable.

However, a huge drawback of this platform is that it only allows the user to query ML
models that have already been trained. As a result, this platform only helps with gen-
eralising machine learning models to make accurate predictions on different, unseen
datasets (Nikolados et al., 2022), but it does not allow users to train such models on
their own data and measure their performance.
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2.3.3 BioAutoMATED

Lastly, we will shift our focus to BioAutoMATED, an online platform which provides
an end-to-end AutoML framework optimized for building models for nucleic acid,
peptide, and glycan sequences (Valeri et al., 2023). Unlike the previous two examples,
in order to launch this platform the user would need to download the code and run it
locally on their own machine.

Like the Evolution app, BioAutoMATED also abstracts most decisions regarding model
implementation and design away from the user. However, one added benefit of this
platform is that it also enables its users to train machine learning models on the data
they uploaded (Valeri et al., 2023). In essence, BioAutoMATED combines some of the
main positive aspects of iLearnPlus and the evolution app to provide a powerful tool
that is highly usable regardless of the level of ML expertise.

Nonetheless, the BioAutoMATED framework also has its limitations. As previously
mentioned, one such limitation is that the platform is not directly accessible through
a website, but rather the user needs to set it up on their local device, thus severely
hindering its accessibility. Another drawback of the platform is that its attempt to
address a wide variety of problems may have come at the expense of usability: there
is perhaps too much abstraction from the user, which can potentially result in unclear
outputs that are quite difficult to interpret.

2.4 Summary

This chapter presented the current research on sequence-to-expression modelling and
identified existing methods and technologies used for measuring protein expression.
From the literature, we have seen that AutoML tools serve as a powerful technique
that makes sequence-to-expression modelling easier and more accessible to biology
researchers with various levels of machine learning expertise. This enables the moti-
vation behind the research to design an online platform that enables users to train and
test their own regression models for measuring protein expression. Throughout the
following chapters, we will showcase the conceptual design and implementation of the
ezSTEP platform, as well as evaluate its performance through a series of experiments
using different datasets.



Chapter 3

Concept and Design

In this chapter, we consider the original concept and design of our platform. We start by
discussing the AutoML pipeline for our platform, which outlines the main functions of
ezSTEP. We then explore the conceptual design of the user interface, bearing in mind
how it was created in accordance with good practices for usable software development.
Lastly, we focus on how we developed these conceptual ideas into a more concrete set
of requirements which can be acted upon and implemented.

3.1 Conceptual AutoML Framework

Figure 3.1: The conceptual end-to-end pipeline for training and testing sequence-to-
expression models on the ezSTEP platform.

We illustrate the end-to-end pipeline of the ezSTEP platform in Figure 3.1. The DNA
sequences initially go through a preprocessing stage, where we convert them to feature
vectors and then apply normalisation. These feature vectors are used by the model in
order to learn how to accurately estimate the expression levels. After preprocessing,
there are two optional steps, namely feature extraction and hyper-parameter optimi-
sation. These steps are only executed if the user enables them as part of their model
input selection. The last step before model training is model selection, where the user
chooses the type of machine learning algorithm to be used. Once the model has been
successfully trained, its performance is then measured on the provided test set as part

10
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of the model evaluation stage. The last step in the pipeline, namely model querying, is
optional, and will only be executed if the user supplied a query dataset.

We provide an outline of the available options for each of the steps in our pipeline
below:

1. Feature encoding: a choice between one-hot encoding or k-mer, with k being
any integer value between 2 and 5. One-hot encoding involves converting cat-
egorical values, such as DNA sequences, into binary vectors that can be used
as inputs to machine learning models (Okada et al., 2019); this technique is
the most popular choice for sequence-to-expression modelling (Höllerer et al.,
2020). K-mer encoding, on the other hand, involves retrieving all the possible
subsequences of length k contained within the DNA sequence and converting
them to a vector or matrix form to be used as inputs to machine learning models
(Kirk et al., 2018). The k-mer encoding method is very popular in bioinformatics
and computational biology.

2. Feature normalisation: a choice between the MinMax and Z-score normalisa-
tion algorithms. MinMax normalisation involves transforming the range of the
feature space such that all values fall within the [0,1] range (Patro & Sahu, 2015).
Z-score normalisation (standardization), on the other hand, scales the data such
that the distribution of the normalized values has a mean of 0 and a standard
deviation of 1 (Fei et al., 2021). We have chosen MinMax and Z-score normal-
isation due to their widespread use in data preprocessing for machine learning
models (Z. Chen et al., 2021).

3. Feature selection (optional): requires the following two inputs:

(a) feature number: a number between 1 and 100 indicating the number of
features to be selected for training.

(b) feature selection algorithm: a choice between PCA (Principal Component
Analysis), Weight importance, Regression f-score and Mutual Information.
These four algorithms were selected due to their common use in regression
tasks (Saeys et al., 2007).

4. Unsupervised learning (optional): a choice between PCA, UMAP (Uniform
Manifold Approximation and Projection) or t-SNE (T-distributed stochastic neigh-
bour embedding). These three unsupervised learning techniques were chosen
due to their popularity amongst biology researchers, as well as due to the in-
sights they reveal regarding dataset structure (Wong et al., 2016).

5. Hyper-parameter optimisation (optional): uses Bayesian optimisation, re-
quires one input:

(a) iteration number: a number between 1 and 50 indicating the number of
iterations that the optimisation is run for.

6. Model type: a choice between Random Forest, Multi-layer Perceptron, Support
Vector Machine, Ridge Regressor.
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For each of our models, we have a series of initial parameters that we set before apply-
ing hyper-parameter optimisation, as well as a set search space for certain parameters
as part of Bayesian optimisation. These values have been previously tested by Nikola-
dos et al. (2022) and can be seen in Table 3.1 and Table 3.2.

Regressor model Hyperparameter Value
Ridge regressor Regularization (α) 1.0

Random forest

No. of estimators
Maximum depth

Min samples per leaf
Min samples to split

25
30
3
2

Support vector regressor
Kernel method

Regularization (C)
Margin tolerance (ε)

RBF
30
0.5

Multi-layer perceptron
Activation function

Hidden layers
No. of neurons

ReLU
3

100

Table 3.1: Starting hyper-parameters for non-deep machine learning regressors. These
are the parameters set for the models prior to optimisation.

Regressor model Hyperparameters for
optimisation Search space values

Ridge regressor Regularization (α) [10−1,102]

Random forest

No. of estimators
Maximum depth

Min samples per leaf
Min samples to split

[5,100] incr. of 10
[15,100] incr. of 5

[1,12]
[2,12]

Support vector regressor Regularization (C)
Margin tolerance (ε)

[1,50]
[0.1,2]

Multi-layer perceptron
Activation function

Hidden layers
No. of neurons

(ReLU, tanH)
[1,5]

[100,400] incr. of 50

Table 3.2: Search space for hyper-parameters for the non-deep machine learning mod-
els on the ezSTEP platform. This search space is used for Bayesian optimisation.

3.2 User Interface Design

We illustrate our conceptual design for the user interface in Figure 3.2. As can be seen
from the figure, we have opted for a simple, easy-to-follow design, that ensures the
desired functionality of the platform. We also wanted to provide the guidelines mostly
as a reference point for users in case they get stuck or are unsure of what steps to take.
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Figure 3.2: The conceptual design of the user interface (UI) for the ezSTEP platform.
This is a rough sketch of what would need to be implemented, and provides minimal
information on how the UI should look like, and instead focuses on the core functionality
of each component. We discuss and show the actual implementation of the UI in detail
in chapter 4.

Additionally, since we wanted to enable users to create as many models as they wanted,
we concluded that having a separate user interface for providing input parameters for
each model would be more beneficial. This is because users can clearly differentiate
between the models they create, and it also provides users with the ability to easily go
back and alter their parameter selection. Similarly, since we wanted to provide several
meaningful visualisations for each individual model, having a separate user interface
for the model outputs seemed more optimal.

3.2.1 Nielsen’s Usability Heuristics

The conceptual user interface design shown in Figure 3.2 takes into account the princi-
ples used in human-computer interaction (HCI) and was designed in accordance with
Nielsen’s Usability Heuristics. This set of ten heuristics constitutes the most general
and widely used principles for designing interactive tools (Nielsen, 1994). We include
a list of the 10 principles and their explanation in Appendix A.

An example of how we apply Nielsen’s Usability Heuristics to our platform is illus-
trated through the simplicity of our user interface design and implementation (see
Chapter 4). Heuristic 8 states that Interfaces should not contain information that is
irrelevant or rarely needed (Nielsen, 1994). By ensuring that our design is very mini-
malist, and the user is neither overwhelmed by the amount of information nor confused
by what certain features of the app do, we hope to ensure a high degree of usability
whilst still addressing our main objective of providing a platform for training and test-
ing machine learning models.
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Another such example would be in heuristic 2, which refers to ensuring a match be-
tween the system and the real world. Our design was created considering the follow-
ing order of events: a user first uploads their data, then proceeds to create a model
providing their parameter selection, and then visualises the outputs for that model. We
therefore designed our interface in a way that prompts users to perform actions in that
exact order but does not limit their freedom to explore the platform’s features. For
instance, users can freely navigate between the space for uploading files, providing
model inputs, and visualising model outputs; however, if a user were to try to create
a model without providing any data for those models, the system will inform the user
that they will need to go back and upload their data in order to create that model.

3.3 Platform Requirements

Given that the previous two designs were only conceptual, we needed to formalise
them in a way that they could be acted upon for implementation. We therefore created
a more concrete and actionable set of requirements, which can be broken down into the
following three main categories: User Requirements, Task Requirements, and Interface
Requirements. We explore each of these categories in more detail in the sub-sections
that follow.

3.3.1 User Requirements

ezSTEP’s target audience is biology researchers with varying levels of expertise in
machine learning (ML). The platform should be accessible and easy to use regardless
of this variation in ML knowledge.

3.3.2 Task Requirements

The platform is designed to allow users to customize sequence-to-expression models,
train and evaluate them on their own data, and easily interpret and explore the results.
This should therefore feature a high degree of customizability, very interactive visuali-
sations, and a simple way that enables users to track the progress of the model creation
process (e.g., inform them if the model has been created successfully or if it is still in
the training stage). Additionally, there should also be a mechanism that allows users
to easily repeat this process for every model they create on the platform.

3.3.3 Interface Requirements

The tool should start with a simple home interface, with a straightforward structure that
makes navigating the web-app easy. Additionally, users should be given some infor-
mation that can further help them with navigating the platform in case they get stuck;
nonetheless, this information should not be overwhelmingly large so as to intimidate
users instead. Furthermore, when a user is being redirected to a new page, this page
should be opened in a new browser tab in order to simplify the navigation process for
the user.



Chapter 4

Implementation

This chapter discusses the implementation details of the ezSTEP platform. First, we
consider the technologies used as part of implementing the conceptual design described
in the previous chapter. We will then discuss how the chosen models were integrated
with the platform, and showcase the final implementation of the user interface. Lastly,
we will discuss how the web-app was deployed so that it can be publicly accessible, as
well as acknowledge the need for security and data privacy in the context of a freely
accessible online platform.

4.1 Technology Stack

The technology stack used for the implementation of ezSTEP can be divided into two
main parts: models and web platform. This is because the models were implemented
separately from the platform, before integrating them together (section 4.2 Model In-
tegration for more details). We discuss the technology stack for each of the two parts
in the sub-sections below.

4.1.1 Models

The non-deep machine learning models we provide as part of our platform were built
using the scikit-learn Python package (Pedregosa et al., 2011). However, these models
were customised with the user inputs provided by the user (such as feature encoding
method, feature normalization, etc.), and these were created using custom Python code.
We discuss the details of how we integrated the models with the user input, for the
purposes of our platform, in the Model Integration section (section 4.2).

4.1.2 Web Platform

For our web platform, we initially considered three options to implement the design
outlined in the previous chapter. The three options considered were the streamlit
Python package (Richards, 2021), the Plotly Python package (Plotly Technologies
Inc., 2015), and the PyQT5 Python package (Meier, 2019). We shortlisted these three

15
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packages due to their widespread adoption amongst developers of AutoML tools. For
instance, the iLearnPlus platform was developed using the PyQT5 package (Z. Chen
et al., 2021), and the evolution and evolvability app was developed using streamlit
(Vaishnav et al., 2022).

However, we decided to use the Plotly package for our platform for two main reasons.
Firstly, it provides a high degree of flexibility for customizing features in the user in-
terface through one of its libraries called Plotly Dash (Plotly Technologies Inc., (Plotly
Technologies Inc., 2015). The second reason is the ease of integration with the Plotly
Graph Objects library, which provides a user-friendly interface with highly interactive
graphs that users can easily customize to their needs (Plotly Technologies Inc., 2015).
Since creating a highly usable platform was one of the core objectives for this project,
the Plotly package seemed like the most suitable option for implementing the ezSTEP
platform.

4.2 Model Integration

As we mentioned previously in this chapter, we developed our models using the scikit-
learn Python package (Pedregosa et al., 2011). However, this package provides very
rigidly defined methods, allowing for minimal model customization. Since our aim
is to generate a custom model based on the user’s inputs on our interface, we needed
to implement an additional mechanism that would allow us to process user inputs and
apply them as part of the model creation process.

Figure 4.1: Customised model API we created for each of our four models in order to
integrate them with our platform. This API records the user’s input on the platform, and
calls the appropriate methods in order to create, train, and test the user’s customised
sequence-to-expression model.

The solution we came up with was to create application programming interfaces (API)
(Biehl, 2015) for each of the four models we make available on our web-app. Users
interact with these APIs simply by providing their inputs through our platform’s in-
terface; these inputs are then processed accordingly, and based on the user’s model
selection, the appropriate API is identified. Once the correct API is found, it then
handles calls to the scikit-learn package, ensuring the model is successfully trained
and tested on the user’s data. However, the API also communicates with some custom
Python functions that we implemented. These functions encode each possible input
that users can select to customize their model, such as different feature normalisation
techniques, or different feature selection algorithms. It is worth noting that these APIs
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are fully abstracted away from the user, and they operate entirely as part of the back-
end of the ezSTEP platform. The process of how these APIs work is shown in Figure
4.1.

4.3 User Interface Implementation

Given our user interface (UI) design from the previous chapter, we applied a simi-
lar split in the implementation of our platform: we divided the user interface imple-
mentation into ’home page implementation’, ’model inputs page implementation’, and
’model output page implementation’. We provide more detail for each of these three
components in the sub-sections that follow.

4.3.1 Home Dashboard

Figure 4.2: Home page view of our platform. This is, in essence, what a user would
first see when they access our platform.

As mentioned in Chapter 3, we wanted the home page to act as the main controller of
our app. We therefore felt that, when users first launch the app, they should be provided
with a set of guidelines that explain the main features of the web-app in very simple
terms. In this way, the user is not left guessing what actions need to be taken, which
is in accordance with heuristic 10 of Nielsen’s Usability Heuristics (see Appendix A)
(Nielsen, 1994). We show an image of what users first see when accessing our platform
in Figure 4.2.

In addition to the guidelines, the home dashboard also controls the three main aspects
of our app: allowing users to upload their data on the platform, enabling users to
create models and customize their parameters, and providing users with insightful and
informative visualisations of the model’s performance on their data. These components
are all displayed under individual tabs, which can be found on the home dashboard
below the user guidelines. We explore the implementation of each of these individual
components in further detail in the sub-sections that follow.
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Figure 4.3: The file upload tab on the home page. This is where users can input their
own data before creating, training, and testing the sequence-to-expression models on
our platform, and they can either use the dropbox provided to upload files or enter the
data manually in the textbox below.

4.3.1.1 File Upload

The design of the file upload tab is presented in Figure 4.3. ezSTEP takes training and
testing datasets as required inputs, and the querying sequences as an optional input.
The datasets can be passed in either as a file, with the accepted format being CSV (see
Figure 4.4) or entered manually into the text box shown in Figure 4.3. Once the user
provides this data, it is then validated to ensure that it is in the correct format. This
includes simple checks such as ensuring correct formatting, as well as checking for
irregularities in the data itself, such as DNA sequences not being of equal length or
illegal characters being included in the DNA sequences. We also check if the user has
provided both a valid file and valid input in the text box, in which case the file will be
considered as the final user input to be used for training and testing models.

Figure 4.4: Example of the CSV file format used on the ezSTEP platform.
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Figure 4.5: The model inputs tab on the home page. Here the users can create as
many models as they wish by simply pressing the ’Add a new model’ button, and can
later customize, train and test them by navigating to the corresponding model page. We
provide the hyperlinks to all individual model input pages (blue text that reads ’Model x
input parameters’) on the platform’s home page, as shown above.

4.3.1.2 Model Inputs Tab

We show the user’s view of the model inputs tab in Figure 4.5. This tab enables users
to create as many models as they wish once they inputted their data. To create a new
model instance, users can simply press the ’Add a new model’ button (see Figure 4.5).

Since we wanted to provide users the flexibility of creating as many models as pos-
sible, and not have to set the parameters of each model one at a time, we decided to
create hyperlinks for each model instance a user creates. These hyperlinks are what
is actually stored on the home dashboard, and each hyperlink redirects users to that
model’s corresponding input page, where users can customize that model instance to
their liking. We believe this setup provides a very simple and straightforward design
for the user, whilst also enabling us to provide more guidance and information on the
model creation process through these separate model input pages (see the Model In-
puts Page section for more details).

Figure 4.6: The model outputs tab on the home page. This tab can be used for ac-
cessing all the output visualisations for each individual model, where users can simply
click on the model’s hyperlink (blue text that reads ’Model x output’) and navigate from
the home page to that specific model’s output page.
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4.3.1.3 Model Outputs Tab

The user interface of the model outputs tab is presented in Figure 4.6. Through this
tab, users can access visualisations of the outputs of their models once training and
testing have occurred. These plots provide more insight into the performance of the
models, as well as their underlying architectures.

Similar to the model inputs tab, the model outputs tab on the home dashboard only
stores hyperlinks which redirect users to a specific model’s output page (see Figure
4.6). However, we also provide an option that makes comparison across models very
easy for the users: by clicking on the ’View output statistics plot’ button (see Figure
4.6), users can visualise the performance of all models they successfully created on
their provided test data. We believe this setup maximizes the usability of our platform,
by providing users with a significant degree of freedom to explore the performance of
individual models in depth, as well as compare performance across models in an easy
and straightforward manner.

Figure 4.7: The user view of an individual model inputs page. The hyperlinks on the
home dashboard (top) redirect users to the respective model’s inputs page (bottom),
where users can customize the model’s input parameters before submitting their selec-
tion to create the customized model.
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4.3.2 Model Inputs Page

As discussed in the Model Inputs Tab sub-section, the hyperlinks on the home dash-
board can be used to access a specific model’s input page. These individual pages
contain some further guidelines regarding the model creation process and the input pa-
rameters available, as well as the actual tools for selecting and submitting a parameter
selection for that model. We present the user view of an example model’s inputs page
in Figure 4.7.

The individual model input pages are responsible for the creation, training, and eval-
uation of customized sequence-to-expression models. To achieve this, the user first
provides inputs for each of the parameters shown in Figure 4.7. Once they have filled
in all the fields, they can then submit their selection through the blue ’Submit model
selection’ button (see in Figure 4.7), which will first ensure that all provided inputs are
valid. If all our validation checks pass, the platform then creates the model based on
the user’s input through the API mechanism described in the Model Integration section
(section 4.2) and informs the user once the process has finished. The user is also given
an informative message should any of our validation checks fail, which is in accordance
with heuristic 5 of Nielsen’s Usability Heuristics (see Appendix A) (Nielsen, 1994).
This page also provides users with the option to delete models, by simply pressing the
red ’Delete model’ button (see in Figure 4.7).

Figure 4.8: The user view of an individual model’s outputs page. We show how the
hyperlinks on the home dashboard (top) redirect users to that respective model’s out-
puts page (bottom), where users can access several interactive plots about the model’s
performance and its architecture.
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4.3.3 Model Outputs Page

Similar to the previous section, the hyperlinks under the model outputs tab (on the
home dashboard) can be used to access a specific model’s output page. These pages
provide further insights into the model’s performance through a series of tables and
graph visualisations. We present the user view of an example model’s output page in
Figure 4.8.

The individual model output pages are responsible for producing all the highly inter-
active graphs for users to experiment with as part of their exploration and analysis of
the results (see Figure 4.8). All these plots are generated using the Plotly package in
Python (Plotly Technologies Inc., 2015), and provide several user-interactive features,
such as the ability to enable/ disable visualisations for certain components of the graph,
zooming in and out, and saving the graph as a PNG file to the user’s local device. We
provide a short summary of the available graphs on the ezSTEP platform below:

1. A plot showing the training statistics versus testing statistics (for ease of visual-
isation, since numbers in a table may be harder to interpret).

2. An actual values versus model predictions plot.

3. Plots showing the correlation between different input features (extracted from
the DNA sequences) and the target variable (the protein expression) for the train-
ing and test data.

4. If the user enables feature selection, a plot showing the explained variance of the
selected features.

5. If the user enables unsupervised learning, a PCA, t-SNE or UMAP plot (de-
pending on the user’s choice of unsupervised learning algorithm) analysing the
provided data.

4.4 Server Deployment

Once the user interface was developed and its functionality tested, we then shifted our
attention to making the web-app publicly accessible by deploying it to a web server.
We explored several options for deployment, which we outline below:

1. Amazon Web Services (AWS): one of the most popular cloud services providers,
the main advantage of AWS was its flexibility: offering a system where resources
are allocated on the fly based on the platform’s requirements (Wittig & Wittig,
2023) meant the scalability of our web-app would no longer be an issue.

2. Microsoft Azure: another very popular option for deployment, Azure offers a
free account for users to get started, as well as a series of services that are always
freely accessible. (Copeland et al., 2015).

3. Google Cloud: yet another popular choice, Google Cloud offers its users a free
trial period, where users have access to a predefined amount of credits that they
can use before needing to pay a fee for the services they are using (Bisong &
Bisong, 2019).
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4. Heroku: perhaps a less known cloud provider, Heroku provides a similar advan-
tage to AWS, albeit with less powerful computational resources for supporting
the apps being deployed. Nonetheless, Heroku provides great support for small
and medium-scale web apps, and can also very easily be integrated with the
Plotly Python package for deployment (Middleton & Schneeman, 2013).

5. Virtual Machine (VM): the last approach we considered was using an Ubuntu
virtual machine that hosts a web server, and configuring the VM’s web server to
host our web-app (LaCroix, 2018). The main benefit of this approach would be
the ease of management of our app.

The option we have chosen for short-term deployment was Heroku, due to its poten-
tial for scalability as well as ease of deployment. This enabled us to meet another
core objective of our project, namely that of making our platform publicly accessible.
However, in the long term, we aim to shift our app to the Ubuntu Virtual Machine,
as this approach allows for easier app management due to the server being in-house.
We included further details on the accessibility of our web-app under the Accessibility
section in the Conclusion chapter.

4.5 Security and Data Privacy

Given our platform is publicly available, we also needed to implement some precau-
tions to ensure the security and privacy of users’ data. To do so, we first assign a
session ID to each user who accesses our app. We then map all the information a user
inputs to this session ID and store that information in a Redis database as a key-value
pair (Carlson, 2013). This ID is unique to each user, and it ensures that the information
pertaining to each user is stored separately so as to avoid data leaks.

In addition to unique user IDs, we also ensure that all the packages used as part of our
platform are not susceptible to any security vulnerabilities. Since some older package
versions can be subject to certain types of security attacks, we have mitigated those
risks by using patched versions of these packages that address these security vulnera-
bilities (Wang et al., 2020).

Lastly, we ensure that the input components on our web-app are not searchable and
only accept the expected input values. This additional piece of input validation ensures
that any potentially malicious code that could be inserted into our platform through
those input components is handled safely and without exposing our users’ information
to any security risks.



Chapter 5

Testing and Evaluation

This chapter presents the evaluations of the ezSTEP platform, in terms of both the per-
formance of the integrated sequence-to-expression models and the platform’s overall
usability. We will first consider the metrics used for measuring a model’s performance.
Afterwards, we will explore how our models perform on three different datasets, each
designed for different parts of the DNA sequence. Lastly, we will describe the method-
ology used to conduct a user study to assess the usability of our platform and discuss
the findings of this study.

5.1 Model Performance Evaluation

Our platform measures model performance at both the training and testing stages. We
also evaluate the model’s performance during training because we employ the tech-
nique of 5-fold cross-validation, where we split our training data into sub-sections
known as folds (in our case the number of folds is 5), and we reserve one fold for
testing and use the remaining 4 folds for training the model (Anguita et al., 2012).
This process is repeated five times so that each of the 5 folds is used once to evaluate
the model’s performance. We opted to use 5-fold cross-validation in the training stage
to ensure our model can generalise well to unseen data and avoid overfitting (Moore,
2001).

Once we performed 5-fold cross-validation, we then performed one last training step
on the whole training dataset before measuring the model’s performance on a separate,
unseen test dataset. To evaluate how our models fit the data, we use the same four
metrics in both the training and testing stages, and we describe these four metrics in
more detail in the sub-section below. It is worth mentioning that, since we obtain
five separate values for these metrics as part of the 5-fold cross-validation process, we
compute the mean and standard deviation of the obtained values for each metric and
report both the mean and standard deviation back to the user (see Figure 5.1).
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Figure 5.1: Example of how model evaluation metrics are reported back to the user for
both the training and testing stages.

5.1.1 Evaluation Metrics

As mentioned in the section above, we use four key metrics for evaluating the perfor-
mance of our model. These metrics were inspired by the work done by Hollerer et
al. (2020) and were selected for two main reasons. Firstly, these metrics cover a wide
range of aspects related to the model’s performance, measuring not only whether the
model makes correct predictions, but also how close those predictions are to the true
value. These insights can be of great help to users, particularly when deciding what
models are more reliable for querying. The second reason for choosing these four met-
rics is because they enable us to accurately compare the performance of our platform’s
models with that of similar sequence-to-expression models in current literature. The
four metrics used (which are also shown in Figure 5.1) are outlined below:

1. Root Mean Squared Error: RMSE measures the average difference between
values predicted by a model and the actual values using Euclidian distance (Chai
& Draxler, 2014). For our models, a lower RMSE would be indicative of good
model performance, since the predictions would be very close to the true values.
The equation for computing RMSE is provided below (Chai & Draxler, 2014):

RMSE =
√

1
n ∑

n
i=1(yi − ŷi)2

2. Mean Absolute Error: MAE is a measure of the average size of the mistakes in
a collection of predictions, without taking their direction into account (Willmott
& Matsuura, 2005). Similar to RMSE, a lower MAE value would suggest that
our model fits the data well, as its predictions are closer to the actual values in
the dataset. The equation for computing MAE is provided below (Willmott &
Matsuura, 2005):

MAE = 1
n ∑

n
i=1 |yi − ŷi|

3. Coefficient of determination (R2): this is a statistical measure that indicates
how much of the variation of a dependent variable is explained by an independent
variable for a regression task (Miles, 2005). In our case, a higher R-squared
(closer to 1.0) is desired, as it would suggest that the model is a better fit to the
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data. The equation for computing R-squared is provided below (Miles, 2005):

R2 = 1− ∑
n
i=1(yi−ŷi)

2

∑
n
i=1(yi−ȳ)2

4. Percentage within 2-fold error: this metric refers to the proportion of predic-
tions that are within a 2-fold range of the observed values, which is to say within
2 standard deviations of the true values (Sinha et al., 2008). In the case of our
models, a higher value would indicate that the model’s predictions are highly
accurate since they are very close to the actual values in the original data. The
equation for computing the percentage within 2-fold error is provided below
(Sinha et al., 2008):

Percentage within 2-fold error =
(

1
n ∑

n
i=1 1

[
1
2 ≤ ŷi

yi
≤ 2

])
×100

5.2 Testing on Coding Sequences

The first dataset used for assessing the performance of our models originated from
the work done by Cambray et al. (2018). This dataset was the original basis for the
work done by Nikolados et al. (2022) on the models integrated with our platform.
Therefore, we chose this dataset to ensure our results align with those of Nikolados et
al. (2022). In the following sections, we provide a detailed description of this original
dataset, describe any preprocessing that was applied to the original data, and report the
performance of our models.

5.2.1 Dataset Description and Preprocessing

The Cambray dataset consists of fluorescence measurements for an sfGFP-coding se-
quence in Escherichia coli (E. coli), fused with more than 240,000 upstream 96 nu-
cleotide (nt) variants that were designed to perturb translational efficiency and the re-
sulting expression level (Nikolados et al., 2022). These 96nt sequences were designed
from 56 seeds with maximal pairwise Hamming distances, where each seed was sub-
ject to controlled randomization using the D-Tailor framework, so as to produce muta-
tional series with controlled coverage of eight biophysical properties at various levels
of granularity: nucleotide sequence, codon sequence, amino acid sequence, and sec-
ondary mRNA structure (Cambray et al., 2018; Nikolados et al., 2022). We show a
detailed description of this dataset in Figure 5.2.

Since the size of the original data (244,000 sequences) was too large, and the data was
split into 56 mutational series containing roughly 4000 sequences each, we decided to
use just one of those mutational series to assess the performance of our models. The
mutational series was chosen at random, and we then applied a 90/10 split to create
our training and testing datasets. The structure of the obtained training set is shown
in Figure 5.2B, and we discuss how our models performed on this dataset in the next
sub-section.
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Figure 5.2: A A large phenotypic screen in Escherichia coli of an sfGFP coding gene
preceded by a variable 96nt sequence. The variable region was designed on the ba-
sis of eight sequence properties that impact translational efficiency. Violin plots show
the distribution of the average value of these eight properties across the 56 mutational
series in the dataset (figure obtained from the paper by Nikolados et al. (2022)) B
Two-dimensional UMAP visualization (left) of overlapping 4-mers computed for all se-
quences in the dataset, with each cluster corresponding to a mutational series (figure
obtained from the paper by Nikolados et al. (2022)). We then zoomed in on one of
these mutational series which we used as a training dataset for our models (plot on the
right), and we created a two-dimensional UMAP visualisation of overlapping 4-mers for
all the sequences in that specific mutational series.

5.2.2 Observed Model Performance

The performance of our platform’s models on the Cambray dataset is shown in Fig-
ure 5.3. Our results show that, for datasets of around 4000 sequences, fairly good
performance (R2 ≥ 0.70) can be obtained using most of the models on our platform.
We observe that the linear ridge model performs exceptionally poorly (R2 = 0.48),
whereas the support vector regressor (SVR) and the two non-linear models perform
much better. We found random forest regressors to be the most accurate among the
considered models, with a significantly higher R2 value (R2 = 0.77). This could be
due to the model’s architecture: random forest uses decision tree ensembles, which are
more powerful and capable of capturing non-linear relationships between features and
the target variable (Rodriguez-Galiano et al., 2015).

Another observation that we noted is the impact of DNA encodings as well as that
of feature normalisation methods on prediction accuracy. We found that, between the
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Figure 5.3: Example scatter plots of model predictions on the Cambray test dataset
for our four models (marked with stars), together with their R-squared value for perfor-
mance. These scatter plots were obtained directly from the ezSTEP platform.

feature encoding methods available on our platform, one-hot encoding offers the best
performance, with the difference being as staggering as a 0.05 decrease in R2 value
compared to some k-mer encodings such as 2-mer. Additionally, for models such as
SVR, which are highly sensitive to feature scaling (Pisner & Schnyer, 2020), Z-score
normalisation achieved overwhelmingly better performance on the base model (i.e.,
without applying hyper-parameter optimisation): the R2 value of 0.71 shown in Figure
5.3 was obtained by applying Z-score normalisation, whereas MinMax normalisation
produced a negative R2 value for the SVR model.

Lastly, it is worth mentioning that, by applying Bayesian optimisation for our mod-
els’ hyper-parameters, we note a significant performance increase, with even linear
models such as the ridge regressor achieving R2 values of around 0.70, whereas better-
performing models such as random forest achieve R2 values of R2 ≥ 0.80. These
findings generally align with those from the paper by Nikolados et. al (2022), and at
times even surpass the paper’s findings when hyper-parameter optimisation is used.
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5.3 Testing on Additional Datasets

In addition to the coding sequences dataset developed by Cambray et al. (2018), we
have further assessed the performance of our models on two additional datasets. We
explore the specifics of these datasets, as well as the reasons for selecting them, in the
sub-sections that follow.

5.3.1 Testing on Promoter Sequences

We first shifted our attention from the 5’-end of the coding sequences to natural yeast
promoter sequences. The dataset is a nature promoter dataset, which was originally
used as a validation set for the model used by Vaishnav et al. (2022) for their app.
We therefore felt this dataset would be perfect for measuring the performance of our
models on a different part of DNA, as there were already existing results in current
literature (Nikolados et al., 2022) that we could use for comparison. In the following
sub-sections, we provide a detailed description of this additional dataset, describe any
preprocessing that was applied to the original data, and report the performance of our
models.

Figure 5.4: A Genotypic space of yeast promoter data from Vaishnav et al. (2022) vi-
sualized using a 2D UMAP plot; sequences were featurized using counts of overlapping
4-mers. The dataset contains 3929 promoter variants (80nt long) of 199 native genes,
as well as fluorescence measurements of a yellow fluorescent protein (YFP) reporter;
the inset shows the distribution of variants per gene across the whole dataset (figure
obtained from the paper by Nikolados et al. (2022)). B Two-dimensional UMAP visuali-
sation for the training data we obtained following our 90/10 split on the original dataset;
sequences were once again featurized using counts of overlapping 4-mers.

5.3.2 Dataset Description and Preprocessing

The original dataset from the Vaishnav et al. (2022) papers consisted of more than
30 million sequences in complex medium (yeast extract, peptone and dextrose (YPD)
and more than 20 million sequences in defined medium (synthetic defined medium
lacking uracil (SD-Ura)) (Vaishnav et al., 2022). These sequences 80 nucleotide (nt)
long sequence of promoter DNA from Saccharomyces cerevisiae (S. cerevisiae), more
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commonly known as yeast. However, the paper also introduces a dataset using the
same type of DNA sequence (80nt promoter sequences), but which only comprises of
around 4000 sequences.

We therefore opted for this smaller validation set as it was not only a better fit for
evaluating the models on our platform (since the original data was too large) but there
also exists previous work done by Nikolados et al. (2022), where they measure the
performance of non-deep machine learning models on this data. This dataset therefore
also provided us with a benchmark to ensure that our results align with findings in
current literature.

The structure of this dataset is presented in Figure 5.4. The data is comparable to
that in Cambray et al. (2018) in both sequence length (80nt compared to 96nt in the
Cambray data) as well as highly clustered coverage of genotypic space (Figure 5.4A).
This clustered structure results from the design of the data itself, which is composed
of 3929 variants of 199 natural promoters. A key difference between this dataset and
Cambray et al. (2018) is the construct architecture: unlike the UTR sequences shown
in Figure 5.2B, promoter sequences account for regulatory effects but do not undergo
transcription (Nikolados et al., 2022). Similar to the Cambray dataset, we applied a
90/10 split to create our training and testing datasets, and we show the structure of the
obtained training set in Figure 5.4B. We discuss how our models performed on this
new dataset in the next sub-section.

5.3.3 Observed Model Performance

The performance of our platform’s models on the yeast dataset is shown in Figure 5.5.
The results for this dataset are significantly higher than those for the coding sequences
dataset (Cambray et al., 2018), with all models achieving R2 values of R2 ≥ 0.80, and
even the linear ridge regressor achieving a high R2 of 0.85 before applying optimisa-
tion. We also see that the non-linear models (random forest and multi-layer percep-
tron) achieve values as high as R2 ≥ 0.90, with results getting as high as R2 = 0.96 for
random forest with Bayesian hyper-parameter optimisation. We also see that, unlike
the Cambray dataset, DNA sequence encoding methods and normalisation algorithms
have a much more limited impact on the performance of the models, with a difference
of only 0.01 in R2 value.

Although these results are highly encouraging of the models’ ability to generalise well
to different parts of the DNA sequence, we can partly attribute the measured model
performance to the structure of the dataset. As we have seen in Figure 5.4 and dis-
cussed in the previous sub-section, the yeast dataset is highly clustered, meaning that
the feature space for this dataset is highly correlated. This can also explain why the
non-linear models outperform the linear models on this data since their architecture
allows them to exploit these correlations amongst features to more accurately predict
the target variable (Rodriguez-Galiano et al., 2015).

Lastly, we note that, similar our results for the Cambray dataset, these findings also
align with those from the paper by Nikolados et. al (2022), and even surpass the
paper’s findings when hyper-parameter optimisation is used.
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Figure 5.5: Example scatter plots of model predictions on the yeast test dataset for our
four models (marked with stars), together with their R-squared value for performance.
These scatter plots were obtained directly from the ezSTEP platform.

5.3.4 Testing on Ribosome Binding Site (RBS) Sequences

The second additional dataset is on the ribosome binding sites (RBS) originated from
the work done by Hollerer et al. (2020). The structure of this dataset is vastly different
than that of the promoter sequences dataset (Vaishnav et al., 2022), making it ideal for
ensuring that our models can generalise well to different parts of the DNA sequence.
Moreover, since the work done by Hollerer et al. (2020) also provides results for some
of the models on our platform, we can compare the performance of ezSTEP’s models
with already existing results from literature. In the following sub-sections, we provide
a detailed description of this additional dataset, describe any preprocessing that was
applied to the original data, and report the performance of our models.
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5.3.5 Dataset Description and Preprocessing

The original dataset from the Höllerer et al. (2020) paper consists of around 300,000
bacterial ribosome binding site (RBS) sequences (Höllerer et al., 2020). Similar to the
Cambray et al. (2018) data, these sequences were also obtained from Escherichia coli
(E. coli); however, the RBS sequences used are much shorter, with a length of only
17 nucleotides (17nt) compared to the 96nt coding sequences in the Cambray dataset
(Höllerer et al., 2020). The structure of this dataset is presented in Figure 5.6.

Since the size of the original data (303,503 sequences) was too large, we needed to ap-
ply some preprocessing in order to use it for model evaluation. We therefore randomly
sampled around 4000 sequences from the original data, and then performed a 90/10
split on the sampled sequences to create our training and test datasets. The structure of
our training data is shown in Figure 5.6C, and we discuss how our models performed
on this dataset in the next sub-section.

Figure 5.6: A Ribosome binding sites (RBS) libraries constructed in the Hollerer et
al. (2020) paper. 17 consecutive base pairs upstream of the bxb1 start codon were
randomized. A fully degenerate library (N17) as well as three libraries with 84 reduced
skew towards weak RBS (High1, High2, High3) were constructed (figure obtained from
the paper by Hollerer et al. (2020)). B Two-dimensional T-distributed stochastic neigh-
bour embedding (t-SNE) of the original dataset in the Hollerer et al. (2020) paper (figure
obtained from the paper by Hollerer et al. (2020)). C Two-dimensional UMAP visualisa-
tion for the training data we obtained following our 90/10 split on the original dataset.
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Figure 5.7: Example scatter plots of model predictions on the Hollerer test dataset
for our four models (marked with stars), together with their R-squared value for perfor-
mance. These scatter plots were obtained directly from the ezSTEP platform.

5.3.6 Observed Model Performance

The performance of our platform’s models on the Hollerer dataset is shown in Figure
5.7. The results for this dataset are significantly lower than for the other two datasets
but are nonetheless encouraging, with an R2 value of R2 ≥ 0.50 for all models. Unsur-
prisingly, the model that performed best on the previous two datasets, namely random
forest, also achieved the highest R2 value on the RBS data (R2 = 0.67). This appears
to suggest that decision tree-based models can generalise well across different parts
of the DNA sequence. Additionally, our observed performance for the random forest
model also aligns with that in the Höllerer et al. (2020) paper.

Interestingly, perhaps, is that both linear models (ridge regressor and SVR) outper-
formed the multi-layer perceptron (MLP) model on this dataset (see Figure 5.7). This
could, however, be explained by the structure of the data: relative to the other datasets,
this data contains a lot more noise due to the random sampling from a large space of
sequences (randomly sampling 4000 sequences from over 300,000 sequences). Since
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MLP models are less robust to outliers compared to linear models (Timpl et al., 2022),
this makes them more prone to making less accurate predictions.

5.4 Platform Usability Testing

In addition to evaluating our models’ performance on a wide variety of datasets, we
also wanted to assess our platform’s overall usability. To effectively measure usability,
we opted for a user study with human participants. We describe the methodology used
when conducting this study, as well as its results, in the next two sections.

5.4.1 Methodology

The main aim of our study was to prove that the web-app is highly user-friendly, par-
ticularly for novice users. We hoped to show that the simple user interface design
provides clarity, the interactive features of our platform (such as interactive graphs)
provide informative insights, and the process of using ezSTEP is efficient and enjoy-
able.

In order to test this appropriately, we have asked users to indicate their level of exper-
tise in two separate disciplines, namely programming and synthetic biology, on a scale
of 1 (not knowledgeable) to 5 (highly knowledgeable). By gathering user feedback
from as many possible numeric combinations as possible, we wanted to test whether
or not ezSTEP was considered usable regardless of the level of expertise in the two
disciplines.

Additionally, we decided to split our user testing procedure into two stages (described
in the sub-sections that follow). We have opted for this approach in order to be able
to incorporate early user feedback as part of our platform’s design. Since our interface
design is user-oriented, incorporating early feedback could help improve the overall
user experience for future users, making it more enjoyable.

5.4.1.1 Stage 1 User Testing

In Stage 1 user testing, we asked a small group of people to use the ezSTEP platform
and monitored the way in which they interacted with it. They were provided with a
short set of instructions and asked to fill in a survey on our app’s usability. However,
after they had answered all the questions in the survey and submitted their answers, we
asked them for any suggestions that they felt could have made their experience more
enjoyable. We then made a note of their suggestions and incorporated them into our
design.

5.4.1.2 Stage 2 User Testing

In Stage 2 testing, the platform was made available to a larger audience, where we
asked participants to fill in the same survey as in Stage 1, only this time without pro-
viding participants with an instructions sheet and monitoring their interaction. This
was done to measure the ease with which users can understand how to interact with
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our app and get a more accurate insight into how enjoyable the user experience actu-
ally is (i.e., are users getting easily frustrated with the platform, in which case this may
need further investigation, or is the overall process smooth and users can easily adapt
to using the app).

5.4.2 Results

As part of our survey, we asked each respondent to answer a series of questions, where,
for each question, they were given a statement for which they could select an option
from a scale of ’Strongly agree’ to ’Strongly Disagree’. The results based on the par-
ticipants’ answers to these questions were generally positive and encouraging (see Ap-
pendix C for a detailed breakdown). One major insight we obtained was that users tend
to have a pleasant experience when interacting with our platform, and there seemed to
be an overall agreement on the fact that the model outputs interface and the interactive
graphs were a strong suit of our platform.

Additionally, dividing the testing procedure into two stages has led to us gaining very
useful feedback from early users. One such insight was the fact that the guidelines we
provided for the users were very text-heavy, and a suggestion for improvement was to
include some images as visualisation prompts to make the body of text less intimidat-
ing to read through. Implementing this change resulted in more positive feedback on
the usefulness of the guidelines from respondents in the second stage of user testing.

Besides the series of questions, we also asked each participant to report the top 3 words
that best described their user experience and thoughts on the platform. We collated
these results to create a word cloud, which we show in Figure 5.8.

Figure 5.8: Word cloud generated using the answers from all participants in the user
study.
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Conclusions

This chapter provides a final discussion of the work presented throughout this dis-
sertation, the conclusions drawn, and the potential for future work. We also include
information on how to access the platform as well as all the additional resources we
used for evaluation (e.g., examples of datasets used for measuring model performance).

6.1 Accessibility

ezSTEP can be accessed using two methods. First, the most user-friendly way is
to use the hosted application, which is currently hosted on Heroku: https://ezstep-
f617792399bb.herokuapp.com. The landing page launches the home dashboard of the
tool, which begins with some guidelines for the users, and further down the same page
the user can find the input boxes to supply their own data. However, in the future, the
ezSTEP platform will be hosted on a virtual machine, and will be accessible through
the following URL: http://calbuco.inf.ed.ac.uk/ezSTEP

Alternatively, users can find instructions on how to set up the platform and run it locally
using the GitHub repository here: https://github.com/AndreasHiropedi/ezSTEP. The
instructions in the repository include how to install all the dependencies needed in
order to successfully run the app, as well as the command for launching the dashboard
locally.

We also include the training and testing datasets used for measuring the performance
of our models, as well as the Python code used for obtaining those datasets from the
larger original data. This information can also be found in the GitHub repository of
our platform (https://github.com/AndreasHiropedi/ezSTEP), and we chose to include
it for reproducibility of our results.

6.2 Limitations

Given the scope of the project, as well as the restricted timeline, several aspects of the
project were limited. For instance, the current model selection for out platform focuses
on models widely used in the literature. However, despite these models showing good
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performance, this limited model selection inhibits the scope of the project’s objective
of providing a set of models that can achieve accurate results regardless of the input
data.

Another limitation would be the lack of dependency control. For instance, our platform
is highly reliant on the models provided by the scikit-learn Python package (Pedregosa
et al., 2011); however, if the underlying implementation details of this package were
to change significantly, our platform would not be robust to these changes.

Yet another limitation could be the user interface design/ implementation. Our current
platform was designed to be used on laptop and PC-sized screens (or larger). However,
the layout of the page is significantly affected if users try to access our platform on their
mobile phones or tablets.

Additionally, summative evaluation aimed at the target audience was unable to be fully
conducted: only a small proportion of the people involved in the user study were part
of the actual target audience, namely biology researchers. That being said, the results
of the user study were positive, meaning that the platform has achieved its objective of
being usable regardless of user expertise. Nonetheless, these results should be consid-
ered only as assumptions that represent an estimated assessment of responses from the
target audience.

6.3 Future Work

The strong performance of the models on several datasets, as well as the positive feed-
back following the usability testing, suggest that the platform has the potential for
adoption amongst biology researchers. However, there is still significant room for im-
provement.

One aspect that can be explored in more detail is the integration of additional machine
learning models with our platform. Since our research noted that tree-based model ar-
chitectures, such as that of Random Forest, resulted in the highest overall performance
across all datasets, one obvious model addition would be that of Extreme Gradient
Boosting, also known as XGBoost (T. Chen & Guestrin, 2016).

Another aspect that could be further explored is that of reducing our dependency on
the scikit-learn package (Pedregosa et al., 2011). Although more challenging to imple-
ment, a solution to this could be developing our own, in-house version of the models
already used. Since we already have an API set up for each of the models (see sec-
tion 4.2 in Chapter 4), we would only need to modify existing functions to achieve the
desired functionality and remove the scikit-learn dependency.

Yet another possible extension of our platform could lie in expanding its scope: cur-
rently, ezSTEP only handles the problem of regression. However, by incorporating a
mechanism that allows our web-app to also handle the problem of classification, we
can provide a more powerful tool that combines the previous work done by platforms
such as iLearnPlus (Z. Chen et al., 2021) and BioAutoMATED (Valeri et al., 2023)
with that of our own, whilst retaining our original, user-friendly interface.
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6.4 Concluding Remarks

Throughout this dissertation, we discussed the creation, development and evaluation
of a new platform for measuring protein expression. ezSTEP has been designed on the
premise of having a simple, usable platform that can successfully and accurately tackle
the task of regression for different parts of DNA using small datasets and shallow ma-
chine learning models. Our user evaluation revealed the potential for adoption of our
platform amongst the scientific community of biology researchers. The contributions
of this project are as follows:

1. Build on the work done by Nikolados et al. (2022) to provide a new online
platform for automatically training and testing some of the models covered in
their original paper.

2. Conduct a literature review to identify existing platforms that handle sequence-
to-expression classification tasks and account for limitations in their design.

3. Create a conceptual design that is not subject to the limitations previously iden-
tified and implement that design to build the first freely accessible platform that
addresses the task of sequence-to-expression regression.

4. Evaluate the performance of this platform across different datasets, as well as
assess its usability through a user study with human participants. This is a novel
approach that has not been used by existing platforms to assess their usability.

5. Acknowledge the potential for further development of the platform and further
studies to improve the tool and extend the evaluation.
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Appendix A

Nielsen’s Usability Heuristics

A.1 Heuristic 1: Visibility of system status

The design should always keep users informed about what is going on, through appro-
priate feedback within a reasonable amount of time.

A.2 Heuristic 2: Match between system and the real
world

The design should speak the users’ language. Use words, phrases, and concepts fa-
miliar to the user, rather than internal jargon. Follow real-world conventions, making
information appear in a natural and logical order.

A.3 Heuristic 3: User Control and Freedom

Users often perform actions by mistake. They need a clearly marked ”emergency exit”
to leave the unwanted action without having to go through an extended process.

A.4 Heuristic 4: Consistency and Standards

Users should not have to wonder whether different words, situations, or actions mean
the same thing. Follow platform and industry conventions.

A.5 Heuristic 5: Error prevention

Good error messages are important, but the best designs carefully prevent problems
from occurring in the first place. Either eliminate error-prone conditions or check for
them and present users with a confirmation option before they commit to the action.
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A.6 Heuristic 6: Recognition rather than recall

Minimize the user’s memory load by making elements, actions, and options visible.
The user should not have to remember information from one part of the interface to
another. Information required to use the design (e.g. field labels or menu items) should
be visible or easily retrievable when needed.

A.7 Heuristic 7: Flexibility and efficiency of use

Shortcuts — hidden from novice users — may speed up the interaction for the expert
user so that the design can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.

A.8 Heuristic 8: Aesthetic and minimalist design

Interfaces should not contain information that is irrelevant or rarely needed. Every
extra unit of information in an interface competes with the relevant units of information
and diminishes their relative visibility

A.9 Heuristic 9: Help users recognize, diagnose, and
recover from errors

Error messages should be expressed in plain language (no error codes), precisely indi-
cate the problem, and constructively suggest a solution.

A.10 Heuristic 10: Help and documentation

It’s best if the system doesn’t need any additional explanation. However, it may be
necessary to provide documentation to help users understand how to complete their
tasks.



Appendix B

Participants’ Information Sheet and
Consent Form

B.1 Information Sheet

This study was certified according to the Informatics Research Ethics Process, refer-
ence number 867658. Please take time to read the following information carefully.
The title of the project involved is ”ezSTEP: an online platform for training and testing
machine learning models for protein expression”, and the lead researchers in this study
are Dr. Diego Oyarzún, Yuxin Shen, and Andreas Hiropedi.

What is the purpose of the study?

Assess the usability of the web-app platform.

Why have I been asked to take part?

The research target group is a mixture of students with high expertise, limited expertise,
and no expertise, in order to get a good sense of how easy to use the platform is based
on knowledge in the field. Our aim is to ensure the platform is user-friendly and easy
to use regardless of the level of knowledge.

Do I have to take part?

No – participation in this study is entirely up to you. You can withdraw from the study
at any time, without giving a reason. Your rights will not be affected. If you wish
to withdraw, contact the PI, Andreas Hiropedi. We will stop using your data in any
publications or presentations submitted after you have withdrawn consent. However,
we will keep copies of your original consent, and of your withdrawal request.

What will happen if I decide to take part?

If you decide to take part, you will be asked to access a website hosting our online plat-
form and play around on the platform to try all the available features. Once you have
experimented for a good period of time (e.g., say 10-15 minutes), you will be asked
to fill out a Microsoft form, where you will need to indicate your level of expertise, as
well as share your personal thoughts on your experience using the platform. You will
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not be recorded during the study, and you can do the study completely unsupervised
and in your own time.

Are there any risks associated with taking part?

There are no significant risks associated with participation.

Are there any benefits associated with taking part?

No

What will happen to the results of this study?

The results of this study may be summarised in published articles, reports and presen-
tations. Quotes or key findings will be anonymized: We will remove any information
that could, in our assessment, allow anyone to identify you. Once we have compiled
the data and added it to the final report, all files storing information will be deleted
immediately.

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information
collected about you will be kept strictly confidential. We will compile the data into
groups based on level of expertise, and so no names or any information will be included
besides simply the level of expertise you indicate in the form. Your data will only be
viewed by the researcher/research team, which strictly includes only my supervisor, my
supporting PhD student, and myself. All electronic data will be stored on a password-
protected encrypted computer, on the School of Informatics’ secure file servers, or
on the University’s secure encrypted cloud storage services (DataShare, ownCloud, or
Sharepoint) and all paper records will be stored in a locked filing cabinet in the PI’s
office. Your consent information will be kept separate from your responses in order to
minimise risk.

What are my data protection rights?

You have the right to access information held about you. Your right of access can be ex-
ercised in accordance Data Protection Law. You also have other rights including rights
of correction, erasure and objection. For more details, including the right to lodge a
complaint with the Information Commissioner’s Office, please visit www.ico.org.uk.
Questions, comments and requests about your personal data can also be sent to the
University Data Protection Officer at dpo@ed.ac.uk. For general information about
how we use your data, go to: https://data-protection.ed.ac.uk/privacy-notice-research

Who can I contact?

If you have any further questions about the study, please contact the lead researcher,
Andreas Hiropedi, s2015345@ed.ac.uk. If you wish to make a complaint about the
study, please contact inf-ethics@inf.ed.ac.uk. When you contact us, please provide the
study title and detail the nature of your complaint.

www.ico.org.uk
https://data-protection.ed.ac.uk/privacy-notice-research
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B.2 Declaration of Consent

By agreeing to take part in this study, you agree that you have read and understood the
information presented above, you understand that your participation is voluntary, and
are happy to have your answers considered, processed and publicly summarised (as
part of a greater assessment). No personal information that can help identify you, as
the respondent, will be collected or made publicly available (we are only interested in
your level of knowledge, a very objective measure that cannot be used to easily identify
someone, and so your data will be anonymised); however, your answers will be used
to create summary statistics about the overall trend of all responses collected.

Do you consent to taking part in this study?

1. Yes

2. No

B.3 Platform Usability Survey

The link to the survey used for our platform usability study can be accessed using the
following link: https://forms.office.com/e/aNijwbb3wH

https://forms.office.com/e/aNijwbb3wH


Appendix C

Results of the User Study

In this appendix, we provide a detailed breakdown of the results of our platform’s
usability study. We have split this appendix into eight sections, where each section
corresponds to a specific question on the survey we sent out to our participants (see the
end of Appendix B).

C.1 Level of Expertise

Figure C.1: A) The aggregated responses across all user study participants indicating
their expertise in programming. B) The aggregated responses across all user study
participants indicating their expertise in synthetic biology.

After agreeing to take part in our survey, the first question we asked our participants
was to indicate their level of expertise in programming and synthetic biology on a
scale of 1 (not knowledgeable) to 5 (highly knowledgeable). We show the aggregated
answers to this question in Figure C.1.

As can be seen from the figure, the answer distribution for expertise in programming
(Figure C.1 A) shows that we have tested our platform on an audience with a highly
varied level of knowledge in programming. These results could mimic the landscape
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of the scientific community of biology researchers, as some researchers are more expe-
rienced with using tools such as machine learning models for sequence-to-expression
prediction tasks.

On the other hand, the answer distribution for expertise in synthetic biology (Figure
C.1 B) is more skewed towards the extreme ends (1 and 5). This could suggest that
further testing may be necessary to ensure our positive results are in fact indicative
of our platform’s potential for adoption amongst the scientific community of biology
researchers: we would ideally want a distribution that is left-skewed, indicating a high
level of expertise in synthetic biology.

C.2 Usefulness of the User Guidelines

Figure C.2: The aggregated responses across all user study participants for the state-
ment ’I found the user guidelines to be helpful for providing information on how to use
the app’.

Once the users input their levels of expertise, they are then prompted to experiment
with the platform and then share their opinions about a series of statements. The first
such statement is:

I found the user guidelines to be helpful for providing information on how to use the
app.

The results for this question are presented in Figure C.2. As we can see, users generally
found that the guidelines provided useful insight into the features offered by ezSTEP. It
is also worth mentioning that, despite the positive results, one early piece of feedback
that we received suggested we include visualisations in the guidelines, as well as re-
duce their size. The feedback we originally received was that the guidelines were ’too
large’ and ’very intimidating to read’, hence the high number of ’Neutral’ responses.
We therefore incorporated this feedback into our refined version, which received much
better feedback (most of the answers with ’Strongly agree’ were obtained following
this change).
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C.3 User Interface Design

The next statement that we asked users to evaluate is related to the actual design of our
platform. The statement we gave users was:

I found the user interface of the app to be highly interactive and easy to use.

Figure C.3: The aggregated responses across all user study participants for the state-
ment ’I found the user interface of the app to be highly interactive and easy to use’.

The collected responses to this statement are shown in Figure C.3. These results are
encouraging, with over 80% of the users selecting either ’Agree’ or ’Strongly Agree’,
and we can safely attribute these results to our user-oriented design when building and
developing the platform.

C.4 Model Inputs Page Design

Figure C.4: The aggregated responses across all user study participants for the state-
ment ’I found the individual model input pages highly interactive and easy to use’.

The statement that we will focus on in this section has to do with evaluating the design
of our platform’s individual input pages. The statement we gave users was:

I found the individual model input pages highly interactive and easy to use.

The results for this question are presented in Figure C.4. Although the vast majority
of our users selected the ’Agree’ option, we changed a feature on this page at the very
beginning of our study after our first response was ’Neutral’. This feature was related
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to how users were being updated on the model creation process (informed on whether
the model was still training or the model had been created successfully). The early
feedback allowed us to implement a quick change that ensured a much smoother user
experience, as suggested by the other positive responses.

C.5 Input Parameters Selection

In addition to evaluating the design of our individual input pages, we also asked for
users’ opinions on the available selection of input parameters. To do so, we used the
following statement:

I found the breadth of choice in terms of model parameters selection to be nice and
provide great opportunities for experimentation.

The collected responses to this statement are shown in Figure C.5. The results show
that we provided enough variation for users to be able to customize their sequence-
to-expression models, but not to the extent that users feel overwhelmed by the vast
amount of choices.

Figure C.5: The aggregated responses across all user study participants for the state-
ment ’I found the breadth of choice in terms of model parameters selection to be nice
and provide great opportunities for experimentation’.

C.6 Model Outputs Page Design

Besides the individual input pages, we also wanted to evaluate the corresponding indi-
vidual output pages. We used the statement below as a prompt in our survey:

I found the individual model outputs pages to provide plenty of useful information for
analysis and comparison with other models.

Our findings for this question are presented in Figure C.6. The results here are overall
positive, with 30% of the users selecting the ’Strongly agree’ option and 67% the
’Agree’ option. We have also discussed the design of this page with researchers in
the university’s Biomolecular Control Group, and the feedback on the page’s layout
suggested our design helps provide a clear structure for the results being displayed.
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Figure C.6: The aggregated responses across all user study participants for the state-
ment ’I found the individual model outputs pages to provide plenty of useful information
for analysis and comparison with other models’.

C.7 Interactive Features of the Output Graphs

One aspect of our app we felt was particularly important was the high degree of in-
teractivity of our graphs: we wanted users to freely experiment with the results we
provide, and tweak them in any way necessary for their analysis. To assess this, we
provided users with the following statement:

I found all graphs in the app to be user-friendly and highly interactive, enabling users
to experiment with all the available features (such as enabling/ disabling different parts
of the graph, saving them on their local devices, etc.).

Figure C.7: The aggregated responses across all user study participants for the state-
ment ’I found all graphs in the app to be user friendly and highly interactive, enabling
users to experiment with all the available features (such as enabling/ disabling different
parts of the graph, saving them on their local devices, etc.)’.

The collected responses to this statement are shown in Figure C.7. The results sug-
gest that this is the strongest aspect of our app, with nearly 70% of responses being
’Strongly agree’. This suggests that the highly interactive graphs provide a very enjoy-
able experience for the users, who are able to freely explore the results in more detail
and customize the graphs to their liking.
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C.8 Overall User Experience

Lastly, after analysing each individual component of our app, we wanted to get our
users’ final thoughts on their overall experience. This would not only enable us to
evaluate whether the app is usable or not, but we could also notice patterns (based
on previous answers) about which individual features may have more impact on user
experience over others. The statement given to our participants was:

I found the overall process of using the app to be pleasant and enjoyable.

Figure C.8: The aggregated responses across all user study participants for the state-
ment ’I found the overall process of using the app to be pleasant and enjoyable’.

The results for this question are presented in Figure C.8. We note that all our answers
are either ’Agree’ or ’Strongly agree’, suggesting that the participants in our study
viewed our platform as relatively user-friendly and easy to use. We observed that
the features with the most importance in this decision, especially when differentiating
between ’Agree’ and ’Strongly Agree’, were the helpfulness of the user guidelines,
the breadth of choice in input parameters, and the high degree of interactivity of our
graphs, all of which interestingly seemed to impact user experience more than the
design of our GUI.
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Pre-print manuscript

In this appendix, we provide the full contents of the pre-print mentioned in the abstract,
formatted exactly as it would be for submission to the ACS Journal for Synthetic Biol-
ogy.
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Abstract: We present ezSTEP (Sequence-To-Expression Predictor), a software tool that can be used for
protein expression prediction from DNA sequences using shallow machine learning models. Our user-friendly
platform allows users to create, customise, train, and evaluate sequence-to-expression models using their own
data, by simply uploading it onto the web-app. It can also be used as a tool for data exploration and model
optimisation, as well as generating protein expression predictions for unlabeled sequences. This paper presents
ezSTEP and its features through specific use cases, showcasing its practical applications.

Keywords: DNA sequence, machine learning, training, customising, querying, protein expression, data explo-
ration

I. INTRODUCTION

Microbial engineering involves the manipulation of mi-
crobes in order to develop novel functions, with wide
applications in the pharmaceutical, food and energy
sectors13,15. Predicting protein expression in the cells
from DNA sequences is critical for strains optimization
in heterologous protein production9. However, this has
proven to be notoriously challenging, as protein expres-
sion involves the complex transcriptional and transla-
tional process in biosystems7,14.

Current advances in high-throughput sequencing and
screening techniques have facilitated the acquisition of
large sequence-to-expression datasets. Machine learning
models can be built on these datasets to deliver protein
expression prediction of acceptable accuracy for prac-
tical applications. Previous research has demonstrated
that convolutional neural networks (CNN) can achieve
an R-squared prediction accuracy of approximately 0.9
for ribosome binding sequences (RBS)5. Machine learn-
ing models have also be trained to predict protein ex-
pression from promoter performance8,12. Deep learning
models applied to 5’-UTR sequences can facilitate the in
silico evolution of DNA3. Nonetheless, such models of-
ten suffer from certain limitations when it comes to their
usability and interpretability, posing great hurdles and
barriers for biology researchers.

Considering these limitations, efforts have been made
in order to ease the adoption of machine learning tools
to analyze biological datasets. A proposed solution
that has proven to be quite promising is automated
machine learning (AutoML), which automates the de-
sign and deployment of ML pipelines with minimal user
intervention4. Several tools that adopt this AutoML ar-
chitecture have already been made publicly available.
For instance, BioAutoMATED provides users with an
end-to-end pipeline for biological sequence design17. An-
other example would be iLearnPlus, a web platform for
DNA, RNA and protein sequence classification, which

wraps together different feature extraction methods and
classifiers2. Vaishnav et al. also created a web plat-
form that enables users to query a pre-trained trans-
former model which was trained on 20 million promoter
sequences16.

In this paper, we introduce a new platform, namely
ezSTEP (Sequence-To-Expression Predictor). Our aim
is to provide a user-friendly platform for biologists
on sequence-to-expression regression tasks. ezSTEP
also adopts the AutoML architecture, allowing non-
programmers to easily create, train, and evaluate their
own sequence-to-expression models in a simple and effi-
cient way.

II. EZSTEP

ezSTEP is a tool that can either be accessed through
a web browser or downloaded for private installation (see
the Accessibility section for details). The platform allows
users to build and optimise machine learning models on
their own datasets as well as query these models.

Figure 1A describes the pipeline of the ezSTEP plat-
form. The DNA sequences and corresponding expression
data initially go through a preprocessing stage, where
features from the data are extracted. These features are
used by the model in order to learn how to accurately esti-
mate the expression levels. After preprocessing, there are
two optional steps, namely feature extraction and hyper-
parameter optimisation. These steps are only executed if
the user enables them as part of their model input selec-
tion. The last step before model training is model selec-
tion, where the user chooses the type of machine learning
algorithm to be used. Once the model has been success-
fully trained, its performance is then measured on the
provided test set as part of the model evaluation stage.
The last step in the pipeline, namely model querying, is
optional, and will only be executed if the user supplied a
query dataset.

ezSTEP takes training and testing datasets as required
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FIG. 1. A) The working pipeline of ezSTEP platform. B) The upload boxes where users can upload their own training, testing
and querying data. C) The model input page, where the users can customize their sequence-to-expression models. D) The
model output page, where the users are provided with interactive graphs for evaluating the performance of the models as well
as providing insights into the model’s architecture.

inputs, and the querying sequences as an optional input.
The datasets can be passed in either as a file, with the
accepted format being CSV, or entered manually into
a text box (see Figure 1B). Once the user provides this
data, it is then validated to ensure that it is in the correct
format. This includes simple checks such as ensuring
correct formatting, as well as checking for irregularities
in the data itself, such as DNA sequences not being of
equal length or illegal characters being included in the
DNA sequences.

The sequence-to-expression data can be obtained from
various experimental conditions in different labs, and can
also be on different parts of the DNA sequence, like ri-
bosome binding sites and promoters. This could cause
the data to vary significantly across different labs, re-
sulting in the inability to extend existing models to pre-
dict sequences using unseen data, and hence limiting re-

searchers to using their own in-house models. In order to
ensure that ezSTEP is not subject to similar pitfalls, we
have tested our platform using three different datasets,
each designed for different parts of the DNA sequence.

Once the user has inputted their data, they can
then proceed to creating their customized sequence-to-
expression models. Users can create as many models as
they wish, and can also delete models they created. Fig-
ure 1C shows the user interface for customizing sequence-
to-expression models, and we provide a short summary of
the available choices for each potential input parameter
below:

1. Model type: Random Forest, Multi-layer Percep-
tron, Support Vector Machine, Ridge Regressor.
These models are built using the scikit-learn pack-
age in Python11.
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2. Feature encoding: one-hot encoding or k-mer (k
= 2-5)

3. Feature normalisation: MinMax or Z-score

4. Feature selection (optional): requires the fol-
lowing two inputs:

(a) feature number: a number between 1 and
100 indicating the number of features to be
selected for training

(b) feature selection algorithm: a choice be-
tween PCA, Weight importance, Regression f-
score and Mutual Information

5. Unsupervised learning (optional): a choice be-
tween PCA, UMAP or t-SNE

6. Hyper-parameter optimisation (optional):
uses Bayesian optimisation, requires one input:

(a) iteration number: a number between 1 and
50 indicating the number of iterations that the
optimisation is run for

After providing inputs for the components outlined
above, the user can submit these inputs in order to create,
train and test their model by pressing the blue ’Submit
model selection’ button (see Figure 1C). Once pressed,
the platform first checks that all the needed inputs have
been provided (no missing or invalid values), and also
ensures that training and testing datasets have been pro-
vided and validated successfully. If these checks pass, the
model is successfully trained and tested in real time.

Once the training process has finished, the user will
have access to several plots that provide more insight
into the model’s performance and its underlying architec-
ture (see Figure 1D). All these plots are generated using
the plotly package in Python6, and provide several user-
interactive features, such as the ability to enable/ disable
visualisations for certain components of the graph, zoom-
ing in and out, and saving the graph as a PNG file to the
user’s local device. We provide a short summary of the
available graphs on the ezSTEP platform below:

1. A plot showing the training statistics versus testing
statistics (for ease of visualisation, since numbers in
a table may be harder to interpret).

2. An actual values versus model predictions plot.

3. Plots showing the correlation between different in-
put features (extracted from the DNA sequences)
and the target variable (the protein expression) for
the training and test data.

4. If the user enables feature selection, a plot showing
the explained variance of the selected features.

5. If the user enables unsupervised learning, a PCA, t-
SNE or UMAP plot (depending on the user’s choice
of unsupervised learning algorithm) analysing the
provided data.

In the remainder of this paper, we describe how the
main functionalities of ezSTEP outlined in this section
can be used in practice, by considering a series of use
cases.

A. Use case 1: Model training, optimisation and querying on
the Cambray dataset

The first dataset used to evaluate the functionality and
performance of our platform was a dataset created by
Cambray et al. (2018), with synthetic DNA sequences for
the translation optimisation in Escherichia coli (E. coli).
The GFP reporter fluorescence was evaluated for 244,000
sequences on the 5’ coding region of DNA, spreading
across 56 different mutational series of the DNA sequence
space1.

Given the level of diversity of this dataset, we selected
one of the 56 mutational series of the DNA sequence
space in order to assess the performance of our mod-
els. We randomly sampled roughly 4000 sequences from
this mutational series, and then applied a 90/10 split on
the sampled sequences to create our training and test
datasets.

After creating these datasets and curating them to en-
sure compatibility with our platform, we then created
several models with different input configurations (us-
ing our platform’s user interface shown in Figure 1C)
and measured their performance. In these experiments
we varied model type, feature encoding and normaliza-
tion method, as well as enabling additional features such
as feature selection and hyper-parameter optimisation.
To assess a model’s performance, we compute the fol-
lowing four metrics: root mean squared error (RMSE),
R-squared, mean absolute error (MAE), and percentage
(%) within 2-fold error5.

Results from the ezSTEP is shown in Figure 2. As we
can see, the model’s performance on this dataset is quite
good, with R-squared values of as high as 0.77 on the
test data for the Random Forest model (see Figure 2A).
Additionally, we see that this performance is further en-
hanced when hyper-parameter optimisation is enabled:
originally, the Support Vector Machine model achieves a
R-squared value of 0.71, but this value is increased to 0.81
when the model is further optimised. We further com-
pared these results with a research paper based on the
Cambray dataset10, and found that the R-squared results
from ezSTEP’s baseline models (without optimisation)
align with the findings in this paper, and even surpass
the paper’s findings when optimisation is enabled.

B. Use case 2: Dataset Exploration

Despite the promising results mentioned in the previ-
ous section, as stated at the start of this paper, one of
ezSTEP’s main objectives is to provide users with mod-
els that can generalise well to a wide variety of data.
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FIG. 2. A) Recorded R-squared values for four different models on the test set. The data used for obtaining these values came
from the dataset created by Cambray et al. (2018). B) Performance of the support vector machine model on the Cambray
dataset with (red) and without (blue) hyper-parameter optimisation.

Since we allow users to upload their own data, we needed
to ensure that our models can achieve similarly promis-
ing results on different DNA strains. We have therefore
tested our platform using two additional datasets, and
compared ezSTEP’s performance with the corresponding
research papers.

The first additional dataset consisted of natural yeast
promoter sequences, and originated from the Vaishnav
et al. (2022) paper. This data was originally used as
a validation set for the pre-trained model in the origi-
nal paper16. Nikolados et al. (2022) measured the per-
formance of shallow machine learning models on this
dataset. The promoter sequences are 80 nucleotides
long, and were designed to optimize translation in Sac-
charomyces cerevisiae. Similar to the Cambray dataset,
we randomly sampled around 4000 sequences, and then
performed a 90/10 split to create our training and test
datasets.

Our second additional dataset originated from the
Höllerer et al. (2020) paper. This dataset contains
around 300,000 bacterial RBS sequences5, which are
much shorter than in the previous two datasets, with
a length of only 17 nucleotides. We once again randomly
sampled around 4000 sequences given the large scale of
the original data, and then performed a 90/10 split on
the sampled sequences to create our training and test
datasets.

After using the generated training and test datasets to
assess our platform’s performance on these two additional
DNA strains, we observed that our models’ performance,
although different from that on the Cambray dataset,
aligned with the results in their corresponding research
papers5,10. Nonetheless, since the performance of the
models inevitably varies when using different datasets, we
concluded that further insights into the structure of the
data could help clarify the reasons behind the measured
performance.

These insights can be seen by enabling unsupervised
learning and selecting one of the available options (PCA,
UMAP, or t-SNE). When enabling this option, an addi-
tional plot will be displayed on the model output page. In
the case of the UMAP plot, the graph is colour encoded
based on the protein expression level, giving an insight
of the correlation between output and input structure.
To allow the users to explore such insights in depth, we
made these graphs highly interactive and gave users the
ability to change the values of key parameters in the un-
supervised learning algorithm itself. By changing these
parameters, users can automatically regenerate the plot
in real time.

We showcase these plots, as well as illustrate their im-
portance, in Figure 3. We can clearly see from Figure
3A that, when the parameters are adjusted to appropri-
ate values, they reveal important insights in the data:
from the plot on the left, we would incorrectly assume
that the data is quite randomly spread out, but a closer
look shows that the data in fact comprises of two unique
clusters, as show in the plot on the right.

With the appropriate UMAP parameters respectively
for each dataset, we visualised the RBS, coding and pro-
moter sequences datasets Figure 3B-D). The UMAP of
coding sequence shows that there is no significant correla-
tion between the two clusters and the protein expression
level (Figure 3B). The UMAP of RBS sequence shows
that the points in the big cluster are more likely to have
lower protein expression, while points spreading around
tend to have higher protein expression Figure 3C). The
UMAP of natural promoter sequence shows that the se-
quences are highly clustered, and the sequences in one
cluster have similar protein expression level (Figure 3D).
These three examples showcase how visualisation of the
input data enhances the understanding of the dataset,
and has potential in troubleshooting the model.
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X,XXX RBS sequences, Höllerer et al, 2020

X,XXX promoter sequences, Vaishnav et al, 2020

X,XXX 5' UTR sequences, Cambray et al, 2018

FIG. 3. A) UMAP transition when changing the algorithm’s input parameters. B) The UMAP (left) and PCA (right) plot for
only the training data obtained from the coding sequences in the dataset in the Cambray et al. (2018) paper. C) The UMAP
(left) and PCA (right) plot for only the training data obtained from the ribosome binding sites (RBS) sequences in the dataset
in the Höllerer et al. (2020) paper. D) The UMAP (left) and PCA (right) plot for only the training data obtained from the
promoter sequences in the dataset in the Vaishnav et al. (2022) paper.

III. ACCESSIBILITY

ezSTEP can be accessed using two methods. First,
the most user-friendly way is to use the hosted applica-
tion: https://ezstep-f617792399bb.herokuapp.com.
The landing page launches the home dashboard of the
tool, which begins with some guidelines for the users,
and further down the same page the user can find the
input boxes to supply their own data.

Alternatively, users can find instructions on how to set
up the platform and run it locally using the repository
here: https://github.com/AndreasHiropedi/ezSTEP.
The instructions in the repository include how to install
all the dependencies needed in order to successfully run
the app, as well as the command for launching the dash-
board locally.
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