
Optimising Taylor Model Computations

Alex Eyre
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2024

Abstract
Taylor models (TMs) are pairs consisting of a real-valued polynomial approximation of
a function, and a remainder interval indicating the approximation’s error in relation to
the original function. They can be used to make formal statements about the behaviour
of complex systems without having to compute their analytic solutions.

Many common arithmetic operations can be lifted to work on Taylor models directly,
such as multiplication or integration, allowing us to perform typical arithmetic whilst
maintaining a rigorous over-approximative guarantee.

In this paper we focus on two methods of optimisation: Lazy evaluation and Partial
evaluation. These optimisations, when applied to Taylor model arithmetic, can result in
over 10x increases in performance. We introduce a Dependency Graph (DG) structure
to implement these optimisations in a transparent fashion.

We implement TaylorFlow, a Taylor model arithmetic library using this DG approach
in C++, along with classes for intervals, dense polynomials, sparse polynomials, and
Taylor models. We provide a streamlined library interface for constructing with Taylor
models and performing Taylor model arithmetic in C++.

We then provide benchmarks and examples utilising this library, to demonstrate its
correct function and the performance increases the targeted optimisations provide. We
provide some limitations of the library, in addition to a few possible areas of further
work to improve the library.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Alex Eyre)

ii

Acknowledgements
I would like to thank my supervisor, Paul Jackson, for his patience and explanations in
the face of my incessant questions.

I would also like to thank James, Ramsay, Nicola, and my family, for their feedback,
and for listening to me ramble on about Taylor models for the past few months.

iii

Contents

1 Introduction 1
1.1 Taylor models . 1
1.2 Optimisations . 1
1.3 Project goals . 2
1.4 Contributions . 2
1.5 Outline . 3

2 Background & motivation 4
2.1 Taylor models . 4

2.1.1 What is a Taylor model? . 4
2.1.2 Picard iteration . 6
2.1.3 Flowpipes . 8

2.2 Optimisation techniques . 9
2.2.1 Lazy evaluation . 9
2.2.2 Memoisation and Partial evaluation 10

2.3 Existing work . 11
2.3.1 Flow* . 11
2.3.2 TaylorModel.jl . 11

3 Design 12
3.1 Dependency graph . 12

3.1.1 Lazy evaluation . 12
3.1.2 Partial evaluation . 13
3.1.3 Worked Taylor model multiplication example 15

3.2 Data structures . 18
3.2.1 Polynomials . 18
3.2.2 Intervals . 21
3.2.3 Taylor models . 22

4 Implementation 23
4.1 Choice of language . 23
4.2 Data structures . 24

4.2.1 Intervals . 24
4.2.2 Dense univariate polynomials 25
4.2.3 Sparse Polynomials . 26

4.3 Dependency graph management . 28

iv

4.3.1 Vertices . 28
4.3.2 Graph . 30
4.3.3 Wrappers . 30
4.3.4 Taylor models . 32

4.4 Testing . 32

5 Evaluation 33
5.1 Project goals revisited . 33

5.1.1 Optimisations . 33
5.1.2 User experience . 36
5.1.3 Data representations . 36
5.1.4 Application to Lotka-Volterra 37

6 Conclusion 38
6.1 Final remarks . 38
6.2 Limitations . 38

6.2.1 Optimisation transparency 38
6.2.2 Automatic vertex-reuse . 39

6.3 Future work . 40

Bibliography 41

A Additional figures 43

B Code listings 44

C UML Diagram 50

v

Chapter 1

Introduction

We are perpetually surrounded by complex systems with complex models, such as the
way populations of animals interact, the way heat dissipates through materials, or the
way a car’s suspension oscillates going over a bump. It is often infeasible to compute
solutions to these systems directly, and we must turn to approximations in order to have
any hope of understanding their behaviour.

1.1 Taylor models

Taylor models (TMs) present a middle ground for computation, between using a direct
perfect solution and an approximation on its own, permitting use of an approximation
whilst accounting for the error such an approximation introduces. A Taylor model
of a function f is notated (p, I), where p is a polynomial approximation of f , and I
is an interval indicating the most the approximation differs from the function f on
some domain D. This allows us to make rigorous statements about the behaviour of
a system, such as whether it avoids a given scenario, without having to compute an
analytic solution.

1.2 Optimisations

When doing arithmetic with a Taylor model approximation, we often encounter situ-
ations that can be made significantly more efficient by employing certain optimisations.

We focus on two broad categories of optimisation in this paper

• (Lazy evaluation) For instance, given a Taylor model (p, I), we often only
require the polynomial approximation p, and do not have to calculate its interval
component, in this case we are being ‘lazy’ about calculating I.

• (Partial evaluation) If we have a Taylor model (p, I) as an input to some complex
algebraic expression, and we modify I, due to the way Taylor model arithmetic
is defined we do not necessarily have to reevaluate the whole expression, but
rather only a limited number of results. In this case, the algebraic expression is

1

Chapter 1. Introduction 2

partially applied, with the only parameter being the changing interval I, re-using
previously calculated results on p.

1.3 Project goals

In this project, we aim to:

• Implement data-types for intervals, polynomials, and Taylor models, in order to
allow the user to construct systems and their Taylor model approximations.

• Provide lazy and partial evaluation for Taylor model arithmetic in as transparent
a way as possible.

• Implement some common Taylor model arithmetic scenarios, such as Picard
iteration, and benchmark them to demonstrate the efficacy of these optimisations
in relation to Taylor model arithmetic.

These optimisations are not novel in the field of Taylor model arithmetic. For example
the Taylor model library included with the tool Flow* [12] utilises both. However,
existing implementations either suffer from a lack of adoption or poor implementation.
For example, Flow* implements lazy and partial evaluation via a structure called a
RangeTree, but this structure must be constructed and managed by the user. Furthermore,
Flow* suffers from poor programming practice, for example presenting 26 almost
identical, slightly differently optimised functions on its TaylorModel class to perform
Picard iteration. This makes code written using the Flow* Taylor model arithmetic
library hard to understand, and results in difficultly telling if the code is optimised at all.

Therefore, it is a key goal of this project to take as much of the work off of the user as
is possible to achieve the two optimisations, ideally making them entirely transparent.

1.4 Contributions

We introduce and implement a Dependency Graph (DG) structure, with two types of
vertices: concrete vertices; and deferred computational vertices. Concrete vertices
contain values, such as a polynomial or an interval. Deferred computation vertices
contain expressions in terms of other vertices to produce some output. Edges on the
graph represent ‘usage’ of a result of one vertex by another, or a dependency.

We then utilise the relationship information captured by this graph to obtain both lazy
and partial evaluation, via propagation of values and updates as minimally as possible.
We implement in C++: the graph structure; classes to represent polynomials (univariate
and multivariate) and intervals; and provide a parser to create multivariate polynomials
and intervals from strings in the syntax Flow* uses in its model files.

We also introduce a user-facing set of functions to interact with a DG structure, both
to add concrete values and to create deferred computational vertices. This approach
reduces the amount of user involvement in the management of the underlying structures

Chapter 1. Introduction 3

as much as possible, and provides a clean interface for doing optimised Taylor model
arithmetic.

We then apply the library to some illustrative and common scenarios of Taylor model
arithmetic, and demonstrate the performance savings their use provides.

1.5 Outline

The report is structured as follows:

• Chapter 2 - Background & Motivation: We define Taylor models and their arith-
metic, and introduce the targeted optimisation techniques and their application to
Taylor model arithmetic.

• Chapter 3 - Design: We outline the Dependency Graph structure, and explain
how it can be used to implement both Lazy and Partial evaluation. We then
discuss representations of the required algebraic data-types to represent a Taylor
model, in addition to a Taylor model itself.

• Chapter 4 - Implementation: We discuss the process of implementing the design
in C++, and the adjustments required to create efficient, usable code.

• Chapter 5 - Evaluation: We evaluate the project against the project goals, and
benchmark the library against itself with and without the targeted optimisations,
in order to demonstrate their benefit.

• Chapter 6 - Conclusion: We summarise the work done, and discuss limitations
and potential for future work.

Chapter 2

Background & motivation

In this chapter we present the background information required to understand the project.
Firstly, we introduce Taylor models and briefly outline their applications. Secondly,
we motivate why partial and lazy evaluation present an opportunity to improve the
performance Taylor model arithmetic. Finally, we examine some existing libraries and
their shortcomings, and propose where this project hopes to provide value.

2.1 Taylor models

2.1.1 What is a Taylor model?

Taylor models (TMs) are a mathematical structure consisting of two elements: some
real-valued polynomial; and a real-valued closed interval. For instance, take the Taylor
model (p, I): the polynomial p ∈ R[x1, . . . ,xn] can be viewed a function on n variables,
and is an approximation to some other function f . The interval component i = [a,b]
such that a,b ∈ R, referred to as the remainder interval, represents the error introduced
by using the approximation p on some domain D ⊂ Rn versus the original function.
This interval is always an over-approximation, in that it is guaranteed that any error
introduced is captured by the interval, but it is not guaranteed that this interval is
necessarily as ‘tight’ as it can be. We then say that (p, I) is a Taylor model of f on
domain D.

Definition 2.1.1. Let f : D ⊂ Rv → R be a function that is (n+1) times continuously
partially differentiable on an open set containing the domain D. Let c be a point in D
and p the n-th order Taylor polynomial of f around c. Let I be the interval such that

∀x ∈ D, f (x) ∈ p(x− c)+ I (2.1)

Then we call the pair (p, I) an n-th order Taylor model of f around c on D [17, pp.
383–384].

For example, we can construct a Taylor model for f (x) := sinx on the domain x ∈
[0,1/2] by computing its Taylor series up to order 5 (where 5 is arbitrarily chosen)

p(x) := x− x3

3!
+

x5

5!
. (2.2)

4

Chapter 2. Background & motivation 5

and then as this is a demonstration of the concept and we have the underlying analytic
function, we can simply calculate the remainder interval directly and round to the
nearest integer to ensure over-approximation

g(x) := sinx− p(x)
g([0,1/2])⊆ [−1,1].

Thus (p, [−1,1]) is a Taylor model of sin of order 5 on the domain [0,1/2], note
that this remainder interval is not as ‘tight’ as it could be, but that it is a sufficient
over-approximation as it encloses the error.

Taylor models were originally introduced by Berz in 1997 in order to formalise ap-
proaches to problems encountered in beam physics [3]. This use-case happened to
have a much wider set of applications than initially thought, and as such he expan-
ded the ideas again in a follow-up paper with Makino to include verified integration
operations [5], a key development for their application to model checking techniques.

2.1.1.1 Interval arithmetic

Interval addition and subtraction work similarly to their typical counterparts, with the
upper and lower bounds of both intervals being added or subtracted, respectively.

Definition 2.1.2 (Interval addition and subtraction). Let a1,b1,a2,b2 ∈R be the bounds
of two intervals I1 and I2, then

I1 ± I2 ≡ [a1,b1]± [a2,b2] := [a1 ±a2,b1 ±b2].

The result of interval multiplication needs to be the minimum and maximum the product
of a value from each operand could attain.

Definition 2.1.3 (Interval multiplication). Let I1, I2 be closed intervals on R, then

I1 · I2 :=
[

min
x∈I1,y∈I2

xy, max
w∈I1,z∈I2

wz
]
. (2.3)

However, care is required when defining interval exponentiation, as if we simply
‘expand’ exponentiation as in Equation 2.4, we would expect [−1,1]2 to be [−1,1].
However, this is not the case, [−1,1]2 is actually [0,1]. Expanding in this way assumes
we have n variables as a product, whereas we actually have a single variable as in
Definition 2.1.4.

[a,b]n 7→ [a,b]× [a,b]×·· ·× [a,b]︸ ︷︷ ︸
n times

. (2.4)

Definition 2.1.4 (Interval exponentiation). Let I be a closed interval on R, and n ∈ N,
then I raised to the nth power is defined

In :=
[

min
x∈I

xn,max
y∈I

yn
]
.

Chapter 2. Background & motivation 6

2.1.1.2 Taylor model arithmetic

Many typical arithmetic operations can be lifted to Taylor models, allowing for their
manipulation in such a way that preserves the over-approximation guarantee of their
interval components. We shall define a subset of these operations on Taylor models, in
order to later illustrate the application of optimisation techniques to their computation.
All the below definitions are sourced from Makino and Berz (2003) [17].

Definition 2.1.5 (Taylor model addition and subtraction). Let (p1, I1) and (p2, I2) be
Taylor models as defined in Definition 2.1.1, then

(p1, I1)± (p2, I2) := (p1 ± p2, I1 ± I2).

Definition 2.1.6 (Taylor model multiplication). Let T1 = (p1, I1) and T2 = (p2, I2) be
n-th order Taylor models around x0 over some domain D. Define their product T1 ·T2 by

T1 ·T2 := (p1 · p2, I1,2).

Where p1 · p2 is polynomial multiplication up to order n (i.e. terms of order greater than
n have been truncated), and I1,2 is the combination of four intervals

I1,2 := B(pe)+B(p1) · I2 +B(p2) · I1 + I1 · I2.

Where pe is the part of the polynomial p1 · p2 of order n+1 to 2n, and B(p) denotes an
enclosure of p on the domain D, that is at least as ‘sharp’ as the enclosure obtained by
direct interval evaluation of P(x− x0).

Definition 2.1.7 (Taylor model integration/antiderivation). Using notation from Makino
and Berz (2003), we can define the integral ∂

−1
i (p, I) (in the algebraic sense) of a Taylor

model (p, I) of a function f , with respect to variable i of the function f as

∂
−1
i (p, I) :=

(∫ xi

0
pn−1(x)dxi,(B(P−Pn−1)+ I) · (bi −ai)

)
.

Or integrating pn−1, the part of p from orders 0 to n−1, and then bounding the highest
n-th order term(s) into the new remainder bound.

Note that Taylor model integration often refers to the construction of a Taylor model
flowpipe of a system, which we discuss later in Section 2.1.3, rather than algebraic
integration. However, as the scope of the paper is primarily on Taylor model arithmetic
rather than direct flowpipe construction, henceforth we refer to Taylor model ‘integra-
tion’ in the above sense, and make explicit when we refer to Taylor model flowpipe
construction.

2.1.2 Picard iteration

Picard iteration is an iterative approach to computing an approximate solution to an
Ordinary differential equation (ODE), based on the Picard-Lindelöf theorem [10]. It

Chapter 2. Background & motivation 7

works by repeatedly applying the Picard operator, Equation 2.5, where g0 := x⃗0, and
gi+1 := PF(gi)(⃗x0, t).

PF(g)(⃗x0, t) := x⃗0 +
∫ t

0
F(g(⃗x0,s),s)ds. (2.5)

This operator has wide application to Taylor models, as the error introduced by approx-
imating the solution to the ODE can be captured by the remainder interval of the Taylor
model of the approximation. If we desire a k-order TM approximation, we apply the
Picard operator in two stages. Firstly, by repeatedly applying the Picard operator k
times to the initial conditions g0 := x⃗0, discarding terms with order greater than k. This
is guaranteed to converge in at most k iterations for a k-order approximation, by the
Picard-Lindelöf theorem [9][10].

For example, if we have a one-dimensional ODE as follows, with an initial set x0 ∈
[0,1/2] and t ∈ [0,1/10],

F(x) :=
dx
dt

= 1+ x2. (2.6)

Then Picard iteration with k = 3 will result in the following approximations gi, with g0
being set to the initial conditions x0, n.b. we omit all but the final value of gi for brevity,

g0(t) = x0 = [0,0.5]

g1(t) = x0 +
∫ t

0
F(g0(t),s)ds

g2(t) = x0 +
∫ t

0
F(g1(t),s)ds

g3(t) = x0 +
∫ t

0
F(g2(t),s)ds

= [0.333333,0.729167]∗ t3 +[0,0.625]∗ t2 +[1,1.25]∗ t1 +[0,0.5].

Secondly, the remainder interval is calculated by taking the now converged k-order
approximation gk, picking an initial ‘guess’ interval I0 that is an appropriate enclosure
for the polynomial on the domain, i.e. such that B(F) ⊆ I0, and then applying the
Picard operator to the Taylor model (gk, I0), as in Equation 2.7. This results in an
expression in the form gk + Ii+1, as we assume that gk has converged at this point, such
that PF(gk) = gk.

PF(gk + Ii)(⃗x0, t) = gk + Ii+1 such that Ii+1 ⊆ Ii. (2.7)

This allows us to compute k-order TM approximations to ODEs, capturing the error
introduced by such an approximation, and then to contract the remainder interval to be
as tight as possible.

For example, in the case of the system in (2.6), if we perform Picard iteration on
the Taylor model (g3, I0) where I0 := [−1,1] is our initial ‘guess’ for an appropriate

Chapter 2. Background & motivation 8

enclosure of the error of the approximation.

PF(g3 + I0)(x, t) = x0 +
∫ t

0
F((g3 + I0),s)ds

= x0 +
∫ t

0
1+(g3 + I0)

2 ds

= g3 +
∫ t

0
2g3I0 + I2

0 ds.

Evaluating this integral on the domain x ∈ [0,1/2], t ∈ [0,1/10] we obtain

PF(g3 + I0)(x, t) = g3 +[−0.626396,0.734356]. (2.8)

We can then repeatedly apply the operator to converge to the tightest boundary obtain-
able via this process, [−0.572342,0.626363], and therefore we have a Taylor model
(g3, [−0.572342,0.626363]) for the solution to the ODE system F for x ∈ [0,1/2], t ∈ [0,1/10].

2.1.3 Flowpipes

As motivation for why these topics prove useful, we introduce the concept of a Flowpipe,
and explain their application and how Taylor models assist with their computation. Both
the below definitions, and the definition of the continuous reachability problem are
sourced from Chen (2015).

Definition 2.1.8 (Flowpipe). We define the flow of a continuous ODE system ẋ = f (⃗x, t)
as ϕ f (⃗x0, t), the unique solution of the continuous system with x⃗(0) = x⃗0 at some time t.
Then let the set of flows, or the flowpipe on a time interval [0,∆] be

ϕ f (X0,∆) := {ϕ f (⃗x0, t)|⃗x0 ∈ X0, t ∈ [0,∆]}

Where ẋ refers to the derivative of x with respect to time, i.e dx
dt .

Definition 2.1.9 (Taylor model flowpipe). Given an n-dimensional non-linear con-
tinuous system S : ˙⃗x = f (⃗x, t) and an interval or TM initial set X0 ⊆ Rn, with dis-
crete time-steps δ1, . . . ,δN , then for 1 ≤ i ≤ N, the i-th TM flowpipe is of the form
Fi(⃗x0, t) = (pl (⃗x0, t), Il) such that x⃗0 ∈ X0 and t ∈ [0,δi]. It is an over-approximation of
the flowpipe solution ϕ f (⃗x0,∑

i−1
j=1 δ j + t), i.e.

ϕ f (⃗x0,
i−1

∑
j=1

δ j + t) ∈ pi(⃗x0, t)+ Ii for all x⃗0 ∈ X0, t ∈ [0,δi].

Informally, when we have a continuous system defined by an ODE ẋ = f (⃗x, t), the path
of system starting from the initial condition x⃗0 at time t = 0 can evolve in various ways
over time, each of these possible eventualities could be considered a ‘trajectory’ of
the system. Now, imagine we are not looking at a single trajectory, but all possible
trajectories starting from a whole set of initial conditions X0. The flowpipe over a time
interval represents all these possible trajectories, encompassing all states the solutions
can reach within the time-frame from any initial condition within X0. Think of this like

Chapter 2. Background & motivation 9

a river: if X0 is the source, then the flowpipe shows you all the paths the water could
take within a certain time-frame.

However, if we do not have an exact solution to the system ẋ = f (⃗x, t), but rather a
TM approximation of a solution, we cannot construct the true flowpipe, but rather an
over-approximation of the flowpipe based on Taylor model arithmetic, guaranteed to
enclose the analytic flowpipe. This means that the actual flow of the system from any
point in X0 within a time interval will lie within the Taylor model flowpipe. Going back
to the river analogy, this is like saying ‘we cannot trace every droplet of water precisely,
but we can tell you the rough area through which it will flow’.

Once we have a Taylor model flowpipe, we can use it to make statements on the set
of states the system will not enter given an initial set X0 in a given time frame. For
example, this allows us to make (over-approximative, but useful) statements on the
maximum attainable temperature of a drill in a given time frame if we have an ODE
system modelling such with inputs such as drill speed, lubricant flow rate, etc. Which is
evidently a useful statement for a company designing a drill for oil-extraction.

2.1.3.0.1 Alternatives to Taylor models We do not want to leave the reader with the
impression that Taylor models are the only approach to perform this process of validated
integration of ODEs. For example one can use interval-based integration methods [20]
and avoid Taylor models entirely. This Taylor model approach was pioneered by Berz
and Makino [4][3][5][17].

2.2 Optimisation techniques

2.2.1 Lazy evaluation

Lazy evaluation is the idea that we should never compute a result until it is required, or
often not at all if it is never used [25]. For example, if we compute the product of two
values, but then never access the variable we assign the result to, such as in Listing 2.1,
Lazy evaluation means that we would never perform the multiplication.

1 x <- 3
2 y <- 7
3 result <- x · y

Listing 2.1: Calculation of the value of 3 ·7, in which the result is never used

More generally, we defer the computation until the point at which it is used, and as a
result we defer indefinitely in Listing 2.1, but in Listing 2.2 we defer calculating the
value of result until its value is used on line 5 to square it and then pass to some function
print.

1 x <- 3
2 y <- 7
3 result1 <- x · y
4 // ...
5 print (result)2 // result calculated at this point

Chapter 2. Background & motivation 10

Listing 2.2: Deferred calculation of some result until it is passed to a function accessing
its value

In the context of Taylor models, which consist of both a polynomial and interval
component, we often only require one of these components, and can therefore improve
performance by neglecting to calculate the unused portion. For example, if we perform
Taylor model multiplication, and never use the interval portion of the result, such as in
Listing 2.3, then we do not need to calculate it.

1 (p1, I1) <- (1+ x2, [−1,1])
2 (p2, I2) <- (3+ y, [0,1/2])
3 (pr, Ir) <- (p1, I1) · (p2, I2)
4 print pr

Listing 2.3: Taylor model multiplication, in which only the polynomial portion of the result
is used

This situation in which we only require one component of a Taylor model occurs
frequently in Taylor model arithmetic, for example if we are using Taylor models for
purely polynomial arithmetic in the case of Picard iteration.

2.2.2 Memoisation and Partial evaluation

Memoisation is a specific form of caching in the context of functions. When a function
is called, its parameters and resulting value are stored, and if the same function is
called with the same parameters, the cached result is retrieved and returned rather than
performing the computation again [11]. This can drastically improve performance,
especially for expensive functions that are often called with the same arguments.

Compile-time partial evaluation is a well-established technique to create a specialised
version of a program at compile-time, given a set of know constants [14]. This is
accomplished by viewing a program in terms of data-flow, i.e. as a mapping from an
input space to some output space, and then partially applying the program ‘function’ to
produce one of lower arity, which can be more aggressively optimised by the compiler.

In the context of Taylor model arithmetic, although of course memoisation has its place
and we should cache results wherever possible. There is space to perform optimisation
somewhere between memoisation and compile-time partial evaluation. For instance,
taking Taylor model multiplication, this can be viewed as a series of functions to perform
the polynomial multiplication, product truncation, polynomial bounding on the domain,
and interval multiplication amongst others. One possible expression of the Taylor model
product of (p1, I1) and (p2, I2), with B(p) representing an enclosure of polynomial p
on the domain D of the Taylor models, and pn, pn+1,2n being the polynomial p up to
order n and from n+1 to 2n respectively is:

presult(p1, p2) := (p1 · p2)n (2.9)
Iresult(p1, p2, I1, I2) := B((p1 · p2)n+1,2n)+ I1 ·B(p2)+ I2 ·B(p1)+ I1 · I2. (2.10)

With the resulting Taylor model being the results of these two functions, such that
(p1, I1) · (p2, I2) = (presult(p1, p2), Iresult(p1, p2, I1, I2)). If we know that only one of
these inputs changes, for example I1 (which for example occurs performing Picard

Chapter 2. Background & motivation 11

iteration to contract the remainder interval as in Equation 2.7) we could partially apply
the function Iresult. Many of the calculations are constant in I1, indicated in green,

Iresult, p1,p2,I2(I1) := B((p1 · p2)n+1,2n)+ I1 ·B(p2)+ I2 ·B(p1)+ I1 · I2. (2.11)

If we can partially apply such functions and then re-use the results we know to be
constant, via memoisation and capturing each component of an operation in this way,
then we can avoid recomputation of results that are unchanging when only a subset of
variables change. Although not partial evaluation in the typical, compile-time sense,
this approach follows the same general themes of partial evaluation, and the term is
often used to refer to this general approach of partial function application [16]. We will
refer to this technique as such throughout the paper.

2.3 Existing work

2.3.1 Flow*

Flow* is a verification tool for cyber-physical systems, with a focus on solving the
reachability problem [12][9]. It implements Taylor model arithmetic in addition to
a number of other features, and allows the user to supply a model file containing an
ODE system in addition to an initial set X0, and additional parameters, and produce a
Taylor model flowpipe. Flow* implements optimisations such as lazy evaluation and
memoisation via a structure known internally as a RangeTree that must be manually
passed about, and via a number of similarly named, differently-optimised functions for
every operation available under Taylor model arithmetic. This results in a confusing user
experience, it is often difficult to tell if a given piece of code utilising Flow*’s Taylor
model arithmetic library is optimised, and if so how. This hinders the maintainability of
the code, and vastly detracts from the project’s ability to grow organically, as the code
is poorly organised and implemented from a software engineer perspective.

For example, Flow*’s TaylorModel class contains 26 definitions of similarly named
functions to perform Picard iteration, all of which have large sections of overlapping
logic. This is not conducive to one’s understanding of the code-base as a whole, and
severely limits its ability to become more widespread. This project attempts to provide
value in comparison to Flow* by taking the burden of optimisation off of the user.
By implementing these arithmetic operations in a way that they are as transparent as
possible to the user, thus increasing productivity whilst using the library, allowing the
user to focus on the Taylor model arithmetic they wish to perform.

2.3.2 TaylorModel.jl

TaylorModel.jl is a TM arithmetic library [2] written in the Julia language [6]. Choice
of language is important here, as although Julia offers advantages in doing scientific
computation, and is performant for float-calculations such as these [6]. However it
suffers from a lack of adoption [27]. For a software library to succeed it needs to be
able to interface with existing libraries, and the choice of C++ greatly increases this
compatibility versus a niche language such as Julia.

Chapter 3

Design

In this chapter, we describe the data-types required to perform Taylor model arithmetic,
and the functionality they should have. We introduce the concept of a dependency graph
in the context of Taylor model arithmetic, and outline how it can be leveraged to obtain
the lazy and partial evaluation optimisations.

3.1 Dependency graph

If we have a function, say f : R2 → R, where f (x,y) := xy, and we have two values
x0,y0 ∈ R, then the function evaluated at this point r0 := f (x0,y0) can be considered
to have a ‘dependency’ on the values of x0 and y0. Now suppose that we have another
g : R→ R and that x0 := g(z0) for some z0 ∈ R, then f (x0,y0) instead now depends on
the result of g(z0) and y0. This relationship information easily lends itself to a graph
structure, for example the above expression r0 := f (g(z0),y0) would look something
like Figure 3.1a.

If we now extend this concept Dependency Graph (DG) with different types of vertices,
we can use the relationship information it captures to achieve both lazy and partial
evaluation.

Vertices on the graph can be one of two things, either they contain a concrete supplied
value such as a polynomial or interval, or they contain a function. The inputs of such
a function are the values of other vertices and the output of which is a value i.e. a
polynomial or interval, and further any vertex containing a function has an associated
cache of the function’s result. We refer to the vertices containing only a value and no
function, and hence have no incoming edges incident on them, as ‘concrete vertices’,
and those those containing a function and cache as ‘deferred vertices’, represented on
the following graphs as s and □s respectively.

3.1.1 Lazy evaluation

With this extended notion of a vertex in hand, lazy evaluation is achieved by simply
never calculating the result of an expression if it is never requested. For instance, if we

12

Chapter 3. Design 13

(a) Dependency graph
for squaring and sum-
ming two operands

(b) Figure 3.1a augmented
with concrete and deferred
vertices

1

3

(c) Figure 3.1b after the value
of r0 has been requested,
new computations and data-
flow are shown in green

Figure 3.1: Dependency graphs for r0 := z2
0 + y0 at various stages of construction and

usage

have the following code to match the previous example, with some arbitrary operations
assigned to functions f and g, and some example operands to z0 and y0.

1 z0 <- 1
2 y0 <- 2
3 x0 <- z2

0
4 r0 <- x0 + y0

Listing 3.1: Example computation with an unused result r0

In a computational context, we consider anything observing a result as ‘using’, for
instance printing, doing regular non-deferred arithmetic, etc. In Listing 3.1, we do not
‘do anything’ with this result r0, and so if we calculated its value eagerly this would be
wasted computation. This small snippet in Listing 3.1 could be represented by the graph
in Figure 3.1b, note that we have attached the caches to each computational vertex □,
and that they all read ∅ as they are empty.

Now if we use the value of r0, we obtain Figure 3.1c. Firstly, r0 would request the
values of all edges incident on it, in this case x0 and y0, causing the former to request
the values of the vertex with edges incident on it, in this case z0, before evaluating and
caching the result x0 := g(z0), and the latter to simply return its value as it is a concrete
vertex. Finally, it would compute and cache r0 := f (x0,y0) with these supplied values,
and pass it to whatever function requested its value. This results in lazy evaluation, as
we track the ‘recipe’ to compute the value of any computation vertex in the graph, we
need not eagerly evaluate each at the time of its declaration, and can instead wait until
it is used to do so (possibly forever if it is never used).

3.1.2 Partial evaluation

Partial evaluation is again a traversal of the relations between computations, following
outgoing edges of any changed values and performing re-calculation on any encountered

Chapter 3. Design 14

1

(a) Dependency graph from Fig-
ure 3.1c after input y0 has changed

1

8

(b) Figure 3.2a after the result r0 has
been requested

Figure 3.2: Invalidation and recalculation of r0 given a change in y0, invalidations are
shown in red, retained caches in orange, and new computations and data flow in green

expressions. For example, take the situation we have above in Figure 3.1c, and assume
we have at some point previously calculated all the values for some purpose, such as in
Listing 3.2.

1 z0 <- 1
2 y0 <- 2
3 x0 <- g(z0)
4 r0 <- f (x0,y0)
5 print(r0) // just to use the value of r0

Listing 3.2: Example computation with an evaluated result r0

If we then modify the value of y0 after we have previously calculated r0, such as in
Listing 3.3, we wish to do the minimum number of computations required to obtain this
updated value of r0

1 z0 <- 1
2 y0 <- 2
3 x0 <- g(z0)
4 r0 <- f (x0,y0)
5 print(r0) // just to use the value of r0
6

7 y0 <- 7
8 print(r0)

Listing 3.3: Example computation in which the amount of compute required to re-evaluate
can be reduced via partial evaluation

We follow the outgoing edges of y0 to r0 and invalidate its cache, shown in red in
Figure 3.2a, avoiding invalidating the cached value of x0 as it is unchanged. Then if we
request the value of r0, only one additional computation is performed to compute r0, and
the cached result of x0 is used, with new computations shown in green in Figure 3.2b.

Chapter 3. Design 15

Taylor model 1

Output Taylor model

Taylor model 2

Figure 3.3: Example dependency graph for the multiplication of two Taylor models (p1, I1)
and (p2, I2)

The use of a DG to manage these dependencies masks the underlying complexity of
dependency management, as we can present a simplified interface to the user that
mimics direct interaction with values. This abstraction layer simplifies user interaction
with the library, whilst also ensuring the optimisation of the system via the outlined
mechanics. By prioritising the user experience without compromising on computational
efficiency, this type of structure supports as wide a user-base as possible by hiding
details by default, or exposing them if more fine-tuned tweaking is required.

3.1.3 Worked Taylor model multiplication example

For a more specific example as to why this structure proves useful, consider Taylor
model multiplication, which involves performing regular polynomial multiplication and
constructing and combining four intervals based on the operands: the interval product of
I1 and I2; an enclosure for p1 and p2 on the domain; and the truncation error introduced
when truncating the polynomial product. This results in a dependency graph structure
with many vertices as seen in Figure 3.3, where each cache is blank as no computation
has been done, and is orange when it contains a cached value.

If we then request only the value of pout, we obtain Figure 3.4. The computations
propagate ‘up’ the tree only to the computations required to obtain this value, shown in
green, avoiding computing the interval component of the Taylor model entirely. This
is illustrative of how the graph structure allows for lazy evaluation, as although the
graph structure will be constructed, computational vertices will only be evaluated if
their results are used, and thus we avoid producing unneeded results.

Chapter 3. Design 16

Output Taylor model

Taylor model 1 Taylor model 2

Figure 3.4: Dependency graph for Taylor model multiplication of (p1, I1) and (p2, I2),
with only the polynomial component of the result requested, new computations are
shown in green

Output Taylor model

Taylor model 1 Taylor model 2

Figure 3.5: Dependency graph for Taylor model multiplication of (p1, I1) and (p2, I2),
with a changed input interval I1. Invalidated caches are shown in red, and retained
caches in orange

Chapter 3. Design 17

Output Taylor model

Taylor model 1 Taylor model 2

Figure 3.6: Dependency graph for Taylor model multiplication of (p1, I1) and (p2, I2)
with some example values for both, with the interval I1 changed and the result interval
requested. New computations are shown in green, and retained/reused caches in orange

Now assume that we have computed both interval and polynomial components, but
then we modified one of the input intervals, say I1 without loss of generality, we can
invalidate the results reliant on that value. The graph after this invalidation is shown in
Figure 3.5, with invalidated vertices shown in red, and unchanged cached values shown
in orange.

Then if we request the polynomial component, the cached value is used, and if the
interval component is requested we re-use the values that aren’t dependent on the
changed interval, and only recompute those that do. This effectively results in a
partially applied Taylor model multiplication operation, with the only argument being
this changed value, that is then executed when the interval component is requested in
Figure 3.6.

This is a commonly encountered scenario during Taylor model arithmetic, as this is the
situation that occurs when performing Picard iteration to contract the remainder interval
of an approximate solution to an ODE. To reiterate, the Picard operator is,

PF(g)(⃗x0, t) = x⃗0 +
∫ t

0
F(g(⃗x0,s),s)ds. (2.5)

In order to perform remainder interval contraction once we have established an order
k approximation pk, we ‘guess’ an initial appropriate remainder interval I0, such that
B(pk) ⊂ I0. We then perform Picard iteration on the Taylor model (pk, I0), which by
the assumption that pk is converged results in an expression of the form,

PF(pk + Ii)(⃗x0, t) = x⃗0 +
∫ t

0
F(pk(⃗x0,s)+ Ii,s)ds

= pk + Ii+1

such that Ii+1 ⊆ Ii (3.1)

Chapter 3. Design 18

But in order to do the Taylor model substitution F(pk(⃗x0,s)+ Ii,s), many multiplica-
tion operations are required, wherein only the interval inputs to the operations change
between iterations. This presents an ideal scenario for the application of partial eval-
uation as outlined above, as we can avoid repeating expensive operations such as
polynomial multiplication when none of its inputs have changed.

3.2 Data structures

3.2.1 Polynomials

Polynomial representations fall into two primary categories, each of which is suitable
for different situations and requirements: sparse and dense representations.

One consideration is the coefficient type for the polynomials. As we are interested
in over-approximations we necessarily require polynomials to be able to output a
range of values. However, this could be achieved via a variety of techniques, such as
taking intervals as coefficients to begin with or storing an upper and lower polynomial
with floating-point coefficients. For simplicity, this project chose to adopt intervals
as coefficients from the outset. The use of interval coefficients results in a unified
representation for single-value (via an interval of [a,a]) and multi-value coefficients
potentially within the same polynomial. This greatly simplifies the internal arithmetic
logic, and with appropriately designed arithmetic operations defined on the intervals
themselves, they can be treated as if they were any other data type.

Regardless of the particular representation of polynomials, they need to be able to
perform the same set of operations,

1. Addition: Given two polynomials p1, p2 of order n, m respectively, any represent-
ation needs to be able to compute their sum of order max{n,m}, with coefficients
being combined if exponents match as expected.

2. Multiplication: Given two polynomials p1, p2 of order n,m respectively, we need
to be able to compute their product p1 · p2 of order n+m.

3. Integration: In the algebraic sense, given a polynomial p, and bounds ℓ,u for
upper and lower bounds respectively, we need to be able to compute its anti-
derivative at some variable x ∫ u

ℓ
pdx

As we know that p is a polynomial with real coefficients, this can be performed
by simply iterating over each term in the polynomial, multiplying through by x
to add a power of x, and dividing through by the power of x in that term, which
should never be zero as we do not allow negative exponents in any representation.

4. Exponentiation: In order to allow polynomials to be substituted into one another,
as is required for Picard iteration for example, we need to be able to raise a

Chapter 3. Design 19

0 1 2 3 4 5 n

(a) Dense polynomial representation for an
arbitrary univariate polynomial of degree n,
with coefficients ai for i ∈ [0,n]

2 1 0 1 1 1 1 0 0

3 17 1

(b) Sparse polynomial representation for an
example multivariate polynomial

Figure 3.7: Structural diagrams comparing dense representations and sparse represent-
ations for polynomials

polynomial to a given exponent, for example given

p(x,y) := 1+ x2 + x3 + y (3.2)

q(x) := 3+ x3 (3.3)

To calculate p(q(x),y) we need to be able to compute q(x)2 and q(x)3. In order
to reduce the complexity of either implementation, this is most easily done by
expanding the exponents into repeated multiplication, and then simply re-using
the existing polynomial multiplication code.

5. Evaluation: Given a set of values for each variable, we should be able to compute
the value of the polynomial at that point. For example, if we have a polynomial
p(x) := 1+ x2, we need to be able to compute p(2) = 5. Moreover, we need the
flexibility to evaluate polynomials at other polynomials, for example p(3+ x) =
1+(3+ x)2 = 10+6x+ x2.

3.2.1.1 Dense representation for simple univariate polynomials

In order to represent a polynomial densely, one stores the coefficients of the polynomial
in an array, in which the index of each value represents an exponent, and the value
the coefficient. For univariate polynomials of lower order, this representation can be
efficient, such as in Figure 3.7a.

The dense representation chosen is based around an array-like structure, in which the
index of an element indicates something about the exponents of the term, and the
element’s content indicates the coefficient of the term. This works well in the univariate
case, as only having one variable means that the size of this array scales in the number of
terms. However, when one introduces multiple variables to the array, it begins to consist
more and more of zeros due to the exponential growth in the number of combinations of
these variables. Consequently, although fast and simple, the naïve dense implementation
is only appropriate for simple univariate polynomials.

Algorithms for addition, subtraction etc. are trivial in the dense case and boil down
to element-wise operations of the desired type. There are multiple options for multi-
plication, however as the main focus of the project was not optimisation of polynomial

Chapter 3. Design 20

operations, the one chosen is a nested loop through each of the polynomials’ elements,
adding the pairwise multiplication of the coefficient to the element representing the
addition of the two exponents.

Evaluation of a dense polynomial in this form can either be done in the obvious
way of adding to a result accumulator every coefficient multiplied by the evaluation
point to the appropriate power, or via Horner’s method, which we explain further
in Section 4.2.2.0.3. The latter provides significant improvements in the number of
additions and multiplications required, and is explored further in the implementation
section.

3.2.1.2 Sparse representation for multivariate polynomials

For multivariate polynomials (and of course relatively sparse univariate polynomials
such as x2024), sparse representation becomes more advantageous due to the exponential
blow-up in the number of exponent combinations in the number of variables. There
are a number of different approaches with their own advantages and disadvantages
for sparse representations, such as tree representations, sorted monomial arrays, or
exponent to coefficient maps.

As the use-case in this project is to serve as an example data-type for the graph com-
ponent, the priority was clarity of code and ease of implementation given the limited
time-frame. Therefore, although more performance and space-efficiency could be
gleaned from a more elaborate implementation, the primary use-case for this class is
as a demonstrator of the optimisations. Thus, in the interests of development time and
clarity of code, the architecture chosen was a mapping between exponent vectors and
coefficients, i.e. a sparse polynomial with dense monomial representation.

After opting for a sorted mapped implementation, there are two main implementation
decisions left to be made: the sorting schemes for the variable order inside the exponent
vectors, and the order of the exponent vectors inside the map.

Variable ordering is typically a lexicographic one, and as the focus of this project is
not optimising polynomial representations, this is the schema chosen. Lexicographic
ordering in this case means comparison by dictionary order letter-by-letter in each
variable name, such that a < b, and ba < bb, with the order lowest-to-highest.

Secondly, the ordering of the terms was inspired by the implementation proposed in
Maple 14 [19], a graded lexicographic sort. This sort is done in two parts, it initially
sorts based on the sum of all the exponents in each monomial, and then in order to
tie-break and sort within a set total it uses a typical lexicographic sort on the exponents.

Opting for a lexicographically sorted tree map, this project attempts to balance per-
formance with compactness. By ensuring lexicographic sorting we enforce a canonical
ordering on the polynomial’s monomial terms when the map is iterated over linearly,
simplifying operations such as multiplication and comparison. Furthermore, storing
the elements in a tree map, versus say a sorted array, look-up and existence-checking is
highly efficient and is O(1) in the cost of hashing the coefficient list.

Chapter 3. Design 21

3.2.1.3 Prioritisation

As should be clear from the preceding discussion, a sparse representation supporting
multiple variables requires significantly more engineering that a mono-variate dense
one. To this end, we initially prioritise the simper dense representation with an assumed
variable of x in order to have some representation with which to test simple arithmetic
on simple mono-variate Taylor models, with a sparse multivariate implementation as a
stretch goal. Although it bears mention that the vast majority of systems of interest are
multivariate, and it would serve as a more illustrative benchmark of the advantages of
the optimisation techniques outlined to test them on multivariate systems.

3.2.2 Intervals

Although intervals are conceptually simpler objects to design in comparison to some of
the others in this project, there are still some components to the design that need to be
treated carefully. This is primarily in regards to the definition of their arithmetic, which
can be unintuitive at first glance. Intervals need to be able to do a more limited set of
operations as compared to polynomials, as outlined in Section 2.1.1.1:

1. Addition, Subtraction: Given two intervals, the structure should be able to
automatically create a new interval to compute the sum or subtraction, this is
relatively straightforward, defined as

[a1,b1]± [a2,b2] := [a1 ±a2,b1 ±b2] (2.1.2)

Whilst automatically ensuring that the appropriate floating-point rounding modes
are used to ensure that intervals are always over-approximative.

2. Multiplication: As defined previously, interval multiplication is the minimal and
maximal values attainable from a value from each of the two operand intervals

I1 · I2 :=
[

min
x∈I1,y∈I2

xy, max
w∈I1,z∈I2

wz
]

(2.3)

In the case where all interval bounds are positive, multiplication can be expressed
intuitively as,

[a,b] · [c,d] = [ac,bd].

But, this straightforward calculation does not hold for intervals that include
negative numbers. For example, consider the expression of [−1,1] · [−7,9], the
result is not [7,9] as the former rule would indicate, but rather [−9,9]. We can
rewrite the mathematical definition in a more programmatic way as

[a,b] · [c,d] = [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]. (3.4)

3. Exponentiation: Exponents require additional thought, as upon first glance
we can just expand the definition of an exponent and apply the definition of
multiplication, i.e. that

[−1,1]2 = [−1,1] · [−1,1] = [−1,1].

Chapter 3. Design 22

However, this assumes that for [a,b]n we have n free variables each of which
lies inside the interval [a,b], but it actually refers to a single variable x ∈ [a,b].
So the aforementioned [−1,1]2 is actually equal to [0,1]. This definition only
diverges from the naïve expanded-multiplication approach when the interval
contains zero, and even then only when the exponent is even as negative numbers
to an odd power remain negative. Therefore, we can emulate this behaviour by
checking for these conditions, setting the lower-boundary to zero if they are met
and calculating the upper boundary as normal.

3.2.3 Taylor models

Taylor models are reliant on the implementation for polynomials and intervals, as they
are of course just pairs of both. However, they still have their own design considerations
to consider, and several specific requirements to fulfil in order to be considered useful
or even correct.

Firstly, they need to be able to somehow group a polynomial and an interval together,
and then use these values to perform Taylor model computation, as introduced in
Section 2.1.1.2

1. Multiplication: If the Taylor model is made up of a computational vertex for
its interval, polynomial, or both, then when we perform multiplication it should
automatically create the whole network of vertices as seen in Figure 3.3, and
return a Taylor model consisting of the two deferred result vertices seen at the
bottom.

2. Addition: Again, generically the Taylor model structure should be able to per-
form addition with other Taylor models, creating the appropriate computational
vertices on the graph and returning a result Taylor model without doing any
eager computation, and in such a way that the user does not have to worry about
managing these vertices themselves.

3. Integration: Taylor model integration is a multi-step process that involves the
truncation and polynomial integration of the polynomial part of the Taylor model,
before bounding the discarded highest term into the interval component, see
Definition 2.1.7. This is an essential operation for many applications of Taylor
models, and should perform all these operations automatically.

Chapter 4

Implementation

In this chapter we present implementation details, based on the previously outlined
design. We outline some technical challenges and trade-offs taken, and motivate the
choice of technology where appropriate.

4.1 Choice of language

We selected C++ as the language of implementation due to its high-performance, the
expressive templating system available in modern C++ (C++11 onwards), and the preex-
isting extensive ecosystem of verification tools. We outline a brief rationale for choosing
C++, and consider some alternatives.

1. Template Metaprogramming: Templates are a meta-programming concept
present in C++, and refers to the ability to define a class or function once generic-
ally with a type parameter, and then specialise it later to reduce repetitive code [1].
In the context of this project, the ability to specify one template vertex class that
handles the evaluation and temporary value storage, regardless of the type it is
specialised on, means that we can write concise, expressive code that is compiled
down to be identical to a less expressive, less readable version.

2. Smart Pointers: Features such as smart pointers (e.g. std::unique_ptr and
std::shared_ptr) facilitate safe but fast memory management without the user
having to interact with the internals of the library in order to avoid leaks.

3. Mature Ecosystem: As the final product of this project is a library, it is important
to select a language with a pre-existing user-base in order for the library to be
useful. Implementing the library in C++ obviously allows the user to interact with
the library in C++ as a first-class citizen, but also permits future work creating a
Python library binding, if so desired.

4. Performance: C++ is a highly performant language, and is highly suited to
computationally intensive tasks such as Taylor model arithmetic.

Alternatives considered include Rust and Python. Rust is a high-performance systems
programming language with an innovative approach to memory management [18].

23

Chapter 4. Implementation 24

An implementation in Rust would likely perform similarly to one in C++, as they are
typically comparable in benchmarks [26], and the trait-based system of abstraction
Rust offers would be suited for a project heavily employing polymorphism such as this.
However, the vast majority of work in the field is still done in C/C++, and therefore an
implementation in Rust would limit the scope of the library’s applicability.

Another option was Python, a dynamically typed interpreted language [24], with a very
mature ecosystem of packages and wide support. However, due to the interpreted nature
of the language, the performance of algorithms in Python typically lags behind C++
by one or even two orders of magnitude [22]. Thus, although an implementation in
Python may be very concise and invisible, any performance gained by employing these
optimisations will be entirely outweighed by the overhead of the language itself, and it
was therefore deemed unsuitable.

4.2 Data structures

4.2.1 Intervals

Implementation details for intervals follow the design closely, and there are few tech-
nical decisions to consider. We provide a simplified class declaration, explain the
member variables, outline the list of required arithmetic operations, and explain their
implementation details.

1 class interval : public containable {
2 public:
3 interval() = default;
4 interval(double lower, double upper) : m_lower(lower), m_upper(upper) {}
5 interval(double value) : m_lower(value), m_upper(value) {}
6 private:
7 double m_lower, m_upper;
8 };

Listing 4.1: Simplified class declaration for the interval class

1. Addition, Subtraction: Given two intervals a and b, addition is performed by
calculating a.m_lower + b.m_lower and a.m_upper + b.m_upper, where the private
member variables are accessible as all arithmetic operators are defined as friend
methods. These bounds are then used to construct a new interval.

2. Multiplication: Given two intervals a and b, we calculate all four products of the
possible permutations, i.e. lower times lower, lower times upper, etc. and take the
minimum of them for the lower bound, and the maximum for the upper bound.

3. Exponentiation: For an interval a and an exponent n, we check if n is even and
if the interval a contains 0, and if so we set the lower boundary to zero, otherwise
we calculate the exponent of the lower bound. We then calculate the exponent of
the upper bound, and then return an interval with these two bounds.

The only factor that needed special attention was the rounding direction to maintain
the over-approximative nature of Taylor model arithmetic, that is, ‘downwards’ for the
lower bound, and ‘upwards’ for the upper bound.

Chapter 4. Implementation 25

This can be accomplished using the C++ standard library, specifically the <cfenv> header
functions std::fegetround and std::fesetround [28] functions.

We implemented this by attaching these methods to set and restore the floating-point
rounding mode to the singleton tf::context class, which can then be called around
interval floating-point operations that require this specific rounding.

For example, to ensure interval multiplication captures the boundary values properly
for the upper and lower bounds, we change the rounding mode to FE_UPWARD when
calculating the upper bound, and to FE_DOWNWARD when calculating the lower bound.

4.2.2 Dense univariate polynomials

We chose to target dense, univariate polynomials before attempting the sparse, mul-
tivariate case in order to ensure we implemented a functional ‘minimum viable product’
(MVP). This approach allowed us to quickly have a prototype executing simple poly-
nomial and later Taylor model operations, ensuring that we had a concrete conceptual
understanding before spending development time implementing more difficult sections
of functionality.

4.2.2.0.1 Addition Addition for two dense polynomials represented by arrays a
and b of degree n and m respectively is a process of first right-padding the smaller of
the two arrays with zeros to be the same size as the larger one, and then performing
element-wise addition to combine the two arrays into a single coefficient array.

4.2.2.0.2 Multiplication Multiplication is performed via a simple implementation
of the Standard Algorithm/Schoolbook for Multiplication. The coefficients of the two
polynomials are multiplied inside a nested loop, with the results added to the appropriate
coefficient of some accumulator result polynomial.

Definition 4.2.1 (Schoolbook algorithm for polynomial multiplication). Given poly-
nomials P(x) = ∑

n
i=0 aixi and Q(x) = ∑

m
j=0 b jx j, their product R(x) = P(x) ·Q(x) is

calculated as:

R(x) =
n+m

∑
k=0

(
∑

i+ j=k
aib j

)
xk

This algorithm has a complexity of O(nm), which although sub-optimal is acceptable
given the typical sizes of polynomials in the domain of interest.

4.2.2.0.3 Evaluation We consider two methods for evaluation of a dense (univariate)
polynomial, the typical method and Horner’s method. The typical method simply
involves iterating over the monomial terms of the polynomial, calculating the value to
the power of the term of the monomial, multiplying by the coefficient, and adding to
an accumulator coefficient type, which in this case is an interval. Although this is how
humans evaluate polynomials, and is the most obvious algorithm, it requires n additions

Chapter 4. Implementation 26

and n(n+1)
2 multiplications, in comparison to Horner’s method which only requires n of

both operations.

Horner’s method for polynomial evaluation works by factoring each term of the polyno-
mial, such that each ‘level’ of brackets contains a constant term and an x multiplied by
the remainder of the bracketing. In practice this transformation is in the form

a0 +a1x+a2x2 + · · ·+anxn = a0 + x
(

a1 + x
(

a2 + · · ·+ x(an−1 + xan) · · ·
))

.

This then allows for the evaluation of the polynomial via an accumulator initialised to
the coefficient of the highest degree and a single for loop over all coefficients but the
highest of the array in reverse order. It proceeds by multiplying the accumulator by the
evaluation point x and adding the next coefficient, the final value of the accumulator is
then the value of the polynomial at that point.

4.2.2.0.4 Integration We implemented indefinite integration via a simple right shift
of the elements in the polynomial, before dividing each coefficient by its index, exclud-
ing the new zero-th element. We then provide a helper function for definite integration
by first performing indefinite integration, and then returning the difference of the
antiderivative evaluated at the two bounds.

4.2.2.0.5 Exponentiation As we only support natural number exponents, we im-
plemented exponentiation by expanding the exponent out into repeated multiplication.
Although the ability to compute fractional or negative exponents would be useful for
specification of more complex ODEs, we felt that the additional development time
required to implement such functionality was better spent elsewhere due to the scope of
the project being limited to simpler ODE systems.

4.2.3 Sparse Polynomials

4.2.3.0.1 Addition In the context of sparse polynomials, addition is performed
by merging the two sequences of monomials from each operand, either combining
coefficients if two terms match, or adding a new monomial term if they do not.

4.2.3.0.2 Multiplication Multiplication of sparse polynomials is starkly different
from the dense case. This is primarily due to the fact that the size of the result grows
quadratically [23]. Therefore, as the theoretical complexity is only O(t2 logD) [23],
where t is the total number of terms of both polynomials and D is the maximum degree,
we opt for the classical or schoolbook algorithm for multiplication. This is similar
to the dense case, involving repeated multiplications by each term and addition to
an accumulator, but with more complicated logic to assign each result coefficient to
the correct position. The use of a hash-map facilitates fast lookup and insertion in
this use-case, and ensures that we do not accumulate multiple terms with identical
exponents.

Chapter 4. Implementation 27

4.2.3.0.3 Integration We implemented indefinite integration by looping over all
monomials, adding one to the power of the variable we are integrating with respect to,
and then dividing the coefficient by this new power. Definite integration is done by first
calculating the indefinite integral, and then computing the difference between the upper
and lower bound of the interval the user is integrating over. By reusing the evaluation
code in this way, we support both a numerical bound, e.g.

∫ 5
0 , but variable bounds, e.g.∫ t

0 .

4.2.3.0.4 Exponentiation Similar to the algorithm for dense polynomials, we im-
plemented exponentiation by expanding the exponent out into repeated multiplication.
This approach has the same limitations as those laid out in Paragraph 4.2.2.0.5.

4.2.3.0.5 Evaluation Evaluating sparse polynomials, assuming that we maintain the
same global variable set, is a simple iterative process over each monomial. Assuming
we are evaluating a polynomial at some point x = x0, at each monomial the appropriate
power of x0 is calculated based on the power of x in the monomial, or skipping if it is
zero, multiplying the existing coefficient by this value, before finally setting the power
of x to zero. This process is optimised by introducing a power-cache, a look-up table
that stores the values of xi

0 as they are calculated, and uses the cached result if it has
been previously calculated. This is another scenario in which memoisation grants a
large increase in performance, as if we have a polynomial such as

3x2y+7x2y2 +14x2y3

Then we need only calculate x2
0 once to evaluate the polynomial at x = x0, rather than

three times.

4.2.3.1 Variable Spaces

Ideally the multivariate class would be able to take in any polynomial and represent
it without any additional input from the user. This could be achieved by having each
object track its own variable-space, i.e. the mapping between indices of exponent
vectors and the variables they represent (x 7→ 0,y 7→ 1 etc.), and then having these two
spaces combined and pruned when doing operations involving multiple polynomials. In
practice, however, this proved to be difficult to implement, and therefore the decision
was made to require the variable space be defined before any polynomials were, in
effect freezing the representations in place. The means that unfortunately, the user has
to call tf::multivariate::add_variable function on either a single variable string or a
vector of such, before they can create a polynomial using those variables. This has the
further disadvantage that if one creates a polynomial, and then adds variables to the
space, the first polynomial is effectively corrupted. However, for the use-case of the
class, processing models with known variables ahead of time, this was an acceptable
trade-off, but is one we would revisit if given more development time.

4.2.3.2 Data Structure

The internal representation is a map-based design, mapping exponent combinations
to coefficients. C++’s standard library provides both sorted and unsorted maps in the

Chapter 4. Implementation 28

form of std::map and std::unordered_map, and although there are better performing
open-source components available such as the popular parallel-hashmap project [21],
the standard library implementation was the simplest to use and provided adequate
performance, given that coefficient look-up was not a bottleneck in performance.

4.2.3.3 Lexicographic Ordering

The algorithms outlined above for operations on sparse polynomials rely on a consistent
ordering of variables inside the exponent vectors. This is due to the fact that the exponent
vectors are used as keys in the coefficient hash-map, and as different permutations of
the same vector hash to different values, if the ordering between polynomials was
inconsistent then duplicate values could accumulate. The most common ordering for
variables is lexicographic ordering, that is ordering based on pairwise comparison by
position in the alphabet, e.g. "a" < "b", with further characters only being compared to
tie-break, e.g. "aaa" < "aab" < "aac".

4.2.3.4 Parsing

In order to make the input of multivariate polynomials as easy as possible, we im-
plemented a parser using the parsing and lexing library Lexy [13]. Lexy offers a
combination of the expressiveness that one gets with high-level libraries, with the
performance of lower-level approaches. This is achieved by doing as much processing
at compile-time as possible, as every component is a constexpr. The format assumed
for the polynomials matches the one specified by Flow* [12], with monomials in the
form ([exponents]*)**([variable^exponent]*)*, i.e. 3*x*y - 2*x^2*z.

Although an initial implementation was attempted using regular expressions, it made
for a cleaner and more readable implementation to construct actual parser machinery
with labels and productions, rather than attempting to catch all edge-cases inside a large,
magic, unreadable regular expression.

4.3 Dependency graph management

In order to use the DG to implement partial and lazy evaluation, we must first con-
struct and maintain the relationships, whilst ensuring appropriate lifetime and memory
locations for all the involved objects.

4.3.1 Vertices

Vertices contain a type parameter T that indicates the underlying type they represent,
and a standard-library optional<T> field to serve as either the container for the value
of a concrete vertex, or as the value cache for a computational vertex. It exposes a
function v that checks whether a cached value is present, returning it if so, and if one is
not present, as should only be the case if the vertex is a computational vertex, it calls
the expression associated with it that is represented by a std::functional object. It then
takes the value returned by this function, caches it, and returns it. This system allows

Chapter 4. Implementation 29

for the vertex class to represent any underlying type, as itself has no knowledge of the
item it contains, increasing the re-usability of the code-base to further applications.

1 template <typename T> class vertex {
2 public:
3 vertex(T &&value) : m_value(std::move(value)) {}
4 vertex(function<T()> &&calc_func) : m_calc_func(std::move(calc_func)) {}
5 bool has_value() const;
6 const T &v();
7 void invalidate();
8 void replace(T &&new_value);
9

10 operator T() const { return v(); }
11 const T operator()() { return v(); }
12

13 private:
14 optional<T> m_value;
15 optional<function<T()>> m_calc_func;
16 };

Listing 4.2: Simplified class definition of vertex<T>

In order to create a vertex<T> object, one must either supply in the constructor a concrete
value of the type T, or a lambda expression with a return type matching T.

However, in order to allow the user to swap-out the value of a vertex, or to replace a
relationship in a computation, another layer of abstraction outside the ones required
in the design-phase was required. By replace a relationship, say I have three vertices
containing x = 1, x = 2, y = 3, then I have another that contains the expression x+ y,
then the user should be able to swap out whether that x points to x = 1 or x = 2 without
having to create entirely new vertices.

One piece of functionality considered was to employ a C++ template programming pat-
tern called the ‘Curiously recurring template pattern’ [1], in which a class inherits from
its template parameter. In this context, this would mean the use of std::static_assert
to ensure that the type parameter T was an appropriate data-type, or more specific-
ally a virtual class of interval or polynomial. This would allow the speculative and
base versions of the types to be treated identically, as they would both implement the
expected operators and functions defined on the appropriate data-type’s virtual class.
However, this approach produced opaque and hard-to-read code, and required too much
type-specific code in order to refer to the base class given the appropriate interface.
Therefore although conceptually cleaner than the implementation decided-upon, it was
dropped. If more time was allotted, this would be something that would further reduce
the amount of user-input to almost zero, and make the library completely transparent.

1 template <typename T> class vertex<T> : public T {
2 static_assert(std::is_base_of<polynomial, T>::value

std::is_base_of<interval, T>::value), "T must be be a containable
type!");

↪→

↪→

3 // rest of implementation...
4 };

Chapter 4. Implementation 30

4.3.2 Graph

In order to maintain the edges of the DG, we need to maintain the edge relationships
between the vertices. Although there are many ways to do this, due to the relatively low
average connectivity of the graph, the relationships are stored via a simple adjacency
list system. This system is indexed via a unique ID assigned to each vertex as it is added
to the graph structure, and moved into the graph’s vector of vertices. The relationships
are mapped using a standard library std::unordered_map object, unordered to increase
the insert performance, as the relations are rarely iterated over linearly and as such do
not need to maintain a consistent ordering.

The system uses modern C++ std::move semantics in order to ensure that the graph
structure ‘owns’ all the objects passed to it, rather than them being inside the scope
from which they are added. This avoids any potential memory management issues by
ensuring that all objects have a lifetime that matches that of all possible computations
done on them, and as a result the user doesn’t have to do memory management on their
own objects, increasing the usability of the library overall.

Furthermore, the class contains a helper method to convert the structure to Mermaid
format [29], a language to describe graphs with a rendering engine to render them on
the fly. This allows for the easy visualisation of the dependencies and computations
as the user creates them, allowing for a better understanding of what is going on
under-the-hood if desired.

4.3.2.1 Alternative graph structures considered

We also considered an alternative configuration for the dependency graph with separate
vertices for each operation, in the style of a binary expression tree. Although concep-
tually simpler to traverse than the one based on computational vertices, this proved:
difficult to implement due to issues storing different data-types in the same structure;
to be significantly less expressive than the one based on lambda expressions; and in-
volved a significant amount of boilerplate code to implement. As a result, although
requiring fewer modern C++ features to implement, and a marginally less complex,
more brute-force implementation, we opted for the more complex and fully featured
implementation outlined above.

4.3.3 Wrappers

As the graph and its vertices lie on the heap, the user could interface directly with the
vertices themselves via their pointers, and have each vertex itself hold its identifier and
a reference to the graph to which it belongs. However, due to the semantics of C++,
one cannot overload arithmetic operators such as operator+ where both operands are
pointers; at least one of the operands must be a reference or a variable. Therefore, as we
want the user to be able to interact with results of vertices in exactly the same fashion as
their underlying types, another layer of abstraction was required, that we call a wrapper.

The wrapper<T> class is relatively simple, containing an ID of the vertex it represents,
and a pointer to the graph containing that vertex. This class can then be assigned to,

Chapter 4. Implementation 31

moved, used, deleted, etc. all as if it were the type T that underlies it via overloaded
operators, and it will automatically interface with the graph to ensure that the structure
is maintained. This class lives on the stack in the user’s own code, which given its small
size of a graph pointer and identifier should result in little performance degradation
versus keeping larger structures such as polynomials on the stack.

1 template <typename T> class wrapper {
2 public:
3 wrapper(graph *g, size_t id) : m_graph(g), m_id(id) {}
4 wrapper(const wrapper &other) = default;
5 T operator()() const { return m_graph->get<T>(m_id); }
6 vertex<T> *operator[]() const { return m_graph->get_vertex<T>(m_id); }
7 vertex<T> *vertex() const { return m_graph->get_vertex<T>(m_id); }
8 explicit operator size_t() const { return m_id; }
9

10 void operator=(T &&new_value);
11 void operator=(size_t new_id);
12 void operator=(wrapper<T> &&other) noexcept;
13 void operator=(wrapper<T> &other);
14 };

Listing 4.3: Simplified class definition of wrapper<T>

The overloaded assignment operators call the .update function on the graph with the
supplied replacement value, with different semantics for left and right references, new
values, and new IDs.

4.3.3.0.1 Common arithmetic operators In order to facilitate the use of the library,
we define a number of arithmetic operators on wrappers of polynomials, intervals, and
Taylor models. These functions then allow the user to express arithmetic in exactly the
same way as the underlying type, whilst maintaining the advantages of the DG structure.
For example, the following

1 auto p1 = N(multivariate("1 + x^2"), g);
2 auto p2 = N(multivariate("y^3"), g);
3 auto p3 = p1 * p2;

Is functionally identical to the following, more verbose code:

1 auto p1 = N(multivariate("1 + x^2"), g);
2 auto p2 = N(multivariate("y^3"), g);
3 auto p3 = L(p1() * p2(), g, p1, p2);

We employ the = capture-by-copy capture semantic when constructing lambda expres-
sions for deferred vertices. This allows the lambda’s contents access to the variables
of the containing scope via copying, rather than by reference as with the & capture.
Although this has a performance impact versus passing by reference, the values being
copied are the small tf::wrapper structures, containing only the pointer to a graph and
the vertex ID, rather than the entire vertex and potentially its large cached result. This
was done to ensure that the values used inside the expressions represent the vertices as
they are when it is defined, rather than changing later on if the wrapper(s) referenced
are replaced with another value, avoiding a confusing user experience. For example, if
capture-by-reference semantics were used, then a loop-based implementation of Picard

Chapter 4. Implementation 32

iteration which assigns to a variable pk on each iteration, would result in a recursive
dependency of px on itself. This would violate the acyclic nature of the graph, causing
undefined, incorrect behaviour.

4.3.4 Taylor models

Taylor models are implemented as a class containing wrappers, pointing to vertices
representing its polynomial and interval components.

1 class taylormodel {
2 public:
3 wrapper<multivariate> p;
4 wrapper<interval> I;
5 };

We then defined a series of constructors, avoiding requiring the user to have to interact
with the underlying graph directly if desired, these accept any combination of

• A concrete polynomial or interval or both as a rvalue reference, using std::move
semantics to move the supplied concrete values to concrete vertices on the sup-
plied graph g.

• Preexisting wrappers of either polynomial or interval, i.e. existing results that we
wish to pair together as a Taylor model.

Note that it can construct valid Taylor models from both just an interval or a polynomial,
allowing the use of Taylor model arithmetic on these more primitive types directly.
This lets the user perform all computation on the Taylor model level, rather than
requiring them to directly interact with the underlying structures, both programatically
and mathematically, unless they wish to do so.

We then defined C++ operators for multiplication, addition, subtraction, and negation,
which automatically construct the appropriate vertices and relationships on the DG
required to perform such operations in an efficient way, such as that laid out in Figure 3.3.
In addition to a cast operator to turn a Taylor model into a polynomial if desired,

1 wrapper<multivariate> taylormodel::operator()() {
2 return L(p() + I(), p.get_graph(), p, I);
3 }

4.4 Testing

We employed functional testing throughout the project, seeking to validate our results
with those of examples provided in Chen, Abraham and Sankaranarayanan (2012) [9].
This approach allowed us to be confident in the correctness of each successively more
complex version of the library, as we started with the simplest case (univariate polyno-
mials, etc.) and progressively expanded functionality to include more complex systems.
Behaviour was tested via the Catch2 [7] testing framework. This allowed us to do tradi-
tional test-driven development for the data representation components of the project
via unit-testing, in addition to making claims on the number of calculations done by a
snippet via a custom REQUIRE_CALCULATIONS macro.

Chapter 5

Evaluation

In this chapter we evaluate the capabilities of the library versus the specification, and
provide some benchmarks to demonstrate its efficacy.

5.1 Project goals revisited

5.1.1 Optimisations

5.1.1.1 Lazy evaluation

Lazy evaluation was achieved as outlined in Section 3.1.1 by use of the dependencies
tracked via the DG. To demonstrate this, we took utilised our testing macro to ensure that
the number of calculations performed agreed with the number expected. For example,
the following test passes, with the zero argument to REQUIRE_CALCULATIONS indicating
that no computation is being done when the unused result w is created.

1 auto p = N(multivariate("1 + x^2"), g);
2 auto q = N(multivariate("1 + y^2"), g);
3 REQUIRE_CALCULATIONS(0, auto w = p * q);

5.1.1.2 Memoisation

Memoisation is achieved by always returning the value of the std::optional field of
the vertex if present, and the library therefore avoids repeated calculation if none of
the inputs have changed, and therefore no invalidations have been propagated, as in
Figure 3.5.

1 auto p = N(multivariate("1 + x^2"), g);
2 auto q = N(multivariate("1 + y^2"), g);
3 auto w = p * q;
4 REQUIRE_CALCULATIONS(5, w().print());
5 REQUIRE_CALCULATIONS(0, w().print());

33

Chapter 5. Evaluation 34

5.1.1.3 Partial evaluation

Partial evaluation also works as expected, with only the required components being
re-calculated upon some inputs being changed. For example, the following toy test-
cases utilising the REQUIRE_CALCULATIONS testing-macro demonstrate the reduction in
computations required when a limited subset of the inputs to a computation are changed,
versus without requiring the entire expression to re-evaluated.

1 // assume set-up as required
2 auto p = N(multivariate("1 + x^2"), g);
3 auto q = N(multivariate("1 + y^2"), g);
4 auto i = N(interval(-1, 1), g);
5 auto r = p + q;
6 r = r + i;
7 REQUIRE_CALCULATIONS(2, r().print(););
8 i = interval(-17, 70);
9 REQUIRE_CALCULATIONS(1, r().print(););

In contrast, without utilising the DG structure, any modifications in any inputs forces a
full-recalculation, as partial results cannot be salvaged, as shown below:

1 auto p = multivariate("1 + x^2");
2 auto q = multivariate("1 + y^2");
3 auto i = interval(-1, 1);
4 multivariate r;
5 REQUIRE_CALCULATIONS(2, r = p + q; r = r + i; r.print(););
6 REQUIRE_CALCULATIONS(2, i = interval(-17, 70); r = p + q; r = r + i;
7 r.print(););

To demonstrate the tangible performance improvement in terms of computation time,
we can take advantage of Catch2’s BENCHMARK macro in a slightly more complex
polynomial operation scenario (See Appendix B.2 for the full listing). This demonstrates
that although additional overhead is introduced to manage the dependencies, even on
the smallest examples there is a net benefit in terms of total computation time. The
results, presented in Table 5.1, demonstrate a 73% improvement in performance with
partial evaluation enabled versus full recalculation.

Table 5.1: Benchmark results for with and without partial evaluation for polynomial
addition, all values to 3 s.f.

Benchmark Name Mean (µs) Std Dev (µs)
Partial Re-Evaluation 19.6 2.06
Full Re-Evaluation 33.9 3.33

This advantage becomes more pronounced in the context of two-stage Picard iteration
for the approximation of ODEs. Here, the focus was on the optimisation of the com-
putation of the remainder interval of the computed Taylor model. This was tested on
the 1-dimensional ODE ẋ = 1+ x2, with the parameters k = 10,x(0) ∈ [0,1/5], and a
single time-step of t ∈ [0,1/10]. Benchmarking revealed a substantial speedup, with
partial evaluation outperforming the typical case by a factor of 12, as shown in 5.2.
This confirms the hypothesis laid out in the specification, that the application of these

Chapter 5. Evaluation 35

techniques to Taylor model-specific arithmetic yields significant performance improve-
ments of approximately 10x. The complete code listing of this test-case can be found in
Appendix B.1.

Table 5.2: Benchmark results for with and without partial evaluation for Picard iteration,
all values to 3 s.f., see Appendix B.1 for the code listing

Benchmark Name Mean (ms) Std Dev (µs)
Typical Picard Iteration 45.2 676.0
Partial Picard Iteration 3.71 130.0

If we separate out the lazy and partial evaluation optimisations, we observe the expected
speed-ups from their separate employment. We performed Taylor model multiplication
on two example Taylor models, and compared the time taken to obtain just the interval
or polynomial component, and an equivalent implementation done with the base classes
and no optimisations at all. These results are presented in Table 5.4. As expected
only requesting the polynomial component was significantly faster than computing the
interval component, which matches expectations, as we avoid computing a significant
proportion of the graph from Figure 3.3. Examining purely partial evaluation, we

Table 5.3: Benchmark results for various TM multiplication methods, all values to 3 s.f.,
see Appendix B.5 for the code listing

Benchmark Name Mean (µs) Std Dev (µs)
Lazy TM multiplication, only polynomial requested 331.0 69.0
Lazy TM multiplication, only interval requested 804.0 85.7
Eager TM multiplication 1320.0 25.8

employ the volatile keyword to ensure we force an initial computation of both the
interval and polynomial components. We then randomly assign a new interval to one of
the operand Taylor models, and then request either the polynomial or interval component
of the result again. These results are presented in Table 5.4. Requesting the polynomial
component involves no recomputation, and is therefore almost instant, and requesting
the interval component is significantly faster than doing the entire computation again.

Table 5.4: Benchmark results for various TM multiplication methods with interval changes,
all values to 3 s.f., see Appendix B.4 for the code listing

Benchmark Name Mean (µs) Std Dev (ns)
Partial TM multiplication, interval changed, polynomial only 6.56 852.0
Partial TM multiplication, interval changed, interval only 120.0 3320.0
Eager TM multiplication 1310.0 7910.0

These results are, in our view, enough to justify the utility of the targeted optimisa-
tions on Taylor models, as the performance improvements from their employment are
non-trivial, and represent an area for significant performance gains in an application
employing a large number of Taylor model computations.

Chapter 5. Evaluation 36

5.1.2 User experience

Improving the user experience when using this class of optimisations was a key design
goal. We attempted to balance aggressive optimisation with producing a non-intrusive
intuitive interface. Although some progress has been made here, there is definite scope
for improvement.

5.1.2.1 Invisibility of operations

The use of optimisations via the use of a suite of macros, whilst not entirely invisible,
are designed to be less obtrusive than the alternatives available. We have implemented a
system where the majority of the complexity of dependency management is abstracted
away from the user. This allows for cleaner user-code, where the user can focus on the
mathematical operations without worrying about the underlying implementation details.

However, although less burdensome than alternatives, the interface is far from perfect.
It still demands a level of awareness of the user to provide a list of dependencies of
their expressions, and having every expression wrapped in a macro detracts from the
readability of the code, see Section 5.1.1 or the Appendices for examples.

Moreover, this method introduces an additional layer of abstraction, and whilst all
efforts have been made to ensure that these objects act identically to their underlying
data-types, this is not perfect. Future work on this library to address this could include
exploring implementation of a Domain Specific Language (DSL) for specification
of computations in order to alleviate the requirement for dependency specification,
or a plug-in for the popular C++ compiler Clang to inspect each lambda and extract
dependencies at compile-time.

5.1.3 Data representations

5.1.3.1 Intervals

We support intervals specified by either two floating-point values for lower and upper
bounds, or by supplying a string and utilising the parser. The user can then perform
all required interval arithmetic (as specified in Section 2.1.1.1) such as multiplication,
in addition to more complex operations such as checking if one interval is contained
within another. Furthermore, the interval class properly sets the floating-point rounding
mode in order to ensure the over-approximative guarantee of Taylor model arithmetic.

5.1.3.2 Polynomials

Our library effectively handles univariate polynomials and associated arithmetic opera-
tions. We evaluate the implementations for dense and sparse representations separately.

5.1.3.2.1 Dense univariate polynomials Univariate polynomials can be constructed
by providing an array-like structure of coefficients in a little endian style, i.e. that lower
indices are lower order terms. It then allows the user to perform all the expected arith-
metic operations on them specified in Section 3.2.1, such as multiplication, evaluation,
and integration.

Chapter 5. Evaluation 37

-2 2 4
x

-1

1

2

3

y

-2 2 4
x

-1

1

2

3

y

Figure 5.1: Over-approximation enclosure boxes for the whole Lotka-Volterra system
at t = 0.6 and t = 0.7, with some boundary points mapped from the input space of
x ∈ [0,1],y ∈ [0,2] to their interval boxes in the output space. See Appendix B.3 for the
code listing, and Appendix A.1 for more time steps

5.1.3.2.2 Sparse multivariate polynomials The user can construct sparse polyno-
mials iteratively by providing pairs of exponent vectors and coefficients, or they can
utilise the string parser to specify polynomials as strings. They can then perform all
the expected arithmetic operations laid out in Section 3.2.1, including indefinite and
definite integration, evaluation in any number of variables, and multiplication.

5.1.3.3 Taylor models

The user can specify Taylor models as an interval, a multivariate polynomial, or a
pair of both. Where the single-value constructors create the appropriate ‘identity’,
e.g. supplying just a polynomial results in an interval component of [0,0]. We only
support specifying multivariate polynomials in Taylor models, as the class superseded
the functionality of the dense polynomial one.

The user can then perform the expected Taylor model arithmetic operations, as specified
in Section 2.1.1.2, and the class will automatically ensure that the DG structure is
maintained in such a way to ensure partial and lazy evaluation without the user’s
involvement whatsoever.

5.1.4 Application to Lotka-Volterra

In order to demonstrate the functionality of the library for Taylor model arithmetic, we
implemented a variety of single time-steps for the Lotka-Volterra system of ODEs that
model a predator-prey relation. We then created a Taylor model approximation for the
system via two-step Picard iteration, and used Mathematica [15] to produce Figure 5.1
from the results, including the mappings of boundary points at the various time-steps.
Although the library is capable of single-step propagation like this, additional techniques
such as those outlined in Section 6.3.0.0.1 are required in order to do effective multi-step
propagation without the system’s parameter intervals ‘blowing up’ to the point where
they make no useful claims about the behaviour of the system. Case in point, note
how much larger the boxes for the t = 0.7 step are vs the t = 0.6 step, their larger size
indicating we can make less precise statements about their behaviour.

Chapter 6

Conclusion

6.1 Final remarks

This project has implemented a Taylor model arithmetic library in C++ with automatic
lazy and partial evaluation, with a significantly improved user interface. We achieve
this through the implementation of a dependency graph that is automatically managed
without the user’s involvement, leveraging modern C++ features to reduce complexity,
increase expressiveness, and increase performance.

We have implemented a sufficient subset of Taylor model arithmetic to make the library
useful for a large proportion of common Taylor model arithmetic scenarios. Including
classes for univariate and multivariate polynomials in dense and sparse representations
respectively, and a class to handle interval arithmetic. We implemented a parser for
intervals and multivariate polynomials to increase productivity and reduce the labour
involved in specifying a Taylor model problem.

We hope that this library will serve as a useful tool for both students and researchers
working with Taylor models. By streamlining the process of optimised Taylor model
arithmetic, we aim to increase productivity by reducing processing times and increasing
expressiveness, allowing users to focus on the mathematics of their problems rather
than on the optimisation of their code.

In this chapter we present some limitations of the library, and propose possible future
work that could improve the functionality and usability of the library.

6.2 Limitations

6.2.1 Optimisation transparency

Although the interface provided to the user is significantly less cumbersome than the one
demanded by comparative libraries such as Flow*, it still demands some user input in
order to function. For instance, the user must specify a generic function’s dependencies
in order to have them be appropriately linked in the graph structure. This process is
made less cumbersome with the addition of macros, but to take advantage of the ability

38

Chapter 6. Conclusion 39

of the deferred computation vertices to execute any arbitrary piece of code, the user
must still specify its dependencies at that point in time, for example:

1 auto result = L(x().integrate("x"), g, x);

This is an area that could be avoided by making the computational vertices more applica-
tion specific, and thus restricting their content by disallowing the user from constructing
their own. However, we believe that the small task of specifying dependencies is a small
price to pay for the level of flexibility offered.

6.2.2 Automatic vertex-reuse

Ideally, if a deferred computation vertex was requested to be created that already
matched the exact computation of another vertex on the graph, with the same dependency
arguments, then rather than creating a new but identical vertex in the graph we would
return a wrapper pointing to the existing vertex. This would reduce the size of the
graph and facilitate additional computational savings by ensuring maximum reuse of
previously calculated results. However, the expressions inside deferred computational
vertices are constructed via C++ lambda functions, which are assigned a unique type
and cannot be inspected at compile-time. This means that the ideal system, i.e. one of
direct inspection of the lambdas, to determine whether or not we can re-use an existing
vertex, does not work. As a workaround, optionally each deferred vertex can take
a label that is generated based by a supplied function descriptor and the identifiers
of its dependencies/arguments, which can then be searched for inside the graph, but
unfortunately this requires more user-interaction than desired.

Therefore, as a compromise the library implements arithmetic operators for wrappers
on common data types in a file common_operators.{hpp,cpp}, that automatically fill out
a label and create the appropriate vertices on the graph of the operands. For example, if
one has two intervals and computes their product,

1 auto I1 = N(interval(-1,1), g);
2 auto I2 = N(interval(-5,0), g);
3 auto I3 = I1 * I2;

Then if later we create another wrapper for the product of I1 and I2, the original
computational vertex would be re-used:

1 auto I4 = I1 * I2;
2 assert(I3.id() == I4.id());

However, generic lambda expressions are always assumed to be distinct and new vertices
created regardless. For example, the following will be result in two distinct vertices
being created:

1 // assume x, y are defined
2 auto a = L(x().integrate("t", "0", y()), g, x, y);
3 auto b = L(x().integrate("t", "0", y()), g, x, y);
4 REQUIRE(a.id() != b.id());

This could potentially be alleviated by inspection of the intermediary LLVM Inter-
mediary Representation via a Clang plugin. Such a plugin would be able to inspect

Chapter 6. Conclusion 40

the IR representation of each requested lambda, and assign an identifier based on the
computations it performs rather than anything manually supplied. This would allow
vertex re-use to be significantly broader and net decreased graph sizes and increased
performance, unfortunately this lay outside the scope of the project given the time
allocated, but is something to be explored in future work.

6.3 Future work

We consider some potential enhancements to the library that would improve its utility
and performance.

6.3.0.0.1 Coordinate transformations In order to increase the rate of convergence,
especially when doing multiple steps in time, tools such as Flow* use a technique of
coordinate transformations. As we typically consider Taylor models centred around the
origin (see Definition 2.1.1), we obtain significantly better convergence results when
we keep the domains ‘centered’ at the origin. This involves transforming the n-box
at each time-step to map to the unit interval [−1,1] per Taylor model via a process
called preconditioning [8, pp. 67–71]. We then track each of these transformations in
a single separate Taylor model, effectively resulting in two Taylor models where we
would otherwise have one.

Unfortunately, this proved to be outside the scope of this project, and as such the library
lacks the ability to converge as quickly as Flow*, see Section 5.1.4 for an example. This
would be an extremely useful addition to the project, as it would allow the library to
compete on the same models and output as Flow*.

6.3.0.0.2 Parallelism The same dependency information captured by the DG that we
utilise the obtain partial and lazy evaluation could be used to implement parallelism. As
we know which results rely on what, we could compute results that are not reliant on each
other in parallel, avoiding data-races that are common when parallelising interdependent
computations such as these. For example, we could compute the polynomial component
of a Taylor model multiplication in parallel with the interval components, the two
interval bounds of the polynomials and the interval product in parallel, only computing
the truncation error introduced after we have computed the polynomial portion. This is
an area that would again yield significant speed-ups, but lay outside the scope of the
project.

6.3.0.0.3 Hybrid systems Hybrid systems are those with both continuous and dis-
crete behaviour, and are often called ‘Cyber-physical systems’ [8]. For example, a
model of water flow through a channel could have the continuous behaviour of the rate
of water flow, and the discrete behaviour of whether or not a gate is shut constricting
the flow. Analysis of these systems presents significantly more of a challenge versus
their continuous counterparts, with which this paper was primarily focused. A potential
extension to the library would be the capability to handle such hybrid models, in effect
creating a like-for-like competitor to Flow*, utilising our approach to Taylor model
arithmetic.

Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ template metaprogramming: con-
cepts, tools, and techniques from Boost and beyond. The C++ in-depth series. 5.
print: Addison-Wesley, 2009. 373 pp. ISBN: 978-0-321-22725-6.

[2] Luis Benet et al. JuliaIntervals/TaylorModels.jl: v0.6.2. Version v0.6.2. 14th Apr.
2023. DOI: 10.5281/ZENODO.2613102. URL (visited on 18/10/2023).

[3] Martin Berz. ‘From Taylor series to Taylor models’. In: Beam stability and
nonlinear dynamics. Santa Barbara,California (USA), 1997, pp. 1–23. DOI: 10.
1063/1.53493. URL (visited on 18/10/2023).

[4] Martin Berz. ‘Modern Map Methods in Particle Beam Physics’. In: ().
[5] Martin Berz and Kyoko Makino. ‘Verified Integration of ODEs and Flows Using

Differential Algebraic Methods on High-Order Taylor Models’. In: Reliable
Computing 4.4 (1st Nov. 1998), pp. 361–369. ISSN: 1573-1340. DOI: 10.1023/A:
1024467732637. URL (visited on 18/10/2023).

[6] Jeff Bezanson et al. Julia: A Fast Dynamic Language for Technical Computing.
23rd Sept. 2012. DOI: 10.48550/arXiv.1209.5145. arXiv: 1209.5145[cs].
URL (visited on 18/10/2023).

[7] catchorg/Catch2. original-date: 2010-11-08T18:22:56Z. 7th Mar. 2024. URL

(visited on 07/03/2024).
[8] Xin Chen. ‘Reachability Analysis of Non-Linear Hybrid Systems Using Taylor

Models’. PhD thesis. RWTH Aachen, Mar. 2015.
[9] Xin Chen, Erika Abraham and Sriram Sankaranarayanan. ‘Taylor Model Flowpipe

Construction for Non-linear Hybrid Systems’. In: 2012 IEEE 33rd Real-Time
Systems Symposium. 2012 IEEE 33rd Real-Time Systems Symposium (RTSS).
San Juan, PR, USA: IEEE, Dec. 2012, pp. 183–192. ISBN: 978-1-4673-3098-5.
DOI: 10.1109/RTSS.2012.70. URL (visited on 18/06/2023).

[10] Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. Google-Books-ID: LvNQAAAAMAAJ. McGraw-Hill, 1955. 456 pp.
ISBN: 978-0-07-099256-6.

[11] Thomas H. Cormen, ed. Introduction to algorithms. 3rd ed. OCLC: ocn311310321.
Cambridge, Mass: MIT Press, 2009. 1292 pp. ISBN: 978-0-262-03384-8 978-0-
262-53305-8.

[12] Flow*: A Verification Tool for Cyber-Physical Systems. Flow*: A Verification
Tool for Cyber-Physical Systems. URL (visited on 06/03/2024).

[13] foonathan/lexy: C++ parsing DSL. URL (visited on 06/03/2024).
[14] Yoshihiko Futamura. ‘Partial Evaluation of Computation Process–An Approach

to a Compiler-Compiler’. In: Higher-Order and Symbolic Computation 12.4

41

https://doi.org/10.5281/ZENODO.2613102
https://zenodo.org/record/2613102
https://doi.org/10.1063/1.53493
https://doi.org/10.1063/1.53493
https://pubs.aip.org/aip/acp/article/405/1/1-23/690301
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.48550/arXiv.1209.5145
https://arxiv.org/abs/1209.5145 [cs]
http://arxiv.org/abs/1209.5145
https://github.com/catchorg/Catch2
https://doi.org/10.1109/RTSS.2012.70
http://ieeexplore.ieee.org/document/6424802/
https://flowstar.org/
https://github.com/foonathan/lexy?tab=readme-ov-file

BIBLIOGRAPHY 42

(1st Dec. 1999), pp. 381–391. ISSN: 1573-0557. DOI: 10.1023/A:1010095604496.
URL (visited on 18/10/2023).

[15] Wolfram Research Inc. Mathematica, Version 14.0. URL.
[16] Neil D. Jones. ‘An introduction to partial evaluation’. In: ACM Computing

Surveys 28.3 (Sept. 1996), pp. 480–503. ISSN: 0360-0300, 1557-7341. DOI:
10.1145/243439.243447. URL (visited on 23/03/2024).

[17] Kyoko Makino and Martin Berz. ‘TAYLOR MODELS AND OTHER VALID-
ATED FUNCTIONAL INCLUSION METHODS’. In: International Journal of
Pure and Applied Mathematics 4 (Jan. 2003), pp. 379–456.

[18] Nicholas D Matsakis and Felix S Klock II. ‘The rust language’. In: ACM SIGAda
ada letters. Vol. 34. Number: 3. ACM, 2014, pp. 103–104.

[19] Michael Monagan and Roman Pearce. ‘Sparse polynomial multiplication and
division in Maple 14’. In: ACM Communications in Computer Algebra 44.3
(28th Jan. 2011), pp. 205–209. ISSN: 1932-2240. DOI: 10.1145/1940475.
1940521. URL (visited on 24/01/2024).

[20] Nedialko S. Nedialkov and John D. Pryce. ‘Solving Differential-Algebraic Equa-
tions by Taylor Series (I): Computing Taylor Coefficients’. In: BIT Numerical
Mathematics 45.3 (Sept. 2005), pp. 561–591. ISSN: 0006-3835, 1572-9125. DOI:
10.1007/s10543-005-0019-y. URL (visited on 01/04/2024).

[21] Gregory Popovitch. greg7mdp/parallel-hashmap. original-date: 2019-03-02T13:55:44Z.
10th Mar. 2024. URL (visited on 11/03/2024).

[22] Python 3 vs C++ g++ - Which programs are fastest? URL (visited on 10/03/2024).
[23] Daniel S. Roche. ‘What Can (and Can’t) we Do with Sparse Polynomials?’

In: Proceedings of the 2018 ACM International Symposium on Symbolic and
Algebraic Computation. 11th July 2018, pp. 25–30. DOI: 10.1145/3208976.
3209027. arXiv: 1807.08289[cs]. URL (visited on 08/03/2024).

[24] Guido van Rossum and Fred L. Drake. The Python language reference. Release
3.0.1 [Repr.] Python documentation manual / Guido van Rossum; Fred L. Drake
[ed.] Pt. 2. Hampton, NH: Python Software Foundation, 2010. 109 pp. ISBN:
978-1-4414-1269-0.

[25] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. Google-Books-ID: gL34DwAAQBAJ. MIT Press, 20th Feb. 2004.
931 pp. ISBN: 978-0-262-22069-9.

[26] Rust vs C++ g++ - Which programs are fastest? URL (visited on 11/03/2024).
[27] Stack Overflow Developer Survey 2023. Stack Overflow. URL (visited on 19/10/2023).
[28] std::fegetround, std::fesetround - cppreference.com. URL (visited on 07/03/2024).
[29] Knut Sveidqvist and Contributors to Mermaid. Mermaid: Generate diagrams

from markdown-like text. original-date: 2014-11-01T23:52:32Z. Dec. 2014. URL

(visited on 07/03/2024).

https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://www.wolfram.com/mathematica
https://doi.org/10.1145/243439.243447
https://dl.acm.org/doi/10.1145/243439.243447
https://doi.org/10.1145/1940475.1940521
https://doi.org/10.1145/1940475.1940521
https://dl.acm.org/doi/10.1145/1940475.1940521
https://doi.org/10.1007/s10543-005-0019-y
http://link.springer.com/10.1007/s10543-005-0019-y
https://github.com/greg7mdp/parallel-hashmap
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html
https://doi.org/10.1145/3208976.3209027
https://doi.org/10.1145/3208976.3209027
https://arxiv.org/abs/1807.08289 [cs]
http://arxiv.org/abs/1807.08289
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-gpp.html
https://survey.stackoverflow.co/2023/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2023
https://en.cppreference.com/w/cpp/numeric/fenv/feround
https://github.com/mermaid-js/mermaid

Appendix A

Additional figures

-2 2 4
x

-1

1

2

3

y

-2 2 4
x

-1

1

2

3

y

-2 2 4
x

-1

1

2

3

y

-2 2 4
x

-1

1

2

3

y

Figure A.1: Initial interval box and over-approximation boxes for the Lotka-Volterra
equations at t = 0.4,0.5,0.6,0.7, with some boundary points mapped from the input
space mapped to the output space. Elaborated on in Section 5.1.4

43

Appendix B

Code listings

Listing B.1: Benchmarking code used to produce the results in Table 5.2
1 # include "util.hpp"
2 # include <catch2/benchmark/catch_benchmark_all.hpp>
3 # include <catch2/catch_test_macros.hpp>
4 # include <taylorflow.hpp>
5

6 using namespace tf;
7 using namespace std;
8

9 TEST_CASE("Partial evaluation of picard iteration", "[partial-picard]") {
10 auto g = context::get_instance().get_graph();
11 multivariate::add_variable(vector<string>{"x", "s", "t", "I0"});
12 const int k = 10;
13 const double tol = 1e-10;
14 {
15

16 auto ode = multivariate("1 + x^2");
17 auto x0 = interval(0, 1. / 5);
18 auto g_i = multivariate(x0);
19 auto t = interval(0, 1. / 10);
20 BENCHMARK("Typical picard-iteration") {
21 for (int i = 0; i < k; i++) {
22 g_i = (ode.evaluate("x", g_i).integrate("s", "0", "t"))
23 .discard_high_exponents(k) +
24 x0;
25 }
26 auto i0 = interval(-1, 1);
27 auto i0_next = i0;
28 do {
29 i0 = i0_next;
30

31 auto new_terms =
32 ode.evaluate("x", g_i + "I0").integrate("s", "0", "t") - g_i;
33 i0_next = new_terms
34 .evaluate(map<string, interval>{
35 {"x", x0}, {"t", t}, {"I0", i0}})
36 .constant_term();
37 } while (max(abs(i0.lower() - i0_next.lower()),

44

Appendix B. Code listings 45

38 abs(i0.upper() - i0_next.upper())) > tol);
39 return make_pair(g_i, i0);
40 };
41 }
42 {
43 auto ode = N(multivariate("1 + x^2"), g);
44 auto x0 = N(interval(0, 1. / 5), g);
45 auto g_i = L(multivariate(x0()), g, x0);
46 const auto t = interval(0, 1. / 10);
47

48 BENCHMARK("Partial picard iteration") {
49

50 for (int i = 0; i < k; i++) {
51 g_i = L(ode().evaluate("x", g_i()), g, g_i);
52 g_i = L(g_i().integrate("s", "0", t), g, g_i);
53 g_i = L((g_i() + x0()).discard_high_exponents(k), g, g_i, x0);
54 }
55 auto i0 = N(interval(-1, 1), g);
56 auto i0_next = i0;
57

58 do {
59 i0 = i0_next;
60 auto new_terms = L(
61 ode().evaluate("x", g_i() + "I0").integrate("s", "0", "t") -

g_i(),↪→

62 g, g_i, ode);
63 i0_next = L(new_terms()
64 .evaluate(map<string, interval>{
65 {"x", x0()}, {"t", t}, {"I0", i0()}})
66 .constant_term(),
67 g, new_terms, x0, i0);
68 } while (max(abs(i0().lower() - i0_next().lower()),
69 abs(i0().upper() - i0_next().upper())) > tol);
70 return make_pair(g_i(), i0());
71 };
72 }
73 }

Listing B.2: Benchmarking code used to produce the results in Table 5.2
1 TEST_CASE("Full vs. partial re-evaluation benchmark", "[partial-eval]") {
2 multivariate::add_variable(vector<string>{"x", "y"});
3 SETUP_GRAPH(g)
4

5 {
6 auto p = N(multivariate("1 + x^2"), g);
7 auto q = N(multivariate("1 + y^2"), g);
8 auto i = N(interval(-1, 1), g);
9 auto r = L(p() + q(), g, p, q);

10 r = L(r() + i(), g, r, i);
11 BENCHMARK("Partial re-evaluation") {
12 i = interval(-1, 1);
13 r();
14 i = interval(-17, 70);
15 r();
16 };
17 }

Appendix B. Code listings 46

18 {
19 auto p = multivariate("1 + x^2");
20 auto q = multivariate("1 + y^2");
21 auto i = interval(-1, 1);
22 multivariate r;
23 BENCHMARK("Full re-evaluation") {
24 r = p + q;
25 r = r + i;
26

27 i = interval(-17, 70);
28 r = p + q;
29 r = r + i;
30 };
31 }
32 }

Listing B.3: Example code used to compute a single time-step of the Lotka-Volterra
equations, see Figure 5.1 and surrounding discussion

1 # include "context.hpp"
2 # include "interval.hpp"
3 # include "multivariate.hpp"
4 # include "taylormodel.hpp"
5 # include <catch2/catch_test_macros.hpp>
6 # include <map>
7 # include <taylorflow.hpp>
8

9 using namespace tf;
10 using namespace std;
11

12 TEST_CASE("Lokka-volterra equations", "[lotka-volterra]") {
13 multivariate::add_variable(vector<string>{"x", "y", "s", "t"});
14 context::get_instance().add_tm_domain("x", interval(0, 1));
15 context::get_instance().add_tm_domain("y", interval(0, 2));
16 context::get_instance().add_tm_domain("s", interval(0.2, 0.2));
17 context::get_instance().add_tm_domain("t", interval(0.2, 0.2));
18

19 const int k = 5;
20

21 auto g_unique = graph::new_unique();
22 auto g = g_unique.get();
23

24 auto x = N(interval(0, 1), g);
25 auto y = N(interval(0, 2), g);
26 auto x_tm = taylormodel(x, g);
27 auto y_tm = taylormodel(y, g);
28

29 taylormodel gx(multivariate(x()), g);
30 taylormodel gy(multivariate(y()), g);
31

32 for (int i = 0; i < k; i++) {
33 auto gx_subst = 2 * gy - gx * gy;
34 auto gy_subst = 0.5 * gx * gy - gy;
35 auto gx_int = x_tm + gx_subst.integrate("s", "0", "t");
36 auto gy_int = y_tm + gy_subst.integrate("s", "0", "t");
37 auto gx_lowered = gx_int.lower_to_order(k);

Appendix B. Code listings 47

38 auto gy_lowered = gy_int.lower_to_order(k);
39

40 gx = gx_lowered;
41 gy = gy_lowered;
42 }
43 gx.I = interval(-5, 5);
44 gy.I = interval(-5, 5);
45 auto n_calcs = context::get_instance().get_calculations();
46 for (int i = 0; i < 10; i++) {
47 auto gx_subst = 2 * gy - gx * gy;
48 auto gy_subst = 0.5 * gx * gy - gy;
49 auto gx_int = x_tm + gx_subst.integrate("s", "0", "t");
50 auto gy_int = y_tm + gy_subst.integrate("s", "0", "t");
51 auto gx_lowered = gx_int.lower_to_order(k);
52 auto gy_lowered = gy_int.lower_to_order(k);
53 gx = gx_lowered;
54 gy = gy_lowered;
55 }
56 }

Listing B.4: Partial Taylor model multiplication benchmarking code, used to produce the
results in Table 5.4

1 # include <catch2/benchmark/catch_benchmark_all.hpp>
2 # include <catch2/catch_test_macros.hpp>
3 # include <catch2/generators/catch_generators_all.hpp>
4 # include <string>
5 # include <taylorflow.hpp>
6

7 using namespace tf;
8 using namespace std;
9

10 TEST_CASE("Partial-only TM multiplication benchmark",
11 "[partial-only-benchmark]") {
12 multivariate::add_variable(vector<string>{"x", "y"});
13 context::get_instance().add_tm_domain("x", interval(0, 1));
14 context::get_instance().add_tm_domain("y", interval(0, 1));
15

16 auto g = context::get_instance().get_graph();
17

18 const int k = 5;
19 const string x_str = "1 + x^2 + 3*x^4 + -7*x^5 + 1475*x^6*y^2 + 3*x^7*y^3";
20 const string y_str = "71 + -3*y^2 + 2*y^3 + 5*y^4 + -7*y^5 + 11*y^6 +

13*y^7";↪→

21

22 auto x = taylormodel(multivariate(x_str), interval(-1, 1), g);
23 auto y = taylormodel(multivariate(y_str), interval(-1. / 2, 1. / 2), g);
24 auto z = x * y;
25 volatile auto z_p = z.p(); // force initial eval
26 volatile auto z_i = z.I(); // force initial eval
27 BENCHMARK("Partial TM multiplication, interval changed, polynomial only") {
28 // generate a random new interval for x
29 auto l = GENERATE(take(1, random(-10, 10)));
30 auto u = GENERATE(take(1, random(-10, 10)));
31 x.I = interval(l, u);
32 return z.p();

Appendix B. Code listings 48

33 };
34 BENCHMARK("Partial TM multiplication, interval changed, interval only") {
35 // generate a random new interval for x
36 auto l = GENERATE(take(1, random(-10, 10)));
37 auto u = GENERATE(take(1, random(-10, 10)));
38 x.I = interval(l, u);
39 return z.I();
40 };
41

42 auto x_p = multivariate(x_str);
43 auto y_p = multivariate(y_str);
44 auto x_i = interval(-1, 1);
45 auto y_i = interval(-1. / 2, 1. / 2);
46 BENCHMARK("Eager TM multiplication") {
47 auto l = GENERATE(take(1, random(-10, 10)));
48 auto u = GENERATE(take(1, random(-10, 10)));
49 x_i = interval(l, u);
50

51 auto z_p_non_trunc = x_p * y_p;
52 auto [z_p, z_p_rem] = z_p_non_trunc.split(k);
53 auto z_i =
54 x_i * y_i +
55 x_p.evaluate(context::get_instance().get_tm_domain()).constant_term()

*↪→

56 y_i +
57 y_p.evaluate(context::get_instance().get_tm_domain()).constant_term()

*↪→

58 x_i +
59 z_p_rem.evaluate(context::get_instance().get_tm_domain())
60 .constant_term();
61 return make_pair(z_p, z_i);
62 };
63 }

Listing B.5: Lazy Taylor model multiplication benchmarking code, used to produce the
results in Table 5.3

1 # include <catch2/benchmark/catch_benchmark_all.hpp>
2 # include <catch2/catch_test_macros.hpp>
3 # include <string>
4 # include <taylorflow.hpp>
5

6 using namespace tf;
7 using namespace std;
8

9 TEST_CASE("Lazy-only TM multiplication benchmark", "[lazy-only-benchmark]") {
10 multivariate::add_variable(vector<string>{"x", "y"});
11 context::get_instance().add_tm_domain("x", interval(0, 1));
12 context::get_instance().add_tm_domain("y", interval(0, 1));
13

14 auto g = context::get_instance().get_graph();
15

16 const int k = 5;
17 const string x_str = "1 + x^2 + 3*x^4 + -7*x^5 + 1475*x^6*y^2 + 3*x^7*y^3";
18 const string y_str = "71 + -3*y^2 + 2*y^3 + 5*y^4 + -7*y^5 + 11*y^6 +

13*y^7";↪→

Appendix B. Code listings 49

19

20 auto x = taylormodel(multivariate(x_str), interval(-1, 1), g);
21 auto y = taylormodel(multivariate(y_str), interval(-1. / 2, 1. / 2), g);
22 BENCHMARK("Lazy TM multiplication, polynomial only") {
23 auto z = x * y;
24 return z.p();
25 };
26 BENCHMARK("Lazy TM multiplication, interval only") {
27 auto z = x * y;
28 return z.I();
29 };
30

31 auto x_p = multivariate(x_str);
32 auto y_p = multivariate(y_str);
33 auto x_i = interval(-1, 1);
34 auto y_i = interval(-1. / 2, 1. / 2);
35 BENCHMARK("Eager TM multiplication") {
36 auto z_p_non_trunc = x_p * y_p;
37 auto [z_p, z_p_rem] = z_p_non_trunc.split(k);
38 auto z_i =
39 x_i * y_i +
40 x_p.evaluate(context::get_instance().get_tm_domain()).constant_term()

*↪→

41 y_i +
42 y_p.evaluate(context::get_instance().get_tm_domain()).constant_term()

*↪→

43 x_i +
44 z_p_rem.evaluate(context::get_instance().get_tm_domain())
45 .constant_term();
46 return make_pair(z_p, z_i);
47 };
48 }

50

Appendix C. UML Diagram 51

Appendix C

UML Diagram

Figure C.1: UML diagram for TaylorFlow, listing all main classes, their relations, and their
methods. Underlines indicate static items, pluses public items, minuses private ones,
and italics virtual ones. Arrows indicate inheritance.

	1 Introduction
	1.1 Taylor models
	1.2 Optimisations
	1.3 Project goals
	1.4 Contributions
	1.5 Outline

	2 Background & motivation
	2.1 Taylor models
	2.1.1 What is a Taylor model?
	2.1.2 Picard iteration
	2.1.3 Flowpipes

	2.2 Optimisation techniques
	2.2.1 Lazy evaluation
	2.2.2 Memoisation and Partial evaluation

	2.3 Existing work
	2.3.1 Flow*
	2.3.2 TaylorModel.jl

	3 Design
	3.1 Dependency graph
	3.1.1 Lazy evaluation
	3.1.2 Partial evaluation
	3.1.3 Worked Taylor model multiplication example

	3.2 Data structures
	3.2.1 Polynomials
	3.2.2 Intervals
	3.2.3 Taylor models

	4 Implementation
	4.1 Choice of language
	4.2 Data structures
	4.2.1 Intervals
	4.2.2 Dense univariate polynomials
	4.2.3 Sparse Polynomials

	4.3 Dependency graph management
	4.3.1 Vertices
	4.3.2 Graph
	4.3.3 Wrappers
	4.3.4 Taylor models

	4.4 Testing

	5 Evaluation
	5.1 Project goals revisited
	5.1.1 Optimisations
	5.1.2 User experience
	5.1.3 Data representations
	5.1.4 Application to Lotka-Volterra

	6 Conclusion
	6.1 Final remarks
	6.2 Limitations
	6.2.1 Optimisation transparency
	6.2.2 Automatic vertex-reuse

	6.3 Future work

	Bibliography
	A Additional figures
	B Code listings
	C UML Diagram

