
Leveraging Large Language Models for
Vulnerability Classification

Steven Slater
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
Classifying customers as vulnerable is an inherently complex task that presents many
exceptions and conditions for classification and demands common-sense reasoning.
Typically, to address these tasks, when labelled data is available, smaller LLMs are
fine-tuned on this data, but this does not fully leverage the robust reasoning capabilities
of LLMs. Prompting has also been used with LLMs but struggles to improve over
fine-tuned models.

This thesis investigates the potential of using GPT-4, without extensive training data, to
surpass a fine-tuned RoBERTa model on labelled data in vulnerability classification,
aiming to enable the creation of future models that can achieve reliable performance with
minimal training data. We look to two new methods, Chain of Thought Prompting and
Prompt Optimisation, as recent methods of improving LLMs performance to enhance
GPT-4’s capabilities.

We explore Chain of Thought Prompting’s application to complex common-sense rea-
soning tasks and conduct novel research into how varying example types can enhance
the technique’s performance, looking at the effect of vulnerable vs non-vulnerable ex-
amples and guideline vs misclassified examples. For Prompt Optimisation, we propose
EdiPrompt, a new framework that builds upon EvoPrompt’s (Guo et al. 2023) use of
Genetic Algorithms in Prompt Optimisation by harnessing the In-Context Learning
abilities of LLMs.

We find that direct examples are more effective than the detailed explanations provided
by Chain of Thought Prompting for tasks demanding complex common-sense reasoning,
and demonstrate that the variability introduced by Genetic Algorithms in EdiPrompt
leads to convincing performance improvements over Google DeepMind’s OPRO frame-
work. Furthermore, we illustrate that when labelled data is scarce, GPT-4 with effective
Prompt Optimisation is a viable solution for complex classification tasks, achieving
an F-1 score just 4.7% below that of our fine-tuned RoBERTa model. However, when
labelled data is available, fine-tuning remains the optimal approach.

i

Research Ethics Approval
This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 331851
Date when approval was obtained: 2023-11-09

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Steven Slater)

ii

Acknowledgements
I would first like to thank my supervisor, Alexandra Birch-Mayne, as without her
guidance and support I would not have been able to do this. I would also like to thank
Iria del Rı́o for her help throughout.

Thank you to my family and friends who listened to me chat nonstop about nothing but
prompts for the past year, but gave constant support nonetheless.

Finally, to my girlfriend Emily who now understands that RoBERTa is not in fact a
woman, but instead a Large Language Model.

iii

Table of Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 2

2 Background & Literature Review 3
2.1 Deep Learning Based Text Classification 3
2.2 Large Language Models . 4
2.3 In-Context Learning . 4

2.3.1 Chain-of-Thought Prompting 5
2.4 Prompt Optimisation . 6

2.4.1 Genetic Algorithms in Prompt Optimisation 7

3 Methodology 8
3.1 Definitions . 8
3.2 Data . 9

3.2.1 FCA Guidelines . 9
3.2.2 Aveni Vulnerability Dataset 10

3.3 Meta-prompt Design . 11
3.4 Experimental Metrics . 12

3.4.1 F-1 Score . 12
3.4.2 Self-BLEU . 13

3.5 Processing GPT-4 Responses . 13
3.6 Chain of Thought Prompting . 14

3.6.1 Chain of Thought Prompting Strategies 14
3.6.2 Chain of Thought Explanations 15
3.6.3 Chain of Thought Dataset 16
3.6.4 Chain of Thought Prompting Experimental Approach 17

3.7 Prompt Optimisation . 17
3.7.1 EdiPrompt . 18

3.8 Combining Prompt Optimisation & Chain of Thought Prompting . . . 23
3.9 Baselines . 23

3.9.1 Keyword Baseline . 23
3.9.2 RoBERTa Baseline . 24
3.9.3 Zero-Shot and Few-Shot Learning 26
3.9.4 Chain of Thought Baseline 27

iv

3.9.5 Prompt Optimisation Baseline 28
3.10 Budget . 29

4 Results & Discussion 30
4.1 Zero-Shot and Few-Shot Learning Results 30
4.2 Chain of Thought Prompting Results 31
4.3 Prompt Optimisation Results . 34
4.4 Chain of Thought Prompting & Prompt Optimisation Results 37

5 Conclusions & Further Research 39
5.1 Further Research . 40

A Meta Prompts 44
A.1 Zero-Shot and Few-Shot Learning Meta-Prompts 44
A.2 Chain of Thought Prompting Meta-Prompts 45
A.3 Prompt Optimisation - OPRO Meta-Prompts 46
A.4 Prompt Optimisation - EdiPrompt Meta-Prompts 47

B Full Prompt Optimisation Prompts 51

C Vulnerability Framework 61

v

Chapter 1

Introduction

Large Language Models (LLMs) like OpenAI’s GPT series, have significantly impacted
various fields with their ability to generate contextually relevant responses. However,
the effectiveness of these models in specific Natural Language Processing (NLP) tasks
continues to be a subject of exploration. The quality of the responses provided by
these models often relies on the input prompt’s quality (P. Liu et al. 2023), leading to
the development of “Prompt Engineering,” a field focused on the careful and strategic
crafting of prompts in order to optimise the model’s output (White et al. 2023).

Furthermore, the financial services industry faces challenges in identifying and assisting
vulnerable customers. The Financial Conduct Authority (FCA) has criticised the
industry’s efforts and introduced new consumer duty regulations to ensure better care
for this demographic, highlighting the need for improved detection measures. As a
result of this motivation, this thesis, conducted in collaboration with Aveni Labs, aims to
leverage the capabilities of OpenAI’s latest model, GPT-4, for enhancing vulnerability
detection. The goal is to evaluate whether GPT-4, a large general-purpose model,
can outperform the fine-tuned but smaller, state-of-the-art RoBERTa model in binary
vulnerability classification on phone call transcriptions between customers and financial
advisors.

To achieve this goal, we leverage two new research areas, Chain of Thought Prompt-
ing and Prompt Optimisation, to assess their ability to enhance GPT-4’s vulnerability
classification performance. We are motivated by prior research showing that Chain of
Thought Prompting boosts LLMs performance in logical reasoning tasks (Suzgun et al.
2022, Jason Wei et al. 2022) and previous research demonstrating that using LLMs
to optimise prompts significantly outperforms human-generated prompts (Zhou et al.
2023, Yang et al. 2023, Pryzant et al. 2023). We explore Chain of Thought Prompting’s
applicability to complex common-sense reasoning domains like vulnerability classifica-
tion and conduct new research that explores various strategies to identify the types of
examples that can improve the technique’s effectiveness. For Prompt Optimisation, we
propose a novel framework, named EdiPrompt, that builds upon EvoPrompt’s (Guo et al.
2023) pioneering use of Genetic Algorithms in Prompt Optimisation with stronger se-
lection and combination stages alongside meta-prompts that fully utilise the In-Context
Learning abilities of LLMs.

1

Chapter 1. Introduction 2

1.1 Research Questions

We now define the research questions that this thesis aims to answer.

• How effectively do Chain of Thought Prompting and Prompt Optimisation
enhance GPT-4’s performance compared to fine-tuning smaller models like
RoBERTa on labelled data, for real-world complex classification tasks requiring
specifications and common-sense reasoning, such as vulnerability classification?

• Which Chain of Thought Prompting strategies, including the use of positive
versus negative cases of vulnerability and examples from FCA guidelines versus
previously misclassified real conversations, yield the best performance in GPT-4’s
vulnerability classification?

• Can Genetic Algorithms be effectively applied within the new EdiPrompt frame-
work to produce prompts that are higher performing and more diverse compared
to the baseline established by Google DeepMind’s OPRO framework?

• Can we naively combine Prompt Optimisation and Chain of Thought Prompting
to leverage GPT-4 as a vulnerability classifier and surpass RoBERTa?

We address these research questions by conducting experiments that query GPT-4
through the OpenAI API with tailored meta-prompts, utilising the Aveni dataset of
customer call transcripts, and repeating key experiments three times for robustness. All
code can be found here.

1.2 Contributions

• Fine-tuned a high-performing RoBERTa model for the upper baseline on our
conversation data.

• Designed a dataset of 100 hand-crafted Chain of Thought examples to use in
experimentation.

• Conducted thorough research and testing on existing Prompt Optimisation frame-
works to identify shortcomings, inspiring the creation of our new framework,
EdiPrompt.

• We demonstrate that the extra variability introduced by Genetic Algorithms
in EdiPrompt leads to convincing performance improvements over our OPRO
baseline.

• We conducted an in-depth analysis of Chain of Thought Prompting and showed
that strictly using negative examples of vulnerability is the optimal strategy, and
for intricate common-sense reasoning tasks, examples outperform explanations.

• We establish that for complex classification tasks like vulnerability detection,
fine-tuning a model with labeled data is most effective. However, in the absence
of labelled data, GPT-4 with Prompt Optimisation offers a viable solution.

https://github.com/stevoslates/LeveragingLLMforVulnDetection

Chapter 2

Background & Literature Review

2.1 Deep Learning Based Text Classification

Text classification is the process of assigning pre-defined labels to text and traditionally
relied on Machine Learning methods such as Support Vector Machines (SVM) or
Random Forests. However, the effectiveness of these techniques is largely restricted by
feature extraction (Qiu et al. 2020, Li et al. 2021). Feature extraction is the process of
selecting key attributes or characteristics of data, such as selecting sentiment-indicative
words in sentiment analysis (Shah and Patel 2016). Deep Learning models are a
significant advancement from traditional Machine Learning models as they integrate
the feature engineering process into the model itself, significantly reducing the need
for human intervention and enhancing model effectiveness (Alzubaidi et al. 2021).
Deep Learning models consist of structures called neural networks, which work by
processing data through multiple layers of interconnected nodes or “neurons”, adjusting
their internal parameters in response to the input data to make accurate predictions or
classifications.

An extensive survey evaluated over 150 deep learning models, highlighting the per-
formance levels these models can achieve (Minaee et al. 2021). A standout finding
from this survey was the BERT (Devlin et al. 2019) model developed by Google, which
achieved an impressive accuracy of 99.32% in classifying topics from the Wikipedia
dataset. OpenAI achieved state-of-the-art performance on detecting undesired content
with their GPT model, as they combined many advanced topics such as Domain Ad-
versarial Training, a method that trains a model to not differentiate between different
types of data, overcoming the challenge of adapting to new domains (Markov et al.
2023). Similar work was also carried out in classifying hate speech, where BERT
achieved 75.5% accuracy on the task (Röttger et al. 2021). Prior research shows that
deep learning models excel at text classification. This thesis aims to evaluate GPT-4, the
latest Generative Pre-trained LLM from OpenAI, at classifying vulnerable customers
from phone call transcripts.

3

Chapter 2. Background & Literature Review 4

2.2 Large Language Models

Large Language Models (LLMs) are a type of deep learning model. They utilise a
transformer architecture (Radford and Narasimhan 2018), which has revolutionised
NLP and is the backbone of many state-of-the-art NLP models. A transformer model is
similar to a neural model. However, they also use an attention mechanism (Vaswani
et al. 2017), allowing the model to weigh the relevance of parts of an input sequence.
This enables the models to capture contextual relationships and recognise long-range
dependencies better than conventional neural models (Vaswani et al. 2017). GPT is
short for Generative Pre-trained Transformer and was developed by OpenAI (Radford,
Narasimhan, et al. 2018). It was the first of a new breed of models dubbed Generative
Pre-trained Language Models. The ‘Pre-trained’ means it has been pre-trained on a
large corpus of data. The ‘Generative’ part refers to the model’s capability to generate
new text sequences based on the input it receives.

In this thesis, we will be using GPT-4 (OpenAI 2023) in all experiments to classify
vulnerable customers. GPT-4 is the most recent and advanced model from OpenAI, and
the main difference between it and its predecessors is its scale. The exact number of
parameters in GPT-4 was not initially disclosed, but it is understood to be significantly
larger than its predecessor GPT-3 with 175 billion parameters. GPT-4 has also incor-
porated more data into its pre-training, giving it a broader understanding of language
and knowledge. Released in 2019, RoBERTa (Y. Liu et al. 2019) is an extension of
Google’s original transformer BERT (Devlin et al. 2019). RoBERTa improves on BERT
by making significant modifications to the original training approach, as it was found
that BERT was severely undertrained (Y. Liu et al. 2019). RoBERTa has outperformed
BERT on several NLP tasks and achieved state-of-the-art text classification performance
(Y. Liu et al. 2019).

The main differences between RoBERTa and GPT-4 can be characterised by two fac-
tors: directionality and their generative nature. Roberta processes text bi-directionally,
simultaneously considering context from left to right and right to left to enhance lan-
guage understanding for tasks like classification. GPT-4 generates text, predicting each
subsequent word based on the previous ones to create coherent, contextually relevant
responses across various topics and styles. These differences serve as a compelling
motivation for this thesis, as we seek to assess if we can leverage GPT-4, which exists
as a general model, using limited labelled data, to surpass a fine-tuned RoBERTa model
on labelled data in the domain of vulnerability classification. We aim to enhance GPT-4
by leveraging its In-Context Learning ability.

2.3 In-Context Learning

LLMs, such as GPT-4, are task-agnostic, which means that they are not explicitly
trained or fine-tuned for any downstream tasks, they exist as general models (Radford,
Narasimhan, et al. 2018). In contrast, RoBERTa is usually fine-tuned and specialised to
specific tasks (Y. Liu et al. 2019). As a result of GPT-4’s nature, there is a paradigm
called In-Context Learning (ICL). The term “In-Context Learning” describes a model’s
capacity to carry out tasks or comprehend instructions based on examples or context

Chapter 2. Background & Literature Review 5

given directly within the input prompt without the need for explicit retraining or fine-
tuning on task-specific data (Dong et al. 2023). This method makes use of the vast
amount of information and patterns the model has picked up during its initial pre-
training, allowing it to adjust to new tasks or obey commands depending on the prompt’s
context. A prompt can be described as: “text fragments that are passed into language
models that can encourage certain behaviours” (Brown et al. 2020).

Previous work in ICL has shown substantial gains, such as GPT-3 achieving a state-of-
the-art F-1 score of 85.0% on the question-answering dataset, TriviaQA, when provided
with examples in-context (Brown et al. 2020). Other research has also found that types
of examples used in-context can produce varied effects, such as supplying examples
the model has previously misclassified resulting in improved performance (Gao et al.
2023). On the other hand, Few-Shot Learning (FSL) is a broader term used in Machine
Learning. FSL is a technique that aims to train models on a minimal amount of labelled
data (Wang et al. 2020) We can think of ICL as a subset of FSL that specifically applies
to LLMs, leveraging the examples provided within the prompt supplied to these models.
In this thesis, when we mention FSL, we are describing the process of only supplying
examples and their corresponding true label to the LLM (answer-only), we use this as a
baseline.

ICL has created a new field, named “Prompt Engineering”, as prompts allow for a
more nuanced interaction with the model, they allow us to contextualise examples,
specify desired outputs and even influence the style of response from the LLM. Prompt
Engineering is defined as the process of designing prompts that clearly and effectively
communicate the task to the model (White et al. 2023). Prompt Engineering has created
many new prompting techniques, in this thesis, we investigate the new Chain of Thought
Prompting technique (Jason Wei et al. 2022), with the aim of utilising it to enhance
GPT-4 as a classifier on vulnerable customers.

2.3.1 Chain-of-Thought Prompting

A Chain of Thought (CoT) is a series of intermediate natural language reasoning steps
that lead to the final output (Jason Wei et al. 2022). CoT Prompting uses this as a
prompting method, where we show the LLM our reasoning process behind an answer by
breaking down examples into a step-by-step process that leads to the final answer. This
method encourages the model to emulate similar reasoning patterns, thereby enhancing
its ability to generate more accurate and contextually relevant responses (Jason Wei
et al. 2022). It is also believed that another reason CoT Prompting shows performance
benefits is that such prompts allow the model to access the relevant information used in
pre-training (Jason Wei et al. 2022).

Early works of CoT Prompting (Nye et al. 2021, Jason Wei et al. 2022) used In-Context
Learning to get LLMs to display their work for mathematical problems. Utilising just
eight CoT examples with PaLM 540B led to state-of-the-art accuracy on the GSM8K
benchmark, a dataset of math word problems (Jason Wei et al. 2022). CoT Prompting
was also used against 23 Big Bench Hard (BBH) tasks, which are tasks that human
annotators outperformed language models on. When using CoT Prompting, the paper
found significant gains over standard answer-only prompting. Specifically, for the Codex

Chapter 2. Background & Literature Review 6

model, CoT Prompting improved the performance from outperforming the average
human-rater baseline on only 5 out of 23 tasks (for answer-only prompting) to 17 out of
23 tasks (for CoT Prompting)(Suzgun et al. 2022).

Although possessing strong results, all of these papers display a lack of in-depth
research into the optimal design or structure of CoT prompts, and as a result may
overlook potential performance enhancements. Furthermore, the CoT Prompting papers
discussed (Jason Wei et al. 2022, Suzgun et al. 2022, Nye et al. 2021), all apply CoT
Prompting to mathematical or logical reasoning problems, suggesting a narrow range
of problem domains. This motivates our research into CoT Prompting, as we seek
to explore whether its proven effectiveness extends beyond logical reasoning tasks to
new areas like vulnerability classification, a task requiring complex common-sense
reasoning to understand nuanced exceptions and conditions for classification.

2.4 Prompt Optimisation

Prompt Optimisation (PO) refers to the process of modifying or refining input prompts
in order to obtain specific desired outputs or replies from the model. The primary goal of
PO is to improve the model’s performance and ensure that it generates accurate, relevant,
and contextually appropriate responses. LLMs have been shown to be sensitive to the
formatting of the prompts provided to them (Zhao et al. 2021, Jerry Wei et al. 2023).
In addition to this, semantically similar prompts can produce an array of strikingly
different results (Kojima et al. 2022). As a result of these findings, it makes the need to
optimise our prompts a necessity.

Previous work in PO has explored using “soft prompts” where the prompt is represented
as a task-specific continuous vector, meaning that the prompt is not fixed or discrete
but instead can change based on examples and data. This work found significant
performance increases compared to few-shot prompt design on GPT-3. (Lester, Al-
Rfou, and Constant 2021, Shin et al. 2020). Despite these compelling results, the
applicability of these methods is infeasible when we only have API access to the LLM
(Yang et al. 2023). This results in this thesis using GPT-4 itself as an optimiser to find
the best prompts for enhancing vulnerability classification performance.

Previous research has shown that using LLMs as optimisers can produce strong results.
Google DeepMind developed a framework called OPRO (Optimisation by PROmpting).
This framework iteratively refines prompts by testing newly generated prompts from the
LLM on a fitness function and uses the result to improve future iterations. OPRO adds
instruction-score pairs to the meta-prompt to help guide the model to generate better
prompts in future iterations (Yang et al. 2023). OPRO showed strong improvements
by outperforming human-generated prompts on Big-Bench Hard tasks by up to 50%.
However, its limitations include generating only one prompt per iteration and not
exploring variations of the prompt. OPRO also lacks guidance in its meta-prompts as it
does not explicitly instruct the model to use the strong or diverse language within its
highest instruction-score pairs. OPRO is used as a baseline in this thesis.

The Automatic Prompt Engineer (APE) framework (Zhou et al. 2023) optimises prompts
by generating semantically similar variants of prompts and outperformed human-

Chapter 2. Background & Literature Review 7

generated prompts on 19 out of 24 of its NLP tasks. However, APE can be seen
to be overlooking the creative capacity of LLMs by not generating entirely new prompts.
Automatic Prompt Optimisation (APO) (Pryzant et al. 2023) saw boosts in prompt
effectiveness by up to 31% over human efforts by seeking LLM feedback for refinement.
However, it does not fully tap into the LLM’s prompt creation capability. It is clear that
PO is powerful and massively improves upon human-generated prompts, motivating its
use in this research to enhance GPT-4 as a vulnerability classifier whilst also suggesting
there is room for improvement upon currently available frameworks.

2.4.1 Genetic Algorithms in Prompt Optimisation

Genetic Algorithms (GAs) are algorithms inspired by evolution and have become a
common method for solving optimisation problems since their creation in the 1960s
(Mitchell 1998). GAs operate through selection, crossover, and mutation stages: se-
lecting strong solutions, combining them, and then introducing random mutations to
expand the search space and evolve solutions. GAs enhance variability by generating
diverse solutions and exploring many possibilities through solution combinations and
mutations (Mitchell 1998). EvoPrompt (Guo et al. 2023), the first to incorporate GAs
into PO, achieved a 25% performance increase over human-generated prompts but left
a lot of room for improvement in its approach.

EvoPrompt inadequately adapts GAs to leverage the creative capabilities and ICL
potential of LLMs. EvoPrompt does not use any examples in its meta-prompts, such as
instruction-score pairs (as adopted by OPRO) of previously high-performing prompts,
when carrying out Prompt Optimisation. This neglects the LLM’s ICL ability and gives
the LLM no guidance when combining or mutating prompts, allowing for the language
being combined or injected into the prompts to be sub-optimal. Additionally, EvoPrompt
lacks clear task instructions, such as problem examples, leaving the LLM without a
clear understanding of the task it is optimising, these critiques are also mentioned in
OPRO’s original paper (Yang et al. 2023).

A further drawback of EvoPrompt comes from its traditional usage of roulette wheel
selection (Lipowski and Lipowska 2012). This selection method, common in GAs,
means that the chance of a prompt being selected depends on its fitness score relative to
the rest of the population; the higher the score, the higher the chance of being selected.
However, it is still a random selection phase that permits low-performing prompts
to be selected. This selection strategy does not guarantee that either of the prompts
being combined are well-performing. EvoPrompt also heavily relies on good-quality
and task-specific initial prompts to optimise from, as it does not provide any iterative
updates to the LLM. It begins from a large domain of candidate prompts and evolves
from this initial set.

We can confirm that these drawbacks limit EvoPrompt’s efficacy, as in OPRO’s original
paper (Yang et al. 2023), it compares itself to EvoPrompt and shows that it convincingly
outperforms it on two math-word datasets. These drawbacks highlight the need for
a new Prompt Optimisation framework that better utilises the variability of Genetic
Algorithms while fully leveraging the abilities of LLMs.

Chapter 3

Methodology

In this chapter, we develop our methodology, which is focused on two complimen-
tary areas of research: Chain of Thought (CoT) Prompting and Prompt Optimisation.
Our research is motivated by the goal of leveraging these techniques to enhance the
performance of GPT-4 as a vulnerability classifier.

As a reminder, we research CoT Prompting as it has shown to significantly improve
LLMs performance in logical reasoning tasks (Suzgun et al. 2022, Jason Wei et al.
2022, Nye et al. 2021). We aim to explore if this technique can also enhance GPT-
4’s performance in different domains, such as vulnerability classification, a task that
requires complex common-sense reasoning to understand the many nuanced exceptions
and conditions for classification. This chapter outlines our methodology for CoT
Prompting, exploring how we create our CoT explanations and utilise examples from
two distinct data sources to provide new insights into how varying example types
influence CoT Prompting performance.

Our research into Prompt Optimisation stems from its proven effectiveness in previous
research, where using the LLM as the optimiser to create prompts has significantly
outperformed human-generated prompts (Zhou et al. 2023, Yang et al. 2023, Pryzant
et al. 2023). We look to leverage Prompt Optimisation to refine our meta-instruction that
instructs GPT-4 to classify a conversation, with the aim of optimised prompts enhancing
GPT-4’s performance as a vulnerability classifier. In this chapter, we propose EdiPrompt,
a novel Prompt Optimisation framework that incorporates Genetic Algorithm paradigms
to encourage the generation of more effective and diverse prompts.

This chapter also discusses our final experiment, which combines these two areas of
research, alongside detailing our data, experimental metrics and baselines.

3.1 Definitions

We begin by defining some terminology used throughout to aid understanding.

• Meta-prompt: A meta-prompt is a high-level prompt. It can be though of as a
prompt template for an overall task, such as vulnerability classification with CoT

8

Chapter 3. Methodology 9

Prompting. We can visualise our meta-prompt for our zero-shot learning baseline
in Figure 3.3.

• Meta-instruction: A meta-instruction is the high-level instruction within a meta-
prompt that provides the guidance to carry out the meta-prompt’s task. In our
context this would be how to approach and perform vulnerability classification or
how to optimise prompts. We use the terms ‘meta-instruction’ and ‘instruction
prompt’ interchangeably.

3.2 Data

We now define the datasets that we use in this thesis. This clarifies our task of vulnera-
bility detection, a task which is regulated by the FCA in the UK to ensure firms provide
the correct measures to identify and treat vulnerable customers.

3.2.1 FCA Guidelines

The FCA has a vulnerability guidelines document that contains a framework for identi-
fying vulnerable customers. This framework is based on a taxonomy of four categories:
Health, Life Events, Resilience and Capability. Each of these subcategories have their
own list of events or actions that deem a customer vulnerable. This framework makes
vulnerability classification an inherently complex task as it involves numerous excep-
tions and conditions for vulnerability, requiring nuanced understanding and assessment
to identify each case accurately. The full framework can be seen in Appendix C. This
document also outlines a definition of vulnerability based on this taxonomy, which
can be seen in Figure 3.1. This definition is used throughout this thesis within the
meta-prompts provided to GPT-4 to define the vulnerability framework it should use to
classify vulnerable customers.

Figure 3.1: Definition of Vulnerability.

Aveni has amended the guidelines to include examples of fake customer utterances,
indicating what constitutes vulnerability and what does not for each specific category.
These hand-crafted, single-sentence examples, designed to represent customer speech
rather than entire conversations, are clean and concise. They are utilised in the CoT
Prompting experiments. Figure 3.7 shows an example of these utterances.

Chapter 3. Methodology 10

3.2.2 Aveni Vulnerability Dataset

The primary dataset used for this thesis is Aveni’s vulnerability dataset, which is
comprised of transcriptions of phone calls between customers and financial advisors.
Due to the nature of transcription, these conversations are inherently noisy due to
potential inaccuracies and errors when converting spoken words into text.

The conversations in the dataset are structured as arrays, where each element in the
conversation array corresponds to an utterance from either the customer or advisor. Each
conversation has a true label associated with it, indicating whether the conversation
demonstrates an instance of vulnerability or not. The dataset includes metadata like
specific vulnerability subcategories (Health, Life Events, Resilience and Capability).
However, we do not utilise this metadata as we have made a simplifying assumption for
this thesis, reducing our task to explicitly binary vulnerability classification. This
approach allowed us to progress more effectively across all research areas. This
simplification limits our thesis, indicating the potential for future research into multi-
class vulnerability classification with GPT-4. The Aveni dataset has been split into three
separate datasets: train, validation and test.

Dataset Total Conversations Non-Vulnerable Vulnerable
Train 4663 3555 1108
Validation 1012 798 214
Test 1012 786 226

Table 3.1: Dataset Split

It can be seen that in Table 3.1 that there is a clear class imbalance present across all of
the datasets. We discuss the effect that this imbalance has on training our RoBERTa
baseline model in Section 3.9.2. This imbalance does not impact the provision of
examples in CoT Prompting as we investigate various sampling strategies which are
carried out with even sampling splits to mitigate any potential bias, this is discussed in
Section 3.6.4.

3.2.2.1 Preprocessing and Cleaning

All metadata in the Aveni datasets that were not relevant to the specific binary vulner-
ability classification task were dropped, leaving just the conversations and their true
labels. To train our RoBERTa baseline model, discussed in Section 3.9.2, we converted
the original conversation arrays, where each element represented speech from either the
customer or advisor, into a single continuous string.

When training RoBERTa, we found conversations exceeding it’s 512 token context
window. To address this, we adapted the datasets to fit RoBERTa’s context window,
using Python code and the RoBERTa tokenizer to trim the data. It was vital that the
context of the vulnerability present in a conversation was kept, the original dataset
provided a list matching each conversation where each utterance was annotated as
either vulnerable or not vulnerable. This allowed for the vulnerable conversations to
be trimmed around the vulnerability, where the vulnerable part of the conversation

Chapter 3. Methodology 11

was found, and a 512 token window was placed around it. For the non-vulnerable
conversations, a random 512 token window was taken from it. Figure 3.2 displays an
example of a vulnerable and non-vulnerable conversation after preprocessing. These
are clear examples of the types of conversations we provide GPT-4 to classify.

Figure 3.2: Example Conversations with Vulnerability and without Vulnerability from
Aveni Dataset. This also depicts the noise present in the transcribed conversations.

To ensure robustness and consistency, it was crucial to use the preprocessed datasets
for both GPT-4 and RoBERTa to avoid giving GPT-4 an unfair advantage from a larger
conversation window which could improve its classification. Figure 3.2 shows that the
transcribed conversations between customers and financial advisors lack annotations to
distinguish speakers. Since self-annotation for RoBERTa training was infeasible, we
also avoided annotating data for GPT-4 experiments, ensuring both models were tested
on identical datasets for consistency.

3.3 Meta-prompt Design

With our data understood, the next step is to understand how we use GPT-4 for vul-
nerability classification, further clarifying our goal with CoT Prompting and Prompt
Optimisation. This process is done through the design of meta-prompts, which are
identified as the most critical elements, as it is the meta-prompts alone that GPT-4
encounters when instructed to classify a conversation. All experiments are evaluated
using the Aveni test dataset, meaning we insert test conversations one at a time into
each experiments specific meta-prompt to receive a classification from GPT-4. All
experiment meta-prompts can be found in Appendix A. We can visualise our meta-
prompt for our zero-shot learning (no examples provided) baseline in Figure 3.3, which
is discussed in Section 3.9.3.2.

We maintain the core structure of the meta-prompts across all experiments for uniformity,
introducing only slight modifications to accommodate the addition of examples. The
ordering of the meta-prompts are also kept consistent to ensure robustness. We can
see this order in the meta-prompt for the zero-shot learning baseline in Figure 3.3.
When examples are added, such as the reasoned CoT examples or the answer-only
examples in few-shot learning, we place them between the definition of vulnerability
and the conversation being classified. The meta-instruction in orange in this figure, is
the human-generated meta-instruction we aim to optimise with Prompt Optimisation.

Chapter 3. Methodology 12

Figure 3.3: Zero-Shot Learning Meta-Prompt: Red indicates the definition of vulnerability,
green indicates the conversation being classified and orange is the meta-instruction.

There are other meta-prompts designed to optimise prompts, these are discussed in their
respective sections.

3.4 Experimental Metrics

3.4.1 F-1 Score

Throughout all the experiments the main metric used to analyse performance is the F-1
score. The F-1 score helps understand how well a test works by blending precision and
recall into one score using the harmonic mean. The F-1 score formula can be seen in
Figure 3.5. Precision measures the accuracy of the positive (vulnerable) predictions
made by the model. It is calculated by the number of true positives divided by the
number of true positives and false negatives. Recall measures the model’s ability to
correctly identify all relevant instances; in our case, this is vulnerable customers. It is
calculated by the number of true positives divided by the sum of true and false positives.
Both of these formulas can be seen in Figure 3.4.

Figure 3.4: Precision and Recall Formulas

Figure 3.5: F-1 Score Formula

There are multiple reasons for this metric being the main focus. Firstly, as the dataset is
imbalanced, with roughly three times more non-vulnerable examples than vulnerable

Chapter 3. Methodology 13

examples, using accuracy would be misleading, as a model could simply classify all
customers as non-vulnerable and achieve a respectable accuracy.

We calculated the F-1 score for the vulnerable class, though it is important to note that
we could have also calculated it for the non-vulnerable class. However, it is essential
for our problem domain that importance is placed on the model’s performance in
classifying vulnerable customers correctly, as the primary goal of classifying customers
as vulnerable is to accurately identify those needing additional support or services.
Misclassifying vulnerable customers as not vulnerable (false negatives) can have serious
implications, potentially leaving them without the help they need. The F-1 score, by
combining precision and recall for the vulnerable class, directly measures how well the
model identifies this critical group. Every F-1 score shown in the results section is the
F-1 score on the vulnerable (positive) class.

3.4.2 Self-BLEU

One of the core research questions to answer regarding Prompt Optimisation is not
only if the newly proposed EdiPrompt (Section 3.7.1) can produce stronger performing
prompts compared to the OPRO baseline (Section 3.9.5) but also if it produces more
linguistically diverse prompts. In order to measure this, the Self-BLEU metric is used.
The Self-BLEU metric (Zhu et al. 2018) is a variation of the BLEU metric (Papineni
et al. 2002). BLEU evaluates the quality of text generated by machine translation
systems. It does so by comparing the machine-produced text to other reference texts.
In contrast, Self-BLEU provides a metric to evaluate the diversity of text in a single
model’s output.

Self-BLEU is calculated by treating each text in a generated set as a “candidate” and
the rest as “references,” computing the BLEU score for each as the candidate, and
then averaging these scores to assess the diversity of the set. Self-BLEU scores range
from 0 to 1, with 0 signifying high diversity (no similarity) and 1 indicating low
diversity (complete similarity) among generated texts. Self-BLEU is used in this thesis
to compare the linguistic diversity of the set of prompts produced by EdiPrompt and
OPRO.

3.5 Processing GPT-4 Responses

RoBERTa, our upper baseline, produces quantifiable vulnerability labels, in contrast to
GPT-4’s natural language outputs, requiring further steps to achieve binary classification
from GPT-4. This is done through the meta-instruction, where from Figure 3.3 we
saw that we instruct GPT-4 to only answer with “Yes” or “No”, and then again ask it
to solely output a “Yes” or “No” response. During testing, it was found that GPT-4
would occasionally output the response: “insufficient information”. To address this, we
decided to default any response that was not a clear “Yes” or “No”, strictly to “No” to
manage ambiguity and prevent inflating true positives by defaulting them to “Yes”. This
approach ensures that the F-1 score accurately reflects the models ability in identifying
true vulnerability. All processed responses from GPT-4 are stripped of white spaces,
punctuation and are reduced to lowercase to process all responses clearly.

Chapter 3. Methodology 14

3.6 Chain of Thought Prompting

We now explore our methodology for CoT Prompting. Previous research has solely
focused on mathematical and logical tasks (Jason Wei et al. 2022, Suzgun et al. 2022,
Nye et al. 2021), which posses a clear, rule-based reasoning path leading to a specific
answer. However, when extending CoT Prompting to vulnerability classification, we
are presented with new challenges. Unlike mathematical problems, vulnerability classi-
fication requires complex common-sense reasoning to assess the vast array of potential
vulnerabilities present, each with unique contexts and exceptions. For example, a
customer could say “I underwent a battle with cancer five years ago, which drained
my savings. While physically recovered, my financial strain and anxiety have made it
hard for me”. This example underlines the complexity of classifying vulnerability, as
despite recovering from past struggles, the customer remains vulnerable due to ongoing
financial and emotional repercussions. This intricate reasoning suggests adapting CoT
Prompting to vulnerability classification could be more difficult as it involves teaching
GPT-4 how to break down our classification task with common-sense reasoning.

This thesis seeks to investigate how CoT Prompting performs in new domains that re-
quire this complex reasoning, specifically vulnerability classification. This investigation
will also offer insights for enhancing LLMs text classification performance across vari-
ous real-world scenarios, particularly in domains marked by numerous exceptions and
specific classification conditions. We now outline how we create our CoT explanations
and our novel approach to leveraging two distinct data sources to explore how different
example types impact CoT Prompting. Our method addresses key research questions
by evaluating CoT Prompting’s role in improving GPT-4’s vulnerability classification
performance and finding the best example strategy for enhanced performance.

3.6.1 Chain of Thought Prompting Strategies

We define ‘strategies’ as the sampling of different types of in-context examples that we
provide to GPT-4 when using CoT Prompting. Previous CoT Prompting methodologies
have not investigated what strategies invoke better performance, as they were done on
mathematical and logical problems, so did not have access to examples that exhibit
polarity (positive/negative) or varying data quality (noisy/clean). Our methodology
allows for novel insights into how we can improve CoT Prompting performance through
the provision of different example types, focusing on three key characteristics: Exam-
ple Quality, Similarity to Target Data, and Example Polarity. We carry out this
investigation using two distinct example sources:

• Misclassified: A subset of the Aveni training dataset, which uses specifically
previously misclassified examples. This has been inspired by research that found
that using examples the model had previously failed on improved classification
performance in a few-shot learning context with LLMs (Gao et al. 2023). This
thesis aims to see if these findings are transferable to CoT Prompting. Using
previously misclassified examples aims to allow GPT-4 to learn the more difficult
edge cases of vulnerability detection. Access to misclassified examples was
provided through testing experiment code on the training dataset, where the

Chapter 3. Methodology 15

conversation to classify, GPT-4’s classification and the true classification were
saved to a file. The misclassified source is noisy as it is a subset of our core Aveni
dataset of transcribed phone calls. It is also similar to the target data GPT-4 will
be asked to classify as it originates from the same source as the test set. The
misclassified source contains both vulnerable and non-vulnerable instances.

• Guidelines: The second example source is from the FCA guidelines, which as
discussed prior contains single sentence utterances of customers. It is clean as
they were designed to emulate real speech rather than a transcription. These
utterances are not similar to the target data GPT-4 will be asked to classify but
still provide examples of what constitutes vulnerability and what does not.

Examples of both sources can be seen in Figure 3.7. The difference in quality between
the two example sources allows for the hypothesis that the ‘cleaner’ examples from
the guidelines may facilitate more effective learning for GPT-4, potentially boosting its
classification performance. However, the structural differences between these guideline
examples and the complex, real conversations GPT-4 will encounter raise questions
about the model’s ability to generalise from guidelines to actual conversations. Con-
versely, while misclassified examples are noisy, their origin from the same source as the
target data might better prepare GPT-4 by exposing it to similar types of content it will
classify.

The polarity in the examples used in CoT Prompting on GPT-4’s performance also
raises the question of whether it is more effective to use strictly positive, negative, or
mixed examples of vulnerability. Negative examples may boost the F-1 score for the
positive class by teaching the model what non-vulnerability looks like, allowing for
true vulnerability to be identified easier. However, positive examples may enhance the
innate understanding of vulnerability.

3.6.2 Chain of Thought Explanations

Many different structures for the CoT reasoned explanations were considered. Each
structure offered a unique thought channel, helping GPT-4 ‘learn’ to accurately classify
vulnerability in customer conversations, as shown in Figure 3.6.

Figure 3.6: Potential Chain of Thought Explanation Structures

Due to budget constraints and our focus on evaluating CoT Prompting and its related
strategies, not all structures were tested. We have assumed our chosen structure will

Chapter 3. Methodology 16

be effective for vulnerability classification as no prior research has provided direction
upon crafting an optimal structure. This assumption marks a limitation and elicits future
research to investigate the most effective CoT structure for vulnerability classification.
Structure 3 was selected for experimentation because of its multi-stage reasoning pro-
cess, which mirrors human-like thought patterns by identifying key elements, classifying
vulnerability with an explanation, and concluding with a final answer.

3.6.3 Chain of Thought Dataset

A hand-constructed dataset combined the two data sources (misclassified and guidelines).
The CoT dataset contains 100 examples and their corresponding CoT explanation; it can
be split into four subsections: misclassified (vulnerable/non-vulnerable) and guidelines
(vulnerable/non-vulnerable), with 25 of each making up the CoT example dataset.
An example of each subsection can be visualised clearly in Figure 3.7. The main
limitation of the CoT Prompting experiments is their small dataset due to the lengthy
processing of hand-crafting CoT explanations. This contrasts our few-shot learning
baseline which draws examples from the large training dataset, discussed in Section
3.9.3.2. This smaller example bank might put CoT Prompting at a disadvantage as it has
a smaller variety of instances to sample from. However, if its performance still exceeds
expectations, it significantly highlights its effectiveness.

Figure 3.7: Different example source instances and their corresponding Chain of Thought
explanation.

Chapter 3. Methodology 17

3.6.4 Chain of Thought Prompting Experimental Approach

To assess CoT Prompting’s impact on GPT-4’s vulnerability classification performance
and identify the optimal example strategy, nine experiments were conducted. These
experiments can be seen in Table 3.2. Each experiment is evaluated on classifying con-
versations from the Aveni test dataset, where each test conversation receives randomly
selected in-context CoT examples from its respective experiments example source
(misclassified or guidelines) and example polarity (vulnerable or non-vulnerable) from
that source.

CoT Experiment Example Source Example Polarity

CoT 1 50/50 M&G 50/50 V&NV
CoT 2 50/50 M&G V
CoT 3 50/50 M&G NV
CoT 4 G 50/50 V&NV
CoT 5 G V
CoT 6 G NV
CoT 7 M 50/50 V&NV
CoT 8 M V
CoT 9 M NV

Table 3.2: Chain of Thought Prompting Experiments. M = Misclassified source, G =
Guideline source, V = Vulnerable Instances, NV = Non-Vulnerable Instances. 50/50
implies an even sampling split.

We use 12 examples for all CoT Prompting experiments. This number is based on the
performance of 12 examples in the few-shot learning baseline, where results plateaued,
as detailed in the results and discussion chapter in Section 4.1. Using 12 examples
allows for even sampling, such as three examples from the four subcategories in CoT 1.
By adopting a 50/50 sampling approach, we ensure result comparability and reliability
by preventing biases from oversampling or undersampling different example types.

3.7 Prompt Optimisation

We now begin to explore our methodology for our second area of research, Prompt
Optimisation. Previous research has developed Prompt Optimisation frameworks that
use the LLM itself to generate new and refined prompts, aiming for more effective com-
munication and improved responses from the model. Frameworks such as OPRO (Yang
et al. 2023), APE (Zhou et al. 2023) and APO (Pryzant et al. 2023) that were discussed
in the background chapter use methods such as providing examples of past successful
prompts to the LLM for help, instructing the LLM to generate semantically similar
variations of prompts and asking the LLM for text feedback on prompts. Most notably
there was EvoPrompt (Guo et al. 2023), which was the first to use Genetic Algorithms
in Prompt Optimisation. Their use is motivated by the ability of Genetic Algorithms
to provide extra variability, exploring a broad solution space through combining and
mutating solutions (Mitchell 1998).

Chapter 3. Methodology 18

The key issue identified in previous frameworks, especially EvoPrompt, was their
inability to fully leverage the In-Context Learning potential of LLMs by using examples
of successful prompts, providing clear instructions, and clarifying the optimisation task
through problem examples. Additionally, EvoPrompt did not reliably select and combine
high-performing prompts and heavily relied on good-quality and task-specific initial
prompts to optimise from, as it began with a large set of candidate prompts and evolved
from this initial set. Motivated by these limitations and the demonstrated potential
of Genetic Algorithms in Prompt Optimisation as initially explored by EvoPrompt,
we propose EdiPrompt (Edinburgh Prompt optimisation), a new Prompt Optimisation
framework that is the first to use Genetic Algorithms in Prompt Optimisation with full
utilisation of LLMs In-Context Learning abilities.

EdiPrompts novel advancements over EvoPrompt include integrating examples of
previous high-performing prompts in its meta-prompts, aiding the LLM in recognising
effective language. It also includes problem domain examples to ensure the LLM
understands its optimisation task. Unlike EvoPrompt, EdiPrompt does not begin with a
large number of candidate prompts but generates them at each iteration and hopes to
refine them through iterative updates, reducing reliance on the initial prompt quality.
Additionally, EdiPrompt employs a new method for generating candidate prompts
aiming to uncover more effective candidate prompts by generating semantically similar
variants and an enhanced selection method to ensure that only the strongest candidate
prompt is selected. It also features a refined crossover stage, with a meta-prompt that
provides scores of the prompts being combined to further guide GPT-4 and an approach
that consistently merges the best overall prompt with the newly selected prompt to
maintain a high-quality combination baseline.

The construction of EdiPrompt proved very challenging, involving rigorous testing
and design alongside the exploration of existing frameworks to assess the proficiency
of their concepts, where concepts from other frameworks have been incorporated,
we acknowledge them explicitly. EdiPrompt aims to deliver high-performing and
linguistically diverse prompts for a wide range of problems. For our task of classifying
vulnerability, we employ GPT-4 as the optimiser through EdiPrompt to optimise our
original human-generated meta-instruction, which was seen in Figure 3.3, that asks GPT-
4 to classify a conversation, with the aim of optimised prompts enhancing vulnerability
classification performance from GPT-4.

3.7.1 EdiPrompt

3.7.1.1 Overview

The EdiPrompt framework operates through three phases in each iteration, as shown in
Figure 3.8.

• Selection Phase: GPT-4 generates an initial prompt along with two semanti-
cally similar variations, forming three candidate prompts, from which the best-
performing prompt is selected.

• Genetic Phase: GPT-4 combines the selected prompt with the best overall
prompt (from all previous iterations), it then mutates it to create a new, potentially

Chapter 3. Methodology 19

improved prompt.

• Update Phase: This stage updates the prompt examples in our meta-prompts and
the overall best prompt based on the Genetic Phase outcomes.

Following each iteration, we restart the process, aiming for continuous improvement in
prompt performance, facilitated by the iterative updates during the update phase. These
updates allow GPT-4 to learn from the successes of each iteration. While EdiPrompt
can be run for any number of iterations, budget constraints in this research limit us
to conducting only eight iterations. We aim for the mutated prompt to show gradual
improvement as it is the result of a complete cycle of the framework. We now discuss
EdiPrompt in-depth, including its meta-prompts and each distinct phase.

Figure 3.8: EdiPrompt Framework Overview

Chapter 3. Methodology 20

3.7.1.2 Evaluating Generated Prompts

We evaluate model generated instruction prompts in a zero-shot learning environment
where they substitute the human-generated instruction prompt in Figure 3.3. This
approach was chosen for budgetary reasons, as this allows for costs to be saved on
smaller context windows when querying GPT-4. This approach also reflects the prompts
true quality by eliminating potential biases from example inclusion. We test how
the instruction prompt performs in classifying conversations in the Aveni test dataset,
recording the F-1 score it achieves. Therefore, when we refer to a prompt as high-
performing or better than another, it signifies that the prompt has achieved a notable
F-1 score. This method enables clear observation of performance improvements and
motivates the final experiment, which combines the best generated instruction prompt
with the optimal CoT strategy.

3.7.1.3 EdiPrompt Meta-Prompts

In EdiPrompt, we developed four distinct meta-prompts, detailed in Appendix A.
A complete EdiPrompt iteration involves GPT-4 generating an initial prompt, two
semantically similar prompts, a crossover prompt, and a mutated prompt.

Two key stages are generating the initial prompt and mutating the crossover prompt,
as this is where GPT-4 introduces new language into prompts. In these two stages, we
provide examples of previously successful prompts to guide GPT-4 in learning language
patterns in prompts that have previously led to high F-1 scores. We provide these
examples in the form of instruction-score pairs (model-generated instruction prompts
and their scores), an approach inspired by OPRO (Yang et al. 2023). We retain the
top five performing prompt instruction-score pairs found across all iterations, they are
updated in the update phase at the end of each iteration if a new top five prompt has been
found. Moreover, these meta-prompts also incorporate our definition of vulnerability
and twelve problem examples randomly taken from the training dataset to ensure GPT-4
understands our problem domain and how the instruction will be used when it creates
new prompts. The primary distinction between these meta-prompts lies in the mutate
step, where we explicitly direct GPT-4 to mutate the crossover prompt. Figure 3.10
shows the meta-prompt for the mutation stage.

To generate semantically similar prompts, we simply provide GPT-4 with the initial
prompt and instruct it to generate two semantically similar variants. Finally, to ensure
guidance in the crossover stage, our meta-prompt incorporates the scores of the two
prompts being combined. This strategy enables GPT-4 to understand which prompt
uses more effective language for our task, guiding its decision-making in the prompt
combination process. This meta-prompt also instructs GPT-4 to combine the elements
it deems more effective. We assume GPT-4 can identify more effective language,
a limitation but reasonable given its advanced understanding of language. We also
instruct GPT-4 for text feedback on its crossover process, this was used to test that it
was working correctly. The guidance given to GPT-4 through instruction-score pairs,
problem domain examples and the scores of prompts being combined mark EdiPrompt’s
advancements over EvoPrompt. Figure 3.9 shows the meta-prompt for the crossover
stage.

Chapter 3. Methodology 21

Figure 3.9: EdiPrompt Crossover Stage Meta-Prompt. Orange indicates the meta-
instruction and blue indicates the prompts being combined and their scores.

Figure 3.10: EdiPrompt Mutate Stage Meta-Prompt. Orange is meta-instruction, blue is
instruction-score pairs, red is our definition of vulnerability, purple is problem examples,
green is crossover instruction.

3.7.1.4 Initialisation of EdiPrompt

To begin the first iteration of EdiPrompt, it is clear from our framework overview in
Figure 3.8 that we need an initial prompt, Pinitial , and a starting best prompt, Pbest . To
acquire these a simple approach was taken, we used our meta-prompt for generating an

Chapter 3. Methodology 22

initial prompt, where the only instruction-score pair provided was our original human-
generated meta-instruction. We got GPT-4 to generate two new instruction prompts
from this, we then evaluated them both and the highest performing one was made Pbest ,
and the other Pinitial . We now proceed to discuss each phase in-depth referencing our
overview in Figure 3.8 as we go.

3.7.1.5 Selection Phase

This is the start of an iteration of EdiPrompt, as seen in the first blue box in Figure
3.8. We obtain our initial prompt, Pinital , and two more semantically similar prompts,
Pinital sem1 and Pinital sem2, from GPT-4. Our approach of generating semantically similar
prompts to create our candidate prompts is inspired from APE (Zhou et al. 2023) and
previous research that showed how semantically similar prompts can produce varying
performance (Kojima et al. 2022). This is a completely new approach to generating
candidate prompts and was not done by EvoPrompt. The goal is to explore the area of
language around the original prompt and uncover more effective prompts. The choice
to only generate three candidate prompts was due to budget restrictions as evaluating
each prompt incurs a cost. Generating more semantically similar prompts would
enhance EdiPrompt’s chances of uncovering more effective candidate prompts, marking
a limitation of its design. However, generating two semantically similar prompts was
deemed enough to explore the language around the initial prompt. We evaluate all three
candidate prompts and advance the best-performing one, now called Pcurrent , to the
genetic phase. Unlike EvoPrompt’s roulette wheel selection (Lipowski and Lipowska
2012), which allows even lower-scoring candidate prompts a chance to progress, our
method ensures only the highest-scoring candidate prompt moves forward.

3.7.1.6 Genetic Phase

In this phase we apply the concepts of crossover and mutation from Genetic Algorithms.
This can be seen in the second blue box of Figure 3.8. For the crossover step we use
GPT-4 to combine two prompts, the first is the best prompt found in the selection
phase of this iteration, Pcurrent . The second is the top-performing prompt from all past
iterations, Pbest . The goal is to merge the high-quality linguistic elements of Pbest , with
potentially new, effective language from Pcurrent , aiming to maintain a strong prompt
baseline while introducing fresh elements that could further enhance performance. This
approach, distinct from EvoPrompt, which did not ensure prompts being combined were
high quality whilst also aiming to uncover new prompts, marks another advancement in
EdiPrompt’s methodology. This process generates Pcrossover and we finish with asking
GPT-4 to mutate it, creating Pmutate. We evaluate Pmutate and proceed to the update
phase.

3.7.1.7 Update Phase

The update phase is the final phase of an EdiPrompt iteration, as seen in the final blue
box of Figure 3.8. Firstly, we need to find the best prompt that was found in this iteration.
We aim for this prompt to be Pmutate, however this is not guaranteed. The best prompt
will be from either Pmutate or Pcurrent as we do not test Pcrossover to save costs. Once

Chapter 3. Methodology 23

we have selected the best prompt from this iteration we update our instruction-score
pairs in our initial and mutate meta-prompts if this prompt is in the top five overall.
Additionally, Pbest is updated if it has been outperformed. Over time, the updates in
this phase are expected to enhance the optimisation process, steadily improving both
the instruction-score pairs and the best prompt through each iteration. This enables
continuous learning and refinement of GPT-4’s generated prompts. After completing
these updates, we restart from the selection phase in a new iteration.

3.8 Combining Prompt Optimisation & Chain of Thought
Prompting

We now discuss our methodology for our final experiment, which naively combines
both CoT Prompting and Prompt Optimisation. We aim to investigate if we can
combine CoT Prompting and Prompt Optimisation to enhance GPT-4’s performance as a
vulnerability classifier, a research question of the thesis. This final experiment combines
the best strategy found in CoT Prompting with the highest-performing instruction
prompt generated from Prompt Optimisation.

The motivation for this experiment comes from two facts; firstly, all CoT Prompting
experiments were completed with the human-generated meta-instruction. Secondly, all
prompts tested in Prompt Optimisation were tested in a zero-shot learning context to
minimise costs. This leads to the hypothesis that combining the two could increase
GPT-4’s performance as a classifier compared to how the two techniques performed
individually and relative to the RoBERTa baseline. This enhancement is anticipated
as the superior prompt benefits from the reinforcement of an effective CoT Prompting
example strategy, and vice versa.

We describe our method as ‘naive’ because it simplistically combines the two areas
without tailoring the optimised prompt for CoT examples. Budget and time constraints
prevented us from re-optimising the prompt to support this. Essentially, the optimised
prompt only instructs GPT-4 to classify a conversation without guiding it to use CoT
examples. This presents a limitation and suggests future research to integrate CoT
Prompting and Prompt Optimisation more effectively, considering their complexities.

3.9 Baselines

Having established our methodology for CoT Prompting and Prompt Optimisation, we
now describe all the baselines against which these methods will be evaluated.

3.9.1 Keyword Baseline

The implementation of a keyword classifier as a lower baseline helps assess GPT-4’s
performance in vulnerability classification, clarifying the impact of CoT Prompting and
Prompt Optimisation in this thesis. The construction of the keyword classifier followed a
very simple strategy. Utilising the existing taxonomy for vulnerable customers (Health,

Chapter 3. Methodology 24

Life Events, Resilience, Capability), Four separate lists were constructed for each
category, where each list contained ten ‘keywords’ associated to that category. The
keyword classifier will then positively classify a customer conversation if any of the
words in these lists are present in the conversation. The keyword baseline serves as a
great lower performance baseline as it only looks for certain keywords, unlike LLM’s
that can understand complex sentences. The keyword baseline keywords can be seen in
Table 3.3 and its results on the Aveni test dataset in Table 3.4.

Health Words Life Events Words Resilience Words Capability Words
Death Death Mortgage Dyslexia
Illness Divorce Benefits Disability
Hospital Loss Universal Credit Older
Cancer Grieving Bankruptcy Young
Chemotherapy Break Up Debt Child
Surgery Funeral Bills Dyspraxia
Medication Sacked Overdraft Lost
Treatment Fired PIP Dementia
Disease Unemployed Redundancy Learning Difficulty
Pain Separation Furlough Assistance

Table 3.3: Keyword Baseline Words

Metric Value
Accuracy 66.3%
Precision 33.0%

Recall 49.1%
F-1 Score (Positive Class) 39.4%

Table 3.4: Keyword Baseline Test Metrics

3.9.2 RoBERTa Baseline

A fine-tuned RoBERTa (Y. Liu et al. 2019) model was used as the main upper base-
line for this thesis due to its state-of-the-art performance in text classification. This
approach enables clear comparisons between the performances of RoBERTa and GPT-4,
particularly when employing CoT Prompting and Prompt Optimisation. By setting
this benchmark, we aim to explore the potential of these methods in enhancing GPT-4
to reach or surpass the performance of a fine-tuned but smaller RoBERTa model in
the complex domain of vulnerability classification, which represents the core research
question of this thesis. Creating the RoBERTa baseline proved challenging, requiring
significant time to understand Python’s PyTorch library, which I had not used before,
and extensive hyperparameter tuning to develop a high-performing model.

3.9.2.1 Model Architecture

The construction of the model utilised the transformers Python library from Hugging-
Face, where the base RoBERTa model and its tokenizer was imported into the codebase.

Chapter 3. Methodology 25

PyTorch was used to add a linear classifier layer on top of the base RoBERTa model,
this custom layer adapts the model to the specific binary classification task by mapping
the model’s output to a single value, representing the probability of a positive class
(vulnerability).

PyTorch’s neural network module is utilised to define a Binary Cross Entropy with
Logits loss function. In order to enable effective and precise binary classification, the
Binary Cross Entropy with Logits loss function first uses a sigmoid function to convert
logits into probabilities (which range from 0 to 1) and then uses binary cross entropy to
measure the error between these probabilities and the actual binary labels. An Adam
optimiser is employed to update the model’s weights based on this loss, with a specified
learning rate. The Adam optimiser is an algorithm for gradient-based optimisation of
stochastic objective functions, it is ideal for handling sparse gradients in transformer
models like RoBERTa. Figure 3.11 allows us to visualise this.

Figure 3.11: Fine-tuned RoBERTa Model Architecture

During training, PyTorch tensors facilitate batch processing, where the model resets
gradients, processes input data as tensors for predictions, calculates loss with target
labels, and updates weights via backpropagation. The base RoBERTa model was fine-
tuned on the Aveni training dataset, which as discussed prior was transformed in order
to fit the token context window of RoBERTa.

3.9.2.2 Hyperparameters

Many iterations of hyperparameter tuning took place before the baseline was deemed
suitable. Aveni kindly provided metrics for a fine-tuned RoBERTa model that they had
built on the same data. I aimed to achieve similar metrics. All hyperparameter tuning
was tested on the validation dataset, allowing performance comparison and insights into
whether parameters were beneficial to the model or detrimental to it by overfitting on
the training set. During the training phase, many factors were considered to improve
the model’s performance on the validation dataset.

Class Imbalance: A class imbalance was present in the training dataset toward the
non-vulnerable class. I experimented with adding weight to the positive class to combat
this imbalance; however, this did not have much effect on the model’s performance.

Chapter 3. Methodology 26

Oversampling was also done on the positive class, and this still did not provide the
benefit needed. Ultimately, addressing this imbalance became unnecessary once other
hyperparameters were effectively tuned.

Learning Rate: The learning rate is a crucial hyperparamter as it governs the magnitude
of updates to the model’s parameters during the optimisation process. Values between
2× 10−4 and 5× 10−4 were experimented with. 2× 10−4 produced the best results
after careful experimentation.

Batch Size: A batch size of 32 was used in the final model to make better usage of
the GPU I was allowed to train my model on. Utilising the GPU’s parallel processing
hardware allowed for a more efficient training phase.

Epochs: During the training stage, the number of epochs was originally set to three, but
this led to overfitting and poor performance on the validation set. Reducing the epochs
to one resulted in significant improvement in performance on the validation set. This
performance aligned closely with the similar model from Aveni, enabling progression
to testing the model on the unseen test dataset.

Parameter Value
Learning Rate 2×10−4

Batch Size 32
Epochs 1

Threshold 0.5

Table 3.5: RoBERTa Model Parameters

3.9.2.3 Testing & Metrics:

The RoBERTa model was evaluated on the Aveni test dataset with parameters from
Table 3.5, showing results in Table 3.6. Our RoBERTa model test metrics fell slightly
short of Aveni Labs’ RoBERTa model, which achieved an F-1 score of 80%. This
creates a limitation as the model is weaker than Aveni’s. However, the decision to
proceed was made due to the considerable time invested in its design and the thesis
scope. Our RoBERTa model is still high-performing and serves as a robust upper
baseline for comparisons.

Metric Value
Accuracy 89.7%
Precision 79.0%

Recall 73.5%
F-1 Score (Positive Class) 76.1%

Table 3.6: RoBERTa Test Metrics

3.9.3 Zero-Shot and Few-Shot Learning

The initial experiments conducted in this thesis also serve as a baseline to help evaluate
GPT-4’s performance as a vulnerability classifier. This foundation is crucial for bench-

Chapter 3. Methodology 27

marking improvements in subsequent experiments with CoT Prompting and Prompt
Optimisation to assess how these methods enhance GPT-4’s performance. Both of these
baselines are evaluated on the Aveni test dataset.

3.9.3.1 Zero-Shot Learning

The first experiment employed GPT-4 as a binary vulnerability classifier, using a zero-
shot learning approach, meaning that no examples were provided in the meta-prompt
to help steer the model’s output. By not providing examples within the prompt, the
experiment focuses solely on assessing the model’s innate classification ability without
the influence of In-Context Learning. This baseline enables a clear comparison of per-
formance improvements when leveraging the GPT-4’s In-Context Learning capabilities
through the addition of examples.

3.9.3.2 Few-Shot Learning

This baseline experiment marks the initiation of utilising GPT-4’s In-Context Learning
capabilities and permits comparisons between future experiments with CoT Prompting
and Prompt Optimisation. By employing a few-shot learning approach, exemplars are
incorporated into the meta-prompt for the first time. At this stage, examples, which are
randomly drawn from the training dataset, are only annotated with their binary answers
(Yes/No) without reasoned explanations, setting the stage for comparison with CoT
Prompting. This baseline experiment used an increasing number of examples at each
stage. We experimented with 5,8,10 and 12 examples here to see what produced the
best performance. The outcomes informed the selection of example quantities for the
CoT Prompting experiments, optimising costs. Few-shot experiments proved more
cost-effective, benefiting from smaller context windows due to the exclusive use of
Yes/No annotated examples.

3.9.4 Chain of Thought Baseline

As our methodology behind CoT Prompting seeks to explore various example strategies
that could improve its performance, it was essential to establish a CoT Prompting
baseline representing a standard CoT Prompting experiment. Like other research in
CoT Prompting where examples provided are drawn from an example ‘bank’ with
no specific strategy in their selection (Suzgun et al. 2022, Jason Wei et al. 2022), our
CoT Prompting baseline uses examples from the training dataset that were selected
completely at random.

The baseline dataset comprises of 25 examples with their corresponding hand-crafted
CoT explanations. This baseline facilitates comparisons between the few-shot learning
baseline discussed above, allowing for insights into general CoT performance. Addi-
tionally, the baseline acts as a benchmark to explore which CoT Prompting strategies
lead to performance enhancements beyond the standard approach, directly addressing
the question of identifying effective CoT Prompting strategies within this problem do-
main. There is another limitation on the size of this dataset due to the time-consuming

Chapter 3. Methodology 28

nature of hand-constructing CoT examples. However, it still serves as a strong baseline
representative of a standard CoT Prompting experiment.

3.9.5 Prompt Optimisation Baseline

In order to evaluate EdiPrompt effectively, OPRO (Yang et al. 2023) was selected as
the baseline for comparison. As EdiPrompt aims to build upon EvoPrompt (Guo et al.
2023) it would seem natural to use this as a baseline. However, EvoPrompt requires a
large set of initial prompts and generates multiple prompts, making it infeasible to adapt
due to budget constraints. Conversely, OPRO generates a single prompt per iteration
and outperformed EvoPrompt in two math problem datasets (Yang et al. 2023), demon-
strating its efficiency and cost-effectiveness, making it an ideal baseline for evaluating
EdiPrompt. As discussed, OPRO utilises the LLM as a prompt optimiser through itera-
tive updates to the meta-prompt with instruction-score pairs (model-generated prompts
and their corresponding ‘scores’ based on a fitness function). An OPRO overview can
be seen in Figure 3.12.

Figure 3.12: OPRO Framework Overview (Yang et al. 2023)

To enable comparisons, OPRO was adapted to the vulnerability classification domain
by modifying its meta-prompt content while maintaining its original structure and core
principles. The original OPRO meta-prompt and the adapted one for this thesis can be
seen in Appendix A. The fitness function for OPRO is now the F-1 score of its generated
prompts when tested on the Aveni test dataset.

The adapted OPRO meta-prompt contains the instruction-score pairs in which the
maximum number of these pairs in the meta-prompt at any given time is five. This design
choice was made as a result of OPRO being implemented on a smaller scale, as the
original paper provided a maximum of eight. However, the original paper was done with
hundreds of iterations, so reducing this to five was justified as it also kept our context
window small, reducing costs when querying GPT-4. By utilising an equal number
of instruction-score pairs for both the OPRO baseline and EdiPrompt, more robust
conclusions can be drawn, allowing for the evaluation of the respective frameworks
based on their underlying principles. OPRO also includes problem examples in its
meta-prompt to enable the model to familiarise itself with the problem domain.

For consistency and fairness in comparison, both OPRO and EdiPrompt are run for

Chapter 3. Methodology 29

eight iterations and their generated prompts are evaluated under the same zero-shot
learning scenario, as discussed in Section 3.7.1.2. Both frameworks also use the same
starting prompt to compare both frameworks equally after all iterations. The instruction
prompt used as Pinitial in the first iteration of EdiPrompt was also used as the instruction
prompt in the first instruction-score pair for OPRO.

3.10 Budget

Aveni Labs provided a generous £1400 budget for this thesis, which determined what
experiments were repeated for robustness. In general, a zero-shot learning experiment is
roughly £6, and an experiment with 12 in-context examples is roughly £35. The latter is
due to an increase in the context window when querying GPT-4 through its API, which
incurs a greater cost. To focus on the core research areas in this thesis and manage
the budget correctly, only the CoT Prompting experiments and the final experiment
of combining CoT Prompting and Prompt Optimisation were repeated. This allowed
for robustness in the CoT Prompting experiments and for the EdiPrompt and OPRO
frameworks to have the resources to be run for eight iterations each. Generated prompts
in Prompt Optimisation were tested only once to avoid the inefficiency of retesting
average or low-performing prompts, reserving resources for the final experiment with
the strongest prompt identified.

The selected experiments discussed above are repeated three times, a decision driven
by two primary factors. Firstly, budgetary constraints discussed and secondly, the
robustness of GPT-4 itself. The advanced design and extensive training of GPT-4
ensure consistent performance (OpenAI 2023, Hackl et al. 2023), reducing the need
for numerous repetitions to establish reliable results. This robustness also reduces the
limitations of results for experiments that were only repeated once. Budget constraints
do limit this thesis. However, the reliability of GPT-4’s responses and repeated core
experiments significantly mitigate this limitation. Now, with a complete understanding
of our methodology for this thesis, we proceed to our results and discussion.

Chapter 4

Results & Discussion

In this chapter we aim to answer the question of whether GPT-4 is capable of outperform-
ing our fine-tuned RoBERTa model on vulnerability classification, and we investigate
how effective CoT Prompting and Prompt Optimisation are at enhancing GPT-4’s vul-
nerability classification performance. Our analysis starts with GPT-4’s performance
in zero-shot and few-shot scenarios, followed by examinations of CoT Prompting and
Prompt Optimisation, finishing with the evaluation of the naive combination of these
techniques.

All experiments use the Aveni test dataset, test conversations are inserted one at a time
into the corresponding meta-prompt tailored for each specific experiment. We compare
true labels against GPT-4’s classification to calculate F-1 scores (on the vulnerable
class). As discussed previously, any examples used in approaches like CoT Prompting
or few-shot learning are not from this test set to prevent bias. In their respective sections,
we present the average F-1 scores from repeated experiments. We omit reporting the
standard deviation as it is minimal due to GPT-4’s previously discussed consistency.

4.1 Zero-Shot and Few-Shot Learning Results

We begin by evaluating GPT-4’s performance in zero-shot and few-shot learning scenar-
ios against RoBERTa in order to evaluate its initial performance before CoT Prompting
or Prompt Optimisation. As a reminder, when we mention few-shot learning, we are
talking about providing answer-only annotated examples to the model; these examples
were randomly sampled from the training dataset. From Table 4.1, we can see the
strength of In-Context Learning, with 10 examples boosting GPT-4’s F-1 score by
19.6% compared to zero-shot. As the number of examples increases in few-shot, the
plateau of performance can also be observed. Despite the improvements observed when
leveraging In-Context Learning, GPT-4 has underperformed against RoBERTa in all
of these cases. The best GPT-4 few-shot experiment with 10 examples fell short of
RoBERTa’s F-1 score by 9%.

Considering the publicity and praise that GPT-4 has received, it may be surprising that
RoBERTa, being a smaller model, has outperformed it by a significant margin. However,

30

Chapter 4. Results & Discussion 31

Model Examples Used F-1 Score (%)

Keyword Classifier N/A 39.4
GPT-4 (Zero-Shot) 0 47.5
GPT-4 (Few-Shot) 5 61.9
GPT-4 (Few-Shot) 8 62.9
GPT-4 (Few-Shot) 10 67.1
GPT-4 (Few-Shot) 12 66.7
RoBERTa N/A 76.1

Table 4.1: Comparison of GPT-4 with zero-shot and few-shot learning against RoBERTa.

vulnerability classification is a difficult task that presents many edge cases and involves
considerable ambiguity. Tasks of this nature usually tend to be better addressed by
fine-tuning a model on task-specific data, as it allows for a model to be tailored to
the specific task, in our case, we tailor RoBERTa to vulnerability classification. As
GPT-4 remains task-agnostic, we attempt to fine-tune it through In-Context Learning,
but this has not been enough to match RoBERTa’s performance. Not all tasks have
appropriate datasets or labelled examples to fine-tune a model like RoBERTa, so finding
ways to enhance GPT-4’s performance remains a crucial task, and we aim to do this
through CoT Prompting and Prompt Optimisation. We proceed by first analysing our
CoT Prompting results.

4.2 Chain of Thought Prompting Results

In this section, we explore the effectiveness of CoT Prompting in enhancing GPT-4’s
vulnerability classification performance. We aim to build upon the results achieved
by few-shot learning with answer-only examples. We also aim to answer the research
question surrounding what strategies, in terms of the examples used, yield the best
performance from CoT Prompting.

As a reminder, our CoT Prompting methodology involved investigating different ex-
ample strategies, looking at the effect of example quality, likeness to target data and
example polarity through two example sources (misclassified and guidelines). We
conducted 9 CoT Prompting experiments, evaluating each on the Aveni test dataset.
Each test conversation received 12 randomly sampled in-context CoT examples from
the example source and example polarity (vulnerable or non-vulnerable) from that
source for its respective experiment.

Table 4.2 displays the results of all 9 CoT Prompting experiments for each respective
strategy, where the F-1 score displayed is the average after three repetitions. This table
also displays the few-shot learning baseline we aim to improve upon alongside the CoT
baseline. As previously discussed, the CoT baseline adopts random sampling of CoT
examples taken from the training set to represent a standard CoT Prompting experiment
and enable comparisons between the different strategies. We can initially observe
in Table 4.2 that the CoT baseline has underperformed against the few-shot learning
baseline, with a decrease of 3.3% in its F-1 score. This finding initially suggests that for

Chapter 4. Results & Discussion 32

vulnerability classification, providing examples to GPT-4 is more important than the
explanations attached to them, and that providing CoT explanations does not enhance
GPT-4’s performance.

We also notice that CoT Prompting was outperformed by the few-shot learning baseline
with the same number of examples in 7 out of 9 experiments, indicating that CoT
Prompting does not bring substantial gains to vulnerability classification even with
tailored example strategies. This contrasts previous research on logical reasoning
tasks where CoT Prompting showed large improvements over answer-only examples
(Suzgun et al. 2022). Unlike logical reasoning tasks where CoT Prompting can guide
the model through logical steps to a solution, vulnerability classification demands
complex common-sense reasoning to understand the possible exceptions and conditions
for classification. This complexity makes it challenging to effectively teach GPT-4 with
CoT explanations, resulting in a situation where these explanations do not improve its
performance beyond that achieved with answer-only examples. Our findings show that
generalising CoT Prompting to complex domains like vulnerability classification is
challenging, and it does not achieve the same improvements seen in logical reasoning
tasks (Jason Wei et al. 2022, Suzgun et al. 2022). These findings provide direction for
a wide range of tasks that seek to improve LLM’s text classification performance in
contexts requiring complex common-sense reasoning to understand specifications for
classification, as we have shown that examples are more important than explanations in
these contexts.

While the general findings indicate CoT Promptings ineffectiveness, it did show some
promise. Table 4.2 shows that 2 of the CoT Prompting experiments (CoT 3 & CoT
9) did slightly outperform the few-shot learning baseline with the same number of
examples, with CoT 9 leading by a 1% improvement. Despite marginal improvements,
it is important to note that the size of the CoT dataset was only 100, compared to the
training dataset size of 4663, from which the few-shot baseline could pull examples.
This stark contrast in the size of examples that CoT Prompting could use creates the need
for further research as these gains could potentially be heightened if CoT Prompting
had a larger, more diverse number of instances to use in its examples.

We now look to answer our research question of what CoT Prompting example strategies
yield the best performance. Table 4.3 and 4.4 show the average F-1 scores achieved
when each specific strategy was utilised. For evaluating example quality, Table 4.3
shows that the clean guideline examples slightly outperform the noisy, misclassified
ones by 0.6% on average. The misclassified examples did not enhance performance,
maintaining the CoT baseline F-1 score at 63.4% on average, contrasting previous
research that found this approach boosted performance in few-shot contexts (Gao et al.
2023). This contrast is surprising as providing previously misclassified instances as
examples aims to allow GPT-4 to learn the difficult edge cases of vulnerability detection.
However, we applied this approach in a CoT Prompting context, which suggests that
the ineffectiveness of the misclassified examples could stem from the CoT Prompting
method itself, which we have found to be less effective than answer-only examples.
Overall, we see that the differing example sources in CoT Prompting do not significantly
affect GPT-4’s performance in vulnerability classification, showcasing its capability
to generalise effectively from synthetic guideline examples, which differ significantly

Chapter 4. Results & Discussion 33

GPT-4 Model Example Source Example Polarity F-1 Score (%)

Few-Shot Training Dataset Random Mix 66.7
CoT Baseline Training Dataset Random Mix 63.4

CoT 1 50/50 M&G 50/50 V&NV 64.4
CoT 2 50/50 M&G V 59.0
CoT 3 50/50 M&G NV 67.1
CoT 4 G 50/50 V&NV 65.7
CoT 5 G V 62.1
CoT 6 G NV 64.2
CoT 7 M 50/50 V&NV 63.8
CoT 8 M V 58.7
CoT 9 M NV 67.7

Table 4.2: Chain of Thought Experiment Results. M = Misclassified source, G = Guideline
source, V = Vulnerable Instances, NV = Non-Vulnerable Instances. 50/50 implies an even
sampling split. All experiments here use 12 in-context examples. The best performing
experiment is highlighted in bold.

Example Source Average F-1 Score (%)

50/50 M&G 63.5
M 63.4
G 64.0

Table 4.3: Comparison of Strategies by Example Source. M = Misclassified source, G =
Guideline source. The best performing strategy on average is in bold.

Example Polarity Average F-1 Score (%)

50/50 V&NV 64.6
V 59.9
NV 66.3

Table 4.4: Comparison of Strategies by Example Polarity. V = Vulnerable Instances, NV
= Non-Vulnerable Instances. The best performing strategy on average is in bold.

from the actual conversations targeted for classification.

In terms of example polarity, Table 4.4 illustrates an unexpected shift in performance
when exclusively using vulnerable examples, leading to a significant 3.5% decrease
from the CoT baseline. This contradicts the initial belief that focusing solely on
vulnerable instances might enhance GPT-4’s understanding of vulnerability. In contrast,
using strictly non-vulnerable instances as CoT examples achieves the most notable
performance improvement, with an average F-1 score increase of 6.4% over vulnerable
instances and 2.9% over the CoT baseline. These findings illustrate that using only
non-vulnerable instances improves GPT-4’s ability to classify true vulnerabilities by

Chapter 4. Results & Discussion 34

clearly defining what non-vulnerability looks like, making it easier to detect actual
vulnerabilities. Our novel research into example strategies allows us to conclude that
the use of strictly non-vulnerable instances is the optimal CoT Prompting example
strategy for enhancing GPT-4’s vulnerability classification performance. Although
these example strategies were carried out in a CoT Prompting context, our findings
motivate future research that would utilise the optimal example strategy found in this
research to further enhance GPT-4 as a vulnerability classifier in other contexts, such as
answer-only few-shot learning, which has proved to be superior to CoT Prompting in
our domain.

Our investigation highlights the influence of example source and polarity in CoT Prompt-
ing but faces a limitation, our random sampling may not always yield examples relevant
to each test case, given the broad spectrum of vulnerabilities. Future research could
improve CoT Prompting by selecting examples more relevant to the test conversa-
tion, perhaps by adopting a retriever model to identify semantically similar examples,
building on approaches from previous studies (J. Liu et al. 2021).

We looked to see if CoT Prompting could enhance GPT-4’s vulnerability classification
performance near our fine-tuned RoBERTa. However, it was found that answer-only
examples are superior to explanations in our context, with the best CoT Prompting
experiment attaining an F-1 score 8.4% shy of RoBERTa. We now proceed to see if
Prompt Optimisation can be more effective than CoT Prompting in enhancing GPT-4’s
vulnerability classification performance.

4.3 Prompt Optimisation Results

We now look to Prompt Optimisation to answer our research question of how effectively
can Prompt Optimisation enhance GPT-4 as a vulnerability classifier. We also aim
to answer whether the Genetic Algorithms within EdiPrompt can improve prompt
linguistic diversity and performance compared to its OPRO baseline. Our methodology
for Prompt Optimisation looked to optimise our human-generated meta-instruction,
which all previous experiments used to instruct GPT-4 to classify a conversation. We ran
both EdiPrompt and OPRO for eight iterations, evaluating each generated instruction
prompt in a zero-shot learning environment on classifying conversations from the Aveni
test dataset.

In analysing EdiPrompt, we focus on evaluating the mutated instruction prompts gener-
ated after a complete iteration, as this displays EdiPrompt’s overall effectiveness. All
instruction prompts generated by OPRO and EdiPrompt at each iteration can be found
in Appendix B. Figure 4.1 displays the best instruction prompt that EdiPrompt and
OPRO generated. It also provides the original human-generated instruction prompt
we aimed to optimise for comparison. We see that both of these prompts contain
more complex language and reiterate our definition of vulnerability. This results from
including this definition in the meta-prompts for both frameworks where we describe
our optimisation task. This indicates that GPT-4 performs better with prompts using
sophisticated language and clear task definitions, likely due to a richer vocabulary that
enables more precise communication, therefore improving vulnerability classification.

Chapter 4. Results & Discussion 35

The best-performing prompt, found by EdiPrompt, displays an F-1 score of 71.4%.
This instruction prompt outperforms all few-shot learning baselines and CoT Prompting
experiments, with the prompt providing a 3.7% increase in the F-1 score compared to
the previous best experiment (CoT 9). Remarkably, this score was achieved without in-
context examples, as all prompts were tested in a zero-shot environment, demonstrating
the prompt’s effective design to harness GPT-4’s pre-training knowledge. This is a
significant advancement in using GPT-4 as a vulnerability classifier, highlighting Prompt
Optimisation’s effectiveness over example-driven methods for our problem domain
and demonstrating that for complex tasks requiring understanding of specifications
for classification, clear task-descriptive prompts yield better results than providing
examples.

Figure 4.1: EdiPrompt & OPRO best instruction prompts. The initial human-generated
instruction prompt is supplied in italics. The best instruction prompt overall is in bold.

Figure 4.2 shows that EdiPrompt consistently outperforms OPRO across the eight
iterations, except for slight underperformance in iterations 1 and 8. The graph highlights
EdiPrompt’s stable improvement and OPRO’s fluctuating performance, demonstrating
EdiPrompt’s effective optimisation of prompts due to its iterative updates and design.
Table 4.5 provides an overview of EdiPrompt against OPRO, and we can see that
EdiPrompt has surpassed OPRO in every category. The average F-1 score from all of
the generated mutated prompts from EdiPrompt is 67.9%, which is a 3.8% increase
from the 64.1% average of OPRO.

We also provide the standard deviation across the F-1 scores of each frameworks
generated prompts, where EdiPrompt displays a smaller standard deviation than OPRO.
OPRO’s variability may stem from its meta-prompts lacking direction and its method of

Chapter 4. Results & Discussion 36

generating only one prompt per iteration, aligning with observations from the original
OPRO paper about its performance oscillation (Yang et al. 2023). EdiPrompts consistent
performance is likely due to the novel design choice of keeping the best prompt found
as one of the two prompts being combined at every iteration, ensuring a high-quality
combination baseline. The average F-1 score and standard deviation of EdiPrompt show
that it has not only produced better-performing prompts than OPRO but also does so
with more consistency.

Figure 4.2: EdiPrompt vs OPRO - Prompt Scores Across Iterations

Table 4.5 shows that the best prompt from EdiPrompt produced a relative percentage
increase of 50.3% in performance compared to our original human-generated prompt
with an F-1 score of 47.5%. Finally, we look at the Self-Bleu metric, which ranges
between 0 (high diversity) and 1 (low diversity). We see that the inherent variability
of Genetic Algorithms in EdiPrompt has successfully uncovered more linguistically
diverse prompts than OPRO over the eight iterations. This variability, stemming from
varied vocabulary, phrases, and writing styles through the combination and mutation of
prompts, uncovers more effective task communication to GPT-4, boosting EdiPrompt’s
prompt performance. Despite EdiPrompt’s improvement over OPRO, it is worth noting
that OPRO remains competitive. Its top prompt trails EdiPrompt’s by just 0.9%, and its
single-prompt generation approach offers cost efficiency, making it a viable choice.

EdiPrompt’s strong performance confirms that Genetic Algorithms can be powerful
within Prompt Optimisation, as initially explored in EvoPrompt (Guo et al. 2023). It
displays that EdiPrompt has successfully harnessed the power and extra variability
of Genetic Algorithms, establishing a robust new Prompt Optimisation framework.
EdiPrompt’s novel design choices and refined meta-prompts have likely contributed
to its success, as EvoPrompt failed to surpass OPRO (Yang et al. 2023), whereas

Chapter 4. Results & Discussion 37

EdiPrompt has initially shown its superiority to OPRO. However, as this research
focused on investigating if EdiPrompt could successfully harness Genetic Algorithms,
further research is needed on EdiPrompt’s specific concepts to assess the full potential
of the frameworks design.

While these results are impressive, it is crucial to understand that running EdiPrompt for
only eight iterations is substantially small compared to the scale displayed in previous
research, such as OPRO (Yang et al. 2023), which was done over hundreds of iterations.
This motivates future research to explore EdiPrompt’s performance at a larger scale and
across different domains.

Metric OPRO EdiPrompt

Average F-1 Score (Across all 8 iterations) 64.1% 67.9%
Highest scoring prompt (F-1 Score) 70.3% 71.4%
Lowest scoring prompt (F-1 Score) 56.2% 65.7%
Standard Deviation 0.048 0.019
Self-Bleu 0.148 0.112
Best Relative Percentage In-
crease on the F-1 Score
of Human Generated Prompt

48.0% 50.3%

Table 4.5: Overview of OPRO vs EdiPrompt. Bold indicates where one framework has
surpassed the other.

Our findings from Prompt Optimisation have answered both related research questions.
Prompt Optimisation was more effective than CoT Prompting in enhancing GPT-4 as a
vulnerability classifier, achieving an F-1 score only 4.7% shy of RoBERTa. We have also
demonstrated that the Genetic Algorithms within EdiPrompt have produced more diverse
prompts and ultimately higher-performing prompts than our OPRO baseline on our
vulnerability classification task. We now see if we can naively combine CoT Prompting
and Prompt Optimisation to further enhance GPT-4 as a vulnerability classifier compared
to our fine-tuned RoBERTa model.

4.4 Chain of Thought Prompting & Prompt Optimisation
Results

Our final experiment naively combined the highest-performing instruction prompt from
EdiPrompt with the most effective CoT Prompting strategy, CoT 9. This CoT Prompting
strategy specifically utilised examples of non-vulnerability from the misclassified data
source. This experiment aims to answer our research question of how effective the
combination of these areas is at enhancing GPT-4 as a vulnerability classifier. We
can see the results of the final experiment in Table 4.6, where the F-1 score for the
combination of the two areas is the average after three repetitions.

Table 4.6 displays each of the scores for the CoT strategy and the best prompt for
comparison. We see that adding the best instruction prompt into the best CoT strategy,

Chapter 4. Results & Discussion 38

Experiment/Baseline F-1 Score (%)

RoBERTa Baseline 76.1

CoT 9: Misclassified, Non-Vulnerable 67.7
Best-Instruction Prompt 71.4
CoT 9: Misclassified, Non-Vulnerable + Best Instruction Prompt 70.1

Table 4.6: Prompt Optimisation & Chain of Thought Prompting Results

which was initially carried out with the human-generated instruction prompt, has
increased the performance of the best CoT experiment by 2.4%. However, the addition
of the CoT examples has decreased the original performance of the prompt, which was
previously tested in a zero-shot environment, by 1.3%.

This finding suggests that while the CoT Prompting strategy benefits the optimised
prompt, adding examples to an effective prompt can unexpectedly reduce performance.
This decline in performance may be due to the inefficacy of CoT explanations that
has been observed in this thesis. The explanations may have introduced unnecessary
complexity, shifting the model’s focus from the well-crafted prompt. Another reason
the combination of both of these areas has not succeeded could be that prompts were
optimised without examples in mind. Due to budget and time constraints, we could not
re-optimise the prompt to provide explicit instruction to GPT-4 to use the provided CoT
examples for help. We hypothesise that the effectiveness of the combination could be
further enhanced if this was done, motivating the need for future research.

Table 4.6 allows us to answer our research question as it displays that we could not
combine CoT Prompting and Prompt Optimisation to further enhance GPT-4 as a
vulnerability classifier in this research. However, Prompt Optimisation alone was
most effective, nearly matching our fine-tuned RoBERTa model’s performance with
an F-1 score just 4.7% lower, even without In-Context Learning. This result is crucial
because it shows that GPT-4 does not require labelled data to function as a strong
vulnerability classifier when it uses effective Prompt Optimisation. This is particularly
vital in real-world applications where labelled data is scarce, as we can quickly adapt
GPT-4 to accurately identify individuals requiring support. This adaptability means that
environments with limited labelled resources can benefit from the deployment of new
services with enhanced support, reducing risks for those in need. Importantly, for tasks
such as vulnerability classification that present complexity with intricate exceptions
and conditions for classification, our results display that for such tasks where labelled
data is scarce, GPT-4 combined with Prompt Optimisation offers a viable solution.
Conversely, in such tasks where appropriate labelled data is available, our research into
CoT Prompting and Prompt Optimisation demonstrates that fine-tuning a model like
RoBERTa remains the optimal approach. This insight provides a clear direction for
future efforts, suggesting a tailored approach depending on the data availability and
specific complexity of the task at hand.

Chapter 5

Conclusions & Further Research

This thesis has successfully researched how we can leverage GPT-4 as a vulnerability
classifier in two complementary areas of research, Chain of Thought Prompting and
Prompt Optimisation, and answered all related research questions.

For Chain of Thought Prompting, we explored its effectiveness in new domains, specif-
ically vulnerability classification, and carried out novel research into how different
example types impact its performance. We found that the optimal example strategy was
supplying strictly non-vulnerable instances, which improved upon few-shot learning
with answer-only examples by 1% in a specific experiment. However, Chain of Thought
Prompting ultimately did not enhance GPT-4’s performance as a vulnerability classifier,
with few-shot learning using answer-only examples proving superior. We illustrate that
for tasks such as vulnerability classification, which demand complex common-sense
reasoning to understand the conditions and exceptions for classification, providing GPT-
4 with examples is more beneficial than providing explanations. This result provides
strong insights for future research looking to leverage LLMs in similar domains.

In Prompt Optimisation, we explored its potential in enhancing GPT-4 as a vulnerability
classifier and proposed the novel EdiPrompt framework. We found that EdiPrompt effec-
tively harnessed the variability of Genetic Algorithms and created a new robust Prompt
Optimisation framework that outperformed Google DeepMind’s OPRO framework in
both prompt performance and prompt linguistic diversity. EdiPrompt generated a prompt
that boasts a 50.3% relative increase in performance compared to the original human-
generated prompt. Prompt Optimisation brought GPT-4 the closest to RoBERTa’s
performance, without In-Context Learning, missing the baseline by only 4.7%, thus
proving Prompt Optimisation’s effectiveness over Chain of Thought Prompting in our
domain.

We also looked to see if the naive combination of Chain of Thought Prompting and
Prompt Optimisation could further enhance GPT-4 as a vulnerability classifier past that
of RoBERTa. It was found that the inclusion of the most effective Chain of Thought
strategy into the highest-performing instruction prompt unexpectedly decreased the
prompt’s original performance. We hypothesised that the observed ineffectiveness is
due to our naive combination that did not optimise prompts to account for the inclusion

39

Chapter 5. Conclusions & Further Research 40

of examples. We could not re-optimise prompts to do this due to budget and time
constraints, suggesting areas for future research.

In conclusion, our research showed that Prompt Optimisation closes the performance
gap between GPT-4 and fine-tuned models, such as RoBERTa, in complex tasks like
vulnerability classification, even without labelled data. This positions it as a feasible
alternative. This is crucial for tasks in real-world scenarios with complex specifications
for classification and limited labelled data, allowing quick adaptation of GPT-4 for
support services. However, when labelled data is available, our research has shown that
fine-tuning a model like RoBERTa remains the optimal approach. These findings pave
the way for tailored strategies in future research and applications, depending on data
availability and task complexity.

5.1 Further Research

We finish this thesis by outlining potential avenues for further research to deepen the
exploration of Chain of Thought Prompting and Prompt Optimisation. This further
research would extend the findings and address the limitations of this thesis.

A key limitation of this thesis is its exploration of Chain of Thought Prompting and
Prompt Optimisation on only one model, GPT-4, a large-scale LLM. Further research
would examine how these techniques perform on smaller models, such as 1B or 7B
LLMs, to determine if the observed results hold consistent across varying model sizes.
This would provide a more comprehensive understanding of the effectiveness and
scalability of these techniques.

Further research into Chain of Thought Prompting is needed, comparing its performance
with answer-only few-shot learning using datasets of equal size, addressing our small
Chain of Thought dataset limitation. This could be achieved by eliminating the time-
consuming nature of constructing Chain of Thought examples, possibly by using a LLM
to create them. Furthermore, our results that found examples were superior to Chain of
Thought explanations for complex tasks like vulnerability classification elicits future
research to explore a broader spectrum of tasks to investigate what types of tasks benefit
from explanations over answer-only examples.

This research highlights EdiPrompt’s potential in vulnerability classification but ac-
knowledges the limitation that it underwent fewer iterations than prior studies on new
Prompt Optimisation frameworks. Future work should increase EdiPrompt’s iterations
and apply it across various domains to thoroughly evaluate its potential and versatility in
adapting to an array of problems. Additionally, future research in Prompt Optimisation
should also look at how to deliver strong prompts in a more cost-effective manner and
assess whether it is more effective to explore a broad or a deeper search of prompts.

Our naive combination of Chain of Thought Prompting and Prompt Optimisation in this
thesis found an unexpected decrease in performance when adding Chain of Thought
examples to the optimised prompt. Further research would aim to optimise instruction
prompts with examples in mind to investigate whether we can improve results when
combining Prompt Optimisation and Chain of Thought Prompting.

Bibliography

Alzubaidi, Laith et al. (2021). “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions”. In: Journal of big Data 8, pp. 1–74.

Brown, Tom B. et al. (2020). “Language Models are Few-Shot Learners”. In: CoRR
abs/2005.14165. arXiv: 2005.14165. URL: https://arxiv.org/abs/2005.
14165.

Devlin, Jacob et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv: 1810.04805 [cs.CL].

Dong, Qingxiu et al. (2023). A Survey on In-context Learning. arXiv: 2301.00234
[cs.CL].

Gao, Lingyu et al. (2023). Ambiguity-Aware In-Context Learning with Large Language
Models. arXiv: 2309.07900 [cs.CL].

Guo, Qingyan et al. (2023). Connecting Large Language Models with Evolutionary
Algorithms Yields Powerful Prompt Optimizers. arXiv: 2309.08532 [cs.CL].

Hackl, Veronika et al. (Dec. 2023). “Is GPT-4 a reliable rater? Evaluating consistency
in GPT-4’s text ratings”. In: Frontiers in Education 8. ISSN: 2504-284X. DOI: 10.
3389/feduc.2023.1272229. URL: http://dx.doi.org/10.3389/feduc.2023.
1272229.

Kojima, Takeshi et al. (2022). “Large Language Models are Zero-Shot Reasoners”. In:
Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35.
Curran Associates, Inc., pp. 22199–22213. URL: https://proceedings.neurips.
cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-
Paper-Conference.pdf.

Lester, Brian, Rami Al-Rfou, and Noah Constant (2021). The Power of Scale for
Parameter-Efficient Prompt Tuning. arXiv: 2104.08691 [cs.CL].

Li, Qian et al. (2021). A Survey on Text Classification: From Shallow to Deep Learning.
arXiv: 2008.00364 [cs.CL].

Lipowski, Adam and Dorota Lipowska (2012). “Roulette-wheel selection via stochas-
tic acceptance”. In: Physica A: Statistical Mechanics and its Applications 391.6,
pp. 2193–2196.

Liu, Jiachang et al. (2021). “What Makes Good In-Context Examples for GPT-3?” In:
CoRR abs/2101.06804. arXiv: 2101.06804. URL: https://arxiv.org/abs/2101.
06804.

Liu, Pengfei et al. (2023). “Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing”. In: ACM Computing Surveys
55.9, pp. 1–35.

41

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2309.07900
https://arxiv.org/abs/2309.08532
https://doi.org/10.3389/feduc.2023.1272229
https://doi.org/10.3389/feduc.2023.1272229
http://dx.doi.org/10.3389/feduc.2023.1272229
http://dx.doi.org/10.3389/feduc.2023.1272229
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2008.00364
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804

BIBLIOGRAPHY 42

Liu, Yinhan et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach”. In: CoRR abs/1907.11692. arXiv: 1907.11692. URL: http://arxiv.org/
abs/1907.11692.

Markov, Todor et al. (2023). A Holistic Approach to Undesired Content Detection in
the Real World. arXiv: 2208.03274 [cs.CL].

Minaee, Shervin et al. (2021). Deep Learning Based Text Classification: A Comprehen-
sive Review. arXiv: 2004.03705 [cs.CL].

Mitchell, Melanie (1998). An introduction to genetic algorithms. MIT press.
Nye, Maxwell I. et al. (2021). “Show Your Work: Scratchpads for Intermediate Compu-

tation with Language Models”. In: CoRR abs/2112.00114. arXiv: 2112.00114. URL:
https://arxiv.org/abs/2112.00114.

OpenAI (2023). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL].
Papineni, Kishore et al. (2002). “Bleu: a method for automatic evaluation of machine

translation”. In: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics, pp. 311–318.

Pryzant, Reid et al. (2023). Automatic Prompt Optimization with ”Gradient Descent”
and Beam Search. arXiv: 2305.03495 [cs.CL].

Qiu, XiPeng et al. (Sept. 2020). “Pre-trained models for natural language processing:
A survey”. In: Science China Technological Sciences 63.10, pp. 1872–1897. DOI:
10.1007/s11431-020-1647-3. URL: https://doi.org/10.1007%2Fs11431-
020-1647-3.

Radford, Alec and Karthik Narasimhan (2018). “Improving Language Understanding
by Generative Pre-Training”. In: URL: https://api.semanticscholar.org/
CorpusID:49313245.

Radford, Alec, Karthik Narasimhan, et al. (2018). “Improving language understanding
by generative pre-training”. In.

Röttger, Paul et al. (2021). “HateCheck: Functional Tests for Hate Speech Detection
Models”. In: Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguistics.
DOI: 10.18653/v1/2021.acl-long.4. URL: https://doi.org/10.18653%
2Fv1%2F2021.acl-long.4.

Shah, Foram P. and Vibha Patel (2016). “A review on feature selection and feature
extraction for text classification”. In: 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), pp. 2264–2268.
DOI: 10.1109/WiSPNET.2016.7566545.

Shin, Taylor et al. (2020). AutoPrompt: Eliciting Knowledge from Language Models
with Automatically Generated Prompts. arXiv: 2010.15980 [cs.CL].

Suzgun, Mirac et al. (2022). Challenging BIG-Bench Tasks and Whether Chain-of-
Thought Can Solve Them. arXiv: 2210.09261 [cs.CL].

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wang, Yaqing et al. (2020). “Generalizing from a few examples: A survey on few-shot
learning”. In: ACM computing surveys (csur) 53.3, pp. 1–34.

https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2208.03274
https://arxiv.org/abs/2004.03705
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.03495
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007%2Fs11431-020-1647-3
https://doi.org/10.1007%2Fs11431-020-1647-3
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653%2Fv1%2F2021.acl-long.4
https://doi.org/10.18653%2Fv1%2F2021.acl-long.4
https://doi.org/10.1109/WiSPNET.2016.7566545
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2210.09261
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

BIBLIOGRAPHY 43

Wei, Jason et al. (2022). “Chain of Thought Prompting Elicits Reasoning in Large
Language Models”. In: CoRR abs/2201.11903. arXiv: 2201.11903. URL: https:
//arxiv.org/abs/2201.11903.

Wei, Jerry et al. (2023). Larger language models do in-context learning differently.
arXiv: 2303.03846 [cs.CL].

White, Jules et al. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering
with ChatGPT. arXiv: 2302.11382 [cs.SE].

Yang, Chengrun et al. (2023). Large Language Models as Optimizers. arXiv: 2309.
03409 [cs.LG].

Zhao, Tony Z. et al. (2021). Calibrate Before Use: Improving Few-Shot Performance of
Language Models. arXiv: 2102.09690 [cs.CL].

Zhou, Yongchao et al. (2023). Large Language Models Are Human-Level Prompt
Engineers. arXiv: 2211.01910 [cs.LG].

Zhu, Yaoming et al. (2018). “Texygen: A benchmarking platform for text generation
models”. In: The 41st international ACM SIGIR conference on research & develop-
ment in information retrieval, pp. 1097–1100.

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2211.01910

Appendix A

Meta Prompts

A.1 Zero-Shot and Few-Shot Learning Meta-Prompts

Figure A.1: Zero-Shot learning baseline meta-prompt. Red is definition of vulnerability,
green is the conversation to classify, and orange is meta-instruction. This is the same
meta-prompt we use to evaluate model-generated prompts in Prompt Optimisation,
replacing the model-generated instruction prompts with our human generated one.

44

Appendix A. Meta Prompts 45

Figure A.2: Few-Shot learning baseline meta-prompt. Red is definition of vulnerability,
purple are answer-only examples, green is the conversation to classify, and orange is
meta-instruction.

A.2 Chain of Thought Prompting Meta-Prompts

Appendix A. Meta Prompts 46

Figure A.3: Chain of Thought Prompting meta-prompt. When carrying out the final
experiment with the best instruction prompt from Prompt Optimisation and best Chain of
Thought Prompting strategy, we use this meta-prompt and substitute the best instruction
prompt for the meta-instruction seen here.

A.3 Prompt Optimisation - OPRO Meta-Prompts

Appendix A. Meta Prompts 47

Figure A.4: Original OPRO Meta-Prompt (Yang et al. 2023)

A.4 Prompt Optimisation - EdiPrompt Meta-Prompts

Appendix A. Meta Prompts 48

Figure A.5: Adapted OPRO Meta-Prompt.

Appendix A. Meta Prompts 49

Figure A.6: EdiPrompt Initial Instruction Meta-Prompt. This is used to initialise EdiPrompt
as well, where the only instruction-score pair is the original human-generated instruction.

Figure A.7: EdiPrompt Semantically Similar Instructions Meta-Prompt. Orange indicates
meta-instruction, blue is where we insert the initial instruction.

Figure A.8: EdiPrompt Crossover Step Meta-Prompt. Orange is meta-instruction, blue is
the two prompts being combined and their respective scores.

Appendix A. Meta Prompts 50

Figure A.9: EdiPrompt Mutate Step Meta-Prompt.

Appendix B

Full Prompt Optimisation Prompts

This contains all of the EdiPrompt prompts that were generated across the 8 iterations.
We only analysed the mutated prompt as this is the prompt generated after a full run of
the framework. However, we detail all prompts here such as initial, semantically similar,
crossover and mutate. We have columns for the current prompt (which is the best from
selection phase) and the best prompt (which is best from all previous iterations). The
crossover prompt also supplies the explanation that we got from GPT-4 on its crossover
process.

We also provide all of the prompts generated by OPRO across its eight iterations in
Figure B.9.

51

Appendix B. Full Prompt Optimisation Prompts 52

Figure B.1: EdiPrompt First Iteration.

Appendix B. Full Prompt Optimisation Prompts 53

Figure B.2: EdiPrompt Second Iteration.

Appendix B. Full Prompt Optimisation Prompts 54

Figure B.3: EdiPrompt Third Iteration.

Appendix B. Full Prompt Optimisation Prompts 55

Figure B.4: EdiPrompt Fourth Iteration.

Appendix B. Full Prompt Optimisation Prompts 56

Figure B.5: EdiPrompt Fifth Iteration.

Appendix B. Full Prompt Optimisation Prompts 57

Figure B.6: EdiPrompt Sixth Iteration.

Appendix B. Full Prompt Optimisation Prompts 58

Figure B.7: EdiPrompt Seventh Iteration.

Appendix B. Full Prompt Optimisation Prompts 59

Figure B.8: EdiPrompt Eighth Iteration.

Appendix B. Full Prompt Optimisation Prompts 60

Figure B.9: All OPRO prompts.

Appendix C

Vulnerability Framework

Figure C.1: FCA Vulnerability Framework.

61

	Introduction
	Research Questions
	Contributions

	Background & Literature Review
	Deep Learning Based Text Classification
	Large Language Models
	In-Context Learning
	Chain-of-Thought Prompting

	Prompt Optimisation
	Genetic Algorithms in Prompt Optimisation

	Methodology
	Definitions
	Data
	FCA Guidelines
	Aveni Vulnerability Dataset

	Meta-prompt Design
	Experimental Metrics
	F-1 Score
	Self-BLEU

	Processing GPT-4 Responses
	Chain of Thought Prompting
	Chain of Thought Prompting Strategies
	Chain of Thought Explanations
	Chain of Thought Dataset
	Chain of Thought Prompting Experimental Approach

	Prompt Optimisation
	EdiPrompt

	Combining Prompt Optimisation & Chain of Thought Prompting
	Baselines
	Keyword Baseline
	RoBERTa Baseline
	Zero-Shot and Few-Shot Learning
	Chain of Thought Baseline
	Prompt Optimisation Baseline

	Budget

	Results & Discussion
	Zero-Shot and Few-Shot Learning Results
	Chain of Thought Prompting Results
	Prompt Optimisation Results
	Chain of Thought Prompting & Prompt Optimisation Results

	Conclusions & Further Research
	Further Research

	Meta Prompts
	Zero-Shot and Few-Shot Learning Meta-Prompts
	Chain of Thought Prompting Meta-Prompts
	Prompt Optimisation - OPRO Meta-Prompts
	Prompt Optimisation - EdiPrompt Meta-Prompts

	Full Prompt Optimisation Prompts
	Vulnerability Framework

