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Abstract
Researchers enhance the credibility of their claims and analyses through various ap-
proaches. One such method is with hedges. Hedges are single or multi-word expressions
that express uncertainty. Some examples are: ‘may’ or ‘whether’. These hedges also
exhibit certain scopes, which are clauses affected by the hedge. To this end, we ex-
amine the detection of these linguistic devices using state-of-the-art machine-learning
models. We also hypothesise that their use transcends scientific domains. I.e., they are
domain-independent.

First, we briefly examine previous work on their detection, which varies in complexity
from a simple bag of words approach to advanced neural networks. Section three
reproduces and expands on previous work using state-of-the-art transformer models to
detect hedge cues and resolve hedge scopes. We achieve around 0.80 F1 score, similar
to previous work. Although unrealistic, we also show an upper bound of these models
by stratifying the data.

Furthermore, we present a new hedge dataset in section four. We improve upon Bio-
Scope and WikiWeasel, the two main data sets used for hedge detection, by introducing
InfoCorpus. This data set contains annotations about hedge cues, their scopes, and un-
certainty types, the novel combination of which has never been seen in a single dataset.
We analyse the cue and scope distributions in this dataset and find that they are similar
to those of BioScope. This implies that the use of hedging is alike regardless of the
domain (Biomedical and Informatics). Consequently, this dataset allows us to answer
our main hypothesis - ‘Can we generalise hedge cue detection and scope resolution?’
which we answer in section five.

In section five, we perform domain adaptation to show that we can generalise hedge cue
detection and scope resolution to more scientific domains. We train the best-performing
models on BioScope and test them on InfoCorpus. We achieve a slightly lower F1 score
of around 0.70 F1 score. From this, we find that indeed the model performs to a similar
or slightly lower calibre. This suggests that hedge cues may not be domain-dependent.
An interesting question for future work is to investigate whether certain hedges and
the preference to use one uncertainty type over another depend on an author’s writing
style. Furthermore, future work should expand on both the annotation guidelines for
InfoCorpus and its contents.
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Chapter 1

Introduction

1.1 Motivations

Linguistic devices and phenomena have been the spotlight of studies for as long as they
have existed. These range from simple devices such as metaphors and similes, to more
complex ones, like euphemisms and named entities. As such, we have also poured
our efforts into detecting them through various means. One major front is the CoNLL
(Conference on Computational Natural Language Learning), where researchers aim
to solve certain natural language tasks. Some previous tasks were: grammatical error
correction [28], semantic role labelling [6], and more relevant to our project, hedge
detection [7].

Hedges, or hedging, weaken the ‘directness’ of our statements. For example, take the
sentences: ‘It is raining’ and ‘It may be raining’. In the first instance, we are confident
in our statement, that it is indeed raining and there is no question about it. In contrast,
the hedge cue ‘may’ in the latter sentence introduces uncertainty into the sentence, thus
reducing the strength or directness of the claim. We will be investigating two main
types of uncertainty: hypothetical and epistemic.

Researchers and linguists believe that in moderation, this linguistic device lends more
credibility to our findings [16] and that hedges “constitute an essential element of
argumentation” [17]. Its overuse may lead to distrust in the evaluations of the authors,
while the opposite could show an overstatement of the results. We give another example
sentence pair: ‘The model is overfitting’ and ‘It seems somewhat possible, that the
model might be, to some extent, overfitting’. The author of the first sentence is confident
about their findings - perhaps a little too confident and terse. Therefore, readers might
be less prone to believe the findings. Rarely are results definitive in scientific research.
Similarly, we are immediately put off by the claim in the second sentence. Heavy
hedging not only bloats the sentence but also leads the readers to question the validity
of the statement.

Researchers have employed multiple ways to detect these phenomena to varying degrees
of success. These methods range from simple bag of words (not accounting for the
relative positions of words) to more complicated neural networks. In this paper, we show

1



Chapter 1. Introduction 2

that the state-of-the-art machine learning models excel at hedge detection by reproducing
previous work. Moreover, we primarily investigate whether the use and types of
hedging are common across all scientific domains (e.g. Biomedical, Informatics). We
hypothesise that hedges are domain-independent. Some hedge words are only used for
hedging, such as may, whereas others display more ambiguous behaviours, like could.
Therefore, we employ domain adaptation, which involves testing models on a different
domain from that they were trained on. Through this approach, we aim to either confirm
or deny this hypothesis.

To this end, we investigate the following claims:

1. Can we successfully reproduce previous work on hedge cue detection and scope
resolution?

2. Can we maintain a consistent score while varying the distribution of the data for
cue detection?

3. How difficult is it to identify hedge cues and scopes?

4. Can we generalise hedge cue detection and scope resolution to more scientific
domains?

Next, we outline where we answer these questions and briefly summarise our findings.

1.2 Report Structure

We structure our report as such: first, we set up some background information re-
garding hedges and their scopes. We introduce various evaluation metrics that are
used throughout the paper, and we examine previous work that has led to the current
state-of-the-art.

Next, we answer the first two claims in section three. We investigate whether transformer
models can perform hedge cue detection and scope resolution on the BioScope corpus.
Previous work has accomplished the best score of 0.83 F1 score (using XLNet [40]),
while we show that our models also achieve a similar score. We prove our second claim
in section five but show that it is possible in section three. We briefly outline a stratified
sampling method, which results in models that exhibit the same score while training on
fewer data. However, this is only possible in a lab setting where the distribution of data is
known (including the test set). For scope resolution, we successfully reproduce previous
work. We show the results and analyse errors to better understand the capabilities of
these models.

We then spend some time analysing our third claim by examining the annotation
guidelines. We note that although some hedge cues are explicit (e.g. ‘may’), others
require disambiguation of the context (e.g. ‘can’). We were only able to aggregate
annotations for hedge cues (with a Cohen’s Kappa score of 0.92), as the other annotator
faced scheduling issues. However, we also verified that hedge scopes were systematic.
Therefore, it was simple enough to label the scope as the RHS (Right Hand Scope) from
the cue word (if it was either a verb or an auxiliary) to the delimiter.
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We compile these annotations into InfoCorpus. This corpus contains sentences from
scientific papers in the Informatics domain (more specifically, Computational Linguis-
tics). During its annotation process, we encounter difficulties, particularly in the cue
annotation phase. This is in line with the model results, as cue detection appears to
be a harder task than scope resolution. Through this novel dataset, we aim to test
whether domain adaptation is possible in section five. We conduct comparisons between
BioScope and InfoCorpus in terms of their hedge distribution. We also see similar
distributions of hedge types and hedge scopes across the corpora.

InfoCorpus contains annotations regarding cue types (epistemic or hypothetical). This,
in turn, makes our corpus the first (to the best of our knowledge) to include all three
annotation types (cue, cue type, and scopes). This was instrumental in performing
additional tasks in the next section.

In section five, we investigate our main hypothesis by performing in-domain and
domain-adapted tasks. This answers our fourth and main claim. Furthermore, we add
hedge-type classification to the suite of tasks at hand, which achieves the same score
as the other tasks (0.84 F1 score). Most of our domain-adapted models performed at
a similar level to in-domain models (0.73 and 0.91 F1 scores for cue detection and
scope resolution respectively). Therefore, we arrive at a result that suggests that we can
generalise hedge cues and scopes to more scientific domains.

Finally, we conclude our report by summarising our findings. We also include some
areas of further improvement, such as expanding the InfoCorpus dataset, tightening the
annotation guidelines, and investigating whether different writing styles affect the usage
of certain hedges and hedge types.



Chapter 2

Background Review

2.1 Hedge Cues

Authors see hedges as a linguistic device which shows their certainty. This term was
originally coined by Lakoff [23], where he describes them as “words whose meanings
implicitly involve fuzziness”. For example, let us explore the sentence “A dog is sort
of a fish”. The hedge ‘sort of’ takes the subject ‘dog’ and fuzzes its meaning, and
thus certainty, into the object ‘fish’. Other examples of such hedge words are ‘almost’,

‘possible’, and ‘may’.

More recently, William [22] writes that hedges are a necessary linguistic tool to convey
an author’s certainty in writing. When used liberally, a passage seems too vague,
whereas when hardly used, readers have a hard time trusting authors with their blunt
assertions. Thus, he concludes that scientific authors must use this device sparingly.
Moreover, he explains that ”if you state a claim moderately, readers are more likely to
consider it thoughtfully”. All scientific authors want readers to appreciate their findings,
and hedges are an important stepping stone towards achieving their goal.

We see that multiple corpora have been annotated with uncertainty cues 2.1. However,

Figure 2.1: Hierarchical view of the different uncertainty types.
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Chapter 2. Background Review 5

we only focus on the BioScope and WikiWeasel as researchers have published studies
on them. We also see that there are numerous sub-categories of uncertainty, but we limit
the scope of our paper to the top-most layer - epistemic and hypothetical uncertainty.

2.1.1 Epistemic Uncertainty

We follow the definition of epistemic in the Oxford dictionary [32]: ”relating to
knowledge or to the degree of its validation”. Thus, we classify epistemic uncertainty
as uncertainty which shows a lack of knowledge about a state or an event. I.e., given an
event, our knowledge of it cannot be certain whether it is true or false. This definition is
also echoed by Szarvas et al [38]. Here is an example of epistemic uncertainty where
the uncertainty cue is bolded:

This assignment could be due next week.

The subject knows that the assignment is indeed due, but they do not know when it is
due. It could be due next week, next month, or even next year. However, this is not
certain. An intuitive way to understand epistemic uncertainty is by labelling it as a
known unknown. A claim could be true or false, and one of them has to be true.

2.1.2 Hypothetical Uncertainty

On the other hand, we define hypothetical uncertainty as such: hypothetical uncertainty
depicts a world where an event is not certain, similar to epistemic uncertainty. Further-
more, we are also uncertain about our uncertainty (thus, an unknown unknown. That is,
we do not and cannot deduce the probability of said event being true or false. Here is an
example of hypothetical uncertainty, where the uncertainty cue is again, bolded.

We speculate that this sentence contains a hedge cue.

The word speculate shows the author’s uncertainty about the following clause ‘that
this sentence contains a hedge cue’. The author does not know the truth value of
the statement ‘this sentence contains a hedge cue’, and they further are unsure of the
probability of the said event occurring.

Moreover, this type of uncertainty (named ‘investigative’) is a subset of the broader
category that is hypothetical. Other aspects include the different types of modality -
dynamic and doxastic. Dynamic modality refers to events in the future, while doxastic
modality references a speaker’s beliefs. Finally, conditional clauses also express hypo-
thetical uncertainty when used in the present case. Examples of these three cases can be
seen below:

Dynamic: I have to do my assignment.
Doxastic: I believe that my assignment is due soon.
Conditional: If I leave, I can’t do my assignment.

For this paper, we have combined these sub-categories into a general hypothetical
uncertainty label to avoid sparsity of data when annotating.

We must draw a boundary between linguistic uncertainty and uncertainty used in a
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machine learning concept. Epistemic and aleatoric uncertainty [15] in machine learning
deals with a model’s predictions. When a model’s decision is considered ‘epistemic’,
we associate this with the lack of knowledge of the perfect predictor. I.e., either the
model has never seen that kind of input before, and even if it has, the input itself is
ambiguous to produce a perfectly confident answer (e.g. part of speech disambiguation
only given the word). On the other hand, we can classify aleatoric uncertainty as caused
by the stochastic nature of machine learning models (e.g. calculating the conditional
probability P(y | x)). Although epistemic uncertainty in both scenarios is quite similar,
we would like to clarify that we are solely interested in linguistic uncertainties, i.e.,
hypothetical and epistemic uncertainty.

2.2 Hedge Scopes

Hedge scopes are clauses that the respective hedge cues affect, and thus lower the
confidence of the semantics of said clauses. We use braces to show the beginning
and end of hedge scopes ({ and } respectively). Looking at the sentences below, the
cue raises the possibility affects the meaning of the sentence, and therefore, its scope
covers the entire sentence.

This { raises the possibility that adenosine plays a role in the control of metamorphosis
as well as in the response to stress } .

We describe hedge cues and hedge scopes in more detail in section four.

2.3 Hedge Datasets

2.3.1 BioScope corpus

The BioScope corpus [38] is comprised of biomedical papers which have been annotated
for negation and hedges. Sentences that contain these linguistic phenomena have the
following qualities: the word(s) is labelled with its corresponding attribute (i.e., negation
or speculation) and cue ID (E.g. for a cue in paper 2 sentence 20, cues found in this
sentence would be labelled with the ID X2.20.1, X2.20.2, etc); for each cue in the
sentence, the corpus also contains their respective scopes labelled with the cue’s ID.

Auxiliaries (E) Verbs (H, E) Adjectives/Adverbs (E) Conjunctions (H, E)
May Suggest Probable or

Might Question Likely either..or
Can Presume Possible ... versus ...

Could Suspect Unsure and/or
Would Indicate that Unlikely whether
Should Suppose

Seem
Appear

Table 2.1: Hedge Cue Examples
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The table below 2.1 consists of the uncertainty types and some example cues. We see
words such as ‘may’ and ‘might’ always annotated as a cue. On the other hand, other
more ‘general’ words such as ‘or’ or ‘can’ depend on the context that they appear in.
This came to be a major challenge that we had to overcome during our annotation of
InfoCorpus.

2.3.2 WikiWeasel

WikiWeasel [14] is a dataset that contains Weasel [8] tags found in Wikipedia articles.
These tags are matched to words which suggest a degree of uncertainty, which must be
removed to preserve the factual nature of Wikipedia articles. The layout of this dataset
is similar to that of BioScope, in that each sentence is labelled with a sentence ID and
may contain at least one hedge cue.

Key differences to the BioScope corpus include the uncertainty type within each hedge
cue (i.e. hypothetical conditional, hypothetical doxastic, modal probable). There are
two limitations to this dataset. Firstly, the data set does not contain any hedge scopes, so
it is only possible to perform hedge cue detection. Moreover, weasel tags are temporary
and are removed once authors rewrite the article. Thus, it is difficult to check existing
articles as they have been rewritten to omit the weasel tags.

2.4 Evaluation Metrics and Terminology

We use the following metrics and methods to evaluate the performance of models and
annotations. These metrics are specialised to be more sensitive to some aspects of the
results than others and are used depending on the context.

We consider these evaluation metrics at the token-ID level. We elaborate on token
IDs in the ‘transformer’ section. This means that for multi-word expressions, each ID
within that word would be assigned a label. Although the initial worry was that IDs in
multi-word expressions would be assigned different labels, we found that this was not
the case in actuality.

2.4.1 Precision, Recall, F1 Score

Precision measures a model’s ability to assign the correct label for a given prediction.
The formula is given below:

Pr =
T P

T P+FP
(2.1)

On the other hand, recall measures a model’s ability to correctly return one class’ labels
for its predictions. Precision and recall are inversely proportional to each other. Thus,
if we achieve a 1.00 precision by not classifying anything (T P = 0,T P+FP = 0), the
model’s recall is consequently 0.00.
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R =
T P

T P+FN
(2.2)

To address this issue, we use the F1 score to provide a single evaluation metric for a
model’s performance. An F1 score takes both precision and recall into account, taking
their harmonic mean. This allows extreme values to be reflected in the final value,
whereas if we had used a simple average Pr+R

2 , the extremes would have been smoothed
out.

F1 =
2∗ (Pr ∗R)

Pr+R
(2.3)

2.4.2 Accuracy

Accuracy is the most basic metric that can be used. Although it is straightforward to
interpret, it also could lead to misinterpretations. In the context of hedge detection,
there is a huge imbalance in data. For example, in the BioScope dataset, there are a
total of 20,000 sentences, and only 10% of them contain at least one hedge cue. If we
calculate a model’s accuracy in predicting a rare class C, its accuracy would still be
incredibly high even if the model did not predict anything correctly (since T N ≫ T P).
Thus, we do not consider accuracy to be a valid metric to use in our paper.

Accuracy =
T P+T N

T P+FN +T N +FP
(2.4)

2.4.3 Left-Hand Scopes, Right-Hand Scopes

These two sub-clauses pertain to the scopes of hedge cues. LHS (Left-Hand Scopes)
deal with clauses that are to the left of a given cue word and vice versa for RHS
(Right-Hand Scopes).

2.4.4 Cohen’s Kappa

We use Cohen’s Kappa values to evaluate annotations. This value calculates a finer-
grained value by taking random chance into account. For cues, we take the individual
word as is given. On the other hand, we use the aforementioned LHS, RHS, and FS
chunks to determine the quality of annotations. To calculate Cohen’s Kappa, we use the
following formulae 2.5. P(O) stands for the observed probability. I.e., the number of
agreements divided by the total number of gold labels. P(E) is the expected probability,
which is the number of gold labels divided by the total number of items in the collection.

κ =
P(O)−P(E)

1−P(E)
(2.5)
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2.5 Recent Work

We look back at recent work performed on hedge cue detection and scope resolution
below. These methodologies range from a simple bag of words approach to complex
neural networks with varying results. For our paper, we focus primarily on the state-
of-the-art approach but describe earlier works which have influenced where we stand
today.

2.5.1 Early Work

We briefly introduce some early methods that researchers employed. They have not been
tested on the BioScope or WikiWeasel dataset, so there are no grounds for comparisons
against more recent work.

Light et al [24] proposes two methods: string-matching and SVM. Kilcoglu and Bergler
[21] extend their work by incorporating WordNet [13] into a weakly supervised proba-
bilistic model. This expands the hedge word dictionary which allows them to analyse
syntactic patterns for hedges. Furthermore, they mention that future improvements
could be made. For example, more negative quantifiers could be added to the dictionary,
such as ‘little’, which produces a hedge when combined with non-speculative such
as ‘little was known’. Another improvement to this method could incorporate word
embeddings such as GloVe [31]. WordNet operates at a thesaurus level and does not
consider the semantics of each token as is. Therefore, we could perform more deliberate
expansions using word vector embeddings to calculate whether the semantics of the
word are related to hedges.

Szarvas [33] follows on from Medlock and Briscoe [26] by using a maximum entropy
model. They suggest that some words, especially stop words, are also classified as
identifiers for hedges. A good example is the word it, which is used for many hedge
verbs such as it appears, it shows, it is likely, and more. To combat the noise, they
introduced bi-grams and tri-grams into the probability model and filtered out any
features which were sub-strings of a longer string.

2.5.2 CoNLL 2010 Shared Task

More recently, researchers participated in the CoNLL-2010 Shared Task [7]. They were
tasked with answering two questions: detecting uncertainty in sentences, and measuring
their scope. They were given two data sets, which were also used in previous papers
mentioned above: BioScope and Wikipedia articles containing weasel tags. Here, we
summarise their findings and also their limitations.

On the BioScope data set, papers reported results ranging from around 30.3 to 86.4.
However, an important distinction is that they carried out a classification problem
(e.g. whether sentences contained at least one cue) as opposed to performing token
classification (e.g. whether each token in the sentence is a hedge). Furthermore, these
papers mostly agree that a binary classification of uncertainty in sentences might not be
the best way to map complex sentences that might contain more than one hedge [34].
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What differs between each paper is their approach to detecting hedge cues and their
scope. The most common machine learning models appear to be an ensemble method
with CRF (Conditional Random Fields) and MaxEnt classifiers. There are some excep-
tions, however. Kilicoglu and Bergler [20] use a rule-based method which extends their
previous work [21].

Ji et al [18] proposes a system using Average Perceptron. Their implementation ranked
the highest in terms of precision (0.942), but the lowest in recall (0.066). They employ
n-gram patterns which are used as features. There is room for improvement here. Ji
et al mention that they would like to experiment with other features such as chunks.
Moreover, we could use more advanced algorithms than the Average Perceptron, such
as a neural network.

Examining the scope resolution task, we again see similarities. Most papers use a
Conditional Random Field, although Kilicoglu and Bergler [20] stick with their rule-
based methods. Farkas [12] also points out that the features used in these models were
also very similar to those used for hedge classification, with the addition of dependency
relationships between phrases and hedge cues.

Morante et al [27] uses a kNN memory-based model TiMBL [9], As a result, they
achieved the highest F1 score of 0.57. For the model’s features, they used PoS (Part
of Speech) tags, clause construction, and other features extracted from the dependency
trees. There is much work to be done in hedge scope resolution. They also advise using
different machine learning techniques, specifically on identifying the scope of hedge
cues. We intend to investigate whether current state-of-the-art models can perform
better.

2.5.3 Transformers

Before we describe the most recent works in hedge detection, we must understand the
state-of-the-art model architecture used in these papers. BERT is pre-trained on a large
corpus which varies for each model. Afterwards, BERT can be fine-tuned on a different
dataset for a variety of tasks such as Named Entity Recognition, Question Answering,
and Token Classification.BERT takes in two types of data as input: Token IDs and
Attention Masks

Token IDs relate to the mapping between each word to one or more tokens. The
original BERT uses WordPiece embeddings developed by Wu et al [39] which contains
a vocabulary consisting of 30,000 tokens. Moreover, the input sentence must be of
the same length. This is achieved by concatenating [PAD] tokens to the end of each
sentence. We show an example of tokenisation in A.1 without padding.

Some models, such as RoBERTa [25], perform byte-pair tokenisation. BPE (Byte-
Pair Encoding) is an algorithm which compresses text encodings and allows for better
generalizability of tokenization in various domains. For example, BERT would tokenize
the right bracket and full stop ().) as two separate token IDS (1007, 1012), whereas
RoBERTa would compress these encodings into one token ID (322). This difference
proved to be tricky when pre-processing our dataset. Furthermore, we believe that BPE
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introduced problems when training RoBERTa, leading to erroneous and inexplicable
results seen in later sections.

2.5.4 Methodologies

Britto and Khandelwal [5] propose training and testing transformers on the BioScope
dataset and the SFU review dataset. We only look at the former (BioScope) as it
contains scientific papers, whereas the former contains reviews for different products.
Using three BERT variants (BERT, XLNet [40], RoBERTa), they achieve significant
improvements on both tasks. They define their classes as being the following: (Non-Cue,
Single-Word-Cue, Multi-Word-Cue, and Padding). They fine-tune each model on both
the BioScope Abstracts (BA) and BioScope Full Papers (BF), after which they perform
domain adaptation or joint training to analyse the models’ generalizability.

To compare our findings, we examine the models that have been trained and tested only
on the full Bioscope papers (BF) 2.2. Moreover, this table includes notable previous
works. We could not include some papers that we included earlier as they performed
slightly different tasks (sentence-level vs word-level hedge detection).

Papers F1

BERT [5] 81.66
XLNet [5] 83.24
RoBERTa [5] 79.31
Tang et al [35] 81.3
Velldal et al [37] 78.7
Ji et al [19] 77.44

(a) Hedge Cue Detection Performances

Papers F1 (Average) F1 (First)

BERT [5] 91.60 90.42
XLNet [5] 83.24 91.88
RoBERTa [5] 92.02 91.30
Morante [27] 57.32 -
Kilicoglu [20] 55.21 -

(b) Hedge Scope Resolution Performances

Table 2.2: Hedge Detection and Scope Resolution Performances

2.6 In conclusion

Researchers faced several limitations when completing these challenges: lack of anno-
tated data and old methodologies. The state-of-the-art implementation only showed
that scope resolution was possible in the biomedical domain, and earlier works did
not perform well at all. We aim to re-implement previous work with improvements in
both pre-processing and model training to obtain a better result. Moreover, we will
generalise this task to more domains in the form of InfoCorpus, which contains papers
from Computational Linguistics.

In the rest of this paper, we first reproduce previous state-of-the-art hedge cue and
scope detection using BERT and its variants. Next, we introduce InfoCorpus: a dataset
containing hedge cues and their scopes in the same style as BioScope and WikiWeasel.
We compare these three datasets, noting similarities and differences in annotated cues.
Finally, we train and test BERT variants through domain adaptation and discuss the
results.
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Reproduction of Previous Work

In this section, we perform cue detection and scope resolution on the BioScope dataset.
Our methodology stems from previous work, but we also incorporate our approaches
to reinforce areas where the previous paper was unclear. We omit results on the
Wikiweasel dataset due to the huge amount of resources required to train BERT variants
for 60 epochs. We first show the pre-processing steps of the BioScope data. Then, we
perform hedge cue detection followed by hedge scope resolution. We achieve a similar
performance while varying the distribution of the training data, which suggests that we
can use less data to train these models. However, we note that this is unrealistic. We
finally present our results and discuss them.

3.1 Methodology

3.1.1 Preprocessing

We struggled to extract relevant information from the BioScope XML file. Due to their
file structure, we encountered difficulties matching cues and their scopes. Therefore, we
used multiple sliding windows to generate class labels for each token. Although largely
successful, we found that this algorithm misclassified certain words if they contained a
cue within them. For example, we show that StratifiedBERT (1-to-4) misclassified

‘orthology’ B.1b as not a cue when in fact we labelled it as a hedge. This was due to
the presence of the hedge cue ‘or’ in the same sentence. Thus, ‘orthology’ was also
mislabeled as a hedge. However, this was an isolated instance and we have confirmed
that the algorithm has not mistakenly labelled other words as cues.

3.1.2 Dataset Splitting

We also explore some dataset-splitting methods. Current state-of-the-art methods do
not mention the highly imbalanced labels. Therefore, when performing the standard
70-15-15 splits for training, validation, and test dataset, the resulting dataset could end
up with more sentences containing single and multi-cue words than others, leading to
two potential outcomes:

12
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• Outcome 1: There are more cue-word-containing sentences in the training set
than in the test. Since our models already achieve a near-perfect score for non-cue
words, this would result in a higher-than-normal average macro F1 score when
testing our model.

• Outcome 2: There are more cue-word-containing sentences in the test set than in
the training. The model would not train on any meaningful data. Therefore, we
would see the model underfitting to the data and receive a lower-than-expected
average macro F1 score during testing.

To avoid these outcomes, we perform a stratified data sampling method. We ensure
that each dataset contains the same ratio of sentences that contain at least one hedge
cue to those that do not contain any cues. In practice, we cannot guarantee that the
proportions of each relevant class (non-cue, single-cue, multi-cue) are the same in the
train, validation, and test set. Furthermore, we did not see any noticeable improvements
when using this stratified method compared to previous work.

Moreover, we perform another set of stratified sampling. This time, we balance the
proportion of sentences that contain hedge cues to those that do not on a 1-to-k basis
(where k is the proportion of sentences that are hedge-free). We found that not only did
this approach reduce training times, but it also maintained a relatively consistent F1
score. We validate this behaviour in section five. Of course, we must also remember
that this provides an optimistic upper bound on the score. This behaviour is impossible
to recreate in a realistic scenario and was only a test to see the potential of these models.

Future work could examine the number of hedge cues present in each sentence. Cur-
rently, we do not take this into account and only flag a sentence as either containing at
least one cue or not. Therefore, potential improvements could include adding weights
to each sentence based on the number of cues. However, we must note that this is purely
in an experimental setting and thus not reflective of realistic distributions of class labels
(we cannot know this before examining the entire dataset).

3.1.3 Class Weighting

State-of-the-art works also mention that they used class weights to ensure that the model
did not train on padding data. They set all weights to 1 except for the padding, which
they set to zero. During reproduction, we found that the models’ loss would increase
exponentially, which suggests that the model was not learning at all from the given data.
When inspecting the test results, it would label all tokens as non-cue (including the
padding). Therefore, we first omitted these weights from the model parameters. This
produced a slightly better result - the model received a 1.00 F1 score for both non-cue
words and padding but still struggled when it came to the hedge cues. Instead, we use
sklearn’s [29] compute class weight function to learn the weights of each class.
This function allocates weights according to the inverse frequency of the class in the
data.
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3.1.4 Token Aggregation Methods

Britto and Khandelwal introduce two algorithms which aggregate token-level classi-
fication into word-level classification. The Average Token method takes the sum of
probabilities for each token and calculates the most likely label. On the other hand,
the First Token method assigns labels based on the first token and discards subsequent
probabilities for each word. Although these algorithms are used in scope resolution, we
also extend them to cue detection. However, we do not see any meaningful increases in
the F1 score of the models when compared to the token-ID-level classification.

3.1.5 Hedge Cue Detection

We reproduce previous work done by Britto and Khandelwal. Due to the lack of any
meaningful code presented in the paper, we cannot be completely certain that our
pre-processing of the BioScope paper matches theirs. However, we can confirm that
our trained models achieved a similar evaluation score to Britto and Khandelwal. We
used a combination of our local machines and Google Colaboratory [4] to train and test
our models. We found that a major roadblock was the lack of resources needed to train
these models, especially bigger models like XLNet which took around 90 minutes per
epoch using a T4 GPU. Therefore, it was imperative to make sure we saved the models’
weights to ensure that valuable training time was lost and that we kept these models for
domain adaptation, which we elaborate more in section five. Outside of this, we kept all
hyper-parameters the same (learning rate = 3e−05, batch size = 8, epochs=60).

3.1.6 Hedge Scope Resolution

We perform similar steps to that of hedge cue detection for hedge scope resolution.
We only tested models on the BioScope data set as WikiWeasel did not contain any
scope annotations. Notably, we came across some hurdles when training RoBERTa. As
mentioned before, this was due to RoBERTa’s byte-pair tokenization, which tokenizes
some pairs of characters into a single token ID rather than multiple. Thus, the token
IDs of a scope within a sentence contained tokens which were unseen in the sentence.
In the sentence below, we see that the end bracket token ‘)’ is included within the scope,
while the full stop is not. Therefore, BPE concatenates these two token IDs (43, 4) into
a single sub-word token ID (322) denoting an end bracket and full stop (‘).’).

... { might provide additional stability to the mature DCC (MatDCC) } .

Fancellu et al. [11] state that punctuations and other delimiters facilitate easier scope
resolution for negation (and by extrapolating, for uncertainty). Thus, removing these
problematic pairs was not an option. Had it been just the full stop that was causing
problems, we could have replaced them with EOS (End Of Sentence) tokens, but this
was not the case. Therefore, we inserted a blank space between the two characters.
Table A.1 shows the before and after of these problematic tokens.
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3.2 Results

3.2.1 Hedge Cue Detection

We show the average macro Precision/Recall/F1 score of models (BERT, XLNet,
RoBERTa) trained and tested on BioScope. We used early stopping to tune our models.
Early stopping ensures that our model does not overfit the training data by finishing the
training early if the tracked metric does not increase. Therefore, we track the average
macro F1 score and set the patience to six.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.73/0.93/0.80 0.74/0.93/0.81 0.74/0.93/0.81
XLNet 0.72/0.90/0.78 0.72/0.90/0.78 0.72/0.90/0.78
RoBERTa 0.73/0.93/0.80 0.73/0.93/0.80 0.73/0.93/0.80

Table 3.1: Hedge Cue Detection results for BERT, XLNet, and RoBERTa.

We conducted additional experiments to see whether varying the distribution of sen-
tences with hedges in the dataset affected the score. We calculated the total number
of sentences with at least one hedge cue (328) and sampled varying proportions of
sentences that do not contain any hedges for our training set. We trained additional
BERT models using the same hyperparameters and show our results in 3.2.

StratifiedBERT (1-to-X) is a BERT model trained on stratified data as mentioned
before. We ensure that there is an equal proportion of classes (namely single and
multi-expression hedges) in the training, validation, and testing set. In the columns
x-to-y describing each model, x refers to the proportion of sentences that contain at least
one cue and y refers to those that do not contain any cues. We analyse this phenomenon
in further detail in section five by training and testing BERT on InfoCorpus.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
1-to-1 0.81/0.91/0.85 0.81/0.91/0.85 0.81/0.91/0.85
1-to-2 0.73/0.96/0.79 0.73/0.96/0.79 0.73/0.96/0.79
1-to-4 0.76/0.87/0.81 0.76/0.87/0.81 0.76/0.87/0.81

Table 3.2: Hedge Cue Detection results for StratifiedBERT with different ratios of data.

Finally, We identify our models’ predictions and identify areas where they misclassified
words. Table B.1 shows the false positives and false negatives returned by BERT trained
on unstratified and stratified data.

3.2.2 Hedge Scope Resolution

We again show the average macro Precision/Recall/F1 scores for each model trained
and tested on BioScope 3.3. Unlike cue detection, we are not able to utilise a similar
approach for altering the distribution of data. Since we only train our models on
sentences that have a scope, there is no way for us to vary the ratio of sentences that do
not have a scope to those that do. However, future work for scope resolution could test
these models on sentences that do not contain any scopes to verify their performance.
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P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.93/0.99/0.96 0.93/0.99/0.96 0.93/0.99/0.96
XLNet 0.95/0.99/0.97 0.95/0.99/0.97 0.95/0.99/0.97
RoBERTa 0.94/0.98/0.96 0.94/0.98/0.96 0.94/0.98/0.96

Table 3.3: Hedge Scope Resolution results for BERT, XLNet, and RoBERTa.

3.3 Discussion

Britto and Khandelwal note a non-insignificant improvement in the F1 score when
using the classification algorithms. However, during our implementation, we only saw
a 0.01 increase or no increase at all when using either the Average Token or First Token
method compared to the token-only method. Although these metrics do not differ in
performance, we still show them for completion’s sake.

3.3.1 Hedge Cue Detection

Interestingly, cue detection models reported a higher recall than precision 3.1 3.2. This
suggests that models returned a high number of false positives (i.e., classifying non-cue
words as cues). Furthermore, table B.1 confirms our hypothesis; hedges are context-
specific (in terms of the sentence they are used in, not domain-wise). Take the word

‘considered’ for example. Both models (BERT and StratifiedBERT (1-to-4)) have
misclassified this word as a cue. This word sometimes appears as a hedge in BioScope
and WikiWeasel, showing that ‘could’ may not be domain-dependent in this instance.
However, there are cases where this word is not a hedge. For example, the sentence ’We
also could not identify the 5-bp TSDs and TIRs characteristic of the Transib superfamily’
contains the same word. This is not an instance of hedging, as the semantics of this
word lean more towards the capabilities of the subject rather than the possibilities.

There were more examples like the above. We see that most false positive words for
BERT and StratifiedBERT (1-to-4) can be used as hedges (e.g. ‘potential’, ‘argue’,
etc). Therefore, this reinforces the idea that cue detection is challenging due to the
contextual ambiguities of words. Even state-of-the-art transformer models struggle to
classify non-cue words.

We note that we can vary the training dataset size while maintaining a consistent F1
score 3.2. In terms of the models’ training times, we saw that StratifiedBERT (1-to-2)
took around half as long per epoch than StratifiedBERT (1-to-4) (four minutes vs ten
minutes per epoch), even though their performances were very similar. This shows us
that we can efficiently reduce the size of the data without significantly harming the
overall performance. We give evidence for this claim in section five.

A potential issue with reporting the average macro F1 score would be the smoothing of
label scores (for cue detection) with that of either the non-cue or the padding. Since
all our models perform extremely well for non-cue and padding (> 0.99 F1 score
respectively), this would affect our reported average macro F1 score. This obscures the
fact that the model did not learn the given inputs at all and managed to classify half the
inputs correctly (when it did not).
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We can treat hedge cue detection as an IR (Information Retrieval) task. Therefore, it
seems appropriate to only consider labels that matter (i.e., those that we want to detect).
To this end, a better evaluation metric would be to take the harmonic mean 3.1 of the
P/R/F1 scores for the cue labels (single-cue and multi-cue). This takes into account the
extreme values that the average would not. Therefore, we would be able to better detect
whether there were any unusual outcomes in the relevant labels. Unfortunately, we were
not able to use this metric in practice as some previous model files were corrupted.

H(x1, . . . ,xn) =
n

∑
n
i=1

1
xi

(3.1)

3.3.2 Hedge Scope Resolution

We also confirm that our models achieved similar performance to the state-of-the-art
models for scope resolution. Most hedge cues in BioScope are either verbs (suggest,
appear) and auxiliaries (may, might, can) 3.4.

Stemmed cue Count
suggest 72
may 67
might 40
appear 38
possibl 36
like 36
whether 28
could 28
or 26
would 21

Table 3.4: Stemmed Cues and Counts in BioScope

Furthermore, we show the distribution of different parts of speech tags (e.g. VERB,
ADJECTIVE, ADVERB, etc) in BioScope 3.1a. We see that the VERB and AUX (auxiliary -
e.g. ‘may’ tags outnumber all other tags by a significant margin, with the ADJ (adjective
- e.g. ‘unclear’) tags coming in at third. From this, we can glean that hedges are mostly
auxiliary words, verbs, and sometimes adjectives.

Moreover, we also plot the distribution of parts of speech tags that only have an
RHS in 3.1b. We can see the all cues with SCONJ (subordinating conjunction, e.g.
‘whether’), ADV, or NOUN tags only exhibit RHSs (Right-Hand Scope). Therefore, when
we encounter cues with these part of speech tags, there is a high possibility that they
only have an RHS.

On the other hand, we can see that around 50% of tags that are AUX or VERB exhibit only
an RHS. This behaviour is due to the use of raising verbs or the passive voice. When
we encounter these linguistic devices, we tend to incorporate the subject in the scope as
well. Therefore, cues with these tendencies exhibit both an LHS and RHS. We expand
on this phenomenon in section four.
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Finally, we can see that the majority of CCONJ (coordinating conjugation, ‘or’ - all
other CCONJ words are not used in hedging) cues mostly only had LHSs, or LHS and
RHS, but never only an RHS. We expected these types to show this behaviour. These
conjunctions connect two sub-clauses or multiple words. Thus when we encounter a
hedge with this tag, the author would be uncertain about all words that are encompassed
in its scope.

(a) Distribution of scopes with respect to the
Part of Speech tags of cues.

(b) Distribution of cues with Part of Speech tags
that only have an RHS (BioScope).

Figure 3.1: Distribution of LHS and RHS for cues with different parts of speech tags
(BioScope)

We also showcase two types of errors where the prediction differs from the ground
truth:

Difference 1: Limitations of multiple scopes in a sentence

Prediction: nevertheless, the { apparent lack of rag2 - ... suggests that rag2 was
introduced in a separate event in jawless vertebrates } .

True: nevertheless, the { apparent lack of rag2 - ... } suggests that rag2 was introduced
in a separate event in jawless vertebrates.

In this example, the model has ‘mistakenly’ labelled the clause ‘suggests that...vertebrates’
to be included in the scope. However, this is an unfortunate byproduct of our pre-
processing stage for scope resolution. Since a sentence can have multiple cue words
(and therefore, multiple scopes), we had to separate them such that there were duplicate
sentences with different cues and scopes. Although the model’s predictions are tech-
nically correct, we have had to classify this as an incorrect prediction as we are only
concerned with the scope of the bolded cue.

A better evaluation metric would be to combine the individual scope annotations for
each sentence to allow for the existence of multiple cues. However, since there could be
multiple cues, we would not be able to map each cue word to its scope, thus reducing
the readability of the results.

Difference 2: Failure to end at the delimiter

Prediction: ... { dl and ser have been proposed ... ( } ...

True: ... { dl and ser have been proposed ... } (...
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This is a simple error - the model has failed to acknowledge the delimiter (open bracket
token ‘(’) and extended the span past it.

Upon further inspection, we found that all errors fall into these two categories. From
this, we can assume that transformer-based models are even better at scope resolution
than the results shown in the earlier table. This is because the models will label all
existing scopes of hedge cues in a sentence. Although we have labelled these incidents
as ‘errors’ when reporting our scores, we must look at the overall picture, which is to
find all scopes of hedge cues given a sentence.

Moreover, we believe that scope resolution as a task is trivial for these models. This is
because many of these scopes are systematic and do not have ambiguous rules like hedge
cues. For example, if the model sees a ‘subordinating conjunction’ (e.g. ‘whether’),
then the only scope possible would be from the cue word to its right until the end of the
clause (i.e., it only produces an RHS according to 3.1. Transformers can learn complex
linguistic phenomena due to their ability to attend to different parts of the input sentence.
Therefore, they perform extremely well on scope resolution without severe faults.

3.4 Conclusion

We have successfully reproduced previous work on hedge cue detection and scope
resolution. We built additional modules such as pre-processing the BioScope XML file
and finding solutions to the misaligned scopes due to BPE. This was a difficult task, as
the XML file was in a tricky format, and it required different iterations of pre-processing
algorithms. Furthermore, we used class weights based on their frequency to train our
models. We found that the two word-level classification algorithms did not provide
a tangible difference during the inference period for both cue detection and scope
resolution.

We also experimented with varying the input data for hedge cue detection. We increased
the proportion of sentences that did not contain any hedges. The resultant models
returned a similar F1 score, with StratifiedBERT (1-to-1) performing the best at 0.85
F1 score. We conducted this small experiment to examine the upper bound of these
models. However, this would not be representative of a realistic scenario as we would
not know the distribution of hedges beforehand.

For scope resolution, our models performed also performed similarly to previous work.
We showed the distributions of LHS and RHS of hedge cues with various parts of speech
tags. This suggested that around half of the cues were either auxiliaries or verbs and that
most of them only had an RHS. Since these scopes are quite systematic, we can attribute
the high performance of these models to the relatively simple task of annotating scopes.

Finally, we tentatively state that the average macro F1 score is not the best metric to
evaluate our models. Since the models achieve near-perfect F1 scores for non-cues and
padding, this skews the actual performance on single and multi-word cues. Since we
are only concerned with labelling the cues, a potentially better score would be to take
the harmonic mean of single and multi-cue F1 scores.
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InfoCorpus

InfoCorpus aims to combine the label types of WikiWeasel and BioScope. WikiWeasel
contains information about the types of uncertainty, such as Hypothetical Doxastic and
Modal Probable, while BioScope contains hedge scopes. Therefore, our dataset allows
training and testing models for three tasks, the combination of which is novel (hedge
cue detection, hedge type detection, and hedge scope resolution). We first introduce the
corpus. We describe the annotation guidelines for cues and scopes in depth. Then, we
analyse the annotations, examining some examples where annotations differed. Next,
we take a step back and look at the bigger picture. We analyse whether hedge cues
are domain-specific by comparing InfoCorpus to BioScope. Finally, we compare the
two available corpora (BioScope, WikiWeasel) to InfoCorpus and investigate whether
uncertainty types are used at different parts of a scientific paper.

4.1 Overview

InfoCorpus contains 1124 sentences from five papers in the Computational Linguistics
domain. There are a total of 146 instances of hedges in 106 sentences. This results in
roughly 10% of sentences in InfoCorpus containing a hedge cue and is around half that
of BioScope. Even with the smaller proportion of sentences with cues, we still show
that our models produce slightly lower if not similar performances for cue detection
and scope resolution. The names and IDs of these papers are as follows:

We mainly chose these papers due to their similarities in domain. Not only are they
Informatics papers, but they are also from the same sub-domain (Computational Lin-
guistics). This ensures that if there are any domain-specific languages, they will be
present in InfoCorpus.

We found the annotation process to be quite complex when building InfoCorpus. We
describe the annotation pipeline in C.1. For example, we did not have access to monetary
incentives for non-university-affiliated personnel. Therefore, we found it difficult
to recruit human annotators. Furthermore, we only had access to two annotations.
Although this weakens the annotations’ reliability, we nevertheless achieved a high
IAA (Inter-Annotator Agreement) score. Thus, we can ensure their correctness, but

20
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Paper ID
Can Language Models Be Tricked by Language Illusions?
Easier with Syntax, Harder with Semantics [42]

1

ArchBERT: Bi-Modal Understanding of Neural Architectures
and Natural Languages [1]

2

Predicting Evoked Emotions in Conversations [2] 3
BatchEval: Towards Human-like Text Evaluation [41] 4
Language Model as an Annotator: Unsupervised Context-
aware Quality Phrase Generation [43]

5

Table 4.1: Paper ID Table

future work should be done to verify them. Moreover, we found that rewriting existing
annotation guidelines to fit our project was challenging. This pipeline required us to
build numerous scripts to filter and aggregate annotations, calculate the IAA scores and
process for further annotations (e.g. cue annotations → scope annotations). Finally,
building the InfoCorpus XML file itself took many iterations due to complexities with
aligning the scope and cue annotations for each sentence.

4.2 Annotation Methodology

We tried to imitate the style of BioScope and WikiWeasel as closely as possible. For
example, we have removed all citations where possible. If not, we removed the men-
tioned year. Compared to BioScope and WikiWeasel, Computational scientific papers
also include Mathematical notations that the former data sets do not contain. Therefore,
we have converted in-line equations and formulae into LATEXnotation following Peng
et al [30]. For example, the in-line formula {s ∈ S} would look like 4.2 in the corpus.
This took a rather long time as it involved manually converting existing equations to the
LATEXformat. Fortunately, it appears that models have successfully accepted them as
inputs as seen in section five.

\{ s \in \mathcal{S} \}

We employ min-max annotation guidelines laid out by Vincze et al [38]. We approach
cue annotation with a minimalist strategy - i.e., we mark the smallest possible unit as
a hedge cue. On the other hand, we perform scope annotation to maximise the scope
size - i.e., we try to encompass the most number of words within the scope. We used
Prodigy [10], an annotation software, to perform both cue and scope annotations.

4.2.1 Cue

We annotate a hedge cue to have the smallest number of words possible and mark it
with the tag cue. Moreover, we add the uncertainty type to the cue tag. For epistemic
uncertainty, we tag the hedge word as e cue, and for hypothetical, h cue. The proper
hedge cue annotation for the sentence below would be the following:
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It e cue<might> rain.

In some cases where the hedge cue phrase is partitioned across the sentence, we
label each part of the phrase as a separate cue. For example, we label the individual
components of either...or as a cue.

This could e cue<either> mean that LMs strictly abide by linguistic rules to compose
the language literally e cue<or> that LMs have trouble understanding this

complicated set of sentences overall.

However, a hedge cue may also be used in other contexts where it does not signify
uncertainty. Take this sentence:

In contrast, if the iORF is actually two adjacent genes, then upstream and downstream
residues of the stop codon will appear separately in many alignments. (2)

Although we may have tagged the word appear in (2) as a hedge cue previously, this
word is synonymous with be seen for example. Therefore, we must be careful when
annotating hedge cues as they may or may not show uncertainty in their contexts.

Hedge cues can also be a multi-word expression as mentioned before. For example,
the individual words that make up the cue in the sentence below (to, the, best, of, our,
knowledge) do not convey uncertainty when used on their own. However, when joined
together, they exhibit a unique definition that only this combination of words can. We
label this multi-word expression as an epistemic cue.

h cue<To the best of our knowledge>, ArchBERT is the first solution for joint
learning of architecture-language modalities.

We show the process of annotating cues as either epistemic or hypothetical. There are
four stages:

1. Normalise sentence - turn nominalisations into their respective forms (e.g. Prepa-
ration might be needed for this exam → we might need to prepare for this exam).

2. Remove cue words - (e.g. We will prepare for this exam.)

3. Format the sentence to fit the test graph 4.1 - (e.g. We might need to prepare for
this exam, but we will not prepare for this exam.)

4. Decide whether this is true or not - (e.g. since the subject knows that they are not
certain about the statement ‘we will prepare for this exam’, it is false that they
are not going to prepare for the exam.

5. Thus, we can label the cue might as an epistemic uncertainty.

We now show an instance of labelling a hypothetical uncertainty. Compared to epistemic
cues, this uncertainty type covers a broader range of modalities. We previously showed
uncertainty types in 2.1 and we expand on them below:

• Investigative (e.g. speculate, investigate)

• Condition (e.g. if, unless)

• Doxastic (beliefs and hypotheses e.g. assume, think)



Chapter 4. InfoCorpus 23

Figure 4.1: Uncertainty test graph. If the logical answer to ‘x cue y, but x not y’ is true,
then the cue is Hypothetical. Otherwise, it is epistemic. This graph is taken from [3],
but its usage is rather unclear. Future work should aim to describe it in more detail and
make it more accessible.

• Dynamic (duties and desires e.g. should, want)

We go through the same steps as before for the sentence: ‘We discuss whether LSTMs
solve the vanishing gradient problem.’

1. Normalisation: N/A - there is nothing to normalize.

2. Cue removal: LSTMs solve the vanishing gradient problem.

3. Sentence formatting: We discuss whether LSTMs solve the vanishing gradient
problem, but we are sure that LSTMs do not solve the vanishing gradient problem.

4. Use graph: Currently, the subject believes that the statement x cue y is true
regardless of the ground truth in their world. Therefore, the cue word whether is
a type of hypothetical doxastic uncertainty.

In practice, we did not need to go through these steps every time we suspected a word
could be a hedge. For example, words such as ‘may’ or ‘whether’ are always used to
signify uncertainty (epistemic and hypothetical respectively) in a sentence. Therefore,
we labelled them as hedges whenever we encountered these words. The test proved to
be more useful for ambiguous cases such as ‘could’, ‘appear’, and ‘can’.

4.2.2 Scope

{ The chances of this happening is very likely }

We label scopes by inserting scope tags ({ and }) at the beginning and end of the scope
before any delimiters. Delimiters are punctuations or sequences of characters that
signify the end of a clause (e.g. ‘?’, ‘,’, ‘.’). Furthermore, we include the hedge cue
within the scope annotations. This assumes that cues and scopes are always contiguous.
In the most basic scenarios, cues appear within the scopes when they directly have a
subordinate clause attached to them. In more complex linguistic structures, cues might
affect the entirety of the sentence, as is the case for sentential adverbs and adjectives.
An example of a sentential adverb is given above. Finally, our assumption would not
hold if cues exhibit long-range dependency behaviours to clauses or words, where there
is a considerable distance between the cue and the clause that it affects. However, we
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did not find these examples within the BioScope and InfoCorpus corpora.

Some sentences may have ambiguous semantics, such as the one below.

Mild viral e cue<or> reactive airways disease is detected.

We could label the scope to be { viral or reactive }, or { mild viral or reactive }.
Following the max strategy, we include as much of the clause as possible. Thus, we end
up with this annotation. Note that the end tag (}) comes before the delimiter (full stop).

{ Mild viral e cue<or> reactive airways disease is detected } .

Hedge cues with the same part of speech tags often display similar behaviours in their
scopes. For example, sentential and non-sentential adjectives exhibit different scopes.
Consider the following two examples:

The patient showed a { e cue<possible> case of the flu } .

{ The flu, however, is e cue<possible> } .

In the first sentence, the adjective possible is used to describe the noun phrase case
of the flue, which results in its scope. However, the adjective encompasses the entire
second sentence, and we label the full sentence as the scope.

Furthermore, when we encounter hedge cues that are verbs, adjectives, and adverbs, we
label the clause to the right of the cues. Following the max strategy, we also include any
adjuncts. Adjuncts are words which do not change the sentence’s semantics if removed.
Take this for example:

My family seemed to have had gone to the store yesterday.

In this sentence, the word ‘yesterday’ is an adjunct - the sentence is complete even
without the word. Thus, we would annotate it like so, where we include the word
‘yesterday’ within the scope of seemed:

{ My family e cue<seemed> to have had gone to the store yesterday } .

It should be noted that we have labelled ‘My family’ into the scope. This contradicts the
rule above where we label everything to the right of a verb to be in its scope. There is
an exception to this rule, where we must take special care for raising verbs. These are
verbs which raise the subject out of its current subordinate clause to the main clause.
Some examples of raising verbs are ‘seems’, ‘appears’, ‘expected’, etc. Taking the
earlier sentence:

It seems that my family has gone to the store yesterday (2)

we see that ‘seems’ is a raising verb. Thus, we can raise the subject (‘my family’) of the
subordinate clause (that my family has gone to the store yesterday) to the main clause.
We end up with the following:

My family seems to have gone to the store yesterday (3)

If we follow the guidelines, our scope would include ‘my family’ in sentence 2, but not
in sentence 3, which is contradictory. Therefore, when we encounter a raising verb, we
must also include the subject within the scope. We would annotate sentence 3 as such:
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{ My family e cue<seems> to have gone to the store yesterday } .

Finally, we must take care when annotating cues in a passive clause. Take the following
example:

This film e cue<could> be watched in cinemas or at home.

Since there is a passive verb ‘be watched’, we must label the scopes as if the sentence
was in the active. I.e., we should first normalise the sentence as such before annotating
the scopes. We can now perform the annotation as normal.

We { e cue<could> watch this film in cinemas or at home } .

4.3 Results and Discussion

We evaluated annotations received from two annotators. Both (involving the author)
were not native but fluent in English. Before the cue detection phase, we held a meeting
where we explained the annotation procedure, as well as annotated some example
sentences to help the annotator familiarise himself with tasks.

Due to scheduling conflicts, one of our annotators had to drop out of the scope annotation
sessions. Given that this is a student project, we could not avoid certain limitations with
various resources (time, technical, etc). Therefore, we use the preliminary annotations
from a single annotator (the author) for the scope labels. Although this lacks verification
from a second pair of eyes, we show that scopes are more systematic than cues in the
discussion. Thus, we proceed with these annotations and leave future work to compare
and verify our existing annotations.

4.3.1 Cue annotations

During the annotation phase, we raised an important question. Do the writing styles
of scientific papers vary across domains? Earlier, we suggested that certain words
could signal uncertainty when used in some domains, but not others (e.g. likely in a
Biomedical vs Mathematical context). However, this may not completely be the case.
Upon inspecting the cues found in InfoCorpus 2.1, we can see that most cues here are
also present in BioScope 3.4, such as ‘likely’. Therefore, hedge cues seem to not be as
domain-dependent as we had previously thought.

An alternate hypothesis could be that hedges are instead dependent on the author.
Authors may have different writing styles - they could concatenate brief sentences
together, they could chain multiple hedges, or their writing could be extremely terse.
This would make for an interesting investigation, but this is out of the scope of our
project. We continue the paper under our first hypothesis and leave future work to
investigate whether this claim.

We achieved a Cohen’s Kappa value of 0.92 for cue annotation. This is a high score
that gives us confidence that the two annotators mostly annotated the same cues. As
a result, we annotated 146 hedge cues correctly in 101 unique sentences. Below, we
examine and analyse different types of mismatched annotations.
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Auxiliaries Verbs Adjectives/Adverbs Conjunctions
May (E) Suggest (E) Tentatively (E) or (E)

Might (E) Indicate that (E) Likely (E) either..or (E)
Can (E) Seem (E) Possible (E) whether (H)

Could (E) Speculate (H) Potentially (E)
Should (H) Assume (H)

Hypothesise (H)

Table 4.2: Hedge Cue Examples (InfoCorpus). H stands for hypothetical uncertainties
while E stands for epistemic uncertainties.

Difference 1: Annotation Guideline Errors

Annotator A: We explored h cue<whether> language models capture the basic contrast
between acceptable and unacceptable strings

Annotator B: We h cue<explored> whether language models capture the basic contrast
between acceptable and unacceptable strings

This difference is caused by the ambiguity in the annotation guidelines. Both annotators
correctly identified that this sentence contains a hypothetical uncertainty. More specifi-
cally, this is a type of hypothetical investigative uncertainty as the author investigates or
explores a certain claim. In this instance, annotators should mark the verb instigating
the ‘exploration’ as a cue unless the conjunction ‘whether’ follows the verb. If so,
annotators should label ‘whether’ as a cue since it is the smallest word (i.e., compared
to ‘explored whether’) that suggests uncertainty.

Difference 2: Cue Span Errors

Annotator A: It also e cue<indicates that> the quality phrases derived from these two
components are complementary to some extent.

Annotator B: It also e cue<indicates> that the quality phrases derived from these two
components are complementary to some extent.

Here, we see that there is an overlap in the annotations, but the annotators did not agree
upon the full span. We might think that the second annotator is correct - they follow the
minimum span guideline for cues which tells us we should annotate the cue words that
give us the smallest span. However, we should also remember that the span should also
convey uncertainty. The first expression indicates a definitive certainty synonymous
with is. On the other hand, the second introduces uncertainty of the subsequent clause
through the use of that synonymous with suggests that or implies that.

Difference 3: Cue Type Errors

Annotator A: It also indicates that the quality phrases derived from these two
components are complementary e cue<to some extent>.

Annotator B: It also indicates that the quality phrases derived from these two
components are complementary h cue<to some extent>.

In this instance, we see that each annotator has labelled the cue to some extent differently
(epistemic and hypothetical respectively). We arrive at this proposition when we use
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our test graph 4.1, and we see that this proposition is false. Therefore, the correct label
for to some extent would be epistemic.

It also indicates that the quality phrases ... are complementary to some extent, but it
also indicates that the quality phrases ... are not complementary.

Difference 4: Contextual Ambiguities.

Annotator A: An illusion effect would appear with higher perplexity/surprisal for the
unacceptable condition compared to the illusion case.

Annotator B: An illusion effect would e cue<appear> with higher perplexity/surprisal
for the unacceptable condition compared to the illusion case.

Finally, only one annotator has labelled the word ‘appear’ as a cue in this situation.
Upon further inspection, we see that the author uses the verb as a synonym of ‘material-
ising’ rather than the raising verb ‘it seems’. Therefore, it would be correct to not label
this instance of ‘appear’ as a hedge cue.

Overall, we found annotating some uncertainty cues much harder to detect than others.
For example, we always see ‘may’ and ‘might’ in a hedging context. Their sole purpose
as a verb is to convey a sense of uncertainty into the clause that they dictate. However,
we found it much more difficult to disambiguate words like ‘can’ or ‘could’ as hedges.
They are more context-dependent and rely on looking at the entire clause rather than
just the word.

Furthermore, we also experienced difficulties in ease of use with the test battery 4.1.
We found this guideline [3] along with the descriptions of BioScope and WikiWeasel.
We tried to find further provenance of this work - perhaps it stems from a linguistic or
philosophical background - but we could not find any meaningful resource.

We believe that the test for hypothetical and epistemic uncertainty relates to the knowl-
edge of x. By answering ‘no’, we are suggesting that it is not possible for y to be true
and not true at the same time. I.e., This is not a hypothetical uncertainty (where we
are uncertain about our uncertainty) and instead is an epistemic uncertainty (where
we are certain about our uncertainty). Although we can arrive at a conclusive answer
after careful deliberation, we believe there is much work needed to further improve and
clarify this decision tree if InfoCorpus is to be built upon.

4.3.2 Scope annotations

Although these annotations lack verification, we can ensure their correctness through
languages and their tendencies. Certain languages lend themselves to be more right
or left-branching. Branching indicates how words form to create longer clauses and
sentences. When a language is right-branching, we see parse trees such as 4.2, where
phrase structures cascade to the right of the tree. Since English sentences are more
right-branching than left-branching [36], we could almost always annotate the scope of
a hedge cue to be the phrase structure that lies to its right.

Furthermore, we recall the distribution of scopes in BioScope 3.1. We previously found
that around half of the cues with VERB or AUX only had an RHS. In cases where they also
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Figure 4.2: Example of a right-branching sentence [36] The tags and words themselves
are not important, but rather the structure. Note how each tag expands to the right.

had an LHS, we explained that this was due to the passive voice or ‘raising’ verbs. For
other tags such as SCONJ (subordinating conjunction - e.g. ‘whether’), they universally
only displayed an RHS. Thus, annotating these cases was systematic: for the LHS, we
annotated the subject, while for the RHS, we annotated the clause up until a delimiter.

(a) Distribution of scopes with respect to the
Part of Speech tags of cues (InfoCorpus)

(b) Distribution of cues with Part of Speech
tags that only have an RHS (InfoCorpus).

Figure 4.3: Distribution of LHS and RHS for cues with different parts of speech tags
(InfoCorpus).

Examining the scope distributions in InfoCorpus 4.3, we can see a similar distribution
to that of BioScope 3.1. The majority of cues have an AUX, VERB or SCONJ tag. As seen
in the BioScope plots 3.1b, we know that SCONJ tags almost always only have an RHS,
and AUX and VERB tags have an RHS and an LHS when they are a raising verb or in the
passive. This behaviour is again reflected in 4.3b. Moreover, CCONJ cues always have
either an LHS or both LHS and RHS. Therefore, we simply annotate the entirety of the
sub-clause to be in-scope.

Therefore, these distributions show us that certain part of speech tags exhibit an LHS,
RHS, or both. For example, if we encounter a cue such as ‘whether’, we know for
certain that it is only going to have an RHS, as it is of type SCONJ. Another example
would be ‘x or y’. Here, the word ‘or’ is of type CCONJ (coordinating conjunction).
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Thus, we annotate the whole sub-clause. Again, these scopes are more systematic and
definitive than cues, which can be somewhat ambiguous.

Although we could not source labels from other annotators for scopes, we have shown
that annotating scopes is an easier task than cues.

4.4 Comparisons to BioScope and WikiWeasel

We now compare hedge cues found in InfoCorpus and those in BioScope. We see
that most words are present in both corpora 2.1 4.2, but we also note one exception:
tentatively. However, this new term is not domain-specific and perhaps was not used
due to certain writing styles present in BioScope. This strengthens our hypothesis that
different domains (Biomedical vs Informatics), and thus all scientific domains, may not
differ in the hedge cues they use.

Moreover, it appears that the distributions of these cue words are similar in both corpora.
Although BioScope does not contain uncertainty cue tags, we can reasonably infer that
given a hedge word, it will always appear as the same uncertainty type. This is due to
the test graph shown in 4.1 and the fact that there can only be one correct answer for the
proposition ‘x cue y, but x not y’. To this end, we carried out a preliminary annotation
phase, where we annotated uncertainty types into the BioScope hedges. Of course,
these are not verified and future work should verify these labels.

Not only did we show that uncertainty cues appear to be domain-independent, but
we can also infer that the distribution of the two uncertainty types could be domain-
independent. We speculate that this phenomenon could be related to the structure of
scientific papers. Earlier chapters (such as introductions) pose a hypothetical question,
which is answered in later sections (such as the discussion) with epistemic uncertainty.
Finally, the authors raise more hypothetical questions for future work.

Using these preliminary labels, we can partially confirm the hypothesis 4.4 (There are
more hypothetical cues in the beginning and final sections of the paper). We plotted the
normalised sentence ID for each uncertainty type. The equation is laid out in 4.1 where
xi j is the sentence line number present in paper i at line j. We divide this line number by
the total number of sentences in the paper to calculate the normalised sentence ID. We
see that the average ID of normalised sentences that contain hypothetical uncertainties
is lower than those containing epistemic uncertainties. Thus, it appears that earlier
chapters are more likely to contain hypothetical cues than epistemic cues. However,
this does not confirm a higher probability of hypothetical cues in the conclusions for
mentioning future work.

Normalised Sentence ID=
xi j

max j′(xi j′)
(4.1)

Comparing the two corpora, we see a similar trend in the distributions of cue types.
However, we also see a wider spread of epistemic cues in InfoCorpus. This could either
be a symptom of bad writing in InfoCorpus (e.g. using too many hedges, which leads to
winding sentences) or a style that is too terse (e.g. short sentences that convey absolute
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(a) BioScope (b) InfoCorpus

Figure 4.4: Distribution of uncertainty types across normalised document lengths

certainty) in BioScope. We believe that there is probably a middle ground where we
can assume both sides to an extent.

We found that BioScope has a higher distribution of epistemic cues than InfoCorpus
(78% and 60% respectively). This suggests that the usage of hedge cues themselves
is not domain-dependent, but rather it is the type of hedge cues that are. However,
although this speculation is promising, we must account for the potential errors and
lack of inter-annotator agreement for the BioScope cue-type labels.

InfoCorpus BioScope WikiWeasel

Hypothetical 51 150 1494
Epistemic 77 531 1771

Table 4.3: Distribution of cue types in InfoCorpus, BioScope, and WikiWeasel

We compared the distributions in InfoCorpus and BioScope to those in WikiWeasel to
investigate this hypothesis. We see a similar pattern - a higher proportion of epistemic
cues to hypothetical cues is present (46% vs 54%). Although these percentages are
less extreme than those of InfoCorpus (40% vs 60%) and BioScope (22% vs 78%), the
difference indicates that perhaps epistemic uncertainty is naturally more common in
text than hypothetical uncertainty.

4.5 In conclusion

Overall, we found cue annotation to be a harder task than scope annotation. Due to the
complexity of scientific papers, long and technical sentences can often be confusing
when applying the test graph 4.1. Furthermore, contextual ambiguities posed major
difficulties for annotators. Again, the uncertainty test graph proved to be difficult to
use, and this resulted in fewer matching annotations than we would have liked. On top
of this, we would have achieved a more reliable corpus had we had more annotators
involved in the project.
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In this chapter, we laid out our annotation process for cues and scopes. We discussed
similarities and differences between InfoCorpus and other corpora. We found that the
distributions of hedge cues were similar for InfoCorpus, BioScope, and WikiWeasel. We
saw that there were more epistemic hedges than hypothetical ones, although BioScope
recorded a more drastic distribution than the other two. However, we must also be
aware that the epistemic counts are merely preliminary - future work should confirm
this finding by annotating cue types in BioScope.

Next, authors seemed to use more epistemic than hypothetical cues in the latter sections
of scientific papers (e.g. discussion, analysis). We did not find concrete evidence that
there are domain-specific cues. This lends more credibility to section five, which tackles
domain adaptation (transfer learning) of hedge cue detection and scope resolution
models. We also hypothesise that the distributions of cue types could be domain-
dependent. Authors could be encouraged to adopt varying writing styles depending on
the ‘recommended structure’ of papers in a scientific field. This is an area that should
be investigated further.

Moreover, we discovered that the distributions of scopes in InfoCorpus and BioScope
were similar. AUX and VERB tags mostly only exhibited an RHS, with exceptions when
VERB cues were used in a passive voice or they were a raising verb. We also saw that
subordinating conjugates (e.g. ‘whether’) only had an RHS. An interesting question for
future work could be to analyse whether the distributions of these scopes for parts of
speech tags are the same for different types of writing (e.g. blogs, essays, etc).

Finally, additional work should expand InfoCorpus and ensure the annotation guideline
is well-defined. Researchers should explore whether there are similarities in writing
styles in each domain or whether this is entirely author-specific. This would show that
we can perform domain adaptation of hedge cue detection and scope resolution models
on any domain provided the writing styles are similar.
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In-Domain and Domain-Adapted Tasks
on InfoCorpus

We now investigate whether domain adaptation is possible for cue detection and cue
scope resolution. To this end, we test existing models that were trained on BioScope
and test them on InfoCorpus. Furthermore, we train new models to compare the
performances of in-domain and domain-adapted models. Moreover, we justify that
stratifying the data set for hedge cues decreases the training time while maintaining a
similar F1 score. Finally, we discuss the results from testing the models and analyse the
errors.

5.1 Methodology

We perform cue and scope detection using the same methodology to reproduce previous
work. That is, we train all models (BERT, StratifiedBERT, XLNet, RoBERTa) for
sixty epochs with a learning rate of 3e-05, class frequency weights, and early stopping.
We also introduce a novel task: hedge cue type detection. Moreover, we use BERT
and StratifiedBERT to perform cue detection across domains, and all three models
without stratification (BERT, XLNet, RoBERTa) to perform transfer learning for scope
resolution. We perform inference on the same test set that in-domain models have been
tested on. Finally, we use the three separate classification metrics (token-based, average
token, first token) when aggregating the token-level labels to word-level labels.

5.2 Same Domain Results

5.2.1 Hedge Cue Detection

First, we show the metrics when training and testing BERT, XLNet, and RoBERTa on
InfoCorpus 5.1. We also see these false positive and false negative tokens for BERT in
B.3. Furthermore, we notice that RoBERTa has a lower precision than the other two
models. We analyse this phenomenon in the discussion. We show RoBERTa’s false
positives in B.4.

32
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P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.81/0.96/0.86 0.81/0.96/0.86 0.81/0.96/0.86
XLNet 0.92/0.99/0.95 0.92/0.99/0.95 0.92/0.99/0.95
RoBERTa 0.66/1.00/0.73 0.66/1.00/0.73 0.66/1.00/0.73

Table 5.1: Same Domain Hedge Cue Detection results for BERT, XLNet, and RoBERTa.

5.2.2 Hedge Cue Type Detection

We train and test models on a novel task: hedge cue type detection. Instead of classifying
whether a token is a single cue or a multi-expression cue, we classify them based on
their uncertainty type (hypothetical, epistemic). We show our evaluation metrics in 5.2
and false positives in B.2.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.79/0.92/0.84 0.79/0.92/0.84 0.79/0.92/0.84
XLNet 0.75/0.98/0.83 0.75/0.98/0.83 0.75/0.98/0.83
RoBERTa 0.74/0.97/0.82 0.74/0.97/0.82 0.74/0.97/0.82

Table 5.2: Same Domain Hedge Cue Type Detection results for BERT, XLNet, and
RoBERTa

5.2.3 Hedge Scope Resolution

We carry out scope resolution by training and testing three models on InfoCorpus.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.80/0.96/0.87 0.80/0.96/0.86 0.80/0.96/0.86
XLNet 0.76/0.94/0.83 0.76/0.94/0.83 0.76/0.94/0.83
RoBERTa 0.83/0.96/0.88 0.83/0.96/0.88 0.83/0.96/0.88

Table 5.3: Same Domain Hedge Scope Resolution results for BERT, XLNet, and
RoBERTa.

5.3 Domain Adaptation Results

In this section, we show the results for domain adaptation of the three models in 3.1.
Domain adaptation refers to training a model on one ‘domain’ (e.g. Biomedical) and
testing it on another (e.g. Informatics). This tests the model’s ability to generalise well
to any domain. We perform this task to answer the question ‘Can we generalise hedge
tasks to more scientific domains?’. If we achieve a similar score in domain-adapted
models compared to same-domain models, then we can assume that there may be
a significant overlap between the hedge cues in the training and test domains. We
tested saved models trained on BioScope and on the same test datasets as those used in
in-domain testing.
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5.3.1 Hedge Cue Detection

BERT and StratifiedBERT (1-to-4) returned these values 5.4 when tested on InfoCor-
pus. We show the false positives and false negatives of BERT in B.3. We could not
perform domain adaptation for other models due to time and resource constraints as we
had run out of compute units on Google Colab.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.69/0.80/0.73 0.70/0.80/0.74 0.70/0.80/0.74
StratifiedBERT 0.63/0.80/0.68 0.63/0.80/0.68 0.63/0.80/0.68

Table 5.4: Domain Adaptation Hedge Cue Detection results for StratifiedBERT.

5.3.2 Hedge Scope Resolution

Meanwhile, we saw much better results for BERT and XLNet in scope resolution.
RoBERTa produced a peculiar result, where it failed to identify most in-scope tokens
correctly. We analyse these errors in the discussion section below.

P/R/F1 P/R/F1 (First Token) P/R/F1 (Average Token)
BERT 0.86/0.99/0.91 0.86/0.99/0.91 0.86/0.99/0.91
XLNet 0.84/0.93/0.88 0.84/0.93/0.88 0.84/0.93/0.88
RoBERTa 0.54/0.79/0.46 0.54/0.79/0.46 0.54/0.79/0.46

Table 5.5: Domain Adaptation Hedge Scope Resolution results for BERT, XLNet, and
RoBERTa.

5.4 Discussion

5.4.1 Validation for dataset stratification

Before discussing the results, we show that stratifying the dataset is a feasible method.
When examining the results of StratifiedBERT in section three, we saw a similar F1
score while varying the distribution of the data. We could not test this claim on BioScope
as we had limited resources in terms of time and compute units in Google Colaboratory.
Therefore, we use this space to prove this behaviour by training StratifiedBERT on
different distributions of the InfoCorpus dataset.

Initially, we had hoped to present ROCs (Receiver Operator Curve) of StratifiedBERT
at various proportions to show that the model still performs well even as we lower
the number of sentences without hedge cues. ROCs demonstrate the capabilities of a
model with respect to varying threshold points. However, due to the sparsity of hedges
in InfoCorpus (just 146 cues, 21 of which are in the test set), they did not provide a
meaningful comparison between the models. We show an example plot in 5.1, which
shows a near-perfect ROC as well as an AUC of 0.99. This does not clearly show the
capabilities and limitations of the model and therefore is redundant to include in our
project.
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Figure 5.1: ROC of StratifiedBERT (1-to-5 trained on InfoCorpus). Class 1 maps to
single hedge cues.

To this end, we present a different plot. In 5.2, we show that the average macro F1 score
of StratifiedBERT (1-to-k) remains consistent when we vary the dataset proportion.
Barring any minor differences, we see a relatively consistent F1 score that is higher
than the current state-of-the-art. Although unrealistic, this suggests that we can use less
data to achieve a similar performance when performing cue detection.

Figure 5.2: Trend of F1 score for StratifiedBERT (1-to-k) as we increase the proportion
(k) of non-hedge cues in the training set.

5.4.2 Cue Detection

We report that domain-adapted models achieve a lower performance 5.4 than in-domain
models 5.1. Although these scores do differ by around 0.10 F1 score, the domain-
adapted models still correctly labelled some hedge cues. We believe that given more
data, the models would perform better, but due to the constraints of annotations and
time, we leave this to future work. Regardless, we can infer that domain adaptation is
possible to some extent. We also hypothesise that we can extend hedge cue detection
to more scientific domains. However, additional work must be done to show whether
different writing styles affect the use of hedges rather than the domains themselves.
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Examining the false positives and false negatives for in-domain and domain-adapted
BERT models B.3, we can see some similarities. For example, both models incorrectly
labelled ‘could’ as a hedge. We also encounter some expected behaviour for BERT
where the domain-adapted model performs worse than the in-domain model (0.73 F1 vs
0.89 F1 respectively).

We could partially attribute the lower performance of the domain adapted to the limited
verification of annotations for InfoCorpus. For example, we see that the in-domain
BERT incorrectly labelled likely cue words such as ‘seems’, ‘attempts’, and ‘whether’.
Since we only took the intersection of labelled cues from the annotators, some cues
were valid hedges but were not confirmed by the other annotator. Although this has
resulted in a lower F1 score, we believed it was better to be certain of our annotations
and achieve a lower score rather than have ambiguous labels by taking the union of
both annotators’ labels. This would have led to a misleading score, obfuscating the final
result. As a result, with more cue annotations and a more rigorous annotation process,
these domain-adapted models would have performed even better.

Curiously, we see that the in-domain RoBERTa reports a lower precision score com-
pared to the other two models (0.66 vs roughly 0.87 respectively) 5.1. We examine
RoBERTa’s false positives B.4. In addition to expected results such as ambiguous tokens
(e.g. ‘likely’, ‘could’, etc), there are some inexplicable results such as ‘.’, ‘Introduction’,
and ‘1’. Similar to subsequent explanations for RoBERTa’s behaviours, we believe that
they stem from its tokenisation process, which differs from that of BERT and XLNet
(BPE vs WordPiece, SentencePiece respectively). However, additional work should be
done to verify this claim, and whether there are any other errors outside of this.

Across the board, we saw similar F1 scores for hedge cue detection. However, we
must verify that this was not due to the size of InfoCorpus. Since InfoCorpus has
significantly fewer hedge tokens, this results in a misleading higher evaluation score
as the number of hedges in the test is low (21 hedges). Therefore, the main takeaway
from this experiment is not to show that models perform ‘better’ on InfoCorpus than
BioScope, but rather to show that hedges are domain-independent and we can generalise
hedge cue detection to any scientific domain. Future work should expand on InfoCorpus
as mentioned in section four to verify the models’ performances are accurate.

5.4.3 Type Detection

We ventured into new areas in hedge cue detection, namely hedge-type detection. Our
findings are similar to that of regular hedge cue detection - we report similar scores for
all models, with the former (BERT), performing the best. Examining the misclassified
tokens B.2, we did not notice any difference in terms of the types of errors the model
made. We see that the model has misclassified words that are ambiguous hedges (e.g.

‘could’, ‘should’, etc). Future work should expand on this task. A possible extension
would be to examine whether some tokens are classified more as one hedge type than
the other. This would show that either the hedge type annotations are wrong, or that
the test for uncertainty types 4.1 needs revising. Both scenarios tie into future work for
section four, where we state that the annotation guidelines need verifying and the test
battery needs a more formal explanation.
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5.4.4 Scope Resolution

Across most models, we achieved a similar score of around 0.85 F1 score. This shows
that scope resolution is indeed a task that can be generalised across multiple scientific
domains. From this, we can infer that the scopes of these cue words in InfoCorpus are
not much different to those in BioScope. Thus, we can reasonably say that scopes are
domain-independent and rather cue-dependent on the cue word that they encompass.

One interesting type of result we achieved was a poorly performing RoBERTa model
for domain adaptation 5.5. We saw that this model recorded a low precision of 0.54
which contributed to its poor F1 score of 0.46. Below, we identify and analyse two
types of errors that we found with RoBERTa.

Error 1: Erroneous labelling of delimiter

Pred: { could distinguish acceptable sentences ... humans have no trouble dealing with
} . { pad ...

Label: { could distinguish acceptable sentences ... humans have no trouble dealing with
} . pad ...

The model has correctly labelled the scope ‘could ... with’. However, it has also
labelled the first padding token to be in-scope. We saw multiple incidents of this error
during testing. We suspect that our ‘solution’ of the BPE problem A.1 has caused this
issue, and this raises an interesting question about the viability of certain tokenisation
methods (splitting sentences into words or sub-words). It may be that certain models
(like RoBERTa) are less suitable for some tasks (those that involve detection at the
token-level) due to their handling of tokenisation.

Error 2: Mislabelling the <SPEC> tokens

Pred: { < SPEC > If the score is greater ...
Label: < SPEC > { If the score is greater ...

In our reproduction of previous work, we followed suit by appending a special token
(<SPEC>) before the hedge cue to signify its existence. However, this seems to have
interfered with RoBERTa. We believe that the reason for this could lie in the pre-
processing of sentences during its training. Since RoBERTa tokenises <SPEC> into
multiple token IDs, this could have introduced some problems when training on other
occurrences of the tokens such as < or >.

We could use an UNK token to mitigate this problem. These token IDs are only used
when the tokeniser encounters an unknown word, which would be impossible unless
we manually feed the tokeniser this ID. Another approach to take would be to remove
this special token altogether and investigate whether this does make a difference at
all. We speculate that this would depend on whether the model can pick up on hedge
cues as well as the scopes. By not including this token, each model would arguably
be performing both hedge cue detection and scope resolution since it would first need
to detect the hedge cue, and then its corresponding scope. Therefore, we assume that
without these tokens, models would perform worse. Unfortunately, due to limited
resources, we were not able to validate this claim.
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5.5 Conclusion

In this chapter, we have successfully demonstrated that transformer-based models are
capable of performing hedge cue detection and hedge scope resolution. Furthermore,
we show that these models also can detect hedge types (a novel task to the best of our
knowledge) with similar or slightly worse performance. Interestingly, we noticed that
RoBERTa did not perform as well as the other two models in cue detection and scope
resolution. This appears to stem from its tokenisation process, and we speculate that
not all types of tokenisation are well-equipped to deal with all types of tasks. We could
also attribute this to the domain-adapted model not encountering certain ‘manipulated’
tokens A.1 during training for hedge scope resolution.

We wanted to answer an important question in this project - ‘Can we generalise hedge
cue detection and scope resolution to more domains in scientific papers?’. We provided
a preliminary answer in this chapter. The domain-adapted models performed at a similar
level to same-domain models. Although InfoCorpus is quite a small corpus, we can
tentatively answer - yes, we can.

It appears that cue detection is a harder task than scope resolution when observing the
F1 scores. This is expected, as cues can be ambiguous in their semantics (e.g. ‘could’),
whereas the scope of a hedge is easier to determine according to the annotations.
However, there are cases where the scopes are also ambiguous.

I { might have seen the house } with the telescope.
I { might have seen the house with the telescope }.

The first sees the subject be uncertain of whether they have seen the house or not
and using the telescope is a fact. In contrast, the subject is uncertain of the entire
statement, that they are unsure that they saw a house, and whether they used a telescope.
However, given we are concerned with hedge cues within scientific domains, we hope
that the writing is clear enough to avoid ambiguities such as the above. It would still be
interesting to see how these models perform when tested on scope-ambiguous sentences.

Further work in this area should focus on examining RoBERTa’s failure on these
two tasks when compared to its peers (BERT, XLNet). It should investigate whether
some tokenisation methods lend themselves to certain tasks more than others (e.g.,
sentence-level predictions vs token-level predictions).

More generally, it would be interesting to carry on the discussion from the previous
chapter. We have established that perhaps there are no ‘domain-specific’ hedges and
that this entirely falls upon the author. Could we perform domain adaptation on these
tasks (hedge cue/type detection and hedge scope resolution) by varying the author of
the test dataset? There has been extensive work on detecting the author of an unseen
text. For example, we could train BERT on a hedge-annotated corpus from an author
and test it against another author’s. From this, we would be able to ascertain whether
hedges are style-dependent.
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Conclusion

6.1 Reproduction of Previous Work

In section three, we showed that it was possible to perform hedge cue detection and scope
resolution on scientific papers. We analysed BioScope, which contains information
about hedge cues and their respective scopes. We tested state-of-the-art transformer
models such as BERT, XLNet, and RoBERTa, all of which achieved an F1 score of at
least 0.78 and 0.96 for cue detection and scope resolution respectively 3.1 3.3.

Furthermore, we explored ways to vary the distribution of the dataset. We accomplished
this by stratifying the number of sentences with and without any hedges to different
ratios. When we applied this method to BERT (resulting in StratifiedBERT (1-to-k)),
we achieved a similar score with less data 3.2. Moreover, we showed that we could
maintain a relatively consistent F1 score while varying the ratio of sentences without any
hedges 5.2. Again, we emphasise that this was an experiment to examine the potential
of these models and that the reported scores are not reflective of a realistic scenario.

6.2 InfoCorpus

We successfully produced a dataset containing verified cue annotations and types (0.92
Cohen’s Kappa Score), and preliminary scope annotations. To the best of our knowledge,
this is the first corpus containing all three labels. During cue and scope resolution,
we found that writing annotation guidelines was a difficult task. There should be no
ambiguous instructions, and the guideline requires multiple iterations until it becomes
usable. Furthermore, although the test battery 4.1 was helpful in some ways, the test
became quite cumbersome to perform when disambiguating potential hedges.

We ran into several problems when aggregating the annotations. For example, we
annotated some words as hedges when they were not used in a hedging context, such
as ‘appears’ or ‘can’. Furthermore, we disagreed on certain multi-word expressions
like ‘indicates that’, the sum of which portrays uncertainty that the individual parts
(‘indicates’, ‘that’) do not.
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We faced a limitation on the number of annotators available for scope annotation.
However, we also showed that scopes were mostly systematic (often branching to the
right in English). We found that the majority of PoS (Part of Speech) tags only exhibited
an RHS in BioScope 3.1. Thus, we used this phenomenon for our annotations and
showed that the distributions of scopes 4.3 were similar to those found in BioScope.

During our annotation process, we also hypothesised about the frequency of each
uncertainty type in a scientific paper. We found that authors tended to use hypothetical
uncertainty toward the beginning of papers and epistemic uncertainty toward the end
4.4a 4.4b. We could attribute this to the structure of the papers: we speculate (with
hypothetical uncertainty) about potential results before the methodologies. Afterwards,
we use epistemic uncertainty to ‘soften’ claims about our findings. As we now had a
corpus in an unexplored scientific domain, this enabled us to test our main claim in the
next section.

6.3 Domain Adaptation

Finally, we performed domain adaptation by taking reproduced work on BioScope
and applying it to InfoCorpus. Domain-adapted models achieved similar, or lower,
scores than in-domain models 5.1 5.4 5.3 5.5. This allowed us to answer our main
claim, that hedge cues and scopes were not entirely domain-dependent, and that we
could generalise them to more domains. Notably, we observed that RoBERTa failed
to generalise well on InfoCorpus when performing scope resolution, and we showed
that this could be due to the BPE tokenisation process. We analysed this in more
detail, showing that the scope predictions were mostly correct, but RoBERTa often
inserted the scope tags after delimiters or inside <SPEC> tokens. This implies that
certain tokenisation methods might not be as well suited for some tasks as others.

6.4 Future Work

First, we should verify that RoBERTa can achieve a similar F1 score when compared to
other models on InfoCorpus. It appears that either, there is an error in the tokenisation
process, or BPE is simply not suitable for token-level tasks. Moreover, future work
should strengthen the annotation guidelines and facilitate the test battery 4.1 to be
more accessible. There may be either a foundation upon which this test was made or
a more fitting test to use when differentiating the uncertainty types. For the corpus,
additional papers must be added to InfoCorpus to increase its size, which should help
with verifying the models’ capabilities.

More broadly, we have observed that hedges are domain-independent in Biomedical and
Informatics papers. Therefore, future work should investigate whether these behaviours
are common across all scientific domains and whether we could extend this to other
forms of writing. We have attributed the distribution of uncertainty types to the structure
of scientific papers. Could we say the same for essays or blogs? We speculate that
authors in this writing form adhere to different structures, and it would be interesting if
transformer-based models could also predict hedges in these situations.
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Appendix A

Byte Pair Encoding

A.1 Example of Byte Pair Encoding

Figure A.1: Tokenization for the example sentence: It might sleet tomorrow. Note the
splitting of Sleet into Sl and ### eet.

A.2 ‘Solving’ the tokenisation problem

Before After
”” ” ”
% % .
% % ,
) ) .
), ) ,
”? ” ?
‘. ‘ .

Table A.1: Space Insertion for solving sub-word tokenization of BPE
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Appendix B

False Positives and Negatives of
various models

In this section, we show the false positives and negatives of models. Note that the FP
(False Positive) and FN (False Negative) relate to the hedge labels and not the non-cue
or padding labels.

B.1 False positives and false Negatives for non-stratified
data and stratified data (BioScope) on BERT

.
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False Positives False Negatives
potential be
viewed left

or or
not not

either prediction
any likelihood

hypothesis consider
ideal open
can expected

consistent exclude
could indication

evidence
proposition
predicted
indicating

idea
wish

concept
find
the

estimated
must

considered

(a) FP and FN for BERT (unstratified data)

False Positives (FP) False Negatives (FN)
considered cannot
investigates prone

question prediction
well with
idea either

indicate or
potential certainty
premise estimates
assume estimated
known possible
predict to

in assign
not interesting

inevitably orthology *
that
or
no

indication
informative

a
predicted

hypothetical
wish
argue
can

outweighs
expected

schematically
concluded

either
indicated
indicates
available
sought

proposed
perhaps

little

(b) FP and FN for StratifiedBERT (stratified data
with 1-to-4 ratio)

Table B.1: False Positives and False Negatives for BERT trained on an unstratified
dataset and another on a stratified dataset (BioScope). Note that * is not a misclassifica-
tion, but rather an error in the pre-processing of the data. See section 3.1.1 3.1.1 for
more details.
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B.2 False positives and negatives of BERT for hedge
cue type detection (InfoCorpus)

False Positives False Negatives
could conclude
should can
likely difficult

let to
will makes

implies it
why

investigate
can
that

potential
whether

can

Table B.2: FP and FN from hedge type detection for BERT
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B.3 False positives and negatives for domain-adapted
and in-domain BERT (InfoCorpus)

False Positives False Negatives
support investigate
whether possibility

aims investigation
mean investigating
seems conclude

consider can
propose makes
indicate if
could should

estimated assume
otherwise difficult
plausible the

take knowledge
proposed assumption

appear best
seem our
trend investigations

to it
attempts to

? that
address of

infer
...

(a) FP and FN for domain-adapted BERT.
Note that the False Positives extend past
‘infer’, but we could not include the rest due
to space constraints.

False Positives False Negatives
suggests conclude
whether assume

these difficult
a it

might investigate
either to

possibility can
even makes
this potential
may investigating

though
means

hypothesize
greater
hope
mean
can

indicate
if

implies
would

llm
other
could
should
degree

said
expected

also
will

ensured
phenomena

indicates
therefore

it
that

indeed

(b) FP and FN for in-domain BERT

Table B.3: False Positives and False Negatives for domain-adapted vs in-domain BERT
(InfoCorpus)
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B.4 False positives and false negatives for in-domain
RoBERTa for hedge cue detection (InfoCorpus)

False Positives False Negatives
.

could
Methods
should
implies

Background
1

surprising
that
if

can
Introduction
probability

likely
it

might
for
is

indicates
...

Table B.4: FP and FN for hedge cue detection in-domain RoBERTa (InfoCorpus). The
false positives continue after ‘...’. It has labelled nearly every single token as a cue,
resulting in a near-perfect recall.



Appendix C

InfoCorpus Pipeline

Figure C.1: InfoCorpus pipeline. This shows various data (denoted in ovals) and Python
modules (denoted in rectangles). The first column relates to the pre-processing and
annotation (cue and scope) of sentences. The second column evaluates the annotations
and builds up the InfoCorpus XML file. Finally, the right-most columns pre-process the
InfoCorpus dataset and perform hedge cue detection and hedge scope resolution using
three BERT variants (BERT uncased, XLNet cased, RoBERTa cased).
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Participant Information Sheet 

Project title: Develop AI-powered tools to help scientific authors 

write with Style 

Principal investigator: Adam Lopez 

Researcher collecting data: Daniel Kim 

Funder (if applicable):  

 

This study was certified according to the Informatics Research Ethics Process, 

reference number 648491. Please take time to read the following information 

carefully. You should keep this page for your records.  

Who are the researchers? 

The primary researcher is Daniel Kim, an undergraduate AI and CS student, and his 

supervisor is Dr. Adam Lopez. These are the only individuals who will have access 

to the data. 

What is the purpose of the study? 

In our study, we aim to annotate and create a new dataset, InfoCorpus, which 

contains information about hedge words (words which show uncertainty), hedge 

types (hypothetical and epistemic), and their scopes within a sentence. Using state-

of-the-art machine learning models such as BERT, this will allow us to test whether 

hedge detection is domain-independent (i.e., not dependent on the context such as 

biomedical, informatics, etc) by training and testing BERT models on different 

domains. 

Why have I been asked to take part? 

You are an individual who is fluent in English, whether you are a native speaker or 

can speak English at a high level.  

 

Do I have to take part? 

No – participation in this study is entirely up to you. You can withdraw from the study 

at any time, up until January 15th, 2024, without giving a reason. After this point, 

personal data will be deleted and anonymised data will be combined such that it is 
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impossible to remove individual information from the analysis. Your rights will not be 

affected. If you wish to withdraw, contact the PI. We will keep copies of your original 

consent, and of your withdrawal request. 

 

What will happen if I decide to take part?  

The data being collected is comprised of individual sentences, and if present, the 

hedge word, its type, and its scope within it. We will collect this data through the 

annotation software Prodigy, which streamlines the process and offers an intuitive 

user experience for performing annotation. There are no set sessions, but rather 

individuals who volunteer will need to complete their share of annotations by a set 

date, which will be specified at a later time.  

Are there any risks associated with taking part? 

There are no significant risks associated with participation. 

Are there any benefits associated with taking part? 

There are no direct benefits associated with taking part. 

What will happen to the results of this study?  

The results of this study may be summarised in published articles, reports and 

presentations. Quotes or key findings will be anonymized: We will remove any 

information that could, in our assessment, allow anyone to identify you. With your 

consent, information can also be used for future research. Your data may be stored 

for a period of at least five years. All potentially identifiable data will be deleted within 

this timeframe if it has not already been deleted as part of anonymization.  

 

Data protection and confidentiality. 

Your data will be processed in accordance with Data Protection Law.  All information 

collected about you will be kept strictly confidential. Your data will be referred to by a 

unique participant number rather than by name. Your data will only be viewed by the 

researcher/research team: Daniel Kim, Adan Lopez. 

All electronic data will be stored on a password-protected encrypted computer, on 

the School of Informatics’ secure file servers, or on the University’s secure encrypted 
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cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records 

will be stored in a locked filing cabinet in the PI’s office. Your consent information will 

be kept separately from your responses in order to minimise risk.  

What are my data protection rights? 

The University of Edinburgh is a Data Controller for the information you provide. You 

have the right to access information held about you. Your right of access can be 

exercised in accordance Data Protection Law. You also have other rights including 

rights of correction, erasure and objection. For more details, including the right to 

lodge a complaint with the Information Commissioner’s Office, please visit 

www.ico.org.uk. Questions, comments and requests about your personal data can 

also be sent to the University Data Protection Officer at dpo@ed.ac.uk.  

 

Who can I contact? 

If you have any further questions about the study, please contact the lead 

researcher, Daniel Kim, H.Kim-43@sms.ed.ac.uk 

If you wish to make a complaint about the study, please contact  

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and 

detail the nature of your complaint. 

Updated information. 

If the research project changes in any way, an updated Participant Information Sheet 

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.  

Alternative formats. 

To request this document in an alternative format, such as large print or on coloured 

paper, please contact Daniel Kim, H.Kim-43@sms.ed.ac.uk 

General information. 

For general information about how we use your data, go to: edin.ac/privacy-research 
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Participant number:_______________________ 

 

Participant Consent Form 
Project title: Develop AI-powered tools to help scientific authors write with 

Style 
Principal investigator (PI): Dr. Adam Lopez 

Researcher: Daniel Kim 

PI contact details: Email: H.Kim-43@sms.ed.ac.uk 

 
By participating in the study you agree that: 

• I have read and understood the Participant Information Sheet for the above study, 
that I have had the opportunity to ask questions, and that any questions I had were 
answered to my satisfaction. 
 

• My participation is voluntary, and that I can withdraw at any time without giving a 
reason. Withdrawing will not affect any of my rights. 
 

• I consent to my anonymised data being used in academic publications and 
presentations. 
 

• I understand that my anonymised data will be stored for the duration outlined in the 
Participant Information Sheet.  

 
Please tick yes or no for each of these statements.  
1.  I allow my data to be used in future ethically approved research.   

  Yes No 

2. I agree to take part in this study. 
 
 

  

  Yes No 
 
Name of person giving consent  Date  Signature 
 
 

 dd/mm/yy   

     
Name of person taking consent  Date  Signature 
 
 

 dd/mm/yy   
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