
PyTac: A Python Based Tool for Tactic
Evaluation on Account Access Graphs

Daniel J. Cooper
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2024

Abstract
In the modern world, it is common for people to use many online services and devices
throughout their daily lives. As the number of services and devices a person uses
increases their security can become related through multi-factor authentication, reused
credentials and recovery methods. Poor system design or user choices can cause
vulnerabilities in these relationships; this is especially acute when considering “account
takeover attacks”.

Account access graphs with state introduced by Arnaboldi et al. [3] are a form of a
directed graph where the vertices represent accounts, devices, and credentials while the
edges are labelled to represent the authentication relationships between them. These
graphs were introduced with a language of commands, called tactics, which can describe
the changes in a graph that would occur during an attack.

This project aimed to develop a tool that can be used to conduct security analyses
through the modelling of account access graphs with state and the associated tactics
language. This tool was implemented using a custom, Python-based, model for account
access graphs with state which could be interacted with through a PyQT5 user interface.
The inputted tactics were then parsed and evaluated using an ANTLR grammar, parser
and visitor.

This represents the first known implementation of the tactics language which implements
backtracking in its evaluation, and includes all shorthand’s outlined by Arnaboldi et
al. [3]. Further contributions include an extension to the original tactics language to
allow for graph elements that match certain properties to be searched for and tactics
evaluated based on the result. The tool’s usability for conducting analyses is evaluated
by conducting two case studies. The first models how an attacker can exploit cycles of
access within a user’s account configuration and the second uses graphs to explore the
claims around a new token theft form allowing for cookie regeneration.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Daniel J. Cooper)

ii

Acknowledgements
I would like to thank both my project supervisor David Aspinal and Sandor Bartha for
their advice, guidance, and time throughout this project.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Account Access Graphs . 3
2.2 Account Access Graphs with State 4

2.2.1 Properties and Operations 5
2.2.2 Tactics . 5
2.2.3 Software Implementations of Tactics 8

3 Developing a Tactic Evaluation Tool 9
3.1 Model Implementation . 9
3.2 The Controller . 11
3.3 User Interface and Displaying the Graph 11
3.4 Language Processing . 13

3.4.1 ANTLR and Language Grammar 14
3.4.2 Evaluating Parse Trees . 16
3.4.3 If Statements and For Loops 19

4 Searching Account Access Graphs 21
4.1 Selecting Components from Graphs 21

4.1.1 AccessFrom and SELECT 21
4.1.2 Combining Query’s . 23

4.2 Predicates Based on Graph Searches 23
4.3 Evaluating Tactics on Selected Vertices 25
4.4 Implementation of Graph Searches 25

5 Tool Evaluation and Discussion 26
5.1 Testing the Model, Operations, and Properties 26
5.2 Testing Language Parsing and Tactic Evaluation 27

5.2.1 Evaluation time of tactics . 28
5.3 Findings From the Technical Evaluation 29
5.4 An Attack Using Google’s Recovery Method 29

5.4.1 The Attack . 31
5.4.2 Recreating the Attack in Practice 32
5.4.3 Mitigating Risk and the Effect of 2FA 33

5.5 Exploitation of a Google OAuth Vulnerability 34

iv

5.5.1 The Attack . 34
5.5.2 Regaining Control After the Attack 36
5.5.3 Verification of Attack Feasibility 37

5.6 Heuristic Evaluation of Tool Usability 37
5.7 Improvements Following Evaluation 38

6 Conclusions and Future Work 39
6.1 Challenges Faced . 39
6.2 Limitations and Future Work . 40

Bibliography 41

A Background 44
A.1 Formal Definition of properties for Account Access Graphs 44
A.2 Operation Definitions . 44

B Tactics Grammar 46
B.1 Original Lexer Grammar . 46
B.2 Original Parser Rules . 47
B.3 Extended Lexer Grammar . 48
B.4 Definition of evaluation for SELECT expressions 50
B.5 Extended Parser Rules . 51

C Evaluation and Case Studys 54
C.1 Google Account Case Study . 54

C.1.1 Commands for modeling of Attack 55
C.1.2 Intermediate Figures for Attack 56
C.1.3 Commands to Implement 2FA 57

C.2 OAuth Case Study . 57
C.2.1 Commands for modeling of Attack 57
C.2.2 Commands for Account Recovery 58

C.3 Heuristic Evaluation of Usability . 58
C.3.1 Improved UI . 58

v

Chapter 1

Introduction

When accounts are considered in a security context, they are often done so in isolation.
Security advice, such as that provided by Microsoft [23], Google [11], and NCSC
(National Cyber Security Centre) [25] often focuses on the primary access method for
an account. This primary access method is typically some combination of a username
and password, with the potential use of a two-factor authentication code (using an
App/SMS/Email) or biometric factor. It is becoming increasingly common for attackers
to gain access to accounts that are considered less important, and therefore have weaker
security, then exploit this access to compromise a user’s more critical online accounts.
This may be performed through the use of recovery mechanisms, such as recovery
emails or security questions. An example of this would be an attacker convincing phone
carriers to change the SIM card associated with a given phone number, in what is known
as a SIM swap attack. Following this, any SMS recovery codes will be sent to the
attacker, allowing them to gain access to a user’s accounts, as was performed against
Jack Dorsey (Former Twitter CEO) to gain access to his Twitter account [5].

To help analyse the security of a user against such attacks, Hammann [14] introduced a
form of a directed graph whose vertices represent devices, credentials, and accounts.
The edges of these graphs represent the access and authentication relationships, such
that a password or recovery email would have a directed edge from it to the account it is
associated with. This allows for the interconnection of a user’s authentication methods
to be visually displayed and analysed.

Attacks against a user may include steps that would result in changes to the user’s graph,
such as changing the recovery email for an account. To describe and model these steps,
Arbanoldi et al. [3] introduced a language of tactics, which when evaluated on a graph
performs these required changes. For this language to possess meaningful capabilities,
the definition of an account access graph was extended with a state, to store when
users have access to each account/device/credential. For example, an attacker may have
access to an account’s password, but not the Two-Factor Authentication (2FA) token
needed to log in to the account and make changes.

These account access graphs have been used effectively in studies to help highlight
vulnerabilities to subjects, such as those conducted by Hammann et al. [16] and Abra-

1

Chapter 1. Introduction 2

ham et al. [2]. Within these studies, participants were interviewed twice; once where
information was gathered about which accounts they had and how they are connected;
and again where account access graphs generated based on the first interviews were
shown to participants and risks were highlighted. It was found that this visual approach
was very effective at both conveying possible risks to non-technical participants and
encouraging study subjects to make efforts to mitigate these risks within their configu-
rations. However, much of the work of creating and analysing these graphs had to be
conducted manually. Though some tools have been developed to mitigate this issue,
such as those by Falk [8] and Bartholomä [6], only one such tool developed by Walker
[35] implemented a simplified tactics language, which did not include backtracking or
the useful shorthands proposed for the tactics language.

The goals of this project are therefore:

• To Develop a tool which can be used for conducting security analyses through
the modelling of attacks using account access graphs with state and the tactics
language.

• This tool should allow an inputted tactic to be parsed and then evaluated on a
maintained graph state.

• The current graph state should be displayed to the user and updated when tactics
are evaluated.

• Develop an extension to the language of tactics that allows for elements of the
graph to be queried based on the graph’s current configuration and for tactics to
be evaluated on the results of these queries.

We will begin by introducing the relevant background information. Then in chapters 3
and 4 we describe how each of these outlined goals was achieved through the combi-
nation of an ANTLR [28] parser, Python graph model, networkx [13] directed graph
diagrams and a PyQT5 user interface. Then finally in Chapter 5 the tool is evaluated.
This evaluation is conducted both from a technical point of view, with the use of unit
tests, and a usability point of view through a combination of two case studies and a
heuristic evaluation of the user interface. These case studies also demonstrate how the
developed tool can be used to identify and verify attacks against a user.

Chapter 2

Background

2.1 Account Access Graphs

Account access graphs1, introduced by Hammann et al. [16] in 2019, give a convenient
way to visually map the connections between different accounts, devices, and credentials.
These are directed graphs where the nodes represent accounts, devices, or credentials;
while the edges represent the authentication relationships between them. We will often
refer to the nodes as simply corresponding to an account since the type of node has little
impact on the modelling of the Account Access Graph. A simple example of how these
graphs are formed can be seen in Figure 2.1; which demonstrates the account access
graph for a smartphone that can be unlocked either with a password or a fingerprint. The
colours only have meaning locally to the destination node of each edge. This meaning
is tied to the access conditions of each node, with each colour defining a set of edges
that must all be accessible to unlock the destination account.

Definition 1. (Account Access Graph [16]) An account access graph is a directed
graph G = (VG,EG,CG) where VG is the set of vertices. The set CG contains the colours
used in the graph and EG ⊆VG ×VG ×CG are coloured edges.

To demonstrate this, suppose that we wish to add a new method to Figure 2.1 that
required all three factors to unlock the phone. Then we would draw three new directed

1Originally referred to as User Account Access Graphs

Unlocked phone

Locked Phone PasswordFingerprint

Figure 2.1: The account access graph for a locked smartphone that requires access to
the locked phone and either the password or a valid fingerprint to unlock.

3

Chapter 2. Background 4

edges, one from each factor incident on the unlocked phone node. We would give
these three edges the same colour to indicate that all three factors are needed to use
this method to access the unlocked phone. We would also easily be able to see that in
such a graph this method would provide little extra security, since the two pre-existing
methods can provide access with only two of the three factors. This demonstrates how
by using account access graphs, we can visually model a user’s accounts and use this to
identify potential weaknesses and vulnerabilities.

2.2 Account Access Graphs with State

So far, we have only discussed account access graphs that consider the connections that
exist between accounts in a static way. However, it is possible that an attacker with a
given level of access may be able to change the graph itself, such as in a SIM swapping
attack. In such an attack, the phone that receives a two-factor authentication SMS code
is changed to a phone to which the attacker has access, allowing them to bypass the
second factor [24].

To model these interactions, Arnaboldi et al. [3] introduced a notation that allows access
graphs to carry state information, such as the nodes to which a given user/attacker has
access. For the following definition, Arnaboldi let V be a countably infinite set of
vertices (accounts, devices, or credentials). Furthermore, they let L be a countably
infinite set of labels and let A be the set of users/participants that will interact with the
graph (e.g. A = {User, Attacker}).

Definition 2. Account Access Graph with State [3] An account access graph with
state is a triple G = (V,E,A) where V ⊂ V is a finite set of vertices, E : (V ×V)→ 2L

is a map labelling pairs of vertices with finite sets of access methods and A : V → 2A is
a map labelling vertex with a finite set of participants.

This new construction allows for a more in-depth analysis of the security properties
of accounts compared to Hammann’s static analysis, achieved through a mechanism
called security scoring systems on static account access graphs [16]. There is a slight
notational change for graphs with state, using labels to identify the collections of edges,
as opposed to colours used by Hammann. To see the benefits of introducing state
into the graphs can be seen in Figure 2.2 that shows an example state for the same
configuration of accounts as in Figure 2.1. For this example state we can see that the
user has access to all three credentials and an attacker has access to the user’s password.
This allows us to deduce that, for this current state, the user could access the unlocked
phone, but the attacker could not. This statement could not be made from the stateless
graph alone.

Note that while account access graphs with state are powerful tools when combined with
a selection of properties and operations, which we will define in the next subsection. It
is often useful to first describe an account configuration without state before we have to
discuss which users have access to each node. As a result, a combination of both graph
styles will be used within this report.

Chapter 2. Background 5

Unlocked phone
⟨⟩

Locked Phone
⟨ USER ⟩

Password
⟨ ATTACKER, USER ⟩

Fingerprint
⟨ USER ⟩

Biometrics Biometrics, Pass Pass

Figure 2.2: The account access graph from of Figure 2.1 once given a state. In this case,
the user has access to all three credentials, while the attacker only has access to the
password.

2.2.1 Properties and Operations

To develop a language describing the interactions between a user and the account access
graph, Arnaboldi et al. [3] introduced properties over a graph G as predicates over the
graph’s state (V,E,A). There are four predicates defined within the paper. Multiple of
these predicates can then be combined in the usual ways to form logical assertions based
on a given graph state in order to build propositional combinations. These expressions
are written in the following grammar, where u,v ∈V , a ∈ A and l ∈ L :

φ ::= is account(v) v is an account in the graph
|has accessa(v) user a has access to account v
|could accessa(v) user a has a potential way to access v
|uses methodl(u,v) account v is accessible from user u using label l
|φ1 ∧φ2 |φ1 ∨φ2 |¬φ| true

The formal definition for the validity of these properties can be seen in Appendix A.1.

The final building block that we require before a language of tactics may be defined are
the operations to be performed on the graphs. There are eight such operations introduced
by Arnaboldi et al. [3]. The operations on v ∈V , a ∈ A and l ∈ L include actions such
as the creation (create accounta,v) and deletion (del accounta,v) of new accounts, users
gaining access to accounts (gain accessa,v), and removing (rem accessa,v,l) access for
users from an account. The formal definitions for these operations can be found in
Appendix A.2.

2.2.2 Tactics

Tactics are programs that act on an account access graph with state σ. These are
used within this project to allow users to model changes to a user’s account access
graph during the course of attacks. Tactics are defined using a language of sequential
operations on the graph. The tactics of this logical system[3] are given by the component
’t’, the possible structures of which are seen below,

t ::= α | b | t; t | t||t | CHECK(φ).

Chapter 2. Background 6

Where α is an operation, b∈{⊤,⊥} and φ is a property of the graph. Here t||t represents
sequential or while t; t represents sequential execution of tactics. The values ⊤ and ⊥
are used to represent successful and unsuccessful termination of tactics, respectively.
The tactic CHECK(φ) checks if the given property φ is true for the actual state of the
graph.

These tactics are evaluated on a graph with state σ, which is an account access graph
with state, (V,E,A) and the evaluation is notated using the form of judgements

⟨σ⟩t ⇓ b⟨σ′⟩,

where b ∈ {⊤,⊥}.

For example, the successful evaluation of a single operation α (defined as AX-T in the
paper) is given by

⟨σ⟩ α
⇝ ⟨σ⟩

⟨σ⟩α ⇓ ⊤⟨σ⟩
.

There are however situations where the tactic evaluation will not terminate, for example,
the AX − T rule can fail if the graph operation α can not be applied. When the
evaluation terminates, the system is deterministic and will allow for the creation of any
account access graph from an empty state. The full list of such tactics, all of which are
implemented within my tool, is given below.

Definition 3. (Tactics for Account Access Graph Operations [3]) Inductively the
following rules define tactic evaluation for account access graphs.

⟨σ⟩ α
⇝ ⟨σ′⟩

⟨σ⟩α ⇓ ⊤⟨σ′⟩
(AX-T)

⟨σ⟩b ⇓ b⟨σ′⟩ (CONST)

⟨σ⟩t1 ⇓ ⊥⟨σ′⟩
⟨σ⟩t1; t2 ⇓ ⊥⟨σ′⟩

(SEQ-B)

⟨σ⟩t1 ⇓ ⊤⟨σ′⟩ ⟨σ′⟩t2 ⇓ b⟨σ′′⟩
⟨σ⟩t1; t2 ⇓ b⟨σ′′⟩

(SEQ-T)

⟨σ⟩t1 ⇓ ⊥⟨σ′⟩ ⟨σ⟩t2 ⇓ b⟨σ′′⟩
⟨σ⟩t1||t2 ⇓ b⟨σ′′⟩

(OR-B)

⟨σ⟩t1 ⇓ ⊤⟨σ′⟩
⟨σ⟩t1||t2 ⇓ ⊤⟨σ′⟩

(OR-T)

⟨σ⟩ ⊨ φ

⟨σ⟩CHECKφ ⇓ ⊤⟨σ⟩
(CHECK-T)

¬⟨σ⟩ ⊨ φ

⟨σ⟩CHECKφ ⇓ ⊥⟨σ⟩
(CHECK-F)

Arnaboldi et al. then used these tools in a case study where they performed an analysis
of the account configuration for appleID and iCloud accounts on iPhones and, similarly,

Chapter 2. Background 7

Google accounts on Android devices to investigate a vulnerability that was exploited by
attackers. This analysis was able to show that the attack on an iPhone user could not be
carried out on an Android.

This language is very effective in modelling attacks and can be used to generate any
graph we wish. However, there is some ambiguity around the correct behaviour of the
|| (or) operation within the paper. While following the formal inductive definitions, we
see that in the case that an operation’s premise fails the program should not terminate,
and we should instead end up in a failure state. The “or” operation is then defined to
only act based on the inductively evaluated results for its left and/or right tactics, and
so should a premise within the left tactic fail the whole statement would not terminate.
However, within the iCloud case study in this paper, a tactic of the form

rem accessattacker,AppleID,x||⊤

is evaluated, with x ranging over all possible labels sequentially as though it was a series
of statements. This suggests another intended behaviour for the or operation, where the
failure of an operation’s premise is treated as if it were a ⊥. For my implementation I
follow the implied behaviour as it is useful when applying operations to vertices for
whom we are unsure of certain properties.

Since the tool developed within this report will only provide mechanisms to modify
graphs through the use of tactics, it is important that this does not limit the selection
of graphs that can be modelled. Therefore, while the following lemma is not present
within the original paper [3], it is important nonetheless to be certain that all graphs can
indeed be produced using tactics, thus it is stated and proven here.

Lemma 1. Completeness of Graph Tactics Given any account access graph with state
(V,E,A), we can construct this graph from the empty graph using only tactics.

Proof. This result can be proved constructively by providing an algorithm that, given
the set V and the maps E,A, will produce the graph (V,E,A). Each of the following
steps could be completed individually or together using the SEQ-T tactic. We now
define the constructive algorithm as follows:

1. For all vertices, v ∈V evaluate the tactic create account†,v. Where † represents
a user not within the target graph (V,E,A) or, equivalently, † /∈ A(). Thus, our
graph now contains all the required vertices.

2. To add all the required edges, we must perform add access†,{u},v,l for all pairs
u,v ∈V and all l ∈ E(u,v). This ensures that all the required edges are now within
the graph.

3. We no longer wish † to have access to all vertices, and so we must perform
lose access†,v for all v ∈V .

4. Now, for all vertices v∈V and all users, a∈ A(v) evaluate the tactic disc accessa,v.
Thus, we now have that all users have appropriate access to each account.

Notice that no assertions were made on the structure of the target account access graph
with state, and so this algorithm will work generically on any given graph. We can also

Chapter 2. Background 8

see that the only operation used that required a premise to be satisfied (see Appendix
A.2) is add access. However, this operation simply requires that the user carrying out
the attack has access to the incident vertex of the added edge. Since † created all the
accounts, and we had not yet removed this user’s access this is trivially true for all
v ∈V , thus the operation terminates. Furthermore, since when they terminate, tactics
are deterministic [3] the graph is uniquely determined to be our intended graph.

2.2.3 Software Implementations of Tactics

Introducing the rigour of an automated language implementation allows researchers to
verify that a given tactic will indeed execute and result in the intended graph. Within
his MSc project, Walker [35] used a combination of the Neo4j graph database system
along with the cypher query language to build an interpreter for the tactics language
defined by Arnaboldi et al.[3].

The language was parsed with the assistance of the ANTLR(ANother Tool for Language
Recognition) [30] parser generator. This, once given a defined syntax, can be used to
generate a language parser and lexer. Once given a user input such a lexer and parser
can then be used to build a syntax tree that can be traversed to evaluate user inputs [30].

Walker then used this tool to evaluate several case studies and verify example tactics
defined within a draft version of Arnaboldi’s paper [3]. Within this process, Walker
discovered an error within these example tactics, further demonstrating the benefits of
this automation. There were, however, limitations to Walker’s implementation. In the
abstract notation of the tactics language [3] the graph state is updated continuously as
we conduct tactics. If a tactic path results in ⊥, we backtrack and traverse the next path.
For example, the evaluation on an empty graph of the tactic

(create accounta,v;CHECK(is account(u)))||create accounta,u

would result in the creation of only the account u. This is due to the check statement
of the first branch failing, thus the state is reverted and create accounta,u is evaluated.
Due to time constraints, Walker did not include backtracking within his implementation.
Instead, Walker evaluated all predicates on the initial graph state and maintained a list
of valid operations to evaluate. While this simplifies the language, it does alter the
outcome of some tactics defined within the grammar. For example, the following tactic
evaluated on an initially empty graph would, in Walker’s implementation, result in the
account u being created. Since when evaluated on the initial state is account(v) will
return false. Whereas in the abstract notation would result in the creation of the vertex
v,

(create accounta,v;CHECK(is account(v)))||create accounta,u.

This discrepancy is something the implementation outlined within this paper aims to
avoid, and as a result, backtracking will be implemented. The process of how this is
achieved is outlined in the next chapter.

Chapter 3

Developing a Tactic Evaluation Tool

Since most of the graphs that we are concerned with belong to an individual user it is
reasonable to expect them to be of moderate size. With graphs generated by Hammann
et al. [15] during real-world user studies containing at most around sixty sparse vertices,
which were able to represent all the key accounts for a study participant. Although
previous work on automatic tactic evaluation was completed using graph databases, this
only provides meaningful performance improvements for very large graphs.

For graphs of a size similar to or smaller than those seen within the studies, a custom
implementation of account access graphs in a traditional language can provide suitable
performance when evaluating tactics. For this implementation, two languages were
considered, Python and Java. While both Python and Java have many packages that
allow for the modelling of graphs and language parsing; I found that many of the
Java desktop GUI packages, such as Swing, were often not as capable as their Python
counterparts.

It was however found that Swing would not easily integrate well to allow for the contin-
uous update of a displayed graph. Whereas in Python, PyQt5 allows for elements that
can hold and update Matplotlib [17] diagrams, including those of directed graphs. Fur-
thermore, due to Java’s verbose style, the logic required to implement graph operations
and predicates was more distant from that of the abstract notation when compared to
Python. Thus, it was decided to implement my tactic evaluation tool in Python.

3.1 Model Implementation

The Python tool was developed using a model-view-controller structure, the model
component is separated into two main components. The first is the account access graph
itself, which is provided by a graph class that mirrors the abstract notation outlined in
Definition 2. As a result, the code required within this section is not complicated in its
own right. However, it was found that many revisions and rereadings of the abstract
semantics for the tactic language were needed before confidence that the implemented
behaviours were correct. could be gained. This learning was later useful in developing
section 4 as it gave me a greater understating of how languages can be written into

9

Chapter 3. Developing a Tactic Evaluation Tool 10

formal semantics.

The three components (V,E,A) of an account access graph with state are implemented
within the graph class using a set and two dictionaries. The set contains the names for
each of the vertices as strings, representing V ; while the two dictionaries represent the
maps A and E that both take the vertices as arguments and then return sets of users or
labels, respectively. If we wished more information to be associated with each node
we could follow the precedent established by the abstract notation and introduce a new
map that takes a vertex and returns the new information. This simplifies the integration
of tactic evaluation on the graphs, as we may take strings from the user and compare
them directly with the vertices stored in the graph. Similarly, the labels and users on a
graph are also stored as strings.

The vertex set is provided with safe functions for any required interactions and similarly,
each of the dictionaries are provided with a wrapper function (A f unc and E f unc
respectively) that allows safe usage of the dictionary, returning an empty set if an
unknown key is provided. This means the dictionaries do not have to be updated to
include keys that would hold no value, and in the case of vertices that are not within the
graph, this also matches a reasonable expected behaviour. The use of wrapper functions
allow the model to be completely replaced without changing the rest of the code base.
This graph model allows the graph implementation to be lightweight, with only a set
and two dictionaries needed to maintain all the graph information. This is useful for
both comparing the equality of the graphs and making deep copies, both of which are
operations used for later testing. However, the key advantage of being able to duplicate
and overwrite graphs by manipulating these three values is seen when implementing
backtracking for tactic evaluation in Section 3.4.2.

All atomic propositions defined on account access graphs (is account, has access,
could access, and uses method) are seen as ways to check if the graph satisfies a
property. As such, the graph class also contains four methods, one for each of the
predicates defined on account access graphs. These methods implement the logic for
each of these checks and return the appropriate boolean value. This code closely follows
the formal definitions, for example, the has accessa(v) property has its validity formally
defined as:

⟨V,E,A⟩ ⊨ has accessa(v) if v ∈V and a ∈ A(v).

This formal definition is mirrored closely within the Python implementation for the
has access method, the code for which is shown in the code cell below. The similarity
of expression between the formal definition and implementation illustrates how closely
the Python implementation’s methods can match the abstract notation.� �
def has_access(self, v, a):

return self.is_account(v) and a in self.A_func(v)� �
The second component that must be implemented within the model is the graph opera-
tions used to modify graphs. Since these are viewed as acting on a graph, as opposed to
checking a property of a graph, they are created as static methods that take a graph object

Chapter 3. Developing a Tactic Evaluation Tool 11

as an argument. Each operation has a premise that must be satisfied for the operation to
be carried out. If the premise of an operation is not met, then a custom PremiseError
exception that contains relevant information as to what might have caused the premise
to fail is thrown. These exceptions can later be used to provide more details on why a
tactic failed to be evaluated to the user. If this premise is satisfied, however, we know
that the operation will successfully terminate and thus on the successful completion of
an operation true will be returned. The side effect of the operation being executed is an
appropriate alteration in the graphs’ state.

3.2 The Controller

The controller class acts as the central class by performing the program logic for interac-
tions between the model and the user interface. This separation of roles was established
by creating listeners within the controller that upon the activation of intractable ele-
ments of the UI call functions within the controller class. This allows UI elements to
be replaced or re positioned without requiring changes to the controller code. As long
as the same name is used by the UI element responsible for a given signal, the same
action will take place in the controller. This also means that only one graph state, which
belongs to the controller, needs to be maintained within the application, and it can then
be passed to the UI when the displayed diagram needs to be updated.

The controller is also responsible for calling all functions related to the parsing of the
tactics language. This is achieved by reading the inputted text from the UI and then
passing it as an argument to the parsing component of the system. If an exception is
thrown by the parser, then the error message, potentially slightly altered for readability,
is displayed to the user as outlined in the UI section.

3.3 User Interface and Displaying the Graph

Now that the basic model has been established, we require a user interface that allows
a user to interact with this model and evaluate tactics based on it. A set of goals
determined for what this user interface should allow a user to do:

1. Provide a method for a user to enter and execute a tactic,

2. Display the current graph state to the user in a way that allows the effect of a
tactic to be understood,

3. Allow a user to save and load a graph state to a file,

4. Allow a user to clear the graph state,

5. Provide feedback to the user on a tactics evaluation, such as if an operation’s
premise is not fulfilled.

Many Python packages allow for the generation of such user interfaces, the two con-
sidered were Tkinter [21] and PyQt5. Tkinter is a standard Python library package
that allows for the creation of basic user interfaces. PyQt5 on the other hand is a GUI

Chapter 3. Developing a Tactic Evaluation Tool 12

framework developed by Riverbank Computing Limited. Which provides a much more
extensive selection of features for implementing both GUIs and some back-end compo-
nents. While Tkinter is integrated into Python and would provide sufficient features
to implement the goals for the project, it would limit options for future development
and expansion of the program. The decision was therefore made to utilise the PyQt5
framework for developing the user interface.

A PyQt5 interface is built from widgets, each of which adds a different component to the
UI. The design starts with a custom QMainWindow widget that represents the pop-up
window. Within this window a toolbar is added that contains save, load, and clear
buttons. These buttons will be linked to functions within the controller that perform
the appropriate actions for goals 3 and 4. Due to its ability to maintain the structure
of Python objects, it was decided that when a user saves a graph it would simply be
exported as pickle files. These pickle files can then be loaded back into graph objects
and used to overwrite the current state when the user loads a file.

Following this toolbar a text input is placed for the user to input their tactics, and a line
of black text that prompts the user to input a tactic. This text prompt is then changed
upon the execution of a tactic. Giving useful feedback to the user such as whether a
tactic returned ⊤ or ⊥, as well as any syntax or premise errors. An example of this
feedback can be seen in Figure 3.2 which shows the response to a syntax error.

The final component of this UI section is an execute button that, once clicked, causes the
user input to be read and evaluated. for ease of use, an equivalent action also takes place
when the user presses the return key while the tactic input is selected. This combination
of text input, text prompt, and execution button achieves goals 1 and 5.

The most difficult component of developing the user interface was achieving goal 2.
This was mainly due to requirement of integrating a diagram for the account access
graph, which could be updated regularly when a tactic executes or a new graph is
loaded. This required the creation of a custom PlotWidget class as a child of the basic
QWidget class provided by PyQt5. This custom widget contains a canvas that displays
a Matplotlib [17] diagram. Alongside the canvas, this widget also contains a toolbar
that allows the user to pan and interact with the diagram displayed within the canvas
as though it were a Matplotlib window. Note that while a PlotWidget object must be
instantiated with a graph since this provides the graph state that should initially be
displayed, it does not store any graph state. Instead, the widget provides a method that
given a new graph will clear the canvas, and then display the new graph. This avoids
the need to hold state within the widget.

To draw the account access graphs onto a PlotWidget canvas, the networkx [13] package
was used as an intermediary. This package providing a good collection of methods
for displaying directed graphs as Matplotlib plots. This was done by adding a method
to the graph object that packages the custom graph object into the standard networkx
format. With vertices whose labels consist of the account name followed by the users
who have access to the vertex on a new line. Similarly, the edges were labelled by the
list of methods associated with the result of E(u,v), where u is the source vertex and v
is the destination vertex for the edge. The networkx draw functions were then used to
display these converted access graphs on the PlotWidget’s canvas.

Chapter 3. Developing a Tactic Evaluation Tool 13

Although this system provides a readable diagram that contains all the relevant informa-
tion, it does have limitations. The main drawback is that, while networkx does provide
many positioning algorithms for the vertices, experimentation shows that none of these
are perfect for this use case. Sometimes text may overlap, or new vertices will be
placed in unusual locations far from other nodes. This issue is particularly bad with the
spring layout, and by using a Matplotlib canvas, there are limited options for the user to
reposition the nodes. The fact that each time the graph is updated, it is plotted again
also limits the continuity between executions, with one new vertex often causing all
vertices to be placed differently. These limitations can be minimised by making use of
the graphviz layout, which produces a hierarchical layout for the nodes based on the
edges between them. The graphviz layout does however become slow at positioning
nodes once a high number of nodes and edges are included in the graph, therefore
kamada kawai layout is used instead for these large graphs.

Other designs were also considered, such as using a JavaScript plotter like Pyvis then
displaying the result as an HTML element within the UI. This would have provided
the user with the ability to interact with the plot and move nodes to be more readable
in the event of an imperfect automatic vertex placement. There were many difficulties
when attempting to take this approach, with every attempt made resulting in a blank
rendering within the UI, even when a graph was meant to be displayed. This is likely
a result of some incompatibility between PyQt5 and the JavaScript/HTML generated
for displaying such graphs. Improving the intractability and automatic node placement
of the application do therefore mark areas for improvement and potential further work.
One potential solution would be to utilise a system similar to the scoring schemes
introduced by Hammann[14] to rank the centrality of the nodes and position them
appropriately.

The user interface design resulting from the combination of these key elements can be
seen in Figure 3.1, which shows the application open while displaying the example
account access graph in Figure 2.1.

3.4 Language Processing

Now that the model and interface have been established, attention must be turned to the
process of converting strings from the user into programmatic instructions that can be
evaluated on the graph. This is a common problem within language design and thus
there are many approaches to solving it, with three key components of such a solution.
First, we must perform a lexical analysis to split the input text into a sequence of tokens
representing the basic syntactic units recognized by the language [1]. The code that
conducts this analysis is known as a lexer. Next, we must apply a parser which, given
the input tokens, will analyse the structure of the input and encode this into a syntax
tree, e.g. Figure 3.4. Using this syntax tree, we can now evaluate the user-inputted
tactics as a series of actions to take on the graph model’s state by traversing the tree.
An overview of these steps can be seen in Figure 3.3.

Chapter 3. Developing a Tactic Evaluation Tool 14

Figure 3.1: Image showing the user interface for the tactic evaluation tool while showing
the example graph in Figure 2.1.

Figure 3.2: A screenshot showing the Feedback provided after a syntax error was made.

3.4.1 ANTLR and Language Grammar

Initially, a custom implementation was pursued, in the form of a recursive-descent
parser. This proved to be difficult due to my inexperience in formal language design and
would not supply any material benefit to the capabilities of the project. The decision was
made to use a parsing package that would aid in the implementation of this component.
Many such packages exist, but one of the most common is ANTLRv4 (ANother Tool
for Language Recognition) [30], which is a Java-based parser generator maintained by
Terence Parr.

Given the grammar for a language in a specified file format, ANTLRv4 will generate not
only lexer and parser classes for the language but will do so for multiple target languages.
In this case, we are working in Python; however, the same grammar files could be used
to parse the language in a program created with any other supported language, such as
Java. ANTLRv4 was also used in the Neo4j tactic interpreter developed by Walker [35],
and therefore his language grammar was used as the basis for my implementation.

Two files were used to define the tactics grammar, one that contains the lexer rules and
another that includes the rules for parsing. Within the lexer file, regular expressions
are provided for each of the tokens used within the language. Following convention,
these tokens are named in all capitals. In many cases there are multiple valid regular
expressions that we wish to recognise as the same token. These alternatives are separated
by a vertical bar (|) within a token definition. In commonality with Walker’s approach to

Chapter 3. Developing a Tactic Evaluation Tool 15

Figure 3.3: The steps required to process an input from a well-defined language into
actions to be performed by the application. Diagram by Andy Balaam [4].

the ANTLR grammar, ‘AND’ is used for the lexing rule of ‘;’ and ‘OR’ is the lexing rule
of ‘||’. As an example of how a token definition is expressed the rule for the CHECK
token, which accepts both the string ‘check’ and ‘CHECK’, can be seen below.

CHECK : ‘CHECK’|‘check’;

Several key changes were made relative to the lexer utilised by Walker. Firstly, shortened
versions of the operations and graph properties were introduced as alternatives for
their respective tokens; for example, the token for del account will now accept both
‘del account’ and ‘del acc’. This helps to improve usability by making commands less
verbose. Similarly, to make the syntax for properties and operations more consistent, an
ending underscore present in the regular expressions for many of Walker’s tokens was
removed.

The biggest change made was the removal of separate tokens for vertices, labels, and
users (User and Adversary in Walker’s system). These tokens were replaced with a
string token that will match any input contained within either single or double quotes.
Since the only context in which data is entered within the language is within calls to a
graph property or operation, what type of object is referred to (e.g. user or account) can
be inferred by the position of the string input within these calls. This decision allows for
more than two users to be modelled within the system. A fact that could be useful if, for
example, a recovery method was based on another user’s account or there were multiple
attackers. The elimination of argument/parameter types also reduced the number of
environmental maps required when variables are introduced in Section 3.4.3. As a result
of these changes, a call to the operation create account is now defined to take the shape,� �

CREATE_ACCOUNT LPAR arg COMMA arg RPAR� �
where CREATE ACCOUNT, LPAR, COMMA and RPAR are tokens while arg is
another rule that includes strings surrounded by quotes.

Within the second file, these tokens are used to define all the grammatically valid
structures that the parser should recognise. Each of these rules is presented similarly to
that of the lexer rules. Though now they are each given a label to aid in the development

Chapter 3. Developing a Tactic Evaluation Tool 16

of the visitor in the next section. The rules for a tactic can be seen below, where t simple
represents the evaluation of ⊤,⊥, CHECK, or a single operation. The precedence of
operations is an important part of parsing a grammar, as it informs which pattern should
be matched first (for example, in numeracy * has a higher precedence than +). Within
an ANTLR grammar, this is given by the order in which the rules are defined, with
the highest precedence being defined first. Much like in Walker’s grammar[35], AND
(‘;’) is given higher precedence than OR (‘||’). This was done to stay in keeping with
the precedence of the predicate logic, which represents a component of the language
within the check condition. For a user to specify the order of operations, outside the
canonical ordering implied by the language precedence, we also introduce brackets
in the parenthesized rule. The first two parser rules as outlined here can thus be seen
below.� �
tactic: t EOF ;

t:t AND t # TOp
|t OR t # TOp
| LPAR t RPAR # Parenthesized
| t_simple # Simple
;� �

Note that the rules used for t make this language left recursive since many of the
alternatives for t immediately refer back to t [33], while this was not supported in
ANTLRv3 within ANTLRv4 such languages are automatically rewritten into non-left
recursive languages when applied to grammar[28].

The rest of the lexer and parser rules can be found in Appendix B.1 and B.2 respectively.
We can combine these rules inductively such that any tactic as defined by Arnaboldi et
al. [3] can be inputted as a valid string. For example the tactic,

CHECK(is account(phone));(
CHECK(could accessattacker(phone);gain accessattacker, phone

)
||(

CHECK(¬could accessattacker(phone));disc accessattacker,phone
)
||⊤

can be encoded in the grammar as the following string.� �
check(is_account("phone"));
(check(could_access("attacker","phone"));
gain_access("attacker","phone")) ||
(check(!could_access("attacker","phone"));
disc_access("attacker","phone")) || TOP� �
3.4.2 Evaluating Parse Trees

Using ANTLR to generate Python lexer and parser classes for the grammar described
above then allows us to tokenise and then parse any string into a parse tree. The result

Chapter 3. Developing a Tactic Evaluation Tool 17

of this process for the example tactic in the previous subsection can be seen in Figure
3.4. The remaining challenge is to use this tree to execute the inputted tactic. For this
purpose ANTLR can generate tree walkers that visit the nodes of a parse tree with two
different patterns, listeners, and visitors [28].

Figure 3.4: An example tactic parse tree as produced by an ANLR generated parser for
the tactic language. Generated using ANTLR lab [29].

When using the listener pattern a default walker class performs a depth-first walk of
the parse tree. In the case of the parse tree in Figure 3.4 this would result in the
CHECK(is account(phone)) branch being explored first. When this walker enters
or leaves a node, it will send a signal that will trigger a function within the listener
corresponding to the type of node visited (the node type is determined by the label
given within the parser rules). While this could theoretically be used to conduct our
tactic evaluation listeners do not give control of graph traversal and we will not always
wish to evaluate all breaches of the tree. For example, when the first branch of an or
statement returns ⊤ we don’t wish to evaluate the second branch. The listener also
loses the structure of the parse tree and so is not useful for constructing objects whose
structure is based on that of the parse tree, such as an AST (Abstract Syntax Tree). As a
result of these limitations, the listener pattern was not used.

The visitor pattern on the other hand gives full control of the traversal down the parse
tree, starting with the root node. By default, the visit function is recursively called on
each of the node children. This results in the same depth-first walk of the parse tree as
in the listener. However, when using the visitor pattern we may override the default
behaviour for each node type, changing the order in which the children are visited. If
when visited the children return a value we can then use this returned value to conduct
calculations or even create objects at each stage of the visitor’s graph traversal.

This leads to two reasonable designs for the evaluation of the parse tree using a visitor.
The first involves directly evaluating the tactic within the visitor. While this would
be sufficient for simply executing the tactic that the user provides, it does limit the
extensibility of the system. This also means that the visitor logic often gets cluttered
with large amounts of code for executing the tactics. The second option is to build a
set of classes, one for each of the node types within the tree. Then use the visitor to

Chapter 3. Developing a Tactic Evaluation Tool 18

instantiate nested instances of these classes producing an intermediate representation
of the parse tree. For example, the visitor for the ‘||’ and ‘;’ operators are given below.
Here, we can see that a TOp (Tactic operator) class is created using the returned objects
from both the first and second t rules.� �
def visitTOp(self, ctx:tacticParser.TOpContext):

get token for operatior
op = "OR" if ctx.OR() else "AND"
return TOp(op, self.visit(ctx.t(0)), self.visit(ctx.t(1)))� �

We call this intermediate representation an Abstract Syntax Tree (AST) and it holds
all the key information that is relevant to the evaluation of the tactic, while loosing
information that is only relevant to the parsing of the input such as the position of
brackets or other excess tokens. Each of the classes used to build this AST are given
an execute method. This method takes a graph state and an environment dictionary
holding any variables, then performs the logic for evaluating the tactic on the graph
state. Within the evaluation of tactics, True and False are used as substitutes for the
formal ⊤ and ⊥ values that the tactics formally return, allowing for much easier use of
Pythons built-in logic.

Within the first iteration for my design for the AST each rule within the parser, was given
its class within the AST. However, upon comparing this design to other common AST
structures, such as those for numerical expressions, it was found that this resulted in far
too many overly specific classes. To remedy this the parser rule labels were changed and
the visitor was modified to return elements of a new and reduced selection of classes.
This reduction was mainly due to the combining of operations that shared similarities in
the number and types of input. This included combining the predicate operations ∧,∨
and ¬ into a single class. These can be combined since they all take in either one or
two inputs, all of which are of the type predicate. The combined classes then simply
store a string containing which operation to complete and the needed arguments. It
was decided, however, to leave the operation and atomic predicates as separate classes
(one for each of them, i.e. create class and has access both have their classes). This
was mainly because they all take different numbers and types of input, making any
combined class needlessly complex and difficult to read. Such a combined class would
also require special conditions for the visitor further complicating their usage.

As an example of these new AST node classes, the TOp class can be seen below. This
class represents the two binary operations (‘||’ and ‘;’) that can be performed on tactics.
Which of these should be performed is stored within the op(operator) property, then at
execute time the operator is checked and the appropriate logic carried out. We can also
see that when the or operation is used backtracking is achieved by making a temporary
copy of the graph, and then reverting the graphs state if execution fails on the first
branch. Notice that because the AND operator requires both the left and right tactics to
be correct it does not introduce an opportunity for backtracking, while the OR operator
does. Furthermore, we wish the ‘||’ operation on tactics to treat a premise exception for
the left tactic as if it were a return value of ⊥ a try-except clause is used to catch such
premise errors.� �
class TOp(ASTNode):

Chapter 3. Developing a Tactic Evaluation Tool 19

def __init__(self, op, left, right):
self.op = op
self.left = left
self.right = right

def __str__(self):
return f"TOp({self.op},{self.left}, {self.right})"

def execute(self, graph, env):
match self.op:

case "OR":
temp = graph.copy()
try:

b = self.left.execute(graph, env)
except PremiseError:

b = False
if not b:

graph.overwrite(temp)
b = self.right.execute(graph, env)

return b
case "AND":

return self.left.execute(graph, env) and \
self.right.execute(graph, env)� �

3.4.3 If Statements and For Loops

Arnaboldi et al. [3] introduced three shorthand’s on top of the core tactics and operations.
The first was an if statement of the form

IF φ THEN t1 ELSE t2

where φ is some predicate on the state of the graph and t1, t2 are two tactics. This was
introduced as short hand for the following tactic which conditionally branches based on
φ,

(CHECK(φ); t1)||(CHECK(¬φ); t2).

This is implemented by adding new tokens for IF, THEN and ELSE then adding the if
statement as an alternative to the t simple parser rule. When this alternative is visited
while building the AST, we then simply instantiate classes that match the conditionally
branching tactic. This means that no additional classes or execution logic is required
within the AST classes.

The next shorthand introduced was the FORALL loop, which allows a tactic to be
repeated over several vertices. The calls to this shorthand are of the form

FORALL x IN [v1,v2, . . . ,vk] DO t

where x is the variable name to be used, vi are vertices, and t is a tactic that uses the
variable x. This would then expand to t[x 7→ v1]; t[x 7→ v2]; . . . ; t[x 7→ vk], where [x 7→ vi]

Chapter 3. Developing a Tactic Evaluation Tool 20

denotes assigning the value of the variable x to be vi. Due to the removal of strict typing
within my language implementation the requirement of x to represent a vertex was
removed. However this does allow the user more flexibility in how this short hand is
used.

To implement this for loop, a new variable token was added to the lexer which matches
any input containing only characters, numbers and underscores. This token was then
included within the choices for an argument of all the operations and predicates.

However, since a variable token may match with a wide selection of possible inputs
it introduces the possibility of collisions with ket words within the language. These
potential collisions could be removed by adding a special character in front of variable
names (e.g. &x instead of x). This would make the language more cluttered and does
not provide substantially more functionality to the user. Another possible solution could
be found in the lexer modes offered by ANTLR4 [28], allowing different matches to
be made based on which mode the lexer is in. Again this would introduce unnecessary
complexity into the design for limited functionality gains, and as a result, it was decided
to simply provide the user with a clear syntax error when such a restricted word is used
as a variable name.

To use this variable argument an environment map was introduced, which is stored
in the controller and when given a variable name returns the string value currently
associated with it. Then when a variable is evaluated, it is looked up within this map,
and the resulting string is returned, allowing the variable to perform identically to a
user inputted argument string from the perspective of the tactic call. A FORALL class
was then added to the possible node types for the AST, which, when evaluated, will
loop through the choices for the variable, updating the environmental map, and then
evaluating the tactic. If any of these tactics returns false, then the entire for loop returns
false.

The final shorthand introduced by Arnaboldi et al. was a FORONE loop, which is similar
to the FORALL loop described above aside from that it represents an integration of the
OR tactic as apposed to the AND tactic. This shorthand was therefore implemented
with a similar approach to that of the FORALL shorthand, with the only significant
difference being a change in the execution logic to match the behaviour of the OR tactic.

Chapter 4

Searching Account Access Graphs

So far all defined tactics have depended on knowing which vertices, labels and users
you wish the tactic to act on. For example, to evaluate gain accessa,v we need the two
explicit values of a and v. It is however common within attacks to conduct the same
actions on many different accounts/devices which all match certain properties. For
example, after stealing a reused password an attacker may wish to gain access to all
accounts which use it for authentication.

As a result of this, the goal of this chapter will be to design an extension to the tactics
language that allows for the evaluation of tactics based on searches/queries of the graph.

4.1 Selecting Components from Graphs

The process of developing this extension to the tactics language started by defining a
selection of simple queries. These simple queries are notated within the extended tactics
grammar with the following rule.

γ :=V |E(u,v) |A(v) |AccessFrom(U) | FROM S SELECT x WHERE φ | {a0, . . . ,an}

for φ some predicate, x some variable name, u,v ∈V , S is some set of graph elements,
and U ⊆V . We also define ai := v | l |a for v ∈V, l ∈ L and a ∈ A . Where we are taking
V,E,A to be the graph components as in the definition of an account access with state 2.
As such V is the set of all vertices in the graph, E(u,v) is considered to be the set of
all labels for the edge from u to v and A(v) is the set of users who have access to the
vertex v. Similarly, the final alternative for γ, given by {a0, . . . ,an}, is an explicit set of
elements from the graph.

4.1.1 AccessFrom and SELECT

Following a syntax similar to other query languages, such as SQL [7], the SELECT
query is a way for the user to query the set S for elements that satisfy the given predicate.
The evaluation of SELECT is inductively defined by the following rules:

21

Chapter 4. Searching Account Access Graphs 22

⟨σ⟩S ⇓∅⟨σ′⟩
⟨σ⟩FROM S SELECT x WHERE φ ⇓∅⟨σ′⟩

(SELECT-E)

⟨σ⟩S ⇓ S′⟨σ′⟩ Y1 ∩Y2 =∅ Y1 ∪Y2 = S′

∀yi ∈ Y1⟨σ⟩CHECK(φ) ⇓[x 7→yi] ⊤⟨σ′⟩ ∀yi ∈ Y2⟨σ⟩CHECK(φ) ⇓[x 7→yi] ⊥⟨σ′⟩
⟨σ⟩FROM S SELECT x WHERE φ ⇓ Y1⟨σ′⟩

(SELECT)
Where ∅ represents the empty set. An alternative considered for selecting graph
elements would be to check for relational rules, as is done in other graph query languages
like Cypher. To make use of the pre-existing predicates within the tactics language this
option was not taken.

Once more language for predicates using graph queries has been developed we will be
able to make more meaningful searches. However by only using the original predicates
on graphs, as defined by Arboldi et al [3] we can define two very useful shorthands,
Predl,v and Succl,u, where l ∈ L , u,v ∈ V . These provide short and easy ways to
query for all vertices preceding and succeeding, respectively, the given vertex v when
considering only edges with the label l. These represent shorthand as opposed to new
commands, since they may be expressed as SELECT calls.

Predl,v := FROM V SELECT u WHERE uses methodl(u,v),

Succl,u := FROM V SELECT v WHERE uses methodl(u,v).

Some other useful shorthand’s were also introduced into the searching language. This
includes the use of ‘ ’ as a vertex. This shorthand indicates that we wish to return the
results for all vertices in V . For example, E(,v) would mean we wish to return all the
labels for edges that end at the vertex v.

The other non-trivial query, AccessFrom(U), included in the definition of γ is defined
similarly to the function of the same name within Hamman’s paper [14], as follows.

Definition 4. AccessFrom(U) is defined to be the set of vertices in V that can be
accessed directly or transitively from the given set of vertices U . This can be recursively
defined as

AccessFrom(U) := {v ∈V : v ∈U ∨ (∃u, l.l ∈ E(u,v)∧∀x ∈V.l ∈ E(x,v)⇒

x ∈ AccessFrom(U))}.

This allows the user to see which vertices could be accessed (potentially transitively)
by an attacker with access to the accounts within U . For example, when applied to
the account access graph in Figure 5.2 the query AccessFrom(Laptop) would return
{Laptop, Google Chrome, Googleopen, Google PWD Manager, MS Password, Outlook,
Googlefull}.

Chapter 4. Searching Account Access Graphs 23

4.1.2 Combining Query’s

To provide a method for combining queries, we introduce the S rule given by,

S := S∪S |S∩S |S\S |γ |x

where γ is one of a selection of simple queries as described in the previous section, and
x is a variable. Here we also include the standard set operations, union (∪), intersection
(∩) and set minus (\). These combinations are defined to evaluate as you would expect,
such as returning the intersection of the sets S1 and S2 for S1 ∩ S2. Note also that
the evaluation of these combinations can be formally defined inductively, similar to
previous language components. However, since these represent standard set operations,
for brevity only the definition for the UNION operation is included with the remaining
set operations defined in Appendix B.4.

⟨σ⟩S1 ⇓ {a1, . . . ,ai}⟨σ′⟩ ⟨σ⟩S2 ⇓ {b1, . . . ,b j}⟨σ′⟩
⟨σ⟩S1 ∪S2 ⇓ {a1, . . . ,ai,b1, . . . ,b j}⟨σ′⟩

(UNION)

When using the γ alternative, we allow the use of any S rule in place of any set, such
as when calling AccessFrom, allowing for nested searches. To allow for the results of
searches to be saved and reused without needing to be retyped, a variable assignment
tactic of the form:

LET x = S

where x is a variable name and S is some search that is also added to the language. This
rule is evaluated according to the following semantics.

⟨σ⟩S ⇓ S′⟨σ′⟩
⟨σ⟩LET x = S ⇓[x 7→S′] ⊤⟨σ′⟩

(VAR-S)

To allow these variables to be used, we also included x as an alternative of S. This
means they may be used in place of a search anywhere within the language, if a variable
contains a single element instead of a set where a set is expected or vice versa an error
is displayed to the user.

4.2 Predicates Based on Graph Searches

To make full use of the querying ability introduced in the previous sections, we require
methods for checking the properties of the resulting sets. These predicates can then
be used within nested SELECT and branch statements to produce more sophisticated
results. We therefore extend the original set of predicates φ by the following new rules.

φextention ::= transitive accessa(v)
|S == S |S ⊆ S |S ⊇ S |s in S
|exp > exp |exp < exp |exp >= exp |exp <= exp |exp == exp

With exp defined by,

Chapter 4. Searching Account Access Graphs 24

exp := exp+ exp |exp− exp |exp ∗ exp |exp%exp |exp/exp |num

where num is either an integer or the length of a set, as follows,

num := [1−9]+ |LEN(S).

Here we can see three different types of predicated have been added. The first consists
of the transitive accessa(v) property. This graph property is the natural extension of
the could access property from the original tactics language. Informally, this property
would return true if the given user a could, after performing nothing but gain access
operations, eventually gain access to the given account ‘a’. The formal definition for
the validity of this property is provided below.

Definition 5. Definition of validity for transitive access.

⟨V,E,A⟩ ⊨ transitive accessa(u) if u ∈AccessFrom(FROM V SELECT x WHERE
has accessa(x)) where a is a user and u ∈V .

The next type of comparison introduced are set comparisons. These include checking if
one set is entirely contained in another, or if an element is contained within a given set.
These provide for a much more expressive selection of possible comparisons.

The final type of predicate introduced is based on comparing expressions (exp). These
expressions are numerical equations involving only integers, and the length of searches.
The validity of these comparisons between expressions is defined to be the same as
equivalent comparisons between integers. For example, 1 >= 1 is true, while 1 > 1
is false. These forms of comparison are useful for checking if a given property of the
graph state is true. For example, if a given account has more than four predecessors for
any given label.

These expressions have many rules for how they may be combined. This includes
a division rule, however, to keep any results of division within the ring of integers,
this represents a floored division method and a separate mod rule for calculating the
remainder is provided. The evaluation of these exp rules are formally defined in
Appendix B.4.

Since the length rule is particularly important, allowing for queries to be compared
using the exp rules, unlike the other rules it is formally defined here.

Definition 6. Evaluation of length of sets. The evaluation of the length of sets by the
following rule.

⟨σ⟩S ⇓U⟨σ′⟩ |U |= n
⟨σ⟩LEN(S) ⇓ n⟨σ′⟩

(LENGTH)

These predicates may now be combined with SELECT statements to search for elements
of the graph that satisfy certain properties. For example, the search query given by,

FROM V SELECT x WHERE (
FROM E(,x) SELECT l WHERE (LEN(PREDl,x) == 1) ! = {})

will select all vertices that can be accessed with the use of only one factor. This could
be a single password or a recovery mechanism.

Chapter 4. Searching Account Access Graphs 25

4.3 Evaluating Tactics on Selected Vertices

The final requirement before we have a full system for querying account access graphs is
to have a mechanism that allows for the results of these searches to be used in evaluating
tactics.

This can be achieved through the use of the pre-existing “for all” and “for one” short-
hand’s. Here, we simply replace the array we iterate through with the result of a search.
For example, we may wish to execute the tactic,

For All x in FROM V SELECT x WHERE has access(a) do lose access(a,x)

which would search for all the graph vertices the user a has access to, then would remove
the user’s access to all of these vertices. This then completes the formal definitions for
the changes made to the tactics language.

4.4 Implementation of Graph Searches

The extended tactics and query language was implemented on top of the original system
for tactic evaluation as described in section 3. The majority of this development involved
simply altering the ANLR lexer and parser files to match the new extensions, and then
expanding the visitor and AST classes to match this larger language. All of this follows
the same patterns and mechanisms as described in Section 3 and thus will not be
repeated here. The starting Parser rule was also altered to allow the user to input just an
expression or search, the results of these inputs are then displayed when evaluated. This
allows for searches and checks to be performed on the graph without requiring them to
be contained within a larger tactic.

The updated ANLR lexer and parser, with support for this new extended language,
can be seen in Appendix B.3 and Appendix B.5 respectively. The only significant
change relative to the abstract notation is the use of $ at the start of the fundamental sets,
such as $V for the set of vertices rather than simply V . This change prevents the new
keywords, many of which are simply capital letters, from overlapping with common
variable names.

Chapter 5

Tool Evaluation and Discussion

Before any tool can be used practically, it needs to be tested and evaluated to ensure it
is operating properly. From a technical point of view, we need to make sure that the
tactics are interpreted and then evaluated correctly. To achieve this evaluation, a series
of unit and integration tests of the language are performed using the unittest Python
module. These tests are outlined within sections 5.1 and 5.2.

While it is important to ensure the technical correctness of such a tool, potentially just
as important is its usability. This is hard to quantify in terms of formal tests and since
the tool is designed for a user already familiar with the tactics language, a user study
would not be practical. Instead of this, two worked examples are performed using the
tool in Section 5.4, and Section 5.5. This provides an opportunity to practically use the
tool and recognise any shortcomings in its usability for conducting security analyses.
Within section 5.6 this usability will then be assessed using 10 rules outlined in the
heuristic evaluation framework introduced by Jakob Nielsen [26, 27].

5.1 Testing the Model, Operations, and Properties

Testing of the technical components began by focusing on the core Python model and
its functions. Throughout this process, two example graphs were used. The first of these
was the empty graph that contained no vertices or edges, this provides a useful edge
case for many functions. The second was the graph of Example 2.2 modified to include
an additional label on the edge between the locked phone and the unlocked phone. This
second example graph was referred to within the testing as the prototype graph and
contains all the typical components that we will see within a graph. These graphs were
instantiated with the appropriate components rather than built using tactics since this
isolates any errors in the Python model’s implementation. A test was also conducted to
ensure that the two mechanisms resulted in an equivalent graph being generated. Two
examples of the tests carried out can be seen in Figure 5.1.

So that these preset graphs could be trusted for further analysis, testing began by
ensuring that these graphs had been instantiated with the correct properties. This was
done by directly asserting what the set V and the maps E,A should be for a given graph

26

Chapter 5. Tool Evaluation and Discussion 27

once the object was created. Other functions such as has access were not used at this
stage, as they have not been tested. These initial tests also included unit tests to ensure
a graph model is exported correctly to a networkx model by the to networkx method.
This is used for piloting any graphs within the UI. Ensuring any plots used in testing are
accurate to the graph modelled. Similarly, at this stage the methods to copy, overwrite,
and check equality for graphs were tested; including their behaviour on edge cases such
as the empty graph.

Now that assurances have been made about the functionality of the graph class, the next
phase of testing involves the operations and graph properties. For each of the graph
properties (is account, has access, could access, and uses method). Only a few tests were
required since they do not modify the graph in any way and simply return Boolean’s.
As a result, each was evaluated on around 4 test cases where it was asserted the correct
values were returned. For the operations, much more extensive testing was required,

(a) Screenshot showing a test for the
is account property. Where self.g is a proto-
type graph, as described within Section 5.1.

(b) Screenshot showing a test for the
gain access operation. The graph g is a proto-
type graph, as described within Section 5.1.

Figure 5.1: Screenshots showing two examples of unit tests conducted on the model.

with a total of 23 tests performed on these 8 functions. While all of these operations
had at least one test dedicated to them some are substantially simpler than others, thus
requiring fewer tests. For example, disc access, as formally defined in Appendix A.2,
does not have a premise and thus has a simple expected behaviour. Whereas add access
has multiple conditions within its premise requiring more tests to ensure the method
follows the expected behaviour.

5.2 Testing Language Parsing and Tactic Evaluation

Now that we have some assurances based on the underlying model, the next key area for
testing is the parsing and evaluation of text inputs from the user. This process started by
ensuring that the abstract syntax trees for each of the basic types of input (e.g. individual
operations or || tactics) were of the correct form.

The structure of large ASTs produced by the parser was not directly inspected during
testing. This was due to the number of objects this would require the creation of. The
testing instead focused on the results from the evaluation of these trees on given graphs.
However, we can be sure that if a tactic is evaluated correctly, then the appropriate AST
is also constructed correctly.

The next selection of tests focused on the evaluation of user inputs for multiple different
combinations of tactics. In the order of evaluation, these tests are:

Chapter 5. Tool Evaluation and Discussion 28

1. For each of the simple tactics, that have a direct correspondence to a method or
function within the Python code (i.e. operations and graph properties), any tests
performed on the equivalent Python function in the section above were repeated.
This time, the functions were called by parsing and evaluating an appropriate
input string (with predicates wrapped in a CHECK statement).

2. A series of eight compound predicates involving a combination of conjunction, dis-
junctions and negations, such as ”is account(’phone’)∨ is account(’laptop’)”,
were evaluated. Ensured that they returned the expected truth value (true for ⊤
and false for ⊥).

3. To evaluate the precedence of evaluation for the binary operations (’||’ and ’;’)
18 statements that only used {⊤,⊥, ||, ; ,(,)} were performed. Treating ⊤ as
True, ⊥ as False, || as OR and ; as AND the value these different statements
return is dictated entirely by the order en which they are evaluated. If they all
return the expected values, we can be sure that the precedence, associativity, and
distributively of tactic evaluation are correct.

4. To test that the graphs are indeed being modified correctly, and reverted when
backtracking is required, a combination of tactics were used to ensure modifica-
tions are being continuously made to the graph, and changes are reverted when
backtracking should take place. Some such tactics use CHECK statements to
ensure only the appropriate modifications had been made at a given stage of the
tactic, while others perform operations that would fail if operations earlier in the
tactic had not been carried out.

5. Testing of the for loops mirrored that of the binary operations since they function-
ally represent a shorthand for a long chain of || or ; tactics. The only new tests
introduced were for when an invalid variable was used within the tactic or if the
user chose to nest two for loops.

After these tests on the core tactics language, a set of 23 new unit tests following a
format similar to that of the tests above were introduced to test the additional language
components introduced for the graph queries. These focused on asserting that the
correct result was returned by any combination of searches and expressions, as well as
that any new predicates were evaluated correctly.

Overall, this means that throughout all testing a total of over 100 tests have been created,
each of which contains multiple assertions and/or tactics which are evaluated. All
of these tests have been passed successfully by my program and combined provide
92% coverage, as reported by Coverage.py. The majority of untested lines were string
methods for the AST classes since these are intended for debugging. During future
development, these tests can be repeatedly run with minimal modification; aiding to
ensure any modifications do not affect the system’s correctness.

5.2.1 Evaluation time of tactics

To evaluate the performance of the implementation, a selection of tactics were evaluated
over a variety of different graphs. The parsing and evaluation time for each of these

Chapter 5. Tool Evaluation and Discussion 29

were then recorded. It was found that even after evaluating large tactics on graphs
with 150 vertices, the evaluation time rarely reached above 0.2s on large graphs. One
such tactic used (seen in Appendix C) selects all vertices for which an attacker requires
access to only one more predecessor before they could gain access to the vertex. The
tactic then performs an attack on one of the selected vertices by discovering access to
the required predecessor. When evaluated on a randomly generated graph with 150
vertices and around 20 edges per vertex, this tactic took 0.13s to be parsed and then
evaluated. This evaluation time takes only a small fraction of the total end-to-end (input
to new graph displayed) latency for such a situation.

The largest contributor to the end-to-end latency was found to be the networkx vertex
positioning algorithm. For 150 vertices, this took 57s to position the vertices. To
correct this, a faster standard algorithm could be chosen, however the current algorithm
is sufficient to feel responsive to the user and to be practical for conducting security
analyses. This is especially true considering that most relevant graphs found in studies
contained at most around 60 vertices.

5.3 Findings From the Technical Evaluation

This suite of tests discovered numerous small bugs and errors in the software, such as
swapped argument placement with the abstract syntax tree’s evaluation functions. One
of the potentially more significant errors discovered within this testing was that when
defining the lexer rules the VAR token, used to match with variables in the language,
will match with other keywords within the language. This was mitigated by simply
giving the variable rule the lowest precedent, allowing all other keywords to match first.
This does, however, lead to errors when a user tries to use such a reserved keyword as a
variable name since it is matched to a token other than VAR which the parser will not be
expecting. This is not a critical error as the user may simply choose a different variable
name, and indeed reserved words are not uncommon in programming languages, such
as ’while’ or ’for’ in Python.

Now that there are some assertions as to the technical correctness of the system it
is important to evaluate the overall usability of the program as a tool to explore the
evaluation of tactics. This will be explored in the next two sections where we conduct
case studies based on real world vulnerabilities.

5.4 An Attack Using Google’s Recovery Method

Google Chrome has a 64.7% market share in web browsers, its second-closest competi-
tor being Safari [10]. This popularity is not unwarranted, with Chrome providing many
useful features to users. The feature of interest for this attack is the password manager.
The Google password manager is a built-in way, which is on by default, for users to
save their login details to their Google account; these can then be accessed from any
computer signed in Chrome [12]. Use of such an inbuilt browser password manager
has been discouraged for as long as they have existed [18], mainly due to the limited

Chapter 5. Tool Evaluation and Discussion 30

protection they provide. Despite this evidence, these mangers do still prove to be highly
popular due to their convenience and ease of use.

Since Google allows a user to set a recovery email, access to which is sufficient to
regain complete control of the Google account, if a user were to save the password to
their Google account’s recovery email into their Chrome password manager, a cycle
would be created. Such a configuration of accounts is shown in Figure 5.2, where
Googleopen represents an open Google session, while Googlefull represents access to a
fully logged-in Google account. We can see the cycle produced by following the arrows
from the Googleopen node through the password manager, Microsoft password, Outlook
account and finally back to the Google account. Such cycles can be indications that
there are weaknesses in the configurations of a users accounts, which is indeed the case
here.

By utilising the AccessFrom set and the set comparisons/predicates from Chapter4 we
may discover the presence of this cycle. This is achieved by performing the following
check statement with U = {Laptop},

CHECK(U ⊆ AccessFrom(AccessFrom(U)\U)). (5.1)

This will return ⊤ if the set U can be accessed from the vertices which are transitively
accessible from U which are not contained within U . This occurs only when a cycle
originating at the vertices starting in the set U exits. It is also important to note that
within this check statement, we do not refer to a single concrete element of the graph,
instead referring to the generic set U . Thus, this rule can be reused with any given set
of vertices to check for cycles.

Laptop

Locked LaptopMS Password Laptop PIN

Google Chrome

GoogleopenGoogle PWD ManagerOutlook

Googlefull
Google PWD

Phone

Locked Phone

Phone PIN

Figure 5.2: An account access graph without state showing an Outlook and Gmail
account configured with an Outlook recovery email. This Outlook account has its
password stored within the Google password manager.

We can take this account configuration and model it as a state-full account access graph
within the tactic evaluation tool. To do this we need to make some assumptions around
who initially has access to each vertex. We will take that initially the user has access to
all credentials and is logged into their laptop and smartphone; while the attacker has
no access to any accounts, credentials, or devices. Starting with a blank canvas, we

Chapter 5. Tool Evaluation and Discussion 31

may create this environment within the tactics tool by performing the following tactics,
which results in the graph shown in Figure 5.3a. Note that some components of these
tactics have been removed for brevity. The full tactics, along with all the tactics used
within this section can be found in Appendix C.� �
for all x in [’Google PWD’, ’Outlook’, ...]
do create_account(’user’, x);
add_access(’user’, [’Google PWD’], ’Google full’, ’PWD’);

...
add_access(’user’, [’MS Password’], ’Outlook open’, ’PWD’);
(for all x in [’Outlook’, ’Google PWD Manager’,
’Google full’, ’Google open’, ’Google Chrome’]
do lose_access(’user’, x))� �
We can see in the above commands that thanks to the inclusion of the FOR ALL
shorthand in the new tool. This reduces the number of tactics required to generate the
initial state of the system is significantly reduced when compared to previous systems.
This reduction in input length reduces the opportunity for user error in inputting tactics
and makes the system as a whole easier to use when conducting these evaluations.

5.4.1 The Attack

Now, suppose the user was to walk away from their laptop or smartphone while logged
in. At this point, if an attacker could gain temporary access to this laptop or smartphone,
they would be able to gain access to the user’s Google password manager via the open
session within the Chrome browser. While this would be a concern alone, due to the
need for physical access to the machine this access alone is not especially interesting.
This type of vulnerability was also noted by Aranza Trevino [34] in a blog post about
the weakness of such integrated browser managers. However, due to the cycle of
access introduced by the Outlook recovery method, if the attacker can simply copy the
Microsoft password while they have access to the user’s device, they would be able to
gain persistence within the users’ accounts. The user stepping away from their laptop
or phone and then the attacker moving over to use it can be modelled by the tactic;

(lose accessUser,Laptop; lose accessUser,Locked Laptop;disc accessAttacker,Laptop)||

(lose accessUser,Phone; lose accessUser,Locked Phone;disc accessAttacker,Phone).

Since this attack is the same regardless of which device the attacker can access. We
will now continue without loss of generality by only considering the case where the
attacker gains access to the user’s laptop. If this failed, the attack using the phone would
be identical, just with all references to ’Laptop’ replaced with ’Phone’. Should a user
have more devices with a similar configuration, this ’||’ tactic could be generalised to
a for-one rule with the set {’Laptop’, . . . ,’Phone’} containing all such devices. Then
all the tactics conducted within this case study with ’Laptop’ replaced with the chosen
variable name could be included as the tactic to try.

The next step of the attack to be modelled is to open the Chrome browser and in some
way record the Microsoft password contained within its password manager. In tactics,

Chapter 5. Tool Evaluation and Discussion 32

this is modelled by repeatedly applying the gain access operation, and the resulting
graph can be seen in Figure C.1.

gain accessAttacker,Google Chrome;gain accessAttacker,Googleopen
;

gain accessAttacker,Google PWD Manager;gain accessAttacker,MS Password

From this stage, the attacker may use their own device when the user returns. At which
point the following will be executed,

lose accessAttacker,Laptop; lose accessAttacker,Google Open;

lose accessAttacker,Google Chrome;disc accessUser,Locked Laptop;gain accessUser,Laptop

The resulting graph can be seen in Figure C.2. However, since the attacker has the
password to the users Microsoft account from any other device they may now perform,

gain accessAttacker,Outlook;gain accessAttacker,GoogleFull
;

gain accessAttacker,Googleopen
;gain accessAttacker,Google PWD Manager.

Resulting in the attacker being able to access the Google password manager and all
related credentials once again. The attacker could then use this to access all of the
accounts the user has connected to the Google password manager, changing their
passwords and gradually locking the user out. The graph following this third and final
stage of the attack can be seen in Figure 5.3b, and all the tactics entered into the tactic
evaluation tool can be seen in the appendix C. Many of the stated commands within this
case study could be simplified to use a for all shorthand instead of a series of individual
commands.

(a) Initial State. (b) Final State.

Figure 5.3: Graphs generated by the tactic evaluation tool showing the initial and final
stages of the attack conducted in the Google recovery method case study.

5.4.2 Recreating the Attack in Practice

This attack was replicated in the real world by creating a new Microsoft/Outlook account
and then creating a Windows virtual machine (VM) signed into this account. Google
Chrome was then installed on the VM and the instructions to create a new Google

Chapter 5. Tool Evaluation and Discussion 33

account were followed. The Outlook address for the freshly created Microsoft account
was used as Google’s recovery email when prompted. Outlook was then visited using
Chrome, saving the login details into the Google password manager when prompted.

After this setup, the attack was carried out by following the steps outlined above. I was
indeed able to gain access to the Google account through the recovery email. Notably,
this did not even force the reset of the Google account password. However, there was
inconsistency in when it was successful, due to Google occasionally asking the user to
re-login to Windows before viewing passwords. This often occurs when the password
manager has not been used since the beginning of the current browser session. Other
than a login notification being sent to the Gmail for the Google account, which would
likely be ignored if the attacker was logging in from a similar location as the victim
(i.e. the same café), there would be no signs of the breach to the user. This is also
concerning as it is highly likely the details of many other accounts would be stored
within the Google password manager.

Although reality provided some extra variability in the success of the attack, some
aspects of this attack were made easier than expected in practice. This was mainly
because the Chrome account management page would display enough characters of the
recovery email to be recognisable as a username within the password manager. This
allows an attacker with no prior knowledge of a user’s configuration to simultaneously
discover the username and password for the account recovery email.

5.4.3 Mitigating Risk and the Effect of 2FA

A simple low-tech way to mitigate this risk is simply not leaving devices unattended
especially not while logged in. This prevents the opportunity for the attack to even take
place. However, this would not always be a practical choice.

One possible technical mitigation for this attack would be to enable two-step verification
on the Google account, requiring a user to enter more information when resetting the
account, such as their full name or a code sent to a phone number. This makes the
attack more difficult but it may be possible to gather this additional information either
through OSINT [9] or while the attacker has access to the user’s computer. If the user
also introduced 2FA to their Outlook (recovery) account this would now completely
prevent an attacker from logging in using only the password stored by Chrome.

To see why enabling 2FA on the recovery email prevents this attack we may introduce an
SMS-based 2FA token. This token will then be made an extra requirement for accessing
the Outlook email. The tactic which describes the user implementing this change is,

gain accessUser,Outlook; create accountUser,2FA code;

add access’User’, {’2FA code’}, ’Outlook’, ’PWD’; add access’User’, {’Phone’}, ’2FA code’, ’SMS’;

lose access’User’, ’Outlook’.

Then trying to repeat the tactics within the attack as described within the case study, we
now receive the premise error, “gain access(’attacker’, ’Outlook’) failed: attacker does

Chapter 5. Tool Evaluation and Discussion 34

not have the required factors”, which is thrown when the attacker attempts to perform

gain accessAttacker,Outlook

within the final stage of the attack. This is because the attacker will no longer possess all
the required credentials to access this account. Re-applying the check-in equation 5.1,
which now returns ⊥, we can also see that the cycle has now been removed. Though it
is possible the attack could still be carried out in conjunction with a SIM swap attack
[24], it is clear the configuration security has been improved.

5.5 Exploitation of a Google OAuth Vulnerability

To reduce how often a user must sign into a service it is common for authentication
cookies to be used. These cookies identify the user and allow a web service to authenti-
cate them without the use of any other credentials. It has been an increasingly common
attack vector for these cookies to be stolen[32], allowing an attacker to authenticate with
services as an account owner and without entering any other credentials, even allowing
access after credentials have been changed if the cookie is not revoked. This is what
happened when in March 2023 the YouTube channel Linus Tech Tips was breached
through the theft of a cookie. The stolen cookie provided administrator permissions
to their channel[31], with the attackers continuing to have access to the accounts even
after passwords were changed.

An advanced version of this attack technique, which makes use of a vulnerable Google
OAuth endpoint named ‘MultiLogin’, was first described by the threat actor PRIMSA
on the 20th October 2023[20]. This technique claims to allow an attacker to restore
expired cookies for Google services providing persistent access, even if the session is
disrupted or the password is reset [22]. This is especially significant, as it allows an
attacker to maintain access to a user’s Google services for much longer than in typical
Cookie-based attacks. An account access graph displaying the core components of this
attack against a Google account with 2FA enabled can be seen in Figure 5.4.

5.5.1 The Attack

The attack begins, as described by Connor Jones of The Register [19], with the attacker
gaining access to the user’s Chrome files. This access may be gained through a malicious
download, link or one of many other methods. We, therefore, assume, for our initial
state, that the attacker has access to the Chrome Files and MultiLogin endpoint (since
MultiLogin is a public endpoint either user could query). While the user has access
to all vertices. The resulting initial state can be seen in figure 5.5a, and as with the
previous case study all commands evaluated in the tool can be seen in Appendix C.2.

With access to the Chrome Files an attacker may then steal all the encrypted tokens and
GAIA (Google Accounts and ID Administration) identities associated with all accounts
currently logged into Chrome[20]. Similarly, the encryption keys for the tokens are
stored within the UserData directory of Chromes LocalState [20] and thus may also be
stolen by the attacker. When considering the attack for one chosen account this stage is

Chapter 5. Tool Evaluation and Discussion 35

Decrypted Token

Encryption KeyEncrypted Token

Chrome Files

GAIA IDMultiLogin

Session Cookie

Google Account Google PWD

2FA Code

Cloud Storage

Gmail

YouTube

Figure 5.4: An account access graph without state showing the relevant components of
the MultiLogin OAuth API configuration .

modeled by the tactic,

FOR ALL x IN [Encrypted Token, Encryption Key, GAIA ID] DO gain accessattacker,x.

The attacker may then decrypt the user’s token with the stolen key. This is modelled
once again by the operation “gain accessattacker, Decrypted Token”.

MultiLogin is a publicly accessible endpoint that takes a vector of Token and GAIA ID’s
then enables the regeneration of Google service cookies [20]. While this endpoint was
initially intended for synchronizing Google accounts across services since the attacker
now has both the user’s Decrypted Token and GAIA ID they may use it to regenerate
valid cookies. Each of these cookies then provides access to the user’s Google account
without the use of a password or the 2FA code. The graph produced after this final stage
is shown in Figure 5.5b, and the process can be modelled via the tactic below.

gain accessattacker, Session Cookie;gain accessattacker, Google Account.

From this Google account, the attacker can access many different services that utilise
Google for authentication. This includes most Google services such as YouTube, Gmail
and Google Cloud as well as many third-party services authenticated with OAuth. The
attacker can breach each of these accounts with the following tactic (where OAuth is
the label used for all blue edges within Figure 5.4, which each only requires one factor),

FOR ALL x IN SuccOAuth , Google Account ∩AccessFrom({Google Acount}) DO

gain accessattacker, x.

Notice that with this tactic we are not required to specify the names of the accounts
the attacker will access, instead simply all relevant vertices are searched for then

Chapter 5. Tool Evaluation and Discussion 36

accessed, demonstrating some of the utility simple queries provide for conducting
security analyses. Using this new access an attacker could steal many different forms
of personal information, from photos stored in Google Photos to sensitive information
shared via email. This also allows an attacker to read and respond to any recovery
emails sent to the related Gmail account, potentially allowing accounts which don’t use
Google for authentication to also be breached, mirroring the attack within the previous
case study.

(a) Initial State. (b) Final State .

Figure 5.5: The initial and final states of the account access graph with state generated
by the tactic evaluation tool for the Google OAuth case study.

5.5.2 Regaining Control After the Attack

In response to this attack, Google stated that if a user thinks they have been breached this
way they should log out of the affected browser and revoke all active Google sessions
[19]. This should be done in conjunction with removing any malicious software on a
user’s computer, to remove the attacker’s access from the Chrome Files. This would
have the effect of invalidating the token stolen by the attacker and replacing it with a
new one. We can model the action of malware removal and replacement of the token
with the following command (where “GEN” is the label associated with the edges
incident on Session Cookie),

lose accessattacker, Chrome Files; create accountuser, New Token;

rem accessuser, Session Cookie, GEN; lose accessattacker, Session Cookie

add accessuser, {MultiLogin, New Token, GAIA ID},Session Cookie, GEN.

After this change when the attacker attempts to regenerate a cookie, they will now
receive the error,“gain access(’attacker’, ’Session Cookie’) failed: attacker does not
have the required factors”.

According to Karthic [20] the MultiLogin endpoint will still allow a cookie to be
refreshed once after the password of the account has been changed. Therefore, if a user
were to simply change their password and not revoke the stolen token an attacker’s
access would not be removed. This can be seen using the tactic evaluation tool by first
changing the password with the tactic,

create accountuser, New PWD; rem accessuser, Google Account, PWD;

Chapter 5. Tool Evaluation and Discussion 37

add accessuser, {New PWD, 2FA Token}, Google Account, PWD.

where “PWD” is the label used on the red edges of Figure 5.4. Then evaluate the
following predicate to check if the decrypted token will still give an attacker access to
the Google account.

CHECK(Google Account IN AccessFrom(Decrypted Token)).

Performing this with the tactic evaluation tool returns ⊤ verifies that changing the
password alone is insufficient. Since MultiLogin only allows cookies to be regenerated
once the password is changed after this ability has been used once the commands
outlined for replacing the token are evaluated. This locks the attacker out should they
no longer have access to the user’s Chrome Files.

5.5.3 Verification of Attack Feasibility

It was not possible to verify the whole attack chain for this case study due to the required
use of specialist information-stealing malware, for which there would be no ethical
way to attain. However, it was possible to test the behaviour of Google sessions when
account passwords were changed. This is an important component to verify, since the
ability to maintain access to a user’s account, even after a password change is key to
the utility of this attack over generic cookie theft. To perform this verification, a new
Google account is created with multi-factor authentication enabled. Then this account
is used to log into Chrome on two separate devices. One of these devices is connected
to a VPN to simulate an attacker in another location. To model third-party services
authenticated with OAuth a new Epic Games account is also created by using the login
with Google option.

It was found that upon password reset the device on which it was changed remained
logged in, while the second device was immediately logged out of any first-party
services. However, if the second device had recently authenticated with a third-party
service using OAuth these services remained logged in. This second device mirrors the
behaviour of an attacker simply stealing the user’s password. Since the tokens stolen
within the attack correspond to that of the first device it is indeed feasible that this attack
would still be possible, as this browser remains authenticated. Since the attackers stolen
by the attacker belong to the first device’s browser, which remains authenticated, it is
indeed possible the attacker may be able to maintain access.

5.6 Heuristic Evaluation of Tool Usability

To provide a structured evaluation of the developed tools’ usability the ten heuristic
principles as defined by Nielsen [26, 27], a description of which can be seen in Appendix
C.3, were used. For these principles to be properly applied they should be evaluated
by around 5 users, however, the tool requires a user to posses a good understanding of
the tactics language before they can utilise it making any such user study impractical.
Instead, the analysis was performed only once; while this may reduce its effectiveness,
it still provides a useful insight into the tool’s usability.

Chapter 5. Tool Evaluation and Discussion 38

Within this evaluation, all ten characteristics were given a score out of 5 and any
particular highlights or failings were noted. Overall this resulted in an average score
of 3.2 out of 5. The largest weaknesses according to this rubric were User control and
Freedom as well as Error prevention which scored just 1 and 2 out of 5 respectively.

Due to the use of only a single line for tactic input, it was found that errors were easy
to make, especially when using long tactics, since finding such errors would require
scrolling back through the line and meticulously searching for errors by hand. While
error messages do highlight syntax errors, it remains easy to make logical errors, such
as providing the wrong name for a vertex in an operation. Similarly, the leading cause
of the poor User control and Freedom score was that if an earlier version of the graph
was not saved, correcting a mistake could require resetting the graph and starting again,
or at least having to enter numerous other tactics to undo any changes made.

Nonetheless, throughout the case studies and evaluation, the tool provided a meaningful
way to test that tactics were well formed (do not throw errors) and would perform the
intended changes to an account access graph. This is something that previously would
have to be manually checked, which can be an error-prone process.

5.7 Improvements Following Evaluation

To remedy the shortcomings in User Control and Freedom demonstrated by the heuristic
evaluation an undo button was added to the interface. Since this is mostly intended
for correcting small errors it was implemented by storing one previous version of the
account access graph, so when the undo button is pressed the old version is loaded.
Another more complicated design might have been storing the ASTs for each tactic
executed in a heap. Then each AST class would be provided with an undo method that
could then be called much like the evaluate method. However, due to time constraints,
this approach was not taken. Similarly, a redo button was not implemented, though due
to executing an input not clearing the tactic it was found that this is rarely needed.

It was highlighted in this evaluation that for longer chains of tactics the single-line input
was inadequate. This was therefore replaced with a multi-line input and moved to be at
the left of the graph display, allowing for long tactics to be entered without significant
difficulty. I also found that the grey nodes combined with occasionally small text made
the graphs difficult to read. So, the font size was increased and the nodes were changed
to purple. This updated design can be seen in Appendix C.3.

Following these alterations, the steps involved in the case studies were recreated and the
heuristic evaluation was reapplied. Upon reevaluation, the software scored an average
of 4 out of 5. This is driven by a substantial improvement to the Error Prevention (from
2 to 4) and User Control and Freedom (1 to 3) of the software, as both the number
of errors made in conducting the analysis dropped and the ease of undoing remaining
mistakes reduced.

Chapter 6

Conclusions and Future Work

Within this project, a tool that allows for security analyses to be conducted using account
access graphs with state was implemented. This tool provides for tactics to be inputted,
evaluated and then have the resulting graph state displayed to the user. This goal was
achieved through a combination of a Python-based graph model and user interface
with an ANTLR grammar and parser. Requiring several thousand lines of code this
represents the first known implementation of such a system which incorporates the IF
and FOR shorthand’s for the tactics language as well as the first such implementation to
evaluate tactics using backtracking. Beyond this a new extension to the tactics language
was designed and implemented within the tactics tool. This allowed for simple queries
to be performed on a graph state for elements which match certain properties and tactics
evaluated based on the resulting components through either indexing or for loops.

To verify the quality of the implementation, and make any future changes to the system
easier, a suite of unit tests were devised that provide a good coverage (92%) of the code
base and a wide array of edge cases for language parsing/evaluation. These tests also
include cases where backtracking affects the resulting graph, and where the IF and FOR
shorthand’s are used.

Since this tool is intended to aid in conducting security analyses, it was used to model
and analyse two case studies. Within this, we were able to successfully use the tool
to verify the possibility and capability of two different attacks, both of which utilised
a secondary authentication mechanism to bypass the primary method and conduct
an account takeover attack. Throughout these case studies, attention was paid to the
usability of the tool for conducting such security analyses and a formal framework
was used to conduct a heuristic evaluation. The tool also allowed for the detection
and correction of logical errors within initial versions of many tactics used within this
report.

6.1 Challenges Faced

The most significant challenge faced during this project was the development of the
ANLR grammar and syntax for the tactics language. This required the interpretation,

39

Chapter 6. Conclusions and Future Work 40

then conversion into code, of big-step semantics and grammar structures. Due to my
lack of knowledge and experience in language design and parsing this process was
notably difficult. However, through the use of multiple online guides and resources
an understanding of these topics was built and experience was gained through the
implementation of the tactics language. This learning was then applied by designing
and implementing the querying extension to the tactics language.

6.2 Limitations and Future Work

The querying extension to the tactics language outlined within this report does allow
simple queries to be written, and tactics defined that utilise the results of these queries.
However, to make these queries more relevant to real-world situations and allow for
more general attack patterns to be defined a fourth map T : V → T , where T represents
a set of possible vertex types, could be introduced to the account access graphs with
state. This would result in an account access graph with state and type represented by a
quintuple of the form (V,E,A,T), with a natural set of such types T being

{account,device,credential}.

This introduction of types would allow for much more specificity in generic predicates
over the graph, and thus stronger search capability. For example, we would then be able
to select all vertices v ∈V of type account where for some l ∈ L , Predl,v contains only
one credential. All of these selected accounts would be such that if an attacker was able
to steal, phish, or buy the appropriate credentials, they would be able to access them.
Future work could use this extension to express the configuration patterns required to
conduct common attacks, such as SIM swapping.

Another limitation is the graph visualisation system. It was found in the evaluation that
the current algorithm for vertex positioning was the largest contributor to end-to-end
latency by a large margin. Furthermore, it rarely produces a perfect positioning of
the vertices when visualising account access graphs with state. Future work could
seek to integrate an interactive graph diagram that allows a user to move vertices.
Alternatively a new positioning algorithm could be designed focusing on account access
graphs, this could use the additional information included in the graphs to produce
better visualisations and could focus on reducing position generation time.

A final area for future work is related to the usability of the tactic input system. The
current system uses a simple text input, however, as tactics grow it would be useful if
syntax highlighting and auto-fill suggestions based on the tactics language and current
graph state could be shown to users. These changes would reduce the time needed to
input tactics as well as help to reduce the number of errors made while inputting tactics,
helping to make the tool more usable.

Bibliography

[1] IBM Documentation. https://www.ibm.com/docs/en/rdfi/9.6.0?topic=l
e-tokens, March 2021. (Accessed on 12/01/2024).

[2] Melvin Abraham, Michael Crabb, and Saša Radomirović. “i’m doing the best
i can.”. In Simon Parkin and Luca Viganò, editors, Socio-Technical Aspects in
Security, pages 86–107, Cham, 2022. Springer International Publishing.

[3] Luca Arnaboldi, David Aspinall, Christina Kolb, and Saša Radomirović. Tactics
for account access graphs. In Gene Tsudik, Mauro Conti, Kaitai Liang, and
Georgios Smaragdakis, editors, Computer Security – ESORICS 2023, pages 452–
470, Cham, 2024. Springer Nature Switzerland.

[4] Andy Balaam. How to Write a Programming Language: Part 2, The Parser.
https://accu.org/journals/overload/26/146/balaam_2532, January
2024. (Accessed on 10/01/2024).

[5] Brian Barrett. How twitter ceo jack dorsey’s account was hacked. https:
//www.wired.com/story/jack-dorsey-twitter-hacked/. (Accessed on
28/02/24).

[6] Marc-Philippe Bartholomä. Automated mining of user account access graphs.
Master thesis, ETH Zurich, Zurich, 2021.

[7] Chris J Date and Hugh Darwen. A Guide to the SQL Standard, volume 3. Addison-
Wesley New York, 1987.

[8] Jan Peter Falk. A frontend for account access graphs. Master thesis, ETH Zurich,
Zurich, 2019.

[9] Ritu Gill. What is osint? https://www.sans.org/blog/what-is-open-sou
rce-intelligence/. (Accessed on 11/03/2024).

[10] statcounter globalstats. Browser market share worldwide. https://gs.statcou
nter.com/browser-market-share. (Accessed on 28/01/2024).

[11] Google. Make your account more secure. https://support.google.com/acc
ounts/answer/46526?hl=en. (Accessed on 28/02/26).

[12] Google. Use passwords across your devices. https://support.google.com/c
hrome/answer/6197437?hl. (Accessed on 28/01/2024).

41

https://www.ibm.com/docs/en/rdfi/9.6.0?topic=le-tokens
https://www.ibm.com/docs/en/rdfi/9.6.0?topic=le-tokens
https://accu.org/journals/overload/26/146/balaam_2532
https://www.wired.com/story/jack-dorsey-twitter-hacked/
https://www.wired.com/story/jack-dorsey-twitter-hacked/
https://www.sans.org/blog/what-is-open-source-intelligence/
https://www.sans.org/blog/what-is-open-source-intelligence/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://support.google.com/accounts/answer/46526?hl=en
https://support.google.com/accounts/answer/46526?hl=en
https://support.google.com/chrome/answer/6197437?hl
https://support.google.com/chrome/answer/6197437?hl

Bibliography 42

[13] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gaël Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[14] Sven Hammann. Secure, Private, and Personal: Advancing Digital Identity.
Doctoral thesis, ETH Zurich, Zurich, 2021.

[15] Sven Hammann, Michael Crabb, Saša Radomirović, Ralf Sasse, and David Basin.
“i’m surprised so much is connected”. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[16] Sven Hammann, Saša Radomirović, Ralf Sasse, and David Basin. User account
access graphs. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 1405–1422, New York, NY, USA,
2019. Association for Computing Machinery.

[17] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90, 2007.

[18] Neil J. Rubenking. Don’t let google manage your passwords. https://uk.pcm
ag.com/password-managers/145831/warning-dont-let-google-manag
e-your-passwords. (Accessed on 31/01/2024).

[19] Conor Jones. Google password resets not enough to stop these info-stealing
malware strains. https://www.theregister.com/2024/01/02/infostealer
_google_account_exploit/. (Accessed on 06/03/2024).

[20] Pavan Karthick M. Compromising google accounts: Malwares exploiting undocu-
mented oauth2 functionality for session hijacking. https://www.cloudsek.c
om/blog/compromising-google-accounts-malwares-exploiting-undoc
umented-oauth2-functionality-for-session-hijacking. (Accessed on
05/03/2024).

[21] Fredrik Lundh. An introduction to tkinter. URL: www. pythonware. com/library/tk-
inter/introduction/index. htm, 1999.

[22] Tom McKay. Hackers are abusing a google oauth endpoint to hijack user sessions.
https://www.itbrew.com/stories/2024/01/19/hackers-are-abusing
-a-google-oauth-endpoint-to-hijack-user-sessions. (Accessed on
05/03/2024).

[23] Microsoft. How to help keep your microsoft account safe and secure. https:
//support.microsoft.com/en-us/account-billing/how-to-help-kee
p-your-microsoft-account-safe-and-secure-628538c2-7006-33bb-5
ef4-c917657362b9. (Accessed on 28/02/2024).

[24] Microsoft. What is sim swapping & how does the hijacking scam work? https:
//www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and
-safety/what-is-sim-swapping. (Accessed on 03/02/2024).

https://uk.pcmag.com/password-managers/145831/warning-dont-let-google-manage-your-passwords
https://uk.pcmag.com/password-managers/145831/warning-dont-let-google-manage-your-passwords
https://uk.pcmag.com/password-managers/145831/warning-dont-let-google-manage-your-passwords
https://www.theregister.com/2024/01/02/infostealer_google_account_exploit/
https://www.theregister.com/2024/01/02/infostealer_google_account_exploit/
https://www.cloudsek.com/blog/compromising-google-accounts-malwares-exploiting-undocumented-oauth2-functionality-for-session-hijacking
https://www.cloudsek.com/blog/compromising-google-accounts-malwares-exploiting-undocumented-oauth2-functionality-for-session-hijacking
https://www.cloudsek.com/blog/compromising-google-accounts-malwares-exploiting-undocumented-oauth2-functionality-for-session-hijacking
https://www.itbrew.com/stories/2024/01/19/hackers-are-abusing-a-google-oauth-endpoint-to-hijack-user-sessions
https://www.itbrew.com/stories/2024/01/19/hackers-are-abusing-a-google-oauth-endpoint-to-hijack-user-sessions
https://support.microsoft.com/en-us/account-billing/how-to-help-keep-your-microsoft-account-safe-and-secure-628538c2-7006-33bb-5ef4-c917657362b9
https://support.microsoft.com/en-us/account-billing/how-to-help-keep-your-microsoft-account-safe-and-secure-628538c2-7006-33bb-5ef4-c917657362b9
https://support.microsoft.com/en-us/account-billing/how-to-help-keep-your-microsoft-account-safe-and-secure-628538c2-7006-33bb-5ef4-c917657362b9
https://support.microsoft.com/en-us/account-billing/how-to-help-keep-your-microsoft-account-safe-and-secure-628538c2-7006-33bb-5ef4-c917657362b9
https://www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and-safety/what-is-sim-swapping
https://www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and-safety/what-is-sim-swapping
https://www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and-safety/what-is-sim-swapping

Bibliography 43

[25] NCSC. Top tips for staying secure online. https://www.ncsc.gov.uk/collec
tion/top-tips-for-staying-secure-online. (Accessed on 29/09/2023).

[26] Jakob Nielsen. 10 usability heuristics for user interface design. https://www.nn
group.com/articles/usability-heuristics-complex-applications/.
(Accessed on 03/03/2024).

[27] Jakob Nielsen. Finding usability problems through heuristic evaluation. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’92, page 373–380, New York, NY, USA, 1992. Association for Computing
Machinery.

[28] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd
edition, 2013.

[29] Terence Parr. ANTLR Lab. http://lab.antlr.org, November 2022. (Accessed
on 13/01/2024).

[30] Terence Parr. Antlr (another tool for language recognition). https://www.antl
r.org, 2024. (Accessed on 10/01/2024).

[31] Linus Sebastian. My channel was deleted last night. https://www.youtube.co
m/watch?v=yGXaAWbzl5A. (Accessed on 05/03/2024).

[32] Karishma Sundaram. Cookie stealing in wordpress: Understanding the risks
and consequences. https://www.malcare.com/blog/cookie-stealing.
(Accessed on 26/02/24).

[33] Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2007.

[34] Aranza Trevino. Are browser password managers safe? https://www.keeperse
curity.com/blog/2022/11/04/are-browser-password-managers-safe/.
(Accessed on 31/01/2024).

[35] Blair Walker. Graph-driven security: An interpreter for an account access language
with neo4j integration, 2023. MSc Project. University of Edinburgh.

https://www.ncsc.gov.uk/collection/top-tips-for-staying-secure-online
https://www.ncsc.gov.uk/collection/top-tips-for-staying-secure-online
https://www.nngroup.com/articles/usability-heuristics-complex-applications/
https://www.nngroup.com/articles/usability-heuristics-complex-applications/
http://lab.antlr.org
https://www.antlr.org
https://www.antlr.org
https://www.youtube.com/watch?v=yGXaAWbzl5A
https://www.youtube.com/watch?v=yGXaAWbzl5A
https://www.malcare.com/blog/cookie-stealing
https://www.keepersecurity.com/blog/2022/11/04/are-browser-password-managers-safe/
https://www.keepersecurity.com/blog/2022/11/04/are-browser-password-managers-safe/

Appendix A

Background

A.1 Formal Definition of properties for Account Access
Graphs

The validity of assertions is defined inductively, stating from atomic propositions [3]:

• ⟨V,E,A⟩ ⊨ is account(v) if v ∈V

• ⟨V,E,A⟩ ⊨ has accessa(v) if v ∈V and a ∈ A(v)

• ⟨V,E,A⟩ ⊨ could accessa(v) if v ∈V and ∃l,u. l ∈ E(u,v) ∧ ∀x ∈V. l ∈ E(x,v)⇒
a ∈ A(x).

• ⟨V,E,A⟩ ⊨ uses methodl(u,v) if u,v ∈V and l ∈ E(u,v).

• ⟨V,E,A⟩ ⊨ φ1 ∧φ2 if ⟨V,E,A⟩ |= φ1 and ⟨V,E,A⟩ |= φ2.

• ⟨V,E,A⟩ ⊨ φ1 ∨φ2 if ⟨V,E,A⟩ |= φ1 or ⟨V,E,A⟩ |= φ2.

• ⟨V,E,A⟩ ⊨ ¬φ if it does not hold that ⟨V,E,A⟩ |= φ.

• ⟨V,E,A⟩ |= true always.

A.2 Operation Definitions

The operations that can be used to modify an account access graph, as introduced by
Arnaboldi et al. [3] are defined bellow.

⟨V,E,A⟩ ⊨ could accessa(u)

⟨V,E,A⟩
gain accessa,v
⇝ ⟨V,E,A[v 7→ a]⟩

(gain)

⟨V,E,A⟩
disc accessa,v
⇝ ⟨V,E,A[v 7→ a]⟩ (disc)

⟨V,E,A⟩
lose accessa,v
⇝ ⟨V,E,A[v\a]⟩ (lose)

44

Appendix A. Background 45

A[v 7→ a] means A updated to add a into the access set of v, i.e., the updated map A′ given by

A′(x) =

{
A(v)∪{a} when x = v
A(x) otherwise

Similarly, A[v\a] means A updated to remove a from the set of accesses A(v).

⟨V,E,A⟩
create accounta,v

⇝ ⟨V ∪{v},E,A[v 7→ a]⟩ (create)

⟨V,E,A⟩ ⊨ has accessa(v)

⟨V,E,A⟩
del accounta,v
⇝ ⟨V \{v},E \ v,A|V\{v}⟩

(delete)

⟨V,E,A⟩ ⊨ has accessa(v) E ′(x,y) =

{
{l} if x ∈ {u1, . . . ,un} and y = v
{} otherwise

⟨V,E,A⟩
add accessa,{u1,...,un},v,l

⇝ ⟨V,E ⊎E ′,A⟩
(add)

⟨V,E,A⟩ ⊨ has accessa(v)

⟨V,E,A⟩
rem accessa,v,l
⇝ ⟨V,E \{(,v)}\{l},A⟩

(remove1)

⟨V,E,A⟩ ⊨ has accessa(v) ⟨V,E,A⟩ ⊨ uses methodl(v,u)

⟨V,E,A⟩
rem accessa,u,l
⇝ ⟨V,E \{(,u)}\{l},A⟩

(remove2)

E \ v denotes the edge function E updated to remove any edges that have v as source or
target, i.e., E ′ such that:

E ′(u1,u2) =

{
{} if u1 = v or u2 = v
E(u1,u2) otherwise

E[(,v)\{l}] means the update of E to remove the access method l to vertex v from E.

Appendix B

Tactics Grammar

B.1 Original Lexer Grammar� �
AND: ’;’ ;
OR: ’||’ ;
LPAR: ’(’ ;
RPAR: ’)’ ;
LBRA: ’[’ ;
RBRA: ’]’ ;
COMMA: ’,’ ;

TOP: ’TOP’ ;
BOT: ’BOT’ ;
CON: ’CON’ | ’ˆ’ ;
DIS: ’DIS’ | ’v’;
NEG: ’NEG’ | ’!’ | ’˜’ ;

IS_ACCOUNT: ’IS_ACCOUNT’|’is_account’
|’is_acc’|’is_ac’ ;

HAS_ACCESS: ’HAS_ACCESS’|’has_access’
|’has_acc’|’has_ac’ ;

COULD_ACCESS: ’COULD_ACCESS’|’could_access’
|’could_acc’|’could_ac’ ;

USES_METHOD: ’USES_METHOD’|’uses_method’
|’uses_meth’|’uses_met’|’uses_me’|’uses_m’ ;

CHECK: ’CHECK’|’check’ ;

GAIN_ACCESS: ’GAIN_ACCESS’|’gain_access’
|’gain_acc’|’gain_ac’ ;

46

Appendix B. Tactics Grammar 47

DISC_ACCESS: ’DISC_ACCESS’|’disc_access’
|’disc_acc’|’disc_ac’ ;

LOSE_ACCESS: ’LOSE_ACCESS’|’lose_access’
|’lose_acc’|’lose_ac’ ;

CREATE_ACCOUNT: ’CREATE_ACCOUNT’|’create_account’
|’create_acc’|’create_ac’ ;

DEL_ACCOUNT: ’DEL_ACCOUNT’|’del_account’
|’del_acc’|’del_ac’ ;

ADD_ACCESS: ’ADD_ACCESS’|’add_access’
|’add_acc’|’add_ac’ ;

REM_ACCESS_1: ’REM_ACCESS_1’|’rem_access_1’
|’rem_acc_1’|’rem_ac_1’ ;

REM_ACCESS_2: ’REM_ACCESS_2’|’rem_access_2’
|’rem_acc_2’|’rem_ac_2’ ;

STRING: ’"’ ˜["]* ’"’ | ’\’’ ˜[’]* ’\’’ ;

WHITESPACE: [\t\r\n]+ -> skip ;� �
B.2 Original Parser Rules� �

tactic: t EOF ;

t:t AND t # AndOp
|t OR t # OrOp
| LPAR t RPAR # Parenthesized
| t_simple # Simple
;

t_simple: b #Bool
| alpha #Operation
| CHECK LPAR proposition RPAR # CHECK
| FOR VAR IN arg_array DO t # For
| IF proposition THEN t ELSE t # If
;

b : TOP #Top
| BOT #Bot
;

arg: STRING #StringArg
;

Appendix B. Tactics Grammar 48

arg_array: ’[’ arg (COMMA arg)* ’]’ # ArgumentArray
;

alpha: GAIN_ACCESS LPAR arg COMMA arg RPAR # GainAccess
| DISC_ACCESS LPAR arg COMMA arg RPAR # DiscAccess
| LOSE_ACCESS LPAR arg COMMA arg RPAR # LoseAccess
| CREATE_ACCOUNT LPAR arg COMMA arg RPAR # CreateAccount
| DEL_ACCOUNT LPAR arg COMMA arg RPAR # DeleteAccount
| ADD_ACCESS LPAR arg COMMA arg_array COMMA arg COMMA arg RPAR
AddAccess
| REM_ACCESS_1 LPAR arg COMMA arg COMMA arg RPAR
RemoveAccess1
| REM_ACCESS_2 LPAR arg COMMA arg COMMA arg RPAR
RemoveAccess2
;

proposition: NEG atomic_proposition # NegationProp
| NEG LPAR proposition RPAR # Negation
|proposition CON proposition # ConOp
| proposition DIS proposition # DisOp
| LPAR proposition RPAR # ParenthesizedProp
| atomic_proposition # AtomicProp
;

atomic_proposition: IS_ACCOUNT LPAR arg RPAR # IsAccount
| HAS_ACCESS LPAR arg COMMA arg RPAR # HasAccess
| COULD_ACCESS LPAR arg COMMA arg RPAR # CouldAccess
| USES_METHOD LPAR arg COMMA arg COMMA arg RPAR # UsesMethod
;� �

B.3 Extended Lexer Grammar� �
lexer grammar tacticLexer;

AND: ’;’ ;
OR: ’||’ ;
LPAR: ’(’ ;
RPAR: ’)’ ;
LBRA: ’[’ ;
RBRA: ’]’ ;
LSET: ’{’ ;
RSET: ’}’ ;
COMMA: ’,’ ;

TOP: ’TOP’ ;
BOT: ’BOT’ ;

Appendix B. Tactics Grammar 49

CON: ’CON’ | ’AND’ ;
DIS: ’DIS’ | ’OR’ ;
NEG: ’NEG’ | ’!’ | ’˜’ ;

EQUAL: ’=’;

EQ: ’==’;
NEQ: ’!=’;
LT: ’<’;
LEQ: ’<=’;
GT: ’>’;
GEQ: ’>=’;

LET: ’let’| ’LET’;
UNION: ’UNION’ | ’union’ ;
INTER: ’INTER’ | ’inter’ ;

LENGTH: ’len’ | ’LEN’;

IS_ACCOUNT: ’IS_ACCOUNT’|’is_account’|’is_acc’|’is_ac’ ;
HAS_ACCESS: ’HAS_ACCESS’|’has_access’|’has_acc’|’has_ac’ ;
COULD_ACCESS: ’COULD_ACCESS’|’could_access’|’could_acc’|’could_ac’ ;
USES_METHOD: ’USES_METHOD’|’uses_method’|’uses_meth’;
TRANS_ACCESS: ’transitive_access’ |’TRANS_ACCESS’ | ’trans_access’
| ’TRANSITIVE_ACCESS’;

CHECK: ’CHECK’|’check’ ;

GAIN_ACCESS: ’GAIN_ACCESS’|’gain_access’|’gain_acc’|’gain_ac’ ;
DISC_ACCESS: ’DISC_ACCESS’|’disc_access’|’disc_acc’|’disc_ac’ ;
LOSE_ACCESS: ’LOSE_ACCESS’|’lose_access’|’lose_acc’|’lose_ac’ ;
CREATE_ACCOUNT: ’CREATE_ACCOUNT’|’create_account’|’create_acc’
|’create_ac’ ;
DEL_ACCOUNT: ’DEL_ACCOUNT’|’del_account’|’del_acc’|’del_ac’ ;
ADD_ACCESS: ’ADD_ACCESS’|’add_access’|’add_acc’|’add_ac’ ;
REM_ACCESS_1: ’remove_access_1’|’REM_ACCESS_1’|’rem_access_1’|’rem_acc_1’
|’rem_ac_1’ ;
REM_ACCESS_2: ’remove_access_2’|’REM_ACCESS_2’|’rem_access_2’|’rem_acc_2’
|’rem_ac_2’ ;

// for shorthand
FORALL: ’FORALL’| ’FOR ALL’ | ’forall’ | ’Forall’ | ’For All’ | ’ForAll’
| ’for_all’| ’for all’ ;
FORONE: ’FORONE’| ’FOR ONE’ |’forone’ | ’Forone’ | ’For One’ | ’ForOne’
| ’for_one’| ’for one’ ;
IN: ’IN’| ’in’ | ’In’ ;
DO: ’DO’| ’do’ | ’Do’ | ’:’ ;

Appendix B. Tactics Grammar 50

TRY: ’TRY’| ’try’ | ’Try’ ;
// if then else shorthand
IF : ’IF’| ’if’ | ’If’ ;
THEN : ’THEN’| ’then’ | ’Then’ ;
ELSE : ’ELSE’| ’else’ | ’Else’ ;
STRING: ’"’ ˜["]* ’"’ | ’\’’ (˜’\’’ | ’\’\’’)* ’\’’ ;

INT: [0-9]+;

// fragment DIGIT : ’[0-9]’;

PLUS:’+’;
MINUS:’-’;
MULTI:’*’;
MOD: ’%’;
DIV: ’/’|’//’;
SETMINUS: ’\\’;

SELECT: ’SELECT’;
WHERE: ’WHERE’;
FROM: ’FROM’;

VERTS: ’$V’;
EDGES: ’$E’;
ACCESS: ’$A’;
PRED: ’PRED’;
SUCC: ’SUCC’;
ACCESS_FROM: ’$AccessFrom’ | ’$AF’ | ’$ACCESS_FROM’ | ’$access_from’;

UNDERSCORE: ’_’;
VAR: [a-zA-Z0-9_]+ ;

WHITESPACE: [\t\r\n]+ -> skip ;� �
B.4 Definition of evaluation for SELECT expressions

Definition 7. Evaluation of Set operations. The evaluation of the S rules are defined
inductively by the following rules.

⟨σ⟩S1 ⇓ {a1,a2, . . . ,an}⟨σ′⟩ ⟨σ⟩S2 ⇓ {a1,a2, . . . ,ai,b1, . . . ,b j}⟨σ′′⟩
⟨σ⟩S1 ∩S2 ⇓ {a1, . . . ,ai}⟨σ′⟩

(INTER)

Appendix B. Tactics Grammar 51

⟨σ⟩S1 ⇓ {a1,a2, . . . ,an}⟨σ′⟩ ⟨σ⟩S2 ⇓ {a1,a2, . . . ,ai,b1, . . . ,b j}⟨σ′′⟩
⟨σ⟩S1 \S2 ⇓ {ai+1, . . . ,an}⟨σ′⟩

(MINUS)

Definition 8. Evaluation of exp on the integers . The evaluation of the numerical
expressions is once again defined inductively by the following rules.

⟨σ⟩exp1 ⇓ n1⟨σ′⟩ ⟨σ⟩exp2 ⇓ n2⟨σ′′⟩
⟨σ⟩exp1 + exp2 ⇓ n1 +n2⟨σ′⟩

(PLUS)

⟨σ⟩exp1 ⇓ n1⟨σ′⟩ ⟨σ⟩exp2 ⇓ n2⟨σ′′⟩
⟨σ⟩exp1 − exp2 ⇓ n1 −n2⟨σ′⟩

(MINUS)

⟨σ⟩exp1 ⇓ n1⟨σ′⟩ ⟨σ⟩exp2 ⇓ n2⟨σ′′⟩
⟨σ⟩exp1 ∗ exp2 ⇓ n1 ∗n2⟨σ′⟩

(TIMES)

⟨σ⟩exp1 ⇓ n1⟨σ′⟩ ⟨σ⟩exp2 ⇓ n2⟨σ′′⟩
⟨σ⟩exp1 / exp2 ⇓ ⌊n1

n2
⌋⟨σ′⟩

(DIVIDE)

⟨σ⟩exp1 ⇓ n1⟨σ′⟩ ⟨σ⟩exp2 ⇓ n2⟨σ′′⟩
⟨σ⟩exp1 % exp2 ⇓ n1 mod n2⟨σ′⟩

(MOD)

B.5 Extended Parser Rules� �
parser grammar tacticParser;

options {
tokenVocab = tacticLexer;

}

// Define the entry point for the parser
start: tactic EOF | search EOF | exp EOF;

tactic: t EOF
;

t:t AND t # TOp
|t OR t # TOp
| LPAR t RPAR # Parenthesized
| t_simple # Simple
;

t_simple: b #Bool
| alpha #Operation
| CHECK LPAR proposition RPAR # CHECK

Appendix B. Tactics Grammar 52

| FORALL VAR IN search DO t # ForAll
| FORONE VAR IN search TRY t # ForOne
| LET VAR EQUAL search # SearchAssign
| IF proposition THEN t ELSE t # If
;

b : TOP
| BOT
;

arg: STRING
| VAR
;

arg_array: ’[’ (arg (COMMA arg)*)? ’]’ # ArgumentArray
| LSET (arg (COMMA arg)*)? RSET # ArgumentArray
;

alpha: GAIN_ACCESS LPAR arg COMMA arg RPAR #GainAccess
| DISC_ACCESS LPAR arg COMMA arg RPAR #DiscAccess
| LOSE_ACCESS LPAR arg COMMA arg RPAR #LoseAccess
| CREATE_ACCOUNT LPAR arg COMMA arg RPAR #CreateAccount
| DEL_ACCOUNT LPAR arg COMMA arg RPAR #DeleteAccount
| ADD_ACCESS LPAR arg COMMA search COMMA arg COMMA arg RPAR #AddAccess
| REM_ACCESS_1 LPAR arg COMMA arg COMMA arg RPAR #RemoveAccess1
| REM_ACCESS_2 LPAR arg COMMA arg COMMA arg RPAR #RemoveAccess2
;

proposition: proposition (CON | DIS) proposition # PropOp
| NEG LPAR proposition RPAR #PropOp
| LPAR proposition RPAR # ParenthesizedProp
| NEG atomic_proposition #PropOp
| atomic_proposition # AtomicProp
;

atomic_proposition: IS_ACCOUNT LPAR arg RPAR #IsAccount
| HAS_ACCESS LPAR arg COMMA arg RPAR #HasAccess
| COULD_ACCESS LPAR arg COMMA arg RPAR #CouldAccess
| USES_METHOD LPAR arg COMMA arg COMMA arg RPAR #UsesMethod
| TRANS_ACCESS LPAR arg COMMA arg RPAR #TransAccess
| comp # ComparisonProp
;

search : search (UNION | INTER | SETMINUS) search # UnionInterMinus
| search_simple # SearchSimple
;

search_simple: VAR # Var

Appendix B. Tactics Grammar 53

| FROM search SELECT VAR WHERE proposition # Select
| EDGES LPAR (arg | UNDERSCORE) COMMA (arg | UNDERSCORE) RPAR # Edges
| ACCESS LPAR (arg | UNDERSCORE) RPAR #Access
| VERTS #Vertices
| SUCC LPAR arg COMMA arg RPAR #Succ
| PRED LPAR arg COMMA arg RPAR #Pred
| ACCESS_FROM LPAR search RPAR #AccessFrom
| arg_array # ArgArray
;

exp : exp (PLUS | MINUS | MULTI | MOD | DIV) exp # ExpOp
| LPAR exp RPAR # ParenthesizedExp
| num # Number
;

num : INT # Int
| LENGTH LPAR search RPAR # Length
;

comp : exp (EQ | NEQ | LT | GT | LEQ | GEQ) exp # Comparison
| LPAR comp RPAR # ParenthesizedComparison
| arg IN search # In
| search (LT | GT | EQ | LEQ | GEQ | EQ | NEQ) search # SetComp
;� �

Appendix C

Evaluation and Case Studys

Example of command used to test tactic evaluation time:� �
LET U = FROM $V SELECT v WHERE (
FROM $E(_,v) SELECT l WHERE (

LEN(PRED(l,v)) ==
LEN (FROM PRED(l,v) SELECT u WHERE has_access(’attacker’, u)) + 1)
!= {});

FOR ONE v IN U TRY (
FOR ONE l IN FROM $E(_, v) SELECT l2 WHERE (

LEN(PRED(l2,v)) ==
LEN (FROM PRED(l2,v) SELECT u WHERE has_access(’attacker’,u)) + 1)

TRY(disc_access(’attacker’, FROM PRED(l,v) SELECT x WHERE
!has_access(’attacker’,x)[0]);

gain_access(’attacker’, v)))� �
C.1 Google Account Case Study

Commands to Generate Initial State:� �
(for all x in [’Google PWD’, ’Outlook’,
’Google PWD Manager’, ’Google full’, ’MS Password’,
’Google open’, ’Google Chrome’, ’Laptop’, ’Locked Laptop’,
’Laptop PIN’, ’Phone’, ’Locked Phone’, ’Phone PIN’]
DO create_account(’user’, x));

add_access(’user’, [’Google PWD’], ’Google full’, ’PWD’);
add_access(’user’, [’Outlook’], ’Google full’, ’recovery’);
add_access(’user’, [’Google full’], ’Google open’, ’subset’);
add_access(’user’, [’MS Password’, ’Locked Laptop’]
, ’Laptop’, ’PWD’);
add_access(’user’, [’Laptop PIN’, ’Locked Laptop’]
, ’Laptop’, ’PIN’);
add_access(’user’, [’Google open’]

54

Appendix C. Evaluation and Case Studys 55

, ’Google PWD Manager’, ’subset’);
add_access(’user’, [’Google PWD Manager’]
, ’MS Password’, ’contains’);
add_access(’user’, [’Laptop’], ’Google Chrome’, ’runs’);
add_access(’user’, [’Google Chrome’], ’Google open’, ’session’);
add_access(’user’, [’MS Password’], ’Outlook’, ’PWD’);
add_access(’user’,[’Phone’], ’Google Chrome’, ’session’);
add_access(’user’, [’Phone PIN’], ’Phone’, ’PIN’);
add_access(’user’, [’Locked Phone’],’Phone’,’PIN’);

(for all x in [’Outlook’,
’Google PWD Manager’, ’Google full’,
’Google open’, ’Google Chrome’] DO lose_access(’user’, x))� �
C.1.1 Commands for modeling of Attack

Commands to Gain Initial Access:� �
(lose_access(’user’, ’Laptop’);
lose_access(’user’, ’Locked Laptop’);
disc_access(’attacker’, ’Laptop’)) ||
(lose_access(’user’,’Phone’);disc_access(’attacker’, ’Phone’))� �
Commands to Copy Password and for User to Return:� �
(for all x in [’Google Chrome’, ’Google open’,
’Google PWD Manager’, ’MS Password’]
do gain_access(’attacker’, x));
lose_access(’attacker’, ’Laptop’);
lose_access(’attacker’, ’Google Chrome’);
lose_access(’attacker’, ’Google open’);
disc_access(’user’,’Locked Laptop’);
gain_access(’user’, ’Laptop’)� �
Commands for when Attacker Regains Access to Password Manager:� �
for all x in [’Outlook’, ’Google full’, ’Google open’,
’Google PWD Manager’] do gain_access(’attacker’, x)� �

Appendix C. Evaluation and Case Studys 56

C.1.2 Intermediate Figures for Attack

Figure C.1: Graph after the first attack stage.

Figure C.2: Graph after the second attack stage.

Appendix C. Evaluation and Case Studys 57

C.1.3 Commands to Implement 2FA

Adding 2FA to the outlook account:� �
gain_access(’user’,’Outlook’);
create_account(’user’,’2FA code’);
add_access(’user’, {’2FA code’}, ’Outlook’, ’PWD’);
add_access(’user’, {’Phone’}, ’2FA code’, ’SMS’);
lose_access(’user’, ’Outlook’)� �
Attacker attempting to gain access to the recovery email following addition of 2FA:� �
gain_access(’attacker’, ’Outlook’)� �
C.2 OAuth Case Study

Commands to Generate Initial State:� �
(for all x in [’Chrome Files’, ’Encryption Key’, ’Encrypted Token’,
’GAIA ID’, ’Decrypted Token’, ’Session Cookie’, ’Google Account’,
’Google PWD’, ’2FA Code’, ’YouTube’, ’Cloud Storage’, ’Gmail’,
’MultiLogin’]DO create_account(’user’, x));
add_access(’user’, {’MultiLogin’, ’Decrypted Token’, ’GAIA ID’},
’Session Cookie’, ’GEN’);
add_access(’user’, {’Encrypted Token’, ’Encryption Key’},
’Decrypted Token’, ’Decrypt’);
add_access(’user’, {’Chrome Files’}, ’Encrypted Token’,’Exfiltrate’);
add_access(’user’, {’Chrome Files’}, ’Encryption Key’,’Exfiltrate’);
add_access(’user’, {’Chrome Files’}, ’GAIA ID’,’Exfiltrate’);
add_access(’user’, {’Session Cookie’}, ’Google Account’, ’Session’);
add_access(’user’, {’Google PWD’, ’2FA Code’}, ’Google Account’, ’PWD’);
add_access(’user’, {’Google Account’}, ’YouTube’, ’OAuth’);
add_access(’user’, {’Google Account’}, ’Gmail’, ’OAuth’);
add_access(’user’, {’Google Account’}, ’Cloud Storage’, ’OAuth’);
disc_access(’attacker’, ’Chrome Files’);
disc_access(’attacker’, ’MultiLogin’)� �
C.2.1 Commands for modeling of Attack

Commands for Theft of Chrome Files and to Decrypt the Token:� �
(FOR ALL x IN {’Encryption Key’, ’GAIA ID’, ’Encrypted Token’}
DO gain_access(’attacker’, x));
gain_access(’attacker’, ’Decrypted Token’)� �
Commands to Generate New Cookie then Access all Related accounts:� �
gain_access(’attacker’, ’Session Cookie’);
gain_access(’attacker’, ’Google Account’);

Appendix C. Evaluation and Case Studys 58

FOR ALL x IN SUCC(’OAuth’,’Google Account’) INTER
$AccessFrom({’Google Account’}) DO gain_access(’attacker’,x)� �
C.2.2 Commands for Account Recovery

Reset the tokens associated with the account.� �
lose_access(’attacker’, ’Chrome Files’);
create_account(’user’, ’New Token’);
rem_access_1(’user’, ’Session Cookie’, ’GEN’);
lose_access(’attacker’, ’Session Cookie’);
add_access(’user’, {’MultiLogin’, ’New Token’,
’GAIA ID’}, ’Session Cookie’, ’GEN’)� �
Attacker attempts to regenerate cookie.� �
lose_access(’attacker’, ’Google Account’);
gain_access(’attacker’, ’Session Cookie’)� �
Changing the Google Account Password.� �
create_account(’user’, ’New PWD’);
rem_access_1(’user’, ’Google Account’, ’PWD’);
add_access(’user’, {’New PWD’, ’2FA Code’}, ’Google Account’, ’PWD’)� �
C.3 Heuristic Evaluation of Usability

C.3.1 Improved UI

Appendix C. Evaluation and Case Studys 59

Figure C.3: A Screenshot of the updated interface following improvements made as a
result of the evaluation.

Appendix C. Evaluation and Case Studys 60

Table C.1: Heuristic Evaluation of UI (PART 1)- Rule Descriptions as stated by Jakob
Nielsen [26]

Rule Description

Visibility of System Status The design should always keep users in-
formed about what is going on, through
appropriate feedback within a reasonable
amount of time.

Match between System and Real World The design should speak the users’ lan-
guage. Use words, phrases, and concepts
familiar to the user, rather than internal
jargon. Follow real-world conventions,
making information appear in a natural
and logical order.

User Control and Freedom Users often perform actions by mistake.
They need a clearly marked “emergency
exit” to leave the unwanted action without
having to go through an extended process.

Consistency and Standards Users should not have to wonder whether
different words, situations, or actions
mean the same thing. Follow platform and
industry conventions.

Error Prevention Good error messages are important, but
the best designs carefully prevent problems
from occurring in the first place. Either
eliminate error-prone conditions, or check
for them and present users with a confir-
mation option before they commit to the
action.

Recognition Rather than Recall Minimize the user’s memory load by mak-
ing elements, actions, and options visi-
ble. The user should not have to remem-
ber information from one part of the inter-
face to another. Information required to
use the design (e.g. field labels or menu
items) should be visible or easily retriev-
able when needed.

Flexibility and Efficiency of Use Shortcuts — hidden from novice users —
may speed up the interaction for the expert
user so that the design can cater to both
inexperienced and experienced users. Al-
low users to tailor frequent actions.

Aesthetic and Minimalist Design Interfaces should not contain information
that is irrelevant or rarely needed. Every
extra unit of information in an interface
competes with the relevant units of infor-
mation and diminishes their relative visi-
bility.

Appendix C. Evaluation and Case Studys 61

Table C.2: Heuristic Evaluation of UI (CONT.)- Rule Descriptions as stated by Jakob
Nielsen [26]

Rule Description

Help Users Recognize, Diagnose, and
Recover from Errors

Error messages should be expressed in
plain language (no error codes), precisely
indicate the problem, and constructively
suggest a solution.

Help and Documentation It’s best if the system doesn’t need any
additional explanation. However, it may
be necessary to provide documentation to
help users understand how to complete
their tasks.

Appendix C. Evaluation and Case Studys 62

Table C.3: Heuristic Evaluation of UI - Scores found using the framework

Rule Score (out of 5)Notes

Visibility of System Status 4 For large graphs, due to the long
runtime of the positioning algo-
rithm, it can take up to a minute
before an updated graph state is
displayed.

Match between System and Real
World

3 The tactic commands, as imple-
mented, are close to those within
the abstract notation. Though
there are some changes in how ar-
guments are provided.

User Control and Freedom 1 There is no clear way to undo an
action. The closest mechanism is
for the user to preemptively save
then reload the graph.

Consistency and Standards 5 Standard Language is used in But-
ton labeling, and keywords are
consistent with the formal tactics
language.

Error Prevention 2 The use of a single line input for
tactics makes it easy to make typo-
graphical errors. The removal of
types makes it easier for incorrect
tactics to be entered and executed.

Recognition Rather than Recall 4 Labels and relevant information
is always visible to the user. Po-
tentially help prompts could be
added.

Flexibility and Efficiency of Use 4 Shorter versions of many key-
words are supported within the
implemented language. Though
there is no support for macros.

Aesthetic and Minimalist Design 3 No excessive information is pro-
vided. However the UI is con-
structed of basic visual elements,
thus is not especially aesthetic
compared to other software.

Help Users Recognize, Diagnose,
and Recover from Errors

4 Meaningful error messages are
provided to the user when errors
occur during tactic evaluation.

Help and Documentation 2 While there is no specific docu-
mentation (aside from this report),
the interface is relatively intuitive.
Details on the tactics laguage can
also be found within the source pa-
per.

	Introduction
	Background
	Account Access Graphs
	Account Access Graphs with State
	Properties and Operations
	Tactics
	Software Implementations of Tactics

	Developing a Tactic Evaluation Tool
	Model Implementation
	The Controller
	User Interface and Displaying the Graph
	Language Processing
	ANTLR and Language Grammar
	Evaluating Parse Trees
	If Statements and For Loops

	Searching Account Access Graphs
	Selecting Components from Graphs
	AccessFrom and SELECT
	Combining Query's

	Predicates Based on Graph Searches
	Evaluating Tactics on Selected Vertices
	Implementation of Graph Searches

	Tool Evaluation and Discussion
	Testing the Model, Operations, and Properties
	Testing Language Parsing and Tactic Evaluation
	Evaluation time of tactics

	Findings From the Technical Evaluation
	An Attack Using Google's Recovery Method
	The Attack
	Recreating the Attack in Practice
	Mitigating Risk and the Effect of 2FA

	Exploitation of a Google OAuth Vulnerability
	The Attack
	Regaining Control After the Attack
	Verification of Attack Feasibility

	Heuristic Evaluation of Tool Usability
	Improvements Following Evaluation

	Conclusions and Future Work
	Challenges Faced
	Limitations and Future Work

	Bibliography
	Background
	Formal Definition of properties for Account Access Graphs
	Operation Definitions

	Tactics Grammar
	Original Lexer Grammar
	Original Parser Rules
	Extended Lexer Grammar
	Definition of evaluation for SELECT expressions
	Extended Parser Rules

	Evaluation and Case Studys
	Google Account Case Study
	Commands for modeling of Attack
	Intermediate Figures for Attack
	Commands to Implement 2FA

	OAuth Case Study
	Commands for modeling of Attack
	Commands for Account Recovery

	Heuristic Evaluation of Usability
	Improved UI

