
Multilingual Table-to-Text Generation with
Question-Answer Plans

Aden Haussmann

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024



Abstract
Multilingual Natural Language Processing is challenging due to the lack of training
data for low-resource languages. However, some of these languages have millions or
tens of millions of speakers globally, making it important to improve NLP tools for
them. Table-to-Text, the task of generating natural language descriptions of tables of
data, is an excellent measure of models’ reasoning abilities, but is very challenging in
the multilingual setting. System outputs are often not attributable, or faithful, to the
data in the source table. Intermediate planning techniques like Question-Answer (QA)
blueprints have been shown to improve attributability on summarisation tasks. QA
blueprints are concatenated question-answer pairs which relate to the input table, and
are generated before generating the verbalisation itself, and they help control the content
of the output. This project aims to explore whether QA blueprints make multilin-
gual Table-to-Text outputs more attributable to the input tables. A challenging
multilingual Table-to-Text dataset which includes African languages is extended with
QA blueprints, which are generated and heuristically filtered. Sequence-to-sequence
models (transformers) are then finetuned on this dataset, with and without blueprints.
Two setups are tested; English, where the reference blueprint is in English and the
reference verbalisation is in the target language, and translated, where the reference
blueprint is also translated into the target language. Results show that blueprints im-
prove performance for models finetuned and evaluated only on English, but do not
demonstrate gains for multilingual models (with English blueprints performing signifi-
cantly worse than translated ones). This is due to inaccuracies in machine translating
the blueprints from English into target languages when generating the dataset to train
on, and models’ struggling to rely closely on the blueprints they generate. An in-depth
analysis is conducted on why this is challenging.
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Chapter 1

Introduction

1.1 Task: Table-to-Text Generation

Table-to-Text is a task in Natural Language Generation (NLG) that refers to taking
a table of structured data which could represent a graph or chart etc., and generating
natural language sentences, or verbalisations, that describe the data in the table. Table-
to-Text can be considered a sub-task of the more general Data-to-Text, where the input
is any form of structured data, such as JSON, database tables, knowledge graphs etc.

For a Language Model (LM) to be able to accept the table or chart as input, it is
converted into a textual, or linearised, form. This retains the chart’s data and structure
entirely, but is now in a format that an LM can consume. This step is done by humans.

The Table-to-Text task is to generate fluent and accurate descriptions of the data in
the input table. The LM takes the linearised table as input, and the goal is to output a
verbalisation, like in Figure 1.1.

1.2 Motivation for Multilingual Table-to-Text Generation

Although incredible progress has been made in Natural Language Processing (NLP) in
recent years, the majority of research, models and datasets focus on English (Ruder,
2022). Yet there are many languages with tens of millions of speakers which are severely
underrepresented (low-resource languages, or LRLs). For example, Igbo is a language
found predominantly in Nigeria that is considered low-resource despite being spoken
by around 44 million people.1 If NLP tools continue to rapidly improve for just a few
languages, these other communities will be unable to use them, and be left behind. It is
therefore important that more research is done to investigate techniques which make
NLP work better for a more diverse set of languages.

So, why Table-to-Text? Table-to-Text is a highly challenging task for LMs and a very
good way of evaluating their reasoning capability, as it often requires amalgamating
data in multiple table cells and doing simple arithmetic.

1https://celt.indiana.edu/portal/Igbo/index.html
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Chapter 1. Introduction 2

Figure 1.1: An example of a chart image, its linearised form (created by human annota-
tors), and an output verbalisation (produced by a neural network).

Existing baseline multilingual models are somewhat capable of producing fluent ver-
balisations of tables in low-resource African languages, but these outputs are, more
often than not, not attributable (faithful) to the input tables. In other words, they contain
information that is not accurate to the data in the input table (Gehrmann et al., 2022).
Thus this is an area with the potential for significant improvement.

1.3 Research Question

Intermediate planning refers to when models are trained to generate some planning
text before the target output itself, instead of just the output. This will be introduced
in detail in Section 2.2. This intermediate text serves as a content plan for the output.
Intermediate planning techniques have been shown to improve faithfulness in tasks
such as summarisation. These intermediate plans can, for example, take the form of
Question-Answer pairs (Narayan et al., 2023) or entity chains (Narayan et al., 2021).

The goal of this project is to apply intermediate planning techniques that have been
successful in other NLG tasks to the problem of multilingual Table-to-Text generation,
and evaluate whether they affect the understandability (fluency), but in particular the
attributability (faithfulness) of output verbalisations.

In summary, the following research question is explored:
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To what extent do intermediate text plans, made up of Question-Answer
pair blueprints, improve the attributability of multilingual Table-to-Text
generation?

1.4 Key Contributions & Findings

Conditional generation with Question-Answer blueprints, a technique which has proven
effective for improving the faithfulness of summaries, is applied to the task of Table-
to-Text generation for the first time. Further, it is applied to a challenging multilingual
Table-to-Text dataset containing African languages.

The results show that QA blueprints do increase attributability of outputs for models
finetuned and evaluated on only English data. However, in the multilingual setting the
technique is less effective. The challenge is twofold; inaccuracies in machine translating
blueprints generated in English into target languages makes the training dataset less than
perfect, baking in a fundamental disadvantage before training even begins. Furthermore,
models struggle to produce verbalisations which rely heavily on their blueprints. This
is analysed in detail in Chapter 7.

1.5 Report Structure

The rest of this report is laid out as follows. Chapter 2, Background, introduces the task,
the neural models used, low-resource languages, and the challenges of evaluation in
more detail. Chapter 3, Data preprocessing, gives an overview of how the dataset is
prepared. Chapter 4, QA blueprint creation, describes the process of generating and
heuristically filtering Question-Answer pairs to build blueprints from. Chapter 5, Model
finetuning and experimental setup, gives details on how models are trained and tested.
Chapter 6, Automatic evaluation, reviews various metrics’ suitability for evaluation on
the task, and justifies metric choices. Chapter 7, Results, reports and analyses model
results in detail. Finally Chapter 7, Conclusion, offers a summary of the findings and
recommendations for future work and improvements.



Chapter 2

Background

2.1 Transformers & Neural Language Models

2.1.1 Sequence-to-Sequence Models

In 2014, sequence-to-sequence (seq2seq) learning was proposed, i.e. using an encoder-
decoder neural network to map an input sequence to an output sequence. This architec-
ture is ideal for applications such as machine translation or summarisation (Sutskever
et al., 2014). Crucially, the encoder is not limited to text as input, but can encode
arbitrary sequences. This includes structured representations such as tables or images.
The seq2seq framework’s flexibility has made it the standard for NLG (Ruder, 2018).
Encoders and decoders were typically RNNs or sometimes LSTMs, but in recent years,
the relatively new transformer architecture has become highly popular.

The proposal of attention (Bahdanau et al., 2016), specifically self-attention (Cheng
et al., 2016), was one of the key insights which led to the development of a new neural
architecture, the transformer (Vaswani et al., 2017). The transformer is a simplified
architecture based purely on attention, that does away with recurrence and convolutions
completely. It was shown to be more parallelisable and faster to train, and achieved a
new state-of-the-art performance on machine translation tasks.

A transformer-based encoder-decoder defines a conditional distribution of target vectors
Y1:m given an input sequence X1:n, where m and n are the lengths of the output and
input sequences respectively:

pθenc,θdec
(Y1:m | X1:n) (2.1)

Given an input sequence X1:n, a transformer-based encoder maps this to a sequence of
hidden states, X1:n:

fθenc
: X1:n → X1:n (2.2)

4
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The decoder models a conditional distribution of the target sequence Y1:m given the
encoded hidden states X1:n:

pθdec
(yi | Y1:m,X1:n) (2.3)

By Bayes’ rule, this can be factorised to yield a conditional distribution of the target
vector yi given the encoded hidden states X1:n and all previous target vectors Y0:i-1:

pθdec
(yi | Y1:m,X1:n) =

m

∏
i=1

pθdec
(yi | Y0:i-1,X1:n) (2.4)

Here, the decoder maps the encoded hidden states, and all previous target vectors Y0:i-1,
to the logit vector li. The softmax function is applied to the logit vector to produce the
conditional distribution pθdec

(yi | Y0:i-1,X1:n).1

The distribution of the target vector yi is explicitly conditioned on all previous target
vectors. The output is auto-regressively generated from this distribution.

So, at each step, when the decoder generates the next token, it is conditioned on the
encoder output, i.e. the encoded representation of the input sequence. But it is also
conditioned on all previous decoder outputs. The decoder attends to all previously
generated tokens to maintain context, helping make outputs consistent and coherent.

2.1.2 T5

T5, or “Text-to-Text Transfer Transformer” (Roberts et al., 2019), is a sequence-to-
sequence transformer-based model with an encoder-decoder architecture. T5 is capable
of performing typical sequence-to-sequence tasks such as summarisation, but is also
trained to do classification and text-to-text regression.

T5 employs Transfer learning, which is the process of pretraining a model on some task
for which there is a huge quantity of high-quality data, before finetuning the model on
some other specific downstream tasks.

T5 is pretrained on the open-source C4, or “Colossal Clean Crawled Corpus”, dataset2,
which is based on a single month’s worth of scraped web data in the Common Crawl
(CC) dataset, but applies several filtering heuristics to create a subset of high-quality
data, removing everything which is not natural language. C4 is 750GB in size.

During pretraining, words or spans in the input are masked, and the model is trained
to predict these. For example, in Figure 2.1, in the two-word span “for inviting”, the
two words are not predicted separately, but as a single span. This allows T5 to capture
structure in language and gives it an advantage over single-token masking.

1Equations are taken from https://huggingface.co/blog/encoder-decoder#
encoder-decoder, although I believe there is a mistake in the notation and have opened a PR
to fix it: https://github.com/huggingface/blog/pull/1942.

2https://www.tensorflow.org/datasets/catalog/c4

https://huggingface.co/blog/encoder-decoder#encoder-decoder
https://huggingface.co/blog/encoder-decoder#encoder-decoder
https://github.com/huggingface/blog/pull/1942
https://www.tensorflow.org/datasets/catalog/c4
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Figure 2.1: Schematic of the objective
used in pretraining the T5 baseline model
(Roberts et al., 2019), showing the masking
and placeholders.

Downstream performance is studied on
tasks including machine translation, ques-
tion answering, abstractive summarisa-
tion and text classification. This ability
to perform several tasks is made possible
by prefixing the input with a token which
indicates which task the model should do,
as shown in Figure 2.2. This figure also
clearly shows that all tasks, even those
with numerical outputs, are formulated as
text-to-text.

When released by Google in 2019, T5 achieved state of the art (SOTA) performance on
several benchmarks.

Figure 2.2: T5’s text-to-text framework (Roberts et al., 2019).

2.1.3 mT5

Transfer learning is a popular and effective method for multilingual NLP (Magueresse
et al., 2020). mT5, or “Massively Multilingual pre-trained Text-to-Text Transformer”
(Xue et al., 2021) is a multilingual version of the T5 model, and is the model that is
used in this project.

Its architecture and training methods are very similar to that of T5, with a few differences.
One such difference is that mT5 uses Gated Exponential Linear Units instead of regular
Gated Linear Units, as the GeGLU activation function was found to be more effective
than GLU, which can be susceptible to overfitting and vanishing gradients in large
models. Another important difference is in the sampling techniques used to mitigate the
difference in the amount of training data available for high and low-resource languages.
The sampling probability is inversely proportional to the square root of the number
of available examples for a given language, p(L) ∝ p |L|α. Finally, mT5’s vocabulary
is increased from 32,000 to 250,000 sub-word units to represent 101 languages. The
downside of this is that the model requires more memory and compute resources to
train.
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mT5 is pretraied on the mC4 dataset3, a multilingual version of C4. mC4 is based on 71
months of Common Crawl data instead of one, to gather a greater diversity of languages.
cld3, Google’s “Compact Language Detector”4 is used to identify the languages.

Unlike T5, mT5 does not undergo task-specific training with prefixes and therefore
cannot be used without additional finetuning.

mT5 is released in 5 checkpoints, with these numbers of parameters: Small (300M),
Base (580M), Large (1.2B), XL (3.7B) and XXL (13B).

2.2 Faithfulness in Natural Language Generation

Despite the significant recent advances in neural generation models, they still have
shortcomings. These include tendencies to hallucinate and repeat themselves, and they
struggle to remain faithful to input data and identify important information. Solving
these problems is challenging because deep neural networks are opaque by nature,
making it difficult to understand their reasoning and find the root of errors (Narayan
et al., 2023).

Numerous techniques have been applied in attempts to reduce hallucination and make
outputs more faithful and attributable to the source document (Narayan et al., 2023). One
family of such techniques is centred around content selection and planning, whereby
the model is trained to identify and extract relevant information from the input, and
generate an “intermediate plan” of what to say (selection) and in what order (planning)
before generating the actual output, which is conditioned on the plan.

Why do intermediate plans work? Recall from Equation 2.4 that at each step, when a
transformer-based decoder generates the next token, that token is conditioned not only
on the encoder output, i.e. the encoded representation of the input sequence, but also
on previous decoder outputs. It is this mechanism that means when the decoder begins
generating the verbalisation, having already generated the blueprint, the verbalisation
will be conditioned on the blueprint as well as the input sequence.

One approach to creating intermediate plans for abstractive summarisation is entity
chaining (Narayan et al., 2021). This involves creating an ordered set of entities from
the target summary and prepending it to the summary. The model is trained to generate
the entity chain, then continue generating the summary itself, which is conditioned on
the chain and the input document. The chief benefit of this approach is that it is very
simple but effective.

Suppose d is an input document. The model is trained to generate the content plan c for
summary s as p(c|d), then the summary s as p(s|c,d). So, the model encodes document
d and generates the concatenated plan and summary c; s. c and s are prefixed with
special tokens. p(s|c,d) (Narayan et al., 2021).

A similar idea is to build the intermediate plans from question and answer (QA) pairs
instead of entity chains, where the questions and answers are generated from the target

3https://www.tensorflow.org/datasets/community_catalog/huggingface/mc4
4https://github.com/google/cld3

https://www.tensorflow.org/datasets/community_catalog/huggingface/mc4
https://github.com/google/cld3
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summaries. This has been shown to allow more control of a model’s output, and
more explanation of a model’s features than entity chains (Narayan et al., 2023). The
approach is much the same. The difference is the plan c is not an entity chain, but a
concatenated set of question-answer (QA) pairs a1;q1;a2;q2; . . . ;an;qn. See Figure 2.3
for an example of questions and answers generated from a summary.

This method was inspired by the Questions Under Discussion (QUD) model of discourse.
QUD, a tool used by linguists and language philosophers, asserts that the structure of a
text can be expressed by extracting questions that are raised in the text. The theory is
that for each assertion made, the text contains implicit questions, to which the answer is
the assertion (Benz and Jasinskaja, 2017). Recent research has made progress towards
automating the generation of all salient questions for a sentence (De Kuthy et al., 2020).

Figure 2.3: Example of questions and answers generated from a summary (Narayan
et al., 2023).

Content selection and planning has also proved effective in improving Table-to-Text
outputs. A “plan” of what to say and in what order is generated, before generating
the verbalisation itself. The neural model then uses this plan while generating the
verbalisation (Puduppully et al., 2019). In 2019 such a model achieved state-of-the-art
BLEU scores on the RotoWire5 (Wiseman et al., 2017b) and ToTTo (Parikh et al.,
2020)6 datasets. This work used an LSTM-based encoder-decoder architecture with an
attention mechanism and has since been surpassed by simply finetuning T5XL (Kale
and Rastogi, 2020). This showed that the modern text-to-text pretraining-finetuning
paradigm employed by models such as mT5 works very well for Table-to-Text tasks.

2.3 The Challenge of Evaluation

Just as achieving faithfulness to the source table is a challenge in Table-to-Text genera-
tion, so too is evaluating whether a text is understandable and attributable.

Although human evaluators generally provide the best judgements for NLG systems, the
process of designing and running experiments is expensive, time-consuming, nuanced
and can require ethics approval. This poses a challenge to rapid model development
and research. Therefore, automated evaluation metrics which act as a proxy for human
evaluations and are cheap to compute, are critical (Sellam et al., 2020).

Two of the most frequently-used such metrics are BLEU and ROUGE. Introduced in
2002, BLEU (Bilingual Evaluation Understudy) is a metric for evaluating machine

5https://paperswithcode.com/sota/data-to-text-generation-on-rotowire
6https://paperswithcode.com/sota/data-to-text-generation-on-totto

https://paperswithcode.com/sota/data-to-text-generation-on-rotowire
https://paperswithcode.com/sota/data-to-text-generation-on-totto
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translations (Papineni et al., 2002). In 2004, ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) was proposed as a metric for evaluating summaries. Both use
Ngram overlap (Where Ngrams are series of N adjacent tokens; letters, parts of words,
or words). to measure similarity between a prediction and a set of references, and
have proved popular for evaluating Table-to-Text generation over the past two decades.
BLEU is used in this project, and explored further in Section 6.1.

However, BLEU and ROUGE have been repeatedly shown to correlate poorly with
human evaluations (Sellam et al., 2020). In 2015, CHRF, a character Ngram metric also
intended for evaluating machine translation, was developed. It showed comparable or
superior correlations with human judgement to BLEU (Popović, 2015), so it is also
used in this project Section 6.1.

Still, these metrics are not ideal for evaluating Table-to-Text generation. It has been
observed that BLEU rewards fluent outputs, but not those which accurately reproduce
the data in the table, making it particularly inadequate (Wiseman et al., 2017a).

Furthermore, they all rely on the assumption that the reference is an optimal target,
or gold. In practice, because datasets are collected heuristically and automatically,
this is often not true (Dhingra et al., 2019). To address this, PARENT (Precision And
Recall of Entailed N-grams from the Table) was proposed in 2019. PARENT is a metric
for evaluating Table-to-Text generation that combines the reference and table when
calculating precision. This rewards correct data in the output which is present in the
table but not the reference (Dhingra et al., 2019).

Other metrics have been developed with factuality, rather than just fluency, in mind.
FACTKB (Feng et al., 2023) is a learned metric intended to evaluate the factuality of
summarisations. It evaluates summaries against source documents instead of references,
and returns a measure of how factual the summary is. FACTKB performs well in
out-of-domain settings, therefore this project shall consider whether it can be used to
evaluate Table-to-Text outputs (Section 6.2).

The faults of automatic metrics are considered to impede the recent progress being made
by neural models on NLG tasks (Sellam et al., 2020). Despite the apparent continuous
advancement of automated evaluation through the proposal of new and improved
metrics, particularly learned metrics, most are all still insufficient to accurately assess
performance on challenging multilingual Table-to-Text tasks.

2.4 Multilingual NLG and Low-Resource Languages

Modern neural models need to be pretrained on huge amounts of data. For example,
GPT-3 was trained on 570GB of text, filtered from 45TB of compressed plain text
sourced from crawling the internet, Wikipedia and books (Brown et al., 2020). In such
sources, widely-spoken languages such as English, French or German will be well-
represented as they enjoy large populations of speakers and many years of books and
web articles being authored. However, languages with less written content - especially
online - will not be prevalent in such crawls. This means models are less likely to have
seen these languages before and can therefore not be used for downstream tasks in these
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languages. These are called low-resource languages (LRLs).

A review of past work shows that there are several ways to improve the fundamental lack
of data for LRLs. One is by expanding and augmenting datasets, either through neural
and computational methods on existing datasets, or of course by manually creating new
datasets (Magueresse et al., 2020).

Most Table-to-Text datasets - like the popular ToTTo (Parikh et al., 2020) - are in
English, making multilingual Table-to-Text generation challenging. This is addressed
by TATA: “A Multilingual Table-to-Text Dataset for African languages” (Gehrmann
et al., 2022). TATA is a fully parallel dataset of Table-to-Text samples in 9 languages,
including four African languages (Hausa, Igbo, Swahili, and Yorùbá) and Russian as a
zero-shot test language (A language to test the model on that is not represented in the
training data, used to evaluate how well the model will generalise to new languages).
At 8,700 samples, TATA is relatively small (ToTTo has 120,761 training samples).

A key difference between ToTTo and TATA is that ToTTo tables have highlighted
cells which control what information the verbalisation should include. TATA does not
have this, making the problem much less constrained. For any table in TATA, there
are far more valid verbalisations. This might make achieving high scores on TATA
fundamentally more difficult. Examples of input/output pairs from TATA can be seen
in Table 2.1.

Figure 2.4: Human evaluation of TATA, where nU
(red) means not understandable, U (grey) means
understandable and U+A (green) means understand-
able and attributable. The #Cells column represents
the number of cells reasoned over, with std. dev. The
references and mT5XXL have a U+A rate of 0.53 and
0.44 respectively (Gehrmann et al., 2022).

mT5, finetuned on TATA, achieves
poor understandability and at-
tributability as can be seen in Fig-
ure 2.4. Even mT5XXL could
only achieve understandability
and attributability for 44% of its
outputs, 9% below the reference
rate.

Perhaps as expected, mT5’s
BLEURT, ROUGE and CHRF
scores on TATA are very low
and do not correlate well with
human evaluations. Thus, these
were deemed inadequate to as-
sess model performance on the
dataset and the learned STATA,

“Statistical Assessment of Table-
to-Text in African languages”, metric was created by finetuning mT5 on the human
evaluations of model outputs on the validation set and references. STATA has a far
higher correlation with human annotations. This is explored further in Section 6.3.

This reinforces the proposition that commonly-used automatic metrics are not accurate
judges of outputs on challenging datasets such as TATA, especially where attributability
is being evaluated.

In the above baseline model, mT5 is simply taking as input, the linearised tables,
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and as references, target verbalisations which it learns to generate. There are various
intermediate planning techniques for content planning and selection that have been
applied to the task of summarisation, as discussed in Section 2.2, which could be applied
here to improve model performance. This shall be the focus of the project, and STATA
(Section 6.3), in combination with the other automatic metrics introduced, shall be used
for evaluation.

Figure 2.5: An example of a table whose linearised form appears in TATA (Table 2.1).
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Lang Linearised input table Target verbalisation
English Control over Women’s Earnings |

Among currently married women age
15-49 who received cash earnings, per-
cent distribution by who decides how
woman’s earnings are used | (Mainly
wife, 0.7) (Wife and husband jointly,
0.19) (Mainly husband, 0.1)

One in five married work-
ing women made joint deci-
sions with their husbands on
spending cash earnings while
10% report that their husbands
make the decision alone.

Swahili Udhibiti juu ya Mapato ya Wanawake
| Miongoni mwa wanawake walio na
umri wa miaka 15-49 ambao wame-
olewa kwa sasa waliopokea mapato
ya pesa, asilimia ya usambazaji wa
anayeamua jinsi ambavyo mapato ya
mwanamke yatatumika | (Mke hasa,
0.7) (Mke na mume kwa pamoja, 0.19)
(Mume hasa, 0.1)

Mmoja kati ya wanawake
watano wanaofanya kazi na
wameolewa walifanya maa-
muzi ya pamoja na mume
zao kuhusu kutumia mapato
yao huku 10% waliripoti kuwa
mume zao walifanya maamuzi
peke yao.

Hausa Kula da Kudin da Mata ke Samu | A
tsakanin matan da ke da aure a yanzu
haka ’yan shekaru 15-49 wadanda ke
karbar kudi tsaba, kason rabe-raben na
wanda ke yanke hukunci a kan yadda za
a yi amfanida kudin da mata ke samu |
(Mafi yawa mata ce, 0.7) (Mata da miji
a hade, 0.19) (Mafi yawa miji ne, 0.1)

Daya daga cikin matan aure
biyar da ke aiki sukan yanke
hukunci tare da mazansu a kan
yadda za a kashe kudin da
suke samu a yayin da rahoto
ya bayyana cewa, kashi 10%,
mazansu ne ke yanke hukunci
su kadai.

Table 2.1: Some parallel examples of Figure 2.5 in TATA in different languages.
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Data Preprocessing

3.1 Building the Datasets

TATA contains some samples without references. Gehrmann et al. (2022) experiment
with different ways of handling this. The first is to simply skip these references and not
train on them. The second is a tagging system where “0” is appended to inputs with
empty references and the model learns to predict an empty string, and “1” is appended
to inputs with references. Since Gehrmann et al. (2022) found that the first approach
performed better than the second, only the first approach is done in this project. 1

TATA has the following columns: example id, title, unit of measure, chart type,
was translated, table data, linearized input and table text.

The table text column contains a list of all references. To increase the amount of training
data, the training set is exploded along this column, repeating the sample for every
reference in the list. After cleaning and exploding references, the training set has 7,060
rows, the validation set has 754 and the test set has 763.

For the validation set, the first reference in the table text column is chosen as the target.
At test time, metrics are computed between the prediction and each of the references in
table text, and the highest score is taken.

A separate dataset, which contains only the English examples from the main set, is also
created to finetune English-only models. This set’s test, validation and test splits have
902, 100 and 100 rows respectively.

3.2 Bugs in the Dataset

While preprocessing the data, it was noticed that several rows contained errors in the
table text column. 12 rows had some references which matched the data, then several
commas in a row (effectively empty references), followed by “START OF TEXT” which
is an instruction for human annotators that wasn’t meant to make it into the dataset, and

1So, all results in this project are derived from a setup equivalent to SKIP NO REFERENCES from
Gehrmann et al. (2022).

13
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finally some more references which were totally unrelated to the data. There were also
some more rows which just had repeating commas.

At least some of the unrelated references appeared elsewhere in the dataset. For
example, “Four percent of Tanzanian women age 15-49 reported having two or more
sexual partners in the past 12 months.” appeared in example DM51-en-3, where it
should not have, and also in SR196-en-3, where it belonged.

To solve this, the commas, annotator tags and incorrect references are deleted from the
affected rows, and the amended rows are left in the dataset so as not to lose training data.
It is assumed that references after the “START OF TEXT” instruction do not belong
there as this is what was observed for the English examples, but this is not verified for
the non-English examples.

The merged pull request with the fix in Google’s official TATA repository can be seen
here: https://github.com/google-research/url-nlp/pull/6.

https://github.com/google-research/url-nlp/pull/6
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QA Blueprint Creation

Figure 4.1: The process of generating QA blueprints.

4.1 Generating & Heuristically Selecting QA Pairs

A similar process for creating the QA blueprints is followed to that of Narayan et al.
(2023), but with some differences.

The following is done for each English reference (which are single sentences):

15
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First, propositions are extracted from the reference. A proposition is a sub-sentential
unit of logic, or can be thought of as a fact contained within the sentence. Narayan
et al. (2023) break sentences into propositions by splitting on punctuation, prepositions,
relative pronouns and coordination. In this project, a different approach is taken. FLAN-
T5-Large (Chung et al., 2022) finetuned1 for “propositionizing” sentences by Chen et al.
(2023) is used generate a minimal sentence for each proposition in the reference.

For example, from the sentence from Figure 4.1:

In Nigeria, young women with low empowerment would like an average of
6.8 children, 2 children more than young women with high empowerment
(Figure 2).

the following propositions are extracted:

• In Nigeria, young women with low empowerment would like a average of 6.8
children.

• In Nigeria, young women with low empowerment would like to have an average
of 2 more children than those with high empowerment.

The advantage of this approach is that the additional step of matching QA pairs generated
on the whole reference to a single proposition can be skipped. Instead, the QA pairs are
generated directly from each proposition, instead of the reference itself. This guarantees
that there will not be overlapping or redundant information, i.e. each QA pair expresses
a different fact (assuming there is no information overlap between propositions).

Next, for each proposition, 5 QA pairs are generated using T5-Large finetuned2 on
SQuAD (Rajpurkar et al., 2016) for QA generation by Manakul et al. (2023). 5 QA
pairs are generated because trial and error showed this to be sufficient to get some
high-quality pairs. These are generated with do sample = True3 to get different outputs.

Next, QA pairs where the question does not end with a question mark, or the question
or answer are just empty strings, are dropped. This cleans up the QA pairs and removes
anomalous generations which do occur occasionally.

A regex is used to identify numbers in the remaining QA pairs, and pairs containing a
hallucinated number, that is not present in the source reference, are dropped. The goal
of the QA blueprints is to focus the model’s output on factual data which is attributable
to the input table. If numbers are hallucinated at this point, this error will propagate
into the final output verbalisation and defeat the blueprint’s purpose.

QA pairs where the answer is fully contained within the question are dropped.

For any duplicated answers, the QA pair where the question has the greatest lexical
similarity with the proposition (calculated via a word-level F1 score between the
question and reference), is chosen. The other is dropped.

1https://huggingface.co/chentong00/propositionizer-wiki-flan-t5-large
2https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
3https://huggingface.co/docs/transformers/generation_strategies

https://huggingface.co/chentong00/propositionizer-wiki-flan-t5-large
https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer
https://huggingface.co/docs/transformers/generation_strategies
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Finally, the QA pair with the greatest lexical similarity (the highest number of overlap-
ping words) with the reference is selected. For each of the propositions in the above
example respectively, these are:

• “Question: In Nigeria, young women with low empowerment would like an
average of how many children? Answer: 6.8.”

• “Question: In Nigeria, how many more children would young women with low
empowerment like to have than those with high empowerment? Answer: 2.”

Narayan et al. (2023) filter QA pairs by dropping ones where the answer does not appear
at the end of the proposition. They do this because of the theme-rheme structure of
sentences in natural language (Culicover and McNally, 2020) where known information,
the theme, usually comes first and new information, the rheme, usually comes after
(Kruijff-Korbayová and Steedman, 2003). Therefore, dropping QA pairs where the
answer does not appear at the end of the proposition selects for questions that focus on
new information.

In this project, this step is skipped. This is because for a proposition like:

“In Nigeria, young women with low empowerment would like to have an
average of 2 more children than those with high empowerment.”

the QA pair

“Question: In Nigeria, who would young women with low empowerment
like to have an average of 2 more children than? Answer: Young women
with high empowerment.”

will be favoured over

“Question: In Nigeria, how many more children would young women with
low empowerment like to have than those with high empowerment? Answer:
2.”

but this is arguably not preferable. The second QA pair would be dropped, but it is
more natural and focuses on the numerical figure, which is the most important item in
the proposition.

On average, a QA blueprint generated via this strategy contains two or three QA pairs.

4.2 Building the Blueprint

The chosen QA pairs are then concatenated as follows: Let a denote an answer, and
q denote a question. The blueprint b takes the form a1;q1;...;an;qn. Although it is less
natural, answers come before questions because Narayan et al. (2023) found it yielded
better results. Answers and questions are separated by a full stop “.”, and QA pairs are
separated by a pipe “|”.

Special tokens “Blueprint:” and “Verbalisation:” are prefixed to the blueprint b and
verbalisation v respectively, and these are concatenated to form the references.
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Narayan et al. (2023) call this a “global” blueprint and dub it an End-to-End model,
as it determines what content to focus on for the entire output. They experiment with
two more types of planning: The Multi-Task model is trained to do two distinct tasks,
generate the concatenated answer plan and output, and answer plan with questions.
This means the model does not have to generate such long outputs. The Iterative model
interleaves planning with generation instead of creating a global plan before generating.
It is trained to iteratively plan and generate one sentence at a time. The Iterative and
Multi-Task plans mitigate the fact that generally, encoder-decoder models struggle to
generate long texts, but this project focuses on the E2E plan since the verbalisations
considered here are typically shorter than summaries as they are only one sentence.

In this setup, the encoder-decoder model takes the linearised table t as input and learns
to predict the blueprint b as p(b|t), then generate the output v as p(v|t,b). It is noted by
Narayan et al. (2023) that this relies on the blueprints being correct, and acknowledged
that errors at this stage will propagate down the pipeline and affect the final generated
verbalisation.

A limitation of generating QA pairs from the reference verbalisations is that the
blueprints in the training set will never include data that do not appear in the ref-
erence verbalisations. More comprehensive QA pairs cannot be generated directly
from TATA’s documents, as these are linearised tables4, so they are generated from the
reference verbalisations, which are not guaranteed to mention all the data in the chart.

4.3 Making Blueprints Multilingual

The setup as described above would be sufficient if the goal was only to produce
English generations. However, the goal is to produce multilingual generations. Thus,
two blueprint setups are created. The first just uses the English blueprints. So, when
the model generates output v as p(v|t,b), b is always in English and v is in the target
language. The second still generates the blueprints in English and translates them to the
target language. So, both b and v are in the target language. For the English blueprint
dataset only, a language tag, for example “(Yorùbá)” is also inserted after “Verbalisation”
to help indicate to the model what the target language for the verbalisation is.

Machine translating (MT) QA pairs from English to the other languages will propagate
small errors in translation further down the pipeline and hinder the effectiveness of the
blueprints. To evaluate this risk, an analysis of translation quality is done on the training
set. Since the dataset is parallel (i.e., each sample appears in every language), there is
ample data to test the quality of machine translations in this specific context.

Each English sample’s reference is translated, using Google Translate,5 into the seven
other languages which appear in the training set, and these translations are compared to
the corresponding samples written in the target languages with automatic MT metrics.
The results are recorded in Table 4.1.

4QA pair generation from tabular data would be an extremely interesting and useful project in its own
right.

5https://pypi.org/project/googletrans/

https://pypi.org/project/googletrans/
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Hausa Igbo Swahili Yorùbá French Arabic Portuguese
CHRF 0.53 0.56 0.68 0.19 0.80 0.57 0.66
BLEU 0.30 0.37 0.47 0.06 0.68 0.33 0.47

Table 4.1: CHRF and BLEU scores for Google Translate-powered translations of English
samples in TATA compared to corresponding samples in the target languages.

Table 4.1 shows that translation quality for the more broadly spoken languages such as
French and Portuguese is high, with lower quality for the African languages. This is to
be expected, as mT5 will have seen more English and French samples during its training
than, say, Igbo. Swahili enjoys the best translations of the African languages, achieving
higher scores than even Arabic. All languages can be translated with reasonable quality,
with the exception of Yorùbá, which achieves the lowest scores by a large margin. It
is not clear why Yorùbá scores so lowly, but there is discussion online indicating that
others have noted Google Translate’s poor Yorùbá quality.6

4.4 Examples

The blueprint, generated in English (see Table 4.2 for full examples), is:

13%. How much of young women in Mali are in the highest tercile for
empowerment? |81%. What is the percentage of young women in the
Philippines who are in the highest tercile for empowerment? |

This is translated into Swahili as:

13%. Je, ni idadi gani ya wanawake vijana nchini Mali walio katika eneo
la juu zaidi la kuwezeshwa? | 81%. Je, ni asilimia ngapi ya wanawake
vijana nchini Ufilipino walio katika eneo la juu zaidi la kuwezeshwa? |

Translated back into English (again, with Google Translate) to check the quality:

13%. What is the proportion of young women in Mali in the highest area of
empowerment? | 81%. What percentage of young women in the Philippines
are in the highest empowerment zone? |

This is relatively close to the original English blueprint, however it loses the term “tercile”
and replaces it with “area” or “zone”, which could have many different meanings (e.g.
spatial) that do not closely relate to “tercile”. Swahili is one of the languages with better
translation performance. For those with even poorer translations, the blueprints will not
match perfectly to the verbalisations, which are translated by expert humans (Gehrmann
et al., 2022).

6https://support.google.com/translate/thread/241706891/
why-is-google-translate-translation-for-yoruba-so-bad?hl=en

https://support.google.com/translate/thread/241706891/why-is-google-translate-translation-for-yoruba-so-bad?hl=en
https://support.google.com/translate/thread/241706891/why-is-google-translate-translation-for-yoruba-so-bad?hl=en


Chapter 4. QA Blueprint Creation 20

Dataset Source ver-
balisation

Generated
blueprint

New reference

English Only 13% of
young women
in Mali are
in the highest
tercile for
empowerment
compared with
81% of young
women in the
Philippines.

13%. How much
of young women
in Mali are in the
highest tercile for
empowerment?
|81%. What is
the percentage of
young women in
the Philippines
who are in the
highest tercile for
empowerment? |

Blueprint: 13%. How much of
young women in Mali are in
the highest tercile for empow-
erment? |81%. What is the
percentage of young women
in the Philippines who are in
the highest tercile for empow-
erment? |Verbalisation: Only
13% of young women in Mali
are in the highest tercile for
empowerment compared with
81% of young women in the
Philippines.

Translated
blueprints

Asilimia 13
pekee ya
wanawake
wadogo
katika Mali
ndio wapo
katika kikundi
cha juu cha
uwezeshaji ik-
ilinganishwa
na asilimia 81
ya wanawake
wadogo katika
Ufilipino.

13%. Je, ni idadi
gani ya wanawake
vijana nchini Mali
walio katika eneo
la juu zaidi la
kuwezeshwa?
|81%. Je, ni
asilimia ngapi ya
wanawake vijana
nchini Ufilipino
walio katika eneo
la juu zaidi la
kuwezeshwa? |

Blueprint: 13%. Je, ni
idadi gani ya wanawake vijana
nchini Mali walio katika eneo
la juu zaidi la kuwezeshwa?
|81%. Je, ni asilimia ngapi
ya wanawake vijana nchini
Ufilipino walio katika eneo
la juu zaidi la kuwezeshwa?
|Verbalisation: Asilimia 13
pekee ya wanawake wadogo
katika Mali ndio wapo katika
kikundi cha juu cha uweze-
shaji ikilinganishwa na asil-
imia 81 ya wanawake wadogo
katika Ufilipino.

English
blueprints

Seules 13%
des jeunes
femmes au
Mali se situent
dans le tercile
le plus élevé
en matière
d’autonomisation,
contre 81%
des jeunes
femmes aux
Philippines.

13%. How much
of young women
in Mali are in the
highest tercile for
empowerment?
|81%. What is
the percentage of
young women in
the Philippines
who are in the
highest tercile for
empowerment? |

Blueprint: 13%. How much of
young women in Mali are in
the highest tercile for empow-
erment? |81%. What is the
percentage of young women in
the Philippines who are in the
highest tercile for empower-
ment? |Verbalisation (French):
Seules 13% des jeunes femmes
au Mali se situent dans le ter-
cile le plus élevé en matière
d’autonomisation, contre 81%
des jeunes femmes aux Philip-
pines .

Table 4.2: Example blueprints from the three dataset setups for the same input table
with English, Swahili and French as target languages.
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Experimental setup

5.1 Training Details

Gehrmann et al. (2022) use mT5Small and mT5XXL. However, mT5XXL, and indeed
mT5XL are both massive models (13B and 3.7B parameters respectively). Available
compute resources during the completion of this project made finetuning these models
infeasible. The largest model that could be trained is mT5Large (1.2B), so this is used
instead.1

Both mT5Small and mT5Large are finetuned, with a conditional generation head2, with
the following hyperparameters and setup for all experiments:

• Constant learning rate of 0.001.

• Dropout of 0.1.

• Per-device batch size of 4.

• 5 epochs for the Small model and 3 for Large.

• Weight decay of 0.001 for the Large model.

• Linearised tables (inputs) and references are both truncated to 512 tokens. This
figure is chosen based on an analysis of lengths of un-truncated tokenised samples,
as seen in Table 5.1. There are a few inputs which are very long, however most
are under 512 tokens in length.

• Validation loss is measured every 100 or 500 steps depending on batch size and
after training the checkpoint with the lowest loss is selected.

• Training is done on a single NVIDIA A40 GPU.

Training curves for all models are plotted in Appendix A.

1Future expansion of this project could explore using Low-Rank Adaptation (LoRA) to finetune
mT5XXL with less GPU compute (Hu et al., 2021).

2https://huggingface.co/docs/transformers/model_doc/mt5#transformers.
MT5ForConditionalGeneration
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Split Input/Reference Mean Median Range (Min - Max)

Train (no Blueprints)
Input 178.66 139.5 10 - 2266

Reference 60.35 52 9 - 371

Train (with Blueprints)
Input 178.96 140 10 - 2266

Reference 122.78 114 31 - 545

Validation
Input 207.98 166.5 35 - 1210

Reference 52.97 47 11 - 214

Test
Input 211.51 161 31 - 1808

Reference 54.94 49 14 - 194

Table 5.1: Lengths of tokenised inputs (linearised table texts) and references (verbalisa-
tions) for the train, validation and test datasets.

5.2 Repetition Penalty

It is observed that the finetuned models are all highly susceptible to very repetitive
outputs. Especially non-English languages, and the effect is worsened when using
blueprints. For example (repetition in bold): “Blueprint: 31%. What percentage of
women with high education are looking for an infant scale? | Verbalisation (Swahili):
Miongoni mwa wanawake wadogo, 31% pekee ya wanawake walio na kipimo cha juu
cha juu cha juu cha juu...”

Since only 200 tokens are generated at test time, excessive repetition in the blueprint
sometimes results in the generation never reaching the actual verbalisation. This means
the blueprint cannot be cut before comparing the output to the reference, which is highly
undesirable as the blueprint itself is not meant to be evaluated against the reference.

Therefore, a repetition penalty is applied during inference (not during finetuning) to
alleviate this. This is simply Huggingface’s repetition penalty3 parameter which can be
passed to model.generate. The repetition penalty is a form of penalised sampling, as
formulated in Keskar et al. (2019) and simply penalises tokens which have already been
generated.

pi =
exp(xi/(T · I(i ∈ g)))

∑ j exp(x j/(T · I( j ∈ g))
I(c) = θ if c is True else 1 (5.1)

In Equation 5.1, T is the temperature, θ is the strength of the penalty, g is a list of
generated tokens and pi is the probability distribution for the next token.

An analysis of varying repetition penalties is performed on the English-finetuned
mT5Small with blueprints, as the model and dataset are small which allows for a faster
analysis. Figure 5.1 shows that as the repetition penalty is increased, performance on
all metrics increases until 1.4, after which the metrics begin to decline. A θ of 1.0 is
equivalent to no penalty. However, by inspecting outputs it is observed that a penalty of
1.2 is enough to stop most of the highly problematic repetitive outputs. The penalty is
somewhat a blunt instrument, so it is not over-used here. Although the scores are higher,

3https://huggingface.co/docs/transformers/internal/generation_utils

https://huggingface.co/docs/transformers/internal/generation_utils
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a penalty of 1.2 is cautiously chosen for the rest of the experiments as it mitigates the
main problem, without altering the normal generations excessively. This agrees with
the findings of Keskar et al. (2019), who also note that a θ of 1.2 in Equation 5.1 strikes
a good balance between keeping repetition to a minimum but maintaining fluent and
sensible outputs.

Figure 5.1: Multilingual model performance
on the test set (including all languages) with
varying repetition penalties.

Where highly repetitive blueprints do still
occur at test time, these obviously bring
down the metrics slightly, as a blueprint
is being compared to a reference verbal-
isation which is not intended. But these
bad candidates are not removed.
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Automatic Evaluation

Human evaluators would produce the best judgements on model outputs for TATA.
However, this is infeasible for this project due to time, logistical and expense constraints.
Evaluation is therefore done entirely through a combination of generic and learned
automatic NLP metrics.

6.1 CHRF & BLEU

CHRF and BLEU are calculated and reported for the sake of interest, and to place in
context how challenging this task is for both models and evaluation metrics. How-
ever, when interpreting them it must be kept in mind that they achieve extremely low
correlations with human evaluations on TATA (<0.16) (Gehrmann et al., 2022).

Figure 6.1: A chart from the DHS1which
appears in TATA.

Why are popular automatic evaluation
metrics so unsuitable for this task? Con-
sider the following example. Figure 6.1
appears in TATA. Its reference verbalisa-
tions are:

• “Only 18% of women own a house,
either alone or jointly, and only
15% own land.”

• “In comparison, men are more than
twice as likely to own a home alone
or jointly (40%).”

• “Men are also more than twice as
likely to own land alone or jointly
(34%).”

Now, consider the rather simple candidate verbalisation, “15% of women between
the ages of 15 and 49 own land alone or jointly”. This is a perfectly understandable

1https://dhsprogram.com/pubs/pdf/dm52/dm52.pdf
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and attributable sentence in relation to the chart. In many ways it is a perfect output.
However, its CHRF score, if we take the top score when comparing the candidate to all
three references, is only 0.44.

This is partly due to the reasoning required, often over multiple cells, which simply
cannot be captured by these metrics, and also due to the massive verbalisation space,
i.e., the number of “correct” verbalisations is utterly vast compared to, for example, the
number of correct translations of some sentence from one language to another. This is
why metrics which consider the table itself, such as PARENT (Section 2.3) perform
better on Table-to-Text.

Furthermore, consider the candidate verbalisation “In comparison, men are more than
twice as likely to own a home alone or jointly (20%)”. This is syntactically nearly
identical to the second reference, so it achieves a very high CHRF of 0.95. However, the
number is incorrect (it is 20 but should be 40).

6.2 FACTKB

FACTKB differs fundamentally from metrics such as CHRF and BLEU as it was trained
specifically to evaluate whether outputs are factually faithful to their sources.

FACTKB is intended to be used with (summarisation, article) input pairs. In this
project, it is explored whether, and to what extent, it can be used to produce scores for
(verbalisation, linearised table) pairs. FACTKB uses RoBERTaBase (Liu et al., 2019),
which is not multilingual. Therefore it can only be used to evaluate the models finetuned
on English examples.

To determine whether FACTKB can be used to evaluate Table-to-Text on TATA, scores
are computed on examples from the human evaluations file, and the Pearson correlation
between the score and the human judgement of attributability (0 or 1) is calculated.
FACTKB achieves a Pearson correlation with human evaluations of 0.22. This is still
low, but better then the next-best performing existing metric, CHRF (0.16).

BERTScore, another metric designed for evaluating text generation, is also considered as
it has been shown to be robust to challenging examples (Zhang et al., 2020). BERTScore
calculates overlap between candidates and references like traditional metrics, but does
so using contextual embedding similarity of tokens instead of exact token matches. It
only achieves a Pearson correlation of 0.12 with human evaluations on TATA, which is
lower than CHRF, so it is not used for evaluation.

6.3 STATA

Following instructions from Gehrmann et al. (2022), a learned metric is trained on
human annotations of references and model outputs for TATA. It is called STATA, or
Statistical Assessment of Table-to-Text in African languages.

The human annotations file marks outputs as “understandable” if they are fluent and
grammatically correct, and “attributable” if they satisfy the “understandable” criteria,
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and also only contain data which correctly reflects the data in at least one cell in the
input table.

Gehrmann et al. (2022) define and train three STATA variants:

• Ref: A “traditional” metric model that uses just the candidate and the references.

• QE: A quality estimation model which considers the linearised input and the
candidate, but not the references.

• QE-Ref: A quality estimation model which considers the linearised input, the can-
didate and the references. This setup is similar to the PARENT metric introduced
in Section 2.3.

Gehrmann et al. (2022) showed that STATA performs significantly better than exist-
ing metrics for evaluating TATA. Gehrmann et al. (2022) designate STATAQE as the
dataset’s main metric as it has the highest Pearson correlation, 0.66, with the human
assessments. They state that using large mT5 models is necessary to achieve this
high correlation. To illustrate this they also finetune mT5Base for the same task, but it
only achieves a correlation of 0.21 with human assessments. This is still better than
the best-performing existing metric, CHRF, but not much. However, due to the same
computational constraints mentioned in Section 5.1, mT5Large is used in this project
instead. This yields a Pearson correlation with human assessments of attributability of
0.59, significant at the p < 0.01 confidence level. While not as good as if the metric
had been trained with mT5XXL, this is still far better than any existing metric. Since
STATAQE was shown to perform the best, it is the only STATA variant replicated in the
project.

It should be noted that the STATA scores reported in this project cannot be directly
compared to those from Gehrmann et al. (2022), as they are trained with different mT5
checkpoints.

6.3.1 Training Details

mT5Large and mT5Small are finetuned for regression with an RMSE (Root Mean Squared
Error) loss function. The metric is released on the Huggingface Hub (https://
huggingface.co/adenhaus/mt5-large-stata) in the hope that it will prove useful
to other researchers who wish to work on TATA.

A spare token in mT5’s vocabulary is chosen as the regression token. At each step, the
RMSE of this token’s logit and the label, which is 0 or 1, is taken. This is the loss.

RMSE(y, ŷ) =

√
∑

N−1
i=0 (yi − ŷi)2

N
(6.1)

In Equation 6.1, ŷ is the logit of the special token and y is the label. N is the number of
observations. At inference time, generation is constrained to this token, and its logit x is
converted into a probability with the sigmoid, or logistic function (Equation 6.2). This
is the final metric.

https://huggingface.co/adenhaus/mt5-large-stata
https://huggingface.co/adenhaus/mt5-large-stata
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σ(x) =
1

1+ e−x (6.2)

The human annotations file contains rows with the following fields and data types:
output (string), model (string), interpretable (float), attributable (float), cells (float),
reasoning (float), id (string), set (string), lang (string) and linearized input (string).

Table 6.1 is an example row in Portuguese, with only the fields used for finetuning
STATA.

output attributable linearized input
Apesar de existirem
pequenas diferenças no
acesso a LLIN entre as
áreas urbanas e as áreas
rurais (54 por cento e
52 por cento, respetiva-
mente), as variações no
acesso a LLIN são signi-
ficativas nas diferentes
zonas de transmissão da
malária.

1 Acesso a LLIN por parte da população do
agregado familiar — Por cento — (Total)
(53) (RESIDÊNCIA) (Urbana) (54) (Rural)
(52) (ENDEMICIDADE DA MALÁRIA)
(Epidémica nas terras altas) (62) (Endémica
perto de lagos) (70) (Endémica costeira)
(60) (Semi-árida, sazonal) (38) (Baixo risco)
(40) (QUINTIL DE RIQUEZA) (Mais
baixo) (37) (Segundo) (52) (Intermédio)
(56) (Quarto) (55) (Mais elevado) (63)

Table 6.1: An example of relevant fields in a row of the human annotations data used to
finetune STATA.

Figure 6.2: Pearson correlations of
mT5-Small and mT5-Large STATA
models with U+A human evalua-
tions.

The file required some cleaning before it could be
used for training. All rows where “attributable” is
not either 0.0 or 1.0 are dropped. 73.7% of samples
have a 0 in the “attributable” column, and 26.3%
have a 1. This phenomenon, where the dataset is
unbalanced in favour of the negative class, is com-
mon in classification or similar datasets. However,
since the model learns the data quite effectively
as-is, no data augmentation or other techniques are
applied to balance the classes. The file is then ran-
domly sampled into train (80%), validation (10%)
and test (10%) splits. This makes the training set
4,900 rows and the validation and test sets 612
rows each. This dataset is also released on the
Huggingface Hub (https://huggingface.co/
datasets/adenhaus/stata) so that STATA can

be easily retrained by other researchers, particularly those with more compute resources
who can train it with mT5XXL.

To evaluate the metric, scores are computed on the test set and the Pearson correlation
between them and the human assessments of attributability (1, or 0) is computed.
Figure 6.2 shows the correlations for the Small and Large model.

https://huggingface.co/datasets/adenhaus/stata
https://huggingface.co/datasets/adenhaus/stata
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Hyperparameters & other details:

• Constant learning rate of 0.0001.

• Per-device batch size of 32 for Small and 8 for Large.

• 15 epochs.

• Dropout of 0.1.

• Inputs are truncated to 2048 tokens.

• Validation loss is measured every 0.1 epochs and after training the checkpoint
with the lowest RMSE loss is selected.

• Training is done on a single NVIDIA A40 GPU.

(a) mT5-Small (b) mT5-large

Figure 6.3: Training curves for STATA models. Training is only shown up until lowest eval
loss. Both models are trained for 15 epochs.

6.3.2 Examples

The first row in Table 6.2 shows a high-scoring example, i.e. an output which is very
understandable and attributable to the source table. Relevant parts of the table and output
are in bold and colour-coded to show attributability. The output is quite interpretable
and refers to married women, which is the correct topic of the input table. The output
also claims that “75% of married women participate in decision making about their own
health”, which is correctly attributable to the table. Therefore, it has a very high STATA
score of 0.727.

The second row is neither understandable, nor attributable to the source table. It is not
a well-formed sentence, and the quoted figure “86%” does not appear in the table at
all, it is hallucinated. The only link it has at all to the source is the reference to malaria.
Therefore, this output gets a very low STATA score of 0.49.

These examples have been hand-picked to illustrate what good and bad outputs look
like, and what STATA scores they should receive. STATA, with a correlation with
human assessments of 0.59, is not a perfect metric and does not get it right every time.
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Linearised input Output Score
Women’s Participation in Decision-Making — Per-
cent of married women age 15-49 who usually
make specific decisions by themselves or jointly
with their husband — (Own health care, 75) (Major
household purchases, 81) (Visits to family or friends,
88) (All 3 decisions, 65) (None of the 3 decisions, 7)

Among married
women, 75% of
married women
participate in
decision making
about their
health care.

0.727

Items to support quality provision of malaria ser-
vices — (Guidelines: treatment, 72) (Guidelines:
diagnosis, 71) (Trained staff: diagnosis/treatment,
57) (Trained staff: IPT, 33) (Guidelines: IPT, 30)
(Malaria microscopy, 18) (mRDT capacity, 81) (Any
diagnostic capacity, 84)

Among facilities
had an improved
malaria, 86%
of facilities had
an improved
malaria.

0.490

Table 6.2: Examples of input tables, model outputs, and corresponding STATA scores.
Colours denote where relevant information from the input table is present in the output
verbalisation.
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Results

7.1 English Subset Results

Model CHRF BLEU FACTKB STATA
mT5Small 0.33 0.15 0.24 0.513
mT5Small (Blueprints) 0.30 0.11 0.28 0.523

Table 7.1: Results for mT5Small finetuned and evaluated on the English subset of TATA.

In Table 7.1, CHRF and BLEU are calculated using the predicted and reference verbali-
sations (traditional Reference-based metrics), and FACTKB and STATA are calculated
using the predicted verbalisation and the linearised input table (Quality Estimation, or
reference-less, metrics).

The results show that the blueprints do improve the attributability of outputs for the
model finetuned on English rows. For the Small model, STATA increases from 0.513 to
0.523. This is significant because the range of values outputted by STATA is relatively
narrow; from about 4.9 to 7.2 based on observation (in theory it could be outputting
values between 0 and 1). This narrow range is common for learned metrics, and means
that an increase of 0.1 is quite large. If the metric is trained with a larger model, the
range of observed values will increase as the model becomes more confident. FactKB
also increases by 0.04 for the blueprint model.

mT5-Large is also finetuned on the English subset, however it overfits very quickly and
does not achieve representative results, due to the dataset’s tiny size (training curves
are included in Appendix A.1). The full TATA dataset is small to begin with, and
the English subset (about eight times smaller than the whole dataset, at 902 training
examples) appears to simply be too small to finetune the Large model on. Therefore,
these results are discarded and not reported.

30
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7.1.1 Examples & common patterns

Reference Linearised input Setup Blueprint Verbalisation
17 percent
of births in
Kenya are
unwanted,
and 26
percent are
mistimed
(wanted
later).

Planning Status of
Births |Percent
|(Wanted then,
0.57) (Unwanted,
0.17) (Wanted
later, 0.26)

Vanilla The proportion
of births were
wanted at the
time of delivery.

Blueprint wanted births.
What was the
most common
form of births?

The proportion
of births were
wanted at births,
from a low of 7%
in 1990 to a high
of 11% in 2012.

The 2008-09
data indicate
a rise since
2003 in
medical
antenatal
care
coverage.

Trends in Receipt
of Antenatal Care
from a Skilled
Medical Provider ,
Kenya 2003-2008
|Percentage of
women with live
birth in the past 5
years |(2003, 88)
(2008-09-01
00:00:00, 92)

Vanilla Although the
proportion of
women who
have received
antenatal care
from a skilled
provider.

Blueprint 88%. What was
the rate of ante-
natal care from
a skilled provider
in 2003?

The proportion of
women with an-
tenatal care from
a skilled provider
in 2003.

Table 7.2: Output examples from vanilla and blueprint models, colour-coded to show
where relevant information from the table has been used in blueprints and verbalisations.

In the first example in 7.2, neither the vanilla nor the blueprint verbalisations are very
good in terms of understandability or attributability. Both refer to the correct concepts,
but the former makes no reference to any actual data, and the second entirely hallucinates
the data. The blueprint is semi-correct, as “wanted then” is the most common category,
at 0.57. Unfortunately, this data is not correctly referenced in the verbalisation at all.

In the second example, a very good blueprint has been formulated. It captures important
information from the table and does so correctly, identifying the right figure (88%)
and year (2003). However, again the verbalisation fails to use this blueprint effectively,
mentioning the correct year, but not the figure. This is still an improvement over the
vanilla verbalisation, which references neither.

Some frequent idiosyncrasies emerge upon manually examining model outputs. Models
will commonly produce phrases like “increased from 15 percent to 15 percent”. This
is a common verbalisation pattern in the training data which the model learns, but it
is clear that it has not learnt what “increase” means in this context, as the numbers
are the same. Similar mistakes in characterising a comparison between two numbers
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occur relatively often, even if both numbers do appear in the input table. For example,
“mortality rate is 19, compared to 19” This is indicative of a lack of reasoning. Note that
the repetition penalty of 1.2, which is applied, does not stop this.

The majority of verbalisations begin with “The percentage of...”, “The proportion...” or
a few other common phrases. This is just a reflection of common sentence structures in
the training data and is not an issue per se, but it does raise the concern that even a more
powerful and capable model will probably not generate highly diverse verbalisations
from this dataset.

Verbalisations are also sometimes not fully formed. For example, “The proportion of
children under age 5 who are wasted or too short for their age.” or “Although the
proportion of women who have received antenatal care from a skilled provider.” These
would be valid as the first half of verbalisations, but are not completed and therefore do
not make sense.

Generally, the title and unit parts of the input tables seem to appear the most consistently
and accurately in the verbalisations, with the actual data points less so. This is consistent
with an observation made by Gehrmann et al. (2022).

7.2 Multilingual Results

Model CHRF BLEU STATA
mT5Small 0.32 0.16 0.552
mT5Small (Eng blueprints) 0.29 0.09 0.525
mT5Small (Trans blueprints) 0.30 0.12 0.542
mT5Large 0.33 0.13 0.552
mT5Large (Eng blueprints) 0.24 0.04 0.519
mT5Large (Trans blueprints) 0.27 0.11 0.544

Table 7.3: Results of finetuned multilingual models on the test set (all languages).

The Small baseline model trained by Gehrmann et al. (2022) achieves a CHRF of 0.33,
which is very close to the 0.32 achieved by the baseline Small model in this project
(Table 7.3), so the results are considered to be successfully replicated.

The English blueprint setup performs poorly (Table 7.3). Inspecting outputs of models
trained on the English blueprints, which have to be able to generate outputs that contain
multiple languages (English and the target language) reveals that they sometimes mix
languages up. In the following example, colours denote different languages: “Among
Tanzania, one-third of Tanzanian women in the United States had all the three or more
antenatal care visits, asilimia 29 ya wanawake in the United States had all the three or
more antenatal care visits.”

“asilimia 29 ya wanawake” is a Swahili phrase meaning “29 percent of women” which
has been incorrectly generated in the middle of an English sentence. (In this example,
the United States is also hallucinated and a clause is repeated, but those are separate
issues).
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The translated blueprints fare decisively better than the English ones across all metrics,
but are still slightly worse than no blueprints (Table 7.3).1

7.2.1 Model size

Gehrmann et al. (2022) saw a large performance jump on TATA from mT5Small to
mT5XXL (13B). This raises the question of why in this project, Large (1.2B) doesn’t
improve over Small. One likely hypothesis is model-wise double descent, the phe-
nomenon whereby performance degrades as the model size increases to a point, then
begins to improve again as the model size is increased further (Nakkiran et al., 2019).
Even the full TATA dataset is small, and the Large model converges quickly or overfits.
Increasing the model size by a factor of 10 would still result in a fast convergence, but
the model will likely achieve a much lower loss before this happens.

7.3 Per-Language Analysis

Lang Small Small Blueprints Large Large Blueprints
En 0.19 / 0.33 / 0.551 0.15 / 0.34 / 0.529 0.17 / 0.37 / 0.538 0.10 / 0.29 / 0.549
Sw 0.21 / 0.39 / 0.589 0.17 / 0.36 / 0.569 0.16 / 0.38 / 0.581 0.13 / 0.30 / 0.585
Yo 0.03 / 0.13 / 0.567 0.03 / 0.14 / 0.563 0.03 / 0.14 / 0.577 0.02 / 0.14 / 0.561
Fr 0.17 / 0.36 / 0.528 0.11 / 0.33 / 0.526 0.14 / 0.38 / 0.526 0.12 / 0.31 / 0.529
Pt 0.17 / 0.39 / 0.527 0.16 / 0.34 / 0.518 0.15 / 0.39 / 0.512 0.15 / 0.32 / 0.531
Ha 0.17 / 0.33 / 0.526 0.12 / 0.33 / 0.523 0.12 / 0.33 / 0.546 0.12 / 0.29 / 0.515
Ar 0.14 / 0.32 / 0.539 0.11 / 0.33 / 0.523 0.12 / 0.33 / 0.533 0.12 / 0.31 / 0.519
Ig 0.20 / 0.35 / 0.596 0.17 / 0.32 / 0.584 0.16 / 0.34 / 0.605 0.15 / 0.27 / 0.558

Table 7.4: Language-specific performance of mT5 multilingual models (BLEU / CHRF /
STATA). Bold figures represent the best result for each metric in each row. Italic figures
are ties.

For more granular insights, the multilingual models are evaluated on each language in
the test set individually. (The Blueprint columns in this table are translated blueprints
as these were shown to perform better in Table 7.3). These per-language evaluation
results are noisy (Table 7.4). Broadly, blueprints rarely improve any of the metrics, and
performance between the Small and Large model is very close.

Some interesting observations: Yorùbá and Igbo are both low-resource, but widely-
spoken in Western Africa, particularly Nigeria. Yet Igbo performs exceptionally well,
achieving the highest STATA score of any language, while Yorùbá languishes at the
bottom of the table by some margin, at least in terms of BLEU and CHRF. Yorùbá
actually does perform relatively well on STATA. It has complex characters, with many
accents (for example, “Nóḿbà ti àwon...”), so it is possible that some issue with

1A Russian zero-shot evaluation is not included in this project as when the finetuned models, which
do not see Russian in the training data, are tested on Russian, they do not output Russian but a mixture of
languages seen in the training data instead. This needs further examination.
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capturing this is causing the very low BLEU scores. Gehrmann et al. (2022) did not get
such poor Yorùbá scores.

The lower-resource African languages also tend to benefit the most from an increase in
model size. Igbo, Hausa and Yorùbá all achieve higher STATA scores with the Large
model, and are the only languages to do so. This suggests that scale is of particular
importance for the low-resource languages.

7.4 Blueprint Analysis

Model CHRF BLEU
Small Trans Blueprints (Multilingual) 0.27 0.07
Small Blueprints (English) 0.23 0.05

Table 7.5: CHRF and BLEU between predicted and gold blueprints on dev set.

Table 7.5 shows how closely predicted blueprints match reference blueprints in the dev
set (the candidates and references are split on “Verbalisation:” and only the blueprints
compared). The dev set is used as no blueprints are generated for the test set, because at
test time only the verbalisations are compared.

Clearly, these scores are very low. It should be noted that achieving a high CHRF or
BLEU on the blueprints, or indeed the entire output, is not the explicit goal of training.
If it was, these statistics would be calculated on the dev set during finetuning and the
best model chosen based on which checkpoint optimised them. However, there are many
valid blueprints for any given table, especially when generating short verbalisations
from large tables, where there is lots of data to choose from. Arguably more important,
is whether blueprints are related to the input table, and whether verbalisations are related
to their blueprints.

Table 7.6 provides a measure of this. It shows how well the models are able to generate
blueprints, and to what extent the verbalisations use these blueprints. To do this, CHRF
and BLEU are calculated between the linearised input and the blueprint to quantify
how much information from the table is present in the blueprint. CHRF and BLEU are
also calculated between the blueprint and the verbalisation to quantify how closely the
output relies on the blueprint for content selection.

Again, note that the goal is obviously not to have blueprints which are exactly the same
as the input tables, nor verbalisations which are exactly the same as the blueprints. So,
just maximising these metrics is not desirable here. The point is to interpret the models’
scores with respect to the dataset scores, as an indicator the extent to which the models
exhibit desirable attributes of the dataset.

The English dataset and Multilingual dataset rows in Table 7.6 represent scores
calculated directly on the respective training datasets created in Chapter 4, and show-
case the best-case scores. The English model (mT5Small finetuned on the English
subset with blueprints) and Multilingual model (mT5Small finetuned on the full dataset
with translated blueprints) rows represent scores calculated on the respective test sets,
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Linearised input → Blueprint Blueprint → Verbalisation
CHRF BLEU CHRF BLEU

English dataset 0.28 0.02 0.61 0.24
English model 0.24 0.02 0.39 0.20
Multilingual dataset 0.25 0.02 0.43 0.13
Multilingual model 0.23 0.01 0.36 0.16

Table 7.6: CHRF and BLEU between linearised inputs, blueprints and verbalisations in
the training data and model outputs.

and the models’ generated blueprints and verbalisations (the generation is split on
“Verbalisation:” and the blueprint and verbalisation separated).

It is immediately clear that even the English model is not able to generate blueprints that
are as closely related to the linearised table as the references (CHRF of 0.24 versus 0.28).
Furthermore, the similarity between the blueprints and the outputs is very low (CHRF
0.39, BLEU 0.20) compared to the dataset (CHRF 0.61, BLEU 0.24). This indicates that
not only is the model struggling to generate blueprints that are as good as gold, but it is
also failing to remain as faithful to its blueprint (as showcased in the second example in
7.2). In other words, the model’s verbalisations have significantly less in common with
its blueprints than the dataset’s.

The multilingual model actually does a better job of producing verbalisations which rely
on the blueprints. There is a smaller percentage drop in Blueprint → Verbalisation
CHRF than for English, and BLEU actually improves slightly. It is clear from these
findings that the model’s verbalisations do not draw from its blueprints enough, as
exemplified in the examples in Table 7.2. One way of encouraging the model to rely
more on its blueprints would be to use a form of constrained decoding, which could
help focus the model on using words which it generates in its blueprint.2 This is not
explored in this project and is left to future work.

Still, there is a fundamental disadvantage in the multilingual setup before training even
begins. Note how much lower the multilingual dataset’s Blueprint → Verbalisation
score (CHRF 0.43, BLEU 0.13) is than the English dataset’s (CHRF 0.61, BLEU 0.24).
This indicates that, as predicted in Section 4.3, inaccuracies in translating the English
blueprints into the target languages have made it challenging to create high-quality
multilingual blueprints.

So, why do the multilingual blueprint models achieve slightly higher STATA scores
than the English-only blueprint models if the multilingual blueprints are lower quality?
These multilingual models are still trained on around eight times more training data,
as they see the full dataset, not just the English subset. This allows the multilingual
models to learn the general task better, despite the language-specific challenges, and
is also the reason the multilingual model achieves higher BLEU and CHRF between
predicted and reference blueprints in Table 7.5.

2https://huggingface.co/blog/constrained-beam-search

https://huggingface.co/blog/constrained-beam-search
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Conclusions

The evidence suggests QA blueprints are effective for slightly improving the attributabil-
ity of Table-to-Text outputs in English. More work needs to be conducted to validate
this, with both a larger English Table-to-Text dataset such as ToTTo, and a larger model,
such as mT5XXL or the newly-released Gemma-7b.1

In the multilingual setup, English blueprints degrade performance significantly and
sometimes cause models to mix up multiple languages in their verbalisations.

Translated blueprints fare better, but still worse than no blueprints at all. This is due to
inevitable inaccuracies in machine translating the blueprints from English to the target
languages in the dataset for training. These imperfect translated blueprints mean that
the multilingual models do not have high-quality gold examples to learn from.

As a result, the models struggle to generate blueprints which are as closely related to
the input tables as the dataset. This problem, as measure by BLEU, is more severe for
multilingual models than English.

For the English results, an increase in STATA scores is observed, while generic au-
tomated metrics such as BLEU and CHRF decrease. This further confirms that these
metrics are not suitable for evaluating TATA due to their very low correlations with
human evaluations. Although FACTKB performs slightly better, is not recommended to
be used to evaluate TATA in future work, as its correlation with humans is still quite
low, and this is not the task it was designed for. The learned metric STATA should
be the definitive judge of model performance on TATA when human evaluators are
not available. As part of this project, STATA is released online in the hope that it will
make doing research on TATA more accessible. However, this STATA version is trained
with mT5Large. It should ideally be retrained with mT5XXL, released and standardised,
because if each researcher trains their own version, comparing scores across papers will
be impossible.

It is also observed that increasing model size results in larger gains for the low-resource
languages.

1https://blog.google/technology/developers/gemma-open-models/
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Multilingual Table-to-Text generation remains a very challenging task for neural models.
Based on the findings of this project, recommendations for future work are as follows:
Trial using LLMs to generate more synthetic training data in several languages. If
high-quality synthetic data can be generated, and the dataset size increased, this will
boost model performance (although LLMs will probably only be able to generate good
examples in the higher-resource languages). Additionally, constrained decoding should
also be explored as a way to make verbalisations utilise the blueprints more. Finally,
TATA can be turned into a more constrained task by having human annotators highlight
the cells in each table that are used in its reference verbalisation, as the ToTTo dataset
does. This greatly reduces the valid answer space, especially for larger tables.
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