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Abstract
Almost every program makes extensive use of container types – structures that hold a
collection of values together. Despite many programming languages offering a variety
of implementations, most programmers stick to one or two, potentially leaving large
performance improvements on the table.

We present Candelabra, a system for selecting the best implementation of a container
type based on the individual program’s requirements. Using the DSL proposed in Qin
et al. (2023), developers specify the way a container must behave and what operations it
must be able to perform. Once they have done this, we are able to select implementations
that meet those requirements, and suggest which will be the fastest based on the usage
patterns of the user’s program.

Our system is designed with flexibility in mind, meaning it is easy to add new container
implementations and operations. It is also able to scale up to larger programs, without
suffering the exponential blowup in time taken that would happen with a brute-force
approach.

Our approach generates accurate estimates of each implementation’s performance, and
is able to find the fastest implementation in the majority of our tests.

We also investigate the feasibility of adaptive containers, which switch implementation
once the size reaches a certain threshold. In doing so, we identify several key concerns
that future work should address.
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Chapter 1

Introduction

Almost every program makes extensive use of container data types – structures which
hold a collection of values. Often, programmers will also have some requirements they
want to impose on this collection, such as not storing duplicate elements, or storing the
items in sorted order.

However, implementing these collection types wastes time, and can be hard to do right
for more complicated structures. Most programmers will instead use one or two of the
collection types provided by their language. Some languages, such as Python, go a step
further, providing built-in implementations of common data structures, with special
syntax and handling.

However, the underlying implementation of container types which function the same can
have a drastic effect on performance (L. Liu and S. Rus (2009), Jung et al. (2011)). By
largely ignoring the performance characteristics of their implementation, programmers
may be missing out on large performance gains.

We propose a system, Candelabra, for the automatic selection of container imple-
mentations, based on both user-specified requirements and inferred requirements for
performance. In our testing, we are able to accurately select the best performing
containers for a program in significantly less time than brute force.

We have designed our system with flexibility in mind: adding new container imple-
mentations requires little effort. It is easy to adopt our system incrementally, and we
integrate with existing tools to make doing so easy. The time it takes to select containers
scales roughly linearly, even in complex cases, allowing our system to be used even on
larger projects.

We are also able to suggest adaptive containers: containers which switch from one
underlying implementation to another once they get past a certain size. Whilst we saw
reasonable suggestions in our test cases, we found important performance concerns
which future work could improve on.

In chapter 2, we give a more thorough description of the container selection problem,
and examine previous work. We outline gaps in existing literature, and how we aim to
contribute.
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Chapter 1. Introduction 2

Chapter 3 explains the design of our solution, and how it fulfills the aims set out in
chapter 2. Chapter 4 expands on this, describing the implementation work in detail and
the challenges faced.

We evaluate the effectiveness of our solution in chapter 5, and identify several short-
comings that future work could improve upon.



Chapter 2

Background

In this chapter, we explain the problem of container selection and its effect on program
correctness and performance. We then provide an overview of approaches taken by
modern programming languages and existing literature. Finally, we explain how our
system is novel, and the weaknesses in existing literature it addresses.

2.1 Container Selection

A container data type is simply a structure which holds a collection of related values.
This could include a list (growable or otherwise), a set (with no duplicate elements), or
something more complex (like a min heap).

In many languages, the standard library provides implementations of various container
types, with users able to choose which is best for their program. This saves users a lot
of time, however selecting the best type is not always straightforward.

Consider a program which needs to store and query a set of numbers, and doesn’t care
about ordering or duplicates. If the number of items (n) is small enough, it might be
fastest to use a dynamically-sized array (known as a vector in many languages), and
scan through each time we want to check if a number is inside. On the other hand, if
the set we deal with is much larger, we might instead use a hash set, which provides
roughly the same lookup speed regardless of size at the cost of being slower overall.

In this case, there are two factors driving our decision. Our functional requirements –
that we don’t care about ordering or duplicates – and our non-functional requirements –
that we want our program to use resources efficiently.

2.1.1 Functional requirements

Functional requirements tell us how the container must behave in order for the program
it’s used in to function correctly. Continuing with our previous example, we’ll compare
Rust’s Vec implementation (a dynamic array), with its HashSet implementation (a hash
table).

3



Chapter 2. Background 4

To start with, we can see that the two types have different methods. Vec has a .get()
method, while HashSet does not. If we were building a program that needed an ordered
collection, replacing Vec with HashSet would likely cause the compiler to raise an
error.

We will call the operations that a container implementation provides the syntactic
properties of the implementation. In object-oriented programming, we might say they
must implement an interface, while in Rust, we would say that they implement a trait.1

However, syntactic properties alone are not always enough to select an appropriate con-
tainer implementation. Suppose our program only requires a type with the .contains(
value) and .len() methods. Both Vec and HashSet satisfy these requirements, but
our program might also rely on the count returned from .len() including duplicates.
In this case, HashSet would give us different behaviour, causing our program to behave
incorrectly.

Therefore, we also say that a container implementation has semantic properties. In-
tuitively we can think of this as the conditions upheld by the container. A HashSet,
would have the property that there are never any duplicates. A Vec would not have this
property, but would have the property that insertion order is preserved.

To select a correct container implementation, we then need to ensure we meet some
syntactic and semantic requirements specific to our program. So long as we specify our
requirements correctly, and use an implementation which provides all of the properties
we’re looking for, our program shouldn’t be able to tell the difference.

2.1.2 Non-functional requirements

While meeting our program’s functional requirements should ensure that it runs correctly,
this doesn’t say anything about our program’s efficiency. We also want to choose the
most efficient implementation available, striking a balance between runtime and memory
usage.

Prior work has demonstrated that changing container implementation can give substan-
tial performance improvements. Perflint (L. Liu and S. Rus, 2009) found and suggested
fixes for “hundreds of suboptimal patterns in a set of large C++ benchmarks,” with one
such case improving performance by 17%. Similarly, Brainy (Jung et al., 2011) found a
27-33% speedup of real-world applications and libraries using a similar approach.

If we can find a set of implementations that satisfy our functional requirements, then one
obvious solution is to benchmark the program with each of these implementations in
place. This will obviously work, so long as our benchmarks are roughly representative
of the real world.

Unfortunately, this technique scales poorly for larger applications. As the number of
types we must select increases, the number of combinations we have to try increases
exponentially.

1Rust’s traits are most similar to typeclasses from Haskell and other FP languages. Interfaces and
typeclasses have important differences, but they are irrelevant in this case.
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2.2 Prior art

In this section we outline existing methods for container selection, in both current
programming languages and literature.

2.2.1 Approaches in common programming languages

Modern programming languages broadly take one of two approaches to container
selection.

Some languages, usually higher-level ones, recommend built-in structures as the default,
using implementations that perform well enough for the vast majority of use-cases. A
popular example is Python, which uses dynamic arrays as its built-in list implementation.

This approach prioritises developer ergonomics: programmers do not need to think
about how these are implemented. Often other implementations are possible, but are
used only when needed and come at the cost of code readability.

In other languages, collections are given as part of a standard library or must be written
by the user. Java comes with growable lists as part of its standard library, as does Rust.
In both cases, the standard library implementation is not special – users can implement
their own and use them in the same ways.

Interfaces, or their closest equivalent, are often used to abstract over similar collections.
In Java, ordered collections implement the interface List<E>, with similar interfaces
for Set<E>, Queue<E>, etc. This allows most code to be implementation-agnostic, with
functional requirements specified by the interface used.

While this provides some flexibility, it still requires the developer to choose a concrete
implementation at some point. In most cases, developers will simply choose the most
common implementation and assume it will be fast enough.

Otherwise, developers are forced to guess based on their knowledge of specific im-
plementations and their program’s behaviour. For more complex programs or data
structures, it can be difficult or impossible to reason about an implementation’s perfor-
mance.

2.2.2 Rules-based approaches

One way to address this is to allow the developer to make the choice initially, but
attempt to detect cases where the wrong choice was made. Chameleon (Shacham et al.,
2009) is one system which uses this approach.

First, it collects statistics from program benchmarks using a “semantic profiler”. This
includes the space used by collections over time and the counts of each operation
performed. These statistics are tracked per individual collection allocated and then
aggregated by ’allocation context’ — the call stack at the point where the allocation
occured.

These aggregated statistics are passed to a rules engine, which uses a set of rules to
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identify cases where a different container implementations might perform better. This
results in a flexible engine for providing suggestions which can be extended with new
rules and types as necessary. A similar approach is used by L. Liu and S. Rus (2009)
for the C++ standard library.

By using the developer’s selection as a baseline, both of these tools function similarly
to a linter, which the developer can use to catch mistakes and suggest improvements.
This makes it easy to integrate into existing projects and workflows.

However, the use of suggestion rules means that adding a new container implementations
requires writing new suggestion rules. This requires the developer to understand all of
the existing implementations’ performance characteristics, and how they relate to the
new implementation. In effect, the difficulty of selecting an implementation is offloaded
to whoever writes the suggestion rules.

To ensure that functional requirements are satisfied, both systems will only suggest
implementations that behave identically to the existing one. This results in selection
rules being more restricted than necessary. For instance, a rule could not suggest a
HashSet instead of a Vec, as the two are not semantically identical.

CoCo (Xu, 2013) and Österlund and Löwe (2013) use similar techniques, but work as
the program runs. This was shown to work well for programs with different phases
of execution, such as loading and then working on data. However, the overhead from
profiling and from checking rules may not be worth the improvements in other programs,
where access patterns are roughly the same throughout.

2.2.3 ML-based approaches

Brainy (Jung et al., 2011) gathers similar statistics, but uses machine learning for
selection instead of programmed rules.

ML has the advantage of being able to detect patterns a human may not be aware of.
For example, Brainy takes into account statistics from hardware counters, which are
difficult for a human to reason about. This also makes it easier to add new collection
implementations, as rules do not need to be written by hand.

Whilst this offers increased flexibility, it comes at the cost of requiring a more lengthy
model training process when implementations are changed.

2.2.4 Estimate-based approaches

CollectionSwitch (Costa and Andrzejak, 2018) also avoids forcing developers to write
rules, by estimating the performance characteristics of each implementation individually.

First, a performance model is built for each container implementation. This gives an
estimate of some cost dimensions for each operation at a given collection size. The
originally proposed cost dimensions were memory usage and execution time.

The system then collects data on how the program uses containers as it runs, and
combines this with the built cost models to estimate the performance impact for each
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collection type. It may then decide to switch between container types if the potential
change in cost seems high enough. For instance, we may choose to switch if we reduce
the estimated space cost by more than 20%, so long as the estimated time cost doesn’t
increase by more than 20%.

By generating a cost model based on benchmarks, CollectionSwitch manages to be more
flexible than rule-based approaches. Like ML approaches, adding new implementations
requires little extra work, but has the advantage of being possible without having to
re-train a model.

2.2.5 Functional requirements

Most of the approaches we have highlighted focus on non-functional requirements, and
use programming language features to enforce functional requirements. We will now
examine tools which focus on container selection based on functional requirements.

Primrose (Qin et al., 2023) is one such tool, which uses a model-based approach. It
allows the application developer to specify semantic requirements using a Domain-
Specific Language (DSL), and syntactic requirements using Rust’s traits.

Semantic requirements are expressed as a list of predicates, each representing a semantic
property. Predicates act on an abstract model of the container type. Each implementation
specifies how it works on this abstract model, and a constraint solver checks if the two
will always agree.

This allows developers to express any combination of semantic requirements, rather
than limiting them to common ones (as in Java’s approach). It can also be extended
with new implementations as needed, though this does require modelling the semantics
of the new implementation.

Franke et al. (2022) uses an idea more similar to Java’s standard library, where properties
are defined by the library authors and container implementations opt in to providing
them.

To select the final container implementation, both tools rely on benchmarking each
candidate. As we note above, this scales poorly.

2.3 Contribution

Of the tools presented, none are designed to deal with both functional and non-functional
requirements well. Our contribution is a system for container selection that addresses
both of these aspects.

Users are able to specify their functional requirements in a way that is expressive enough
for most usecases, and easy to integrate with existing projects. We then find which
implementations in our library satisfy these requirements, and estimate which will have
the best performance.

We also aim to make it easy to add new container implementations, and for our system
to scale up to large projects without selection time becoming an issue.
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Whilst the bulk of our system is focused on offline selection (done before the program
is compiled), we also attempt to detect when changing implementation at runtime is
desirable, a technique which has largely only been applied to higher-level languages.



Chapter 3

Design

We now outline the design of our container selection system (Candelabra), and justify
our design decisions. We first restate our aims and priorities for the system, illustrating
its usage with an example. We then provide an overview of the container selection
process, and each part in it, although we leave detailed discussion of implementation
for chapter 4.

3.1 Aims & Usage

As mentioned previously, we aim to create an all-in-one solution for container selection
that takes into account both functional and non-functional requirements. Flexibility is a
high priority: It should be easy to add new container implementations, and to integrate
our system into existing applications. Our system should also be able to scale to larger
programs, and remain convenient for developers to use.

We chose to implement our system as a CLI, and to work on programs written in Rust.
We chose Rust both for the expressivity of its type system, and its focus on speed
and low-level control. However, most of the techniques we use are not tied to Rust in
particular, and so should be possible to generalise to other languages.

We require the user to provide their own benchmarks, which should be representative of
a typical application run - without this, we have no consistent way to evaluate speed.

Users specify their functional requirements by listing the required traits and properties
they need for a given container type. Traits are Rust’s primary method of abstraction,
and are similar to interfaces in object-oriented languages, or typeclasses in functional
languages. Properties are specified in a Lisp-like DSL as a predicate on a model of the
container.

For example, Listing 3.1 shows code from our test case based on the sieve of Eratos-
thenes (src/tests/prime_sieve in the source artifacts).

Here we request two container types: Sieve and Primes. The first must implement
the Container and Stack traits, and must satisfy the lifo property. This property is

9



Chapter 3. Design 10

1 /*SPEC*
2 property lifo <T> {
3 \c <: (Stack) -> (forall \x -> ((equal? (pop ((op-

push c) x))) x))
4 }
5

6 property ascending <T> {
7 \c -> ((for-all-consecutive -pairs c) leq?)
8 }
9

10

11 type Sieve <S> = {c impl (Container , Stack) | (lifo c)}
12 type Primes <S> = {c impl (Container) | (ascending c)}
13 *ENDSPEC*/

Listing 3.1: Container type definitions for prime sieve

defined at the top, and requires that for any x, pushing x then popping from the container
returns x.

The second container type, Primes, must implement the Container trait, and must
satisfy the ascending property. This property requires that for all consecutive x, y
pairs in the container, x <= y.

Once we have specified our functional requirements and provided a benchmark, we
can simply run Candelabra to select a container: candelabra-cli -p prime_sieve
select. This command outputs the information in table 3.1 and saves the best

combination of container types to be used the next time the program is run. Here,
the code generated uses Vec as the implementation for Sieve, and HashSet as the
implementation for Primes.

Best performing Container Type Implementation Estimated cost
* Sieve LinkedList 14179471355

Sieve Vec 26151238698
Primes HashSet 117005368
Primes SortedVec 112421356

* Primes BTreeSet 108931859

Table 3.1: Example output from selection command
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3.2 Overview of process

Our tool integrates with Rust’s packaging system (Cargo) to discover the information it
needs about our project. It then runs a modified version of Primrose (Qin et al., 2023)
to find a list of implementations satsifying our functional requirements from a pre-built
library of container implementations.

Once we have this list, we build a cost model for each candidate type. This allows us to
get an upper bound for the runtime cost of an operation at any given n. We choose to
focus only on CPU time, and disregard memory usage due to the difficulty of accurately
measuring memory footprint.1

We then run the user-provided benchmarks, using a wrapper around any of the valid
candidates to track how many times each operation is performed, and the maximum
size the container reaches.

We combine this information with our cost models to estimate a total cost for each
candidate, which is an upper bound on the total time taken for all container operations.
At this point, we also check if an adaptive container would be better, by checking if one
implementation is better performing at a lower n, and another at a higher n.

Finally, we pick the implementation with the minimum cost, and generate code which
allows the program to use that implementation.

Our solution requires little user intervention, integrates well with existing workflows,
and the time it takes scales linearly with the number of container types in a given project.

We now go into more detail on how each step works, although we leave some specifics
until Chapter 4.

3.3 Functional requirements

As described in chapter 2, any implementation we pick must satisfy the program’s
functional requirements. To do this, we integrate Primrose (Qin et al., 2023) as a first
step.

Primrose allows users to specify both the traits they require (syntactic properties), and
the semantic properties that must be satisfied.

Each container type that we want to select an implementation for is bound by a list of
traits and a list of properties (lines 11 and 12 in Listing 3.1).

In brief, Primrose works by:

• Finding all implementations in the container library that implement all required
traits

• Translating any specified properties to a Rosette expression

1As Rust is not interpreted, we would need to hook into calls to the OS’ memory allocator. This is
very platform-specific, although the currently work in progress allocator API (Rust allocator working
group, 2016) may make this easier in future.
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• For each implementation, modelling the behaviour of each operation in Rosette,
and checking that the required properties always hold

We use the code provided in the Primrose paper, with minor modifications elaborated
on in Chapter 4.

After this stage, we have a list of implementations for each container type we are
selecting. The command candelabra-cli candidates will show this output, as in
Table 3.2.

Type Candidate implementation
Primes EagerSortedVec
Primes HashSet
Primes BTreeSet
Sieve LinkedList
Sieve Vec

Table 3.2: Usable implementations by container type for prime_sieve

Although we use Primrose in our implementation, the rest of our system isn’t dependent
on it, and it would be relatively simple to use a different approach for selecting based
on functional requirements.

3.4 Cost Models

Now that we have a list of correct implementations for each container type, we need a
way to understand the performance characteristics of each of them. We use an approach
similar to CollectionSwitch (Costa and Andrzejak, 2018), which assumes that the main
factor in how long an operation takes is the current size of the collection.

Implementations have a seperate cost model for each operation, which we obtain by
executing that operation repeatedly at various collection sizes.

For example, to build a cost model for Vec::contains, we would create several Vecs
of varying sizes, and find the average execution time t of contains at each.

We then perform linear regression, using the collection size n to predict t. In the case of
Vec::contains, we would expect the resulting polynomial to be roughly linear.

In our implementation, we fit a function of the form x0 + x1n+ x2n2 + x3 log2 n, using
regular least-squares fitting. Before fitting, we discard all observations that are more
than one standard deviation out from the mean for a given n value.

Whilst we could use a more complex technique, in practice this is good enough: Most
common operations are polynomial at worst, and more complex models are at higher
risk of overfitting.

This method works well for many operations and structures, although has notable
limitations. In particular, implementations which defer work from one function to
another will be extremely inconsistent.
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For example, LazySortedVec (provided by Primrose) inserts new elements at the end
by default, and waits to sort the list until the contents of the list are read from (such as
by using contains). Our cost models have no way to express that the runtime of one
operation varies based on the history of previous operations.

We were unable to work around this, and so we have removed these variants from our
container library. One potential solution could be to perform untimed ’warmup’ opera-
tions before each operation, but this is complex because it requires some understanding
of what operations will cause work to be deferred.

At the end of this stage, we are able to reason about the relative cost of operations
between implementations. These models are cached for as long as our container library
remains the same, as they are independent of what program the user is currently working
on.

3.5 Profiling applications

We now need to collect information about how the user’s application uses its container
types.

As mentioned above, the ordering of operations can have a large effect on container
performance. Unfortunately, tracking every container operation in order quickly be-
comes unfeasible. Instead, we settle for tracking the count of each operation, and the
maximum size the collection reaches.

Every instance or allocation of the collection produces a separate result. We then
aggregate all results for a single container type into a list of partitions.

Each partition simply stores an average value for each component of our results (maxi-
mum size and a count for each operation), along with a weight indicating how many
results fell into that partition.

Results are processed as in algorithm 1.

Algorithm 1 Results processing algorithm
1: Start with an empty list of partitions
2: for result in results do
3: if there is a partition with an average max n value within 100 of result’s maxi-

mum n then
4: Adjust the partition’s average maximum n according to the new result
5: Adjust the partitions’ average count of each operation according to the

counts in the new result
6: Add 1 to the weight of the partition.
7: elseAdd a new partition with the values from the result, and with weight 1.
8: end if
9: end for

10: Once all results have been processed, normalize the partition weights by dividing
each by the sum of all weights.
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The use of partitions serves 3 purposes. The first is to compress the data, which speeds
up processing and stops us running out of memory in more complex programs. The
second is to capture the fact that the number of operations will likely depend on the
size of the container. The third is to aid in searching for adaptive containers, a process
which relies on understanding the different sizes of containers in the application.

3.6 Selection process

At this stage, we have an estimate of how long each operation may take (from our
cost models), and how often we use each operation (from our profiling information).
We now combine these to estimate the total cost of each implementation. For each
implementation, our estimate for its total cost is:

∑
o∈ops,(ro,N,W )∈partitions

Co(N)roW

• Co(N) is the cost estimated by the cost model for operation o at n value N

• ro is the average count of a given operation in a partition

• N is the average maximum N value in a partition

• W is the weight of a partition, proportional to how many results fell in to this
partition

Essentially, we scale an estimated worst-case cost of each operation by how frequently
we think we will encounter it. This results in a pessimistic estimate of how much time
we will spend in total on container operations for a given implementation.

Now we simply pick the implementation with the smallest estimated cost that satisfies
our functional requirements for that container type.

This process is repeated for each container type in the project, and provides not only
suggestions but rankings for each type. We are able to do this while only running
our user’s benchmarks once, which is ideal for larger applications or for long-running
benchmarks.

3.7 Adaptive containers

The above process forms the core of our system, and is sufficient for normal container
selection. However, a common situation in many programs is that the maximum size
of a container type depends on the size of some input. In these cases, the user may
write benchmarks for a range of sizes, and look for a container type that achieves good
enough performance throughout the whole range.

An alternative approach is to start off with whichever container type is best at small
sizes, and switch to one more suited for large amounts of data once we grow past a
certain threshold. In theory, this allows the best of both worlds: A lower overhead
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container when the program is being run on a small input, and a more complex one for
longer runs.

For example, if a program requires a set, then for small sizes it may be best to keep a
sorted list and use binary search for contains operations. This is what we do in our
SortedVecSet container implementation. But when the size of the container grows,
the cost of doing contains may grow high enough that using a HashSet would actually
be faster.

Adaptive containers attempt to address this need, by starting off with one implementation
(referred to as the low or before implementation), and switching to a new implemenation
(the high or after implementation) once the size of the container passes a certain
threshold.

This is similar to systems such as CoCo (Xu, 2013) and Österlund and Löwe (2013).
However, we decide when to switch container implementation before the program is
run, rather than as it is running. We also do so in a way that requires no knowledge of
the implementation internals.

After regular container selection is done, we attempt to suggest an adaptive implemen-
tation for each container type. We first sort our list of partitions by ascending container
size. If we can split our partitions in half such that everything to the left performs best
with one implementation, and everything to the right with another, then we should be
able to switch implementation around that n value.

In practice, finding the correct threshold is more difficult: We must take into account
the cost of transforming from one implementation to another. If we adapt our container
too early, we may do more work adapting it than we save if we just stuck with our
low implementation. If we adapt too late, we have more data to move and less of our
program gets to take advantage of the new implementation. We choose the relatively
simple strategy of switching halfway between two partitions.

Our cost models allow us to estimate how expensive switching implementations will be.
We compare this estimate to how much better the high implementation is than the low
one, to account for the overhead of changing implementations.

A full explanation of our algorithm is given in section 4.4.



Chapter 4

Implementation

We now elaborate on our implementation, explaining some of the finer details of our
design. With reference to the source code, we explain the structure of our system’s
implementation, and highlight areas with difficulties.

4.1 Modifications to Primrose

In order to facilitate integration with Primrose, we refactored large parts of the code to
support being called as an API, rather than only through the command line. This also
required updating the older code to a newer edition of Rust, and improving the error
handling throughout.

As suggested in the original paper, we added the ability to deal with associative container
types: key to value mappings. We added the Mapping trait to the implementation library,
and updated the type checking and analysis code to support multiple type variables.

Operations on mapping implementations can be modelled and checked against con-
straints in the same way that regular containers can be. They are modelled in Rosette as a
list of key-value pairs. src/crates/library/src/hashmap.rs shows how mapping
container types can be declared, and operations on them modelled.

Table 4.1 shows the library of container types we used. Most come from the Rust
standard library, with the exceptions of the SortedVec family of containers, which use
Vec internally. The library source can be found in src/crates/library.

We also added new syntax to Primrose’s domain-specific language to support defining
properties that only make sense for mappings (dictProperty), however this was
unused.

While performing integration testing, we found and fixed several other issues with the
existing code:

1. Only push and pop operations could be modelled in properties. Other operations
would raise an error during type-checking.

2. The Rosette code generated for properties using other operations was incorrect.

16
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Implementation Description
LinkedList Doubly-linked list

Vec Contiguous growable array
VecSet Vec with no duplicates
VecMap A Vec of (K, V) tuples, used as a Mapping

SortedVec Vec kept in sorted order
SortedVecSet Vec kept in sorted order, with no duplicates

VecMap A Vec of (K, V) tuples sorted by key, used as a Mapping
HashMap Hash map with quadratic probing
HashSet Hash map with empty values
BTreeMap B-Tree (Bayer and McCreight, 1970) map with linear search.
BTreeSet B-Tree map with empty values

Table 4.1: Implementations in our library

3. Some trait methods used mutable borrows unnecessarily, making it difficult or
impossible to write safe Rust using them.

4. The generated code would perform an unnecessary heap allocation for every
created container, which could affect performance.

We also added requirements to the Container and Mapping traits related to Rust’s
Iterator API. Among other things, this allows us to use for loops, and to more easily
move data from one implementation to another.

4.2 Building cost models

In order to benchmark container types, we use a seperate crate containing benchmark-
ing code for each trait in the Primrose library (src/crates/benchmarker). When
benchmarks need to be run for an implementation, we dynamically generate a new
crate, which runs all benchmark methods appropriate for the given implementation
(src/crate/candelabra/src/cost/benchmark.rs).

As Rust’s generics are monomorphised, our generic code is compiled as if we were
using the concrete type in our code, so we don’t need to worry about affecting the
benchmark results.

Each benchmark is run in a ’warmup’ loop for a fixed amount of time (currently 500ms),
then runs for a fixed number of iterations (currently 50). This is important because we
are using least squares fitting - if there are less data points at higher n values then our
resulting model may not fit those points as well. We repeat each benchmark at a range
of n values: 10,50,100,250,500,1000,6000,12000,24000,36000,48000,60000.

Each benchmark we run corresponds to one container operation. For most operations,
we insert n random values to a new container, then run the operation once per iteration.
For certain operations which are commonly amortized (insert, push, and pop), we
instead run the operation itself n times and divide all data points by n.
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As discussed previously, we discard all points that are outwith one standard deviation
of the mean for each n value. We use the least squares method to fit a polynomial of
form x0 + x1n+ x2n2 + x3 log2 n.

As most operations on common data structures are polynomial or logarithmic complex-
ity, we believe that this function is good enough to capture the cost of most operations.
We originally experimented with coefficients up to x3, but found that this led to overfit-
ting.

4.3 Profiling

We implement profiling using the ProfilerWrapper type (src/crates/library/src
/profiler.rs), which takes as type parameters the inner container implementation
and an index, used later to identify what container type the output corresponds to. We
then implement any Primrose traits that the inner container implements, counting the
number of times each operation is called. We also check the length of the container
after each insert operation, and track the maximum.

Tracking is done per-instance, and recorded when the container goes out of scope and
its Drop implementation is called. We write the counts of each operation and maximum
size of the collection to a location specified by an environment variable.

When we want to profile a program, we pick any valid inner implementation for
each selection site, and use that candidate with our profiling wrapper as the concrete
implementation for that site. We then run all of the program’s benchmarks once, which
gives us an equal sample of data from each of them.

This approach has the advantage of giving us information on each individual collection
allocated, rather than only statistics for the type as a whole. For example, if one instance
of a container type is used in a very different way from the rest, we will be able to see it
more clearly than a normal profiling tool would allow us to.

Although there is noticeable overhead in our current implementation, this is not impor-
tant as we aren’t measuring the program’s execution time when profiling. We could
likely reduce profiling overhead by batching file outputs, however this wasn’t necessary
for us.

4.4 Container Selection

Selection is done per container type. For each candidate implementation, we calculate
its cost on each partition in the profiler output, then sum these values to get the total esti-
mated cost for each implementation. This is implemented in src/crates/candelabra
/src/profiler/info.rs and src/crates/candelabra/src/select.rs.

In order to try and suggest an adaptive container, we use algorithm 2.
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Algorithm 2 Adaptive container suggestion algorithm
Sort partitions in order of ascending maximum n values.
costs← the cost for each candidate in each partition.
best← the best candidate per partition
i← the lowest index where best[i] ̸= best[0]
if exists j < i where best[ j] ̸= best[0], or exists j ≥ i where best[ j] ̸= best[i] then

return no suggestion
end if
before← name of the candidate in best[0]
after← name of the candidate in best[i]
threshold← halfway between the max n values of partition i and i−1
switching cost←Cbefore,clear(threshold)+ threshold ∗Cafter,insert(threshold)
not switching cost← the sum of the difference in cost between before and after for
all partitions with index > i.
if switching cost > not switching cost then

return no suggestion
else

return suggestion for an adaptive container which switches from before
to after when n gets above threshold. Its estimated cost is switching cost +
∑

i
k=0 costs[before][k]+∑

|partitions|
k=i costs[after][k]

end if

4.5 Code Generation

As mentioned in chapter 3, we made modifications to Primrose’s code generation in
order to improve the resulting code’s performance. The original Primrose code would
generate code as in Listing 4.1. In order to ensure that users specify all of the traits
they need, this code only exposes methods on the implementation that are part of the
trait bounds given. However, it does this by using a dyn object, Rust’s mechanism for
dynamic dispatch.

Although this approach works, it adds an extra layer of indirection to every call: The
caller must use the dyn object’s vtable to find the method it needs to call. This also
prevents the compiler from optimising across this boundary.

In order to avoid this, we make use of Rust’s support for existential types: Types that
aren’t directly named, but are inferred by the compiler. Existential types only guarantee
their users the given trait bounds, therefore they accomplish the same goal of forcing
users to specify all of their trait bounds upfront.

Figure 4.2 shows our equivalent generated code. The type alias Stack<S> only allows
users to use the Container<S>, Stack<S>, and Default traits. Our unused ’dummy’
function _StackCon has the return type Stack<S>. Rust’s type inference step sees that
its actual return type is Vec<S>, and therefore sets the concrete type of Stack<S> to
Vec<S> at compile time.

Unfortunately, this feature is not yet in stable Rust, meaning we have to opt in to it using
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1 pub trait StackTrait <T> : Container <T> + Stack <T> {}
2 impl <T: ’static + Ord + std::hash::Hash > StackTrait <T>

for <Stack <T> as ContainerConstructor >::Impl {}
3

4

5 pub struct Stack <T> {
6 elem_t: core::marker::PhantomData <T>,
7 }
8

9 impl <T: ’static + Ord + std::hash::Hash >
ContainerConstructor for Stack <T> {

10 type Impl = Vec<T>;
11 type Bound = dyn StackTrait <T>;
12 fn new() -> Box<Self::Bound > {
13 Box::new(Self::Impl::new())
14 }
15 }

Listing 4.1: Code generated by original Primrose project

1 pub type StackCon <S: PartialEq + Ord + std::hash::Hash > =
impl Container <S> + Stack <S> + Default;

2

3 #[allow(non_snake_case)]
4 fn _StackCon <S: PartialEq + Ord + std::hash::Hash >() ->

StackCon <S> {
5 std::vec::Vec::<S>::default()
6 }

Listing 4.2: Code generated with new method

an unstable compiler flag (feature(type_alias_impl_trait)). At time of writing,
the main obstacle to stabilisation appears to be design decisions that only apply to more
complicated use-cases, therefore we are confident that this code will remain valid and
won’t encounter any compiler bugs.
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Results & analysis

In this chapter, we present the methodology used for benchmarking our system, our
results, and analysis. We examine the produced cost models of certain operations in
detail, with reference to the expected asymptotics of each operation. We then compare
the selections made by our system to the actual optimal selections (obtained by brute
force) for a variety of test cases. This includes examining when adaptive containers are
suggested, and their effectiveness.

5.1 Testing setup

In order to ensure consistent results and reduce the effect of other running processes, all
benchmarks were run on a KVM virtual machine on server hardware. We used 4 cores
of an Intel Xeon E5-2687Wv4 CPU, and 4GiB of RAM.

The VM was managed and provisioned using NixOS, meaning it can be easily re-
produced with the exact software we used. Instructions on how to do so are in the
supplementary materials. The most important software versions are listed below.

• Linux 6.1.64

• Rust nightly 2024-01-25

• LLVM 17.0.6

• Racket 8.10

5.2 Cost models

We start by examining some of our generated cost models, comparing them both to
the observations they are based on, and what we expect from asymptotic analysis. As
we build a total of 77 cost models from our library, we will not examine them all in
detail. We look at models of the most common operations, grouped by containers that
are commonly selected together.

21
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5.2.1 Insert operations

Starting with the insert operation, Figure 5.1 shows how the estimated cost changes
with the size of the container. The lines correspond to our fitted curves, while the points
indicate the raw observations we drew from.

Figure 5.1: Estimated cost of insert operation by implementation

Starting with Vec, we see that insertion is very cheap, and gets slightly cheaper as the
size of the container increases. This roughly agrees with the expected O(1) time of
amortised inserts on a Vec. However, we also note a sharply increasing curve when n is
small, and a slight ’bump’ around n = 35,000. The former appears to be in line with the
observations, and is likely due to the static growth rate of Rust’s Vec implementation.
The latter appears to diverge from the observations, and may indicate poor fitting.
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LinkedList has a significantly slower insertion. This is likely because it requires a
heap allocation system call for every item inserted, no matter the current size. This
would also explain why data points appear spread out more, as system calls have more
unpredictable latency, even on systems with few other processes running. Notably,
insertion appears to start to get cheaper past n = 24,000, although this is only weakly
suggested by observations.

It’s unsurprising that these two implementations are the cheapest, as they have no
ordering or uniqueness guarantees, unlike our other implementations.

The SortedVec family of containers (SortedVec, SortedVecSet, and SortedVecMap
) all exhibit roughly logarithmic growth, with SortedVecMap exhibiting a slightly
higher growth rate. This is expected, as internally all of these containers perform a
binary search to determine where the new element should go, which is O(lgn) time.

SortedVecMap exhibits roughly the same shape as its siblings, but with a slightly higher
growth rate. This pattern is shared across all of the *Map types we examine, and could
be explained by the increased size of each element reducing the effectiveness of the
cache.

VecMap and VecSet both have a significantly higher, roughly linear, growth rate. Both
of these implementations work by scanning through the existing array before each
insertion to check for existing keys, therefore a linear growth rate is expected.

HashSet and HashMap insertions are much less expensive, and mostly linear with only
a slight growth at very large n values. This is what we expect for hash-based collections,
with the slight growth likely due to more hash collisions as the size of the collection
increases.

BTreeSet has similar behaviour, but settles at a larger value overall. BTreeMap appears
to grow more rapidly, and cost more overall.

It’s important to note that Rust’s BTreeSet is not based on binary tree search, but
instead a more general tree search originally proposed by Bayer and McCreight (1970),
where each node contains B−1 to 2B−1 elements in an unsorted array. The standard
library documentation (Rust Documentation Team, 2024) states that search is expected
to take O(B lgn) comparisons. Since both of these implementations require searching
the collection before inserting, the close-to-logarithmic growth seems to makes sense.

5.2.1.1 Small n values

Whilst our main figures for insertion operations indicate a clear winner within each
category, looking at small n values reveals more complexity. Figure 5.2 shows the cost
models for insert operations on different set implementations at smaller n values.

Note that for n < 1800 the overhead from sorting a vec is less than running the default
hasher function (at least on this hardware).

We also see a sharp spike in the cost for SortedVecSet at low n values, and an area of
supposed 0 cost from around n = 200 to n = 800. This seems inaccurate, and indicates
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that our current fitting procedure may not be able to deal with low n values properly.
More work is required to improve this.

Figure 5.2: Estimated cost of insert operation on set implementations, at small n values

5.2.2 Contains operations

We now examine the cost of the contains operation. Figure 5.3 shows our built cost
models, again grouped for readability.

The observations in these graphs have a much wider spread than our insert operations
do. This is probably because we attempt to get a different random element in our
container every time, so our observations show the best and worst case of our data
structures. This is desirable assuming that contains operations are actually randomly
distributed in the real world, which seems likely.

For the SortedVec family, we would expect to see roughly logarithmic growth, as we
are performing a binary search. This is the case for SortedVecMap, however SortedVec
and SortedVecSet both show exponential growth with a ’dip’ around n = 25,000. It’s
unclear why this is, one reason could be that the elements we query are randomly
distributed throughout the list, and this distribution may not be fair for all benchmarks.
A possible improvement would be to run contains with a known distribution of values,
including low, high, and not present values in equal parts.

The Vec family exhibits roughly linear growth, which is expected, since this implemen-
tation scans through the whole array each time.

LinkedList has roughly logarithmic growth, at a significantly higher cost. The higher
cost is expected, although its unclear why growth is logarithmic rather than linear. As
the spread of points also appears to increase at larger n values, its possible that this
is due to larger n values causing a higher proportion of the program’s memory to be
dedicated to the container, resulting in better cache utilisation.

HashSet appears roughly linear as expected, with only a slow logarithmic rise, probably
due to an increasing amount of collisions. BTreeSet is consistently above it, with a
slightly faster logarithmic rise.
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Figure 5.3: Estimated cost of contains operation by implementation

BTreeMap and HashMap both mimic their set counterparts, but with a slightly lower
cost and growth rate. It’s unclear why this is, however it could be related to the larger
spread in observations for both implementations.

5.2.3 Evaluation

Overall, our cost models appear to be a good representation of each implementations
performance impact. Future improvements should focus on improving accuracy at
lower n values, such as by employing a more complex fitting procedure, or on ensuring
operations have their best and worst cases tested fairly.



Chapter 5. Results & analysis 26

5.3 Selections

We now proceed with end-to-end testing of the system, selecting containers for a sample
of test programs with varying needs.

5.3.1 Benchmarks

Our test programs broadly fall into two categories: examples programs, which repeat
a few operations many times, and real-life programs, which are implementations of
common algorithms and solutions to programming puzles. We expect the results from
our example programs to be relatively obvious, while our real programs are more
complex and harder to predict.

Most of our real programs are solutions to puzzles from Advent of Code (Wastl, 2015),
a popular collection of programming puzzles. Table 5.1 lists and briefly describes our
test programs.

Name Description
example sets Repeated insert and contains operations on a set.

example stack Repeated push and pop operations on a stack.
example mapping Repeated insert and get operations on a mapping.

prime sieve Sieve of eratosthenes algorithm.
aoc 2021 09 Flood-fill like algorithm (Advent of Code 2021, Day 9)
aoc 2022 08 Simple 2D raycasting (AoC 2022, Day 8)
aoc 2022 09 Simple 2D soft-body simulation (AoC 2022, Day 9)
aoc 2022 14 Simple 2D particle simulation (AoC 2022, Day 14)

Table 5.1: Our test programs

Table 5.2 shows the difference in benchmark results between the slowest possible
assignment of containers, and the fastest. Even in our example programs, we see that
the wrong choice of container can slow down our programs substantially. In all but two
programs, the wrong implementation can more than double the runtime.

Project Maximum slowdown (ms) Maximum relative slowdown
aoc 2021 09 55206.94 12.0
aoc 2022 08 12161.38 392.5
aoc 2022 09 18.96 0.3
aoc 2022 14 83.82 0.3

example mapping 85.88 108.4
example sets 1.33 1.6

example stack 0.36 19.2
prime sieve 26093.26 34.1

Table 5.2: Spread in total benchmark results by program
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5.3.2 Prediction accuracy

We now compare the implementations suggested by our system to the selection that is
actually best, which we obtain by brute-forcing all possible implementations. We leave
analysis of adaptive container suggestions to section 5.3.3

Table 5.3 shows the predicted best assignments alongside the actual best assignment,
obtained by brute-force. In all but two of our test cases (marked with *), we correctly
identify the best container.

Incorrect Project Container Type Best implementation Predicted best
aoc 2021 09 Map HashMap HashMap
aoc 2021 09 Set HashSet HashSet
aoc 2022 08 Map HashMap HashMap
aoc 2022 09 Set HashSet HashSet
aoc 2022 14 Set HashSet HashSet

* aoc 2022 14 List Vec LinkedList
example mapping Map HashMap HashMap

example sets Set HashSet HashSet
example stack StackCon Vec Vec

prime sieve Primes BTreeSet BTreeSet
* prime sieve Sieve Vec LinkedList

Table 5.3: Actual best vs predicted best implementations

Both of these failures appear to be caused by our system being overly eager to suggest
a LinkedList. From looking at detailed profiling information, it seems that both of
these container types had a relatively small amount of items in them. Therefore this is
likely caused by our cost models being inaccurate at small n values, as mentioned in
section 5.2.1.1.

Overall, our results suggest that our system is effective, at least for large enough n
values. Unfortunately, these tests are somewhat limited, as the best container seems easy
to predict for most cases: Vec where uniqueness is not important, and Hash* otherwise.
Therefore, more thorough testing is needed to fully establish the system’s effectiveness.

5.3.3 Adaptive containers

We now look at cases where an adaptive container was suggested, and evaluate the
result.

Table 5.4 shows the container types for which adaptive containers were suggested, along
with the inner types and the threshold at which to switch.

The suggested containers for both aoc_2022_08 and example_mapping are unsur-
prising. Since hashing incurs a roughly constant cost, it makes sense that below a
certain n value, simply searching through a list is more effective. The suggestion
of SortedVecMap vs VecMap likely has to do with the relative frequency of insert
operations compared to others.
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Project Container Type Suggestion
aoc 2022 08 Map SortedVecMap until n=1664, then HashMap
aoc 2022 09 Set HashSet until n=185540, then BTreeSet

example mapping Map VecMap until n=225, then HashMap
prime sieve Primes BTreeSet until n=34, then HashSet
prime sieve Sieve LinkedList until n=747, then Vec

Table 5.4: Suggestions for adaptive containers

The suggestion to start with a LinkedList for prime_sieve / Sieve is likely due to
the same issues that cause a LinkedList to be suggested in the non-adaptive case. This
may also be the case for the suggestion of BTreeSet for prime_sieve / Primes.

The suggestion of BTreeSet for aoc_2022_09 is most surprising. As the n threshold
after which we switch is outside the range we benchmark our implementations at, this
suggestion is based on our model attempting to generalise far outside the range it has
seen before.

Table 5.5 compares our adaptive container suggestions with the fastest non-adaptive
implementation. Since we must select an implementation for all containers before
selecting a project, we show all possible combinations of adaptive and non-adaptive
container selections where appropriate.

Note that the numbered columns indicate the benchmark ’size’, not the actual size
that the container reaches within that benchmark. What this means exactly varies by
benchmark.

In all but one project, the non-adaptive containers are as fast or faster than the adaptive
containers at all sizes of benchmarks. In the aoc_2022_09 project, the adaptive con-
tainer is marginally faster until the benchmark size reaches 2000, at which point it is
significantly slower.

This shows that adaptive containers as we have implemented them are not effective
in practice. Even in cases where we never reach the size threshold, the presence of
adaptive containers has an overhead which slows down the program 3x in the worst
case (example_mapping, size = 150).

One explanation for this could be that every operation now requires checking which
inner implementation we are using, resulting in an additional check for each operation.
More work could be done to minimise this overhead, although it’s unclear how.

It is also unclear if the threshold values that we suggest are the optimal ones. Currently,
we decide our threshold by picking a value between two partitions with different
best containers. Future work could take a more complex approach that finds the best
threshold value based on our cost models, and takes the overhead of all operations into
account.
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5.3.4 Evaluation

Overall, we find that the main part of our container selection system has merit. While
our testing has limitations, it shows that we can correctly identify the best container even
in complex programs. More work is needed on improving our system’s performance for
very small containers, and on testing with a wider range of programs.

Our proposed technique for identifying adaptive containers appears ineffective. The
primary challenges appear to be in the overhead introduced to each operation, and in
finding the correct point at which to switch implementations. This could also suggest
that adaptive containers are less effective in lower-level compiled languages, as previous
literate focused mostly on higher-level languages such as Java (Xu, 2013; Costa and
Andrzejak, 2018).
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Table 5.5: Adaptive containers vs the best single container, by size of benchmark
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Conclusion

We have presented an integrated system for container implementation selection, which
can take into account the functional and non-functional requirements of the program it
is working on.

Our system is extremely flexible, and can be easily extended with new container types
and new functionality on those types, as we showed by adding associative collections
and several new data types to our library.

We demonstrated how benchmarking of container implementations and profiling of
target applications can be done separately and then combined. We prove that this
approach has merit, although our testing had notable limitations that future work should
improve on. We also found that while linear regression is powerful enough for many
cases, more research is required on how best to gather and preprocess data in order to
best capture an implementation’s performance characteristics.

We test the effectiveness of adaptive containers, in which the underlying implementation
changes as the container grows. We find significant challenges in implementing this
technique, suggesting that the overhead incurred is more important in lower-level com-
piled languages such as Rust. Future work should focus on minimising this overhead,
as well as on finding the correct threshold at which to switch implementation.
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