
Implementing Non-Malleable Zero Knowledge

Ethan Lee
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2024

Abstract
We implemented an efficient, constant round non-malleable zero knowledge scheme in
Rust. The scheme only relies on one way function as cryptographic building blocks and
is 20X faster for the prover than state of the art schemes.

i

Table of Contents

1 Introduction 1
1.1 Our Contribution . 2
1.2 Overview of Techniques . 2

2 Preliminaries 4
2.1 Commitments . 4
2.2 Extractable Commitments . 5
2.3 Non-Malleable Commitments . 6
2.4 Arguments/Proofs . 7
2.5 Non-Malleable Interactive Arguments/Proofs 8

3 Protocols 9
3.1 Commitment Scheme Π3R

BGRRV = (C 3R
BGRRV +R 3R

BGRRV) 9
3.2 Extractable Commitment Scheme 10
3.3 Weak Non-Malleable Extractable Commitment Scheme 11
3.4 Black-Box Non-Malleable Zero Knowledge 12

4 Implementations 14
4.1 Implementation Requirements . 14
4.2 Implementing Πcom = (Com,Dec) 14

4.2.1 Naor Commitment As A Concrete Implementation 14
4.2.2 Justesen Code . 16
4.2.3 Choosing A Finite Field Fp For Faster FFT 16
4.2.4 Usage of Cryptographically Secure Algorithms 17

4.3 Parameters for Π3R
BGRRV . 18

4.4 Concrete Implementation of Π = (P ,V) 19
4.4.1 Schnorr’s Σ-Protocol . 19
4.4.2 ZKBoo . 19

4.5 Non-Malleable Zero Knowledge . 20
4.5.1 Asynchronous Implementation of ΠNM 20

4.6 Miscellaneous . 21
4.6.1 Building the Protocol with Rust 21
4.6.2 Modular Design of Codebase 21
4.6.3 Improving Code Readability 21
4.6.4 Error Handling Design . 23
4.6.5 Testing & Profiling . 24

ii

5 Concluding Remarks 25
5.1 Division of Work . 25
5.2 Obstacles . 25

5.2.1 Interfacing Protocols with Traits 25
5.3 Future Improvements . 25

Bibliography 26

A Reed Solomon Encoding 30

B Trait Complexity When Implementing Π3Ext 31

iii

Chapter 1

Introduction

The concept of non-malleability within cryptographic protocols is pivotal for safeguard-
ing against man-in-the-middle attacks [20]. In scenarios like internet communication,
where malevolent actors may intercept network traffic [15], the vulnerability of mal-
leable cryptographic protocols becomes evident. Zero-knowledge proofs represent a
category of protocols enabling a prover to convince a verifier of the truth of a statement
while revealing no additional information apart from statement validity. Since their
inception, [31], substantial efforts have been made to enhance their practical efficiency
[30, 43].

Recent strides in zero-knowledge proof systems have laid the groundwork for novel
applications [8, 27], such as attested cameras, where verifiers can authenticate the
origin of images taken by the cameras rather than being generated by software [37].
Moreover, they’ve been instrumental in validating the accuracy of machine learning
models without divulging specific model details[40]. There have also been initiatives to
establish general-purpose zero-knowledge virtual machines compatible with popular
instruction set architectures like RISC-V [5, 52].

A crucial development in the realm of zero-knowledge argument protocols is the
establishment that such protocols can be constructed using one-way functions with only
four rounds of communication, as demonstrated in [18]. This result has been recognized
as optimal, as proven by Bellare, Jakobsson, and Yung in [7].

Yet, the feasibility of zero-knowledge argument protocols based on black-box usage
of one-way functions remains an open question. Notably, non-malleable commitments
can be built with optimal asymptotic complexity using black-box usage of one-way
functions, as demonstrated in [16] and [32].

In a recent development, Kim, Liang, and Pandey introduced a non-black-box non-
malleable zero-knowledge argument system [38]. Their construction achieves practical
efficiency while relying on cryptographic assumptions that are plausibly post-quantum
secure. However, their prover efficiency and round complexity are influenced by their
usage of Ligero protocol [3].

In this paper, we delve into the design and implementation of a non-malleable zero-

1

Chapter 1. Introduction 2

knowledge scheme that maintains a constant number of rounds and exclusively depends
on the black-box utilization of cryptographic primitives and one-way functions. Impor-
tantly, our approach circumvents the need for general-purpose protocols like Ligero.

1.1 Our Contribution

We have successfully developed a fast and robust non-malleable zero-knowledge scheme
using approximately 3479 lines of Rust code. Operating at 80 bits of security, our
implementation demonstrates efficiency with a runtime of 151.59 ms for the prover,
coupled with a communication footprint of less than 2.9MB. This represents a notable
23X improvement in runtime and a 8X improvement in communication when compared
to previous schemes.

The codebase is designed with modularity in mind, allowing easy integration with other
projects. Users can seamlessly incorporate specific sections of the code, such as the
implemented sigma protocol, into their own projects, or employ the entire protocol
across a network.

1.2 Overview of Techniques

The Rust Programming Language

Given the cryptographic nature of our protocol implementation, we have opted to
develop it in Rust due to its strong emphasis on safety and its extensive ecosystem
of cryptography libraries. Rust is a modern programming language developed by
Mozilla, designed for high-performance and concurrent systems development. At its
core is a robust ownership system that ensures memory safety by enforcing rules around
ownership and borrowing at compile time. This system eliminates common pitfalls
related to memory, such as null pointer dereferencing and buffer overflows.

The Rust Module System [39]

We leveraged the Rust crate module systems to make the implementation highly modular.
The Rust crate and module system plays a role in organizing and structuring code within
a Rust project. A crate is the fundamental compilation unit in Rust and serves as a
container for one or more modules, providing a boundary for encapsulation and code
reuse. Modules, defined with the mod keyword, allow developers to group related code
together, creating a hierarchical structure that mirrors the project’s organization.

Speed Optimizations via Algebraic Techniques

Applying our knowledge in elliptic curves and finite field arithmetic, we’ve fine-tuned
our implementation, leading to a substantial exponential acceleration in subprotocol
executions. More precisely, we have harnessed Fast Fourier Transform (FFT) algorithms
and methodologies to significantly boost the speed of our implementation [19]. In the
context of Naor Commitment [42], a naive approach would incur a commitment cost of

Chapter 1. Introduction 3

O(n2), whereas our optimized implementation has achieved an impressive O(n logn)
with the integration of FFTs.

Parallelization

We incorporate parallelization into both loops and specific sections of our code. Rust
provides powerful mechanisms for parallelization, allowing developers to efficiently
leverage multi-core architectures while maintaining safety and avoiding common pitfalls
associated with concurrent programming. One key feature is the ownership system,
which enables safe sharing of data between threads through ownership and borrowing
rules checked at compile time. The standard library includes the std::sync module with
synchronization primitives like Mutex and Arc for shared data access. Additionally,
the std::thread module facilitates the creation of threads and their synchronization [39].
The rayon crate is a popular choice for parallel programming in Rust, offering a data
parallelism model with high-level abstractions like parallel iterators [46]. Rust’s focus
on zero-cost abstractions ensures that parallelism can be achieved without sacrificing
performance.

Testing, Benchmarking and Profiling

We employed a combination of unit testing, integration testing, and fuzzing to thor-
oughly test both our subprotocols and the entire protocol. Additionally, we utilized
Criterion, a Rust benchmarking crate, to assess the performance of our protocol [10].
The benchmarking process was iterated 100 times to obtain both the average and
standard deviation.

We leveraged flamegraphs to gain insights into the execution and resource utilization of
our code. Flamegraphs is a visual profiling tool, offering a graphical representation of
a program’s call stack to pinpoint performance bottlenecks and comprehend resource
utilization [34].

Chapter 2

Preliminaries

In this paper, we use F to denote a finite field. We will represent the security parameter
as λ and use negl(λ) to indicate any function diminishing faster than λ−c, for any
constant c. The notation [n] is used to signify the set {1, ...,n}. The term ppt will
abbreviate probabilistic polynomial time. Vectors are denoted in boldface, and 〈·, ·〉
denotes the inner product of vectors.

Consider two interactive machines, A and B, with (A,B) denoting an interactive protocol
between them. The interaction between A and B on a common input x, with private
inputs a and b for A and B, respectively, is denoted by 〈A(a),B(b)〉(x). The transcript
generated by this interaction is represented by τ.

2.1 Commitments

A commitment scheme is a protocol between Alice and Bob that enables Alice to
commit to a secret message, denoted as m. Subsequently, Alice has the option to open
the commitment, disclosing to Bob the specific message m she committed to. For a
commitment scheme to be effective, it must have two essential properties: binding
and hiding. Binding ensures that Alice cannot alter her commitment, restricting the
opening of a commitment to only one message, m. On the other hand, hiding guarantees
that Bob remains unaware of the actual message Alice committed to, preserving the
confidentiality of the committed information.

Definition 2.1.1 Commitment A commitment scheme, denoted as Πcom = (C ,R), con-
stitutes a two-phase protocol involving two probabilistic polynomial time (ppt) interac-
tive algorithms - a committer, C , and a receiver, R . During the initial commit phase, C ,
provided with a message m and a randomness rc, engages in an interaction with R , who
inputs rr. The resulting commitment transcript, τ = 〈C (m,rc),R (rr)〉, encapsulates the
committer’s input m, committer randomness rc, and receiver randomness rr. In the
subsequent decommitment phase, C discloses m′, and R accepts the committed value as
m′ only if C convincingly demonstrates that τ could be generated with m′ as input. The
algorithm Dec(τ,m,rc) determines the acceptance 1 or rejection 0 of the decommitment,
considering the commitment transcript τ along with the committer’s message m and

4

Chapter 2. Preliminaries 5

randomness rc. A commitment scheme is classified as delayed input if the message for
commitment is required solely in the final round of C during the commit phase. [11]

Definition 2.1.2 Statical Biding A commitment scheme (C ,R) is said to be statistically
binding if for all adversaries A , there exists a negligible function negl(λ) such that

Pr

Dec(τ,m0,r0) = Dec(τ,m1,r1) = 1
∧ m0 6= m1

∣∣∣∣∣∣∣
τ← 〈A(m,rc),R (rr)〉

(m0,r0)← A
(m1,r1)← A

≤ negl(λ)

Definition 2.1.3 Computational Hiding A commitment scheme (C ,R) is said to be
computational hiding if for ppt adversaries A , there exists a negligible function negl(λ)
such that

∣∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣∣
m0,m1← A
b←{0,1}

τ← 〈C (mb,rc),R (rr)〉
b′← A(τ)

− 1
2

∣∣∣∣∣∣∣∣∣≤ negl(λ)

This paper also uses non-interactive commitment schemes. In such instances, the
commitment phase involves a singular message transmitted from the committer to the
receiver, facilitated by an algorithm Com and incorporating a degree of randomness
denoted as rc. Additionally, we define a well-formed transcript as a commitment phase
transcript, τ, for which there exists a pair (m,rc) such that the output of Dec(τ,m,rc)
equals 1.

2.2 Extractable Commitments

A commitment scheme is considered extractable if there exists a ppt extractor capable
of retrieving the committed value within a polynomial timeframe. To provide a more
formal definition, consider the following.

Definition 2.2.1 Extractable Commitment [11]. Consider any statistically binding,
computationally hiding commitment scheme ΠcomExt = (C ,R). Then PicomExt is said
the be extractable if there exists an expected ppt oracle algorithm Ext (the extractor),
such that for any ppt committer C ? the following holds. Let τ = 〈C ?,R (rr)〉 denote
a (potentially maliciously generated) transcript of the interaction between C ? and
R . The extractor ExtC ?

(τ,rr), with oracle output to C ?, output m such that, over the
randomness of Ext and of sampling τ,

Pr [∃m̃ 6= m, r̃c : Dec(τ, m̃, r̃c) = 1]≤ negl(λ)

[11]

Chapter 2. Preliminaries 6

Definition 2.2.2 k-Extractable Commitments [11] A commitment that has the condi-
tions outlined in Definition 2.2.1 is termed k-extractable when it has an algorithm,
denoted as Ext, capable of extracting the committed value from a set of k well-formed
commitment phase transcripts τ. Notably, each transcript within this set shares an iden-
tical first-round committer message. The extractor, under these conditions, effectively
retrieves the committed value from the initial transcript, with the exception of negligible
probability.

2.3 Non-Malleable Commitments

A man-in-the-middle adversary intercepts and potentially alters the communication
between two parties without their knowledge. Non-Malleability captures this types of
attack.

Consider a scenario involving a man-in-the-middle (MIM) adversary, denoted as MIM,
engaged in two interactions: the left interaction and the right interaction. In the right
interaction, MIM plays the role of the receiver, interacting with an honest committer
denoted as C . Conversely, in the left interaction, MIM acts as the committer, engaging
with an honest receiver labeled as R . To distinguish entities in the right session from
those in the left, a ’tilde‘d‘ notation is employed, signifying mirrored counterparts. For
instance, if m represents the value committed by C , m̃ denotes the value committed
by MIM on the right. The committer is assumed to have an identity or ’tag,‘ id,
chosen from the set {0,1}λ. At the beginning of the commitment phase, C receives
the local input m, while MIM is provided with an auxiliary input aux. Non-malleable
commitments are defined following the simulation paradigm [11].

During the actual interaction, MIM concurrently participates in both left and right
interactions. In the right session, the MIM adversary interacts with C , obtaining a
commitment to the message m using the identity id. In the left session, MIM engages
with R , attempting to commit to a related value m̃ using a chosen identity ˜id. If the
right commitment is invalid or undefined, the committed value is set to ⊥. Notably, if
id = ˜id, indicating that the adversary uses the same identity as the honest committer,
the attack is deemed invalid.

Let MIM(C ,R)((m),aux) be the random variable describing (view, m̃), encompassing
the values committed by MIM and MIM’s view in the experiment. In the simulated exe-
cution, a simulator denoted as SIM directly interacts with R . Here, SIM(C ,R)(1λ,aux)
represents the random variable describing (view, m̃), comprising the values committed
by SIM and its output. Similar to the real interaction, whenever SIM commits in the
right interaction with an identity identical to that of the left interaction, the committed
value is set to ⊥. The discussion revolves around one-one secure non-malleable com-
mitments, where MIM participates in one left and one right interaction. We use the
definition from [33].

Definition 2.3.1 Non-Malleable Commitments [11] A commitment scheme is non-
malleable with respect to commitment if, for every ppt MiM adversary A , there exists a
ppt simulator Sim such that for all m∈{0,1}λ the two ensembles MIM(C ,R)((m),aux)aux∈{0,1}?

Chapter 2. Preliminaries 7

and SIM(C ,R)(1λ,aux)aux∈{0,1}? are computational indistinguishable.

A non-malleable commitment is said to be synchronous if, during the interaction, the
Man-in-the-Middle (MIM) immediately transmits the i-th round message on the right
immediately after receiving the i-th round message in the left interaction. Likewise,
the MIM sends the i-th round message on the left immediately after obtaining the i-th
round message in the right interaction.

2.4 Arguments/Proofs

Definition 2.4.1 Interactive Argument/Proof System [11] A pair of ppt interactive al-
gorithms Π = (P ,V) constitutes a proof (resp., argument) system for an N P -language
L that is associated with the relation RelL , if the following conditions hold:

• COMPLETENESS: For every x ∈ L and w such that RelL(x,w) = 1, it holds that
V accepts with probability 1.

• SOUNDNESS: For every algorithm P ? (resp. ppt algorithm P ?) there exist a
negligible function negl such that for every x /∈ L and every auxiliary input aux:

Pr [OutV 〈P ?(aux),V (x) = 1〉]≤ negl(|x|)

We characterize Π = (P ,V) as a public coin system if, at each round, the verifier V
simply flips a predetermined number of coins, representing a random challenge, and
communicates the outcome to the prover P . The transcript generated by 〈P (w),V 〉 is de-
noted as π1,π2, ...,π`, where ` is a constant. Additionally, we define the transcript τ of an
execution 〈P (w),V 〉(x) as accepting if the output of the verifier, OutV (〈P (w),V 〉(x)),
equals 1. In the subsequent discussion, we focus on the specific scenario where the
number of rounds in Π is limited to 3, that is, `= 3. Recall the following definition.

Definition 2.4.2 Proof of Knowledge with Canonical Extractability [11] A 3-round
proof system Π = (P ,V) for an N P -language L that is associated with the relation
RelL as defined above, is a proof of knowledge with canonical extractor if, for all k ∈ N,
there exists an expected ppt extractor Ext such that, if P ? interacting with V produces
an accepting transcript for x ∈ L with non-negligible probability, then:

• On input x and accepting transcript (π1,π2,π3), Ext rewinding multiple times
P ? and playing each time a new random challenge obtains with overwhelming
probability a constant number k of accepting transcripts all with the same π1 and
different challenges;

• On input k accepting transcripts (x,π1,π2,π3)i∈[k] such that for each j,z∈ [k], j 6=
z,π2

j 6= π2
z , Ext with probability 1 and a strict polynomial number of steps outputs

a witness w such that RelL(x,w) = 1

Definition 2.4.3 SHVZK A 3-round proof (resp., argument) system Π = (P ,V) as
defined above, is special honest-verifier zero knowledge (SHVZK) if there exists a ppt
algorithm Sim that for any x ∈ L , where L is an N P -language with the associated

Chapter 2. Preliminaries 8

relation RelL , security parameter λ and any challenge π2 works as follow: (π1,π3)←
Sim(1λ,x,π2). Furthermore, the distribution of the output of Sim is (computationally)
indistinguishable from the distribution of a transcript obtained when V sends π2 as
challenge and P runs on common input x and any w such that RelL(x,w) = 1.

2.5 Non-Malleable Interactive Arguments/Proofs

Consider an interactive argument/proof system Π = (P ,V) designed for an N P lan-
guage L , where the corresponding relation is denoted as RelL . Let x ∈ L , with |x|= λ,
serving as the public input for the protocol. Additionally, let w represent P ’s private
input such that RelL(x,w) = 1. Now, introduce MIM as a ppt MIM adversary simul-
taneously engaged in a left session and a right session. MIM receives auxiliary input
aux ∈ 0,1? [11].

In the left session, MIM assesses the validity of the statement x by interacting with P ,
employing an identity id of MIM’s choosing. In the right session, MIM substantiates
the validity of the statement x̃ (dynamically chosen by MIM) to the honest verifier
V , utilizing an identity ˜id selected by MIM. The random variable viewMIM(x,aux) is
employed to describe the view of MIM in the aforementioned experimental setup.

Definition 2.5.1 Non-Malleable Zero Knowledge [11] An argument/proof system
Π = (P ,V) for an N P -language L with witness relation RelL is nonmalleable zero
knowledge (NMZK) if for any man-in-the-middle adversary MIM that participates in
one left session and one right session, there exists an expected ppt SIM(x,aux) such
that:

1. The two ensembles {SIM1(x,aux)}λ∈N,z∈{0,1}? and {viewMIM(x,aux)}λ∈N,z∈{0,1}?

are computationally indistinguishable over λ, where Sim1(x,aux) denotes the
first output of Sim(x,aux).

2. Let (view, w̃) denote the output of Sim(x,aux), for some aux ∈ 0,1?. Let x̃ be the
right-session instance appearing in view and let id and ˜id be respectively the
identity used in the left and right sessions appearing in view. If the right session
is accepting and id 6= ˜id, then w̃ is s.t.(x̃, w̃) ∈ RelL .

Chapter 3

Protocols

In this chapter we give specifications of the protocols we implemented, their properties
and the intuition for their security. We refer the reader to the Black-Box (and Fast)
Non-Malleable Zero Knowledge paper for detailed proofs of their properties and security
[11]. The protocols are presented as in the paper.

3.1 Commitment Scheme Π3R
BGRRV = (C 3R

BGRRV +R 3R
BGRRV)

We revisit the non-malleable commitment scheme outlined in [13, 33]. This scheme
involves a three-round public-coin commitment, succeeded by a zero-knowledge proof
to verify the integrity of the committed phase. In Protocol 1, we have the initial stage of
this protocol, specifically the commitment phase, as detailed in [38]. We represent this
phase as Π3R

BGRRV = (C 3R
BGRRV +R 3R

BGRRV). The commitment phase of Π3R
BGRRV utilizes a

statistically-binding commitment scheme Π = (Com,Dec) in a black-box manner.

Protocol 1 Description of Π3R
BGRRV = (C 3R

BGRRV +R 3R
BGRRV) [11]

PUBLIC PARAMETERS: An identity id ∈ {0,1}k, a large prime q, an integer `, and
vector spaces V1, ...,Vn ⊂ Z`

q derived from id. These parameters satisfy the following
relation: `= 2(k+1) and n = k+1.
PRIVATE INPUT: C 3R

BGRRV holds a private message m∈Z`−1
q , where m= (m1, ...,m`−1)

Commitment Phase: It consists of the following steps.
Round 1 (C 3R

BGRRV → R 3R
BGRRV).

1. C 3R
BGRRV picks at random values r1, ...,rn ∈ Zq and s1, ...,s`−1,s′1, ...,s

′
n in {0,1}λ.

This defines vectors z1, ...,zn ∈ Z`
q where zi = (ri,m).

2. Let cmm = (Com(m1;s1), ...,Com(m`−1;s`−1)) and cmr =
(Com(r1;s′1), ...,Com(rn;s′n)), C 3R

BGRRV sends cm = (cmm,cmr) to R 3R
BGRRV

Round 2 (R 3R
BGRRV → C 3R

BGRRV). Upon receiving cm from C 3R
BGRRV , R 3R

BGRRV picks at
random challenge vector α = (α1, ...,αn), where αi ∈Vi ⊂ Z`

q and send α to C 3R
BGRRV .

Round 3 (C 3R
BGRRV → R 3R

BGRRV). Upon receiving α from R 3R
BGRRV , C 3R

BGRRV sends evalua-
tions wi, for i ∈ [n], where each wi = 〈αi,zi〉 ∈ Zq.
Decommitment Phase: (C 3R

BGRRV → R 3R
BGRRV). C 3R

BGRRV sends m and val-
ues r1, ...,rn and s1, ...,s`−1,s′1, ...,s

′
n to R 3R

BGRRV . R 3R
BGRRV checks that cmm =

(Com(m1;s1), ...,Com(m`−1;s`−1)) and cmr = (Com(r1;s′1), ...,Com(rn;s′n)).

9

Chapter 3. Protocols 10

This protocol satisfy what weak non-malleable commitment, which is specified by the
following theorem proven in [33].

Theorem 1 [33] Let MIM be a MiM ppt non-uniform adversary as defined in Defi-
nition 2.3.1 which interacts (in a synchronous way) with an honest sender in the left
session and an honest receiver in the right session. Let τ be the transcript obtained at
the end of this interaction and m̃ the message committed by MIM in the right session.
Let p̃ be the probability with which MIM is successful in the indistinguishability game
defined in Definition 2.3.1.

Then there exists a ppt Ext which has oracle access to MIM s.t.:

Pr
τ

[
ExtMIM(τ) 6= m̃

∣∣τ ∈ ACC
]
≤ p̃/2

where the probability is over the randomness of Ext and ACC denotes the set of well-
formed transcripts of the commitment phase.

Commentary on the application of Π3R
BGRRV : In Π3R

BGRRV , the commitment made in the
initial round is calculated based on a message representing a tuple of elements in Zq,
denoted as m = (m1, ...,m`−1) ∈ Z`−1

q . Looking ahead, our use of Π3R
BGRRV will require

committing to a singular element of Zq, aligning with the approach in Protocol 2 of
[38]. Let m ∈ Zq be the message to be committed in ΠNM; we can express this as
m = (m,m2, ...,m`−1), with m2, ...,m`−1 all set to 0.

3.2 Extractable Commitment Scheme

Within this section, we revisit the 3-round public-coin extractable commitment denoted
as Π3Ext = (C3Ext ,R3Ext), which is elaborated upon in section 4 of [44]. The details of
the extractable commitment Π3Ext are described in Protocol 2, with Com representing
the commitment phase of a non-interactive statistically-binding commitment scheme.

Protocol 2 Description of Π3Ext = (C3Ext ,R3Ext) [11]
NOTATION: Let Com be a statistically-binding commitment scheme.
PUBLIC PARAMETERS: λ.
PRIVATE INPUT: C3Ext holds a private message m ∈ {0,1}λ.
Commitment Phase: It consists of the following steps.
Round 1 (C3Ext → R3Ext). C3Ext commits using Com to λ pairs of strings {v0

i ,v
1
i }i∈[λ],

such that, for each i ∈ [λ], (v0
i ,v

1
i) = (vi,m⊕ vi) and vi are random strings in {0,1}|m|.

Let c be the list of the resulting λ pairs of commitments, C3Ext sends c R3Ext .
Round 2 (R3Ext→ C3Ext). Upon receiving c from C3Ext , R3Ext sends a random challenge
e = (e1, ...,eλ), with each ei ∈ {0,1} for i ∈ [λ]
Round 3 (C3Ext → R3Ext). Upon receiving e from R3Ext , C3Ext opens the commitments
vei

i , i ∈ [λ]
Decommitment Phase: C3Ext → R3Ext . C3Ext sends m and the openning for all λ pairs
of strings. R3Ext checks that

1. The openning is the same as the commitment phase with respect to e
2. m = v0

1⊕ v1
1 = ...= v0

λ
⊕ v1

λ

Chapter 3. Protocols 11

Protocol 2 satisfies the following theorem.

Theorem 2 Let Com be a statistically-binding commitment scheme, then Π3Ext is a
3-round public-coin extractable statistically-binding commitment scheme that achieves
2-extractability.

3.3 Weak Non-Malleable Extractable Commitment Scheme

We formulate a five round weak non-malleable extracted commitment scheme Π5Ext =
(C ,R) [11]. This is a protocol with delayed-input, where the message to be committed
can be committed in the last round. The protocol is built from the following:

1. The 3-round public-coin, statistically binding, weak-non-malleable commitment
scheme Π3R

BGRRV that was specified in Section 3.1.

2. The 3-round 2-extractable, statistically binding, commitment scheme Π3Ext pre-
sented in Section 3.2.

3. A non-interactive statistically binging commitment Πcom = (Com,Dec)

At a broad level, our protocol Π5Ext , illustrated in Protocol 3, aligns with the com-
mitment phase of Π3R

BGRRV (outlined in Section 3.1). In the initial round, this protocol
takes a vector of ` elements as input and commits to it component-wise using Com.
The only modification we introduce is committing to the first component of this vector
using Π3Ext . Additionally, the delayed-input property is achieved by employing the
technique from [17], where a two-out-of-two secret sharing of the committed message
m is computed. Specifically, C initially commits to a random share k, and in the final
round, it sends the other share c = m⊕ k in the clear.

Chapter 3. Protocols 12

Protocol 3 Description of Π5Ext = (C ,R) [11]
NOTATION: We denote by (ext1,ext2,ext3) the 3 rounds of Π3Ext . We denote by
(cm = (cmm,cmr),α,a) the 3 messages of Π3R

BGRRV .
PUBLIC PARAMETER: λ.
C ’s PRIVATE INPUT: m ∈ Zq, m can be received at round 5.
Commitment Phase: It consists of the following steps.
Round 1 (C → R).
C samples a random share k ∈ Zq and sets m = (k,m2, ...,m`−1), where mi = 0 for each
i ∈ {2, ..., `−1}.
C picks at random values r1, ...,rn ∈Zq and s1, ...,s`−1,s′1, ...,s

′
n in {0,1}λ. This defines

vectors z1, ...,zn ∈ Z{q`} where zi = (ri,m).
C computes the first round of Π3Ext w.r.t. message k obtaining ext1.
Let cmm = (ext1,Com(m2;s2), ...,Com(m`−1;s`−1)) and cmr =
(Com(r1;s′1), ...,Com(rn;s′n)), C sends cm = (cmm,cmr) to R .
Round 2 (R → C).
Upon receiving cm, R computes the 2nd round α of Π3R

BGRRV , namely R picks at random
challenge vector α = (α1, ...,αn), where αi ∈Vi ⊂ Z`

q and send α to C .
Round 3 (C → R).
Upon receiving α, C computes the 3rd round of Π3R

BGRRV , namely C sends evaluations
wi, for i ∈ [n], where each wi = 〈αi,zi〉 ∈ Zq.
Round 4 (R → C).
R Upon receiving α, computes the second round ext2 of Π3Ext . R sends ext2 to C .
Round 5 (C → R).
Upon receiving ext2, C computes the third round ext3 of Π3Ext obtaining decommitment
information decext . C sends ext3, c to R , where m = c⊕ k.
Decommitment Phase: (C → R) C sends to R the decommit-
ment value dec = (m,(r1, ...,rn),(decext ,s1, ...,s`−1,s′1, ...,s

′
n)). If

((cm,α,a),m,(r1, ...,rn),(decext ,s1, ...,s`−1,s′1, ...,s
′
n)) is a valid decommitment

for Π3R
BGRRV , then R obtains the opening computing m = c⊕ k

We have the following theorem about Π5Ext .

Theorem 3 The protocol Π5Ext described in Protocol 3 is a statistically binding, com-
putationally hiding 5-round delayed-input extractable weak-non-malleable commitment
scheme, that achieves 2-extractability.

3.4 Black-Box Non-Malleable Zero Knowledge

In this section we give the description of the black-box non-malleable zero-knowledge
(NMZK) argument system ΠNM [11].

ΠNM is composed of

1. The 5-round public-coin 2-extractable weak-non-malleable delayed-input com-
mitment scheme Π5Ext = (C ,R) described in Section 3.3

2. A 3-round public-coin SHVZK proof of knowledge Π = (P ,V) for the language

Chapter 3. Protocols 13

L and relation RelL

Protocol 4 Description of ΠNM = (PNM,VNM)[11]
NOTATION: Let Π = (P ,V) be a 3-round public-coin SHVZK proof of knowl-
edge for the language L and associated relation RelL . Let (π1,π2,π3) denote the
three round messages of Π. Let Π5Ext be the 5-round delayed input weak-non-
malleable 2-extractable commitment scheme defined in Section 3.3. Let us denote
with (com1,com2,com3,com4,com5) the transcript of the commit phase of Π5Ext and
with dec the corresponding opening information. For simplicity, we will implicitly
assume that the same identity used in a session of ΠNM is also used for the execution of
Π5Ext inside the session of ΠNM.
PUBLIC PARAMETER: λ, x ∈ L
PNM’s PRIVATE INPUT: w such that (x,w) ∈ RelL
Round 1. PNM on input (x,w), computes the 1st round π1 of Π and sends π1 to VNM.
Round 2. VNM computes the 1st round com1of Π5Ext (being delayed input, there is no
input to provide at this stage). VNM sends com1 to PNM.
Round 3. On input com1, PNM sends the 2nd round com2 of Π5Ext and sends com2 to
VNM.
Round 4. On input com2, VNM computes the 3rd round com3 of Π5Ext and sends com3
to PNM.
Round 5. On input com3, PNM sends the 4nd round com4 of Π5Ext and sends com4 to
VNM.
Round 6. VNM samples c1←{0,1}λ. On input com4, VNM computes the 5th round
com5 and corresponding opening information dec of Π5Ext w.r.t. message c1 (i.e., the
committed message is c1). VNM sends com5 to PNM.
Round 7. PNM samples c2←{0,1}λ and sends c2 to VNM.
Round 8. VNM sends (c1,dec) to PNM.
Round 9. On input (c1,dec), PNM acts as follows. If dec is not a valid opening for
(com1,com2,com3,com4,com5) w.r.t. committed message c1 then PNM aborts. Other-
wise, PNM sets π2 = c1⊕ c2 and computes the 3rd round π3 of Π. PNM sends π3 to
VNM.
Verification Procedure On input π3, VNM computes π2 = c1⊕ c2. If (x,π1,π2,π3) is
an accepting transcript for Π, then VNM accepts, otherwise it aborts.

The protocol satisfies the following theorem.

Theorem 4 Given a 3-round, public-coin SHVZK proof of knowledge Π = (P ,V) with
canonical extractor for an N P language L , the 5-round public-coin 2-extractable
delayed-input commitment scheme Π5Ext of Section 3.3, the protocol ΠNM is a black-
box non-malleable zero-knowledge argument system for L which makes black-box use
of Π5Ext and Π.

The protocol is also simulation extractable. We refer interested reader to the paper Black-
Box (and Fast) Non-Malleable Zero Knowledge for detailed proofs of the theorems
above and a description of the simulator.

The protocols are presented as implementation references.

Chapter 4

Implementations

4.1 Implementation Requirements

Our objective is to realize efficient and secure implementations of the protocols outlined
in Section 3. Moreover, we aim for our codebase to be accessible and usable by other
developers. In this chapter, we present the implementation details and design choices
we made other than following the protocol specifications.

4.2 Implementing Πcom = (Com,Dec)

This section provides an overview of the Naor Commitment [42], a specific instantiation
of the black box non-interactive statistically binding commitment scheme Πcom. It cov-
ers the error correcting code employed by Naor Commitment, the associated algorithms,
and explores how the choice of the field Fp is influenced by efficiency considerations
for the algorithm.

4.2.1 Naor Commitment As A Concrete Implementation

Recall that Π3R
BGRRV , Π3Ext , and Π5Ext use a non-interactive statistically binding com-

mitment scheme denoted as Πcom = (Com,Dec). In practice, we instantiate this com-
mitment scheme using the Naor Commitment [42].

The work [42] introduces two protocols. In Section 3, the author describes the Bit-
Commitment Protocol, and in Section 4, the Commitment to Many Bits Protocol is
presented. Both protocols have been implemented in our codebase for completeness.
However, in practical scenarios, we opt for the Commitment to Many Bits Protocol due
to its efficiency comparing to the Bit-Commitment Protocol.

14

Chapter 4. Implementations 15

Protocol 5 Description of Bit-Commitment Protocol [42]
PUBLIC PARAMETERS:
n: security parameter. chosen so that no adversary can break the pseudorandom
generator for seeds of length n.
NOTATIONS:
Bi(s): The ith bit of the pseudorandom sequence on seed s.
Commit Stage:

1. Bob selects a random vector R = (r1,r2, ...,r3n) where ri ∈ {0,1} for 1≤ i≤ 3n
and send it to Alice.

2. Alice selects a seed s ∈ {0,1}n and sends to Bob the vector D = (d1,d2, ...,d3n)
where
if ri = 0

di = Bi(s)

if ri = 1
di = Bi(s)⊕b

Reveal Stage: Alice sends s and Bob verifies that, for all 1 ≤ i ≤ 3n, if ri = 0, then
di = Bi(s), and if ri = 1, then di = Bi(s)⊕b

It is evident that while this protocol is straightforward, its efficiency is compromised as
bits are committed one at a time.

Consider the following protocol, which is significantly more efficient.

Protocol 6 Description of Commitment to Many Bits Protocol [42]
PUBLIC PARAMETERS:
n: security parameter. chosen so that no adversary can break the pseudorandom
generator for seeds of length n.
m: number of bits to be committed.
NOTATIONS:
C⊂{0,1}q is a code of 2m words such that the hamming distance between any c1,c2 ∈C
is at least ε ·q.
E : {0,1}m→{0,1}q is an efficient computable function for mapping words in {0,1}m

to C.
R = (r1,r2, ...,rk) with ri ∈ {0,1} and with exactly q indices i such that ri = 1.
Let GR(s) denote the vector A = (a1,a2, ...,aq) where ai = B j(i)(s) and j(i) is the index
of the ith 1 in R.
Commit Stage:

1. Bob selects a random vector R = (r1,r2, ...,r2q) where ri ∈ {0,1} for 1≤ i≤ 2q
and exactly q of the ri’s are 1 and send it to Alice.

2. Alice computes c = E(b1,b2, ...,bm). Alice selects a seed s ∈ {0,1}n and sends
to Bob e = c⊕GR(s), and for each 1 ≤ i ≤ 2q such that ri = 0 she sends Bob
Bi(s).

Reveal Stage:
Alice sends s and b1,b2, ...,bm. Bob verifies that for all 1≤ i≤ 2q such that ri = 0 Alice
had sent the correct Bi(s), computes c = E(b1,b2.....bm) and GR(s), and verifies that
e = c⊕GR(s)

Chapter 4. Implementations 16

In protocol 6, we have a non-interactive statistically binding commitment scheme that
can commits to many bits efficiently. One obstacle remaining is that it uses a blackbox
error correcting code C that must satisfy q · log(2

2−ε
) ≥ 3n and q

m must be a constant
[42]. We take the suggestion from the paper and implemented Justesen code which
satisfies this property [36].

4.2.2 Justesen Code

The Justesen code is a concatenation code that combines an outer code, namely the
Reed-Solomon code [47], with an inner code known as the Wozencraft ensemble [41].

Definition 4.2.1 [41] Let Fp be a field. the Wozencraft ensemble is defined as a
function f that takes an element x ∈ Fp and return the codeword (x,αx), where α is the
primitive element of the field

f (x) = (x,αx)

In practice, the primitive element α is chosen to be the generator of the multiplicative
subgroup of the field Fp.

We use the definition of Reed-Solomon code from the book Essential Coding Theory
[35].

Definition 4.2.2 [35] Let Fp be a finite field, and choose n and k satisfying k ≤ n≤ q.
Fix a sequence α = (α1,α2, ...,αn) of n distinct elements (also called evaluation points)
from Fq. We define an encoding function for Reed-Solomon code RSq [α,k] : Fk

p→ Fn
p

as follows. Map a message m = (m0,m1, ...,mk1) with mi ∈ Fq to the degree k− 1
polynomial

m→ fm(X)

where

fm(X) =
k−1

∑
i=0

miX i.

We choose the rate of the Reed-Solomon code to be 1
2 . This means that the code word

will be twice as long as the original message.

The FFT algorithm is used to transform the polynomial from coefficient form to evalua-
tion form and the inverse FFT algorithm is employed to perform the reverse [19]. The
code can be found in Appendix A.

The inner code Wozencraft ensemble is implemented with a simple loop that adds one
element αx to each element. Notice that this process is easily parallelizable.

4.2.3 Choosing A Finite Field Fp For Faster FFT

Since we are using the FFT algorithm over the field Fp, it is more efficient if Fp have
high two-dicity. This means that the field should have a multiplicative subgroup of order

Chapter 4. Implementations 17

2n, where n is an integer. High two-adicity means n should be relatively big, usually
double digits.

Various fields have been specifically designed to meet this criterion. For instance, the
Goldilocks Field, introduced in [45], has p = 264− 232 + 1. This p is a proth prime
[50], which has the form N = k ·2n +1. This prime number can be written in the form
p = (232− 1) ∗ 232 + 1, which means that the Goldilocks Field has a multiplicative
subgroup of order 232.

However, as we will later see in the paper, we also require the field Fp to be the scalar
field of an elliptic curve. We choose the field to be the scalar field of the elliptic curve
BLS12-377, which has

p = 12ab655e9a2ca55660b44d1e5c37b00159aa76 f ed00000010a11800000000001

in hexadecimal representation. This is a curve introduced in [12]. The two-adicity of
this field is 46.

4.2.4 Usage of Cryptographically Secure Algorithms

Ensuring robust security is a fundamental necessity in our implementation, especially
when it comes to cryptography protocol implementations. Aligned with the guidelines
outlined in the National Institute of Standards and Technology (NIST) reports [6],
our objective is to achieve a security level of 128 bits. This section will delve into
the imperative need to not only attain a high level of security but also incorporate
cryptographically secure shuffling algorithms and seeded random number generators
into our implementation.

4.2.4.1 Fisher-Yates Shuffling

Recall the specified stage within the commit phase of Protocol 6

1. Bob selects a random vector R = (r1,r2, ...,r2q) where ri ∈ {0,1} for 1≤ i≤ 2q
and exactly q of the ri’s are 1 and send it to Alice.

We need to randomly generate a vector R of fixed length with respect to q, where
precisely half of the elements are ’0’s and the remaining half are ’1’s. To achieve this,
the initial step involves generating a vector R containing the elements, followed by
utilizing a cryptographically secure shuffling algorithm to shuffle them.

We picked the Fisher-Yates Shuffling Algorithm [22, 26]. The specifics of implementing
this algorithm fall outside the scope of this paper, as we utilize the algorithm by
importing a library.

4.2.4.2 ChaCha8 Seeded Random Generator

Both Protocol 5 and 6 uses

• Bi(s) : The ith bit of the pseudorandom sequence on seed s

To implement this, it is necessary to use a Seeded Random Generator. We utilize
ChaCha8, which has a 256-bit seed and provides 256 bits of security [9, 48].

Chapter 4. Implementations 18

4.3 Parameters for Π3R
BGRRV

Recall that we have the following public parameters for the Π3R
BGRRV protocol

1. id ∈ {0,1}k

2. A large prime q

3. An integer `

4. Vector Spaces V1, ...,Vn ⊂ Z`
q derived from id

satisfying

• `= 2(k+1)

• n = k+1

• length of message m = `−1

id is a k bit identity tag, with the parameters specified in [13], k is set to be 16 or
32. We chose k = 32 in our implementation. The chosen value of k holds notable
performance implications for the protocol. The table below provides details on the
selected k value, the corresponding runtime of our implementation in the synchronous
setting and the maximum length of message the tag can handle (denoted by β). λ is the
security parameter

Using Schnorr’s Σ-Protocol to prove knowledge of discrete logarithm [49]:

(k,λ) P time (ms) V time (ms) Comm. (MB) β (F)

(16, 128) 2.0145 1.9786 0.094698 33
(32, 128) 6.2036 5.9830 0.351798 65
(64, 128) 23.063 22.576 1.358058 129
(128, 128) 94.313 89.533 5.336298 257

Using ZKBoo to prove preimage of Sha256 hash function [29]:

(k,λ) P time (ms) V time (ms) Comm. (MB) β (F)

(16, 40) 74.083 49.362 1.3509339 33
(32, 40) 79.028 53.355 1.6082139 65
(16, 80) 148.66 98.486 2.589146 33
(32, 80) 151.59 101.63 2.846426 65

(16, 128) 239.82 158.28 4.082284 33
(32, 128) 241.12 160.79 4.339564 65

The modulus of our field, denoted as q, is equivalent to the value of p mentioned in
Section 4.2.3. Given that k = 32, we can easily compute the remaining parameters
through arithmetic calculations. Specifically, we have `= 66, n = 33, and the length of
the message m = 65.

In alignment with the adjustment made in our final protocol ΠNM – where the first
element of the message is committed using Π5Ext instead of ΠBGRRV – we decrease the

Chapter 4. Implementations 19

length of the message m by 1, resulting in a new length of 64.

4.4 Concrete Implementation of Π = (P ,V)

In the final protocol, we make use of a black box Π = (P ,V), which is a 3-round
public-coin SHVZK proof of knowledge for the language L and associated relation
RelL . This is sometimes called Σ-Protocols.

In a Σ-Protocol, Both the Prover P and Verifier V knows public parameters and the
Prover proves prove to the verifier a relation (x,w) ∈ RelL , with the secret witness only
P knows [14].

The protocol starts with the Prover P sending an initial message i, the verifier V respond
with a challenge c, and the P replies with another message s. (i,c,s) is sufficient to
convince V the validity of RelL .

4.4.1 Schnorr’s Σ-Protocol

In Schnorr’s Σ-Protocol [49], the Prover P wants to prove knowledge of a discrete
logarithm relation, namely the Prover knows some w such that gw = y.

The protocol is specified as follows,

Protocol 7 Schnorr’s Σ-Protocol
PUBLIC PARAMETER: A (multiplicative) cyclic group G with prime order q and
generator g, and y = gw. w is only known to P
Round 1 The Prover P samples a random r such that 0≤ r ≤ |G|−1 and send i = gr

to V
Round 2 V respond with a random number c such that0≤ c≤ |G|−1
Round 3 P respond with s = (wc+ r)
Verification: Verifier checks that i · yc = gs

This protocol is has perfect completeness, special soundness, and honest verifier perfect
zero-knowledge. We will omit the proofs of these property here and direct interested
readers to [14].

4.4.2 ZKBoo

ZKBoo is a general purpose Σ-Protocol that can prove any statement of the form “P
knows a w such that f (w) = y” [29]. The protocol is presented as in the paper,

Chapter 4. Implementations 20

Protocol 8 ZKBoo
The verifier and the prover have input y ∈ Lφ. The prover knows x such that y = φ(x). A
(2,3)-decomposition of φ is given. Let Π?

φ
be the protocol related to this decomposition.

Round 1 The Prover P does the following:
1. Sample random tapes k1, k2, k3;
2. Run Π?

φ
(x) and obtain the views w1, w2, w3 and the output shares y1, y2, y3;

3. Commit to ci =Com(ki,wi) for all i ∈ [3];
4. Send a = (y1,y2,y3,c1,c2,c3)

Round 2 The verifier V choose an index e ∈ [3] and sends it to the prover.
Round 3 the prover P answers to the verifier’s challenge sending opening ce,ce+1 thus
revealing z = (ke,we,ke+1,we+1).
Verification: Verifier checks that

1. Rec(y1,y2,y3) = y
2. ∀i ∈ {e,e+1}, yi = Out put(wi)

3. ∀ j, we [j] = φ
(j)
e (we,we+1,ke,ke+1)

The protocol satisfies perfect completeness, special soundness, and honest verifier
perfect zero-knowledge same as Schnorr’s Σ-Protocol.

We forked the ZKBoo implementation by Geometry Research [23, 28]. The original
ZKBoo implementation by Geometry is made non-interactive via the Fiat-Shamir
Heuristic [25]. We removed this heuristic and made the protocol interactive. The
verification algorithm was changed as well after the heuristic removal for adaptation.

4.5 Non-Malleable Zero Knowledge

A complete, fast, secure and reusable non-malleable zero knowledge protocol as speci-
fied in Protocol 4 is implemented. We want to remark that we have implemented both
an asynchronous version of the protocol and a synchronous version of the protocol.
Developers that intend to use our codebase can easily integrate setup the protocol over
a network. In general we found a 5 percent decrease in performance of the protocol in
the asynchronous setting, which is largely due to serialization of the messages.

4.5.1 Asynchronous Implementation of ΠNM

The following steps differ the asynchronous protocol from the synchronous protocol

1. Messages are serialized to bytes for communication.

2. Serialized bytes are sent via a channel

3. Code follows the async/.await paradigm of Rust and executed via an executor.

We chose the channel to be a mpsc (Multi-producer, single-consumer) channel and the
executor to be tokio [51].

Chapter 4. Implementations 21

4.6 Miscellaneous

In this section, we explain the implementation and design decisions we made for the
entire codebase.

4.6.1 Building the Protocol with Rust

We chose the Rust programming language to implement the protocol.

Rust is a general purpose programming language that focuses on safety and performance.
On the safety side, it focuses on type safety by have algebraic data types and enforces
memory safety using lifetimes [39]. On the performance side, it has similar performance
with C and C++ and is 10X to 100X or more faster than Python [1, 2]. In recent years,
Rust became a choice for increasing numbers of cryptographic projects in industry,
providing high quality, maintained and audited libraries [4, 24, 45, 53].

4.6.2 Modular Design of Codebase

The codebase is organized by leveraging the Rust Module System. Each protocol is
implemented in a module. Developers can choose to use each protocol individually as a
library. For instance, the black box Πcom in Π5Ext and ΠBGRRV can easily be swapped
to another commitment scheme other than Naor Commitment. Schnorr’s Σ protocol can
be used independently from ΠNM.

4.6.3 Improving Code Readability

This section outline the efforts to improve code readability within our codebase.

4.6.3.1 Macros That Reduce Code Duplication

In the asynchronous protocol, message sending/receiving through channels was written
with Rust declarative macros to avoid code duplication. Macros are a way of writing
code that writes other code, which is known as metaprogramming [39].

Only variables, types and error messages are changed in the different messages that are
sent and received through channels. We wrote the following macros that take in these
fields and produce the corresponding code.

#[macro_export]
macro_rules! send_message {
($s:ident, $field: tt, $m:ident, $e:literal) => {
let mut bytes = Vec::new();
$m.serialize_uncompressed(&mut bytes)
.map_err(|_|

NMZKErrors::SerializationFailure($e.to_string()))?;
$s.$field.send(bytes).map_err(|_|

NMZKErrors::CannotSend($e.to_string()))?;
};

Chapter 4. Implementations 22

}

#[macro_export]
macro_rules! receive_message {
($s:ident, $field: tt, $m:tt, $e:literal, $dety:ty) => {
let r_bytes = $s.$field.recv().await;
let $m = match r_bytes {

Some(bytes) => <$dety>::deserialize_uncompressed(&*bytes)
.map_err(|_|
NMZKErrors::DeSerializationFailure($e.to_string()))?,

None => return Err(NMZKErrors::NotReceived($e.to_string())),
};
$s.$m = $m.clone();

};
}

After this was implemented, sending and receiving messages can be written in a single
line of code without having to repeat 5-10 lines of code in distinct rounds of the protocol.

pub async fn round1(&mut self, w: G::ScalarField)
-> Result<(), NMZKErrors> {
...

send_message!(self, commiter_sender, pi1, "Pi 1");

...
}

...

pub async fn round5(&mut self) -> Result<(), NMZKErrors> {
receive_message!(
self,
commiter_receiver,
com3,
"Com 3",
InnerProductEvaluation::<G::ScalarField>

);

...

send_message!(self, commiter_sender, com4, "Com 4");

...
}

Chapter 4. Implementations 23

4.6.3.2 Type Aliases That Avoid Type Complications

Messages types are transformed with type aliases to avoid writing long types in the
codebase. In round 8 of the protocol, the receiver R sends committed message c1 and
decommit message of Π5Ext dec. The type of this message is aliased to be

pub(crate) type C1Dec<S> = (
Vec<S>,
(Vec<S>, bgrrv::commiter::DecommitMessage<S>,
naor_commit::naor_ext_commit::DecommitMessage<S>),

);

Aliasing improves readability of our codebase by allowing us to write shorter types for
function signatures and message serialization.

4.6.4 Error Handling Design

Thiserror crate is used for error handling [21]. The following is an example of an error
enum implementation in our codebase.

#[derive(Error, Debug)]
pub enum NMZKErrors {
#[error("failed to serialize {0}")]
SerializationFailure(String),

#[error("failed to deserialize {0}")]
DeSerializationFailure(String),

#[error("failed to send {0}")]
CannotSend(String),

#[error("{0} not received")]
NotReceived(String),

#[error(transparent)]
SchnorrErrors(#[from] SchnorrErrors),

#[error(transparent)]
WEXTErrors(#[from] WEXTErrors),

}

This enum allows easy importation of error types for developers that indent to use our
codebase, which allow flexibility of errors handling in their projects.

Chapter 4. Implementations 24

4.6.5 Testing & Profiling

We have employed both unit and integration tests of the entire protocol ΠNM and its
subcomponents. Here is an example snapshot of our asynchronous integration protocol
test.

#[tokio::test]
async fn nmzk_protol_test() {
use ark_bls12_377::{Fr, G1Affine};
use ark_ff::UniformRand;
let (mut c, mut r) = Protocol::<G1Affine>::init().unwrap();

let mut rng = rand::thread_rng();
let w = Fr::rand(&mut rng);
c.round1(w).await.unwrap();
r.round2().await.unwrap();
c.round3().await.unwrap();
r.round4().await.unwrap();
c.round5().await.unwrap();
r.round6().await.unwrap();
c.round7().await.unwrap();
r.round8().await.unwrap();
c.round9().await.unwrap();
r.receive_pi3().await.unwrap();
r.verify().unwrap();

}

These tests revealed a number of bugs in our implementation. One of which is an xor
bug of field elements F⊗F. We were packing bits in field elements F and xoring them
occasionally result in an element outside of the field. We have substituted xor with
addition and subtraction to avoid “field overflow”.

Chapter 5

Concluding Remarks

5.1 Division of Work

My collaborator Xuhan Zhang implemented the initial version of Π3Ext and Schnorr’s
Σ Protocol, while I implemented Π3R

BGRRV , Πcom (Naor Commitment Scheme), Π5Ext
and ΠNM. I was in charge of merging our work and redesigned the Π3Ext and Schnorr’s
Σ-Protocol during the process. I was also responsible for testing and benchmarking the
implementation. We collaborated on ZKBoo integration as an alternative Σ-Protocol.

5.2 Obstacles

5.2.1 Interfacing Protocols with Traits

One of our objectives is implement a codebase that is modular and extensible. However,
we failed to do this for Π3Ext as we soon run into type complexity problems. See
Appendix B for a snapshot of the trait “CommitmentScheme” and struct “ExtCommit-
mentCommiter” we implemented.

We did not use this version of Π3Ext . Instead we implemented Π5Ext directly to avoid
complex types.

5.3 Future Improvements

We anticipate numerous opportunities for enhancing the codebase. This includs imple-
menting a more modular design, increasing test coverage, conducting code profiling
and optimization, and incorporating more parallelization with Rayon [46].

25

Bibliography

[1] Benchmarks for programming languages and compilers, Which program-
ming language or compiler is faster. https://programming-language-
benchmarks.vercel.app/.

[2] Which programming language is fastest? (Benchmarks Game).
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html.

[3] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. Ligero: Lightweight sublinear arguments without a trusted setup.
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017.

[4] arkworks contributors. arkworks zksnark ecosystem, 2022.

[5] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via
lookups. Cryptology ePrint Archive, Paper 2023/1217, 2023. https://eprint.
iacr.org/2023/1217.

[6] Elaine B. Barker. Recommendation for key management:. Technical report, 5
2020.

[7] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge
arguments based on any one-way function. In Walter Fumy, editor, Advances
in Cryptology — EUROCRYPT ’97, pages 280–305, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero
knowledge with no trusted setup. In Annual International Cryptology Conference,
pages 701–732. Springer, 2019.

[9] Daniel Bernstein. Chacha, a variant of salsa20. 01 2008.

[10] Bheisler. Github - bheisler/criterion.rs: Statistics-driven benchmarking library for
rust. https://github.com/bheisler/criterion.rs.

[11] Vincenzo Botta, Michele Ciampi, Orsini Emmanuela, Luisa Siniscalchi, and Ivan
Visconti. Black-box (and fast) non-malleable zero knowledge.

[12] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 947–964, 2020.

26

Bibliography 27

[13] Hai Brenner, Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. Fast
non-malleable commitments. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[14] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón. Formalising
σ-protocols and commitment schemes using crypthol. IACR Cryptol. ePrint Arch.,
2019:1185, 2019.

[15] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle attack
to the https protocol. IEEE Security and Privacy, 7(1):78–81, 2009.

[16] Michele Ciampi, Emmanuela Orsini, and Luisa Siniscalchi. Four-Round Black-
Box Non-malleable Schemes from One-Way Permutations, pages 300–329. 01
2023.

[17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Con-
current non-malleable commitments (and more) in 3 rounds. pages 270–299, 08
2016.

[18] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-
round concurrent non-malleable commitments from one-way functions. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO
2017, pages 127–157, Cham, 2017. Springer International Publishing.

[19] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297, April 1965.

[20] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[21] Dtolnay. GitHub - dtolnay/thiserror: derive(Error) for struct and enum error types.

[22] Manuel Eberl. Fisher–yates shuffle. Archive of Formal Proofs, September 2016.
https://isa-afp.org/entries/Fisher_Yates.html, Formal proof develop-
ment.

[23] Ethan. GitHub - Ethan-000/zkboo: ZKBoo.

[24] facebook. GitHub - facebook/winterfell: A STARK prover and verifier for arbitrary
computations. https://github.com/facebook/winterfell.

[25] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

[26] Ronald Aylmer Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. Journal of the American Statistical Association, 39(228):523,
12 1944.

[27] Ariel Gabizon, Zachary J. Williamson, and Oana-Madalina Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

Bibliography 28

[28] Geometryresearch. GitHub - geometryresearch/zkboo: ZKBoo.

[29] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security Symposium, 2016.

[30] Shafi Goldwasser, Yael Kalai, and Guy Rothblum. Delegating computation:
Interactive proofs for muggles. volume 62, pages 113–122, 5 2008.

[31] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems. In Symposium on the Theory of Computing, 1985.

[32] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 51–60, 2012.

[33] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic
approach to non-malleability. 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 41–50, 2014.

[34] Brendan Gregg. Flame graphs. https://brendangregg.com/flamegraphs.html.

[35] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory.

[36] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE
Trans. Inf. Theory, 18:652–656, 1972.

[37] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Zk-img: Attested
images via zero-knowledge proofs to fight disinformation, 2022.

[38] Allen Kim, Xiao Liang, and Omkant Pandey. A new approach to efficient non-
malleable zero-knowledge. In IACR Cryptology ePrint Archive, 2022.

[39] Steve Klabnik and Carol Nichols. The Rust Programming Language. 2017.

[40] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for
convolutional neural network predictions and accuracy. Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, 2021.

[41] James L. Massey. THRESHOLD DECODING. Technical report, 4 1963.

[42] Moni Naor. Bit commitment using pseudo-randomness. In Annual International
Cryptology Conference, 1989.

[43] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. 2013 IEEE Symposium on Security and Privacy,
pages 238–252, 2013.

[44] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols
from one-way functions. In Theory of Cryptography Conference, 2009.

[45] PolygonZero. Plonky2: Fast recursive arguments with plonk and fri.
https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf.

[46] Rayon-Rs. Github - rayon-rs/rayon: Rayon: A data parallelism library for rust.
https://github.com/rayon-rs/rayon.

Bibliography 29

[47] Irving S. Reed, Gustave Solomon, and Kim Hamilton March. Polynomial codes
over certain finite fields. Journal of The Society for Industrial and Applied
Mathematics, 8:300–304, 1960.

[48] Matthew J. B. Robshaw and Olivier Billet. New Stream Cipher Designs. 1 2008.

[49] C. P. Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pages
239–252, New York, NY, 1990. Springer New York.

[50] Tsz-Wo Sze. Deterministic primality proving on proth numbers, 2011.

[51] Tokio-Rs. GitHub - tokio-rs/tokio: A runtime for writing reliable asyn-
chronous applications with Rust. Provides I/O, networking, scheduling, timers, ...
https://github.com/tokio-rs/tokio.

[52] Andrew Waterman and Krste Asanovć. The risc-v instruction set manual. 2019.

[53] Zcash. GitHub - zcash/halo2: The Halo2 zero-knowledge proving system.
https://github.com/zcash/halo2.

Appendix A

Reed Solomon Encoding

pub(crate) fn reed_solomon_encode<F: PrimeField + FftField>
(evals: &[F]) -> Vec<F> {
let domain = GeneralEvaluationDomain::<F>::
new(evals.len()).unwrap();

let coeffs = domain.ifft(evals);
let domain = GeneralEvaluationDomain::<F>::
new(evals.len() * (1.0 / RSRATE) as usize).unwrap();

domain.fft(&coeffs)
}

30

Appendix B

Trait Complexity When Implementing
Π3Ext

pub trait CommitmentScheme<
F,
E,
InitMessage: IndexMut<usize>,
Commitment: Clone,
SecretState: std::cmp::PartialEq + Clone,
> where
<InitMessage as Index<usize>>::
Output: Sized + IndexMut<usize>,
<<InitMessage as Index<usize>>::
Output as Index<usize>>::Output: Sized + Clone,

{
fn init(len: usize) -> Result<InitMessage, E>;
fn commit(
msg: &[F],
init_m: <<InitMessage as Index<usize>>::
Output as Index<usize>>::Output,
) -> (Commitment, SecretState);
fn open(

msg: &[F],
init_m: <<InitMessage as Index<usize>>::
Output as Index<usize>>::Output,
commit: Commitment,
secret_state: SecretState,
) -> Result<(), E>;

}

type CommitmmentsAndSecreState<F, Commitment, SecretState> =
Vec<((Vec<F>, Commitment, SecretState),

31

Appendix B. Trait Complexity When Implementing Π3Ext 32

(Vec<F>, Commitment, SecretState))>;

pub struct ExtCommitmentCommiter<
C: CommitmentScheme<F, E, InitMessage, Commitment, SecretState>,
F: PrimeField,
E: Debug,
InitMessage: IndexMut<usize>,
Commitment: Clone,
SecretState: std::cmp::PartialEq + Clone,
> where
<InitMessage as Index<usize>>::
Output: Sized + IndexMut<usize>,
<<InitMessage as Index<usize>>::Output as Index<usize>>::
Output: Sized + Clone,

{
len: usize,
message: Vec<F>,
commitments_and_secrete_state:
CommitmmentsAndSecreState<F, Commitment, SecretState>,
c: PhantomData<C>,
f: PhantomData<F>,
e: PhantomData<E>,
init_m: InitMessage,

}

