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Abstract
Recent work has shown that pre-trained language models (PLTMs) do not exhibit numer-
ical commonsense in English (e.g a car has four wheels). In this project, we introduce
a new multilingual numerical reasoning task, MNUMERSENSE, which contains 22k
probes in Chinese (9.4k probes), Russian (9.1k probes), and Arabic (3.8k probes).

We find that, while finetuning improves results, poor performance occurs across mBERT,
xlm-RoBERTa, mT5, mBART, and mGPT. A thorough exploration of this performance
finds models occasionally struggle to attend to parts of a sequence necessary for rea-
soning and tend to predict numbers that exist only within a small subset of the possible
predictions. We find that cross-lingual learning can occur and that given enough training
samples, models learn plural forms in numeric reasoning. Finally, we explore linguistic-
specific phenomena in each of our languages. Specifically, we look at Russian case
declension, Arabic declension, and Chinese word similarity in numerical reasoning.
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Chapter 1

Introduction

This section provides a brief overview of our project, including the motivation, ob-
jectives of the project, and our contributions. Finally, we provide the outline of the
report.

1.1 Motivation

The use of natural language systems is growing throughout the world today and com-
monsense reasoning is an area of development we must work on in order to ensure
reliable, interpretable, and trustworthy systems. In this project, we look at numerical
reasoning across languages and aim to evaluate and contrast how different languages
perform on these and if they take advantage of linguistic-specific phenomena. Numeri-
cal reasoning is using commonsense inferences about numbers. For example, a dog has
two eyes and a car has four wheels.

There currently does not exist a dataset that addresses numerical reasoning across multi-
ple languages, and this project fills this gap. To create this dataset, we crowdsourced
translation based on an English numerical reasoning dataset called NUMERSENSE by
Lin et al. (2020). This consists of Arabic, Russian, and Chinese and provides a valuable
resource for researchers working on commonsense and multilinguality in natural lan-
guage processing (NLP). More multilingual datasets are important as they democratize
NLP away from English and improve access to NLP systems and research for those
who don’t speak the language.

Using this dataset, we perform experiments on mBERT, xlm-RoBERTa, mT5, mBART,
and mGPT. Our experiments reveal that models struggle to interpret numerical reasoning,
even when finetuned. They often get stuck predicting only a small subset of numbers,
almost randomly, and struggle to attend to important parts of a sentence. We also find
severe problems with object-bias, where models consistently predict the same number
regardless of the subject noun. These reasons motivate the need to improve state-of-the-
art PTLMs in numerical reasoning. We look at low-resource (few samples) training in
Arabic, which is important as there are many existing languages without many samples
and we need models that can learn well under these constraints. We see that while
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1.2. OBJECTIVES 2

performance is worse than other languages, it still achieves close performance. We
also look at weather models can take advantage of plurality, we find that PTLMs can
take advantage of plurality in Russian after finetuning but fail to learn this reasoning in
Arabic.

We also perform experiments on cross-linguality, seeing if representations of numeric
reasoning are language-specific or if they can be learned across different languages.
These results were typically worse than solely monolingual results. However, they
provide promising results that our models can leverage knowledge learned from one
language to improve performance in another. We additionally contrast our experiment
with machine translation (MT) systems, finding poorer results than our new dataset.
Though MT still roughly corresponds to crowdsourced performance and represents the
initial issues we analyzed.

Finally, we explore language-specific phenomena. These experiments are crucial for
developing models that can handle the nuances and differences of languages. We look
at declension in both Russian and Arabic, finding that pre-trained models severely
struggle with predicting both the correct number and its declension type. We also see
that Russian struggles with instrumentals but performs strongly when no declension
is required. Finally, we look at word similarity in Chinese. We find that models don’t
attend much on number units, and typically predict the same regardless.

1.2 Objectives

• Creating a multilingual dataset for numerical reasoning.

• Exploring and analyzing the performance of different state-of-the-art PTLMs on
multilingual reasoning.

• Exploring if cross-lingual learning can take place from one language to another.

• Seeing if models take advantage of linguistic phenomena across and specific to
languages in relation to numerical reasoning.

1.3 Contributions

The contributions to this project are as follows:

• Created a numerical reasoning dataset with over 22k examples.

• Evaluated and investigated performance on mBERT, xlm-roBERTa, mBART,
mT5 and mGPT.

• Analysed the impact of plurality on model performance.

• Performed language-specific experiments on case declension in Russian, declen-
sion in Arabic, and Chinese word reliance.
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1.4 Report outline

The report is structured as follows:

• Chapter 2 provides the background required for this project. It covers our dataset,
the language models which we use, and related work to our project.

• Chapter 3 describes how we collect our data, crowdsourcing metrics, and the
experiments we performed to ensure that the data is of high quality.

• Chapter 4 covers how we set up our models for experiments, describing their
preprocessing, finetuning, and inference.

• Chapter 5 provides a brief description and motivation along with the result and
analysis for all the experiments we perform.

• Finally, we conclude the report in Chapter 6. This includes our conclusion, a
results overview, and potential future work.



Chapter 2

Background and Literature Review

This chapter describes the background information and a literature review of related
work to this project. We explain language models before looking at numerical reasoning
in relation to our task. Finally, we look at related work on commonsense reasoning and
probing language models.

2.1 Language models

In this section, we discuss the language models for commonsense. This section intro-
duces the Transformer and looks at how its architecture is applied to BERT, RoBERTa,
BART, T5, and GPT-3. We then see how these models function on multilingual models.

2.1.1 Transformers

The basic Transformer (Vaswani et al., 2017) is a deep learning model that uses self-
attention. This is where we encode our input in some way that allows us to better
represent our data for learning, then we can decode it to generate an output. The
architecture of the Transformer can be seen in Figure 2.1, where the left half is the
encoder and the right is the decoder. Self-attention is an attention mechanism where
we use the positional encoding of a sequence in order to find some representation of it.
To add this positional encoding we use a sinusoidal function based on the position and
model dimensionality. For example, if we looked at the sentence, "A dog has two eyes
and four legs", we would recognize that two is dependent on dog and eyes. Attention is
a technique that aims to select parts of an embedding to pay attention to.

Gated recurrent neural networks (GRUs) (Cho et al., 2014) process some nth token
based on its input, n−1. Theoretically, this should lead to some input being able to
suitably propagate throughout a network. As we increase our network size we fall
at risk to the Vanishing Gradient Problem (VGP) (Pascanu et al., 2013). This means
any representation of the input disappears and no learning can take place. Attention,
however, allows us to access any previous state in the sequence. In the simplest form,
this would be the weighted average of the inputs.

4



2.1. LANGUAGE MODELS 5

Figure 2.1: The architecture of the Transformer - figure taken from (Vaswani et al., 2017).

xpooled =
T

∑
t=1

a(e(t))e(t),e(t) = embedding(x(t);V ) (2.1)

The particular attention we look at is "Scaled Dot-Product Attention". The input is
made up of queries and keys of size dk and the values at dimension dv. In practice,
we look at a set of queries (Q) simultaneously, with its set of keys (K) and values (V).
Figure 2.2 shows us an example of how attention on English to French translation is
performed.

Attention(Q, K, V) = softmax(
QKT
√

dk
V ) (2.2)

This only performs a single attention function. Multi-head attention is the practice of
linearly projecting the keys, queries, and values h times, each with different projections
learned in parallel yielding dv dimensional outputs. These are then concatenated and
then projected. This allows us to attend to multiple parts of a sequence independently.

We also investigate some of our results through attention distribution visualization. We
get the attention scores for all the heads in relation to some number word. This allows
us to see what parts of a sentence the model finds important in relation to the number.
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Figure 2.2: Attention on the translation from English (key) to the French word ’la’ (query).
Darker lines indicate stronger attention. Figure taken from (Olah & Carter, 2016)

2.1.2 BERT & RoBERTa

BERT MLM

Input Hello [MASK] are you doing ?

Output Hello are you doing ?

how, what...

Figure 2.3: BERT/RoBERTa’s masked word filling objective.

Based on the Transformer architecture, BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a language model which has been achieving
state-of-the-art results on a variety of NLP problems. BERT reads the entire sentence
at once. This has been shown to give a better understanding of the text as you can see
dependencies on all the surroundings (i.e. any words in that sequence) of a word. It
achieves this by masking a random word in a sentence and attempting to predict the
masked word, as seen in Figure 2.3. It has a second learning objective of next-sentence
prediction, however, we do not need to use this in this project. Models such as BERT
are usually pre-trained on an unlabelled, plain text corpus, allowing it to have some
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understanding of the language it’s trained on. It can then be fine-tuned for a specific
task. Its architecture can be seen as the left half (encoder) of the Transformer in Figure
2.1.

RoBERTa (Liu et al., 2019) (Robustly Optimized BERT Pretraining Approach) was then
introduced as BERT was found to be significantly under-trained. This follows a similar
architecture to BERT, but instead trains for longer and does not have next sentence
prediction as a learning objective. It also uses dynamic masking, which ensures that the
same sentence is masked at different positions over each epoch.

2.1.3 GPT-3

GPT-3 (Generative-Pre-trained Transformer 3) (Brown et al., 2020) is an autoregressive
model, meaning it only processes input from left to right. This means it cannot take
advantage of BERTs bidirectional learning, however, it can be trained on a much larger
dataset. Autoregressive LMs have been shown to perform well as few-shot learners,
which is where a learner can be trained on a task with just a few examples. The
architecture of GPT is the right half (decoder) of Figure 2.1. The decoder means that
GPT is able to generate text, unlike BERT and RoBERTa.

2.1.4 BART

BART (Bidirectional and Auto-Regressive Transformer) (Lewis et al., 2019) is a
sequence-to-sequence model that is pre-trained by corrupting text with some arbi-
trary noise function and learning how to recreate this text. Pretrained objectives also
include text infilling, which masks a span of text and aims to predict it from a single
<mask> token. Sentences are shuffled in a random order based on full stops. The
model uses a bidirectional encoder, similar to BERT, and uses an autoregressive decoder,
similar to GPT (meaning it can generate text). Such an architecture can be seen in
Figure 2.4.

Figure 2.4: The architecture of BART. Figure taken from (Lewis et al., 2019)
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2.1.5 T5

T5 (Text-to-Text Transformer Transformer) (Raffel et al., 2019) is based on the vanilla
encoder-decoder transformer, with a pre-trained unsupervised objective of randomly
dropping out words and replacing them with a sentinel token. This is a token that spans
any length and is then trained to predict the gap. This can be seen in Figure 2.5. T5 is
trained on some supervised learning objectives, for example, you can prepend the prefix
’summarize:’ to make the model summarise the succeeding paragraph.

Figure 2.5: Pretraining and finetuning of T5, sentinal tokens are indicated by <M>.
Figure taken from (Raffel et al., 2019)

2.1.6 Multilingual models

The models which we have discussed all have multilingual variants, allowing them to
perform on multiple languages. All of these models have been pre-trained on English,
Arabic, Russian, and Chinese.

mBERT (Devlin et al., 2018) is trained on 102 languages, which were chosen based on
the top 100 largest Wikipedias. XLM-RoBERTa (Conneau et al., 2019) pre-trained on
CommonCrawl Corpus instead of Wikipedia as CommonCrawl is significantly larger.
The model was trained on cross-lingual masked language modeling objectives and has
been found to perform significantly better than mBERT on a variety of cross-lingual
benchmarks. mGPT (Shliazhko et al., 2022) is based on the GPT-3 architecture using
GPT-2 sources and is trained on 60 languages using Wikipedia and the Colossal Clean
Crawled Corpus (C4). mBART (Liu et al., 2020) trained on large mono-lingual corpora
using the same objective as BART. This can then be fine-tuned to a specific task. mT5
(Xue et al., 2020) trained on C4. Unlike T5, it is not pre-trained on any downstream
tasks.
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2.2 NumerSense

Commonsense knowledge consists of facts about the world that are considered widely
known. Numerical commonsense knowledge is a type of knowledge that we can use to
understand a numerical relation between entities. NUMERSENSE (Lin et al., 2020) is a
numerical reasoning dataset where the goal is to guess a number between zero and ten
in a masked sentence, examples of this task is found in Figure 2.6. This is the task that
we will be translating and performing experiments on. These tasks come from a variety
of categories such as objects, maths, and geography. A full list of these categories, with
examples can be found in Table 2.1.

Category Example

Objects A car has four wheels.
Biology People have two lungs.
Geography The UK is made up of four countries.
Maths Two plus two is four.
Physics 1G is ten meters per second, per second.
Unit There are three meals in a day.
Geometry A triangle has three sides.
Misc. There are no princes in the United States.

Table 2.1: Example sentences for each category in NUMERSENSE

Recent research has shown the pre-trained language models PTLMs may possess the
commonsense necessary for this. Lin et al. (2020) reported that BERT and RoBERTa,
even when fine-tuned, perform poorly on this dataset. The full results for these are
found in Table 2.2.

Accuracy

pretrained

bert-base 32.0
bert-large 37.6
xlm-roberta-base 36.0
xlm-roberta-large 45.9
gpt-2 29.9

finetuned

bert-large 50.0
xlm-roberta-large 54.0

human bound 89.7(α)/96.3(β )

Table 2.2: Results from (Lin et al., 2020). α = no external information, β = Wikipedia is
allowed.
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A triangle has [MASK] sides.

zero (2%) three (54%) ten (14%)... ...

A car usually has [MASK] wheels.

zero (32%) four (29%) ten (8%)... ...

Figure 2.6: Coloured boxes indicate the chosen number, where green means the
prediction is true to life. The percentage indicates example probabilities attributed by to

that guess, with the maximum being selected.

2.3 Related work

In this section, we look at the related work of our project. We discuss the potential of
PTLMs to understand or encapsulate common sense. We then look at previous work on
numerical reasoning, which covers some existing tasks and attempts to see if PTLMs
encode numbers properly. We then look at existing multilingual commonsense tasks
and cross-lingual learning. Finally, we look at previous attempts at probing PTLMs.

2.3.1 Commonsense in PTLMs

Prior work has been done that shows PTLMs may possess commonsense knowledge.
Petroni et al. (2019) argued the PTLMs could store relational knowledge from the
training data and act as knowledge bases. This is potentially advantageous as you
have to do no extra work to insert knowledge into these models. They found BERT
performed well in retrieving factual information and relations.

Additionally, Bouraoui et al. (2019) argued that BERT captured relational knowledge
beyond its word embeddings. They look at these relations in a variety of domains,
including commonsense. Such behavior was not replicated in NUMERSENSE, and it
was found that LMs do not possess numerical commonsense in English. We aim to look
at this same problem in a cross-lingual context.

2.3.2 Numerical commonsense

There have been a number of studies that have explored numerical reasoning. Forbes
& Choi (2017) and Goel et al. (2019) have both looked at comparison problems (e.g.
a stone is heavier than a feather) in PTLMs. (Goel et al., 2019) found that BERT
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performed well in comparison tasks. Wallace et al. (2019) examines how NLP models
embed numbers (the same way as text). They explore if a number can be decoded from
the word embedding (e.g. "71" -> 71.0. They find that BERT struggles to understand
numbers in a large range [1,1000], but generally performs well in a small range [1, 99].
They conclude that this is likely due to sub-word pieces not being suitable for encoding
numbers.

NUMBERGAME is another numerical reasoning task proposed by Mishra et al. (2020)
that evaluates numerical reasoning across eight formats. These formats are called
missing numerical knowledge, maths in other domains, quantitative comparison, com-
pletion type, reading comprehension with explicit math, reading comprehension with
implicit maths, quantitative natural language inference, and arithmetic word problems.
In particular, Mishra et al. (2020) found that model performance was extremely poor
when numerical knowledge beyond the sentence was required.

2.3.3 Multilinguality

Mikolov et al. (2013) explore the embeddings of words across languages. They find
that similar words in different languages are embedded similarly, and a linear mapping
is all that’s required to learn this equivalency. This implies promise in cross-lingual
learning and the potential benefit of combining knowledge from multiple languages.

There have been a number of multilingual benchmarks, such as TYDI (Clark et al.,
2020), which is a QA benchmark. There is also XTREME (Hu et al., 2020) and XGLUE
(Liang et al., 2020), which are both multi-task multilingual benchmarks. However,
these do not measure commonsense reasoning. XCOPA (Ponti et al., 2020) evaluates
multilingual causal commonsense reasoning. X-CSR (Lin et al., 2021), introduces two
new datasets, X-CSQA and X-CODAH. These evaluate QA tasks and the ability to
complete the most plausible sentences respectively. There are no existing datasets for
multilingual numerical commonsense and this project will serve as that extension.

2.3.4 Probing

Probing tasks have been performed on PTLMs that analyze linguistic phenomena.
Clark et al. (2019) explore the relationship between attention weights and linguistic
syntax. They look at BERT and find that attention heads match linguistic syntax and
co-reference.

Additionally, Tenney et al. (2019) explore BERT and finds that its layers discover the
classic NLP pipeline (POS tagging, parsing, NER, etc.) In particular, they see that the
lower layers represent syntactic connections and the higher layers represent complex
semantic relations. However, Niu et al. (2022) argue that, while BERT does replicate
linguistically founded relations, their representation is more nuanced than being divided
into layers. Similar to Lin et al. (2020), we can see how attention behaves in Figure
2.7. The peaks represent attention to that word in the said layer, we see that chicken
and road are attended to in the middle layers. Implying some connection between those
words and crossed.
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Figure 2.7: Attention distribution of "crossed" from "the chicken crossed the road" on
mBERT.

In addition to the work described in Section 2.3.1, some work has been done probing
PTLMs for commonsense. Talmor et al. (2019) find that different PTLMs have different
reasoning abilities (i.e RoBERTa is able to perform reasoning where BERT is not). For
example, RoBERTa can compare numbers, even in a zero-shot setting while BERT
cannot. However, these models are generally not able to deal with common sense
abstractly. For example, RoBERTa can perform comparison tasks of ages, but if these
ages are much older than the average human, it quickly breaks.

Zhou et al. (2019) evaluates a variety of PTLMs on seven benchmarks. These bench-
marks are Conjunction Acceptability (Zhou et al., 2019), Winograd Schema Challenge
(Levesque et al., 2012), Sense Making (Wang et al., 2019), Sense Making with Rea-
soning (Wang et al., 2019), Situations With Adversarial Generations (SWAG) (Zellers
et al., 2018), HellaSWAG (Zellers et al., 2019) and Argument Reasoning Comprehen-
sion Task (Habernal et al., 2018). They find that, while language models are able to
perform simple reasoning tasks (e.g He didn’t get sleep therefore he is tired), they fail
for problems that require multiple inference steps (e.g I asked him to clean my car and
the room, and he only cleaned the car. So I won’t pay him).

We will implement probing tasks in our analysis, including an analysis of attention and
object-bias experiments.



Chapter 3

Data Collection

This chapter describes our data collection efforts for this project. We first discuss the
languages we chose, and why. Then, we discuss how we collected our data, its quality,
and its limitations.

3.1 Language choice

There were a number of potential and interesting languages for our task, and the primary
consideration for these was plurality. They behave in interesting ways when working
with numbers. Arabic nouns can be either singular, dual, or plural, which may give the
models more clues in classifying numbers. You can see examples of this below, with
the different attachments to I. ËA£.

english => arabic

one student => Yg@ð I. ËA£

two students => 	
àA
�
JJ. Ë A£

three students => H. C£
�
é
�
KC

�
K

Russian plurals are split into three groups; singular, 2-4, and 0 & 5+. Which is visible
in the attachments to student.

english => russian
one student => odin student

two students => dva studenta

five students => p�t~ studentov

13
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This could prove an interesting contrast to Arabic. Both Arabic and Russian have a
rich morphology with their numbers, unlike English. Chinese, on the other hand, does
not have plural forms. Numbers generally have one form, however, there are a few
exceptions, such as having two forms for ’two’, one for counting (二) and the other
for finance (贰). All these languages have different alphabets, which should make for
interesting analysis in cross-lingual experiments.

3.2 Data collection

In this section, we discuss data collection through machine translation and crowdsourc-
ing. Crowdsourcing is the practice of getting a group of people to produce data. We
first look at machine translation. Then, we look at crowdsourcing metrics and Amazon
MTurk. We conclude that its quality in pilot studies is poor. Then, we perform data
collection in-house and find a significant increase in data quality. Finally, we discuss
the limitations of our translations.

3.2.1 Machine Translation

As a baseline, we translated our dataset using Google’s Cloud Translation API. This
should give a soft lower bound on our performance as well and help in evaluating the
quality of translations as discussed in the succeeding subsections. As these use machine
translation (MT), we weren’t able to specify rules for formatting, such as ensuring
numbers are in their written form and bracketed. This can be seen in Table 3.1. Due to
the untrustworthiness of MT and its poor results in maintaining bracketing, we instead
try collecting our data through crowdsourcing.

Success rate

Russian 0.88
Chinese 0.76
Arabic 0.73

Table 3.1: Success rate of well-formatted sentences versus all sentences (n = 9648) for
each language using Google Translate. The success rate is the % of sentences that
have been translated while maintaining the correct formatting.

3.2.2 Crowdsourcing metrics

BLEU

BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002) is a metric ranging
from zero to one, in which you can evaluate how similar two strings are. It’s typically
used for evaluating MT quality however it is also useful in crowdsourcing. BLEU allows
us to see how close our crowd-sourced translation is to MT. If someone gets consistently
high BLEU scores over this pair, then they are likely using machine translation software.
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It is calculated as follows (for some n-gram):

BLEU = min(1,
output-length

reference-length
)(

n

∏
i=1

precisioni)
1
n (3.1)

TER

TER (Translation Edit Rate) (Snover et al., 2006) is a measurement of the number of
changes required to one string in order to recreate the other. Similar to BLEU, this can
be used to evaluate how different a machine-translation/crowdsourced pair is. Snover
et al. (2006) found that TER has higher correlations with human judgments. Edits
are the number of changes (insertion, substitution, deletion) needed to get back to the
original sentence.

TER =
# of edits

average # of reference words
(3.2)

3.2.3 MTurk

Amazon Mechanical Turk (MTurk) is a crowdsourcing platform in which ’workers’
from across the world can partake in jobs called Human Intelligence Tasks (HITs).
Crowdsourcing is an effective means of creating a high-quality multilingual dataset
versus machine translation (Behnke et al., 2018). MTurk is popular in data collection
due to the ease of finding workers and the low cost to collect data. Additionally, its
quality is generally high when compared to professionals (Zaidan & Callison-Burch,
2011).

There are a number of ethical concerns about using this platform. It’s argued that
the platform can be demeaning to workers, as results appear like ’magic’ (Schuster,
2014). It’s the only option for many of those in poverty (Semuels, 2018), however,
the median salary is ∼$2/hr (Hara et al., 2017). We also see a difference in salary on
gender and country of residence (Hara et al., 2019). Tasks are paid per hit, making it
difficult to pay on an hourly basis. We attempt to alleviate this by estimating the time
per HIT and then extrapolating the pay to £15/hr. We believe this to be reasonable as
it’s significantly higher than the UK living wage (£10.42). We also anonymize the data
and add a feedback box for users.

We selected the countries available to our MTurk based on the highest worker quality for
that language based on (Pavlick et al., 2014). We create an interface, as seen in Figure
3.1. The first page contains instructions, with boxes where they could confirm they were
a native speaker of the language and wouldn’t use online machine translation programs.
The next page contained 16 English sentences and a box to enter their translation. As
machine translation was banned, our script disabled copy/pasting.

The results for the quality of each language can be seen in Table 3.2. These are on a
pilot study of 3 HITs (48 sentences), for 3 workers (if all HITs are valid). Immediately,
we see that only a small percentage of HITs were accepted in all languages. We found
that the same users claimed to be native to every language and bad data was a common
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occurrence. While they did have to state they were a native speaker, we had no way to
validate this.

Oftentimes Google Translate was used (classified as such when BLEU > 0.8), or they
didn’t attempt the task at all, either entering nothing or entering the original English.

(a) Instructions page

(b) Translation page

Figure 3.1: Interface for English-Arabic MTurk translation

bleu < 0.8 lang > 0.5 len > 0.75 brac = 1 num of hits overall

russian 0.56 0.60 0.80 0.60 25 0.08
chinese 0.38 0.77 0.77 0.58 26 0.08
arabic 0.45 0.55 0.55 0.55 22 0.00

Table 3.2: Success rate of each HIT for different quality measurements. All need to
be true for a HIT to be accepted. Lang is if the sentence is classified in its respective
language by LANGID, len is if the crowdsourced sentence is within 7 words of the original
sentence, brac is a check for correct bracket formatting. Overall checks if all of the
previous quality measurements are true.

3.2.4 In-house

We then collected the data in-house, by this, we mean from students/staff at the uni-
versity. This allowed us to personally vet each translator, allowing us to ensure that
they are a native speaker. It also meant any questions related to language-specific phe-
nomena could be asked. In order to increase time efficiency, we attached the machine
translation of each sentence beside the English, as seen in Figure 3.1. If the quality of
the translation was correct, the person could simply copy and paste it. Otherwise, they
were instructed to edit/rewrite as necessary.
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Figure 3.1: Example sentences for in-house translation from English to Russian.

We also decided to only translate approximately half of the dataset to Arabic, to allow
for low-resource experiments. We can see the final translation results in Table 3.3.
These results are discussed in-depth in Section 3.2.5.

in house sr mt sr

russian (n = 10444) 0.98 0.88
chinese (n = 10444) 0.98 0.76
arabic (n = 5504) 0.72 0.73

Table 3.3: Success rate (sr) of well-formatted sentences for each language using in-
house translation (n = total number of in-house sentences translated).

In order to evaluate a potential translator, we first gave them a set of 112 pilot sentences.
These could then be compared across translators for each language. We see the pilot
results in Table 3.4.

BLEU TER Exact

Russian 0.80 0.14 0.57
Chinese 0.77 0.11 0.21
Arabic 0.76 0.15 0.43

Table 3.4: In-house translation results from the same set of pilot sentences (n = 112).
Exact = sentence exactly matching MT

3.2.5 Limitations

We required the number, and only the number to be in written form and bracketed. For
example, "A cat has [four] legs and [two] eyes." This is necessary for evaluating and
training the task. However, this created issues when translating to Arabic. As discussed
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earlier, Arabic has three plurals, including a dual. Often, when referring to a dual noun
in Arabic it is unnatural to also say the number associated with it. Our example would
be translated as "[ 	àA 	JJ
«]ð Ég. P


@ [©K. P@] AîE
YË

�
é¢

�
®Ë@." The problem with this sentence is

that "[two] eyes" translates into "[eyes]", where the plural of eyes implies two. You
can see the effect this has on the number distribution by comparing the sub-figures in
Figure 3.2.

one two three four five six seveneight nine tenno/zero
0.00

0.05

0.10

0.15

0.20

Crowdsourced test set number distribution

(a) Crowd-sourced distribution.

one two three four five six seveneight nine tenno/zero
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Original test set number distribution

(b) Original English distribution.

Figure 3.2: Normalised distributions of the frequency of each number in the test set
(same sentences across all languages).

There were also some ungrammatical/bad sentences from the original data, such as
"T tetrahedron A volumetric connection element that connects [four] positions in a
field." Some sentences were impossible to translate into a given language as there was
no word/phrasing for the given English. For example, "Collaborative commerce is the
extension of core business processes beyond a company’s [four] walls." is impossible
to translate into Chinese. Both of these cases made sentences that were impossible to
translate.

It’s important to recognize that the dataset suffers from a cultural bias due to originally
being in English. What’s true in one language may not be true in another. Consider the
sentence "Continents are the [seven] main divisions of land on Earth.". This is true, in
English. However, continents are a cultural phenomenon (Lewis & Wigen, 1997) and in
other parts of the world the world consists of four to six continents. Our project left all
translations based on English commonsense.

We were not able to translate the original test set as its gold (true values for sentences)
was withheld. Additionally, the validation set did not replicate the style or structure of
the training/test sentences. The training set consists of sentences like "Electrons are the
smallest and lightest of the [three] particles and they have a negative charge." while the
validation set had "how do you win at tic-tac-toe get [three] of your symbols in a row".
Sentences in this style never appear in training. The test and validation sets contain
1,500 and 500 sentences. These sentences are the same (but translated) for all languages.
Sentences are only added to test/validation if they’re valid across all languages. If only
some of the sentences can be properly translated, they’re added to the training set.



Chapter 4

Approach

In this chapter, we discuss our preprocessing steps and the necessary adjustments to the
original task required for finetuning and inference.

4.1 Preprocessing

All our data is initially formatted with its sentence and brackets around any numbers
from zero to ten. All numbers are in written form and all possible numbers are listed in
Appendix A.2. Any sentences that were incorrectly formatted or contained different
numbers to the English original were thrown away.

Once that step has been completed, we remove bracketing on the training set. For our
test/validation set, given a sentence, we select a number word at random and replace it
with a <mask>, storing its true value in a gold set. If there are other bracketed numbers
in that sentence, their brackets are also removed.

Our dataset is tokenized in two ways, depending on the model used. WordPiece (Wu
et al., 2016) is used by mBERT and assumes that the input text uses spaces to separate
words, if it’s a language like Chinese, it tokenizes it into its component characters.
SentencePiece (Kudo & Richardson, 2018) is used by xlm-RoBERTa, mBART, MT5,
and m-GPT, and tries to use language-specific pre-tokenizers.

There were a few issues with the SentencePiece tokenization. In Chinese, it often tried
to combine a number with its unit (years, pounds, etc.). As we are trying to mask
the number only, we cannot finetune these. So, we performed a split on the specified
numerical characters during pre-tokenization, meaning the units are no longer attached.

19
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4.2 Finetuning and inference

In this section we discuss how we finetune and infer for our task, we look at each model
in the project and compare how they achieve this.

4.2.1 mBERT

Finetuning and inference for mBERT was very similar to that described in Lin et al.
(2020). We mask the number words in each sentence and finetune BERT on only these
tokens. Inference is performed by replacing the mask with possible number tokens and
seeing if those with the top score match the gold. Our contribution is extending the
words to Appendix A.2, depending on the language used.

Scores are calculated as follows:

s(word) = s(tokenword | sent) (4.1)

Where s() is the scoring function (model output logits), sent is the full sentence, and
tokenword is the token for the number word. After all scores are predicted, we perform a
softmax.

4.2.2 xlm-RoBERTa

With SentencePiece, some numbers were tokenized into multiple parts, such as "nine"
into "_ni", "ne". NUMERSENSE did not cover this case, so we adjust our finetuning to
mask all subwords that make up a number word. For inference, RoBERTa predicts only
one <mask> token. Single-token number words are calculated the same as mBERT.
For multi-token words, we input succeeding masks for each token. For example, if we
were trying to infer "nine" it would look like this:

_a _cat _has <mask> <mask> _lives
_a _cat _has _ni ne _lives

Scores are calculated as follows:

s(word) =
∑

n
1 s(tokeni | sent, tokeni−1, ..., token1)

n
(4.2)

Where tokeni refers to the ith token that makes up the word and n is the total number of
tokens.

4.2.3 mBART

mBART works mostly the same as xlm-RoBERTa. The only difference of note is that
BART can perform mask-fill on variable lengths, so we only require a single mask
token.
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4.2.4 mT5

T5 cannot make use of the standard mask-fill pipeline. So instead, we make use of a
workaround. We replace any number words in a sentence with a sentinel token. These
are a unique mask token for T5, as discussed in Section 2.1.5.

For example,

input: A cat has two eyes and four legs

Is finetuned as:

input: A cat has <extra_id_0> eyes and <extra_id_1> legs
labels: <extra_id_0> two <extra_id_1> four <extra_id_2>

Getting the loss using these inputs and labels effectively performs a mask-fill.

During inference, we replace our mask with a sentinel token. Then, we calculate the
score in the same way as Equation 4.2.

4.2.5 mGPT

With mGPT we get the probability of each sentence, this is done by replacing the mask
with some number word and getting its loss. Whichever word gets the lowest loss is
then our prediction. We do not report finetuning results as the model never learned.



Chapter 5

Experiments

In this chapter, we describe our experiments and their results. Experiment 1 looks
at whether fine-tuning can improve performance and, which model(s) perform best.
Experiment 2 compares the performance of machine-translated sentences versus those
of crowd-sourced. Experiment 3 is a breadth study of performance across languages, it
explores which models perform best and why. The experiments also explore whether
cross-lingual training improves performance. Finally, Experiment 4 is a depth study. It
explores some phenomena for the languages selected in the project.

In this chapter, we look at the results of the experiments discussed in the previous
chapter and analyze our findings. Model details can be found in Appendix A.

5.1 Experiment 1: Models

These experiments relate to the models that we’re using in this project, we compare
these models and look at why they perform differently.

5.1.1 Experiment 1a: Zero-shot versus training

This experiment compares zero-shot models to trained ones. We perform pre-trained
and finetuned experiments on our models. We measure this experiment on English,
Russian, Arabic, and Chinese. This experiment should be a useful metric as a general
overview of how data can impact performance.

We found that all results (Table 5.1) improved in performance after the training, which
was expected. We found that Arabic had the smallest improvement, which is likely
explained by the low training size.

Some model-language combinations had a large increase in performance, in particular,
we found pre trained Chinese mT5 and pre-trained Russian mBART generally performed
poorly. These significantly improved over finetuning. Interestingly, Russian had the
worst pretraining performance on mBART despite having the second-largest pretrained
corpus size, as per Table 5.5.

22
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Figure 5.1: Heatmap of the confusion matrix on Russian mBART. The y-axis refers to
the true number, ordered from 0 to 10 (top to bottom). The x-axis refers to the predicted
number, ordered from 0 to 10 (left to right). The number and colour of each block imply
how many have that true-prediction combination. We use this format for all heatmaps in
the project.

To see the impact of finetuning, we first compare our pretrained (Figure 5.1a) and
finetuned (Figure 5.1b) model. When pretrained, mBART tens to just predict a single
number (0), implying that the model doesn’t really care about the sentence in prediction.
However, when finetuned we see a diagonal line begin to form. Furthermore, we look at
the attention distribution on pre-trained (Figure 5.2) and finetuned (Figure 5.3) mBART
on a Russian sentence. We see that the pretrained model struggles to represent any
attention on ’pal~’ (finger) across each layer. On the other hand, finetuning shifts the
language model to pay attention to ’pal~’.
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Figure 5.2: Encoder attention distribution on "des�t~" (ten) from "U l�de� des�t~

pal~cev" (people have ten fingers) for pretrained mBART.

We also see that pretrained mBART predicts sporadically over many of the potential
numbers (Figure 5.4a). When it is finetuned (Figure 5.4b) the model only predicts
a small subset of the numbers (0, 3, 4, and 5). This gives good results, even though
it doesn’t understand the problem as the test distribution has many cases for these
numbers.
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Figure 5.3: Encoder attention distribution on "des�t~" (ten) from "U l�de� des�t~

pal~cev" (people have ten fingers) for finetuned mBART.
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Figure 5.4: Heatmap of the confusion matrix on English mBART.

5.1.2 Experiment 1b: Best model(s)

In this experiment, we look at the results discussed in Experiment 1a and look for the
model(s) that perform best for each language. We then look at the models in-depth to
see what insights of each model entail our results.

The best model across our experiments was xlm-RoBERTa large (Table 5.1). As
expected, the largest of each language model performed the best. This is because larger
models have more trainable parameters. Unsurprisingly, xlm-roberta-base outperformed
bert-base-multilingual-uncased due to its longer training time.

We can also compare how the models perform differently. Finetuned Arabic perfor-
mance (Figure 5.5) tends to predict from only a subset of numbers (a subset of 0, 3,
4, 5, and 10) across our models, instead of trying to predict across all numbers. From
this subset, predictions seem to be made almost randomly, indicating a lack of under-
standing of the model. Interestingly, this subset differs depending on the model. By
comparing the attention distribution of a finetuned encoder-decoder (xlm-roberta-base)
and autoregressive (mt5-base) model (Figure 5.6), we see that T5’s distribution is much
more sporadic. It tries to attend to every word. Whereas RoBERTa only aims for a few
words (one and in), but misses on Cancer, which is important for the overall inference.
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(b) xlm-roberta-large
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(c) t5-large
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Figure 5.5: Heatmap of the confusion matrix for models finetuned on Arabic.
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Figure 5.6: Attention distribution on ’three’ from ’Cancer affects one in three people.’
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English Chinese Russian Arabic

pretrained

bert-base-multilingual-uncased 28.3 18.1 24.1 26.7
xlm-roberta-base 30.9 23.9 27.6 28.4
xlm-roberta-large 33.8 27.9 30.2 34.1
mt5-small 23.9 5.20 12.7 30.6
mt5-base 32.5 5.50 16.9 33.8
mt5-large 35.9 6.50 22.7 36.7
mbart-large-cc25 10.1 17.3 8.70 12.0
m-gpt 33.9 26.7 29.7 20.0

finetuned

bert-base-multilingual-uncased 46.0 39.7 46.9 33.9
xlm-roberta-base 45.7 41.0 35.9 37.0
xlm-roberta-large 48.5 43.7 48.4 40.1
mt5-small 36.5 31.4 35.1 31.7
mt5-base 41.0 33.8 40.7 37.0
mt5-large 45.9 34.5 43.6 39.7
mbart-large-cc25 29.0 27.7 36.0 29.5

Table 5.1: Results for Experiments 1a and 1b (Section 5.1.1 and 5.1.2). Accuracies of
pre-trained/fine-tuned models on different languages. Hyper-parameters can be found in
Appendix A.1.

5.1.3 Experiment 1c: Object bias

In this experiment, we investigate if our pre-trained models are biased toward certain
numbers. We get two sentences and their translations in English, Russian, Arabic, and
Chinese. We then fill the subject noun with 1000 random words of that language and
investigate its results. Do words such as ’legs’ and ’sides’ bias our models to predict a
particular number? Is this reasoning constant across languages?

Our results (Table 5.2) show that our models generally don’t change behavior with
different words filling the subject noun. This implies a heavy bias toward specific
numbers. We also see that larger models tend to be less biased. The numbers across our
models for "All [X] have <mask> sides." and its translations were 0, 1, 2, 3, 4, 8, 9, and
10. For "All [X] have <mask> sides." these numbers were 0, 1, 2, 3, 4, 5, 6, and 10.

Interestingly, sentences that were direct translations of each other didn’t necessarily
bias towards the same number across the same model. For example, with xlm-roberta-
base, "All [X] have <mask> sides." is biased towards the number 2, while its Chinese
translation, "所有[X]有<mask>个边。", biases towards 1. This may imply that the
reasoning of a sentence with the same semantic meaning may be different depending on
the language. The behavior of random cross-lingual crossover was especially prevalent
in languages that had the poorest performance in our pretraining experiments (Table
5.1).
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Sentence xlm-roberta-base xlm-roberta-large

All [X] have to have <mask> legs. 2 (97.8) 2 (78.5), 4 (21.2)
All [X] have <mask> sides. 2 (98.9) 2 (99.5)
所有[X]都必须有<mask>条腿 2 (99.1) 3 (62.3), 2 (28.9)
所有[X]有<mask>个边。 1 (99.9) 2 (57.7), 3 (41.3)
Vse [X] dol�ny imet~ <mask> nog. 2 (98.7) 2 (48.5), 5(46.1)
Vse [X] ime�t <mask> storony. 2 (99.5) 2 (99.0)

[X] É¾Ë
	
àñºK


	
à

@ I. m.

�'

 <mask> Ég. P


@. 3 (99.3) 3 (59.8), 4 (35.1)

AêË [X]É¿ <mask> I.
	
K @ñk. . 3 (94.5) 3 (75.4), 4 (24.2)

Sentence mbart-large-cc25 mt5-small

All [X] have to have <mask> legs. 4 (57.5), 0 (39.4) 2 (86.9), 1 (11.7)
All [X] have <mask> sides. 4 (96.0) 2 (99.5)
所有[X]都必须有<mask>条腿 1 (98.0) 1 (99.3)
所有[X]有<mask>个边。 1 (78.7), 0 (20.3) 1 (88.1), 2 (10.9)
Vse [X] dol�ny imet~ <mask> nog. 0 (98.8) 1 (99.5)
Vse [X] ime�t <mask> storony. 0 (61.2), 10 (33.3) 2 (99.5)

[X] É¾Ë
	
àñºK


	
à

@ I. m.

�'

 <mask> Ég. P


@. 9 (74.7), 4 (17.3) 3 (87.6), 0 (10.4)

AêË [X]É¿ <mask> I.
	
K @ñk. . 8 (87.3) 3 (85.0), 6 (13.0)

Sentence mt5-base mt5-large

All [X] have to have <mask> legs. 2 (49.0), 1 (35.6), 0 (15.4) 2 (81.6)
All [X] have <mask> sides. 0 (50.4), 2 (48.9) 2 (81.2), 0 (17.5)
所有[X]都必须有<mask>条腿 0 (74.7), 1 (25.1) 1 (98.0)
所有[X]有<mask>个边。 0 (87.5), 1 (12.5) 1 (78.7), 0 (20.3)
Vse [X] dol�ny imet~ <mask> nog. 1 (64.5), 0 (35.3) 1 (96.8)
Vse [X] ime�t <mask> storony. 1 (97.4) 1 (72.3), 2(26.7)

[X] É¾Ë
	
àñºK


	
à

@ I. m.

�'

 <mask> Ég. P


@. 3 (97.7) 3 (82.5), 4 (16.2)

AêË [X]É¿ <mask> I.
	
K @ñk. . 3 (64.4), 0 (35.3) 3 (82.7), 10 (12.5)

Sentence m-gpt mbert-base

All [X] have to have <mask> legs. 2 (97.8) 2 (99.1)
All [X] have <mask> sides. 2 (99.9) 3 (51.3), 2 (48.6)
所有[X]都必须有<mask>条腿 2 (99.3) 2 (99.1)
所有[X]有<mask>个边。 4 (99.4) 1 (99.9)
Vse [X] dol�ny imet~ <mask> nog. 3 (49.7), 9 (24.2), 8 (20.5) 5 (93.5)
Vse [X] ime�t <mask> storony. 0 (96.7) 2 (78.9), 1 (16.3)

[X] É¾Ë
	
àñºK


	
à

@ I. m.

�'

 <mask> Ég. P


@. 8 (90.7) 3 (60.2), 0 (17.8)

AêË [X]É¿ <mask> I.
	
K @ñk. . 10 (58.0), 8 (35.0) 3 (58.0), 0 (39.5)

Table 5.2: Results for Experiment 1c. Sentences are ordered as pairs of All [X] have to
have <mask> sides and All [x] have <mask> side in the respective languages. Results
are a list made of elements in the format: predicted number (occurrence %). Only
numbers with ≥ 100 instances were included. mbert-base is bert-base-multilingual-
uncased
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5.2 Experiment 2: Machine translation vs crowd-sourcing

This experiment compares our crowd-sourced data to that made through machine
translation. This can give a rough indication of the quality of our datasets. GPT is not
discussed here as it’s not "fine-tuned" on a training set like other models.

In this experiment, we compare the performance of our crowdsourced results versus
machine translation (Table 5.3). Generally, our crowd-sourced results are better, which
indicates that the results from it are better for training. The reasons for this are twofold;
higher quality training data, and more valid training sentences.

Crowd-sourced Arabic had roughly the same training size as its MT, yet generally had
improved results. We do find two exceptions to improvement. As the exceptions are
rare and only have a small difference to the crowdsourced accuracies (0.8 and 0.4), we
don’t take them as significantly indicative of the overall quality of our dataset.

Chinese MT Russian MT Arabic MT

bert-base-multilingual-uncased 38.3 (-) 45.3 (-) 34.4 (-)
xlm-roberta-base 35.0 (-) 36.7 (+) 36.5 (-)
xlm-roberta-large 43.3 (-) 47.9 (-) 36.7 (-)
mt5-small 29.9 (-) 32.1 (-) 29.7 (-)
mt5-base 24.5 (-) 39.6 (-) 37.4 (+)
mt5-large 29.9 (-) 43.4 (-) 36.5 (-)
mbart-large-cc25 19.0 (-) 28.5 (-) 29.7 (-)

Table 5.3: Results for Experiment 2 (Section 5.2). Models are finetuned on MT training
set. The sign (+/-) indicates whether performance was improved when compared to
Table 5.1.

5.3 Experiment 3: Across languages

These experiments are focused on languages used across our dataset and they are a
breadth study. We evaluate the best-performing languages, and explain why. We also
look at whether cross-lingual data improves performance.

5.3.1 Experiment 3a: Best language performance

This is a relatively simple experiment where we find which languages perform best
across our models. We use the insights from this experiment as a motivation to look
at how each language predicts and the factors behind its performance. We perform
case studies on plural forms, attention distribution, and general differences between the
languages and dataset to investigate this.

We find that Russian and English generally perform the best across our models (Ta-
ble 5.4). This is partially due to those languages being the largest when pretrained
(Table 5.5). We also see that Chinese generally performs closely to English/Russian,
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while Arabic does not, which implies that the training size is a significant factor in
performance.

mbert-b xlmr-b xlmr-l mt5-s mt5-b mt5-l mbart-l mgpt

English

pretrained 28.3 30.9 33.8 23.9 32.5 35.9 10.1 33.9
finetuned 46.0 45.7 48.5 36.5 41.0 45.9 29.0 -

Chinese

pretrained 18.1 23.9 27.9 5.20 5.50 6.50 17.3 26.7
finetuned 39.8 41.0 43.7 31.4 33.8 34.5 27.7 -

Russian

pretrained 24.1 27.6 30.2 12.7 16.9 22.7 8.70 29.7
finetuned 46.9 35.9 48.4 35.1 40.7 43.6 36.0 -

Arabic

pretrained 26.7 28.4 34.1 30.6 33.8 36.7 12.0 20.0
finetuned 33.9 37.0 40.1 31.7 36.0 39.7 29.5 -

Table 5.4: Results for Experiment 3a (Section 5.3.1). Accuracies of different languages
across a variety of models. Model names are: bert-base-multilingual-uncased, xlm-
roberta-base, xlm-roberta-large, mt5-small, mt5-base, mt5-large, mbart-large-cc25 and
m-gpt respectively.
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Figure 5.7: Attention distribution on dva (two) from velosipedy ime�t dva kolesa

(bicycles have two wheels).
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Arabic’s pretrained performance was generally the best. We believe this is due to the
test distribution (Figure 3.2) being skewed to only allow sentences that have a valid
translation in every language. This meant that ’easy’ guesses for other languages (one
and two) didn’t appear as often.

English Russian Chinese Arabic

pretrained size (GB) 10401 3615 186 237
train size (# total sent) 7918 7153 7420 1876

Table 5.5: Size per language in C4 corpus and our training sets. GB stands for Gigabytes.

In Section 3.1, we mentioned one of the motivations for choosing our language is plu-
rality, we investigate this here by looking at how the attention distribution is performed
on these suffixes.
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ders have two fangs). Tokens don’t always translate so (..) indicates its a part of the
preceding word.

In Figure 5.7, we see that our finetuned LM pays more attention to a (a plural suffix that
implies 2-4) in the upper layers, while the pre-trained model does not. This indicates
the LMs learns to use plural forms for Russian inference. With Arabic (Figure 5.8), we
find little improvement on using dual forms after being finetuned. There is no attention
on fangs. This is partially due to the low number of ’two’ cases (62 examples) in the
Arabic training set. You can see this dual as the green in this figure.

We can see how the language impacts what models predict in Figure 5.9. Specifically,
we look at xlm-roberta-large, but similar patterns emerge in our other models. The



5.3. EXPERIMENT 3: ACROSS LANGUAGES 31

diagonal line is the correct prediction. In English, Russian and Chinese we see that the
models tend to predict numbers between 2-6 when it is wrong. While there is a visible
diagonal in these languages (i.e correct predictions), the predictions in this area cause
confusion. For numbers outside this range, xlm-roberta-large usually guesses correctly.
The numbers these models guess mostly seem to follow their training distribution.
Arabic only guesses in a tight range (0, 3-5), and never guesses 2, 6, 7, 8, or 9 across its
predictions. Interestingly, 9 is never guessed in English or Russian either.
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Figure 5.9: Heatmap of the confusion matrix for xlm-roberta-large finetuned on different lan-
guages.

5.3.2 Experiment 3b: Cross-lingual performance

In this experiment, we investigate whether a cross-lingual dataset improves performance,
based on the discussion in Section 2.3.3. We look at English data added to each of our
languages, and a training set of all languages mixed together. We perform two variants
in this experiment; balanced and padded. Balanced experiments have the same % of
each language in the training set, while padded adds extra sentences if they exist.

We found that cross-lingual experiments generally performed worse than the language by
itself. This is because, while the total number of sentences is similar to the monolingual
training sets, there are fewer sentences in the language we are testing for. We get slightly
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lower accuracy for half the sentences in the original training file, implying that some
cross-lingual learning did occur.

On our multilingual set, we found performance to be worse than, but still close to the
average performance of training each language individually. In our balanced example,
we only provided ∼ 300 samples per language, yet still got similar performance,
indicating that cross-lingual learning occurred.

Our padded performance had a performance on par with, or worse than the balanced
set. This was despite our balanced set having a smaller training size than its padded
equivalent. This shows that a larger training set may not result in increased performance.

mbert-b xlmr-b xlmr-l mt5-s mt5-b mt5-l mbart-l

padded

cn + en 37.8 (-) 41.9 (+) 42.7 (-) 28.1 (-) 28.5 (-) 29.1 (-) 27.9 (+)
ru + en 43.9 (-) 45.3 (-) 45.4 (-) 31.0 (-) 39.5 (-) 41.9 (-) 29.2 (-)
ar + en 31.0 (-) 35.7 (-) 35.7 (-) 30.8 (-) 33.5 (-) 36.4 (-) 31.5 (+)
all 38.9 36.1 39.7 31.4 32.4 33.5 20.6

balanced

cn + en 37.5 (-) 37.3 (-) 40.0 (-) 30.3 (-) 30.5 (-) 31.5 (-) 27.9 (+)
ru + en 44.1 (-) 45.8 (-) 46.2 (-) 31.5 (-) 39.5 (-) 40.0 (-) 30.1 (-)
ar + en 29.1 (-) 40.1 (-) 36.7 (-) 29.4 (-) 32.9 (-) 35.9 (-) 29.5 (=)
all 38.3 37.1 36.6 34.6 35.5 36.5 25.2

avg 41.6 39.9 45.2 34.3 37.9 40.9 30.6

Table 5.6: Results for Experiment 3b (Section 5.3.2). The sign (+/-) indicates whether
the performance was improved when compared to Table 5.4. avg is the average of the
three languages given from Table 5.4, and all uses a multilingual training set.

5.4 Experiment 4: Language-specific phenomena

This experiment serves as a depth study for each of the languages we have crowdsourced.
In Russian we experiment with the model’s ability to capture case declension, in Arabic
we explore declension and in Chinese, we measure word reliance.

5.4.1 Experiment 4a: Russian case declension

Declension in Russian serves primarily to delineate the grammatical and semantic
information contained in words in a sentence. Declension in the suffix gives the gender,
number, and case of words in Russian, with case declension varying depending on a
word’s gender and number. Do models understand not only the number but also the
type of number?

We experiment with the ability of Russian to predict the case in declension in a nu-
merical context. The categories for these are made up of nominal, accusative, dative,
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instrumental, prepositional, and genitive. Some declensed numbers are homonyms,
when this is true we categorize it as a member of all possible cases that fit its meaning.

Nominal Accus Dative Instru Prep Genitive None Total

pretrained

mbert 8.76 10.7 11.6 10.2 14.4 15.0 97.4 16.8
xlm-b 25.0 26.0 22.9 2.04 19.1 19.7 100 26.2
xlm-l 26.3 27.7 23.9 2.04 23.7 24.4 98.7 28.7
mt5-s 5.40 5.62 8.64 0.00 6.65 7.64 89.7 10.9
mt5-b 10.4 10.4 11.3 0.00 10.2 11.0 94.9 14.9
mt5-l 13.6 14.7 16.3 0.00 19.4 19.7 96.2 20.4
mbart 4.09 3.93 0.997 0.00 0.486 0.478 78.2 6.20
gpt 22.6 23.6 5.98 34.7 22.4 22.8 94.9 27.2

finetuned

mbert 49.5 50.1 30.9 24.5 39.1 39.3 93.6 46.1
xlm-b 48.9 50.0 53.2 2.04 42.0 42.2 94.9 46.5
xlm-l 50.5 51.5 37.5 2.04 42.1 42.4 84.6 47.7
mt5-s 30.5 31.9 22.6 12.2 28.0 28.7 93.6 33.1
mt5-b 35.3 36.8 26.2 28.6 34.5 35.0 89.7 38.3
mt5-l 37.7 39.2 30.9 18.4 40.2 40.3 92.3 41.4
mbart 31.8 31.2 16.9 0.00 34.8 34.9 75.6 33.5

n 685 712 301 49 617 628 78 1500

Table 5.7: Results for Experiment 4a. n is the total number of each declension type in
the test set. Accus, Instru, Prep, and None are accusative, instrumental, prepositional,
and no declension respectively. Model names are: bert-base-multilingual-uncased,
xlm-roberta-base, xlm-roberta-large, mt5-small, mt5-base, mt5-large, mbart-large-cc25
and m-gpt respectively.

We can see the result for this experiment across our models in Table 5.7. Generally,
performance in xlm-roberta-large was the best and our fine-tuned models are generally
okay at predicting nominal, accusative, dative, prepositional, and genitive numbers.
The exception to this is instrumentals, which are words that are being used as an
instrument to a sentence (e.g I ate with the spoon). Instrumentals have extremely poor
pre-trained performance and only a slight improvement when fine-tuned (if any). The
poor performance could be partially caused by the rarity of its use in our training set
relative to the other case types. Interestingly, m-gpt performs best on instrumentals.

Performance on no declension was by far the best. These consisted of words that
implied zero or none of and indicate that our model is good at understanding when there
is none of a particular object. While we do see the best performance for no declension
on pre-trained xlm-roberta-base, this is likely caused by a better generalization of the
problem and not a worse understanding of the problem. You could always guess none,
and get 100% accuracy, but that doesn’t mean you’ve learned the problem.
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5.4.2 Experiment 4b: Arabic declension

This experiment is similar to Experiment 4a, except that it does not analyze a specific
type of declension. Instead, we explore declension as a whole to see if the model
predicts the number as well as its exact declension.

mbert-b xlmr-b xlmr-l mt5-s mt5-b mt5-l mbart-l mgpt

pretrained

original 26.7 28.4 34.1 30.6 33.8 36.7 12.0 20.0
declension 12.5 12.0 14.8 11.8 12.3 14.3 3.73 11.7

finetuned

original 33.9 37.0 40.1 31.7 36.0 39.7 29.5 -
declension 28.0 30.8 34.4 13.2 17.5 18.1 22.3 -

Table 5.8: Results for Experiment 4b. Accuracies of Arabic when both declensed and not
declensed. Model names are: bert-base-multilingual-uncased, xlm-roberta-base, xlm-
roberta-large, mt5-small, mt5-base, mt5-large, mbart-large-cc25 and m-gpt respectively.

Our results are outlined in Table 5.8, we look specifically at how much worse our
declension performance is compared to predicting solely the number. We see that when
pretrained, our models only understand the correct declensed type between half and
a third of the time relative to our original experiments. When finetuned, most of our
models get much better and understand declension, with this gap narrowing significantly.
The exception is the T5 models. While there is an improvement in performance when
finetuned, they still fail in predicting the correct declension type. This indicates that T5
may not understand the problem when it guesses correctly and may be a reason for its
poorer performance in Arabic when compared to xlm-roberta.

5.4.3 Experiment 4c: Chinese word reliance

In this experiment, we have measured Chinese word reliance. In Chinese, characters
attach to one another (instead of saying ’birds’, you would say ’flock of birds’). We
will perform an object bias test across different units for numbers (’years, months, sets,
pieces). We pick two sentences, 所有[X] 都必须有<mask> [Y] 腿(All [X] have to
have mask legs) and所有[X]都有<mask> [Y]边。(All [X] have mask sides). We
replace the [X] with a random Chinese word and test over a set of units by replacing
[Y]. These units are个(piece),套(set),次(number),岁(year),层(layer),分(minute),
月(month), and条(slip).

Our results found for所有[X]都必须有<mask> [Y] can be found in Table 5.9 and
the results for所有[X]都有<mask> [Y]边。are found in Table 5.10. We find that
most of the units used do not have much of an impact on the numbers predicted across
each model, with most models defaulting to predicting 0. We did see that xlm-roberta-
large, mt5-base (despite mt5-large, the larger model having heavy bias), and m-gpt did
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deviate, which implies that they pay attention to their unit. For example,岁(year) in
xlm-roberta-large moves the model towards 1, 3, and 10 based on its sentence and unit.

个(piece) 套(set)

mbert-base 1 (100.0) 1 (100.0)
xlm-roberta-base 1 (100.0) 1 (100.0)
xlm-roberta-large 2 (54.0), 3 (44.2) 1 (90.2)
mt5-small 1 (99.6) 1 (99.8)
mt5-base 1 (57.9), 0 (41.8) 0 (58.3), 1 (41.4)
mt5-large 1 (99.6) 1 (98.7)
mbart-large-cc25 4 (83.5), 0 (15.8) 0 (65.5), 4 (32.0)
gpt 4 (95.3) 2 (99.7)

次(number) 岁(year)

mbert-base 1 (99.9) 1 (99.5)
xlm-roberta-base 1 (99.9) 2 (71.0), 3 (23.8)
xlm-roberta-large 3 (77.2), 2 (14.2) 1 (63.6), 3 (28.3)
mt5-small 1 (99.6) 1 (99.2)
mt5-base 1 (64.0), 0 (35.8) 0 (60.8), 1 (38.2)
mt5-large 1 (99.4) 1 (99.9)
mbart-large-cc25 0 (60.1), 4 (26.9), 3 (13.0) 4 (92.3)
gpt 2 (98.8) 3 (53.2), 2 (40.7)

层(layer) 分(minute)

mbert-base 1 (100.0) 1 (60.5), 10 (35.8)
xlm-roberta-base 1 (91.6) 1 (97.0)
xlm-roberta-large 3 (67.1), 2 (32.7) 3 (47.9), 2 (27.3), 1 (12.5)
mt5-small 1 (99.7) 1 (99.8)
mt5-base 1 (72.9), 0 (26.7) 1 (79.4), 0 (20.2)
mt5-large 1 (99.8) 1 (98.9)
mbart-large-cc25 0 (69.5), 4 (23.8) 0 (49.6), 4 (38.7), 3 (11.4)
m-gpt 2 (71.2), 3 (28.8) 5 (45.5), 3 (18.4), 3 (15.8), 7 (11.1)

月(month) 条(slip)

mbert-base 1 (92.0) 1 (100.0)
xlm-roberta-base 1 (100.0) 1 (100.0)
xlm-roberta-large 1 (65.4), 3 (32.1) 2 (57.7), 3 (41.3)
mt5-small 1 (99.6) 1 (99.3)
mt5-base 0 (76.6), 1 (23.1) 0 (74.7), 1 (25.1)
mt5-large 1 (91.1) 1 (98.0)
mbart-large-cc25 4 (90.6) 0 (81.8), 4 (16.9)
m-gpt 3 (76.7), 5 (14.6) 2 (99.3)

Table 5.9: Object bias for所有[X] 都必须有<mask> [Y] 腿. where [X] is filled with one
of 1000 random words and [Y] is filled with the unit of that column. Results are a list
made of elements in the format: predicted number (occurrence %).
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个(piece) 套(set)

mbert-base 1 (99.9) 1 (99.8)
xlm-roberta-base 1 (99.2) 1 (99.9)
xlm-roberta-large 3 (62.3), 2 (28.9) 1 (97.2)
mt5-small 1 (98.7) 1 (91.1)
mt5-base 0 (87.5), 1 (12.5) 0 (66.4), 1 (33.4)
mt5-large 1 (78.7), 0 (20.3) 1 (91.7)
mbart-large-cc25 3 (48.8), 4 (37.5), 0 (12.5) 3 (35.5), 4 (31.1), 0 (14.1)
gpt 4 (99.4) 1 (98.2)

次(number) 岁(year)

mbert-base 2 (53.6), 1 (40.5) 1 (88.8)
xlm-roberta-base 1 (99.5) 1 (98.7)
xlm-roberta-large 3 (48.3), 1 (42.1) 10 (50.7), 1 (34.8)
mt5-small 1 (99.6) 1 (96.0)
mt5-base 1 (61.7), 0 (38.0) 0 (75.4), 1 (24.4)
mt5-large 1 (81.5), 0 (17.4) 1 (99.2)
mbart-large-cc25 3 (52.5), 4 (31.7), 0 (14.4) 4 (40.3), 3 (39.6), 0 (16.5)
gpt 1 (83.0), 2 (10.0) 1 (83.4), 3 (14.7)

层(layer) 分(minute)

mbert-base 1 (99.9) 10 (60.9), 1 (16.5)
xlm-roberta-base 1 (99.4) 1 (99.4)
xlm-roberta-large 3 (68.4), 1 (26.9) 1 (74.5), 2 (20.8)
mt5-small 1 (93.7) 1 (98.4)
mt5-base 0 (74.6), 1 (25.4) 0 (57.1), 1 (42.7)
mt5-large 1 (77.5), 0 (21.8) 1 (91.9)
mbart-large-cc25 3 (73.9), 4 (16.9) 3 (68.1), 4 (18.4)
gpt 1 (97.5) 1 (86.5)

月(month) 条(slip)

mbert-base 4 (37.5), 1 (33.1), 5 (12.8) 1 (100.0)
xlm-roberta-base 1 (100.0) 1 (99.5)
xlm-roberta-large 1 (89.9) 2 (49.8), 3 (35.0), 1 (13.9)
mt5-small 1 (98.2) 1 (84.8), 0 (15.1)
mt5-base 0 (86.2), 1 (13.6) 0 (86.2), 1 (13.8)
mt5-large 1 (84.4), 0 (14.1) 1 (78.5), 0 (20.5)
mbart-large-cc25 3 (61.1), 4 (26.3) 3 (53.7), 4 (32.1), 0 (11.7)
gpt 3 (41.5), 2 (52.4), 4 (14.1), 1 (10.5) 1 (96.4)

Table 5.10: Object bias for所有[X] 都有<mask> [Y] 边 where [X] is filled with one of
1000 random words and [Y] is filled with the unit of that column. Results are a list made
of elements in the format: predicted number (occurrence %).



Chapter 6

Conclusions

In this chapter, we look at our contributions, a short overview of our results, and
potential future work.

6.1 Contributions

The contributions to this project are as follows:

• Created a numerical reasoning dataset with over 22k examples.

• Evaluated and investigated performance on mBERT, xlm-roBERTa, mBART,
mT5 and mGPT.

• Analysed the impact of plurality on model performance.

• Performed language-specific experiments on case declension in Russian, declen-
sion in Arabic, and Chinese word reliance.

6.2 Results overview

We have collected a high-quality numerical reasoning dataset of over 22k samples
for Arabic, Russian, and Chinese. We then performed a range of experiments on the
collection of these.

Our approach looked at a large variety of encoder-only (mBERT, xlm-RoBERTa) and
auto-regressive PTLMs (mBART, mT5 and mGPT) and found that performance is
poor on numerical reasoning across languages. We find this is due to attention often
missing important parts of a sequence for reasoning and only ever predicting a small
subset of possible answers. We also saw that our models suffered from object bias. We
found that models are able to exploit Russian plurality but not Arabic. We also see that
cross-lingual learning is beneficial in a numerical commonsense domain. We found
declension performance strongly improved through finetuning, but models struggle with
instrumental declension. We also found models nearly always knew how to predict no
declension. We found declension performance in Arabic to be poor compared to original
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performance when pretrained, but fairly close over finetuning. With the exception of
this being T5, which often struggled to understand declension. Finally, we look at
Chinese word reliance across two sentences, finding that most models suffer from object
bias regardless of unit.

6.3 Potential future work

In the future, we would like to explore inter-annotator agreement (Passonneau et al.,
2006) on our crowdsourced dataset. This is a more in-depth manner to evaluate the
quality of a multilingual dataset. While expensive and time-consuming to do, it would
result in a significantly better analysis of translation quality. We also would like to
explore the performance of other models on our dataset, in particular, we want to see
the capabilities of GPT-4 on our dataset as it has been pretrained on a significantly
larger pre trained corpus than mGPT. We would also like to implement a local test set
on the languages we performed to see if they’re able to predict numerical facts that are
culturally specific.

6.4 MInf extension

With the analysis done in this report, we will now try to improve performance. Chain-
of-thought (Wei et al., 2022) has provided promising results for better reasoning. This
is a method where you try to explicitly define the steps of inference in order to come to
an appropriate answer. We believe that using such prompting may provide better results
in numeric sense.
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Appendix A

Models

A.1 Hyperparamaters

learning rate epochs batch size

bert-base-multilingual-uncased 5e-5 3 16
xlm-roberta-base 5e-5 3 16
xlm-roberta-large 5e-5 3 16
mt5-small 3e-4 10 4
mt5-base 3e-4 10 4
mt5-large 3e-4 10 4
mbart-large-cc25 5e-5 3 4

A.2 Number list

English (all lists follow same order):

one,
two,
three,
four,
five,
six,
seven,
eight,
nine,
ten,
zero, no

Chinese:

一
二, 两
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三,
四,
五,
六,
七,
八,
九,
十,
零, 无, 没, 没有, 不含, 毫无

Russian:
odin, odno, odna, odni, odnogo, odno�, odnih, odnomu, odnim, odnu, odno�,

odnimi, odnom

dva, dve, dvuh, dvum, dvum�, dvoe

tri, treh, trem, trem�, troe, troih, troim, troimi, tro�ki, tro�ku

qetyre, qetyreh, qetyr~m�, qetyrem, qetvero, qetveryh, qetverym, qetverymi,

qetvertom, qetverto�, qetyr�m

p�t~, p�ti, p�t~�, p�tero, p�teryh, p�terym, p�terymi, p�tyh

xest~, xesti, xest~�, xestero, xesteryh, xesterym, xesterymi

sem~, semi, sem~�, semero, semeryh, semerym, semerymi

vosem~, vos~mi, vos~m~�, vosem~�, vos~mero, vos~meryh, vos~merym, vos~merymi

dev�t~, dev�ti, dev�t~�, dev�tero, dev�teryh, dev�terym, dev�terymi

des�t~, des�ti, des�t~�, des�tero, des�teryh, des�terym, des�terymi,

nikakie, nul�, nol~ , nul�, nol�, nulevo�, nulevym , nuleva�, nulevu�, net,

ne, bez, ni, 'nule', 'nulevoe', 'nulevogo', 'Nikakie', 'nikakih'
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Arabic:
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A.3 Declension list

Nominal: nol~,nulevoi, nuleva�, nulevoe, Nikakie, odin, odno, odna, odni,

tri, troiki, troe, qetyre, qetvero, p�t~, p�tero, xest~, xestro, sem~, se-

mero, vosem~, vos~mero, dev�t~, dev�tero, des�t~, des�tero

Accusative: nol~, nulevu�, odin, odno, odnu, odni, dva, dve, dvoe, tri, troiku,
troe, qetyre, qetvero, p�t~, p�tero, xest~, xestero, sem~, semero, vosem~,

vos~mero, dev�t~, dev�tero, des�t~, des�tero

Genitive: nul�, nol�, Nulevogo, nulevoi, nikakih, odnogo, odnoi, odnih, dvuh,
treh, troiki, troih, qetyreh, qetveryh, qetvertoi, p�ti, p�teryh, p�tyh,

xesti, xesteryh, semi, semeryh, vos~mi, vos~meryh, dev�ti, dev�teryh,

des�ti, des�teryh

Dative nul�, nulevoi, odnomu odnoi, odnim, dvum, trem, troim, qetyrem,

qetyrem, qetverym, qetvertoi, p�ti, p�terym, xesti, xesterym, semi, se-

merym, vos~mi, vos~merym dev�ti, dev�terym, des�ti, des�terym

Instrumental: nulevoi, nulevym, odnim, odnoi, odno�, odnimi, dvum�, trem�,
troimi, qetyr~m�, qetverymi, qetvertoi, p�t~�, p�terymi, xest~�, xesterymi,

sem~�, semerymi, vosem~�, vos~m~�, vos~merymi, des�t~�, dev�terymi,
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des�t~�, des�terymi

Prepositional: nule, nulevoi, nikakih, odnom, odnoi, odnih, dvuh, treh, troih,
qetyreh, qetveryh, qetvertom, qetvertoi, p�ti, p�teryh, p�tyh, xesti,

xesteryh, semi, semeryh, vos~mi, vos~meryh, dev�ti, dev�teryh, des�ti,

des�teryh

Other: net, ne, bez, ni
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MTurk

B.1 Crowdsourcing instructions

<head>
<meta charset="UTF-8">

</head>

<p><strong>Eligibility</strong>:</p>
<ul>

<li>You must be a<span style="color: #ff0000;"> native speaker of Russian</span> to complete this HIT.</li>
<li>You must be<span style="color: #ff0000;"> proficient in English</span> to complete this HIT.</li>

</ul>

<p><strong>Guidance:</strong></p>

<ul>
<li>Sentences will have bracketing, when you translate, this should be maintained. For example &quot;<strong>A cat has [four] legs and [two] eyes.</strong>&quot; should be translated to &quot;<strong> [] [] .</strong>&quot;.</li>
<li>Please translate the sentence into a Russian sentence which is close to how <strong>you</strong> would say this statement. We are more interested in how native speakers of Russian write these statements. This is more important than directly translating each word.</li>
<li>When given a number in written form, please translate it into its written form in Russian. For example, &quot;<strong>[one]</strong>&quot; should be written as &quot;<strong>[]</strong>&quot;, not &quot;[1]&quot;.</li>

</ul>

<p><strong>Informed consent</strong>:</p>
<p>This is a linguistic experiment performed at the University of Edinburgh. If you have any question about this study, feel free to contact Dayyán O’Brien (d [dot] o’brien-1 [at] sms [dot] ed [dot] ac [dot] uk). Participation in this research is voluntary. You have the right to withdraw from the experiment at any time. The collected data will be used for research purposes only. All output data will be anonymised and we will not collect or store any information that could be used to identify who you are.</p>
<p><strong>Feedback</strong>:</p>
<p>We are happy to receive feedback and improve this job accordingly. Feel free to send your comments to d [dot] o’brien-1 [at] sms [dot] ed [dot] ac [dot] uk. Your responses are confidential. Any publications based on these will not include your specific responses, but rather aggregate information from many individuals.</p>

B.2 MTurk participants’ consent form

49
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V1 07/06/21 
STUDY NAME: English to Arabic Human Translation with Native Speakers 
 
WHAT IS THE PURPOSE OF THIS STUDY AND WHAT WILL I BE ASKED TO DO? 
 
This study is being run by researchers at the University of Edinburgh. The purpose of the study is to translate a dataset 
of statements from English into Arabic. You've been invited to take part because you are located in Egypt, Jordan, 
Morroco or the United States of America. 
 
If you decide to take part, you will see 16 sentences in English and you will need to write equivalent sentences 
translated into Arabic. This task should take approximately 5 minutes and you will be compensated through the 
Amazon Mechanical Turk platform. 
 
There are no anticipated risks associated with participation. 
 
USE OF YOUR DATA 
 
In addition to your responses, you will be asked to provide information about your language background. This includes 
your age, country and the number of years speaking the relevant language. Worker IDs will also be stored. In 
compliance with GDPR, no personal data which could be used to identify you will be collected. 
 
The anonymised data will be publicly released for research purposes. 
 
WHAT IF I WANT TO WITHDRAW FROM THE STUDY? 
 
You can leave the study at any time through the Mechanical Turk platform or through contacting the email below. In 
this case, all your data from this study will be deleted. 
 
WHO CAN I CONTACT WITH QUESTIONS OR CONCERNS? 
 
If you have questions about the study, please contact the lead researcher, Dayyán O’Brien by emailing D.O'Brien-
1@sms.ed.ac.uk Please note that this may expose your personal email address to the research team. In compliance 
with GDPR, all emails from participants will be deleted following the end of the study. If you wish to make a complaint 
about the study, please contact Professor Mirella Lapata by email: mlap@inf.ed.ac.uk. If you have any complaints the 
research team cannot resolve to your satisfaction, please contact inf-ethics@inf.ed.ac.uk, giving the study title. 
 
I understand that my anonymised data will be publicly released. 
 
<select box> Yes/No 
 
I understand that I can withdraw from the study at any point without 
giving a reason. 
 
<select box> Yes/No 
 
If you understand the task and wish to participate in the study, please select "Yes, I will participate"; if not, "No, I will 
not participate." 
 
<select box> Yes I will participate / No I will not participate 
 
This study was certified according to the Informatics Research Ethics Process, RT number 6800 
 
This study was certified 
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In-house

C.1 Crowdsourcing instructions

<h2><span style="color: rgb(0, 0, 0);">Translate Statements from English to Simplified Russian</span></h2>

<p>Translate <strong>all sentences into Russian. There will be a maximum of 16 sentences in the HIT</strong></p>

<p>You must be a<span style="color: #ff0000;"> native speaker of</span> <span style="color:#FF0000;">Russian</span> and<span style="color: #ff0000;"> proficient in English</span> to complete this HIT.</p>

<p>Please attempt to translate every word into Russian. If this is difficult <strong>for rare words you do not understand</strong>, such as people&#39;s names, locations or acronyms, please <strong>copy the English word into the translation</strong>.</p>

<p><strong>Guidance:</strong></p>

<ul>
<li>You will be given a sentence in English, and its equivalent in Google Translate. If this translation is good, simply copy this over to the text box. If not, provide a good translation.</li>
<li>Sentences will have bracketing, when you translate, this should be maintained. For example &quot;<strong>A cat has [four] legs and [two] eyes.</strong>&quot; should be translated to &quot;<strong> [] [] .</strong>&quot;.</li>
<li>Please translate the sentence into a Russian sentence which is close to how <strong>you</strong> would say this statement. We are more interested in how native speakers of Russian write these statements. This is more important than directly translating each word.</li>
<li>When given a number in written form, please translate it into its <strong>written form</strong> in Russian. For example, &quot;<strong>[one]</strong>&quot; should be written as &quot;<strong>[]</strong>&quot;, not &quot;[1]&quot;.</li>
</ul>

<div style="color:blue">
<h3>Example Translations</h3>
</div>

<table style="border: none; width:90%;">
<thead>
<tr>
<th style="width:90%;">
<div style="color:blue">
<h4>Source sentence in English (EN) and translation into Russian (RU)</h4>
</div>
</th>
</tr>
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</thead>
<tbody>
<tr>
<td id="a" style="border: none; width:75%; text-align:justify;">EN1 Goats are [four] legged animals.</td>
<td style="border: none; width:11%;">&nbsp;</td>
</tr>
<tr>
<td id="a" style="border: none; width:75%; text-align:justify;color:blue">RU1 - [] .</td>
<td style="border: none; width:11%;">&nbsp;</td>
</tr>
<tr>
<td id="b" style="border: none; width:75%; text-align:justify;">EN2 Roses have [five] petals.</td>
<td style="border: none; width:11%;">&nbsp;</td>
</tr>
<tr>
<td id="a" style="border: none; width:75%; text-align:justify;color:blue">RU2 [] .</td>
<td style="border: none; width:11%;">&nbsp;</td>
</tr>
<tr>
<td id="c" style="border: none; width:75%; text-align:justify;">EN3 A cat has [four] legs and [two] eyes.</td>
<td style="border: none; width:11%x;">&nbsp;</td>
</tr>
<tr>
<td id="a" style="border: none; width:75%; text-align:justify;color:blue">RU3 [] [] .</td>
<td style="border: none; width:11%;">&nbsp;</td>
</tr>
</tbody>
</table>
</div>

<p><strong>This study was certified according to the Informatics Research Ethics Process, RT number 6800</strong></p>
</div>
<span class="init-display-hidden" id="keybinding-info">Press &quot;Click to begin the HIT&quot; to continue.</span>

C.2 Participants’ consent form
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V1 07/06/21 
STUDY NAME: English to Arabic Human Translation with Native Speakers 
 
WHAT IS THE PURPOSE OF THIS STUDY AND WHAT WILL I BE ASKED TO DO? 
 
This study is being run by researchers at the University of Edinburgh. The purpose of the study is to translate a dataset 
of statements from English into Arabic. You've been invited to take part because you are located in Egypt, Jordan, 
Morroco or the United States of America. 
 
If you decide to take part, you will see 16 sentences in English and you will need to write equivalent sentences 
translated into Arabic. This task should take approximately 5 minutes and you will be compensated through the 
Amazon Mechanical Turk platform. 
 
There are no anticipated risks associated with participation. 
 
USE OF YOUR DATA 
 
In addition to your responses, you will be asked to provide information about your language background. This includes 
your age, country and the number of years speaking the relevant language. Worker IDs will also be stored. In 
compliance with GDPR, no personal data which could be used to identify you will be collected. 
 
The anonymised data will be publicly released for research purposes. 
 
WHAT IF I WANT TO WITHDRAW FROM THE STUDY? 
 
You can leave the study at any time through the Mechanical Turk platform or through contacting the email below. In 
this case, all your data from this study will be deleted. 
 
WHO CAN I CONTACT WITH QUESTIONS OR CONCERNS? 
 
If you have questions about the study, please contact the lead researcher, Dayyán O’Brien by emailing D.O'Brien-
1@sms.ed.ac.uk Please note that this may expose your personal email address to the research team. In compliance 
with GDPR, all emails from participants will be deleted following the end of the study. If you wish to make a complaint 
about the study, please contact Professor Mirella Lapata by email: mlap@inf.ed.ac.uk. If you have any complaints the 
research team cannot resolve to your satisfaction, please contact inf-ethics@inf.ed.ac.uk, giving the study title. 
 
I understand that my anonymised data will be publicly released. 
 
<select box> Yes/No 
 
I understand that I can withdraw from the study at any point without 
giving a reason. 
 
<select box> Yes/No 
 
If you understand the task and wish to participate in the study, please select "Yes, I will participate"; if not, "No, I will 
not participate." 
 
<select box> Yes I will participate / No I will not participate 
 
This study was certified according to the Informatics Research Ethics Process, RT number 6800 
 
This study was certified 
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